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Abstract: The use of intelligent systems in clinical diagnostics has evolved, integrating statistical
learning and knowledge-based representation models. Two recent works propose the identification
of risk factors for the diagnosis of obstructive sleep apnea (OSA). The first uses statistical learning to
identify indicators associated with different levels of the apnea-hypopnea index (AHI). The second
paper combines statistical and symbolic inference approaches to obtain risk indicators (Statistical Risk
and Symbolic Risk) for a given AHI level. Based on this, in this paper we propose a new intelligent
system that considers different AHI levels and generates risk pairs for each level. A learning-based
model generates Statistical Risks based on objective patient data, while a cascade of fuzzy expert
systems determines a Symbolic Risk using symptom data from patient interviews. The aggregation of
risk pairs at each level involves a fuzzy expert system with automatically generated fuzzy rules using
the Wang-Mendel algorithm. This aggregation produces an Apnea Risk indicator for each AHI level,
allowing discrimination between OSA and non-OSA cases, along with appropriate recommendations.
This approach improves variability, usefulness, and interpretability, increasing the reliability of the
system. Initial tests on data from 4400 patients yielded AUC values of 0.74–0.88, demonstrating the
potential benefits of the proposed intelligent system architecture.

Keywords: design; machine learning; expert systems; fuzzy logic; automatic rule generation; information
fusion; intelligent system; decision-making; Wang–Mendel

MSC: 68T27; 68T30; 68T37

1. Introduction

Intelligent systems are now a reality, present in numerous and diverse environments,
both domestic and commercial, and increasingly accepted and used by society [1–12]. This
work is framed in the health sector, where intelligent systems have reached a significant
level of development and are increasingly present, being regularly integrated into hospital
computing environments, allowing the improvement and facilitation of clinical decision
processes, with all the benefits of improving the quality of services provided and reduc-
ing the associated healthcare costs. From the use of statistical learning models, both in
their supervised [13–15] and unsupervised variants [14–18], to the use of models based on
knowledge representation through expert systems [19–24], intelligent systems have incor-
porated different inference mechanisms to increase their usefulness as diagnostic support
tools [1,2,5,10,25]. In this sense, the authors of this article have presented several other
works and applications of intelligent clinical decision support systems (ICDSS) [3–6,10],
of which the last two proposals, which aim to help in the diagnosis of obstructive sleep
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apnea (OSA) [1,2] and are taken as a starting point to elaborate the proposal presented in
this work, deserve to be highlighted.

OSA is a major respiratory disorder affecting approximately one thousand million
people worldwide [26], most of whom are undiagnosed. It has symptoms that also occur
in the general population. It is characterized by the repeated total or partial collapse of
the upper airway during sleep, which has a significant negative impact on those who
suffer from it. Once the medical team is faced with a suspected case, the usual diagnostic
procedure is to perform specific sleep tests, such as cardiorespiratory polygraphy [27–29]
and polysomnography [30–35]. The availability of these tests is often limited, and they
are usually expensive. Among the various measures obtained from these tests, the apnea-
hypopnea index (AHI) [35], which is the ratio of the number of apnea and hypopnea events
experienced by the patient during the night to the total number of hours of sleep [1], should
be highlighted.

In this context, and after introducing the pathology and how it is diagnosed, we will
briefly comment on the previously mentioned ICDSS used for the diagnosis of OSA. The
first of these [1] proposes a system that, starting from a dataset related to the patient’s
health profile (anthropometric information, habits, comorbidities, and medication use), and
through the concurrent use [1,2,4,5,8,10–12] of a series of machine learning classification
algorithms, as well as a correcting block based on the sequential use of the adaptive neuro-
based fuzzy inference system (ANFIS) and a specific heuristic algorithm, makes it possible
to calculate a set of indicators associated with different AHI levels, which, after proper
interpretation, makes it possible to determine whether a patient could suffer from OSA
and to estimate its severity. The second of the aforementioned works [2] proposes a new
approach based on two heterogeneous sets of information; on the one hand, the information
related to the patient’s health profile, already commented on in the first work; and on the
other hand, the information related to the symptoms reported by the patients themselves
using a specific OSA questionnaire. Unlike in the first work, here the information related
to the patient’s health profile is processed by a single machine learning classification
algorithm associated with a single AHI level, while the second dataset—related to the
symptomatology—is processed by a set of cascaded expert systems supported by the use
of fuzzy inference engines. These two types of processing allow two different risk metrics
to be obtained, which are later combined by means of a utility function to determine a new
metric that allows the risk of a patient suffering from an OSA to be assessed.

It is clear that both of these systems can be very useful when a medical team is faced
with a suspected OSA case, helping them to differentiate between patients who may suffer
from the disease. However, beyond the clear benefits from a clinical perspective, it is
necessary to point out the strengths and weaknesses of each of the proposals based on their
ability to formalize and diversify knowledge and manage uncertainty. These issues are
presented in detail in Table 1 for each of the systems.

After analyzing the data in Table 1, it can be seen that the first approach addresses a
partial formalization of knowledge. In terms of diversification, both approaches have the
same objective, although it could be considered that the first one provides more diverse
information, pointing to different AHI threshold levels, thus facilitating the determination
of the severity of the patients’ condition. In the second approach, the formalization of
knowledge is improved by incorporating a cascade of expert systems. Similarly, and in
contrast to the first approach, the use of statistical and non-statistical approaches allows for
a more complete management of uncertainty. However, in this second approach, given the
coexistence of a pair of risks of different natures that try to represent the same phenomenon,
obtained as outputs respectively from the machine learning algorithm and the cascade of
expert systems, as a prior step to the generation of recommendations, it is necessary to
carry out their union or aggregation, in this case by applying an analytical function that, in
a certain way, increases the uncertainty present in the process. Thus, the aggregation of
these risk terms is a difficult task in itself, requiring not only explicit knowledge of their
nature and meaning but also a qualitative and quantitative assessment of their influence on
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the subsequent aggregation. In order to optimize this aggregation, there are many different
works that propose different aggregation models based on the interpretation of the terms,
from simple weighted sums [36–39] to intelligent systems, plus a variety of aggregation
operators from different origins [2–4,10,12].

Table 1. Strengths and weaknesses of previous approaches from the authors’ works and which were
used as a grounding for the present proposal. Comparisons are made in terms of the capabilities to
formalize and diversify knowledge as well as to deal with uncertainty.

First Proposal [1] Second Proposal [2]

Formalization and diversification
of knowledge

Incorporates a correcting block based on
the use of ANFIS and a specific heuristic

algorithm, through which a partial
formalization of knowledge is carried out.
Considers several AHI threshold levels in

the prediction, which facilitates the
subsequent prioritization of the patients

according to the severity of their
condition by different types of

health professionals.

Formalizes knowledge by using of a cascade of
expert systems.

Considers a single AHI level, which in some way
reduces the subsequent performance of the

system and allows only a single threshold to
distinguish between patients who suffer from
OSA and those who do not. This estimation

might be used by the professionals to identify
those patients who suffer from the condition.

Uncertainty management
Performs uncertainty management based
on the use of statistical approaches, but

without implicit processing of vagueness.

Uses statistical and non-statistical approaches,
and therefore performs a more complete

management of uncertainty and vagueness.
The definition of the method for the union or
aggregation of the system risks uses a utility

function, which in some way involves increasing
the uncertainty associated with the process.

In this paper, we propose an agile and novel solution to the problem of aggregating
terms, in this particular case, risk metrics, when presented under the conditions of a fuzzy
inference process. Such an inference model, starting from a knowledge base consisting of
a set of fuzzy rules, that is, expressed by means of “IF . . . THEN . . . ” structures using
linguistic qualifiers, is able to compute a prediction that can in fact be interpreted as the
consequence of a logical combination of its antecedent terms. In this way, an aggregation
is obtained that considerably reduces the imprecision of the expressions by which the
aggregation could be represented as a prior step to the formalization of rules and at the
same time reduces the uncertainty due to a lack of knowledge by being able to model the
expression of the rules in the inference calculus structure itself.

Therefore, in this paper, a proof of concept is designed, developed, and carried out for
an intelligent system aimed at predicting the severity of an OSA case represented by the
AHI level, which, combining already discussed and published proposals, presents as its
main novelty a risk aggregation model based on a set of fuzzy inference systems whose
knowledge bases are autonomously computed from the study database, represented by the
risk values obtained and their corresponding class labels.

Thus, in the first part, and taking into account previous developments by the au-
thors [1,2], a prediction is made for two risk terms, named Statistical Risk and Symbolic Risk,
associated with different inferential models, and obtained for a set of thresholds of AHI:

• For the processing of the data related to the patient’s health profile, that is, for the
objective data, different machine learning classification algorithms are considered,
working concurrently [1,2,4,5,8,10–12], each of which is associated with different AHI
threshold levels as in the approach in the first work, and through which it is possible
to obtain a set of risk indicators, called Statistical Risks.

• The data relating to the patient’s symptoms, that is, those of a subjective nature, are
processed in a similar way to the approach in the second work, using a series of
expert systems arranged in a cascade, the output of which determines an indicator,
the Symbolic Risk, a common value for the patient, applicable to all AHI levels.
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In a second part of this work, based on the results obtained in its first part, an inference
system will be designed, defined, and developed to aggregate the risk terms. This combina-
tion/aggregation of the pair formed by each of the different statistical risks for each AHI
level and the symbolic risk will be carried out precisely at each AHI level, using a set of
fuzzy expert systems whose knowledge bases are not explicitly defined but are obtained
automatically from the starting data set, represented by the calculated risks and using the
corresponding classification labels. For this purpose, an algorithm is integrated into the
program flow that allows to obtain fuzzy rules from a dataset, with the calculated risk pairs
as antecedents and the class labels of each pair as consequents. This is the well-known
Wang-Mendel algorithm [40]. Through this approach, it will be possible to automatically
generate a set of rules that allow each specific case to be evaluated by combining these
rules to obtain a prediction.

