
1999Publication Year

2023-03-09T11:00:57ZAcceptance in OA@INAF

FORTRAN 90 Programming Guidelines for PLANCK/LFITitle

MARIS, MicheleAuthors

http://hdl.handle.net/20.500.12386/34013Handle

LFI-OAT- 0002.01Number

Planck

LFI
Fortran 90 Programming
Guidelines for Planck/LFI

Ref. : LFI-OAT- 0002.01

Alt. Ref.: OAT Tech. Rep. 46/99

Issue: Draft 0.1

Date: 8 March 1999

FORTRAN 90

Programming Guidelines

for

PLANCK/LFI

Michele Maris

Published at Osservatorio Astronomico di Trieste (OAT), Trieste, Italy

Abstract

A set of rules for FORTRAN 90 programming are given together with

many rules for FORTRAN 77 programmers helpful to write code

FORTRAN 90 compatible.

Planck LFI – – LFI-OAT-0002.01 Page 1 of 22

Planck

LFI
Fortran 90 Programming
Guidelines for Planck/LFI

Ref. : LFI-OAT- 0002.01

Alt. Ref.: OAT Tech. Rep. 46/99

Issue: Draft 0.1

Date: 8 March 1999

Document History

Issue 0.1

Checked by: C. Vuerli, R. Smareglia Date: 8 March 1999

Approved by: F. Pasian Date: 8 March 1999

Changes: First Issue

Planck LFI – – LFI-OAT-0002.01 Page 2 of 22

Planck

LFI
Fortran 90 Programming
Guidelines for Planck/LFI

Ref. : LFI-OAT- 0002.01

Alt. Ref.: OAT Tech. Rep. 46/99

Issue: Draft 0.1

Date: 8 March 1999

Introduction

In this document a set of rules to produce uniform and homogeneous FORTRAN 90

software for Planck/LFI is described, part of them comes from the experience gained

during the porting of the simulation software for Planck/LFI from UNIX/VAX to

Windows/NT (PIR 99). These rules are intended as an help to maximize software

readability, maintainability, portability and formal correctness. This document is

related to programming rules only, standard libraries, software development tools, etc.

will be defined on subsequent documents. All over the document FORTRAN 77, 90

and 95 will be abbreviated with F77, F90 and F95 respectively.

As other documents about the software organization for the LFI project (Barfoed

1998; O’Mullane, Hazell, Barfoed 1998) this document deals with the development

phase of the simulation software and not with the production phase. The first one

being characterized by intensive code modifications followed by frequent tests during

which a limited amount of data, often taken from a set of representative case studies,

is processed. The second one is characterized by the use of a quite stable code to

process a large amount of data.

The rules described in this document are not only for FORTRAN 90 programmers but

also for FORTRAN 77 users whose task is to produce a code which is as more as

possible FORTRAN 90 compatible. In addition, since it is strongly recommended for

any FORTRAN 77 programmer to migrate to FORTRAN 90. The prompt application

of these guidelines to FORTRAN 77 programs will simplify the subsequent porting

and/or integration of FORTRAN 77 code into FORTRAN 90.

To simplify the application of these guidelines, software tools may be created or

applied. As an example: porting of old F77 codes into F90 may be simplified writing a

pre-processor able to translate comments and lines continuations in the old F77 code

accordingly to the suggestions expressed in these guidelines.

Planck LFI – – LFI-OAT-0002.01 Page 3 of 22

Planck

LFI
Fortran 90 Programming
Guidelines for Planck/LFI

Ref. : LFI-OAT- 0002.01

Alt. Ref.: OAT Tech. Rep. 46/99

Issue: Draft 0.1

Date: 8 March 1999

Style

Programs must be written in an homogeneous style, accordingly to a set of rigorous

rules which specifies how to compose the various parts of the program.

1. Indentation have to be used whenever possible.

2. Non standard language features have to be discarded.

Naming

Programs must be readable and comprehensible by each user which knows the

underline theory.

1. Names must be UNIX like.

2. Variables names, routine names, program names must recall the scope of their

content or the function.

3. Short mnemonics must be explicitly explained commenting the program.

The degree of self explanation for a mnemonic (and so their length) must be tuned

taking in account the frequency of use of the possibility that it may be used far from

its definition.

