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Executive summary 

This document describes the ported software of the EuroEXA applications to the single CRDB 
testbed and it discusses the experiences extracted from porting and optimization activities that 
should be actively taken into account in future redesign and optimization. This document 
accompanies the ported application software, found in the EuroEXA private repository 
(https://github.com/euroexa). In particular, this document describes the status of the software for 
each of the EuroEXA applications, sketches the redesign and optimization strategy for each 
application, discusses issues and difficulties faced during the porting activities and the relative 
lesson learned. A few preliminary evaluation results have been presented, however the full 
evaluation will be discussed in deliverable 2.8.  
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1 Introduction 
In this deliverable we discuss the final effort in porting and optimization applications, which 
includes the re-design of application software infrastructure, the identification and optimization of 
algorithms, the optimization of applications networking and communication, the optimization of 
the IO.  

The main goals of Work Package 2 was to contribute in the design, development and evaluation 
of the EuroEXA platform starting from collecting the different Applications requirements (D2.1) 
and actively contributing to the co-design (D2.3 and D2.4). A set of key applications has been re-
designed and optimized to evaluate the platform and more in general to develop a set of relevant 
Exa-scale ready applications meant as examples of the potential of scientific exploitation of new 
architectures. The different phases of porting and optimizations have been discussed in D2.2 and 
D2.5.  

The adaptation, porting and optimization activities were the objective of task 2.2 and they impact 
on co-design task 2.3 and on the evaluation of the platform (task 2.5). Those tasks impact several 
areas in which EuroEXA was committed to advance and optimize the HPC technologies (see e.g. 
EuroEXA Objectives 1, 7, 8, 9 and 10, Result 2 and Result 5). 

Each application differs in terms of algorithms and architecture and it has different performance 
and data requirements (see D2.1). For this reason applications implement specific porting and 
optimization strategies, timeline for adaptation and requirements in terms of programming models 
and runtimes. The porting and optimization strategy and timeline for each application has been 
identified and is documented in this deliverable. A large effort has been done to adapt and 
optimize applications towards a full Exa-scale platform that is a heterogeneous system combining 
general-purpose processors with accelerators, high-speed networks and composite storage. This 
implies a full redesign of algorithms not limited to the use of FPGAs but also to optimize network 
utilization, IO performance and memory usage. Some of the re-design activities presented in this 
document have general perspective in the frame of re-engineering and adapting the scientific 
HPC code to the future Exa-scale platforms which have the same high-level feature of EuroEXA 
project. In fact, enhancing the adaptability, the memory-hierarchy awareness while lowering the 
amount of data travelling over the network are key features the applications must be equipped 
with. Moreover, a good design that allows to “swap” fundamental building blocks and/or algorithms 
and their implementation is also of fundamental importance.  

During porting and adaptation, applications developers matured an important experience in terms 
of FPGAs and more in general EuroEXA Platform utilization that we discuss specifically for each 
application and we summarize in the final section of this deliverable. 

The document also clarifies the form of the delivered software and licensing and the requested 
co-design features that have been implemented by runtime and hardware developers. 
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Notice that due to the delay in Testbed development and implementation, in this deliverable we 
emphasize on the porting and evaluation of most applications in the EuroEXA runtimes and on 
single and dual CRDBs  nodes. Further optimization will be done as quad-CRDB and TB3 will be 
available. 

 

1.1 Document Structure 
The remainder of this document is structured as follows: Sections 2 to 12 are divided into three 
main subsections. The 1st subsection describes the porting and optimization efforts performed by 
each partner contributing an application in EuroEXA as part of WP2, while the 2nd subsection 
describes the EuroEXA specific features that they are exploiting (including runtimes) The 3rd 
subsection presents the lesson learned in porting applications on the EuroEXA testbed. Finally, 
in Section 13 we summarize the work done and we present an overview of the porting issues and 
lessons learned. 

Table 1 Programming models for EuroEXA application software 

 Programming models - Initial Programming models - Ported 

InfOli C MaxJ, OmpSs@Cluster, Vivado HLS, 
OpenMP 

NEMO MPI, OpenMP OpenCL 

Neuromarketin
g 

C/C++, OpenMP, MPI multi node using OmpSs@FPGA, Vivado 
HLS 

DPSNN C/C++, MPI Vivado HLS 

LBM MPI, OpenMP Vivado HLS, OmpSs@FPGA, GASPI 
(GPI-2) 

LFRic MPI, OpenMP Vivado HLS 

FRTM GASPI (GPI-2) GPI-2, Vivado HLS 

SMURFF GASPI, MPI, OpenMP Vivado HLS, OmpSs@FPGA, MPI 

GADGET MPI, OpenMP OmpSs@FPGA, MPI, OpenMP 

AVU-GaiaGSR MPI, OpenMP MPI, OmpSs, OpenMP, OpenACC 

LOFAR C++11 multi-threading MPI, OmpSs@FPGA 

Alya MPI, OpenMP, CUDA, MPI, OmpSs@Cluster 
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OpenACC, OmpSs 

ESCAPE 
dwarves 

OpenMP MaxJ 

Satellite Image 
Processing 

CUDA Vivado HLS 



 

Table 2 Platform requirements for EuroEXA application software. We report the initial requirements and final platform and architecture used to port and 
optimize the applications (e.g. CRDB TB2, Quad-CRDB, TB3, etc). 

 Platform requirements - 
Initial  

PR  

Ported (M27) 

PR 

Planned (M28-M36) 

Final Porting  and Optimization 

 Arch. Type Accel. Arch. Type Accel. Arch. Type Accel. Arch. Type Accel. 

InfOli x86 Singl
e core 

 Maxele
r  

DFE 

Singl
e 
node 

Yes Maxele
r DFE 

Single-
node 

Yes TB3 
simulator 
Maxeler DFE 

 Yes 

ARM Multi-
node 

 ARM Multi-
node 

 MareNostru
m 4 

Multi-Node No 

Xilinx 
FPGA 

Singl
e 
node 

Yes Xilinx 
FPGA 

Single 
node 

Yes   Yes 

NEMO x86 Multi-
node 

 Xilinx 
FPGA 

 

Singl
e 
node 

Yes x86 
Xilinx 
FPGA 

Multi-
node 

Yes  x86 
Xilinx FPGA 

Multi-node Yes 

ARM Singl
e 
node 

 ARM Multi-
node 

No ARM Multi-node No 
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Neuro
marketi
ng 

x86/A
RM 

Singl
e core 

 Xilinx 
FPGA 

 

Multi-
node 

Yes ARM 
Xilinx 
FPGA 

Multi-
node 

Yes CRDB Multi-Node yes 

DPSNN x86/A
RM 

Multi-
node 

 Xilinx 
FPGA 

 

Singl
e 
node 

Yes ARM 
Xilinx 
FPGA 

Multi-
node 

Yes CRDB Single-Node Yes 

LBM x86 Multi-
node 

Yes 
(GPUs) 

Xilinx 
FPGA 

 

Singl
e 
node 

Yes Xilinx 
FPGA 

 

Multi-
node 

Yes CRDB Multi-Node Yes 

Arm multi-
node 

 Arm Multi-
node 

 Arm Multi-node Yes 

x86 multi-
node 

 x86 Multi-
node 

 x86 Multi-node Yes 

LFRic x86/A
RM 

Multi-
node 

 Xilinx 
FPGA 

single
-node 

Yes ARM 
Xilinx 
FPGA 

Multi-
node 

Yes CRDB Single-Node Yes 

FRTM x86 Multi-
node 

 ARM+ 
Xilinx 
FPGA 

single
-node 

Yes ARM 
Xilinx 
FPGA 

Multi-
node 

Yes CRDB Multi-Node Yes 

SMURF
F 

x86 Multi-
node 

 ARM + 
Xilinx 
FPGA 

single
-node 

Yes ARM 
Xilinx 
FPGA 

Multi 
node 

Yes CRDB Single-Node  
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Maxele
r DFE 

GADGE
T 

x86/A
RM 

Multi-
node 

 ARM multi-
node 

Yes ARM 
Xilinx 
FPGA 

Multi-
node 

Yes CRDB  Single-Node Yes 

AVU-
GaiaGS
R 

x86 Multi-
node 

 ARM multi-
node 

 ARM 
Xilinx 
FPGA 

Multi-
node 

Yes CRDB Single-Node Yes 

LOFAR x86 Singl
e 
node 

Image 
Domai
n 
Gridder 
(GPUs) 

ARM Singl
e 
node 

Imag
e 
Doma
in 
Gridd
er 
(GPU
s) 

ARM  Image 
Domai
n 
Gridder 
(GPUs) 

Arm  Multi-Node Yes 

Alya x86/A
RM 

Multi-
node 

Yes 
(GPUs) 

   ARM Multi-
node 

 Marenostru
m 

Multi-Node NO 

ESCAP
E 
dwarve
s 

x86 Singl
e 
node 

 ARM Singl
e 
node 

 Xilinx 
FPGA 

Maxele
r DFE 

Single-
node 

Yes CRDB Single-Node Yes 
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IFS x86 Multi-
node 

 ARM Multi-
node 

 ARM Multi-
node 

 CRDB  Single-Node No 

Satellit
e Image 
Proces
sing 

x86 Singl
e 
node 

Yes 
(GPUs) 

QFDB Singl
e 
node 

Yes TB2 
Devel 
Testbe
d 

Multi-
node Yes 

CRDB Single-Node Yes  EuroEXA – H2020 – EU.1.2.2. – FET Proactive 

 



 

2 NEUR applications 
2.1 Biophysically realistic simulator of the brain Inferior 

Olive (InfOli) 
As a reminder from previous deliverables, the InfOli application targets three platforms: 1) the 
Maxeler DFE (Data Flow Engine), 2) the multi-node cluster based on the OmpSs@Cluster 
programming model and 3) FPGA acceleration using the OmpSs@FPGA programming model. 
The application has two basic computational blocks: i) the Gap-Junction Computations that model 
the connectivity between the inferior-olivary nucleus, and ii) the Neuronal-Compartment 
Computations. Since there are real data dependencies across simulation steps (this is a transient 
simulator that constantly solves the same Ordinary-Differential-Equation system), the application 
can be parallelized only in space and not in time.   

The Neuronal-Compartment Computations are a purely dataflow block. In a version of the 
application where no interneuron connectivity is modelled, the InfOli application is embarrassingly 
parallel and able to exploit parallelism in the best way possible. The gap-junction connectivity 
complicates things a bit further. It breaks the dataflow nature of the application, since the gap-
junction loop is required to be finished before the compartment computation is finished. This 
makes the area usage of the FPGA slightly less efficient, as the logic dedicated to the 
compartment computations is required to waste operation ticks till the gap-junction computation 
is finished. Nevertheless, both blocks can be accelerated using typical parallelization techniques 
such as loop unrolling for the gap-junction block and fine-grain pipelining for the compartment 
computations.  

In this last project year, work was focused on optimizing the Maxeler port and developing the 
OmpSs@FPGA and OmpSs ports. 

2.1.1  Final Ported Application Software 

Maxeler Port 

The DFE implementation of the InfOli application is depicted in Figure 2.1. It implements 3 internal 
pipelines, one for each part of the neuron (Dendrite, Soma, Axon), each performing the respective 
Neuron Compartment Computations. The state parameters for every neuron are stored in 
separate BRAM blocks (one per state variable) for faster and higher-bandwidth access 
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Figure 2.1 DFE implementation of InfOli 

 

Using the ODE libraries 

In the previous years, the ODE libraries, flexHH, have been developed as part of Deliverable 3.3. 
Initial porting was on MAX4 and then they have been ported to MAX5. They are now mature 
enough to actually be used to support the InfOli application and are currently being developed 
and validated even for multi-node support. Thus, from this point on, for executing and evaluating 
the InfOli application on the Maxeler platform, we will be using the flexHH application as it provides 
a natural path to an InfOli Maxeler multi-accelerator port. 

MAX5 port 

Porting to the MAX5 hardware requires a few simple changes on source code to adhere to the 
updated Maxeler toolflow (2018.3).  A summary of the changes required can be seen on Table 3 

Table 3 Maxeler toolflow command update 

Older Commands New Commands 
DebugLevel dbg = new DebugLevel(); 
dbg.setHasStreamStatus(true); 
debug.setDebugLevel(dbg); 
 

setHasStreamStatus(true); 

config.setAllowNonMultipleTransitions(true); setAllowNonMultipleTransitions(true); 
DFELink cpu2lmem = 
addStreamToOnCardMemory 

DFELink cpu2lmem = 
iface.addStreamToLMem("cpu2lmem", 
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("cpu2lmem", 
MemoryControlGroup.MemoryAccessPattern.LINE
AR_1D); 

LMemCommandGroup.MemoryAccess
Pattern.LINEAR_1D); 

DFELink lmem2cpu = 
addStreamFromOnCardMemory("lmem2cpu", 
MemoryControlGroup.MemoryAccessPattern.LINE
AR_1D); 

DFELink lmem2cpu = 
iface.addStreamFromLMem("lmem2cpu
", 
LMemCommandGroup.MemoryAccess
Pattern.LINEAR_1D); 
 

DFELink ini = 
addStreamFromOnCardMemory("Ini", 
MemoryAccessPattern.LINEAR_1D); 
 

DFELink ini = 
iface.addStreamFromLMem("Ini", 
LMemCommandGroup.MemoryAccess
Pattern.LINEAR_1D); 

DFELink iApp = 
addStreamFromOnCardMemory("iApp", 
MemoryAccessPattern.LINEAR_1D); 

DFELink iApp = 
iface.addStreamFromLMem("iApp", 
LMemCommandGroup.MemoryAccess
Pattern.LINEAR_1D); 

DFELink IC = 
addStreamFromOnCardMemory("IC", 
MemoryAccessPattern.LINEAR_1D); 

DFELink IC = 
iface.addStreamFromLMem("IC", 
LMemCommandGroup.MemoryAccess
Pattern.LINEAR_1D); 

DFELink NeuronChar = 
addStreamFromOnCardMemory("NeuronChar", 
kernel.getOutput("NeurCondStream")); 

DFELink NeuronChar = 
iface.addStreamFromLMem("NeuronCh
ar", 
kernel.getOutput("NeurCondStream")); 

DFELink Conn = 
addStreamFromOnCardMemory("Conn", 
kernel.getOutput("ConnStream")); 

DFELink Conn = 
iface.addStreamFromLMem("Conn", 
kernel.getOutput("ConnStream")); 

configBuild method  
buildConfig.setMPPRCostTableSearchRange(para
ms.getMPPRStart(), params.getMPPREnd()); 
 
buildConfig.setMPPRParallelism(params.getMPPR
NumThreads()); 
 
buildConfig.setMPPRRetryNearMissesThreshold 
(params.getMPPRRetryThreshold()); 

buildConfig.setEnableTimingAnalysis(tr
ue); 
 
buildConfig.setParallelism(params.getM
PPRNumThreads()); 
 
buildConfig.setImplementationNearMiss
Threshold 
(params.getMPPRRetryThreshold()); 
 
buildConfig.setImplementationStrategie
s 
(ImplementationStrategy.PERFORMAN
CE_NET_DELAY_HIGH); 

 

Besides the port to MAX5 the code is changed in favour of portability. This is done by creating an 
interface for the manager. With the use of this interface the platform specific hardware, such as 
I/O and resource usage is splitted from the platform independent kernel and consequently making 
porting between different platforms/hardware easier and less time consuming. 
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Kernel  

The implementation of flexHH on MAX5 consists of one cell kernel and two gap kernels.This is 
shown in Figure 2.2. 