Motivation and Conceptual Approach

Regarding the first stage, the motivation of this work is to combine, in a single intelli-
gent system, two previously developed approaches, already discussed and published by
the authors [1,2]. To this end, the most differential and novel proposals will be selected, in
this case the use of a set of threshold levels of the AHI with the generation of risk measures
associated with predictor models based, on the one hand, on statistical learning (Statistical
Risk) and, on the other, on the representation of knowledge (Symbolic Risk). Thus, it is pro-
posed that the intelligent system calculate a pair of risks for each AHI threshold, which will
improve prediction and diagnostic stratification. Both proposals, as mentioned above, are
published separately, and their union is proposed in this paper, introducing an important
novelty that affects the way of aggregating the generated risks, which is addressed in the
second stage.

This second stage is based on the Wang-Mendel algorithm [40] and constitutes the
main conceptual and theoretical basis for the novelty and technical relevance of the work
presented above. The generation of risks reproduces inference models, both statistical
learning and knowledge-based using fuzzy logic, which have already been presented and
discussed. However, the approach of developing a fuzzy expert system whose knowledge
base is automatically derived from a plausible representation of the same data that feeds the
previous systems is a significant difference for which the authors have no further evidence
in the literature in the field of study. The aggregation of the prediction results of statistical
and symbolic classifiers is one of the difficulties inherent to the joint use of these models.
Usually, the combined work of models based on statistical learning and symbolic inference
is approached from the point of view of a model that combines both approaches within the
definition of its architecture. Similarly, and in a more general perspective, the aggregation of
results derived from models with inductive learning (statistical inference) and what could
be considered analytical learning (deductive/symbolic inference) has usually been treated
from the point of view of reviewing the theoretical domain of instances and its influence
on the hypothesis search space [41]. In this line, generalized towards the definition of a
dataset that can provide answers to symbolic and statistical models, the creation of hybrid
intelligent systems is evolving, not only with the aim of improving the aggregation of their
results but also with the objective of creating their own architectures and models. However,
in the case of the work presented in this article, the hybridization is limited and does not
intend to define a hybrid architecture but rather to improve the aggregation of results,
albeit starting from the same set of initial instances. Theoretically, the proposal is based on
the basic principles of statistical learning, which refer to the existence of a set of pre-labeled
features. To this, it adds the ability to obtain a knowledge base from those. And this is
where the real potential of the proposal lies. When we mention “features” we are always
referring to data in its various forms and expressions, understood as quantitative measures
of information, and always, within a knowledge base, particular manifestations of the set
of relationships that those features themselves establish among themselves. Thus, while
these relations, ordered and structured in the form of logical rules, constitute ontological
and permanent knowledge, data are ephemeral and transitory and therefore, by definition,
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cannot constitute a solid knowledge base. This is precisely the reason for the difficulty of
creating knowledge bases and the main differentiation between statistical learning and
models based on knowledge representation, in this case represented by fuzzy inference
systems. While statistical inference uses only data in its learning to find hypotheses for
a mathematical predictive model through a process of optimization, symbolic inference
necessarily requires a logical knowledge base on which to support its reasoning process,
be it with logical rules, probabilistic approaches, or fuzzy approaches. For this reason, the
idea that one set of data can feed both inference processes is complex and, in many cases,
chimerical. Is it possible to derive a logically coherent, ordered, and structured knowledge
base from a set of scattered, statistically relevant, and conveniently labelled data?

In order to find an answer to this question, the concept of an expert system itself has
to be reconsidered. In general, expert systems are highly dependent on their knowledge
base, which makes them very difficult to use, especially given the absence of this base
in the definition. This difficulty, especially notable in those systems considered to be of
the first generation [42], is dealt with by the second generation of expert systems [43] that
adopt strategies of identification and generation of heuristic rules through rudimentary
learning processes. In line with the latter and with the emergence of what we could call
third-generation expert systems [44], this article proposes to automate the creation of the
knowledge base of a fuzzy expert system through the automated generation of rules from
a set of labelled numerical data.

Thus, as we shall see, the answer to the question above is affirmative under a number
of constraints, and this forms the basis of the Wang-Mendel algorithm.

1.1. Wang and Mendel’s Method

Essentially, the method proposed by Wang and Mendel [40] allows the automatic
generation of a set of rules on fuzzy sets from both numerical data, that is, input-output
data pairs (for example: (t1,t2; w)), and from potential fuzzy rules proposed by experts. Both
rules will be combined into a knowledge base from which inferences can be performed—as
in the example before: f (t1,t2)→ w.

Figure 1 presents a diagram that aims to summarize the operation of the method
proposed by Wang and Mendel, which consists of five stages as described below [40].

• Stage prior to the application of the method: before applying the Wang–Mendel
algorithm, the dataset to be used is prepared by identifying the input and output
variables. The range of each variable, that is, their maximum and minimum values,
is also determined. The user must also select the type of membership function to
use. The original proposal by Wang and Mendel envisaged the use of triangular
membership functions. It is also necessary to define the value of N for each variable,
which must be an integer greater than or equal to one. This value is used to determine
the number of sections for each of the associated membership functions.

• Stage 1—Division of the input and output spaces into fuzzy regions: in this stage, for
each of the input and output variables considered, the problem domain is divided
into 2N + 1 sections, in this case using triangular functions, as originally proposed
in the paper of Wang and Mendel [40]. 2N + 1 sections are added, since the goal is
to perform a division of the domain of each of the variables in such a way that there
is a central or intermediate section. Figure 2 shows an example for N = 1, with three
segments of the membership function (L, M, and H) for the two input variables (t1,t2)
and the output variable (w) of the previous example. As can be seen, and in line with
the proposal of the original paper, there is an overlap of the triangles, so that if the top
vertex of the central triangle has a maximum degree of membership, at the same point
the vertices of the neighboring triangles have minimum degrees of membership.

• Stage 2—Generation of fuzzy rules from the input-output data pairs: once the sections
of the membership function associated with each variable have been determined, the
rules are to be generated. This is done by first determining the degrees of membership
associated with each of the sections of the different functions for each of the different
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lines of the initial dataset. For this purpose, the variables are fuzzified through their
respective membership functions on the basis of the data available in the dataset. For
example, in Figure 3, it can be seen that for a given observation of the variable t1, it
has a degree of membership of 0.3 to Lt1 and a degree of membership of 0.7 to Mt1.
For variable t2, it is observed that it has a degree of membership of 0.45 to Mt2 and
a degree of membership of 0.55 to Ht2. In the case of w, it is observed that it has
degrees of membership from 1 to Mw. After that, in each of the rows of the dataset,
each variable is assigned to the section with the maximum degree of membership,
determining a rule for each row. For the case in Figure 3, taking the maximum degrees
of membership, the following would be obtained: (t1

(1), t2
(1); w(1))→ IF t1 is Mt1 and

t2 is Ht2, THEN w is Mw. As mentioned above, this process is carried out for each of
the different rows of the dataset, with a rule being determined for each of these rows.

• Stage 3—Assignation of a degree to each of the rules to solve potential conflicts among
the generated rules: the initial numerical set may include observations that, after
applying Stage 2, generate rules that could be in conflict, that is, their antecedent
part is the same while the consequent part is different. To deal with this problem,
Wang and Mendel propose to associate each rule with a degree in order to select only
those rules that have a maximum degree, thus dispensing with a large part of the
rules generated in the previous stage. The degree value associated with each rule
would be determined as the product of the degrees of membership of the observation
that gave rise to the rule, as can be seen in Equation (1), which is particularized in
Equation (2) for the case shown in Figure 3. In this case, after carrying out this process
for all the rules and selecting those that maximize the coefficient value obtained, the
resulting rule base would have the structure shown in Figure 4, with each of the boxes
containing a section of the membership function of the consequent, if this combination
were possible and present in the initial dataset.

Drule i = µ(x1)i·µ(x2)i·µ(y)i (1)

Drule 1 = µ(t1)1·µ(t2)1·µ(w)1 = 0.70·0.55·1 = 0.39 (2)

• Stage 4—Building of the combined fuzzy knowledge base: once the knowledge base
has been determined by the Wang–Mendel algorithm, whose structure is shown in
Figure 4, it could be enriched by a set of fuzzy rules expressed by the expert team.
These rules, which in Wang-Mendel’s definition are called linguistic rules or expert
rules, would be incorporated into the knowledge base after being assigned a certain
degree of importance by the expert team. In the case of conflict between the rule
proposed by the expert and the rule generated by the algorithm in any of the boxes,
Wang and Mendel advocate using the one with the maximum degree.

• Stage 5—Inference: once the knowledge base has been determined, it is possible to
integrate it into an inference system, such as the Mamdani inference system [45–48],
to draw conclusions with new input data.

This work is organized into five sections. This section introduces the background and
context in which the work is developed. Next, the fundamentals of the method proposed
by Wang and Mendel were presented. Section 2 deals with the conceptual design and
implementation of the proposed system. Section 3 then presents a case study as a proof of
concept, which aims to demonstrate how the system works. In Section 4, a discussion of
the proposed architecture is presented. Finally, Section 5 addresses the main conclusions of
this work.
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2. Materials and Methods
2.1. Definition of the System
2.1.1. Database Usage

This work is based on a database of 4583 patients, with information collected be-
tween the years 2013 and 2022 at the Sleep Respiratory Diseases Unit of the Pulmonary
Department of the Álvaro Cunqueiro Hospital in Vigo (Galicia, Spain).

The information contained in the database related to patients suspected of suffering
from OSA, can be divided into two groups. On the one hand, there is the information
collected directly by expert pulmonologists, which is supposed to be accurate and un-
questionable, and which refers to general patient data (gender, age, body-mass index and
neck perimeter), their habits (tobacco and alcohol consumption), diagnosed pathologies
conditions (hypertension, resistant hypertension, acute cerebrovascular accident (ACVA),
ACVA less than a year ago, diabetes mellitus, ischemic heart disease, chronic obstructive
pulmonary disease (COPD), home oxygen therapy, rhinitis, depression, atrial fibrillation
and heart failure), and medication taken by the patient (benzodiazepines, antidepressants,
neuroleptics, antihistamines, morphics and tranquilizers/hypnotics). As mentioned above,
the information derived from the work of the expert pulmonologists is understood to be of
low uncertainty and imprecision as it is validated and thoroughly reviewed. Otherwise, it
would be an uncertainty factor that would need to be considered and estimated for control
by the proposed intelligent system.

