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Abstract: Identifying the mutational processes that shape the nucleotide composition of the mito-
chondrial genome (mtDNA) is fundamental to better understand how these genomes evolve. Several
methods have been proposed to analyze DNA sequence nucleotide composition and skewness, but
most of them lack any measurement of statistical support or were not developed taking into account
the specificities of mitochondrial genomes. A new methodology is presented, which is specifically
developed for mtDNA to detect compositional changes or asymmetries (AT and CG skews) based on
nonparametric regression models and their derivatives. The proposed method also includes the con-
struction of confidence intervals, which are built using bootstrap techniques. This paper introduces
an R package, known as seq2R, that implements the proposed methodology. Moreover, an illustration
of the use of seq2R is provided using real data, specifically two publicly available complete mtDNAs:
the human (Homo sapiens) sequence and a nematode (Radopholus similis) mitogenome sequence.

Keywords: R package; nonparametric model; multiple change points; bootstrap techniques; DNA
compositional analysis

MSC: 62G05; 62P10

1. Introduction

Understanding how the mitochondrial genome (mtDNA) evolves and replicates is
crucial for advancing our knowledge of diseases and disorders, evolutionary relationships,
and important cell functions. Although the exact mechanism of mtDNA replication is
still not fully understood, it is an active area of research [1,2]. Two competing modes of
mtDNA replication exist: the strand-displacement model and the strand-coupled model.
The strand-displacement model requires two defined origins of replication; therefore, one
strand is highly exposed to mutation, leading to a strong nucleotide compositional bias
that may change near replication origins/termini. Comparative genomic studies using
invertebrate [3–6] and vertebrate [7,8] mitogenomes support this model. In the strand-
coupled model, both strands replicate symmetrically and in a coordinated manner, with
only one origin/terminus needed due to the circular nature of mtDNA. Notably, this model
does not produce strong nucleotide compositional biases or abrupt changes.

Over the years, various compositional analyses have been conducted to identify the
location of change points in the nuclear genomes of major taxonomic groups, such as
bacteria [9] or eukaryotic species [10]. A change point is defined as a region in the DNA
sequence where there is a change in the proportion of nucleotides (the building blocks that
make up DNA). This change can be due to mutations during replication, transcription, or
DNA repair [11]. If these mutations occur during the replication process, it is expected

Mathematics 2023, 11, 2299. https://doi.org/10.3390/math11102299 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math11102299
https://doi.org/10.3390/math11102299
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0001-8085-2745
https://orcid.org/0000-0003-4284-6509
https://orcid.org/0000-0003-4598-670X
https://orcid.org/0000-0003-3107-4515
https://doi.org/10.3390/math11102299
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11102299?type=check_update&version=2


Mathematics 2023, 11, 2299 2 of 20

that large changes in the nucleotide composition will appear at replication origins and at
the terminus. Therefore, identifying these change points will allow us to determine, for
example, the location of replication origins/termini.

Little attention has been focused on analyzing the nucleotide composition asymmetries
of organelle mitogenomes. The methods that were originally developed for bacterial or
nuclear genomes are not optimal for mtDNA analysis due to the much smaller size of
mtDNA sequences. For example, animal mtDNA is typically around 17 kilo base pairs
(kbp), which is approximately 76 times smaller than a small bacterial genome of 1.3 mega
base pairs (Mbp) and 2700 times smaller than the smallest human chromosome. Therefore,
these methods are not well-suited for analyzing mtDNA sequences, and the expected
amount of information and resolution (e.g., window size or step) may also pose a challenge
in applying them to mtDNA analysis.

Some tools and methods have been used for mtDNA analysis. For instance, there are
readily available tools (such as online tools or R/Python packages) that are easy to use, such
as skew analyses [12–14] and DNA-Walk [15]. However, these tools do not have statistical
tests to support their findings. In contrast, some published methods have statistical tests
to support their inferences/findings [16,17], but they are not implemented in any online
tool or in a function/package of a statistical language such as R [18]. Our package aims
to address this gap by providing statistical methods specifically developed for mtDNA
analysis that are available as a freely downloadable R package.

Identifying compositional change points in a statistical framework can be a challenging
task. Numerous methodological approaches have been developed to analyze change point
models, i.e., Bayesian estimation [19], maximum likelihood estimation [20,21], least squares
regression [22] or nonparametric regression [23–26]. These methodologies can be applied in
many different areas, including in the context of modeling DNA sequences [27,28]. To facili-
tate the use of these statistical methodologies, freely available software such as R packages
has been released in the past decade, including DNAcopy [29] based on the recursive circular
binary segmentation algorithm [20]; strucchange [30], which has a dynamic programming
algorithm [22]; cpm for online change point detection; seqinr [31], which is devoted to the
retrieval and analysis biological sequences; and the bcp package [32,33], which implements
a Bayesian change point procedure proposed by Barry and Hartigan [34].