 

Figure 2.2 Visual representation of kernels on a single DFE node 

The cell kernel calculates the inner cell dynamics and the gap kernel calculates the dynamics of 
the gap junctions. For the dynamics of the gap-junctions the voltages of the other gap kernels are 
required. Consequently, for the support of multiple accelerators the voltages of each gap kernel 
are required to be transferred to each other gap kernel. In order to implement this the dynamics 
used to calculate the gap-junction currents will be calculated in stages. In each of these stages 
the voltages of one gap kernel will be used to update the gap-junction current. The process of 
calculations is shown in Equations (2.1) and (2.2), for the case when the number of DFEs (NDFEs) 
is equal to 4. 
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For the program three different phases can be distinguished: 

● Start: During the start of the program, the junction currents are partially calculated with 
the voltages which are stored on their own DFEs and these voltages are sent to the next 
neighbouring DFE. Therefore, the calculations and transferring of data happen 
concurrently. 

● Middle: During this phase, the gap-junction currents are already updated with the part 
for which the voltages of the own DFE are responsible. Furthermore, as in the previous 
phase the voltages were already sent to the next DFE, the gap junction calculations can 
continue immediately. The only difference with the previous phase is that voltages were 
received from the MaxRing, instead of being stored in FMem on the DFE. Furthermore, 
again the voltages are sent to the next neighbouring DFE, as these will be required there 
during the next stage. 

● End: During this phase, the final voltages are received and the final values of the gap-
junction currents are calculated. Thereafter, the voltages are updated. Furthermore, no 
data is sent as all the voltages were already passed around. 

 

The working of these phases is visually presented in Figure 2.3. For simplicity only a single gap 
kernel is shown, instead of 2 gap kernels and 1 cell kernel; in fact the flow does not change 
depending on how many kernels there are on a single DFE. 
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Figure 2.3 Visual representation of program flow 

This program flow has shown to work in simulations. The number of gap kernels per cell kernel is 
a hardware parameter as the gap kernels and connections to and from the cell kernel are required 
in hardware. Consequently, this allows for easier ports to different hardware. Furthermore, the 
number of DFEs is a run-time parameter. Therefore, this number can be changed based on the 
topology of the system without the time-consuming synthesis of new kernels.  

 

PLATFORM 
REQUIREMENTS 

Required Achieved/Implemented 

Hardware Max5 DFE yes 

Operating system CentOS 7.x yes 

Languages C, MaxJ yes 

Compilers Maxcompiler, Xilinx  yes 
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Programming models MaxJ yes 

Low-level libraries -  

High-level libraries -  

 

License 

Copyright Holder: Neurasmus B.V.  Contributor: Rene Miedema - published under LGPL.v3. 

 

OmpSs@FPGA Port 

Figure 2.4 depicts the general block diagram of the FPGA accelerated kernel using the Vivado 
HLS tool-flow. The kernel consists of multiple identical parallel neuron-processing modules, each 
modelling the dendrite, soma and axon parts of a single InfOli cell. The design further includes a 
set of BRAMs for storing the evoked input to the network, the connectivity matrix for the gap-
junctions as well as the neuron states, which are updated after each simulation step. The kernel 
provides acceleration by the parallel execution of the compartment computations, the pipelining 
of the gap junction computations and by time-multiplexing the kernels hardware to run multiple 
simulated cells within an execution run. 

Currently, what has been delivered is the optimized kernel, developed and validated using the 
Vivado HLS toolflow, targeting the Zedboard/Zynq hardware. The kernel was validated on the 
Vivado 2017.3 environment. It includes only a few instances of the kernel, as the validation 
originally targeted the ZedBoard device, but can be easily extended to exploit chip area that would 
be available on larger FPGAs. We developed the algorithm using traditional tools (Xilinx SDx) and 
successfully validated it on a Xilinx ZedBoard FPGA for a small number of neurons. 

We ported the system to OmpSs@FPGA and tested it successfully on a Zynq UltraSCALE+ 
development board. The next step will consist of cleaning up the code and moving to the testbed. 
The kernel source code and the preliminary OmpSs@FPGA code are available on the EuroEXA 
repository (https://github.com/euroexa/infoli/tree/master/OmpSs%20FPGA) and will be later 
available in a public repository. 
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Figure 2.4 Block diagram for the FPGA-accelerated kernel of InfOli 

 

PLATFORM 
REQUIREMENTS 

Required Achieved/implemented 

Hardware Zedboard, EuroEXA TB2 yes 
Operating system Any OS supporting Xilinx tools yes 
Languages C/C++ yes 
Compilers Vivado HLS,  OMPSs+FPGA yes 
Programming models -  
Low-level libraries -  
High-level libraries -  

 

Licence 

Copyright Holder: Neurasmus B.V. Contributors: Jan-Harm Betting and Georgios Smaragdos - 
published under GPL.v3 
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OmpSs@Cluster port for distributed memory 

The OmpSs@cluster implementation of InfOli is based on the MPI version, which was first 
simplified to remove the explicit MPI communication. The code has the two computational kernels 
mentioned in the above section, corresponding to the Gap-Junction Computations and the 
Neuronal-Compartment Computations, respectively. A sketch of the high-level of the 
OmpSs@cluster implementation is given in Figure 2.5. The outer loop iterates over the timesteps 
of the computation. Inside the loop, the gap-junction computations read the voltages of the 
neighbouring neurons, as indexed by the neighbour Id, neighId, from the full array of neuron 
voltages, V_dend. The overall result is the conductance of each neuron, which is written to I_c. A 
single task is offloaded to each node, using the “pragma oss task” annotation, which provides the 
direction of each function argument and the destination node via the node(nodeNum) clause. The 
offloaded tasks have weak dependencies (weakin, weakinout or weakout), meaning that these 
tasks do not access the data directly. Instead, they create sufficient subtasks or “task for”’s to 
keep all cores busy, and these subtasks/task for’s access the data, via strong (normal) 
dependencies. The (parent) tasks can therefore be immediately offloaded, before the data is 
available, and can therefore build a distributed dependency graph and instantiate work in 
advance.  Following the gap-junction computations, the neuronal compartment computations take 
as input the conductances calculated by the gap-junction functions, and they update all the 
variables in the state of the neuron, including the voltage that is input to the gap-junction 
calculations in the next timestep. Similarly to the gap-junction functions, a single task with weak 
dependencies is offloaded to each node, which instantiates the actual work to keep all computing 
cores busy. 

The cross-node dependencies are those from the weakinout(V_dend[target_cell; 
cells_per_node]) dependency of the neuronal-compartment computations to weakin(V_dend[0; 
IO_NETWORK_SIZE]) dependency of the gap-junction computations. In addition to enforcing 
these dependencies, Nanos6@cluster performs all necessary data transfers. Here, the 
dependency describes the access type (e.g. weakinout), the name of the array (e.g. V_dend), the 
offset of the first element (e.g. target_cell) and the number of elements (e.g. cells_per_node). 
Unlike OpenMP, OmpSs@cluster supports region dependencies with fragmentation. In this case, 
each compartment calculation task computes a subregion of the array and each gap-junction 
computation task reads the entire array. This is a concise way to describe an all-to-all 
dependency. 

The compartment computations have a large number of dependencies in the task annotation, 
owing to the original organization of the program using a separate array for each scalar value. 
Reorganizing the state as an Array of Structures (AoS) may slightly decrease the runtime 
overhead, as it would reduce the number of dependencies that need to be monitored by the 
runtime system. But it is a somewhat intrusive optimization, and, crucially, all these dependencies 
pass from a task to a successor task on the same node. Such dependencies are automatically 
optimized by the runtime system to not leave that node, and except at the beginning and end of 
the computation they do not typically involve the parent in any way, so the overhead is small. This 
optimization is described in D3.3.   
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Overall, no significant changes were required to the structure of the InfOli application or the 
contents of the computing kernels. 

for(int sim_step = 0; sim_step < total_simulation_steps; ++sim_step) 
{ 
 // Gap junction computations 
 for (int nodeNum = 0; nodeNum < numNodes; nodeNum ++) 

{ 
       int target_cell = nodeNum * cells_per_node; 

    #pragma oss task weakin(V_dend[0; IO_NETWORK_SIZE])    \ 
 weakin(neighId[nodeNum *neighbours_per_node;neighbours_per_node]) \ 
 weakin(neededCond[nodeNum *neighbours_per_node;neighbours_per_chunk]) \ 
 weakout(I_c[nodeNum * cells_per_node; cells_per_node])   \ 
 node(nodeNum) label("gjf_weak_task") 
 { 
  // ... 

  } 
} 

 // Neuronal-Compartment computations 
 for (int node = 0; node < numNodes; node++) 

{ 
       int target_cell = nodeNum * cells_per_node; 

    #pragma oss task 
 weakinout(I_c[target_cell; cells_per_node])   \ 

weakinout(V_dend[target_cell; cells_per_node])  \ 
weakinout(V_soma[target_cell; cells_per_node])  \ 

 weakinout(V_axon[target_cell; cells_per_node])  \    
weakinout(Hcurrent_q[target_cell; cells_per_node]) \ 

 weakinout(Calcium_r[target_cell; cells_per_node) \ 
weakinout(Ca2Plus[target_cell; cells_per_node]) \ 

 weakinout(Potassium_s[target_cell;cells_per_node]) \ 
  weakinout(I_CaH[target_cell; cells_per_node])  \ 
 weakinout(Calcium_k[target_cell; cells_per_node]) \ 

weakinout(Calcium_l[target_cell; cells_per_node]) \ 
 weakinout(Sodium_m[target_cell; cells_per_node]) \ 
 weakinout(Sodium_h[target_cell; cells_per_node]) \ 
 weakinout(Potassium_n[target_cell;cells_per_node])  \ 
 weakinout(Potassium_p[target_cell; cells_per_node]) \ 

weakinout(Potassium_x_s[target_cell;cells_per_node]) \ 
weakinout(Sodium_h_a[target_cell; cells_per_node]) \ 
weakinout(Potassium_x_a[target_cell; cells_per_node]) \ 
weakinout(Sodium_m_a[target_cell; cells_per_node]) \ 

 weakin(iAppIn[target_cell; cells_per_node])   \ 
 weakin(g_CaL[target_cell; cells_per_node])   \ 
 node(nodeNum) label("updateState_weak_task") 

{ 
 // ... 
} 

} 
} 

Figure 2.5: Outline of OmpSs@Cluster implementation of InfOli 

Although porting the application was straightforward, initial performance was poor as the 
application exposed several performance issues in the Nanos6@cluster runtime. The 
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modifications to address these issues are reported in D3.3 and overall, they provided more than 
10x improvement in performance. In brief, firstly, the stability and scope of Extrae tracing were 
improved to provide full visibility of runtime behaviour, including features for expert users to 
identify where the time is spent in the runtime system. Secondly, the excessive number of control 
messages was reduced by disabling fine-grained early release of dependencies for offloaded 
tasks when the successor task is not on the same node. Thirdly, it was found that a race condition 
meant that there were multiple duplicate data transfers, which was resolved using a combination 
of versioning of data dependencies and modifications to the dependency system. Fourthly, “task 
for”s were made compatible with OmpSs@Cluster, which avoids the overhead of fine-grained 
dependencies. 
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Figure 2.6: Comparison of MPI and OmpSs@Cluster implementations on 1 to 32 nodes of MareNostrum 4 

Figure 2.6 shows a comparison of the execution time per timestep for the MPI+OpenMP and 
OmpSs@cluster versions, from 1 to 32 nodes, on BSC’s MareNostrum 4. The computational 
kernels for the two versions were compiled using the same compiler, with the same settings. In 
all plots, the x-axis is the number of neurons, up to about 1.5 million, and the y-axis is the 
execution time per timestep, in milliseconds. As can be seen, OmpSs@cluster introduces a 
significant overhead for small problem sizes, but the overhead becomes less significant as the 
problem size increases. In fact, the OmpSs@cluster runtime achieves a better computation–
communication overlap than MPI+OpenMP due to the asynchronous execution. The maximum 
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benefit is seen on 8 nodes, where the OmpSs version is 40% faster at the largest problem size. 
However, the increasing overhead catches up and the MPI version is better on 32 nodes 

 

PLATFORM 
REQUIREMENTS 

Required Achieved/implemented 

Hardware Distributed Memory Systems yes 
Operating system GNU based Linux OS yes 
Languages C/C++ yes 
Compilers Mercurium, GCC yes 
Programming models OmpSs-2@Cluster yes 
Low-level libraries - - 
High-level libraries - - 

 

2.1.2  Unique EuroEXA Features Supported and Exploited 

OmpSs@FPGA Port 

The OmpSs@FPGA port makes use of several features of the EuroEXA platform, making it easier 
to convert the original Vivado C code to a synthesizable kernel. First of all, whereas the original 
Vivado C code required to define and configure the data flows between host and device using a 
complicated graphical interface, OmpSs@FPGA allows us to simply define the clock speed and 
the output device in a makefile and generate the bitstream; it takes care of the data transfers 
automatically. Whereas the SDSoC implementation for infOli generates a complete system image 
that has to be placed on an SD card in order to boot the board from, OmpSs@FPGA allows the 
generation of a single bitstream file, which can be placed in an existing Linux installation, after 
which the kernel can be loaded into the FPGA. 

 

Maxeler Port 

The Maxeler port benefits from most of the Maxeler toolflow and platform unique features. The 
level of abstraction and the optimization of the platform for dataflow applications, which the InfOli 
application largely is, allows for great performance benefits that would be far more time-
consuming to accomplish using traditional FPGA design. The low-level hardware control that is 
allowed through the tool-flow also allows for potentially even more low-level optimization, similar 
to what is currently being attempted with the neuron libraries that Neurasmus is developing for 
WP3. The same method can potentially be applied to the hardcoded InfOli application as well. 
The ability to have fine grained control of the arithmetic units used within MaxJ facilitates this 
potential. The code is also immediately compatible with the Maxeler-developed MAX5 hardware, 
VU9-based Xilinx Alveo cards and Amazon F1 instances besides the use on the EuroEXA 
platform through the Maxeler runtimes 



 
 

 

 
This document is FIXME Public/Confidential and was produced under  
the EuroEXA project (EC Contract No. 754337)  
 

13 

D2.6:  Final ported application software 
 
EuroEXA – H2020 – EU.1.2.2. – FET Proactive 
 

 

Distributed memory OmpSs-2@Cluster Port   

Leveraging OmpSs-2@Cluster, the InfOli application benefited from the straightforward 
transformation of the existing MPI code into OmpSs-2@Cluster version without significant 
changes to the overall structure of the original computing kernels. The user surrounds each 
computing kernel inside the main simulation loop with a task pragma directive. Seamlessly, the 
user then describes dependencies between each task by defining all shared data and memory 
accesses between these tasks via in/out/inout clauses. The code is then compiled by Mercurium 
source-to-source compiler that translates the source code written with OmpSs-2@Cluster 
directives into a parallel task-ified version. The Nanos6 (the runtime implementation of the 
OmpSs-2@Cluster programming model) would then take control of everything during the program 
execution, hiding all intricate details and operations from the user such as: compute and link 
dependencies between different tasks, send and fetch data between computing nodes, manage 
memory allocation on different nodes, taking scheduling decisions automatically or based on a 
user-specific choice using an additional node clause. In addition, the runtime allows the user to 
manually configure (via environment variables or .toml file) multiple parameters before running 
the application, such as scheduler type, CPU threads management policy, virtual memory size 
and others. 