Figure 5 shows, in blue, a detailed description of the different aforementioned sub-
groups and variables, as well as a description of the nature and type of the variable—
whether it is a numerical or categorical variable. On the other hand, there is the information
provided by the patient during a specific OSA interview (hours of sleep, minutes taken to
fall asleep, prolonged intra-sleep awakenings, feeling of unrefreshing sleep, daytime tired-
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ness, morning dullness, snorer, high intensity snorer, snore-related awakenings, unjustified
multiple awakenings, nocturia, breathlessness awakenings, and reported apneas). This
information is organized into different subgroups (sleep time subgroup, unrefreshing sleep
subgroup, complicating sleep factors subgroup, snores subgroup), which are highlighted in
orange in Figure 5. Additionally, the type of each variable nature, numerical or categorical,
is indicated. Figure 5 shows all the initial information, both based on objective data, the use
of which will be the focus of the machine learning models, and subjective data, from which
the knowledge base of the expert systems that make up the symbolic part of the system
will be elaborated.
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In addition to this information, the database also contains information related to the
specific sleep tests that were performed on the patient (mainly cardiorespiratory poly-
graphs). In this sense, the apnea-hypopnea index (AHI) stands out, shown in green color in
Figure 5.

From the initial dataset of 4583 patients, 183 lines were extracted and excluded from
the training and validation process of the system, being reserved for a later test associated
with the proof of concept of the proposed intelligent system. In this sense, it will be possible
to carry out an independent analysis of the proposal presented, which will make it possible
to highlight its relevance and applicability in a practical way.

2.1.2. Conceptual Design and Description of the System

The intelligent system has been designed with a sequential structure where, in the first
step, the initial data are collected, then in the second step, the risks are determined, and
finally, in the third step, they are aggregated to obtain the final prediction. Next, Figure 6
shows the flow diagram of the ICDSS proposed in this work, which will be described in
detail below.
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Figure 6. Flowchart of the Intelligent Clinical Decision Support System, showing how the information
progresses through three stages. In Stage 1, the initial information is collected and pre-processed;
in Stage 2.a, the information compiled by the expert pulmonologists (general information, habits,
diseases suffered by the patient and medical drugs taken) is processed; in Stage 2.b the processing
of the information related to the symptoms referred by the patient is carried out; in Stage 3, the
automated rule generation approach proposed by Wang–Mendel is applied, defining a series of
knowledge bases that allow to perform the combination of the risks obtained in the previous stages,
making possible to determine a final risk value for each AHI level; and finally, in Stage 4, the risk
evaluation and the corresponding decision making are carried out.

Stage 1: Collection of Patient Information

As shown in Figure 6, the first stage of the ICDSS focuses on the collection of the
patient’s starting information, both that information collected by the expert pulmonologists
team and that reported by the patient using a specific OSA questionnaire, in which their
symptoms are assessed in line with that mentioned in Section 2.1.1. Figure 5 may be visited
for more information about the variables.



Mathematics 2023, 11, 2469 11 of 33

Stage 2: Determination of the Values of Statistical Risk and Symbolic Risk Values

Once the patient information has been collected and structured, it is processed using
two sub-stages that run concurrently. These stages are based on those originally developed
for the aforementioned papers by the authors [1,2], which constitute the basis for this
proposal. Such a proposal addresses, on the one hand, the determination of a risk prediction
associated with the interpretation of the patient’s objective data by machine learning
algorithms. On the other hand, a risk will also be calculated, this time associated with the
generation of a knowledge base derived from the interpretation of the subjective data by
the team of expert pulmonologists, based on their experience. This knowledge base will
form part of the set of expert systems that will determine the aforementioned risk.

The first of these, sub-stage 2.a, focuses on the processing of the information collected
by the expert pulmonologists, highlighted in blue in Figure 5, using a set of machine
learning algorithms that work concurrently [1,2,4,5,8,10–12], through which it is possible
to determine a set of scores, referred to in this work as Statistical Risks. For the definition
and configuration of those algorithms, starting from the data presented in Section 2.1.1,
a series of training datasets are built based on different AHI threshold levels (10, 15, 20,
25, and 30), so that in each of them two classes are defined, OSA case and the non-OSA
case. If considered, and if there are medical reasons that justify it, additional threshold
levels could be incorporated. All the development and technical details are described in the
authors’ previous works, in particular in the 2023 paper entitled “Design and Conceptual
Proposal of an Intelligent Clinical Decision Support System for the Diagnosis of Suspicious
Obstructive Sleep Apnea Patients from Health Profile” [1].

On the other hand, in the second of these stages, 2.b, the processing of the informa-
tion corresponding to the symptomatology, which has a more subjective character and is
highlighted in orange in Figure 5, is carried out using a series of expert systems working in
cascade, based on Mamdani-type fuzzy inference engines [45–48]. Furthermore, in Figure 7,
a detail of that cascade is shown.
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As can be seen in Figure 7, at each level of the cascade, different risk indicators are
obtained, each related to the risk of suffering from OSA. These indicators are combined
and grouped at successive levels, finally determining at the output of the cascade a risk
indicator that groups them, called Symbolic Risk. This risk is a common and general metric
associated with the patient’s own likelihood of developing OSA, and it is therefore not
associated with any AHI threshold. As in the previous stage, the technical details of this
proposal have already been established in a previous work by the authors [2].

Stage 3: Determination of the Apnea Risk Level for Each AHI Threshold Level

Stage 3 is key to the design of this system, as it contains the main contribution and
novelty of the system. Once the indicators have been determined, both the Statistical Risks
derived from statistical learning, and the result of the cascade of expert systems, that is, the
Symbolic Risk, an objective aggregation must be considered in order to determine a single
value related to the risk of a patient suffering from OSA.

Among the different aggregation models in this work, we chose to use a fuzzy expert
system because of its capabilities to formalize and diversify knowledge, which would
allow us to establish plausible reasoning about how to link previous risk indicators to
explain a final state of risk. This would make it possible to gain explanatory power in the
aggregation, which would undoubtedly help the medical expert team in interpreting the
system’s suggestions.

Therefore, once the different pairs (Statistical Risk, Symbolic Risk) have been determined
for each AHI level, they are aggregated using a series of expert systems with Mamdani-type
fuzzy inference engines [45–48]. By means of these systems, at each AHI level, it is possible
to determine a risk metric that groups and represents them, the Apnea Risk.

However, the main difficulty in developing an expert system lies in identifying and
creating its knowledge base. Without this knowledge base, the inference engine cannot
work, and therefore the intelligent system would not work either. In this case, the knowl-
edge base for each AHI level must consider how to aggregate the various risk indicators
previously obtained to obtain an apnea global risk level. However, it is clear that the expert
team has no explicit knowledge or experience in aggregating these terms, which are new
concepts associated with their respective prediction models. Even considering that, obvious
rules such as a joint ratio of high Statistical and Symbolic Risk values, obtaining a high Apnea
Risk, could be questioned depending on the certainty of the initial data, the inferential
process, and the lack of knowledge of the interpretation of the “high” fuzzy set. This lack
of experience forces the medical team to assume that risk aggregation is an unexplained,
statistical, and somewhat stochastic process. However, the chosen aggregation process is
inherently explainable but difficult to implement in the absence of a knowledge base. How
can this dilemma be tackled? This paper proposes the use of the Wang-Mendel algorithm
to generate an explicit knowledge base of fuzzy rules from a data set. In other words, it
addresses the traditional dilemma between data and knowledge present in any knowledge
base that feeds an inferential symbolic engine.

Therefore, the elaboration of the knowledge base associated with each Mamdani
fuzzy inference system discussed above will make use of a set of data by creating ordered
input-output pairs and, with them, generate a set of fuzzy rules. Moreover, in this case, the
algorithm cannot start from a set of existing linguistic rules. For this, it will be necessary
to determine a set of datasets for each AHI level [40]. The explanatory variables in these
datasets are the (Statistical Risk, Symbolic Risk) pairs for each AHI level, while the explained
variable is a number, 0 or 1, depending on whether the patient has an AHI level below,
equal to, or above the threshold level.

Stage 4: Generation of Alerts and Decision-Making

Given the data of a new patient, after determining and aggregating the different risk
indicators, an Apnea Risk indicator is obtained for each AHI level, which belongs to a
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continuous domain in the interval between zero and one, understood as the membership
in the ‘suffering from apnea’ class.

In order to facilitate the interpretation of each Apnea Risk value, it has been decided
to establish a risk threshold value for each AHI level based on a graphical optimization
process similar to that used in the work by Casal-Guisande et al. [1], based on determining
the threshold value at which the Matthews correlation coefficient [49–51] is maximized.

The medical team will select the AHI level they feel is most appropriate to consider that
a patient may be suffering from OSA, and in light of that previously mentioned threshold,
the system will generate the appropriate alerts and facilitate the decision-making processes.

2.2. Implementation of the System

In order to implement the ICDSS proposed in Section 2.1, which addresses everything
from the collection of information related to the patient to the generation of alerts and
decision- making, the process of building a software artifact is described below, which has
been developed taking into account the recommendations and guidelines proposed by
Hevner et al. [52,53], thus guaranteeing, if necessary, that it can be integrated into hospital
information systems.

For the development and implementation of the software artifact, MATLAB© (R2022b,
326 MathWorks©, Natick, MA, USA) was used, as well as Python (version 3.9.12), together
with a series of packages explained in Table 2. The software artifact is accompanied by a
graphical user interface to facilitate interaction with it (see Figure 8).