There are other R packages available on CRAN for detecting change points in other
application contexts, such as time series analysis. Killick and Eckley [35] developed the
changepoint R package, which provides multiple change point search methods, such as
segment neighborhood, binary segmentation, and the Pruned Exact Linear Time (PELT)
algorithm, which can be used in conjunction with a variety of test statistics. An extended
version of the PELT algorithm with nonparametric cost functions was implemented by
Haynes [36] in the changepoint.np package. More recently, the R package mosum was
implemented with mathematically well-justified procedures for the multiple mean change
problem using moving sum statistics [37], as well as the bootstrap procedure, to generate
confidence intervals for the location of change points. However, none of the existing R
packages analyzes the nucleotide composition asymmetries of mtDNA.

A comparison of the different approaches is provided in Tables 1 and 2.
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Table 1. Comparison of methodologies described in the literature in a biological framework.

Feature SkewDB and
Antonie [9] iORI-Euk [10] Skew Analysis [12,13] Asymmetrical Directional

Mutation [14,16] DNA-Walk [15]

Available for mtDNA No No Yes Yes Yes

Statistical support for findings No Yes No Yes No

Methodology implemented in software Yes Yes Yes No Yes

Cross-system code Yes Yes Yes - Yes

Online web server Yes Yes No No No

Ability to automate analysis Yes Yes Yes No No

Local change point detection Yes (low sensitivity) No Yes No Yes

Visualization generation Yes No Yes No Yes

Execution time Slow Slow Fast Slow Fast

Observations

Database with a large
number of analyzed
genomes. It fits a model
for the skew profile.

Good predictive
power. Specific for
Eukaryotic genomes.

Noisy results if the window
size is not adjusted properly.
Detection of global and/or
local variations in nucleotide
skew profiles.

Requires the user to be an expert in
programming and statistical language.
A priori location for change points
must be defined. Not applicable for
multiple change points.

Difficult to extract
genome location for
the change points.
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Table 2. Comparison of some well-known R packages for change point detection described in the literature.

Method Strengths Weaknesses

DNA copy [29] Package developed specifically to analyse DNA sequences. It implements a
methodology for finding change points.

Not designed for genomic sequence application. The package was created for
analyzing array DNA copy number data.

strucchange [30] Package provides methods for testing for structural changes in linear
regression models.

Not designed for use in genomic sequences nor for nucleotide compositional
analysis. Lack of any function to read genomic sequences from GenBank or a file.

cpm [38]
Package provides different methods, both parametric and nonparametric, for use on
univariate streams in both the phase I (batch detection) and phase II (sequential
detection) settings. Fast computation (C++).

Not designed for genomic sequence application. Lack of any function to read
genomic sequences from GenBank or a file.

bcp [33] Package provides an implementation of the Bayesian approach. Not designed for genomic sequence application. Lack of any function to read
genomic sequences from GenBank or a file.

changepoint [35];
changepoint.np [36]

The former package uniquely provides a choice of search algorithms for multiple
changepoint detection, in addition to a variety of test statistics. The latter implements
an extended version of the PELT algorithm with nonparametric cost functions.

Not designed for genomic sequence application. Lack of any function to read
genomic sequences from GenBank or a file.

mosum [37] Package provides an implementation of the moving sum procedure and its
multiscale extension for offline detection of multiple changes in mean.

Not designed for genomic sequence application. Lack of any function to read
genomic sequences from GenBank or a file.

seqinr [31]
Package provides functions for exploratory data analysis for biological sequence
(DNA and proteins) and includes utilities for sequence data management under the
ACNUC system.

Change point detection is visual and empiric. No statistical inference support
associated to change points. Works only with third codon positions of
protein-coding genes, therefore requiring annotated sequences. Does not work
with raw FASTA files. Works better for bacterial genomes with a single origin of
replication from which the replication is bidirectional.
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Part of our philosophy is to facilitate the usage of new statistical methodology by the
scientific community. With that in mind, we implemented a methodology in seq2R [39], a
user-friendly and simple R package that identifies and locates compositional change points
in DNA sequences by fitting nonparametric regression models and their first derivatives.
Since the estimation procedure of this methodology for large datasets implies a high compu-
tational cost, Fortran (FORmula TRANslation) [40] was used as the programming language.
Our approach to detecting significant features of the curves, such as critical points, is based
on detecting the maximum or minimum of the first derivative of nonparametric regression
models with binary response. To estimate the regression curve and its first derivative, we ap-
plied local linear kernel smoothers [41]. Additionally, smoothing windows are automatically
selected using a cross-validation technique [42]. Inference procedures imply the construction
of confidence intervals, which can be obtained by bootstrap methods [43,44]. The choice
of smoothing windows and the usage of bootstrap resampling techniques may entail high
computational costs. To considerably reduce computation time and render the operational
procedures, binning techniques are applied [45].

In this article, in addition to the developed methodology, we explain and illustrate how
numerical and graphical output for all methods can be obtained using the seq2R package.
Although the proposed methods can be used with all kinds of genomic sequences, two
mitochondrial genomes (mitogenomes) were chosen to illustrate the package with real data.