2.1.3  Porting Issues and Lessons Learned 

OmpSs@FPGA Port 

We had some issues when porting our code from traditional Xilinx tools to OmpSs@FPGA to run 
it on the ZedBoard. Even though our application could be synthesized without issues on Xilinx 
tools, the OmpSs@FPGA tools gave error messages that the area was too small. This was 
resolved by using a different board. However, this board needed to be ordered and delivered to 
us, which took a significant amount of time. There were a few issues with the OmpSs@FPGA 
tools, which were still in development, but we had good communication with BSC and thus 
gradually resolved all issues. 

Maxeler Port 

With the knowledge of implementing flexHH on a single node, we decided to first develop the 
multi-node implementation using the simulator tools of Maxeler. This decision was made to limit 
time-consuming hardware synthetizations and easier debugging.  However, MaxRing, the high-
speed interconnect required to use the multi-node in hardware, is not supported in simulation 
mode. Therefore, we had to mimic its behaviour by creating an artificial connection between 
kernels to simulate the MaxRing. Another difficulty was porting between generations (MAX4 and 
MAX5). Because of the differences between architectures, efficient use of the hardware resources 
is not transferable between generations and the newer port required some further exploration. 
This issue presented itself in timing errors and redoing the exploration of hardware parameters of 
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the kernel (the maximum number of cells and the unroll/parallelization factor). For the timing 
errors, the support by Maxeler was essential. 

OmpSs Port   

Obtaining a taskified OmpSs-2@Cluster version of the existing MPI version was a straightforward 
process. However, the issue was that the original code uses a large number of huge data arrays. 
Hence, we had to ensure that each task accesses the correct subset of the array, especially if the 
array size was not divisible by the number of CPU cores in the system. 

In addition, the InfOli application pattern exposed a couple of issues with the way the Nanos6 
runtime handles specific cases internally that was very helpful to solve these issues. The first 
issue is that we needed an explicit way to schedule particular tasks on a specific node. We solved 
this by introducing the node clause that would take a node number as an argument; then, the 
runtime would thereafter use this as a scheduling decision. 

Another issue was that each task requires performing data copy for all sub-arrays accesses 
needed for that task, stressing the communication layer and increasing the number of messages 
sent and received by the runtime, consequently leading to poor scalability as the number of nodes 
increases and as the simulation dataset size increases. The solution introduced was to perform 
a single big data copy at the beginning of each iteration and group all messages, then send them 
at once. 

Finally, OmpSs@Cluster brings a more productive programming model that, in its pure form, 
avoids the need to develop and maintain MPI code. In the case of InfOli, we started from an 
initially developed MPI version, which first had to be simplified, so the development cost for the 
MPI version was already paid. Nevertheless, the OmpSs@Cluster variant arguably has a simpler 
structure than the MPI code and is easier to maintain. Over the course of the project, it has 
become clear that the pure OmpSs@Cluster approach is a good fit for a small number of nodes 
(up to 16 or 32), but a more scalable approach for large-scale applications is to use hybrid MPI + 
OmpSs@Cluster. This combines the scalability of MPI with automatic inter-node load balancing 
from OmpSs@Cluster. An initial implementation of hybrid MPI + OmpSs@Cluster was developed 
for BSC’s Alya application (Section 10.1). 
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3 STFC Applications 
3.1 Nucleus for European Modelling of the Ocean (NEMO) 
NEMO is a state-of-the-art modelling framework for research activities and forecasting services 
in ocean and climate sciences developed by a European consortium. NEMO is a large application 
with more than 95k lines of Fortran90 code. In this project, we aim to port NEMOLite2D, a 
simplified vertically averaged version of the dynamical part of NEMO to the EuroEXA platform. 

The NEMOLite2D application, also written in Fortran 90, implements a continuity equation for the 
update of the sea surface height and two vertically integrated momentum equations for the two 
velocity components, respectively. For simplicity, NEMOLite2D implements the explicit Eulerian 
forward time-stepping method, except for the bottom friction, which takes a semi-implicit form for 
the sake of model stability. As done in the original version of NEMO, a constant or Smagorinsky 
horizontal viscosity coefficient is used for the horizontal viscosity term, the Coriolis force can be 
set in explicit or implicit form and the advection term is computed with a first-order upwind scheme. 
The model also includes external forcing from surface wind stress, bottom friction, open-boundary 
barotropic forcing and a lateral-slip boundary condition is applied along the coastlines. The open 
boundary condition can be set as a clipped or Flather’s radiation condition. 

For the EuroEXA project, STFC aims to automatically generate a distributed parallel code capable 
of targeting FPGAs using the PSyclone source-to-source code-generation tool developed at the 
Hartree Centre. All presented work is open-source and has been upstreamed into the master 
branches of the following repositories: 

● PSyclone: https://github.com/stfc/PSyclone 
● NEMOLite2D: https://github.com/stfc/PSycloneBench  
● FortCL: https://github.com/stfc/FortCL  
● NEMOLite2D Infrastrutture: https://github.com/stfc/dl_esm_inf   

The main achievements presented in this report comared to D2.5 are the ability to generate hybrid 
FPGA and MPI versions of the NemoLite2D code (previously we could only generate each one 
independenly), and a significant improvement of the FPGA code as measured on the Xilinx U200 
FPGA. The produced code is not yet ready to run on the EuroEXA CRDB or Testbed 2 platforms. 

3.1.1  Final Ported Applications Software 

To port and optimize NEMOLite2D to the EuroEXA FPGA platform we use the PSyclone code 
generation tool. The purpose of PSyclone is to provide a separation of concerns between the 
science code and the parallel and performance-oriented details of the software. As such, it is also 
responsible for the performance portability to different target architectures and can do so without 
the need to modify the underlying science code. 
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Prior to this project, PSyclone was able to parse the NEMOLite2D science description and  
generate Fortran with OpenMP constructs to provide parallelism. To support the EuroEXA 
platform we had to extend the capabilities of PSyclone to generate OpenCL (as a language that 
can be compiled for FGPAs with the Xilinx toolchain), add multi-node distributed memory 
parallelism to the NEMOLite2D application (using MPI) and finally optimize the code generation 
to produce an appropriate OpenCL structure for FPGAs. We discuss these three aspects in turn. 

Enabling OpenCL generation 

NEMOLite2D is written in Fortran (with embedded DSL meta-data); we keep the host code in 
Fortran but we use a source-to-source language translation mechanism to trans-pile the kernel 
subroutines to OpenCL. We chose OpenCL as the target language to produce FPGA binaries for 
two reasons: it represents a portable programming language that can be useful in multiple 
architectures (as we have shown by also porting it to GPUs) and it has a mature runtime supported 
by the FPGA vendor Xilinx. 

The host part of the application sets up the OpenCL devices, instantiates the OpenCL kernels 
and controls the execution of the kernels using the OpenCL API. To interface with the OpenCL 
runtime we implemented the FortCL library, a fork of the open-source CLFORTRAN module. This 
library wraps the OpenCL functionality into a Fortran module using the C interoperability ISO C 
binding intrinsics. 

For the kernels part we focused our efforts in implementing a language-independent, internal 
representation of the PSyclone components called the PSyclone Intermediate Representation 
(PSyIR). As part of this work, the PSyIR has been extended to support all the features found in 
the NEMOLite2D kernels and a new back-end infrastructure which uses the Visitor Pattern to 
traverse the PSyIR kernels and convert them to an equivalent OpenCL representation. 

The PSyclone architecture for converting NEMOLite2D can be seen in Figure 3.1. 

 

Figure 3.1 The PSyclone architecture for converting NEMOLite2D 

This mix of Fortran and OpenCL allows for the generation of a valid, functionally correct, version 
of NEMOLite2D code that can be executed on CPU, GPU and FPGA platforms. However, the 
performance of the kernels is unlikely to be portable across different platforms when directly 
translated. To achieve good performance on the FPGA platform, a set of appropriate PSyIR 
transformations need to be applied in order to lay out the algorithm in an appropriate style for the 
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target architecture. This will be discussed in more detail in the “FPGA-specific OpenCL'' section 
below. 

However, to verify that the OpenCL translation works as expected, we tested the implementation 
on GPU accelerated devices. This shows correct results (by checking the checksum of the fields 
at the final step of the simulation), and, as presented in Figure 3.2, it provides better time-to-
solution and energy-to-solution characteristics than the single-node CPU executions on the COKA 
system (32 cores Intel Xeon Gold 6130 CPU + NVidia V100 GPU with full system power drain 
monitoring). 

 

Figure 3.2 NemoLite 2D full system energy consumption and power drain monitoring on COKA 

 

Enabling distributed memory in the NEMOLite2D application 

For the distributed memory parallelism in NEMOLite2D we use MPI. PSyclone was already able 
to provide an MPI domain-distribution implementation for other applications and during the 
EuroEXA project we extended this implementation to NEMOLite2D. However, additional work 
was required in order to combine the MPI with the accelerated programming model. This was not 
a trivial change since the MPI communication happens in a supporting library (called dl_esm_inf) 
that is not aware of the accelerated programming language that PSyclone has chosen. Also, the 
‘how’ and ‘when’ data is transferred back from the devices are fundamental to performance and 
we wanted PSyclone to have control over those. 
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To generate an appropriate mechanism for data transfer we have extended the NEMOLite2D 
supporting library, dl_esm_inf, to provide callback functions when the data is in a device. This 
allows PSyclone to take control of the accelerator-language specific instructions and decide the 
best approach for the communication between the host and device. 

Again, we have proven the approach in a GPU environment (since our current FPGA set-up is 
limited to a single node). The current MPI implementation shows good strong scalability for CPU 
cores and CPU nodes; it also works on multi-GPU executions, but the scalability is sometimes 
hindered by the device-to-host communication of the non-contiguous halo regions. We will explore 
better implementations of these communications as well as direct device communications in the 
future. 

 

Table 4 PSyclone-generated NEMOLite2D Strong Scalability tested on JUWELS (48c Intel Xeon Platinum 8168 
and Nvidia A100) 

NEMOLite2D Strong Scalability 

Single-Node Scalability 
(Size=2048x2048) 

Multi-Node Scalability 
(Size=8192x8192) 

Multi-GPU Scalability 
(Size=6000x6000) 

Cores time/it Speedup Nodes 
(ranks) 

time/it Speedup GPUs 
(nodes) 

time/it Speed
up 

1 0.635 1.00 1 (48) 0.29 1.00 1(1) 0.0203 1.00 
6 0.112 5.60 2 (96) 0.151 1.92 2 (1) 0.0117 1.73 
12 0.056 11.1 4 (192) 0.076 3.79 4 (1) 0.0064 3.15 
24 0.034 18.6 8 (384) 0.041 7.01 8 (2) 0.0043 4.74 
48 0.021 29.8 16 (768) 0.021 13.91 16 (4) 0.0029 7.07 

 

Optimization of FPGA-specific OpenCL 

The default OpenCL implementation using NDRange kernels did not perform well on the FPGA. 
This is mainly because the FPGA is not managing to load the data from contiguous indexed 
kernels in single burst reads and writes. To solve this issue we implemented a task-based 
implementation (with the range loops inside the OpenCL kernels) and manually cached 
contiguous data in local arrays. In contrast, the replication of Compute Units (CU) and the use of 
Functional Parallelism (FU) between kernels have both proved to be worthwhile optimizations and 
can be used in combination with other optimizations. 

Figure 3.3 shows the performance of each implemented FPGA optimization that is fully generated 
by PSyclone (green) or partially generated by PSyclone with some manual modification (blue), 
and some non-FPGA performance results for comparison. We have plans to extend PSyclone to 
eventually support all tested code transformations. 
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Figure 3.3 NemoLite2D Simulation time of different OpenCL implementations of NemoLite2D on multiple 
architectures 

The best FPGA performance obtained (as in time-to-solution) still lags behind the CPU 
implementation by a factor of 15; we believe the optimization space hasn’t been yet fully explored 
and we have plans to continue improving the FPGA performance. Perhaps the most significant 
issue with the current FPGA performance is that the current implementations only use one of the 
four DDR memory banks available in the Xilinx U200 device. Since we know NEMOLite2D is a 
memory bandwidth bound application, this has the potential to significantly increase the memory 
bandwidth of the implementation. 

PLATFORM 
REQUIREMENTS 

Required  Achieved 
implemented 

Hardware x86 + Xilinx U200 FPGA Yes 

Operating system Linux Yes 

Languages Generation: Fortran, Python 

Execution: Fortran, OpenCL 

Yes 

Compilers Fortran compiler, Xilinx OpenCL SDK Yes 

Programming models OpenCL  

Low-level libraries MPI Yes 

High-level libraries - - 
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License 

3-clause BSD. 

3.1.2  Unique EuroEXA Features Supported and Exploited  

STFC is leveraging the PSyclone code generation technology to port and optimize NemoLite2D 
into the EuroEXA platform. The EuroEXA architecture is significantly different from all other 
systems that PSyclone was targeting before this project and therefore we are implementing a set 
of unique infrastructure and optimizations to take advantage of the capabilities provided 
exclusively by the EuroEXA platform. Currently these are exploited using the Xilinx Vivado 
OpenCL toolchain but the use of an EuroEXA-specific OmpSs@FPGA backend has also been 
explored. We created a version of the kernel dispatching layer that uses the OmpSs tasks system 
and it has been tested in a CPU environment with good results. Waiting for a full access to a full 
CRDB cluster with MPI support, at least a quad-CRDB system is required to optimize the 
application. Besides the programming model, the EuroEXA platform features presented in the 
table below are also needed for a successful application scalability: 

System Part Specific Feature Level of Need Achieved 

Implemeted 

FPGA  Error Correction Codes in 
On-Chip memories 

Crucial  

Interconnect Error Detection Codes Crucial  

Interconnect Bit Error Rate reporting No  

Interconnect Cable hot plug support No  

Interconnect Redundant links No  

Storage Error Correction of low-
level components 

Crucial  
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Storage Isolation of defective 
storage devices 

Crucial  

Programming Model Coordinated 
checkpointing/restart 

No  

 

3.1.3  Porting Issues and Lesson Learned 

We found that porting applications to the FPGA is a more complex process than porting it to other 
acceleration devices. We used a portable programming language, OpenCL, which can run the 
same code on all devices. This is useful to get correct code as it can quickly be verified in other 
platforms during development. However, when it comes to obtaining optimal performance for the 
FPGA the code has to be tuned quite differently than for other devices. This is a time-consuming 
process due to the long compilation times which creates a slow feedback loop between the code 
modifications to the production of performance results.   

Additionally, even though OpenCL is supported by the FPGA vendor Xilinx, we found that the 
ecosystem is not as mature as other traditional FPGA programming languages. Some compiler 
options have changed from version to version during the development of the project and some 
functionality that is available to other programming languages like HLS is not yet supported in 
OpenCL. 