4. Mnemonics used far from their definitions must be more self explanatory (more

long) than mnemonics used near their definition.

5. Mnemonics rarelly used must be more self explanatory (more long) than

mnemonics used frequently .

6. A hierarchy for mnemonics length is:

Mnemonics in commons or global variables

Longer than

Mnemonics used in long blocks

Longer than

Local variables in subroutines

Planck LFI – – LFI-OAT-0002.01 Page 4 of 22

Planck

LFI
Fortran 90 Programming
Guidelines for Planck/LFI

Ref. : LFI-OAT- 0002.01

Alt. Ref.: OAT Tech. Rep. 46/99

Issue: Draft 0.1

Date: 8 March 1999

7. Mnemonics and names shall be composed in a consistent way, through a rigorous

grammar and a syntax, taking in account the previous rules about mnemonics

length.

As an example, a list of values of the quantity may be stored in a variable named:

RhoLst which is the composition of two words from the established dictionary:

“Rho”.”Lst”.

8. In a loop, the index related to the main list of values to be scanned or variable to

be sampled may be labeled I_variablename.

As an example: the index to scan the list of values RhoLst is I_Rho (read as: I of

Rho), so that the elements of RhoLst are addressed by RhoLst(I_Rho).

i) Standard scopes may be declared using specific names or prefix or suffixes.

ii) String scratch variables may be named VCS1, VCS2, ... where the prefix

VC recall that those variables are for scratch, S that they are strings and

numbers distinguish between different variables.

iii) Pointers are labeled using the P_ prefix.

As an example: the pointer to the object ScanCircle is named P_ScanCircle.

9. Composed names must be readable.

10. Names have to be written in lower case, the first letter of each word in the name

be written in Upper case.

As an example, write: SpinRatio, instead of SPINRATIO or spinratio.

Alternatively use underscores “_” to split long words: SpinRatio_One.

Planck LFI – – LFI-OAT-0002.01 Page 5 of 22

Planck

LFI
Fortran 90 Programming
Guidelines for Planck/LFI

Ref. : LFI-OAT- 0002.01

Alt. Ref.: OAT Tech. Rep. 46/99

Issue: Draft 0.1

Date: 8 March 1999

11. Rule 9) is relaxed when another name composition allows a better correspondence

between the program object and the physical object it represents.

As an example: tDetection is better represented by tDetection or t_Detection

rather than by TDetection.

12. Even in F77, variables and routine names longer than 6 characters have to be used

whenever required.

It has to be noted that rule 11) is an explicit violation of F77 standard, but it is

acceptable since it improves the code readability, it is F90 compatible and all the

tested F77 compilers has compilation options to handle names longer than 6

characters. Solutions for F77 compilers unable to properly handle names longer than 6

characters will be proposed time by time if required.

The creation of a standard dictionary of terms is beyond the scopes of this document

and has to be addressed in a separated work.

Modularity and Functional Blocks Classes

To describe modularity a simple model of a program is given in order to fix

terminology. In this model a high level description of the program from the user point

of view is assumed. In this framework the program is described by the sequence of

tasks the algorithm has to accomplish to reach its target, each program is decomposed

into a sequence of functional blocks or simply blocks. Blocks are defined as follow:

1. A program is a collection of functional blocks organized by the algorithmic flow.

2. A functional block is a collection of FORTRAN statements with a well defined

task in the high level description of the algorithm realized by the code.

Planck LFI – – LFI-OAT-0002.01 Page 6 of 22

Planck

LFI
Fortran 90 Programming
Guidelines for Planck/LFI

Ref. : LFI-OAT- 0002.01

Alt. Ref.: OAT Tech. Rep. 46/99

Issue: Draft 0.1

Date: 8 March 1999

3. A FORTRAN statement is a string of characters which may be interpreted by the

compiler as a single FORTRAN operation.

While the rules for the functional blocks composition are:

4. Each program block must accomplish one operation only and must belong to one

of the block classes described below.

5. The use of flags to change the nature of the operations executed by each block or

part of it have to be avoided.

As an example, rule 5) prevents the implementation of Input blocks which may be

used for Output too and discourages the use of flags to choose between different

algorithmic paths during the execution (as an example different integration algorithms

and so on). It should be better that different algorithmic paths should be accomplished

by different executable programs, in order to enhance readability, to reduce the

number of parameters required in input and to prevent subtle errors due to miss

interpreted flags.