The remainder of this paper is organized as follows. In Section 2, the estimation
procedure of the DNA compositional change point detection and the bootstrap method are
described. The functions programmed in seq2R are explored in Section 3. Two practical
examples using two DNA sequences (mitogenomes) to illustrate how the package can be
applied, as well as its performance, are presented in Section 4. Finally, in Section 5, we
briefly present the conclusions of this paper.

2. Nonparametric Estimation Procedures

It is well-known that a DNA sequence is a long chain made up of repeating units
called nucleotides, which include adenine, thymine, cytosine, and guanine nucleotides. In
order to analyze a DNA sequence, it is necessary to convert it into four binary variables
(C, G, A, and T). We define C as a Bernoulli variable, where the value 1 represents the
presence of the cytosine nucleotide at a specific position (X) of the sequence, and the value
0 represents its absence. The three other variables can be obtained similarly.

To study the nucleotide composition and detect possible change points in the sequence,
it is possible to consider the CG skew or AT skew [46]. Both skews measure deviations in
the amount of one nucleotide compared to another, and they are calculated for a given X
values as follows:

CG(X) =
pC(X)− pG(X)

pC(X) + pG(X)
(1)

and

AT(X) =
pA(X)− pT(X)

pA(X) + pT(X)
, (2)

where pC(X) = P(C = 1/X = x), pG(X) = P(G = 1/X = x), pA(X) = P(A = 1/X = x),
and pT(X) = P(T = 1/X = x) are the probabilities of the appearance of cytosine, guanine,
adenine, and thymine, respectively.

The proposed skews allow us to determine whether the relationship between pairs
of nucleotides is altered. In the case of a change, for example, in the number of cytosines,
the value of the CG skew increases considerably, which is reflected in the estimated curve.
Taking this into account, the use of derivatives is of great help in this context, specifically
for estimating the point where the first derivative of CG is maximum or minimum, which
corresponds to a critical point in the trend of the estimated skew (ĈG). This point reflects a
change or deviation in the relationship between the two nucleotides.

For simplicity, we will only present the methodology for calculating the CG skew, as the
AT skew can be obtained in a similar way. To obtain the aforementioned skew, it is necessary
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to estimate the probabilities pC and pG. To achieve this, we used the nonparametric logistic
regression models:

pC(X) =
exp(mC(X))

1 + exp(mC(X))
(3)

and

pG(X) =
exp(mG(X))

1 + exp(mG(X))
, (4)

where mC and mG are unknown functions. As described in the Section 2.1, we used a
combination of the local scoring algorithm [47] and local linear kernel smoothers [41] to
estimate these probabilities, taking into account the computational cost (see Section 2.2).
Additionally, this estimation procedure allows us to obtain the first derivative of mC and
mG. After obtaining p̂C and p̂G according to the models in (3) and (4), it is possible to
calculate the ĈG skew by inserting the estimated probabilities into (1). Furthermore, we

can obtain the first derivative of this skew, ĈG
1
.

At this point, it is essential to emphasize that we are focused on identifying change
points of the skew curve in DNA sequences. For our purposes, we refer to these points
as inflection points, where the first derivative of the skew curve reaches a maximum
or minimum. To make inferences about these points, we need to construct confidence
intervals for the first derivative of the skew curve. We construct these intervals using binary
bootstrap techniques (for more details, see Section 2.3).

Finally, the procedure to detect the critical points is based on the following steps: (i)
locating the regions at the sequence (X values) where the confidence interval of the first
derivative of the skew does not contain the value zero; then, (ii) for each region, determining
the critical point as the maximizer or minimizer of

ĈG
1
(z1), . . . , ĈG

1
(zB)

where z1, . . . , zB is a very fine grid of B equidistant points in a range of X values corre-
sponding to the previously bounded region.

2.1. Estimation of the Logistic Model—The Local Scoring Algorithm

Let {(Xi, Yi)}n
i=1 be a random sample of {(X, Y)} of size n (total length of DNA

sequence), where Y could be any of the cited binary variables (C, G, A, or T). The estimation
of pC(X), pG(X), pA(X), and pT(X) is based on the use of the local scoring algorithm with
local linear kernel smoothers. For simplicity, we show the procedure for obtaining p̂C(X).
The steps of the algorithm that enables estimation of the model in (3) are as follows:

Initialize. Compute the initial estimates, m̂C = log(Ȳ/(1− Ȳ)) and p̂0
i = p̂(Xi) = Ȳ =

n−1 ∑n
i=1 Yi (i = 1, . . . , n).

Step 1. Form the adjusted dependent variables Ỹ = (Ỹ1, . . . , Ỹn) and the weights W =

(W1, . . . , Wn), Ỹi = m̂C(Xi) +
(Yi− p̂0

i )

p̂0
i (1− p̂0

i )
and Wi = p̂0

i (1− p̂0
i ).