We also learnt the importance of considering the memory interface when programming for 
FPGAs. How the kernels communicate with the memory or among them is fundamental to achieve 
the desired performance from the FPGA devices. For instance, we improved the performance 
significantly by keeping most of the data all the time in the accelerator device and just transfer the 
contiguous boundaries for a 1D domain decomposed distributed-memory parallelization of the 
code (this is different from the 2D-decomposition used in the CPU version). Additionally, we had 
big performance gains by doing the transfer from FPGA DDR memory to the registers using burst 
reads and writes of contiguous data. The optimization work in this area is not finished, the current 
FPGA implementation is only using one of the DDR banks, but we can improve the performance 
by utilizing the combined bandwidth of the 4 memory banks available in the FPGA. 
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4 EXA applications (ex SYN) 
4.1 Neuromarketing using EEG processing 
Neuromarketing is the application of neuroscience to marketing. It includes the direct use of brain 
imaging, scanning or other brain activity measurement technology in an attempt to measure a 
subject’s response to specific products, packaging, advertising or other marketing elements. An 
approach towards this direction is to make use of fMRI technology which requires the whole 
procedure to be performed inside an expensive laboratory environment. Furthermore, this 
approach cannot scale due to the physical and cost limitations that these devices have. EEG is a 
very promising, cheaper alternative technology to fMRI. Being able to scale and at the same time 
be used outside labs gives a great potential of getting insights about the preference of the user 
on certain consumer behavior aspects. 

To be more specific about the EEG processing algorithm, we make use of a modified FF (free-
froward) neural net which integrates a special type of preprocessing for the EEG signal known as 
CSP (Common Spatial Pattern). We could apply it on local or distributed data that could be scaled 
up to Exascale (i.e. using EEG big data corpus). The proposed algorithm is based on a deep 
neural network architecture (end-to-end trainable), spread both in depth and width. The key 
components of this architecture are the CSP spatial filtering layers, offering strong preprocessing. 
Independent CSP layers are sparsely connected with respect to the time axis, serving as 
independent processing pipelines that only connect at a deeper stage of the network. 

For the EuroEXA project, EXA aims to port, optimize and evaluate the Neuromarketing code to 
distributed FPGAs in order to produce a low-power EEG processing algorithm. 

4.1.1  Final Ported Application Software 

The initial application, before the beginning of the project, had the form of a single kernel, high 
level prototype implemented in C++. During Task 2.1 (Deliverable 2.1), we moved to a complete 
synthesizable but unoptimized version using Vivado HLS. Specifically, we have presented the 
first reference implementation of the EEG core engine in custom hardware to demonstrate its 
versatility, in order to get the first performance and resource utilization results. In this first 
implementation, a single unoptimized synthesizable kernel was validated only through Vivado 
HLS co-simulation without using the OmpSs@FPGA programming model. 

In addition, during Task 2.2 (Deliverable 2.2), we have extended the functionality of the application 
to support multiple distributed kernels by developing the functionality of a central node (parameter 
server) at SW level using OpenMP (on a single device) to validate that the algorithm achieves 
convergence. 

Moreover, during the Task 2.2 (Deliverable 2.5), we have transformed the Neuromarketing code 
to synthesizable C++ kernel using OmpSs@FPGA programming model, while we have ported 
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the multi-kernel version on a single device parametrizing the pipeline & unroll stages in kernel 
code in order to full utilize any FPGA board independent of data size. 

In this deliverable, along with the code, we report the following improvements/porting steps over 
the 3rd year of the project. Regarding the progress report of EXAPSYS Neuromarketing 
application we have concentrated in the following steps: 

1. First of all, we have optimized the HLS kernel with a wide range of Vivado HLS pragmas 
to execute our application at 300MHz and approximately up to 2 orders of magnitude 
speedup from the initial HLS version. 

2. We have optimized our code separating the channel from the time axis minimizing both 
the BRAM and LUT utilization, achieving better design utilization and 4 times higher 
performance. 

3. In addition, we have ported and executed a multi-kernel version of our application on a 
single ZCU 102 board using the latest 2.5.2 version of OmpSs@FPGA. 

4. We have ported and optimized the Neuromarketing application on a VU9 board using the 
Vivado HLS toolchain, while we extrapolated the numbers for the final testbeds, based on 
the measurements we got from one board and the INFΝ-provided per-hop latencies, in 
order to obtain more realistic numbers. 

5. Moreover, we developed an MPI-enabled version of our application in S/W in order to 
efficiently exploit all FPGA boards on the final EuroEXA testbeds, minimizing the data 
transfers among different nodes during the training session. 

6. We optimized the MPI-enabled version of our application so that the coordinator node can 
call the 1st FPGA accelerator (in addition to coordinating communication) minimizing the 
total number of  MPI processes. Using this scenario, the application can exploit all 
EuroEXA’s CRDBs. 

7. We have compiled and executed successfully our application on the CRDB’s at STFC and 
on the quad CRDB at TOPIC. 

8. We successfully created and executed one large kernel on the CRDB’s at STFC and on 
the quad CRDB at TOPIC (with 81% of DSPs utilization) @250MHz (the main limiting 
factor has been proven to be the inter-SLRs links). 

9. We evaluated the MPI-enabled multi-node version of our application on the Mont-Blanc 
ThunderX ARM clusters at BSC as well as the PRACE JUWELS clusters and we profiled 
them in terms of both communication and computation. 

10. Finally, we got application traces from PRACE JUWELS which are used in the 
extrapolation task. 

 

Ported Application Software 

The current application software, ported to the EuroEXA Single CRDB’s FPGA at STFC and on 
the Quad CRDB at TOPIC, can be found in the EuroEXA repository 
(https://github.com/euroexa/deep-nn-eeg) and consists of the following files, along with a short 
description of their functionality. It should be noticed that we have implemented the MPI-enable 
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(multi-node) version of our application but we have not tested it yet in multiple CRDBs due to the 
delay of testbeds availability (and the porting of runtimes onto those parallel testbeds) but we 
have developed, tested and evaluated it on the Mont-Blanc ThunderX ARM clusters at BSC as 
well as PRACE JUWELS clusters. 

Files Functionality 

dataset (folder) the EEG dataset in csv format (minimal training dataset) 

dataset_with_dealy 
(folder): the EEG dataset in csv format (full training dataset) 

csp_tb.cpp multi core/fpga kernel testbench. Parameter server 
functionality 

csp_tb_mpi.cpp mpi-enable testbench. Parameter server functionality 

MY_NNET.cpp synthesizable kernel functionality 

MY_NNET.fpga.h header file of synthesizable kernel functionality 

define_csp.fpga.h Definitions about datasets & HLS parametrization 

Makefile OmpSs@FPGA Makefile for EUROEXA CRDB execution 

 

 

PLATFORM 
REQUIREMENTS 

Required  Achieved 
implemented 

Hardware X86, ARM, EuroEXA CRDB yes 

Operating system Linux  yes 

Languages C++, Synthesizable C++ yes 

Compilers GCC yes 
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Programming models OmpSs@FPGA/MPI yes 

Low-level libraries - - 

High-level libraries - - 

 

License 

Commercial license. Code will be distributed within the EuroEXA consortium. 

4.1.2  Unique EuroEXA Features Supported and Exploited 

The Neuromarketing application utilizes and exploits a number of unique features of the EuroEXA 
platform which heavily facilitated the conversion of the original C code to a fully synthesizable 
kernel and significantly increased the performance of the application as well. 

First of all, the OmpSs@FPGA Task Execution Model allowed us to manage all the data 
transfers and task synchronization without being concerned with the device driver to control the 
data communication and synchronizations. In addition, we were able to implement a multi-kernel 
version of our application through the OmpSs@FPGA Task Execution Model which provides 
dynamic dataflow task-based execution support among tasks executed in the FPGA accelerators. 

Moreover, concerning programmability and productivity, we can produce seamlessly different 
hardware designs in the same platform by configuring the runtime environment variables thus the 
EuroEXA tools and runtimes enable us to perform extensive design space explorations. In 
addition, through OmpSs@FPGA toolchain we can easily control specific data transfers where 
necessary in order to perform SMP-to-FPGA and vice versa data transfers using memcpy 
operations. 

In addition, “--interconnect_opt=performance” & “--simplify_interconnection” OmpSs@ 
FPGA interconnection features have been used in order to allow accelerators to concurrently 
access different banks, effectively increasing overall available bandwidth. 

Finally, the OmpSs@FPGA Paraver/Extrae tracing toolchain has been used extensively so as to 
identify the bottlenecks of our application on both ZCU102 and CRDB boards in order to compare 
the experimental results on CPU-based and FPGA-based systems. 

4.1.3  Porting Issues and lesson learned 

During the 3rd year of the project, we faced a number of issues regarding the porting of our 
application onto different FPGA platforms using the OmpSs@FPGA environment (we are working 
tightly with BSC to address them). Specifically: 
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1) Trying to move from OmpSs@FPGA v1.4.2 to newest OmpSs@FPGA v2.1.1 we had some 
issues about the OmpSs@FPGA libraries which did not find the required node in the device tree 
for zcu102 board (new OmpSs@FPGA version requires Petalinux 2019.1). 

● Specifically, we realize that there is an issue about the code in Petalinux 2019.1 
.bbappend files (it is ignored). We manage it by creating a script to edit the system-user.dts 
file and adding the nodes that we need. In our case, we need to copy the contents 
pl_ompss_at_fpga.dtsi and ZCU102_boot.dtsi into system-user.dtsi 

2) OmpSs@FPGA Kernel module is not loaded automatically on OmpSs@FPGA v2.x.x using 
petalinux 2019.1 on the ZCU102 board. 

● After the above issue we need to execute the following command in order to load 
OmpSs@FPGA Kernel nodule manually after ZCU102 is booted: sudo insmod /opt/install-
arm64/modules/ompss_fpga-4.19.0-xilinx-v2019.1.ko 

3 When we used a large kernel size (>80% DSPs utilization) @300MHz on EuroEXA’s CRDB, 
we got negative slack (due to the inter-SLRs links) and as a result our application was not working 
correctly.  

● In order to resolve the issue, we tried to use 2 (or more) kernels in the same CRDB instead 
of one large kernel but we could not get speedups because the kernels need to be 
synchronized and exchange the weights periodically. 

● Finally, we successfully create and execute one large kernel size on CRDB (with 81% of 
DSPs utilization) @250MHz using a custom memcpy function (from DRAM to BRAM and 
vice versa); this has been proved to be the optimal solution. 

4)  In case two MPI processes are executed in the same CRDB board (one MPI process calls the 
accelerator through OmpSs@FPGA, the other does not call any OmpSs@FPGA function, it 
coordinates the intercommunication), the CRDB either crashes or gives wrong results. In the 1st 
version of MPI-enabled Neuromarketing application, the MPI coordinator node (which is in pure 
SW) calls the N workers which call the accelerators; as a result, one CRDB is occupied only for 
the coordinator MPI process utilizing only N-1 of N CRDBs. 

● In order to resolve the issue, we optimized the MPI-enabled version of our application so 
that the coordinator node can call the 1st FPGA accelerator (in addition to coordinating 
communication) minimizing the total MPI processes. Using this scenario, the application 
can exploit all EuroEXA CRDB’s. 
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5 INFN Applications 
5.1 Distributed simulator of Plastic Spiking Neural Networks 

(DPSNN) 
The Distributed and Plastic Spiking Neural Network (DPSNN) application is an internal 
development of APE lab at INFN to help benchmarking HW/SW platforms at extreme scales; it is 
a C++, message-passing parallel code designed to run on clusters that provide an MPI 
framework. It simulates the spiking dynamics of the cortex by slicing it into a grid of cortical 
columns populated with neurons and their interconnecting synapses. The evolution of each 
column (or fraction thereof) is computed by an MPI process while the spikes emerging from 
synapses of neurons belonging to columns which are far apart become MPI messages between 
the owning MPI processes. 

This mesh can be customized by many parameters such as the number of processes, the column 
size (number of neurons and synapses per column), axonal delays (how long it takes a generated 
spike to reach its destination synapse), synaptic connectivity (how many incoming and outgoing 
synapses belong to each neuron) and resulting topology (how the mesh they make up is shaped) 
just to name a few; the simulation can therefore be easily turned from a compute-intensive 
application to a latency-sensitive one to anything in between. 

We were unable to complete the porting of the chosen kernels within the application that were 
synthesized on the FPGA using the Vivado HLS syntax to the OmpSs@FPGA one, so that the 
only whole application that can actually be run on the CRDBs is the C + MPI standard version; 
therefore the progress compared with D2.5 was retargeting the DPSNN as a test and debug tool 
for the networking stack and IPs for the CRDBs, with particular focus on heavy-duty stressing the 
novel EuroEXA components that were developed and integrated into the intra- and inter-QUADs 
switches. 

5.1.1 Final Ported Application Software 

DPSNN compute intensity is not great compared with in-memory data shuffling (for small to 
average cortical slice sizes) or with remote data exchange among processes (for large cortical 
slice sizes); for this reason, the porting activity onto the EuroEXA platform has been turned into 
identifying and excising from the complete application a mini-kernel representing a snapshot of 
high enough compute activity (one millisecond of purely neuronal dynamics, expunged of the 
time-consuming management of spike and synapse lists), together with a sample dataset, in order 
to assess either the incurring complexity and the gains that can be reaped by bringing the DPSNN 
into the available FPGA programming environment (initially Vivado HLS offered by the Xilinx 
SDSoC framework on a readily available ZCU development board)  without being immediately 
forced to reckon with available memory size and bandwidth, which are constrained commodities 
on the FPGA platform. 
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This compute mini-kernel is made of three parts: a generator of spikes randomly distributed 
according to a Poisson distribution; a merger that chronologically sorts these spikes together with 
those incoming from synapses belonging to other cortical columns; an integrator for the Leaky-
Integrate-Fire-with-Calcium-Adaptation dynamics of neurons belonging to the computed cortical 
column. The original merger was based on a recursive implementation of a merge sort; given that 
the spike sets to be ordered and merged are usually not larger than 20 units and recursive code 
is to be avoided on the FPGA environment, this section was redesigned to employ different sorter-
mergers, namely sorting networks of different sizes – which, being branchless and with a fixed 
number of operations, are expected to be well-matched with the underlying FPGA architecture – 
and other trial implementations, to find the one that performs best 

 

PLATFORM 
REQUIREMENTS 

Required  Achieved 
implemented 

Hardware x86/Arm + Xilinx FPGA yes 
Operating system GNU/Linux yes 
Languages C / C++ (on x86/ARM) yes 
Compilers GCC, Xilinx Vivado SDSoC 

SDK 
 

Programming models HLS C/C++ on Xilinx SDSoC 
SDK 

 

Low-level libraries   
High-level libraries MPI yes 

 

License 

DPSNN is created by APE Group within the Istituto Nazionale di Fisica Nucleare (INFN) and is 
licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International 
License. 