6. Blocks have to be short to improve readability, a good block should be as short as

possible.

7. If a long block is required it should be better to split its content in a set of simple

routines.

8. Each subroutine, function or include file must performs the task or part of the task

of a single functional block.

About rules 6) and 7) a good practice to assure readability and a proper program

decomposition would be to fix a maximum block length, a good practical limit for the

length of a block would be one or two pages (about 55 – 100 lines). Blocks of

executable statements significantly longer than that limit are hard to be read and

maintained and it would be better to split them accordingly to rule 4). Of course this

Planck LFI – – LFI-OAT-0002.01 Page 7 of 22

Planck

LFI
Fortran 90 Programming
Guidelines for Planck/LFI

Ref. : LFI-OAT- 0002.01

Alt. Ref.: OAT Tech. Rep. 46/99

Issue: Draft 0.1

Date: 8 March 1999

suggestion has to be regarded as an orientation only, since longer blocks are admitted

whenever they allow a better programming.

Functional blocks may be classified in different ways, the classification adopted here

is coherent with the model described in the introduction of this paragraph.

9. Functional blocks are classified into four classes accordingly to their purpose.

10. Blocks must belong to one and no more than one of such classes, i.e. one block

may have one and only one purpose.

11. As a consequence multipurpose functions, subroutines or include files are not

allowed.

Example: a block or a subroutine can not at the same time receive input from the

keyboard and execute a computation.

12. Up to five purposes corresponding to four classes are described here, if required,

new purposes and classes will be introduced.

i) Input / Output blocks are used to receive in input data and to put them in

output with a specific format.

ii) Error Trapping blocks are used to manage exceptions and error situations.

iii) Initialization blocks are used to initialize data structures (as an example

commons). Of course in a given program only one initialization block

associated to a given structure is allowed i.e. one data structure can not be

initialized by two initialization blocks.

iv) Computation blocks are used to execute the computation.

v) Main block, its task is to encapsulate and connect all the other blocks to form

one executable program, a library of standardized Main blocks to be used as a

template may be suggested to produce different programs may be suggested.

Planck LFI – – LFI-OAT-0002.01 Page 8 of 22

Planck

LFI
Fortran 90 Programming
Guidelines for Planck/LFI

Ref. : LFI-OAT- 0002.01

Alt. Ref.: OAT Tech. Rep. 46/99

Issue: Draft 0.1

Date: 8 March 1999

Of course, any single executable program may have one and only one main block, the

class v) is added just to suggest the creation of a specific repository for the Main

blocks which forms the various executable programs.

Errors and Warnings

During the execution programs must manage in a different way errors and warnings.

Error:

One event is classified as an error when it prevents the program to continue its

execution.

1. When one error occurs the program has to be stopped and one error message has

to be produced.

1.1 A clean stop must be guaranteed, files must be properly closed and resources

deallocated before the process is completely closed.

1.2 The error message must be one line long, usually of no more than 80 characters.

1.3 It must have the form:

Error: routine-name error-code, explanation

1.3.1 routine-name is the name of the routine or block where the error occurred.

1.3.2 error-code identifies the type of error, the error code musts allow to locate

the place where the error occurs inside the routine or block.

1.3.3 explanation is a short explanation of the error.

1.3.4 Eventually the explanation should contain more detailed indications about

the error condition, as the loop index at which the error happens, the particular

value of the variable checked to trap the error and so on.

Warning:

One event is classified as a warning when it does not prevent the program

to continue its execution at the time in which it occurs, but potentially may

Planck LFI – – LFI-OAT-0002.01 Page 9 of 22

Planck

LFI
Fortran 90 Programming
Guidelines for Planck/LFI

Ref. : LFI-OAT- 0002.01

Alt. Ref.: OAT Tech. Rep. 46/99

Issue: Draft 0.1

Date: 8 March 1999

cause the program to produce one true error condition, or one erroneous

result, or one efficiency loss, or any other negative consequence which

should be better (but not mandatory) to avoid during the subsequent

execution.

2. When a warning occur it must be notified by a warning messages but the

execution is not stopped.

2.1 The warning message must be one line long, usually of no more than 80

characters.