The estimation of (mC(x)) and its first derivative (m1
C(x)) at a position (x) is defined as

m̂C(x) = β̂0(x) and m̂C
1(x) = β̂1(x), (5)

where the vector
(

β̂0(x), β̂1(x)
)

is the minimizer of

n

∑
i=1

(
Ỹi − β0 − β1(Xi − x)

)2h−1K
(

Xi − x
h

)
Wi,

where K denotes a kernel function (normally, a symmetric density), and h > 0 is the
smoothing parameter or bandwidth. Commonly used kernel functions include the uniform
κ(u) = 1

2 , the Epanechnikov κ(u) = 3
4 (1 − u2), the triweight kernel function κ(u) =

35
32 (1− u2)3, and the Gaussian kernel κ(u) = 1√

(2π)
exp(−u2

2 ), which was used in this work.
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Step 2. Repeat Step 1., with p0
i being replaced by

p̂i =
exp(m̂C(Xi))

1 + exp(m̂C(Xi))
until

∣∣D(p̂0, Y
)
− D(p̂, Y)

∣∣
D(p̂0, Y)

≤ ε,

where ε is a small threshold (by default, ε = 0.01), and

D(p̂, Y) = −2 ∑n
i=1[Yi log( p̂i) + (1−Yi) log(1− p̂i)].

The obtained nonparametric estimates of mC and m1
C are known to heavily depend on

the bandwidth (h). Various proposals based on some error criterion for optimal selection
have been suggested. However, due to the difficulty of asymptotic theory, optimal selection
remains a challenging open problem. As a practical solution to this problem, in this paper,
we consider that the smoothing bandwidth (h) can be selected automatically by minimizing
the following weighted cross-validation error criterion:

CV(h) =
n

∑
i=1

(
Yi − m̂(−i)

C (Xi)
)2

Wi, (6)

where Wi is a set of weights, and m̂(−i)
C (Xi) indicates the fit at Xi, leaving out the i-th data

point based on the smoothing parameter (h). Note that this bandwidth selection procedure
is performed for each iteration of Step 1.

2.2. Computational Aspects

It should be noted here that the computational cost involved in the choice of smoothing
the bandwidth and the construction of bootstrap confidence intervals can be considerably
reduced by using binning-type acceleration techniques. Linear binning is described in detail
in [45]. Briefly, the binning sample ({(X•r , Y•r )}N

r=1) and the weights (W•r ) are constructed,
where X•1 < X•2 < . . . < X•N is a grid of equidistant points along range X,

W•r =
n

∑
i=1

Wi(1− |Xi − X•r |/ζ)+ and Y•r =
n

∑
i=1

(1− |Xi − X•r |/ζ)+Yi,

where X+ = max(0, X), and ζ denotes the distance between two consecutive nodes. The
binning approximation of the estimator in (5) is obtained by minimizing the following
expression

N

∑
r=1

(Y•r − β0 − β1(X•r − x))2h−1K
(

X•r − x
h

)
W•r .

Furthermore, the cross-validation error given in (6) can be approximated by

CV ≈
N

∑
r=1

W•r

(
Y•(−r)

r
W•r

− m̂(−r)
C (X•r )

)2

,

where m(−r) is the estimate obtained without the r-th node of the binning sample. This
approximation reduces the computation time considerably, since the calculation of CV only
requires kernel K to be assessed at a maximum N points for each choice of bandwidth (h),
and for these purposes, nodes with null weight are not taken into account.

The choice of the number of nodes is therefore a tradeoff between approximation
error and computational speed; the finer the grid of chosen points, the better the binning
approximations.
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2.3. Percentile Bootstrap Confidence Intervals

Once the estimated curves have been obtained, it is necessary to construct confidence
intervals in order to make inferences about certain of their features. These intervals can be
obtained based on the estimates of mC and mG and are useful in different contexts: (i) to
determine whether the estimate of the skew at a particular point differs from zero and (ii) to
approximate the sought change points. Because of the nature of the dataset, the percentile
bootstrap procedure was used to construct these confidence intervals. For instance, the
confidence interval for the estimated skew (ĈG) can be obtained as follows:

Step 1. Obtain the estimates of the mean conditional p̂C(X1), . . . , p̂C(Xn)

and p̂G(X1), . . . , p̂G(Xn) by fitting the model in (3) and obtain the ĈG skew. We know that
the sum of these probabilities may not be equal to one, although it should be close. For this
reason, we rescale them to ensure that they sum up to one.

Step 2. For b = 1, . . . , B (i.e., B = 1000), generate bootstrap samples
{
(Xi, Z•bi )

}n

i=1
, where

the bootstrap response variables (Z•bi ) are distributed in accordance with
Z•bi ∼ Multinomial(1, p), where p = p̂C(Xi), p̂G(Xi), p̂A(Xi), p̂T(Xi), and calculate the
ĈG
•p

skew. The limits for the 100(1− α)% confidence interval of the CG skew are given by

CI =
(

ĈG
α/2

, ĈG
1−α/2)

,

where ĈG
p

represents the p-percentile of ĈG
•1

, . . . , ĈG
•B

values.

3. Package Description

As mentioned in Section 2, the seq2R package includes an algorithm for analyzing
asymmetries based on the nucleotide composition of DNA sequences. This package is
useful for loading various types of files commonly used for importing biological sequences,
as well as retrieving sequences from the GenBank (Managed by the NCBI, National Center
for Biotechnology Information, formerly at Los Alamos.)dataset.