5.1.2 Unique EuroEXA Features supported and exploited 

The features of EuroEXA that are more relevant for the DPSNN are those underpinning the 
platform is built on, namely the promised power efficiency and the compactness of an FPGA-
based system able to offer performances in the ballpark of those of a small to medium slice of a 
standard HPC cluster (from tens of cores to a few thousands which, for sensibly sized neural 
simulations, seems to be the scalability limit on clusters built upon ordinary computing 
architectures) at a fraction of the operating costs in power and encumbrance. We are aware that 
the size of the final testbed that can be conceivably achieved for the EuroEXA platform is not 
going to be large enough to allow for an incontrovertible and definitive result in this regard. After 
all, at the moment the porting effort managed to fit just a part of the compute kernel onto the 
FPGA. Nonetheless, we are hopeful that a reasonable extrapolation will be anyhow possible and 
a meaningful guess at the answer can be glimpsed once the testbed is available. 
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5.1.3 Porting Issues and lesson learned 

It was found that the heuristics that SDSoC employs to perform the synthesis of a C/C++ source 
into an FPGA bitstream often need non-trivial restructuring on the code to just be able to 
successfully complete; correctness of the code the user starts with is not by itself a guarantee for 
a working, albeit unoptimized, bitstream – this adjustment phase may be a time-consuming effort 
whose weight and scope is hard to assess beforehand and must be undertaken with care, 
especially in sight of the following stage of the porting work. This latter consists in annotating the 
source with the HLS directives (as #pragma’s) that instruct the SDSoC tool to prefer one strategy 
or another when translating said source into an IP on the FPGA. For example, when pipelining 
some function – in order to let it be looped over with the highest throughput – significant, often 
non-trivial reshuffling in source code was found to be necessary to help the #pragma annotations 
in pushing the latency between the end of an iteration and the start of the following one (the 
initiation interval) to a reasonable value (1 clock cycle being the not always reachable optimum). 
The experience in this regard was found to be greatly improved by the GUI tools in the SDSoC 
environment that depict the dependencies between instructions as graphs that, when fiddling 
around the code, are an invaluable guide for the user in pushing these initiation intervals down so 
that a better pipelining and ultimately a better throughput can be achieved for the final IP. 

5.2 Fluid Dynamics using Lattice Boltzmann Methods 
This fluid dynamics simulation based on the D2Q37 Lattice Boltzmann model has been recently 
selected as one of the mini-app included in the SPEChpc 2021 benchmark suite. This is a bi- 
dimensional simulation of stacked fluids with different temperature and density, for which the 
computation of the collisional operator requires 37 elements per lattice site. The computational 
characteristics of this model makes the D2Q37 application very suitable to stress both the 
memory- and compute- subsystems of the hardware architecture on which it is run.  

This application, from the computational point of view, applies a complex stencil operation on a 
lattice of data sites, in an arbitrarily long sequence of time steps. In particular, the stencil 
application consists of two main function kernels: the first, completely memory-bound, performing 
sparse memory accesses and named Propagate, and another one, named Collide, operating on 
the output of the first one, and executing 13 FLOPs/byte in double precision, making it to be 
compute-bound on most architectures. 

Multi-process implementations commonly adopt a classical borders/halos exchange paradigm, 
splitting the lattice across different processes. Data exchange needs to be performed just before 
the Propagate kernel. 

5.2.1  Summary of previous Results 

At the beginning of the project, the D2Q37 application was implemented as a parallel code using 
MPI + plain C; several other versions were also available to target different hardware accelerators, 
such as GPUs and Xeon Phis, on which the execution of the two main kernels was offloaded. 
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In Deliverable 2.2, we reported about two new versions of this application, exploring new 
programming languages to start targeting FPGAs as accelerators, and also a mini-app based on 
GPI-2 reproducing the data movements of our application. In particular we developed:  

1) an SDSoC implementation able to offload just the “propagate” function to the FPGA embedded 
in the MPSoC of a Trenz board, while running the main program and the “collide” function on a 
single Arm core; 

2) an OmpSs implementation able to target x86 and Arm processors, running the “propagate” on 
all the available cores; 

3) and also a GPI-2 mini-app which reproduces the communication patterns of the LBM 
application using the GPI2 library. 

In Deliverable 2.5 we reported about the first code version that, using OmpSs@FPGA was able 
to run on the MPSoC Arm cores, while offloading both Propagate and Collide operations on the 
embedded FPGA. 

5.2.2  Towards the final ported version 

After the release of the Deliverable 2.5, a new code version has been implemented, using the 
Xilinx Vitis workflow, allowing to initially experiment with Alveo FPGA accelerators, while waiting 
for the EuroEXA CRDB hardware to be available to WP2 partners. Xilinx Alveo boards, in fact, 
embed FPGAs of the same UltraScale+ hardware family as the EuroEXA CRDBs, but at the time 
they were not yet supported by OmpSs@FPGA. This implementation adopting the Vitis workflow, 
allowed us to continue to work on kernel code optimizations, running on a local Alveo U250 FPGA, 
which embeds much more hardware resources than the Trenz board, used at the beginning of 
the project. 

When OmpSs@FPGA became available also for Alveo cards, we moved back our Vitis 
implementation to OmpSs@FPGA (re-implementing just the host side of our code), allowing us 
to both run on the Alveo boards, as well as to be ready to run on the EuroEXA CRDBs, just 
changing the synthesis target. In parallel, we also included in the application code the message 
passing support, alternatively using MPI or GPI-2. 

As soon as EuroEXA CRDBs became available we were able to deploy our application on them, 
as well as on the EuroEXA Quad boards, using MPI. 

5.2.3 Optimization of the Propagate kernel 

In this final version, a major performance improvement has been achieved for the Propagate 
kernel. This kernel does not perform floating-point computations, but it rearranges data elements 
across the lattice; the performance of this kernel is commonly assessed estimating the bandwidth 
achieved with respect to the maximum theoretical peak of the hardware architecture. On 
commodity cache-based processors such as CPUs, as well as on GPUs, the main difficulty in 
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optimizing this kernel is given by the complex and sparse memory accesses the stencil requires 
to perform, impacting on the underlying memory sub-system. Optimal implementations on CPUs 
and GPUs commonly require to rearrange the lattice data structures, to adapt to the architecture 
cache lines and vector instruction widths. For these reasons the Propagate kernel can hardly 
commonly reach more than the 50% of the maximum theoretical bandwidth, and higher value can 
be achieved using specific programming optimizations, such as non-temporal instructions, 
threatening the code portability. 

On FPGAs, on the other hand, thanks to their reconfigurability, the main stencil can be 
implemented in hardware, in order to operate only on data pre-loaded into on-chip memories, 
where multiple parallel accesses can be performed at the same clock cycle, at sparse memory 
addresses.  
In fact, the Propagate kernel has been implemented exploiting a shift-register approach. It reads 
from the external DDR memory a stream of lattice sites at the full memory bandwidth, reading 
each site just once, storing them on a buffer allocated in BRAMs/URAMs on-chip memories. The 
buffer is large enough to contain all of the sites required to apply the stencil operator and as soon 
as one new sites is added to the buffer, an old one, not needed any more is discarded. This 
approach allows to exploit the maximum available peak memory bandwidth and we reached 
indeed almost 90% of the maximum experimental bandwidth, measured with a synthetic 
benchmark developed using OmpSs@FPGA on the EuroEXA CRDB. 

 

Figure 5.1 Sketch of the Propagate stencil being applied on the lattice sites. The area into the red lines 
represents the buffer on on-chip memories, highlighting the sites initially stored locally. The Propagate is 
applied on the site in the middle of the stencil, before applying it on the next one, a new site is loaded into 

the buffer, and an old one get discarded. Sites marked in yellow represent the halos of the lattice, which get 
exchanged with nearby processes. 
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5.2.4  Final ported application software 

Our final version of the code is the merge of the latest OmpSs@FPGA implementation and the 
multi-process one, which allow us to run on the single EuroEXA CRDB (without message-passing 
libraries support), as well as on the EuroEXA Quad boards, using MPI, and also using GPI as 
soon as it will be supported. 

In summary, in this deliverable, along with the code, we report the following improvements/porting 
steps over the 3rd year of the project: 

- Ported the full application to GPI-2 and tested it on a local x86 cluster, comparing results 
with a previously existing MPI implementation. 

- Ported the full application to the Xilinx Vitis workflow to target Alveo boards. We ran 
experimental tests on an Alveo U250, allowing us to validate the produced results 
correctness and also to collect information guiding the kernels optimization work. 

- We optimized the collide compute-bound function, increasing the amount of lattice sites 
computed in parallel. We also realized that the Kolmogorov complexity of this function, as 
well as its high floating-point intensity, is not making this part of the code a good candidate 
to obtain high performance on the FPGA. At the same time it will allow us to study the 
limits of this architecture and also to understand how this function could be modified to 
better fit on this architecture. 

- We have optimized the propagate memory-bound function, using unique features of 
FPGAs, such as the BRAM and URAM on-chip memories, making possible to implement 
this stencil kernel using a shift-register and thus allowing it to reach more than 80% of the 
maximum theoretical bandwidth of the EuroEXA CRDB architecture. 

- We have ported the full application to OmpSs@FPGA to target the EuroEXA CRDB, 
benefiting from the initial kernels optimizations included in the Vitis version tested on the 
Alveo U250. 

- We collected baseline performance metrics on the PRACE JUWELS cluster, for CPU only 
and GPU accelerated versions of our application, as well as energy related metrics on the 
INFN Ferrara COKA cluster, to be later used for evaluation purposes. We also collected 
Extrae traces for extrapolation purposes. 

 

PLATFORM 
REQUIREMENTS 

Required  Achieved 
implemented 

Hardware x86/Arm + Xilinx FPGA yes 

Operating system GNU/Linux yes 

Languages C yes 

Compilers gcc, v++, mercurium yes 
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Programming models OmpSs@FPGA, Vitis/HLS yes 

Low-level libraries -- -- 

High-level libraries MPI, GPI-2 yes 

 

License 

The software is copyrighted by the University of Ferrara, University of Rome and INFN under a 
standard 3 clause BSD license. 

Portability 

The final OmpSs@FPGA implementation, can target the EuroEXA single CRDB board, as well 
as the EuroEXA Quad; and theoretically any architecture supported by OmpSs@FPGA. 

Ported Application software 

This is the application repository where all the related software versions have been uploaded: 
https://github.com/euroexa/fluid-dynamics 

In particular, the multi-process enabled OmpSs@FPGA final ported implementation, targeting the 
EuroEXA architecture is: 

https://github.com/euroexa/fluid-dynamics/tree/master/d2q37-MPI-OmpSs 

5.2.5  Unique EuroEXA Features supported and exploited 

This application utilizes and exploits a number of unique features of the EuroEXA platform. 

From the performance point of view, the most important unique feature of FPGA accelerators, 
exploited specifically by the Propagate kernel function, is given by the presence of on-chip 
memories, such as BRAM and URAM. These memories allow to implement as a shift register the 
complex stencil operation which this kernel needs to apply on the whole lattice at each timestep. 
This grants the possibility to process lattice sites as fast as they can be read from the external 
DDR memory. On other architectures such as CPUs and GPUs, proper data layouts have to be 
used to mitigate the sparse memory accesses adverse impact on memory subsystems and 
anyway, just a fraction of the theoretical off-chip memory bandwidth can be reached. On such 
devices, on-chip memories are commonly organized as caches with predefined cache lines, which 
do not allow to efficiently implement the propagate kernel function using a shift register. 

Concerning the collide kernel function, its high Kolmogorov complexity as well as its high floating-
point throughput do not make it a good candidate to reach a high performance on FPGA devices. 
Despite this, given that the performance on FPGAs can be highly increased lowering the compute 
precision, a possible further optimization of this kernel could be obtained investigating in the 
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direction of lowering the precision of its computations, or at least part of them, studying its 
numerical stability. This could possibly allow optimizations which may not be possible on ordinary 
processors and accelerators, for example exploiting the use of fixed-point computations. 

5.2.6  Porting Issues and lesson learned 

The main porting issue we had, concerning the new implementations reported in this deliverable, 
has been related to the optimization of the collide kernel function. This function is in fact heavily 
compute-bound, requiring approximately 6600 floating-point operations per lattice site, and to 
obtain a high performance on the VU9 FPGA accelerator in a CRDB board, is required to be able 
to use most of the available DSPs to implement floating-point cores. This function is made of 
several stages, combining the values (called populations) stored at each site with a high number 
(i.e. 666) of floating-point constant parameters, requiring several loops performing different 
reductions. This translates to a high Kolmogorov complexity, which impacts on the routability of 
the design of this kernel. 

A lesson we learnt, optimizing this complex kernel function, is that it is essential to divide it in 
several compute blocks, to implement them as separated independent functions, able to 
communicate with one another thanks to data streams implemented as FIFOs in the FPGA. This 
is the only way we identified as a solution to implement a routable design able to process multiple 
lattice sites at the same time, thanks to the use of the DATAFLOW HLS pragma, which 
implements a function level pipeline. Despite this, less than half of the DSPs can be exploited at 
this time, since the routing resources are still the main performance limit for this design. 

Other minor issues we faced were related to the porting from the first implementation using the 
Vitis workflow to the OmpSs@FPGA implementation: 

1 The use of HLS streams requires Xilinx libraries, making the code less portable, requiring 
the use of #ifdef guards, using the OmpSs defined variable:  
__HLS_AUTOMATIC_MCXX__ to hide from the Mercurium compiler all of the code parts 
where C++ objects from Xilinx libraries are used. 

2 While in the Vitis workflow host and device parts of the code are commonly separated, in 
the case of OmpSs@FPGA we had to reorganize the code in a single file containing the 
host part and the main kernel functions, moving all of the sub-task functions, using HLS 
streams in a separate include file. 

3 Using OmpSs@FPGA users can not yet select in which Xilinx Super Logic Region (SLR) 
to place the implemented kernels, and which memory banks to use. This issue is being 
addressed by other partners and should be solved, granting further possible optimizations. 

One interesting lesson learned in the porting of the propagate function is the possibility to use 
FPGA BRAM/URAM to implement complex stencils as shift registers, while this could not be easily 
accomplished using cache memories on other more common architectures. 

. 
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6 UNIMAN applications 
6.1 LFRic 
LFRic is an effort to increase the computational scalability of the Unified Model, a numerical model 
of the atmosphere used for both weather and climate applications. It is being developed by the 
UK Met Office in close collaboration with NERC, STFC and some universities around the UK, 
including The University of Manchester. 

LFRic is a software infrastructure which since its inception prioritized a “separation of concerns”, 
an approach aiming at performance portability and scalability without sacrificing scientific 
productivity. On the one hand, the natural science aspects, e.g. how the fluid dynamics equations 
are solved, are directed by GungHo, a new dynamical core for the Unified Model, responsible for 
numerically solving the differential equations governing fluid motion over the cubed-sphere 
discretizing mesh. On the other hand, the technical implementation, e.g. how data is moved about 
within a computer's memory, is determined by PSyclone, a code generation and transformation 
system that optimizes and parallelizes the science code.   

Although PSyclone can target a variety of parallel hardware by leveraging MPI, OpenMP and 
OpenACC, full support for FPGAs remains a work in progress. Our objective is to demonstrate its 
potential benefits in the race for Exa-scale computing. 

6.1.1  Final ported application software 

LRic can be run in many configurations representing a range of weather and climate scenarios 
across a broad range of spatial and temporal scales. The selected scenario is a baroclinic test 
case (a baroclinic atmosphere is one for which the density depends on both the temperature and 
the pressure) which has been developed by the UK Met Office as part of their performance 
evaluation procedure. 

Ashworth et al. showed that LFRic’s computational requirements come mainly from basic linear 
algebra operations. For the baroclinic benchmark, time is spent chiefly in the Helmholtz solver, 
which is used to compute the pressure. Among the invoked kernels, the two responsible for most 
of the execution time, which we will name hx and mv, perform double-precision matrix-vector 
multiplications within an outer loop which runs over the (thirty in our case) vertical levels of each 
mesh cell. 