2.2 It must have the form:

Warning: routine-name warning-code, explanation

2.2.1 routine-name is the name of the routine or block where the warning

occurred.

2.2.2 error-code identifies the type of warning, the warning code musts allow to

locate the place where the warning occurs inside the routine or block.

2.2.3 explanation is a short explanation of the warning.

2.2.4 Eventually the explanation should contain more detailed indications about

the warning condition, as the loop index at which the warning happens, the

particular value of the variable checked to trap the warning and so on.

The standardization of messages for warnings and errors allows the automatic scan of

the log – file looking for errors or warning conditions at the end of the simulation

process.

Examples:

The failure in convergence of an integration program is an error condition.

Planck LFI – – LFI-OAT-0002.01 Page 10 of 22

Planck

LFI
Fortran 90 Programming
Guidelines for Planck/LFI

Ref. : LFI-OAT- 0002.01

Alt. Ref.: OAT Tech. Rep. 46/99

Issue: Draft 0.1

Date: 8 March 1999

If there is a control parameter P for which in the range of allowed values [a, b] the

program may or may not converge in an unpredictable manner, a warning condition

will occur when a value in the range [a, b] will be assigned to P.

Of course, if there is one value z of P for which the program surely does not converge,

then to assign P = z will be one error.

A warning condition would occur also when, for some value of P, the program is

slowed significantly or the amount of memory required is quite high or in other

similar cases.

Structures

The program must be described in terms of standard constructs as those of structured

programming. The recommendations in this section are explicitly written for F77

programmers since they are implicitly included in F90 if used properly.

1. All the structures for loops or switch structures which are not explicitly allowed

by the structured programming model are forbidden.

2. The allowed constructs are: While do, Repeat Until, Do For.

3. It is forbidden to enter and exit from loops directly. Loops must be accessed only

at its first line and left only at its end.

4. The simulations of such constructs in F77 has to follow the structures described in

Numerical Recipes (Press, et al., 1986) and reported in a related appendix to this

document.

8 Jumps

The use of GOTOs have to be avoided programming in structured languages such as:

C, F90, or F95.

1. Whenever possible, programming F77 GOTOs should not to point more than 55

lines of text far from the starting line (the standard A4 page size).

2. Even in F77 the use of GOTOs to emulate structured programming functions have

to be rigorous. Only one method for each structure emulation must be used (see

the Structures rules for further details).

Planck LFI – – LFI-OAT-0002.01 Page 11 of 22

Planck

LFI
Fortran 90 Programming
Guidelines for Planck/LFI

Ref. : LFI-OAT- 0002.01

Alt. Ref.: OAT Tech. Rep. 46/99

Issue: Draft 0.1

Date: 8 March 1999

3. Computed jumps are forbidden. The equivalent of the C switch (PASCAL or

F90: CASE) has to be simulated in F77 by a sequence of IF … THEN …

ELSEIF … THEN … ELSE … constructs.

Declarations

Variables together with their types have to be explicitly declared.

1. The FORTRAN IMPLICIT assignment of data types is forbidden.

2. The compiler option for IMPLICIT assignment of undeclared variables must be

excluded with the IMPLICIT NONE FORTRAN statement.

3. Rules (1) and (2) are mandatory for new programs and libraries and for upgraded

old programs and libraries. It must be applied whenever possible even to old

programs and libraries which are not planned to be upgraded.

Functions Typing

1. Both in F77 and F90 the type of functions must be explicitly declared.

2. The declaration must have the form

Type Function name(parameterslist)

As an example:

Real Function IGNU(X)

It has to be noted that both F77, F90 allows to define explicitly typized functions

declaring their type in the body of the function itself.

Example:

Function IGNU(X)

Real IGNU

Real X

Planck LFI – – LFI-OAT-0002.01 Page 12 of 22

Planck

LFI
Fortran 90 Programming
Guidelines for Planck/LFI

Ref. : LFI-OAT- 0002.01

Alt. Ref.: OAT Tech. Rep. 46/99

Issue: Draft 0.1

Date: 8 March 1999

 ...

Body of IGNU

 ...