Additionally, seq2R allows for inference about change points related to the derivative
curves, such as maximum or minimum points. This software is designed to be used with
the R statistical program [18]. In R, programming is based on objects, and computations
are performed using specialized functions designed for specific calculations. Our package
consists of seven functions that enable users to apply the methodology. A summary of
these functions is provided in Table 3.

Table 3. Summary of functions in the seq2R package.

Function Description

read.genbank
Retrieves sequence files from the GenBank database and returns a list with two elements: the complete
sequence and the accession number of the organism. Additionally, an attribute containing the scientific
name of the species is retrieved.

read.all
Reads sequences in Fasta or GenBank format and returns a list with two components: the sequence to be
analyzed and the accession number, along with the sequence size.

transform
Converts biological sequences into binary code. The sequences must have been read previously by either
read.genbank or read.all.

find
The main function for fitting regression models and obtaining the estimates and their first derivatives. It
returns an object of class change.points.

print.change.points This is a method of the generic print function for change.points objects, which returns a short summary.

plot.change.points
Visualizes change.points objects. It plots the estimates, as well as the first derivative of the skew profile,
and includes the 95% confidence intervals calculated by bootstrap.

critical Identifies the change points (maximum and minimum) for the first derivative of the skew curves.
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It should be noted that any sequence must be read by read.genbank or read.all be-
fore proceeding. After this step, the character vector needs to be converted into binary code
using transform. At this point, users can fit and illustrate the models and methods dis-
cussed in the previous section using two functions: find.points and plot. Tables 4 and 5
provide a summary of the arguments for these two functions. Finally, if one wants to
determine the change points, i.e., the positions in the sequence that maximize or minimize
the first derivative of the skew curves, the critical function can be used to obtain them.

Table 4. Summary of the arguments for the find function.

Argument Description Range Values

x
Sequences in binary format (obtained by using
the change.binary function). -

kbin
Number of binning nodes over which the function
is to be estimated (see Section 2.2).
By default, kbin = 300.

An integer between 1 and the length of the sequence (x).
This value must be a tradeoff between approximation error
and computational speed. The higher the selected value, the
better the approximation (A detailed study of this
compromise can be seen in [48]).

p
The degree of the polynomial kernel estimator.
By default, p = 3.

An integer between 2 and 6. The higher the selected value,
the rougher the estimates.

bandwidth
The kernel bandwidth or smoothing parameter.
By default, h = −1 (bandwidth computed by
cross validation; see Section 2.2).

A value between 0.01 and 1. A larger value of bandwidth
results in smoother estimates, while a smaller value results
in less smooth estimates. If h = 0, polynomial linear
regression is used.

weights
An optional vector of “prior weights” to be used
in the fitting process. By default, W = 1.

A value between 0 and ∞. Note that, for example, a weight
of 2 is equivalent to having made exactly the same
observation twice.

nboot
The number of bootstrap replicates. By default,
nboot = 100.

An integer between 1 and 2000. The higher the number of
bootstrap replicates, the longer the computational time.

kernel
A character string denoting the kernel function
(a symmetric density). By default, kernel =
“gaussian”.

“gaussian” uses the Gaussian density function. Other types
of kernel functions can be used, such as Epanechnikov
(“epanech”) and triangle (“triang”).

n.bandwidths
Only for h = −1. The number of equally spaced
bandwidth values in which the optimal value is
searched by cross validation.

An integer between 2 and 100.

Table 5. Summary of the arguments of the plot function.

Argument Description

x Object of class change.points.

base.pairs Character string about the skew profile for CG or AT.

der
Number that determines the inference process to be drawn into the plot. By default, der is NULL. If it is 0, the
plot represents the initial estimate. If der is 1, the first derivative is plotted.

critical A logical value. If TRUE (not by default), the critical points are drawn into the plot.

CIcritical
A logical value. If TRUE (not by default), the 95% percentile confidence intervals for the critical points are
drawn into the plot.

CIcol A specification for the default confidence intervals plotting color.

CItype
Type of plot to be drawn for confidence intervals. Possible types are p for points, l for lines, o for overplotted,
etc. See details in ?par.

4. Application to Real Data

The methodology described in Section 2 was used to estimate the CG and AT skew
profiles and determine the compositional change points in two mitochondrial genomes
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(mitogenomes)—the human and nematode mitogenomes (NCBI accession numbers
NC_012920 and NC_013253, respectively)—using the seq2R package.

The exact mechanism of mitochondrial DNA replication in mammals, including the
human mitogenome, has been a matter of controversy in the last decade [49,50]. The
classical model of mitogenome replication, which suggests the existence of two different
replication origins [51], has been challenged with the proposal of alternative models that
only consider one origin of replication [52,53].