We are currently finishing an initial port of the target kernels for acceleration using the FPGAs of 
the EuroEXA architecture with neighbouring cell data interchanges (also halo exchanges) 
mediated by the host CPU. Work is ongoing to enable direct memory accesses between sibling 
FPGAs. 

PLATFORM 
REQUIREMENTS 

Required  Achieved 
implemented 
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Hardware Any single- or multi-processor 
supporting the compilers and 
programming models below 

yes 

Operating system Any OS supporting the compilers 
and programming models below. 

yes 

Languages Fortran 2003, C yes 

Compilers GCC (gcc/gfortran), PSyclone 
(domain-specific code 
generator), Vivado HLS, Vivado 
Design Studio 

yes 

Programming models MPI/Fortran, OpenMP/Fortran, 
Vivado HLS/C 

yes 

Low-level libraries MPI, OpenMP, Vivado HLS yes 

High-level libraries HDF5, NetCDF, XIOS, YAXT, 
pFUnit 

yes 

 

6.1.2  Unique EuroEXA Features supported and exploited 

Both the hx and the mv kernels have been previously ported to the ZU9EG MPSoCs of Testbed 
0 using industry standard Xilinx tools, namely Vivado HLS and Vivado Design Studio. The 
performance of LFRic will benefit significantly from the use of the multiple CRDB nodes in Testbed 
2 and the faster, higher-density logic VU9P FPGAs they include. 

Furthermore, the two ported FPGA kernels and the PSyclone-generated CPU code that invokes 
them are currently being modified to allow the halo exchange interleaving them to happen entirely 
on the former. The objective is to use the on-chip UNIMEM infrastructure to directly address 
sibling FPGA memory, avoiding unnecessary copies to host memory and back. 

Halo exchanges interleaved between unmodified kernels will still happen via host-mediated MPI 
transfers but using the on-chip Ethernet infrastructure. 

6.1.3  Porting Issues and Lesson Learned 

The rationale behind the possibilities for computational acceleration cannot ignore the flow of data 
through the various LFRic kernels and algorithms. The success of FPGA acceleration relies on 
the data fields being able to reside in FPGA memory for long enough periods to offset the cost of 
the data transfers between the CPUs and the FPGAs. Therefore, the more tasks are ported to 
the FPGAs, the more unnecessary data transfers are avoided and the better the potential 
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performance. This is the motivation behind our most recent efforts to use UNIMEM to directly 
funnel data and, ideally, one would like to port enough kernels to execute an entire LFRic 
algorithm without host CPU intervention. However, besides the porting effort, the designer is often 
limited by the available programmable logic, particularly when as much as 50% of the available 
resources are allocated for network interfaces. In order to cover a larger portion of LFRic’s 
computational code, future work could instead try an asymmetric approach, whereby different 
FPGAs implement kernels of different nature. 

Finally, we note that the programming model used is rather programmer unfriendly, requiring 
some low-level considerations, including address manipulation, setting and examining kernel start 
and stop bits and setting the widths of data paths. However, as described earlier, LFRic uses a 
“separation of concerns” approach to ensure that scientists need not concern themselves with 
parallel, platform-dependent coding. In the future, in order to fully support FPGA ports using this 
methodology, PSyclone should be modified to support automatic FPGA kernel generation. 
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7 FRAUN applications 
7.1 FRTM 
Seismic depth migration algorithms calculate images of the Earth's subsurface from the measured 
and pre-processed seismic reflection data. These images deliver important pieces of information 
to the geoscientists for discovering oil and gas reservoirs. The method of reverse time migration 
(RTM) realistically simulates the propagation of waves through the subsurface by solving the full 
wave equation. Thus, RTM allows the exact imaging of structures with strongly contrasting 
seismic velocities as they occur, e.g. for salt bodies. 

Porting to the CRDB prototype includes a simplified version of the seismic kernel implemented as 
hardware (VU9) and a test application executed on the ARM CPU (ZU9). This kernel consists of 
a 25-point stencil computation followed by a time integration step. The FPGA ported version of 
the kernel has been validated by comparing the results with reference data computed on the ARM 
CPU. Primary changes introduced since D2.5 include a streaming architecture in favour of the 
double buffering design and the use of multiple HLS kernels to account for the VU9 SLR. The 
number of stencil computations per clock cycle has been increased to fit the theoretical peak 
bandwidth of the DDR memory modules attached to the VU9. The seismic data, which is stored 
in the DDR memory, is organised in tiles to separate halo/boundary from inner volume blocks and 
the FPGA design is complemented by respective data rearrangement buffers. Finally, GPI 
communication has been included in the application to support the Quad CRDB. 

 

PLATFORM 
REQUIREMENTS 

Required  Achieved 
implemented 

Hardware CRDB yes 

Operating system Linux Yes 

Languages C++ + Vivado HLS directives Yes 

Compilers Vivado HLS, Vivado, C++ compiler Yes 

Programming models Vivado HLS -- 

Low-level libraries -- -- 

High-level libraries Vivado design template (BSC) -- 

 

License 
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Proprietary software owned by Fraunhofer ITWM. Authors: Daniel Grünewald, Matthias Balzer, 
Leo Nesemann, Norman Ettrich 

 

7.1.1  Unique EuroEXA Features supported and exploited 

The EuroEXA CRDB combines a ZU9 and VU9 on a single board. Both FPGAs are directly 
connected via serial links. In addition, 1x16GB and 3x16GB DDR modules are attached to the ZU 
and VU9, respectively.  

The FRTM stencil kernel is implemented on the VU9 accelerator while the controlling application 
runs on the ZU9 ARM CPU. Test data is loaded to the DDR memory attached to the VU9 before 
processing. As explained in the following section, a streaming approach is implemented to 
transfer data between the VU9 and the DDR memory while computing the wave propagation 
results on the FPGA. With a Linux environment set up on the CRDB, the controlling application 
can conveniently be executed on the ZU9 ARM CPU. Status and control registers of the kernel 
hardware implemented on the VU9 accelerator are mapped into virtual address space, 
transparent to the application. 

The GPI communication library enables multi-CRDB support and is used with the FRTM kernel 
for boundary data exchange. Details on the communication pattern are described at the end of 
the FRTM section. 

7.1.2 Porting Issues and lesson learned  

FPGA data transfer rates, on-chip memory and compute units are limited by the particular 
hardware. Within these limitations data compression and reduced precision arithmetic can help 
to improve performance if applicable to the application. To estimate the feasibility of data 
compression and reduced precision arithmetic, with respect to the FRTM kernel we ran some 
tests with the “zfp” and “half” libraries (described below) prior to further porting to the CRDB. 

 

 



 
 

 

 
This document is FIXME Public/Confidential and was produced under  
the EuroEXA project (EC Contract No. 754337)  
 

40 

D2.6:  Final ported application software 
 
EuroEXA – H2020 – EU.1.2.2. – FET Proactive 
 

 

Figure 7.1 Seismic propagation of Ricker wavelet with a realistic velocity model 

As test setup for the seismic wave propagation we started with volumes including 500x500x500 
grid points and up to 3000 time iteration steps. We considered a constant as well as a realistic 
velocity model with a representative choice of propagation parameters. Our department’s seismic 
group analysed the effects of compression and reduced precision arithmetic on the propagation 
results by comparison with reference computations. 

Floating-point compression 

zfp is a BSD licensed open-source C/C++ library for compressed floating-point arrays 
(https://computing.llnl.gov/projects/zfp). An FPGA implementation of zfp is available as “zwh”. zfp 
supports lossless and lossy compression and allows for fixed and variable compression rates. To 
keep our existing memory layout of the volume (grid) data, we focused on the fixed rate 
compression mode. As the test results suggest, a compression ratio not less than 0.5 seems 
acceptable. We also tried to compile the hardware version zhw with the Xilinx toolchain, but 
experienced issues with SystemC support. 

Half-precision floating-point 

In contrast to e.g. fixed-point arithmetic the half-precision floating-point type is conveniently 
supported by Vivado HLS. For testing half-precision floating-point arithmetic on x86 hardware we 
used the half C++ library (https://sourceforge.net/projects/half/). 

The half-precision format includes 1 sign bit, a 5 bit exponent and a 10 bit significand. The limited 
range of the exponent requires repeated rescaling of the data during wave propagation to 
maintain sufficient precision. Rescaling with powers of two leaves the significant unmodified. 
While the resulting seismic images still reproduce the subsurface structures, also frequency 
dependent errors are introduced as compared to the reference computations. Though FPGA 
accelerators are expected to benefit from (custom) reduced-precision arithmetic, further detailed 
analysis is needed to provide a reliable implementation of the FRTM kernel. 

Data streaming architecture 
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As reported in D2.5 we ported the seismic wave propagation kernel to the ZU9 following a double 
buffering approach. The approach allowed to overlap computations on the programmable logic 
with data transfer from/to the processing system and worked well with our test configuration to 
validate the implementation. For the validation of the design as a first step we only exploited a 
small part of the FPGA on-chip memory resources to speed up the development cycle. However, 
increasing the buffer sizes for optimal resource utilization introduced routing/timing issues. 
Judging from the error messages, the issues mainly originated from unfavorable on-chip memory 
access pattern. 

 

Figure 7.2 Stencil data access for grid volume mapped to shift buffer  

 

We thus replaced the double buffering design in favor of a streaming architecture. This removes 
the need for random access to the local memory when iterating over the three-dimensional 
seismic volume. Within the streaming architecture the volume is mapped to a (one-dimensional) 
shift buffer and the stencil data is read from predefined addresses only (see Figure 7.2). The 
stencil data for the subsequent grid point is available by adding the next grid value (green) to the 
buffer and shifting all stored values by one position. For a three-dimensional model with stencil 
radius r the shift buffer needs to store at least 2r planes. This streaming architecture can be 
implemented with Vivado HLS by combining FIFOs and shift registers. 

The streaming architecture naturally allows for time skewing by duplicating stencil compute units 
and forwarding stream data from one compute unit to the next. Halo regions of the respective 
input streams are removed before forwarding the data. Additionally the introduction of time 
skewing requires source injection to be handled by the hardware module rather than the 
processing system, since intermediate time steps are not available to the processing system. We 
use the velocity model input stream to add the source signal amplitudes as well as required meta 
data (e.g. source signal coordinates). 

The test application running on the ARM CPU of the processing system has been modified 
accordingly to support the new hardware design. Validation of the hardware module can still be 
done using binary comparison with a reference calculation executed on the CPU. 

Porting to CRDB 
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Compared to the ZU9, more hardware resources (LUTs, DSPs, on-chip memory, …) are available 
with the VU9 as part of the CRDB. However, the VU9 organizes its resources in SLR, which 
introduces some constraints on how to utilize them. In particular, an HLS IP is limited to a single 
SLR. Thus, we need to split our HLS kernel implementation to optimally work with the VU9 
platform. 

 

Figure 7.3 Combining three separate HLS IPs to implement stencil kernel on VU9 SLR structure 

An obvious choice to split the HLS kernel module is within the time skewing part. This introduces 
a separate HLS IP for each time step. The internal forwarding of streams from one compute unit 
to the next is now made external, which also introduces some changes in the kernel interfaces. 
The split kernel IPs are then connected using AXI Stream Data FIFOs (see figure). The blocking 
nature of the AXI streams implicitly controls the compute units. Hence, we switched the 
implementation of the hardware module to a free-running kernel. This simplifies the hardware 
interfaces, since block control ports of the kernel modules are dropped. 

The DDR modules attached to the VU9 support a theoretical bidirectional peak bandwidth of about 
36GB/s. With each stencil update requiring 3x4 bytes input data, 15 stencil computations per 
clock cycle at 100MHz are necessary to fully utilize the available DDR memory bandwidth. Hence, 
we define the I/O stream width as 512 bits and use separate streams for each of the 3 input data 
fields. This renders 16 stencil updates per clock cycle possible. To respect the dimensions of the 
halo regions, we implement the streaming approach with 2D plaquettes of size 4x4.  

The stencil kernel input streams, output streams and GPI communication pattern demand 
different data storage schemes for optimal access. To address the various requirements we 
organise the seismic data, that is stored in DDR memory, in tiles of different sizes and define 
halo/boundary and inner partitions accordingly. This allows to transfer data between DDR memory 
and VU9 as larger contiguous blocks. The resulting data stream, however, is not ready to be used 
by the compute kernel. Thus, we add rearrange buffers to the design to reorder the stream data 
as needed. We implement these rearrange buffers with double buffering in Vivado HLS and add 
the IPs to the Vivado design (see Figure 7.4). The velocity field is not modified during wave 
propagation and can thus be already stored with duplicated halo regions as needed by the 
compute kernel. No additional data rearrangement is required here. 

The FRTM kernel, in addition to the velocity data, requires wave field data for the previous and 
current time steps as input. The time skewing approach demands output of both the updated 
previous and current wave field data to continue the iteration. Using double buffering for the 
previous and current wave fields, 5 volume buffers have to be maintained during propagation. 
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Figure 7.4 DDR-VU9 data transfer with DMA controllers and rearrange buffers. 

To more conveniently make the kernel parameters available to the test application we store the 
particular kernel configuration on the hardware and let the application fetch the parameters to 
initialize the test scenario. As environment for the CRDB we use the OmpSs setup provided by 
BSC. This includes the ZU9 firmware with an AXI Chip2Chip bridge to connect to the VU9. The 
Vivado design template for the VU9 already configures peripheral hardware, e.g. the attached 
DDR memory. 

Keeping the default configuration we add the FRTM kernel IPs to the provided design. The test 
application, which runs on the processing system of the ZU9, requires access to the DDR memory 
attached to the VU9 and the registers of the DMA controllers, which handle the data transfer 
to/from the HLS kernels. With the AXI Chip2Chip bridge this access is transparent to the 
application. To keep the Linux setup as is, we make the registers and DDR memory available to 
the application by directly mapping the physical address ranges using the mmap utility. On the 
CRDB root privileges are thus required for the application to run properly. 

Multi-CRDB support 

The data organisation as described above already defines halo/boundary partitions that can be 
transferred as contiguous blocks with GPI. Additional packing and unpacking can thus be avoided.  
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The double buffering introduced for the data transfer with the FPGA naturally supports the GPI 
inter-FPGA boundary data exchange pattern. As for the compute kernel, data exchange between 
the CRDBs needs to include not only data for the latest time iteration step, but also that for the 
previous one. GPI’s notification mechanism is used to check for the halo data available when 
needed for the kernel computation. The communication pattern on the Quad Board is illustrated 
in Figure 7.5 

 

Figure 7.5 Boundary data exchange on multi-CRDB setup 

We have checked the GPI communication on our x86 cluster prior to running the application on 
the Quad CRDB by replacing the FPGA kernel with computation on the CPU. To validate the 
multi-CRDB setup we run the wave propagation on the Quad Board including all four FPGAs and 
then compare the results with a reference propagation carried out on a single ARM CPU. As for 
the single CRDB setup switching off compiler optimisations allows for binary comparison of the 
computed data. 