IGNU = X+2.0*X

End

here IGNU should be implicitly regarded as Integer, but since the Real IGNU

statement it is a Real. Despite all FORTRAN compilers recognize this syntax, some

PC compilers do not implement it properly. When called IGNU will produce a Real

number, but its output will be handled by the calling expression as an Integer,

producing an erroneous result.

F77 and F90 Compliance

The conventions illustrated above work properly if the F77 and F90 compilers follow

the FORTRAN standards.

1. F77 and F90 standard must be followed strictly.

As an example, many F77 compilers allows to write text of code beyond column 72

(ex.: the option of 132 columns code) so:

1.1 in order to take full advantage from these guidelines F77 programs must respect

the limit of column 72, even if the compiler of choice allows to skip such

restriction.

2. Exception to rule 1) is the use of variables and file names longer than 6 characters

which is admitted since it improve the readability, while all the commonly used

F77 compilers are able to manage properly such extension (see the section about

Functions Typing)

Planck LFI – – LFI-OAT-0002.01 Page 13 of 22

Planck

LFI
Fortran 90 Programming
Guidelines for Planck/LFI

Ref. : LFI-OAT- 0002.01

Alt. Ref.: OAT Tech. Rep. 46/99

Issue: Draft 0.1

Date: 8 March 1999

Comments and Line Continuation

The Visual F90 compiler is very rigorous about F90 compliance. In particular, in

porting CMB packages from UNIX to Windows/NT (PIR 99), all F90 programs of the

original packages have had to be edited to correct comments and continuation

characters, according to the F90 rules (Metcalf, Reid 1990). The modifications were:

1. Precede ‘C’ or ‘c’ or any comment character in the first column with ‘!’

2. Replace ‘&’ or any other continuation character in column 6th with a ‘space’ and:

i) write all the statements on one line

ii) if lines are too long to be readable, put the continuation character at the

end of line

3. To assure that libraries written in FORTRAN using only F77 commands are

compatible also with F90, two conventions about comments and line continuation are

needed:

i) comments MUST begin only with ! at first column

ii) line continuations must have the following form:

 line.first &

& line.second &

& line.third &

& …

& line.last

the & on the right side of the line must be located at the column 73 to assure it is not

read by the F77 compiler.

4. Comments starting with ! at the right of the line must be pushed after column 73

or better, be inserted in a new line.

& line.nth & ! Comment Here

Planck LFI – – LFI-OAT-0002.01 Page 14 of 22

Planck

LFI
Fortran 90 Programming
Guidelines for Planck/LFI

Ref. : LFI-OAT- 0002.01

Alt. Ref.: OAT Tech. Rep. 46/99

Issue: Draft 0.1

Date: 8 March 1999

because the following form

& line.mth ! Comment here &

will prevent a correct continuation in the F90 compiler

Duplicated Files in Libraries

1. Avoid duplicated routines and objects in library files.

2. If two already existing libraries shares the same objects a third library has to be

created containing the shared objects which will be removed from the original

locations libraries.

As an example: library1.for, library2.for can not both contain

my_routine if both libraries have to be linked to the same program. In that case a

third library, librarycom.for, has to be created containing just my_routine.

It should be proposed to merge the two libraries may be merged in one library, but the

solution proposed by rule 2 is more coherent in terms of Object Oriented design of

programs. In this view libraries and modules may be seen as an equivalent of classes.

Each class collects routines and functions to handle specific objects (i.e. data

structure, file type, physical model, etc.). Programs are described in terms of a

hierarchy of classes . An efficient design avoids overlapping of classes. If two classes

(let us call them A, B) overlap (i.e. A B) the conflict may be solved merging

the two classes or splitting them. Merging (i.e. replacing (A, B) with C = A B) may

be useful if the two classes are related to the same object, but when translated in terms

of source files the resulting file may reveal too long to be read and maintained

efficiently. Splitting (i.e. replacing (A, B) with (A’, B’,C) : A’ = A – A B, B’ = B – A

 B, C = A B) is better since, not only the resulting files are smaller, but the code

reuse is favored, because if two classes overlap it means that there are common

functions and definitions which, with a good probability, will be required by other

future classes.