The first objective of our methodology applied to the human mitogenome was to
determine the number of replication origins and hypothesize which replication model
is supported by our results. Second, we used the nematode mitogenome of the species
Radopholus similis to compare our methodology’s results with those of another commonly
used approach that lacks statistical testing and relative nucleotide rates (T+G/A+C, G/A,
and T/C) [13]. Our goal was to demonstrate that identifying compositional change points
can improve our understanding of the replication process in these mitogenomes. How-
ever, it should be noted that the methodology is not limited to detecting replication ori-
gins or termini; other processes such as transcription, selection, or recombination can
also cause compositional changes. Therefore, all results should be interpreted with cau-
tion. Our methodology can be applied to all types of genomic sequences.

In the following section, we provide details on how to call functions and R commands
of seq2R, which can be loaded into R using library(seq2R).

4.1. Human Mitogenome (Homo sapiens)

We can use the function read.genbank to retrieve the human mitochondrial sequence
from the GenBank database. Below is an excerpt of this character vector

> library(seq2R)
> mtDNAhuman <- read.genbank("NC_012920")
> mtDNAhuman
[[1]]

[1] "g" "a" "t" "c" "a" "c" "a" "g" "g" "t" "c" "t" "a" "t" "c" "a"
[17] "c" "c" "c" "t" "a" "t" "t" "a" "a" "c" "c" "a" "c" "t" "c" "a"
[33] "c" "g" "g" "g" "a" "g" "c" "t" "c" "t" "c" "c" "a" "t" "g" "c"
[49] "a" "t" "t" "t" "g" "g" "t" "a" "t" "t" "t" "t" "c" "g" "t" "c"
...

[[2]]
[1] "NC_012920"
attr(,"species")
[1] "Homo_sapiens"

To begin the analysis, it is necessary to convert our sequence into binary variables,
where a value of 1 denotes the presence of a nucleotide at position X in the sequence, while
0 indicates the absence of a nucleotide. To do this, the following input command should be
typed

> DNA <- transform(mtDNAhuman)
> DNA
$AT
$AT[[1]]

X A T
[1,] 2 1 0
[2,] 3 0 1
[3,] 5 1 0
[4,] 7 1 0
...

$CG
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$CG[[1]]
X C G

[1,] 1 0 1
[2,] 4 1 0
[3,] 6 1 0
[4,] 8 0 1
...

To carry out compositional analyses, we used the following main function

> seq1 <- find.points(DNA)

Results are printed on the screen using

> seq1
Call:
find.points(x = DNA)

Number of A-T base pairs:9218
Number of C-G base pairs:7350
Number of binning nodes: 300
Number of bootstrap repeats: 100
Bandwidth: 0.5862069 0.1379310
Exists any critical point? TRUE

It should be noted that there is at least a critical point, as shown in the last logical
argument of this short summary. To illustrate where the critical point is, seq2R package
also provides plots for the analyses of the skews. First, the estimate of CG skew and its
first derivative are displayed in Figure 1 (upper and lower panel, respectively) with 95%
bootstrap confidence intervals. These plots can be obtained with the following command:

> plot(seq1, der = 0, base.pairs = "CG", CIcritical = TRUE,
ylim = c(0.08,0.67))

> plot(seq1, der = 1, base.pairs = "CG", CIcritical = TRUE,
ylim = c(-0.0005,0.00045))

At this point, a main question that arises is: What are the positions of the detected
change points in our sequence? To answer this, we used the following input commands.

> critical(seq1, base.pairs = "CG")
Critical Low_CI Up_CI

[1,] 721.3478 499.7023 1275.462
[2,] 3325.6823 2966.8935 3713.562
[3,] 5542.1371 5127.9370 5845.514
[4,] 7647.7692 7041.0144 8091.060
[5,] 10861.6288 10639.9833 11027.863
[6,] 13465.9632 12801.0268 14020.077
[7,] 15017.4816 14878.9532 15622.851

From the compositional analyses of the human mitogenome specifically focusing on
the CG content, we made the following observations: the two typical origins of replication,
OH and OL, are located in regions where critical points were also identified (indicated
by red lines in Figure 1). In the human mitogenome, OL is a very small genomic region
located at positions 5730 to 5760. Interestingly, one of the critical points identified in the
CG analysis is located precisely in that same region. Additionally, the OH, located at
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the beginning (1–576) and terminus (16,024–16,569) of the genomic sequence, was also
identified in our analysis.
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Figure 1. Human mitogenome. (a) Regression curve for the CG skew profile (solid lines) with
bootstrap-based 95% confidence intervals (dashed lines). Red line: X variable points that minimize
the first derivative. Blue line: X variable points that maximize the first derivative. (b) First derivative
for the CG skew profile (solid lines) with bootstrap-based 95% confidence intervals (dashed lines).
Red and blue lines as mentioned before.

Secondly, for the AT analyses, we can obtain the estimated curve and its first derivative
with 95% bootstrap confidence intervals in the same way as for the CG skew (Figure 2,
upper and lower panel, respectively). Additionally, we can locate the change points using
the same approach as for the CG analysis.