Mathematics 2023, 11, 2469 14 of 35 
 

 

Table 2. List of the software packages used for the implementation of the software artefact. 

MATLAB 
Toolbox Comments 
App Designer [54] Facilitates the development of the user graphical interface for the artifact. 

Classification Learner [55] Allows to perform the training and massive machine learning classification algo-
rithms test. 

Fuzzy Logic Toolbox [56] Makes possible to implement the fuzzy logic-based inferential engines. 
Python 
Package Comments 

Imbalanced-learn library [57] 
Provides different tools for addressing classification problems when unbalanced 
datasets are available. In this case, the SMOTE-NC algorithm is used. 

 
Figure 8. Screenshot of the application. Region (1) refers to the collection of the starting information. 
Region (2) refers to the processing of data. Region (3) refers to the generation of alerts and decision-
making. 

2.2.1. Data Collection 
First of all, as mentioned above, the information from the patient to be studied must 

be entered into the application using the different fields highlighted in the red box in Fig-
ure 8. It is recommended that the data be verified once it is entered into the application in 
order to correct any errors or omissions that may lead to an increase in inaccuracy. 

Figure 8. Screenshot of the application. Region (1) refers to the collection of the starting informa-
tion. Region (2) refers to the processing of data. Region (3) refers to the generation of alerts and
decision-making.



Mathematics 2023, 11, 2469 14 of 33

Table 2. List of the software packages used for the implementation of the software artefact.

MATLAB
Toolbox Comments

App Designer [54] Facilitates the development of the user graphical interface for the artifact.

Classification Learner [55] Allows to perform the training and massive machine learning classification algorithms test.

Fuzzy Logic Toolbox [56] Makes possible to implement the fuzzy logic-based inferential engines.
Python
Package Comments

Imbalanced-learn library [57] Provides different tools for addressing classification problems when unbalanced datasets are
available. In this case, the SMOTE-NC algorithm is used.

In Figure 8, three regions stand out. Region (1), highlighted in red, refers to the stage
of collecting initial information, both objective and subjective. Region (2), highlighted in
blue, includes the processing of the data, taking into account the previously commended
stages 2 and 3. Finally, region (3), highlighted in purple, refers to stage 4 and is related to
the display of alerts and the generation of recommendations.

2.2.1. Data Collection

First of all, as mentioned above, the information from the patient to be studied must be
entered into the application using the different fields highlighted in the red box in Figure 8.
It is recommended that the data be verified once it is entered into the application in order
to correct any errors or omissions that may lead to an increase in inaccuracy.

2.2.2. Data Processing

Once the data has been entered into the application, it is processed by the ICDSS. To
do this, and in line with what has already been commented on, there is a region in the
graphical interface, highlighted in blue in Figure 8, which consists of three panels.

The first two panels display the results obtained after applying a series of machine
learning algorithms, as well as a cascaded set of expert systems through which it is possible
to obtain a series of risk indicator values (Statistical Risks and Symbolic Risk, respectively).
These risk indicators are later aggregated using a series of Mamdani-type fuzzy inference
systems [45–47], whose knowledge bases are determined using an automatic rule genera-
tion approach, and finally make it possible to determine the Apnea Risk value for each AHI
level, shown in the third panel of the blue region in Figure 8.

However, prior to processing the data of a new patient, it is necessary to detail the
implementation of the different calculation engines. To do this, data from 4400 patients was
extracted from the initial dataset commented on in Section 2.1.1.

Machine Learning Algorithms

The generation of statistical risks associated with using machine learning classifier
algorithms on the initial dataset is briefly described below. A more detailed explanation
can be found in the authors’ 2023 papers [1,2].

To define the machine learning classification algorithms, the most objective informa-
tion is used, collected by expert pulmonologists and highlighted in blue in Figure 5. Most of
the variables are of nominal or categorical type [58,59], so they are encoded using dummy
encoding [1]. The remaining variables, those corresponding to numerical data (BMI, age,
etc.), are rescaled between zero and one using the MIN-MAX normalization method [1].
This is because, in all cases, it is possible to define the minimum and maximum values
between which each of the variables will move, based on medical criteria. Furthermore,
considering different AHI thresholds (10, 15, 20, 25, and 30), it is possible to analyze the
results presented by each of the patients in the training dataset, generating a set of OSA
case or non-OSA case labels associated with each patient and each AHI level. In this way, a
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set of labeled datasets is created for the different AHI thresholds, from which the different
machine learning classification algorithms are trained.

It is important to note that in healthcare settings, it is common to have unbalanced
datasets, that is, significant differences in the number of patients in the different classes. In
this case, this phenomenon is also observed (see Table 3). To solve this problem, a common
and widely used practice in healthcare [1,5,60] is the use of approaches and strategies for
controlled data augmentation. Given the heterogeneous nature of the data considered, the
use of the Synthetic Minority Over-Sampling Technique for Nominal Continuous (SMOTE-
NC) is chosen, a variant of SMOTE [60,61] with the ability to handle both numeric and
categorical data. A number of neighbors k = 5 is defined, and data are added until a total of
4000 patients are available in each of the classes for the different AHI threshold levels, as
can be seen in Table 3.

Table 3. Summary of the distribution of classes for the different AHI threshold levels.

Threshold
Before SMOTE-NC After SMOTE-NC

AHI < Threshold AHI ≥ Threshold Total AHI < Threshold AHI ≥ Threshold Total

10 1227 3173 4400 4000 4000 8000
15 1707 2693 4400 4000 4000 8000
20 1726 2274 4400 4000 4000 8000
25 2072 1928 4400 4000 4000 8000
30 2365 1635 4400 4000 4000 8000

Once the different training sets have been defined, the classification machine learning
algorithms are trained using a 5-fold cross-validation strategy to achieve optimal results in
terms of both hyper-parameter optimization and the generalization capacity of the chosen
learning model. Considering the results obtained in the previous work of the authors,
Casal-Guisande et al. [1], the use of bagged trees is chosen.

Figure 9 shows a summary of the different ROC curves obtained for the different AHI
levels using the bagged trees algorithm.
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Figure 9. Plot of the ROC curves obtained for each of the AHI thresholds, taking into account the
bagged trees algorithm and a 5-fold cross-validation. It can be seen that the area under the curve is
greater than 0.8 in each case, with value 1 corresponding to a perfect classifier.
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Cascaded Expert Systems

As in the previous section, the generation of the Symbolic Risk from a cascade model of
expert systems is briefly described below. A more detailed explanation can be found in the
authors’ 2023 paper [2].

Concurrently [1,2,4,5,8,10–12] to the processing of the objective data by the machine
learning classification algorithms for each level of AHI, the processing of the subjective
data related to the symptoms reported by the patients is carried out by a series of expert
systems arranged in a cascade. The output of this cascade is a risk metric value that will
move between 0 and 100, called Symbolic Risk, related to the hazard of suffering from
OSA in a general way, this time without this risk measure being associated with any AHI
threshold value.

To do this, each expert system in the cascade uses a Mamdani-type fuzzy inference
engine [23–25], similar to those used in the work by Casal-Guisande et al. [2] and oth-
ers [4,5,7,8,11,12]. In line with what has already been commented on, the cascade of expert
systems, shown in Figure 7, is distributed over three levels, as detailed in Table 4.

Table 4. Explanation about the sections of the cascade of expert systems considering the antecedents
and consequents of each level [2].

Cascade Levels Observations

Level 1

At the first level, four expert systems are used to process the information related to the
symptoms reported by the patient (for more information, see Figures 6 and 7). The first of the
expert systems is in charge of processing the set of information related to sleep time and
determines the risk indicator R1.a at its output. The second of the expert systems focuses on
processing the group of information related to unrefreshing sleep, determining the risk
indicator R1.b at its output. The third of the expert systems focuses on the group of
information related to complicating sleep factors, determining the risk indicator R2.a at its
output. Finally, the fourth of the expert systems focuses on the snores information group,
determining the risk indicator R2.b at its output. Each one of the determined risk indicators is
related to the group of information used for its determination and represents respectively the
hazard level associated with suffering from an OSA case in relation to each group of data.

Level 2

Once the risk indicators have been determined at the first level of the cascade of expert
systems, they are aggregated into groups of two (R1.a and R1.b, as well as R2.a and R.2b)
using two new expert systems working concurrently [1,2,4,5,8,10–12] as can be seen in
Figures 6 and 7, and at their output, after the defuzzification process, determine two new
indicators, the risks R1 and R2. These new risk indicators represent, respectively, the danger
of suffering from OSA in relation to the risk indicators of the previous level, through which it
was possible to determine each of the indicator.

Level 3

Finally, at the last level of the cascade, a final expert system aggregates the risk indicators
obtained at the second level (R1 and R2), determining at its output an indicator, called
Symbolic Risk, related to the conjoint hazard that a patient has of suffering from an OSA case,
after contemplating all the symptoms reported by the patient.

The use of the cascade, in addition to allowing the aggregation of the initial infor-
mation, the reduction of the dimensionality of the problem, and the formalization of the
knowledge, has associated advantages, such as greater simplicity in the process of elab-
oration of the rules since the number of antecedents to be considered in each inference
system is less than if they were all considered at the same time, and therefore the process of
elaborating and determining them is more precise. From a practical point of view, for the
elaboration of the membership functions, the recommendation of Ross [48] was followed,
opting for the use of normal, convex, and symmetric membership functions. Triangular
and trapezoidal functions were used for the antecedents, and trapezoidal functions for the
consequents. These choices are related to the nature of the data. Triangular functions are
chosen when there is only one point at which the degree of membership is maximized;
meanwhile, in the case of trapezoidal functions, there is a section—a range of values—in
which the degree of membership is maximized.
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In a general way, Table 5 presents a summary of the configuration of the expert systems
used in the cascade.

Table 5. General configuration of the expert systems used in the cascade [2].