Planck LFI – – LFI-OAT-0002.01 Page 15 of 22

Planck

LFI
Fortran 90 Programming
Guidelines for Planck/LFI

Ref. : LFI-OAT- 0002.01

Alt. Ref.: OAT Tech. Rep. 46/99

Issue: Draft 0.1

Date: 8 March 1999

Appendix: Emulation of Structured Program in Fortran 77

F77 does not have standardized instructions to allow structured programming, for this

reason these instructions must be emulated by standardized structures. Here the

structures suggested by Press et al. (1986, chapter 1) are proposed as the reference

structures.

The following control structures are forbidden:

1) Assigned GOTO and ASSIGN statements

2) Computed GOTO statement

3) Arithmetic IF statement

So if you have to choose between different possibilities use the Switch construct

(not described in Press et all. (1996)) instead of the computed GOTO.

The description is base on a simple metalanguage:

1. Structures are defined by a set of fixed statements and user dependent statements.

2. Names of structures are in bold face.

3. The user dependent parts to be replaced by the programmer are listed between

`(…) ‘ in the structure name and their names are italicized.

4. The “:” character marks the begin of the FORTRAN section.

5. Italicized symbols which are not declared between `(…) ‘ in the structure name

are for internal use only, the programmer may changes their name or value time

by time provided the name or value of choice does not interfere with other parts of

the program.

6. The symbol body and symbols such as body1, body2 , … are used to indicate a

list of user defined instructions.

7. After the “:” character statements related to the management of a given structure

share the same indentation level, while the statements of body (body1, body2, …)

are placed at the next indentation level.

Planck LFI – – LFI-OAT-0002.01 Page 16 of 22

Planck

LFI
Fortran 90 Programming
Guidelines for Planck/LFI

Ref. : LFI-OAT- 0002.01

Alt. Ref.: OAT Tech. Rep. 46/99

Issue: Draft 0.1

Date: 8 March 1999

Single targets for different GOTO must be avoided, example:

… GOTO label1

… GOTO label1

label1 CONTINUE

must be replaced by:

… GOTO label1

… GOTO label2

label1 CONTINUE
label2 CONTINUE

To skip the execution of a block when a given condition occurs use the IF … THEN

… ENDIF construct instead of GOTO:

IF (skip-condition) GOTO skip-label
 …

body
 …

skip-label CONTINUE

has to be replaced by:

IF (skip-condition) THEN
 …
body
 …

ENDIF ! skip-condition

Planck LFI – – LFI-OAT-0002.01 Page 17 of 22

Planck

LFI
Fortran 90 Programming
Guidelines for Planck/LFI

Ref. : LFI-OAT- 0002.01

Alt. Ref.: OAT Tech. Rep. 46/99

Issue: Draft 0.1

Date: 8 March 1999

Note the repeated commented condition to identify to which IF the ENDIF belong.

At the same manner it is forbidden to exit from a block or a loop with a direct GOTO,

use the IF (skip-condition) THEN … ENDIF construct instead.

Do(index, lower, upper, body)EndDo:
DO label index = lower, upper

 …
body
 …

 label CONTINUE

Do–While(condition, body):
 label IF (condition) THEN

 …
body
 …

GOTO label
ENDIF

Do(body)Until(condition):
 label CONTINUE

 …
body
 …

IF (condition) GOTO label

C/C++ For(index = lower, increment-expression,
execution-condition):
index = lower

 label IF (execution-condition) THEN
 …
body
 …

increment-expression
GOTO label
ENDIF

Switch(index, value1, value2, …, valueN, body1, body2, …, bodyN):
IF (index.eq.value1) THEN

Planck LFI – – LFI-OAT-0002.01 Page 18 of 22

Planck

LFI
Fortran 90 Programming
Guidelines for Planck/LFI

Ref. : LFI-OAT- 0002.01

Alt. Ref.: OAT Tech. Rep. 46/99

Issue: Draft 0.1

Date: 8 March 1999

 … ! Comment 1
body1
 …

ELSEIF (index.eq.value2) THEN
 … ! Comment 2
body2
 …

ELSEIF…
 …

ELSEIF (index.eq.valueN) THEN
 … ! Comment N
bodyN
 …

ELSE
 … ! Comment END
bodyEND
 …

ENDIF

To quit a loop before its termination Press et al. (1986) suggest the break–

iteration construct:

Press et al. Break-Iteration(break-condition, body1,
 body2):

label1 CONTINUE
 …
body1
 …

 IF (break-condition) GOTO label2
 …
body2

 …
 GOTO label1

label2 CONTINUE

this is definitely a bad construct! When the task is to stop the execution of a do-loop

before its natural termination, it is better to replace it with the equivalent of the C/C++

For construct or to use the Repeat-Until or the Do-While constructs. If there

are parts of the loop which has to be skipped after the irregular termination use the IF

Planck LFI – – LFI-OAT-0002.01 Page 19 of 22

Planck

LFI
Fortran 90 Programming
Guidelines for Planck/LFI

Ref. : LFI-OAT- 0002.01

Alt. Ref.: OAT Tech. Rep. 46/99

Issue: Draft 0.1

Date: 8 March 1999

(skip-condition) THEN … ENDIF construct. Here are examples of such

applications.

Break-Iteration(break-condition, index, limit1, limit2,
 body):

index = limit1
 label IF ((index.le.limit2).and.not.(break-condition)) THEN

 …
body
 …

index = index + 1
GOTO label
ENDIF

Often the break-condition takes the form of (break-flag.eq.true.)

where the break-flag is a logical variable which is set .true. inside the

body of the loop when the loop has to be terminated. In this case use:

Break-Iteration(break-flag, index, limit1, limit2, body):
break-flag = .false.
index = limit1

 label IF ((index.le.limit2).and.not.(break-flag)) THEN
 …
body
 …

index = index + 1
GOTO label
ENDIF

A similar structure may be used when instead of a logical flag, an integer flag is

preferred.

If there is a part of body which has not to be executed when the break condition

occurs (like in the Break-Iteration of Press et al. (1996)) then use the IF …

THEN … ENDIF construct.

Planck LFI – – LFI-OAT-0002.01 Page 20 of 22

Planck

LFI
Fortran 90 Programming
Guidelines for Planck/LFI

Ref. : LFI-OAT- 0002.01

Alt. Ref.: OAT Tech. Rep. 46/99

Issue: Draft 0.1

Date: 8 March 1999

Break-Iteration(break-condition, index, limit1, limit2,
 body1, body2):

index = limit1
 label IF ((index.le.limit2).and.not.(break-condition)) THEN

 …
body1
 …
IF (not.break-condition) THEN

 …
body2
 …

ELSEIF
index = index + 1
GOTO label
ENDIF

Or analogously:

Break-Iteration(break-flag, index, limit1, limit2, body1,
 body2):

break-flag = .false.
index = limit1

 label IF ((index.le.limit2).and.not.(break-flag)) THEN
 …
body1
 …
IF (not.break-flag) THEN

 …
body2
 …

ELSEIF
index = index + 1
GOTO label
ENDIF

In a Do-Loop if a step different from +1 is required then use:

Do (index, limit1, step, limit2, body) EndDo:
 index = limit1

 label IF (((step.ge.0).and.(index.le.limit2)).or.
& ((step.lt.0).and.(index.ge.limit2))) THEN

 …

Planck LFI – – LFI-OAT-0002.01 Page 21 of 22

Planck

LFI
Fortran 90 Programming
Guidelines for Planck/LFI

Ref. : LFI-OAT- 0002.01

Alt. Ref.: OAT Tech. Rep. 46/99

Issue: Draft 0.1

Date: 8 March 1999

body
 …

 index = index + step
 GOTO label
 ENDIF

here it is assumed that step > 0 if limit1 < limit2 and step < 0 if

limit1 > limit2.

References

 Metcalf M., Reid J., 1990, Fortran 90 Explained, Oxford University Press, New

York, USA, ISBN 0-19-853772-7

 Press W. H., Flannery B. P., Teukolsky S. A., Vetterling W. T., 1986, Numerical

Recipes, Cambridge University Press, Cambridge, UK

 O’Mullane William, Hazell Adam, Barfoed Morten, 1998, Software Repository

User Requirements Document, IDIS-URD-2

 Barfoed Morten, 1998, CVS for IDIS (Initial recommendations), planck004.w70

 PIR 99 – Maris M., Pasian F., Smareglia R., Maino D., Burigana C., 1999,

Porting of CMB Packages from UNIX to Windows/NT Parallel Machines (report

in preparation)

Planck LFI – – LFI-OAT-0002.01 Page 22 of 22