> plot(seq1, der = 0, base.pairs = "AT", CIcritical = TRUE)
> plot(seq1, der = 1, base.pairs = "AT", CIcritical = TRUE)
> critical(seq1, base.pairs = "AT")

Critical Low_CI Up_CI
[1,] 3049.258 1996.569 3963.435
[2,] 8755.940 8645.130 8922.154
[3,] 13077.505 11914.007 13963.980

Additionally, the AT analysis (Figure 2) appears to detect alternative origins of repli-
cation: one in the region upstream to the OL (i.e., before position 5000) and another one
around position 15,000. The latter inferred OL (around position 15,000) may be homologous
to the OL recently mapped in the mouse mitogenome [54]. If the identified compositional
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bias reflects the replication process and if the change points correspond to the origins of
replication, it is possible that more than one replication mechanism (using different origins
of replication) may exist in the human mitogenome, since we find evolutionary signatures
of more than one potential mechanism. Indeed, the most recent biochemical findings
support this hypothesis [55,56].
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Figure 2. Human mitochondrial DNA. (a) Regression curve for the AT skew profile (solid lines) with
bootstrap-based 95% confidence intervals (dashed lines). Red line: X variable points that minimize
the first derivative. Blue line: X variable points that maximize the first derivative. (b) First derivative
for the AT skew profile (solid lines) with bootstrap-based 95% confidence intervals (dashed lines).
Red and blue lines as mentioned before.

4.2. Nematode Mitogenome (Radopholus similis)

Nematodes, or roundworms, are a highly diverse phylum of animals. While some
species are free-living, others are parasitic and responsible for causing diseases in both
animals and plants. The nematode mitogenome analyzed in this study is plant-parasitic.
However, little is known about its replication mechanism. Compositional analyses of the
relative amounts of T and G versus A and C reveal a pattern consistent with the existence of
two different replication origins [13] located around positions 4100 and 11,000. Additionally,
the authors of [13] highlighted a compositional change after position 1000, which was
suggested to be related to the replication mechanism but did not correspond to a replication
origin. Instead, it was caused by a collision between DNA polymerases during mitogenome
replication [13].

We can obtain the nematode mitogenome from the GenBank dataset with accession
number NC_013253. Below is an excerpt of this sequence. We convert our character vector



Mathematics 2023, 11, 2299 14 of 20

into binary variables and then calculate the estimates of the skew profile using the following
input commands:

> library(seq2R)
> nematode <- read.genbank("NC_013253")
[[1]]

[1] "t" "a" "a" "a" "g" "a" "a" "a" "a" "t" "a" "t" "t" "t" "t" "a"
[17] "a" "t" "t" "t" "t" "a" "g" "a" "a" "t" "g" "t" "t" "t" "c" "a"
[33] "t" "t" "g" "t" "t" "a" "a" "t" "g" "a" "a" "a" "a" "g" "g" "t"
[49] "t" "t" "t" "t" "t" "c" "t" "t" "t" "g" "a" "t" "a" "t" "t" "a"
...

[[2]]
[1] "NC_013253"
attr(,"species")
[1] "Radopholus_similis"

> nem <- transform(nematode)
> (seq2<-find.points(nem, kbin = 450, n.bandwidths = 10))
Call:
find.points(x = nem, kbin = 450, n.bandwidths = 10)

Number of A-T base pairs:14340
Number of C-G base pairs:2451
Number of binning nodes: 450
Number of bootstrap repeats: 100
Bandwidth: 0.3333333 0.8888889
Exists any critical point? TRUE

For illustration purposes, we report the estimate and its first derivative of the AT skew
with 95% bootstrap confidence intervals (Figure 3). The change points values with 95%
bootstrap confidence intervals are shown by typing the following code.

For illustrative purposes, we report the estimate and first derivative of the AT skew,
along with 95% bootstrap confidence intervals, in Figure 3. The values of change points,
along with their 95% bootstrap confidence intervals, can be obtained by using the follow-
ing code:

> par(mfrow=c(2,1))
> plot(seq2, der = 0, base.pairs = "AT", CIcritical = TRUE)
> plot(seq2, der = 1, base.pairs = "AT", CIcritical = TRUE,

ylim = c(-0.0002,0.0002))
> critical(seq2, base.pairs = "AT")

Critical Low_CI Up_CI
[1,] 561.5676 169.1703 561.5676
[2,] 3756.8030 2579.6110 4596.2530
[3,] 8325.4290 7891.6898 8325.4290
[4,] 12669.8280 11662.2076 13495.9646

In the case of CG skew, we can obtain the estimated curve and its first derivative with
95% bootstrap confidence intervals in the same way as for the AT skew (Figure 4, upper
and lower panel, respectively). Our method can detect two change points at positions 4264
and 11,186, which overlap with the change points located in the AT skew, as also reported
in [13].