Fuzzy Structure Mamdani-Type

Defuzzification method Centroid [48]
Implication method Min
Aggregation method Max

In order to explain in more detail, the configuration of one of the expert systems,
Table 6 gives a detailed description of the expert system in charge of processing the data
related to sleep time, from which the risk value R1.a is obtained. The remaining cascade
expert systems are similar to this one, in line with what was commented in the work by
Casal-Guisande et al. [2].

Table 6. Configuration of the expert system in charge of processing the sleep time data group [2].

Inference System Associated to the Sleep Time Data Group

Input Data Range Output Risk Range

Hours of sleep 0–14 h R1.a 0–10
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Risk Aggregation by Means of Fuzzy Expert Systems with an Automatically Generated
Knowledge Base

After processing the initial data, both those having an objective nature and those
having a subjective nature, a set of risk indicators is obtained, grouped into pairs (Statistical
Risk, Symbolic Risk) for each AHI level.

At each AHI level, these indicators are processed using a Mamdani-type inference
system [45–48], whose knowledge base is determined using an automatic rule generation
approach, more specifically that proposed by Wang and Mendel [40]. At the output of
each inference system, after aggregating the Statistical Risk and Symbolic Risk indicators, a
final risk indicator associated with the hazard of suffering from OSA is obtained, called
Apnea Risk.

Determination of Knowledge Bases Using Wang and Mendel Algorithm

As already mentioned, in order to determine the knowledge base at each AHI level, the
algorithm proposed by Wang and Mendel [40] for the automatic generation of declarative
rules on fuzzy sets will be used, the operation of which has already been detailed in
Section 1.1. However, before doing so, it is necessary to comment on the structure of the
datasets to be used.

It is appropriate to argue that the starting data that will feed the Wang and Mendel
algorithm will be derived from those that make up the target dataset used in statistical
learning algorithms. The latter is used because it is the one that should be considered more
accurate and therefore with less uncertainty, as well as already being suitably labeled. The
use of the augmented dataset is not considered because the algorithm does not have the
appropriate adjustment and generalization capabilities, nor is the subjective data integrated
into it because it is already part of a previous knowledge base that feeds the different levels
of the cascade.

Therefore, starting from the training dataset before data augmentation, for each AHI
level (10, 15, 20, 25, and 30), and after the processing by the machine learning algorithms as
well as by the expert systems cascade, there will be a dataset with the values of Statistical
Risk and Symbolic Risk and a label (0 or 1) for each patient and AHI threshold level. The
label basically aims to indicate whether the patient has an AHI value greater than or equal
to (a value of one) or less than (a value of zero) the threshold. Since the training dataset
had 4400 patients, there will be a total of 4400 rows of data in each of the datasets for each
AHI level.

Once the initial dataset has been defined, the automatic generation of rules at each of
the AHI levels is carried out. To do this, we will follow the step-by-step structure discussed
in the previous section for implementing the algorithm proposed by Wang and Mendel.

Stage prior to the application of the method:
Since the datasets to be used have an identical structure, the same strategy is followed

in the different cases, dividing the initial spaces of each of the different variables using
triangular functions, both for the antecedents (Statistical Risk and Symbolic Risk) and for the
consequents (the label that represents the global risk of suffering from apnea). In addition to
this, the value of N must be chosen, which, as already mentioned, is related to the number of
sections that the membership function of each variable will have. In this case, it is decided
to use N = 4 for the antecedents, giving a total of 9 sections. The choice of N = 4 for the case
of antecedents is not arbitrary but refers to Miller’s original work [62], which concluded
that people can generally process information about seven events simultaneously, with
a variation of plus-or-minus two in their number. This, applied to the fuzzification of a
variable, suggests that membership functions with very few sections, or with a number
of sections greater than nine, would be very difficult for a human to interpret and would
therefore represent information that is difficult to express in a repetitive and common way
using the usual language qualifiers. On the other hand, in the case of the consequent (the
label), it is decided to use N = 1, giving three possible sections of the membership function.
This is because the label represents only discrete values of zero or one, which belong only
to the extreme sections, so adding more sections would not give any advantage.
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Stage 1—Division of the input and output spaces into fuzzy regions:
Given that there are two antecedents, each one with nine sections in the membership

functions, obtained by applying the calculation of the number of the sections as 2N + 1, a
grid of 81 rules is obtained, in line with what was commented in Section 1.1 and shown
in Table 7 for an example case of AHI = 15. However, it should be noted that it will not
always be possible to fill in the grid with the 81 rules, since it could happen that not all
the possible combinations appear in the datasets used, either because these are not large
enough or because cases that are not possible are represented. Once this is complete, the
Wang–Mendel algorithm [40] is used.

Table 7. Example of grid of rules for AHI = 15. The variables mfsy represent the sections of the
membership function of the antecedent associated with the Symbolic Risk; The variables mfst represent
the sections of the membership function of the antecedent associated with the Statistical Risk; The
variables mf represent the sections of the membership function of the consequent associated with the
labels of the class ‘OSA case’ or ‘non OSA case’.
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mfst9 AR: mf3 AR: mf3 AR: mf3 AR: mf3 AR: mf3 AR: mf3 AR: mf3 AR: mf3 AR: mf3

mfst8 AR: mf3 AR: mf3 AR: mf3 AR: mf3 AR: mf3 AR: mf3 AR: mf3 AR: mf3 AR: mf3

mfst7 - AR: mf3 AR: mf3 AR: mf3 AR: mf3 AR: mf3 AR: mf3 AR: mf3 AR: mf3

mfst6 AR: mf3 - AR: mf3 AR: mf3 AR: mf3 AR: mf3 AR: mf3 AR: mf3 -

mfst5 - - - AR: mf1 AR: mf3 AR: mf3 AR: mf1 AR: mf3 AR: mf3

mfst4 - AR: mf1 AR: mf1 AR: mf1 AR: mf1 AR: mf1 AR: mf1 AR: mf1 -

mfst3 AR: mf1 AR: mf1 AR: mf1 AR: mf1 AR: mf1 AR: mf1 AR: mf1 AR: mf1 AR: mf1

mfst2 - AR: mf1 AR: mf1 AR: mf1 AR: mf1 AR: mf1 AR: mf1 AR: mf1 AR: mf1

mfst1 - AR: mf1 AR: mf1 AR: mf1 AR: mf1 AR: mf1 AR: mf1 AR: mf1 AR: mf1

Apnea Risk (AR)
mfsy1 mfsy2 mfsy3 mfsy4 mfsy5 mfsy6 mfsy7 mfsy8 mfsy9

Symbolic Risk

Stage 2—Generation of fuzzy rules:
Once the set of antecedents and consequents has been established, the rules are

automatically generated according to the values found in the initial data. It should be noted
that only those rules are taken whose data reflect any membership in the previously created
fuzzy sets of antecedents and consequents.

It should also be noted that in this case, the logical union of the antecedents in the
rules is considered AND-logic since it is assumed that both antecedents are necessary to
activate a rule and to determine the consequent.

Stage 3—Assignation of a degree to each of the rules:
Once the rules have been created, they are ordered according to their degree value,

discarding those rules with lower degrees that share antecedents. The degree value shall
be decided by using the product of the corresponding degree of membership of the values
of each data line to the fuzzy sets represented in the corresponding rules, as reflected
in Equations (1) and (2). If two rules share antecedents, the one with the higher degree
is taken.

Stage 4—Building of the combined fuzzy knowledge base:
The Wang-Mendel algorithm makes it possible to combine fuzzy rules generated from

a set of numerical data with rules defined by a team of experts. These latter, considered
linguistic or expert rules, reflect the explicit reasoning in the domain of application of the
algorithm. In this case, as mentioned above, the team of medical experts does not have the
necessary and sufficient information to create a set of rules, so only the rules generated
from the data are used.

Table 8 below gives a summary of the number of rules determined in each of the
cases, that is, for each AHI level, as well as the generated surface through which the inputs
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(Statistical Risk, Symbolic Risk) are mapped to the outputs (membership to the ‘suffering
from apnea’ set, in the context of this work: Apnea Risk). In line with the comments above,
it can be seen that the number of rules obtained is less than 81. This is due to the fact that
not all the combinations of the antecedents are represented in the datasets used.

Table 8. Summary of the number of rules and the surfaces generated for each AHI level.

AHI 10 AHI 15 AHI 20 AHI 25 AHI 30

Number of rules 68 71 72 72 71

Generated surface
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Wang-Mendel algorithm makes it possible to create a knowledge base based not on the
traditional acquisition of this knowledge but on ephemeral data, which is undoubtedly
a unique innovation. However, this ephemeral character of the data is transferred to the
knowledge base, which could be updated according to the volatility of the initial data,
sharing this transitory and harmful characteristic with a model based on the structured
and permanent representation of knowledge. The medical expert team should review
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numerical input data. In addition, they will be given an explanation about the inference
process itself and the logical reasoning implicit in it, and they will be able not only to
evaluate the results of the aggregation but also to explain, transmit, and teach them, thus
fulfilling the foundations of formalization and diversification that underlie the definition of
any expert system.

Proof Test Results

After defining the knowledge bases that establish how to combine the Statistical Risk
and the Symbolic Risk, it is proceeded to analyze the generalization capabilities of the
system on an independent test dataset with 183 patients, different from that used in the
construction of the ICDSS.

Figure 10 below shows the ROC curves obtained on the test dataset for each AHI level,
with AUC values ranging from 0.74 to 0.88.

Determination of a Threshold Level for Each AHI Level

Once the results on the test dataset have been determined, in order to interpret the
results obtained at the output of each of the inference systems that aggregate Statistical Risk
and Symbolic Risk, and to understand them as binary classifiers [63,64], it is necessary to
establish a cut-off level that allows discrimination between the ‘OSA case’ and ‘non OSA case’
classes. To do this, starting from the patients in the test dataset, an optimization process is
carried out that aims to determine the cut-off value that, in each case, allows maximizing
the Matthews correlation coefficient (Mcc) value (see Equation (3)) [49–51]. The acronyms
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in the equation are as follows: TN = True Negatives, FN = False Negatives, TP = True
Positives and FP = False Positives.