Since GPI with FPGA support could not be set up on the Quad Board, we use CPU-driven 
communication with the FRTM application instead. The halo/boundary blocks that we store in the 
VU9 DDR memory are duplicated to be available for GPI communication on the ZU9. While this 
workaround does not modify the inter-FPGA communication pattern, it introduces required data 
copies from/to VU9 to/from ZU9 DDR memory for every GPI data transfer. The additional data 
management is handled by the application. 

Vivado toolchain 

When working with the Xilinx toolchain (Vivado HLS, Vivado design suite, Vivado SDK) it seems 
advisable from our experience to restrict the development to a single version of the tools. While 
source code compiles with different versions of Vivado HLS, the results of the compilation may 
still differ in required resources or achieved runtimes. The Vivado design suite on the other hand 
is pretty sensitive to a specific version. Included Vivado IPs may have changed and introduce 
incompatibilities within the design. This is in particular crucial when working with design templates 
from different partners. 
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8 IMEC applications 
8.1 SMURFF framework for Bayesian probabilistic matrix 

factorization 
In the first porting deliverable we explained how we split the SMURFF application into two parts. 
The first one is the training part of the application. This part has been mapped on the ARM 
processor of the EuroEXA platform and results of the mapping were presented in a previous 
deliverable. The second part of SMURFF is the inference part. We have extracted this part in a 
separate mini-application called Virtual Molecule Screening (VMS). This VMS mini-application 
has been mapped on the FPGA. Results of the FPGA mapping have been presented in the 
second intermediate porting deliverable. In this deliverable we present multi-node porting using 
MPI, hardware verification using an Alveo Datacenter card and OpenCL and also kernel design 
space optimization. 

8.1.1  Final ported application software 

PLATFORM 
REQUIREMENTS 

Required 	 Achieved 
implemented	

Hardware ● Xilinx	Zynq	UltraScale+	MPSoC	ZCU102 
● Xilinx	Alveo	U200	PCIe	accelerator	card 
● EuroEXA	CRDB	single	node 
● Multi-node	x86	cluster 

Yes	
Yes	
Yes	
Yes	
	

Operating system Ubuntu Linux 16.04 or later yes 
Languages C++ yes 
Compilers Mercurium Compiler yes 
Programming 
models 

OmpSs@FPGA  

Low-level libraries Fixed-point template library (internal)  
High-level libraries None  

 

License 

The FPGA version of the VMS mini application has not been publicly released and is currently 
only available to the EuroEXA consortium. 

 

Description of the Ported Application 

The application has been ported to do inference using multiple nodes of the EuroEXA platform 
using MPI. The main MPI primitives are MPI_Isend/MPI_Irecv. We also use some collectives 
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(MPI_Reduce). We instantiate multiple instances of the same compute kernel, one instance per 
accelerator (FPGAs or GPUs) where the output of the accelerated kernel is combined using 
OmpSs (on a single node) and using MPI across nodes. We have verified the MPI porting on a  
commodity-hardware cluster with GPUs and CPUs, where each device (FPGA, GPU, CPU) has 
an optimized implementation of the VMS kernel. 

To mitigate the delay of the EuroEXA testbed we have done hardware verification on an Alveo 
U200 accelerator card. We ported our application to this platform using Vitis OpenCL + Vitis HLS 
version. 

This porting and verification on Alveo has allowed us to do a design space exploration of the 
optimal kernel parameters that yields best FPGA performance. A single kernel invocation 
processes one 5D block, and we explored all dimensions of the block. Namely: 

• Number of chemical compounds per block - Since we process one block per FPGA 
kernel and since starting a kernel on the FPGA incurs some overhead, we want to make 
the block size as large as possible. The downsize of a large block size is that we always 
need to allocate memory for the complete block, even if we do not fill it completely. 

• Number of molecule features - We use a word embedding to represent each molecule 
as a vector of 512 elements. This size allows us to accurately represent each molecule 
we want to generate and evaluate. Although possible, it was not needed to split this vector 
into smaller chunks for processing on the FPGA.   

• Number of protein targets per block - Together with the number of samples, the number 
of protein targets determines the output size and hence the required write-bandwidth to 
the DRAM on the EuroEXA. We have chosen to pick 128 of the most interesting protein 
targets. Fixing this number allows us to explore FPGA utilization by varying the number of 
samples. 

• Number of latent dimensions - This is the main indication of the model complexity. For 
our application to get good prediction a number between 30 and 100 is needed. We have 
opted for 32 giving us a kernel size that fits comfortably on the FPGA. 

• Number of samples of the posterior distribution – We need around 100 samples in the 
posterior distribution to obtain good results. We opted to make a kernel that processes 
only 16 samples and instantiate multiple kernels on the FPGA. We combine the samples 
from those different kernels on the CPU. This allows us to better utilize the multiple DRAM 
memories and the multiple SLRs, since we can connect one kernel to one SLR and one 
DRAM bank. 

The results will be presented in the exploitation deliverable (D2.7). 

8.1.2  Unique EuroEXA Features supported and exploited  

SMURFF heavily relies on the following unique features developed in the project: 

• Kernel off-loading to FPGA using OmpSs@FPGA: the VMS application relies on 
OmpSs@FPGA for FPGA acceleration. 
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• Task-based programming using OmpSs in general: the main SMURFF application takes 
advantage of task-based programming for shared-memory parallelization and load-
balancing. 

• Dataflow programming and data flow graph generation using MaxJ: we also evaluated the 
Maxeler programming model and found it to be equally potent for efficient kernel FPGA 
acceleration. 

• Fast low-latency asynchronous communication using GASPI: we have a GASPI/GPI 
implementation of the main SMURFF distributed implementation (called BPMF). This 
GASPI version outperforms the MPI version. 

• Excellent energy vs performance: our first evaluation of the FPGA version shows a 
performance on par with a GPU implementation at a much smaller energy consumption.  

The results will be presented in the exploitation deliverable (D2.7). 

8.1.3  Porting Issues and lesson learned  

Porting the code on the platform poses some specific challenge: 

• The code is written in C++ and we use OmpSs to offload relevant parts to the FPGAs, 
however OmpSs compiler presents some limitations on the use of C++.  
Solution: we isolated relevant FPGA code. 

• FPGA compilation and bitstream assembly is slow, however the design space exploration 
of code and its performance is mandatory. It is crucial to explore the best options and 
parameters for loop blocking, loop unrolling, fixed-point refinement, data-layout 
optimizations, and so on. 
Solution: we automate the space exploration using scripting and code generation in 
Python. 

• The FPGA toolchain (both EuroEXA internal as well as external tools) is not always 
mature. 
Solution: The toolchain became much more mature during the project. 
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9 INAF Applications 
9.1 GAlaxies with Dark matter and Gas intEracT (GADGET) 
As explained in deliverable D2.2, due to the complexity of the GADGET code (i.e. the considerable 
diversity of algorithms and data structures) we focused on several specific kernels that are crucial 
in well-defined tasks which are the building blocks of the GADGET architecture. 

Namely, we have identified the following kernels: 

• the direct N-Body force evaluation (referred in the following as kernel 1) 
• the domain-decomposition based on space-filling curves (referred in the following as 

kernel 3) 
• the tree building (referred in the following as kernel 3) 

Moreover, to enlarge the spectrum of test application, algorithm and 
computational/communication pattern included in our testing, we considered the possibility of 
using a mini-app extracted from the Pinocchio code (referred as Kernel 2) that was developed to 
test the reshuffle of computational domains on a grid (and is then memory- and communication-
intensive). 

In the final months of the project (since D2.5), we focused mainly on Kernels 1 and 3, which are 
our main targets in this project. In section 9.1.1, we discuss the improvements respect to the D2.5, 
in particular the optimization of the CRDB FPGA acceleration and the overall code improvements 
necessary to adapt the application to the Exa-scale platforms which have the same high-level 
feature of EuroEXA project. In fact, enhancing the adaptability, the memory-hierarchy awareness 
while lowering the amount of data travelling over the network are key features the code must be 
equipped with if we want to really benefit  of Exa-scale supercomputers, as the EuroEXA 
prototype. However, we are aware that the size of the final testbed that can be conceivably 
achieved for the EuroEXA platform is not going to be large enough to allow for an incontrovertible 
and definitive result in this regard. 

Kernel 1 was the more suited to be ported on FPGA, while Kernel 3 has been used to implement 
a re-engineering of the code following the general guidelines described in the previous deliverable 
D2.2 and D2.5 in order to evolve it to exploit the EuroEXA testbed 2 and 3 and future and emerging 
architecture sharing similar properties. 

 

9.1.1 Final Ported application Software 

Kernel 1: N-Body for direct force evaluation. 
It relies on a Hermite 6th-order integration scheme, as described in D2.2. 
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We implemented a direct N-body code in order to exploit FPGA as accelerators.  

Currently three versions of the code are available: 

1. the version, presented in D2.2, in which the host code is parallelized with hybrid 
MPI+OpenMP programming, while the computational kernels (one per each stage 
required by the Hermite solver) are parallelized with OpenCL in order to exploit GPUs; 

2. one version written in Standard C, optimized for CPUs, parallelized using MPI+OpenMP; 

3. the final code implementation, derived from the version presented in D2.5, fully 
OmpSs@FPGA compliant, which is able to run on the MPSoC Arm cores, exploiting the 
FPGA embedded in the EuroEXA CRDB. Moreover, this final ported code allows us to run 
on the single EuroEXA CRDB (without message-passing libraries support), as well as on 
the multi-FPGA EuroEXA system, as soon as it will be made available to WP2 partners. 

 

In summary, in this deliverable, we report the following improvements/porting steps, along with 
the code: 

1. we have ported the full application to OmpSs@FPGA to target the EuroEXA CRDB, 
benefitting from the previous kernel optimizations tested on both Zynq-US+ and Zynq-
7000; 

2. we have optimized our code using Vivado HLS toolchain, in order to efficiently exploit all 
FPGA boards on the EuroEXA testbeds; 

3. we further optimized the kernel using unique features of EuroEXA FPGAs, such as URAM, 
along with BRAM, on-chip memories, allowing the implementation of local arrays partition 
on flip-flop registers. We also rely on DATAFLOW HLS pragma to divide kernel functions 
in several compute blocks, and so to implement them as separated independent functions, 
able to perform in parallel different tasks; 

4. we designed the final application to target any architecture supported by OmpSs, allowing 
the programmer to easily fine-tune the FPGA parameters before starting the time-
consuming process of the bitstream creation; 

5. we collected baseline performance metrics (e.g. time-to-solution, GFLOPS) on the 
PRACE JUWELS cluster, for CPU only and GPU accelerated version of our application; 

6. we collected energy related metrics on the INFN Ferrara COKA cluster, to be later used 
for comparison/evaluation purposes.  

We have compiled and executed successfully our application on EuroEXA CRDB@STFC using 
a BURST_LEN=1024, FACTOR_UNROLL=8, running at 200 MHz, using the following resources 
on the VU9. 
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Table 5 Resource Utilization for INAF GADGET on CRDB 

 Used Available Utilization 
BRAM_18K      784 4320    18.15% 

DSP48E       3344 6840  48.89% 

FF         350848 2364480  14.84% 

LUT        348694 1182240  29.49% 

URAM           96 960  10.0% 

 

BRAM and URAM occupancy mainly depends upon the number of particles loaded in chunk (i.e. 
BURST_LEN), while DPS and LUT on the unrolling factor used in the loops (i.e 
FACTOR_UNROLL). 

Code release through GitHub 

This is the application repository where all the related software versions have been uploaded: 
https://github.com/euroexa/Exa-HiGPUs Each release corresponds to the status at a specific 
deliverable, thus v0.2.2 contains all the software released for D2.2, v0.2.5 contains the updates 
associated to the D2.5, while v0.2.6 contains the updated associated to this deliverable D2.6. 

 

Kernel 3: domain-decomposition and tree. 

We performed several developments on some fundamental GADGET’s kernels during this 
activity. Namely, we used the mini-app DDT (Domain-Decomposition and Tree), which we 
extracted from GADGET, to develop, experiment and test some advancements and re-
engineering of pillar algorithms and tasks. The goal is to exploit large Exa-scale platforms with a 
large number of cores and complex memory hierarchy and accelerators (e.g. GPUs and FPGAs 
on the same nodes). The target platform is the TB2 with VU9 accelerators keeping code portability 
thanks to the use of OmpSs runtime. 

While the work discussed in the previous section is directly linked to the specific FPGA feature of 
the EuroEXA target machine, the activity presented in this section has a more general perspective 
in the frame of re-engineering and adapting the scientific HPC code to the future Exa-scale 
platforms which share the same high-level features of the EuroEXA project. In fact, enhancing 
the adaptability, the memory-hierarchy awareness while lowering the amount of data travelling 
over the network are key features the code must be equipped with. Moreover, while what the 
future Exa-scale platform will exactly look like is still to be established, what seems to be assured 
is that it will present a strong computational heterogeneity; hence, a good design that allows to 
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“swap” fundamental building blocks and/or algorithms and their implementation is also of 
fundamental importance. 

In this document we report specifically about the following activities: 

1. improvements in the domain-decomposition and tree-building strategies; 

2. the threadization of the tree construction; 

3. a proof-of-concept C++-ization of the fundamental data structures towards a 
modularization of the entire code; 

4. preliminary works on the explicit NUMA-awareness;  

5. Improvements in the acceleration of the code. 

 

Improvements in the domain-decomposition and tree-building strategies. The GADGET’s 
domain-decomposition is based on the construction of a top-oct-tree (top-tree in the following) 
that represents the distribution in space of bunches of particles (while the complete oct-tree is the 
representation of the same distribution down to the level of each single particle). The leaves of 
the top-tree are the smallest units of the domain decomposition that is defined as the assignment 
of sets of those bunches to each MPI process. The relative weight of a “bunch” of particles is a 
run-time parameter: namely, it is given as a (small) fraction f of the average number of particles 
per MPI process weight = Ntotal /NMPI * f . The larger it is, the faster will be the top-tree construction 
and the coarser will be the attainable domain decomposition; the smaller it is, the better the 
domain decomposition, at the cost of a larger time spent in the construction. 

The particles are sorted by their one-dimensional id along a space-filling curve (SF-curve; namely, 
a Peano-Hilbert curve), so that each top-leaf, which is by construction a parallelepiped, could be 
seen as a segment of the SF-curve and the ensemble of top-leaves as subsequent segments 
along the same SF-curve. 

Then, once the top-leaves are individuated following the constraint of f, they are grouped in 
compact clusters (the “sub-domains) with a “split” operation along the SF-curve so that each 
cluster is approximately equal in both its computational- and memory- loads. Those sub-domains 
are then assigned to the different MPI processes in order to minimize the work imbalance within 
the limit of the maximum allowed memory imbalance. The sub-domains assigned to the MPI 
processes are not necessarily adjacent and in general they are not. 

In this process there are 3 sensitive factors: (a) the precision of the particles’ distribution inside 
the leaves of the top-tree, (b) the quality of the split and (c) the assignment function of the domains 
to the MPI processes. 

(a) The top-tree construction 
Once each process has built its own top-tree, all the top-trees must be merged to achieve a 
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global top-tree whose top-leaves will be the units of the upcoming domain decomposition. Any 
process is unaware of the detailed particles’ distribution within each top-leaf in any other 
process, and if it is the case to split a top-leaf in 8 sub-leaves its overall load is equally 
subdivided in the 8 new top-leaves. The initial algorithm implemented by GADGET has a major 
flaw: that assumption leads to an “instability” in the domain decomposition because the top-tree 
representation does not strictly depend only on the particles’ position but also on their 
distribution among processes. As a result, time is spent in shuffling the particles among 
processes and exchanging particles between MPI tasks.  