> par(mfrow = c(2,1))
> plot(seq2, der = 0, base.pairs = "CG", CIcritical = TRUE)
> plot(seq2, der=1, base.pairs = "CG", CIcritical = TRUE)
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> critical(seq2, base.pairs = "CG")
Critical Low_CI Up_CI

[1,] 4264.553 4124.436 4264.553
[2,] 11186.326 8524.105 13456.219

After applying our methodology to this nematode mitogenome, we were able to iden-
tify three significant change points, which correspond to the three points highlighted in [13].
Therefore, we not only confirmed the presence of change points related to the replication
process but also provided statistical support and confidence intervals for their location.
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Figure 3. Nematode mitochondrial DNA. (a) Regression curve for the AT skew profile (solid lines)
with bootstrap-based 95% confidence intervals (dashed lines). Red line: X variable points that
minimize the first derivative. Blue line: X variable points that maximize the first derivative. (b) First
derivative for the AT skew profile (solid lines) with bootstrap-based 95% confidence intervals (dashed
lines). Red and blue lines as mentioned before.
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Figure 4. Nematode mitochondrial DNA. (a) Regression curve for the CG skew profile (solid lines)
with bootstrap-based 95% confidence intervals (dashed lines). Red line: X variable points that
minimize the first derivative. (b) First derivative for the AT skew profile (solid lines) with bootstrap-
based 95% confidence intervals (dashed lines). Red line as mentioned before.

4.3. Computational Times

As we mentioned previously, the proposed methodology can be used not only with
mitogenomes but also with other types of genomic sequences. To compare its performance,
we analyzed different genomic sequences in terms of the time required for analysis.

To compare the performance of the proposed methodology, larger genomic sequences
than the human mitogenome analyzed in Section 4.1 were chosen, starting from approxi-
mately 16 kbp and increasing by a factor of 10 for each subsequent genomic sequence up to
approximately 13 Mbp (Table 6). As the length of the sequence determines the computational
cost, analyzing some larger genomic sequences may require an infeasible processing time.
Table 6 shows the execution time (in minutes) for different species, types, and lengths of
sequences (in base pairs) when the proposed methodology is run on an Apple Macbook Pro
M1 with eight cores, 16 GB of RAM, and an onboard SSD. As expected, the computational
time increases with sequence length. Results show that our proposed methodology can
handle the analysis of any sequence size, although the computational burden is high for the
Sorangium cellulosum bacterial genome.
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Table 6. Computational times (in minutes) for different species, types, and lengths of sequences (in
base pairs).

Species Genomic Sequence Accession Number Length (bp) Times (min)

Homo sapiens Human mitogenome NC_012920 16,568 0.03
Arabidopsis thaliana Plant chloroplast NC_000932.1 154,478 0.13
Wolbachia pipientis Bacterial genome NZ_CP050531.1 1,185,354 1.22
Sorangium cellulosum Bacterial genome NC_010162.1 13,033,779 24.42

4.4. Compositional Analysis with Another R Package: Seqinr

The aim of this section is to compare our results with those obtained using the seqinr
R package, which is considered the most complete R package for genomic sequence anal-
ysis and nucleotide compositional analysis. To accomplish this, we analyzed the same
mitogenomes as in the previous subsections (human and nematode sequences, as discussed
in Section 4.1 and Section 4.2, respectively) using seqinr.

Here, we focus our discussion on the change points associated with the origins of
replication. In the human mtDNA, two origins of replication were identified—one for
each complementary strand. The first is located around position 5730, and the other is in
the major non-coding region located at the beginning and the end of the circular genome
(joining the start of the genome (positions 1 to 576) with the end of the genome (positions
16,024 to 16,569)). As we mentioned before, our method is able to detect change points
that overlap with these two origins of replication; in fact, the lower limit of the confidence
intervals of the first GC skew critical point overlaps with the major non-coding region. In
addition, the third GC skew change point includes the other origin of replication.

After applying the seqinr to this human sequence, it is possible to associate a minor
change detected near position 6000 with the first origin of replication. However, the method
is not able to detect the other origin of replication at the start/end of the genome because, as
mentioned in Table 2, this analysis can only be performed in coding regions (i.e., regions of
protein-coding genes), but this origin of replication is located in a major non-coding region.

The nematode genome has three major change points located at positions 1100, 4100,
and 11,100, with the last two identified as the two origins of replication found in this
genome [13]. Our method is able to detect change points that overlap with the replication
origins. Specifically, the confidence intervals of the second AT skew change point contain
the change point around position 4100 but miss the other change point/replication origin
by approximately 500 nucleotides. Interestingly, these two change points are detected by
the GC skew analysis, with two critical points identified at position 4264 (the confidence
interval of which contains the position 4100) and 11,186. In contrast, the cumulative com-
posite skew index analysis using seqinr fails to detect any of the change points associated
with the origins of replication.

Overall, it seems that our method shows good performance in the identification of
change points associated with the origins of replication, unlike seqinr, which, in these
examples, misses some of them.

5. Conclusions

In this paper, we discussed the implementation of a new method to detect change
points in DNA sequences using the seq2R package in R. The advantage of using R is
its excellent statistical and graphical capabilities. The package includes a local scoring
algorithm based on local linear kernel smoothers. While the methodology was illustrated
using mitochondrial genomes, it can be applied to any type of DNA sequence. However,
complete DNA sequences such as chromosomes may require considerable computational
time, which was addressed by implementing Fortran functions.

The seq2R package is available on the Comprehensive R Archive Network. The pro-
posed method aims to provide a user-friendly, fully automated, and reproducible approach
to change point detection with statistical support for genomic analysis.
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