Mcc =
TN·TP− FN·FP√

(TP + FP)·(TP + FN)·(TN + FP)·(TN + FN)
(3)Mathematics 2023, 11, 2469 22 of 35 

 

 

 
Figure 10. ROC curves analysed in the test set and derived from the classifiers of each level of the 
AHI index after risk aggregation. The red asterisk indicates the point that optimises the classification 
values obtained after the process of optimising the Matthews coefficient for each case. In all cases, 
reasonably good curves with AUC values above 0.74 are observed. 

Determination of a Threshold Level for Each AHI Level 
Once the results on the test dataset have been determined, in order to interpret the 

results obtained at the output of each of the inference systems that aggregate Statistical 
Risk and Symbolic Risk, and to understand them as binary classifiers [63,64], it is necessary 
to establish a cut-off level that allows discrimination between the ‘OSA case’ and ‘non OSA 
case’ classes. To do this, starting from the patients in the test dataset, an optimization pro-
cess is carried out that aims to determine the cut-off value that, in each case, allows max-
imizing the Matthews correlation coefficient (Mcc) value (see Equation (3)) [49–51]. The 
acronyms in the equation are as follows: TN = True Negatives, FN = False Negatives, TP = 
True Positives and FP = False Positives. 𝑀𝑐𝑐 =  𝑇𝑁 ∙ 𝑇𝑃 𝐹𝑁 ∙ 𝐹𝑃(𝑇𝑃 𝐹𝑃) ∙ (𝑇𝑃 𝐹𝑁) ∙ (𝑇𝑁 𝐹𝑃) ∙ (𝑇𝑁 𝐹𝑁) (3) 

Figure 11 below shows the graphs of the Mcc values for the different thresholds in 
each AHI level. At the cut points selected in Figure 11, Mcc values of 0.60, 0.58, 0.60, 0.48 
and 0.41 are obtained for AHI levels of 10, 15, 20, 25 and 30 respectively. 

(a) 

 

(b) 

 

(c) 

 

Figure 10. ROC curves analysed in the test set and derived from the classifiers of each level of the
AHI index after risk aggregation. The red asterisk indicates the point that optimises the classification
values obtained after the process of optimising the Matthews coefficient for each case. In all cases,
reasonably good curves with AUC values above 0.74 are observed.

Figure 11 below shows the graphs of the Mcc values for the different thresholds in
each AHI level. At the cut points selected in Figure 11, Mcc values of 0.60, 0.58, 0.60, 0.48
and 0.41 are obtained for AHI levels of 10, 15, 20, 25 and 30 respectively.
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Furthermore, taking these thresholds into account, Table 9 below provides a summary
of the sensitivity and specificity values obtained at each AHI level.

Table 9. Sensitivity and specificity for each AHI level at the output of the system contemplating the
cut point that maximizes Mcc.

Sensibility Specificity

AHI 10 0.83 0.88
AHI 15 0.88 0.71
AHI 20 0.93 0.62
AHI 25 0.64 0.83
AHI 30 0.72 0.69

The above procedure makes it possible to identify an optimal point at which to
transform the output values of the aggregation process into bivalued values, that is, with
only two values that could be associated with suffering or not suffering from an AHI with
the corresponding threshold. Since it is an iterative and non-generalized process, it should
be seen as a punctual improvement of each cut-off value, trying to find that one giving
the best results, analyzed as if it were a binary classification algorithm. Since it is not
a generalizable procedure, it could in a way represent an additional uncertainty value
since, in fact, the search is completed by results, which could lead to biased or incorrect
interpretations of the cut-off. However, the sensitivity and specificity analysis, as well as
the Matthews correlation coefficient itself, generally assess the accuracy of the classifier at
each cut-off point, so the assumption that there is one that maximizes these values (namely
the Matthews correlation coefficient) should not be seen as a fact that generates a formal
explanation but as a simple measure that allows us to statistically measure the success of
the classifier.

2.2.3. Generation of Alerts and Decision-Making

Finally, after all the data has been processed, the system will suggest either an ‘OSA
case’ or a ‘non OSA case’ label for each AHI level. The medical team will select the AHI level
that they find convenient, and then the system will generate recommendations. All this
information is shown in the purple panel of Figure 8, in region 3.

3. Case Study

Once the ICDSS architecture has been introduced, this section presents a practical case
that aims to demonstrate the operation of the system and highlight its potential use. This
work does not intend to carry out an intensive clinical validation of the ICDSS, although
an independent set of test data, not included in the dataset used for the training and
construction of the model, has been reserved. It is actually a proof of concept that takes into
account the results previously obtained and aims to estimate the applicability of the system.

The patient to be analyzed in the case study was extracted from this reserved test dataset.

3.1. Collection of the Patient’s Information

Table 10 shows the data of a patient suspected of suffering from OSA who was not
included in the process of training and building the model and which will be analyzed in
this case study.

It is important to point out that this patient underwent specific sleep tests, more
specifically a cardiorespiratory polygraphy, which showed an AHI of 23.
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Table 10. Data on the case study patient.

Data Value
Gender Man
Age 69
Weight 93 kg
Size 179 cm
BMI 29.03
Neck circumference length 43 cm

Habits Drinking habits: daily,
30 g of alcohol

Drug treatments -

Objective data

Illnesses -

Sleep time subgroup
Hours of sleep 8 h
Minutes until falling asleep 30 min
Prolonged intra-sleep awakenings No

Unrefreshing sleep subgroup
Feeling of unrefreshing sleep Occasionally
Daytime tiredness Occasionally
Morning dullness No

Complicating sleep factors

Unjustified multiple awakenings No
Nocturia Occasionally
Breathless awakenings No
Reported apneas No

Snores subgroup
Snorer Yes
High-intensity snorer No

Su
bj

ec
ti

ve
da

ta

Snore-related awakenings No
Sleep test AHI 23

3.2. Data Processing

Once the patient’s data have been collected and entered into the application, as can be
seen in Figure 12, it is proceeded to its processing by the ICDSS.
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The first set of data, highlighted in blue in Table 10, is processed, as already commented,
by a set of machine learning classification algorithms to determine the Statistical Risks. These
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risks have values of 70, 46.67, 80, 33.33, and 43.44 for AHI levels of 10, 15, 20, 25, and 30,
respectively, as can also be seen in Figure 12.

With regard to the second set of data, that related to the symptoms reported by the
patient, highlighted in orange in Table 10, its processing is carried out by the cascade of
expert systems, determining at its output the Symbolic Risk, which has a value of 42.86, as
can be seen in Figure 12.

After that, the risk pairs (Statistical Risk, Symbolic Risk) are determined for the different
AHI levels, as summarized in Table 11.

Table 11. Risk pairs for the different AHI levels.

Statistical Risk [0, 100] Symbolic Risk [0, 100]

AHI = 10 70 42.86
AHI = 15 46.67 42.86
AHI = 20 80 42.86
AHI = 25 33.33 42.86
AHI = 30 43.44 42.86

Risk Aggregation

These risk pairs are aggregated at each AHI level by means of a series of inference
systems using the knowledge bases determined employing the automatic rule generation
approach proposed by Wang and Mendel. The set of rules generated can be seen, for
AHI = 15, in Figure 12 in its most basic expression of fuzzy “IF . . . THEN . . . ” rules. The
expert medical team can review these rules for validation. This could be used to consolidate
a permanent knowledge base that learns progressively with each iteration of the system.

After the inference process, the final aggregated risk value for each AHI level, the
Apnea Risk, is obtained, as shown in Figure 12. In summary, for AHI = 10, an Apnea Risk
value of 0.81 is obtained; for AHI = 15, an Apnea Risk value of 0.46 is obtained; for AHI = 20,
an Apnea Risk value of 0.81 is obtained; for AHI = 25, an Apnea Risk value of 0.54 is obtained;
for AHI = 30, an Apnea Risk value of 0.48 is obtained.

3.3. Generation of Alerts and Decision-Making

Once the Apnea Risk value has been determined for each AHI level, it proceeds to the
last stage, in which the generation of alerts and recommendations is addressed.

In this sense, a series of colored lights are generated to facilitate the assessment of
the severity of the condition, as shown in Figure 12. For this, each Apnea Risk value is
interpreted by applying a threshold level (see Figure 11 for more information) for each
AHI level. A red indicator means that the AHI level is equal to or greater than the level
associated with the indicator light itself. Otherwise, the indicator will be green-colored.

In this case, it is observed that the red indicators light up for AHI levels of 10, 15,
and 20, from which it is concluded that the patient could present an AHI value within the
interval [20, 25). This assessment is compatible with the results that the patient obtained
after carrying out the test, in which they presented a value of 23.

On the other hand, and in relation to the generation of recommendations, the medical
team sets a threshold of AHI = 15. Taking this threshold into account, the system indicates
that this is a potential OSA case and that sleep studies should be performed to confirm the
diagnosis and, if necessary, treat the patient.

4. Discussion

The intelligent decision support system proposed in this work is undoubtedly useful
and relevant in clinical practice, as already discussed in the authors’ two previous pa-
pers [1,2]. However, in this case, it is particularly important to highlight the particularities
and additional benefits that the system offers over its predecessors, especially with regard
to its architecture.
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As a general constitutive aspect, it is worth analyzing the combination of proposals
made in the second stage of the system. Both the definition of AHI thresholds and the use
of two risk metrics, each associated with a different inference process, aim to extend the
usefulness of the classifier. They give it, on the one hand, a larger precision in its prediction
and, on the other hand, a greater representativeness of the information in the search
for a solution hypothesis that generalizes such a prediction. The division into thresholds,
analyzed exclusively in statistical learning, understands the model used, in this case bagged
trees, as a multi-class classifier, which makes it possible to find relationships between the
data that are more in line with a real prediction. Cross-validation aims to reduce the
overfitting that occurs in problems of excessive complexity, an issue that is also addressed
by the aggregation. The generation of these Statistical Risks is completed by obtaining a
Symbolic Risk value, general and unique per patient, independent of thresholds, derived
from a fuzzy inference process through a cascade of different expert systems. The initial
problem of determining the risk of classifying a patient at a given threshold of the AHI can
be generalized by the Statistical and Symbolic Risk pairs obtained for each of these thresholds,
the statistical one being variable while the symbolic one is constant. The generalization
capabilities of the intelligent system are thus limited to the adaptation of these risks
according to the associated labels in the training set. If this fitting, which is easily assimilated
to an aggregation, were carried out in a trivial way, with classical aggregation operators or
even statistical learning models, it would not be possible to capture its significance in terms
of its influence on the final diagnosis, beyond its quantitative interpretation. Therefore, in
order to take advantage of the combination of the best proposals in this work, a particular
aggregation approach is proposed.

Of particular relevance is therefore the third stage of the intelligent system, where, after
the calculation of the risk pair (Statistical Risk, Symbolic Risk), a final value is determined
for each AHI level, the Apnea Risk. In this sense, most of the existing approaches in the
current literature usually opt for the use of analytical expressions [3,4,10,12] (aggregation
operators [36–39], utility functions [2,10], curves [3,4,12], etc.), which implies knowing a
priori a model that allows risks to be joined, thus introducing vagueness into the process. In
general, it is possible to improve this analytical expression through stochastic optimization
processes, that is, by iteratively making changes to the expression that improve the results
obtained or even by proposing heuristic models adapted to the problem, which can even
be solved by optimization. However, both analytical expressions and optimizable models
allow aggregations to be made on the assumption that the elements to be aggregated are
data, that is, point estimates of the variables of a problem. They are statistical aggregations
that, as in the simplest case of a weighted sum, combine data of the same type without any
further interpretation of the logic of the aggregation itself. While this is not a major concern
for most problems, it could become so in medical applications, such as clinical decision
support systems. In order to understand this, and as already discussed in the introduction,
one must turn to the essential distinction between data and knowledge. While knowledge
is a complex expression of the relationships between the qualitative and quantitative nature
of the variables of a problem, data is just the volatile and quantitative expression of a
variable without any greater meaning or relevance. Thus, knowledge, expressed in terms
of conditional deductive rules, is a permanent construct that grows and changes with the
emergence of new knowledge. Data are point values, non-permanent and changeable
according to circumstances, whose value in intelligent systems is linked to their number
and the ability to find plausible hypotheses of relationships through statistical learning.
For this reason, aggregation has usually been applied to data, especially when it has a
quantifiable expression. However, when the data represent a variable whose meaning can
be inferred, as is the case with the concepts of Statistical Risk and Symbolic Risk, aggregation
of these variables is not so obvious. For example, assuming a patient has values for
the Statistical Risk of 50 and the Symbolic Risk of 90, what would the intelligent system
suggest by aggregating the two terms? Obviously, any analytical model would process
both terms as numbers and return a final numerical value depending on factors such as
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the weight or importance of the two risks, a utility function linking them to qualitative
assessments, a behavioral curve, or a function that is specific to the aggregation model. In
any case, the number would be a statistical result that would not evaluate aspects such as
the reliability of the definition of the Symbolic Risk, the mechanisms of the inference process,
the presence or absence of knowledge in the reasoning, or in general, a non-mathematical
logical explanation of the union. This is where a possible alternative to aggregation based
on multivalued logics comes into play, consisting of the use of fuzzy inference approaches.
This would require a fuzzy interpretation of the numerical values of the risks, assigning
them to a fuzzy set, and defining the knowledge base, that is, the set of rules that define
how they should be combined. In fact, this process summarizes the essential operation
of an expert system in its variants based on logical rules, probability, and fuzzy rules.
Expert systems are able to aggregate symbols in an explanatory way using formal logical
languages and consistent bi- and multi-valued logics. They are therefore able to deal with
knowledge in its most essential and basic form, as long as that knowledge can be traced
and defined, either by establishing correspondences between data and symbols, or by
generating rules from the data itself. However, both ways of defining knowledge are
difficult, and this in part explains why statistical learning has become so relevant. In this
paper, for example, both of these approaches are considered. The correspondence between
data and symbols in the knowledge base is handled directly by the expert system cascade,
where a set of plausible fuzzy rules has been created with the variables, which in turn have
been expressed as membership functions that perform precisely this correspondence. More
details on this implementation can be found in the works of the authors [1,2]. The second
way, obtaining a knowledge base directly from the data, is the most relevant in this work
and, as said, is its main contribution. It addresses the data-knowledge duality that exists
in the genesis of any knowledge base, making it possible to consolidate knowledge from
ephemeral data and offering the improvements of aggregation based on expert systems
while reducing the difficulty of creating the necessary knowledge bases.

Specifically, in this work, this form of aggregation is carried out by using the method
for the automatic generation of rules proposed by Wang and Mendel [40], from which
the knowledge bases used by an inference system at each AHI level to determine the
Apnea Risk value are defined. Essentially, it is a symbolic inference process that starts
from numerical data obtained from the previous inference processes, that is, the machine
learning classification algorithms and the cascade of expert systems.

The novelty, therefore, does not lie in the use of the inferential capacity of expert
systems applied to risk aggregation but in the automatic generation of their knowledge
bases, which is a notable differentiation from previous work along the same lines. By
overcoming the difficulty of generating knowledge from numerical data, the use and
applicability of expert systems, in this case fuzzy ones, are significantly extended.

4.1. Advantages and Disadvantages of the Aggregation Process

Given the difficulty of finding a knowledge base grounded on the experience and
knowledge of the medical team, risk aggregation usually has to be carried out using
statistical methods rather than the preferable symbolic methods. However, the use of the
Wang-Mendel algorithm allows the knowledge base to be generated automatically, thus
reducing the initial difficulty and offering the following advantages:

• By dealing with the risk values, the algorithm acts indirectly by reducing the enormous
dimensionality of the problem by reducing and synthesizing the relationships between
the initial variables through their representation and influence on the Statistical and
Symbolic Risks.

• There is no need to define and find explicit knowledge for risk aggregation. The
numerical data representing them, the risks, as well as the labels that complete each
line of data can be interpreted as a non-formal pseudo-logical statement that serves as
a basis for establishing a fuzzy rule.
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• It is possible to combine the automatically generated rules with others generated by experts,
thus completing a knowledge base with a more general scope and wider applicability.

• It allows a circumstantial logical formalization of the knowledge derived from the
direct interpretation of numerical data, which is a differential milestone. This incorpo-
rates explanatory capabilities into the aggregation model and allows its validation by
logical procedures.

• It allows the diversification of the risk aggregation knowledge base in its most basic
form. This means that it is possible to understand that the rules form a knowledge
base that can be exported to other examples once they have been created and defined.

• It reduces uncertainty in all its variants and interpretations, not only by incorporat-
ing fuzzy systems but also by not introducing aggregation models with optional or
optimizable parameters.

• From the different proofs of concept elaborated, of which the case study is an example,
it is possible to observe a trend towards finding accurate classifiers for each of the AHI
thresholds identified. The AUCs of the ROC curves for each of them extend their area
above 0.74 (1 would be a perfect classifier), which in itself would not represent a notable
difference with those obtained by other simple or combined machine and deep learning
algorithms if one did not take into account a differentiating factor: explainability.

• Explainability is a fair measure of the differential value of automated fuzzy rule gener-
ation from numerical data sets. Although this model, unlike traditional knowledge
acquisition models, allows the aggregation of parameters with symbolic inference
without the obligation of creating logical knowledge bases, it shares with them the abil-
ity to explain—that is, to understand, comprehend, and reason—the inference process.
However, in order for these new bases to have a permanent, not to say ontological,
character, they must be verified by the team of expert pulmonologists.

Similarly, although its advantages are evident from the results of the conceptual tests
of the developed system, there are also some disadvantages that need to be considered:

• The first origin of the rules is the set of objective and subjective, numeric and categorical
data from which the initial set of objective and subjective data, represented by its risk
measures and class labels, was derived. These data are, by definition, ephemeral and
mutable, so the rules derived from them will inherit these characteristics. Therefore,
although the result of the application of the algorithm is a set of fuzzy rules, they will
necessarily need to be interpreted by the expert team in order to consolidate them into
a permanent knowledge base.

• Although the application of the algorithm results in a set of fuzzy rules, it is essential
that they be interpreted by a team of experts in order to consolidate them into a
permanent knowledge base.

• The logical operators that relate the antecedents must be defined in advance, which
implies a prior assumption that may not be true.

• The algorithm classifies and ranks the rules according to a degree value, calculated
as the product of the membership values of the set of antecedents and consequents
of each rule. In the case of rules having similar antecedents, those with a higher
degree are given priority, and the others are eliminated. This, in fact, implies a loss of
knowledge due to the operation of the algorithm itself, which will have to be taken
into account in due course. In more or less well-known applications where prior
knowledge exists, this is not a very significant loss. However, in medical diagnosis it
may lead to non-negligible error rates, and therefore, in the future, it will be necessary
to study mechanisms to reduce the loss of knowledge generated by the approach of
generating deductive rules on fuzzy sets proposed by Wang and Mendel [40].

4.2. Comparison of Systems

In order to better understand the different contributions of the current proposal, in
Table 12, a comparison of the current system with other similar systems is proposed. The
criteria used are as follows: ease of use, related to the difficulty for a team of medical experts
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to prepare the precise conditions for calculating the system’s prediction; knowledge acqui-
sition, related to the existence within the intelligent system of an explicit and automated
knowledge acquisition subsystem, distinguished from data; data dependency, in that the
system has a structural dependency on a statistical learning model; and combination of
inference models, present when the intelligent system effectively combines, hybridized or
not, different inference mechanisms of a heterogeneous nature.

Table 12. Comparison of the current system with other similar systems.

Ease of Use
(Easy/Moderate/

Complex)

Automated
Knowledge
Acquisition
(Full/Partial)

Data Dependency
(Full/Partial)

Combination of
Inference Models

(Yes/No)

Ismail Atacak [65]: This paper
proposes a malware detection system
for the Android operating system. To
this end, six classification machine
learning algorithms are first used,
focusing on the processing of
application data. Then, through a
voting process, three of the algorithms
are selected, whose results are
interpreted and aggregated by a
Mamdani-type fuzzy inference system,
which makes it possible to determine
the degree of malware.

Moderate difficulty of
use. To use this
system, it is essential
to define in advance
the knowledge base of
the fuzzy inference
system that will allow
the aggregation of the
results of the machine
learning algorithms.

Partial knowledge
acquisition. The
system architecture
does not have an
automatic knowledge
acquisition
sub-system. The rules
of the Mamdani
inference system need
to be defined
manually.

Full data dependency.
This is a data
dependent approach
as it uses
supervised machine
learning algorithms.

Yes, it consists of the
sequential use of a block
of machine learning
algorithms and a fuzzy
inference system, which
can be understood as an
ensemble, that is, where
the fuzzy engine allows
the predictions of the
preceding algorithms to
be aggregated.

- - = =

Melin et al. [66]: In this work, aimed at
predicting the COVID-19 time series, it
is proposed to use jointly a block of
neural networks, more specifically
nonlinear autoregressive neural
networks and function fitting neural
networks, and a fuzzy inference
system focused on determining the
importance of the predictions of the
models, which are aggregated through
a weighted summation model.

Moderate difficulty of
use. To use it, it is
essential to first define
the knowledge base
that will allow the
importance of each
model’s predictions to
be determined on the
basis of its
prediction error.

Partial knowledge
acquisition. The
system integrates a
module based on the
Mamdani inference
system. Its rules are
defined manually, as it
does not include a
knowledge
acquisition subsystem.

Full data dependency.
This is an unavoidably
data-dependent
approach where it is
necessary to train the
neural networks used.

Yes, this paper uses
together both statistical
inferential approaches and
symbolic inferential
approaches.

- - = =

Ahmed et al. [67]: This paper proposes
a system for the prediction of diabetes
condition. To this end, two machine
learning algorithms are used that focus
on the processing of initial data, whose
predictions are then processed by an
inference system based on fuzzy logic
of the Mamdani type, which is
responsible for determining the
final prediction.

Moderate difficulty of
use. In order to use
this system, it is
necessary to first
define the knowledge
base of the Mamdani
inference system,
which is essential in
determining the
prediction of
the model.

Partial knowledge
acquisition. The
knowledge base is
manually defined, as
the system lacks
a knowledge
acquisition subsystem.

Full data dependency.
As it integrates
approaches based on
the use of
classification machine
learning algorithms,
the availability of data
is essential.

Yes, this system uses both
statistical and symbolic
inferential approaches in
a joint and
sequential manner.

- - = =

Ragman et al. [68]: This paper
proposes a real-time rainfall
forecasting system. To achieve this, it
uses four classification machine
learning algorithms that focus on the
processing of sensor data. The
predictions of these models are
combined by a Mamdani inference
system, which is responsible for
determining the final prediction.

Moderately difficult to
use. In order to use
the system, it is
essential to define the
knowledge base of the
fuzzy inference
system responsible
for aggregating
the predictions.

Partial knowledge
acquisition. The
system does not have
a knowledge
acquisition subsystem.
The knowledge base is
manually defined.

Full data dependency.
This is a data
dependent approach
as it incorporates
supervised learning
approaches into
its architecture.

Yes. It uses statistical
and symbolic
inference approaches.

- - = =
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Table 12. Cont.

Ease of Use
(Easy/Moderate/

Complex)

Automated
Knowledge
Acquisition
(Full/Partial)

Data Dependency
(Full/Partial)

Combination of
Inference Models

(Yes/No)

Casal-Guisande et al. [2]: This is an
intelligent decision support system
applied to the diagnosis of obstructive
sleep apnea. Its architecture uses a set
of classification machine learning
algorithms and a cascade of expert
systems, each of which outputs a risk
indicator. These indicators are then
combined through a utility function
that determines a metric associated
with suffering from the pathology.

Moderate difficulty of
use. In order to use
the intelligent system,
it is necessary to have
defined the
knowledge bases of
the different expert
systems. In this sense,
after this milestone,
the system could be
used without major
difficulties other than
those related to the
revision and
improvement of the
rules for its use.

Partial knowledge
acquisition. The
architecture of the
intelligent system,
more specifically the
cascade of expert
systems, does
not include a
specific knowledge
acquisition subsystem.
This must be
manually defined by
the expert team.

Full data dependency.
The data is required
to train the
machine learning clas-
sification algorithms.

Yes. It uses symbolic and
statistical inference
approaches in a
concurrent mode. Their
results are then combined
using a specific
utility function.

- - = =
Casal-Guisande et al. [5]: This is an
intelligent decision support system
applied to the diagnosis of breast
cancer, focusing on the interpretation
of information obtained from
mammograms. Its sequential
architecture uses a cascade of expert
systems, whose output is a set of risk
indicators. A set of underlying factors
that summarise and represent the risks
is then obtained by applying factor
analysis approaches. These are
processed by a classification machine
learning algorithm, which makes it
possible to determine a risk metric
associated with suffering from the
pathology.

Moderate difficulty of
use. The use of the
intelligent system
requires the definition
of the knowledge
bases of the different
expert systems. In this
sense, after this
milestone, the system
could be used without
major difficulties
other than those
related to the revision
and improvement of
the rules.

Partial knowledge
acquisition. The
architecture of the
intelligent system, and
more specifically the
cascade of expert
systems, does not
contemplate a specific
subsystem for
acquiring knowledge.
The knowledge bases
must be defined
manually by the
expert team.

Full data dependency.
Due to its sequential
nature and the
use of a machine
learning classification
algorithm, this
approach requires a
data set from
the beginning.

Yes. It uses symbolic
and statistical
inferential approaches.

- - = =
Casal-Guisande et al. [10]: This paper
presents an intelligent system applied
to the diagnosis of breast cancer,
focusing on the interpretation of the
information obtained after performing
mammograms. Its architecture uses a
set of expert systems and a
classification machine learning
algorithm working concurrently. The
output is a set of risk indicators that are
combined using a specific analytical
function to obtain a risk indicator. In
addition, the system incorporates a
corrective approach that allows the
weighting of the risk obtained through
the opinions of the experts, which is
reflected in the BI-RADS indicator.

Moderate difficulty of
use. For the use of the
intelligent system, it is
necessary to define
the knowledge bases
of the different expert
systems. In this sense,
after this milestone,
the system could be
used without major
difficulties other than
those associated with
the revision and
improvement of
the rules.

Partial knowledge
acquisition. There is
no subsystem
for knowledge
acquisition. The
knowledge bases of
expert systems must
be defined manually.

Full data dependency.
The system is data
dependent due
to the use of a
classification machine
learning algorithm.

Yes, the system integrates
various inferential
approaches, both symbolic
and statistic.

- - = =
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Table 12. Cont.

Ease of Use
(Easy/Moderate/

Complex)

Automated
Knowledge
Acquisition
(Full/Partial)

Data Dependency
(Full/Partial)

Combination of
Inference Models

(Yes/No)

Our proposal

Very easy to use.
Beyond the definition
of the knowledge
bases of the cascade of
expert systems, it is
not necessary to
define the rules of the
Mamdani inference
system responsible for
risk aggregation. The
system can be
used from the
beginning without
major difficulties.

Full and
automatic knowledge
acquisition. The
system integrates an
automatic fuzzy
rule generation
mechanism, the
algorithm proposed
by Wang and Mendel.

Full data dependency.
In addition to defining
the classification
machine learning
algorithms, data is
also needed to create
the corpus of rules for
the aggregation
inference system.

Yes, the system integrates
a variety of inference
approaches, both symbolic
and statistical.

5. Conclusions

In healthcare environments, the use of intelligent systems to support medical teams in
diagnostic processes is becoming increasingly common. In this sense, this work addresses
the improvement and evolution of an intelligent decision support system for the diag-
nosis of OSA cases. For this purpose, combining proposals previously published by the
authors and starting from patient information, a series of machine learning classification
algorithms are used, as well as a series of expert systems arranged in cascade, with the aim
of obtaining a series of risk pairs (Statistical Risk, Symbolic Risk), each focused on an AHI
level. Each risk pair is then processed by a subsequent inference system whose knowledge
base is automatically generated. For this task, an automatic rule generation approach is
used, specifically the one proposed by Wang and Mendel [40], which makes it possible to
determine the Apnea Risk value for each AHI level.

The intelligent system has been implemented as a software artifact, and its operation
has been demonstrated by means of a case study, which has made it possible to highlight
the usefulness of the system as a tool to support the diagnostic process. It should also be
noted that the tests carried out on a test dataset with 183 patients, independent of those
used to construct the model, showed AUC values between 0.74 and 0.88 and Matthews
correlation coefficient values between 0.41 and 0.6 for the different AHI levels.

The inclusion of automatic rule generation approaches in the architecture of intelligent
systems opens up several promising lines for future research and development. Undoubt-
edly, the main one lies in the effective integration of this type of rule generator into the
architecture of expert systems, in line with the work already pointed out in the genesis
of second-generation expert systems. Similarly, their use in the new generation of hybrid
intelligent systems needs to be explored and studied in detail. Likewise, the validation of
these knowledge bases, with a view to their transformation into permanent ontological
bases, is also an unresolved issue, especially from a point of view that is not fully assisted
by the human expert. Furthermore, the Wang-Mendel algorithm itself can be redefined
to avoid the inherent loss of information associated with eliminating low-degree rules by
proposing a way to integrate this information into new high-degree rules. It can even be
revised and improved with different logical operators that relate antecedents. There are
undoubtedly many ways to improve this promising approach to knowledge acquisition.
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