 

Figure 9.1 The effect of dd in shuffling particles across MPI processes. The x-axis represents the percentage 
of particles and processes participating the shuffling. The bar plots come in pairs: the master branch to the 

left and the dev branch to the right, for each value of shuffle. The speed up of master is also shown on top of 
dev bars. The graph on top shows the percentage of particles exchanged and processes communications. 

These instances were run on  4 X 48 = 192 processors. 

Figure 9.1 shows this effect (see the caption for details: in the following plots “master” will label 
the original GADGET’s code and “dev” will label our re-engineered code). In the same figure we 
show the effect of our modifications, which amount in using a larger amount of memory to store 
exactly the same representation of the top-tree on all the processes. While this algorithm involves 
a larger communication among processes the actual time spent on it is not larger (blue fraction of 
bars in Figure 9.1), since the reduction operation between processes is now associative it could 
be handled in a log(p) time (where p is the number of MPI processes). 

The decomposition is now “stable”, i.e. it depends only on the particles’ position P. This stability 
determines the fact that a significantly smaller fraction of particles is exchanged due to the change 
of particles position if that change is small enough with respect to the computational domain. The 
tree construction is at least as efficient as before in terms of time taken while the number of 
exchanged particles and the exchange time are very significantly reduced (the speed-up factors 
are indicated on the top of the dev-related bars in Figure 9.1). 
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(b), (c) The split and assign strategy. 
We improved the Split-and-Assign algorithm that individuates the sub-domains along the SF-
curve which represents the top-leaves, and that then groups them into domains to be assigned 
to the MPI processes. 

As first, we enhanced the accuracy of the split, which now is guaranteed to be optimal. 

 

Figure 9.2 Assign routines' time to solution, with multiple-domains M = 4. As result of these algorithms pM 
domains are assigned to p processes. 

Secondly, we enhanced both the efficiency and the accuracy of the Assign part, which now is also 
guaranteed to find a nearly-optimal clustering of the sub-domain. 

Taking into account that, obviously, no parallel run could be faster than the slowest of its 
processes and that the quality of the work-imbalance largely determines the impairing among the 
processes between two domain decompositions, also these developments may contribute 
significantly not only to reduce the run-time but also to a better locality in the domain 
decomposition and hence to a better exploitation of shared memory and a smaller data exchange 
through the network. 

Figure 9.2 shows that our new Assign routine is considerably faster than the original one; although 
the absolute timings are relatively small (notice that the timescale on y-axis is in ms), the reader 
should consider that the domain-decomposition, being the responsible of the work-imbalance, 
should be performed as often as possible and, hence, possibly tens of thousands of times along 
a simulation. 

2 - Threadization of the tree construction; 

Having a multi-threaded code is of paramount importance on modern architecture because (i) it 
adds the mandatory flexibility in the allocation of computational resources and shared memory 
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resources and (ii) it allows to control the “effective communication surface” among the MPI 
processes and then the network usage. In the original GADGET code both the tree construction 
and the tree walking were not threaded (while most of the code is). We underwent the 
threadization of this utterly important part of the code starting from the top-tree construction. 

The changes in the algorithms that have been discussed in the previous section and, 
consequently, on the related data structures, and the shift from recursive to iterative 
implementations, allowed a quite simple treatment of the loops that depend linearly on the number 
of particles. 

We show in the following figures the comparison between the OpenMP-ized version of the dev 
code, labelled as “omp”, and the original code, labelled as “master”. All the test runs were 
performed on a test-case with 108 particles on 8 nodes of a machine having 4 sockets per node 
and 12 cores per socket. 

 

Figure 9.3 Profile of the top-tree constructions for the master, dev, and OMP versions, using 1 or 12 MPI 
processes per socket and different number of threads. These instances were run on 8 computing nodes 

using an initial condition file consisting of 2 x 10^8 particles. 

Figure 9.3 shows the performance of the threaded version of the top-tree construction. As it is 
self-evident, (i) our dev version is in general more efficient than the master version both using a 
single MPI process (first two lines) and 12 MPI processes per node; (ii) the OpenMP 
threadization is quite efficient and greatly reduces the run-time of all the code sections as the 
number of threads increases. 
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Figure 9.4 Profile of the domain decomposition for the master, dev and omp versions using 1 or 12 MPI 
processes per socket and different number of threads. These instances were run on 8 computing nodes 

using an initial condition file consisting of 2 x 10^8 particles 

Figure 9.4 shows the effect of the threadization in the top-tree construction on the overall 
domain-decomposition. Notice that the run-time of the exchange part (the red fraction of the 
bars) is affected by the re-engineering described in the previous section (less particles being 
exchanged and a lower communication surface). 

The CountToGo section is yet to be threaded and as such is not affected. 

However, both the top-tree construction (the blue fraction) and other minor operations (green 
fraction) exhibit a substantial improvement. 

Proof-of-concept C++-ization of the fundamental data structures 

It is obviously important for a scientific code to be easily modifiable and maintainable and this is 
where GADGET currently comes short. The details of the tree data structure are deeply 
intertwined in all parts of the code that use the tree for their calculations. Whenever one needs to 
introduce a new physical module, it is needed to modify the core parts of the code. This leads to 
a complicated and barely human-readable “#ifdef forest”. The ideal situation, however, should not 
require every developer to ever touch core functionality and instead let them concentrate on their 
particular physics problem, implementing new functions in a separate file while following clear 
instructions on the APIs. 

The main goal of the work discussed in this section is to develop a proof-of-concept framework to 
make the modularization straightforward and provide the future developers a convenient set of 
tools for adding new features to GADGET. 
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To accomplish this goal, we re-designed completely new data structures using the advanced 
features available in the standard C++17; most of the complicated additions needed to realize our 
version do not come with runtime penalty, as we use templates and compile time loops/conditions 
thus resolving everything “complicated” at compile time. 

Our main change is to shift to a mixed property-based workflow, so that the processes a particle 
participates in are driven by its “properties”. The main rationales behind this strategy are: (i) to be 
able to individuate well-defined clusters of properties, i.e. data structures, of limited size; for 
instance, the “kinetic” property that could be listed as mass, id, 3d-position and 3d-velocity, the 
“hydro” property which is made of density, temperature, hydrodynamic acceleration, …, and so 
on. 

To test the fully functional proof-of-concept, we re-engineered the DDT mini-app, including the 
domain-decomposition, the tree-construction and the tree-building, also developing an example 
function which mimics the density loop of the GADGET code. 

 

Figure 9.5 C++ versus original DDT implementation.  

Figure 9.5 presents the timing of our C++ version of the code compared with the original one. The 
timings are reported for 2 different test cases, i.e. 2 snapshots from real simulations: snap_le_134 
contains 2 million particles whereas snap_022 contains about 10 million particles. Note: both of 
the examples represent the evolution of a galaxy cluster at redshift z ~ 0 and z ~ 4.1 respectively, 
so that the former refers to a much later time and hence to a much more clustered matter 
distribution. 

That is why snap_le_134, even though it contains about 1/5 of particles, requires a larger tree-
building time and a comparable look-around time. 

4 - Explicit NUMA-awareness  

At the moment of writing, we are still developing the best strategy to implement explicit NUMA 
awareness in the DDT mini-app. We detail our first experience of it in the “Issues and lessons 
learned” section. 
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We coupled our NUMA-exploration library, that we already mentioned in previous documents, 
with the DDT app and as such the app is now aware of the machine topology. The MPI processes 
are grouped in a hierarchy of communicators as shown in the table here below 

hierarchy level description 
WORLD collects only the master processes of all the 

hosts 
HOST collects all the processes that run on the 

same host 
ISLAND possible intermediate level between NUMA 

regions and HOST; it may account for an 
internal connection different than the network 
among hosts 

REGION collects all the processes that run on the 
same NUMA region 

 

Each Level is “collapsed” in the higher one whenever the two levels overlaps: for instance, a 
common situation is that the “ISLAND” level does not exist - typically, a computational node is 
also a HOST and has a unique NUMA region - and then the levels “REGION”, “ISLAND” and 
“HOST” coincide and are a unique one. 

At each level at which the memory is shared, the MPI processes create MPI memory windows 
explicitly shared and non-contiguous. 

The rationale that drives our development is (i) to minimize the data exchanged through the 
network, (ii) to minimize the “effective communication surface”, i.e. the number of MPI processes 
that take part in a data exchange given the same amount of data, (iii) to enhance the exploitation 
of shared memory resources and (iv) to avoid the synchronization through message passing 
within the largest possible subsets of MPI processes: for instance, both neighbours search and 
tree building could be handled more effectively at host-level if the tree structure was held in a 
shared memory region and accessible to all the processes 

 

 

PLATFORM 
REQUIREMENTS 

Required  Achieved 
implemented 

Hardware x86/Arm + Xilinx FPGA yes 
Operating system GNU/Linux yes 
Languages C / C++ (on x86/ARM) yes 
Compilers GCC, Xilinx Vivado SDSoC 

SDK 
yes 

Programming models C/C++ OmpSx Xilinx SDSoC 
SDK 

yes 

Low-level libraries   
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High-level libraries MPI yes 
 

9.1.2  Unique EuroEXA Features supported and exploited 

From the performance point of view, the most important unique feature of FPGA accelerators, 
which we exploited is the presence of on-chip memories, allowing the implementation of local 
arrays partition on flip-flop registers. On the other side, we largely based our porting on 
OmpSs@FPGA runtime that has been developed specifically for our platform.  

On the other side optimized communication and memory access is crucial in order to benefit from 
extreme Exa-scale platforms; this requires excellent network capabilities and optimized MPI 
implementations. Subject to the availability of an MPI stack for the UNIMEM capabilities of the 
EuroEXA architecture, this could yield significant improvements to performance of our codes. 

9.1.3  Porting Issues and Lesson Learned 

During the 3rd year of the project, we faced a number of issues regarding the porting of the 
application on different FPGA boards supported by OmpSs@FPGA.  

● OmpSs@FPGA v2.1.1: 

○ the main issue was related to the input/output structure data type, on which our 
code relies, where the application did not work properly despite the bitstream being 
successfully created Working closely with the development team of 
OmpSs@FPGA at BSC, we figured out that the issue was related to how HLS was 
accessing the structure elements, generating a separate port for each struct 
element. More in detail, it generates accesses to non-valid memory locations as 
we are generating memory addresses assuming the sizeof of the full struct. The 
solution was to add the extra HLS directive (#pragma HLS data_pack 
variable=input_struct_variable) in the acceleration wrapper managed by 
OmpSs@FPGA. This issue has been fixed on the latest release of OmpSs@FPGA 
v2.5.2-euroexa and now the programmer is no longer forced to keep the 
Mercurium intermediate files and edit them as desired, before starting the time 
consuming process of creation of the bitstream. 

● CRDB@STFC: 

○ when we use a large kernel size (>80% of DSPs usage) on EuroEXA CRDB FPGA, 
the application hangs. As suggested by other WP2 partners, a possible solution is 
to split the large kernel into 2 (or even more) kernels in the same CRDB. 
Nevertheless, we claim that we could not get any benefit in terms of performance 
because the kernels use the same memory channels, so the data access is 
mutually exclusive; 
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○ the biggest obstacle in the porting process is mapping the kernel using >80% of 
DSPs on VU9, requiring the design to span all three SLRs. This, in turn, requires 
signals to be passed to all three SLRs and makes it hard for the compiler to perform 
the place and routing processes during the bitstream creation. The latest 
OmpSs@FPGA v3.2.1-euroexa allows the programmer to select in which SLR to 
place the kernel and which memory banks to use. We split the large kernel into 2 
or 3 kernels targeting different SLRs but we could not get speedups because the 
access to DDR banks is mutually exclusive; 

○ the design space exploration of code and performance in large FPGAs like the 
VU9 is crucial. Analysis performance with Vivado HLS and scripting can allow to 
automate the process. However, the most time-consuming FPGA compilation is 
due to the place and routing processes during the bitstream creation (many core-
hours using a x86 server targeting the VU9). To create a valid bitstream, it may be 
necessary to repeat the process several times. This is due to the fact that during 
the bitstream creation the programmer may discover that it is necessary to reduce 
the FPGA resource-usage (e.g. lowering the unrolling factor in loops through 
Vivado HLS directives) or the clock frequency (so reducing the kernel 
performance), or in the worst case scenario, to redesign the algorithm targeting 
the FPGA. This is a very time consuming process; 

○ we tested the usage of the shared memory using MPI windows using both normal 
(through MPI_Win_allocate) and explicitly shared-memory (through 
MPI_Win_allocate_shared) allocations. Shared-memory has been called 
having the parameter alloc_shared_noncontig set to true in order to let the 
memory to be locally allocated for each MPI process; 

○ we found - which appears to be undocumented in general, since we did not find 
any mention of that - that many different MPI implementation (OpenMPI, IntelMPI 
and SpectrumMPI) proceed via allocating a page of memory in the memory bank 
of the parent process. See Figure 9.6 in which we print out the memory allocation 
of 12 MPI tasks running on 3 sockets (4 per socket). All of them allocate 97658 
pages; however, tasks 4-7, which run on NUMA-node 1, and tasks 8-11, which run 
on NUMA-node 2, allocate all but 1 page in their own memory and 1 still in the 
NUMA-node 0’s bank.  We think that the mentioned single page is needed to 
provide a sort of allocation table, like the TLB for the operating system. The result 
is that the shared-memory needs to be warmed-up before accessing it to be 
efficient; otherwise, accessing it, either in reading or in writing, results to be 
extremely slow. Hence, that means that any strategy must take into account that 
the shared-memory windows must be allocated as resident service area and not 
as on-the-fly spots to be allocated and de-allocated for single operations. We think 
that this may be helpful in general and also, eventually, in the adaptation of the 
MPI library to the specific target machine. 
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Figure 9.6 The memory allocation of 12 MPI tasks running on 3 sockets (4 per sockets) 

 

 

9.2 GaiaGsr 
The goal of AVU-GaiaGsr code is to produce a Global Sphere Reconstruction using a subset of 
the Gaia ESA Satellite observations. We employed a modified version of the PPN-RAMOD model 
where: 

• space-time is represented by the PPN approximation of the Schwarzschild metric of the 
Sun; 

• observations are the Gaia-like abscissae along the satellite scanning direction, computed 
with respect to the satellite's reference frame. 

Unknowns are: 

• the astrometric unknowns, represented by the spatial coordinates of the stars along with 
their proper motions 

• the attitude unknowns, given by an appropriate B-spline representation of the Rodrigues 
parameters of the satellite covering the whole mission duration 

• the instrumental parameters; 
• the global parameter of the PPN formalism, used to test General Relativity against other 

alternative theories of gravity. 

In general, an astrometric model like the above results in a non-linear equation 
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To solve such a system, we use a hybrid implementation of PC-LSQR, an iterative method for 
solving large and sparse linear equations, with the aid of some parallelization techniques and of 
an ad-hoc compression algorithm of the sparse system matrix A. The LSQR method consists of 
a conjugate-gradient type algorithm which is equivalent to compute, at each iteration i, an 
approximate solution  

(1) x(i)=(ATA)-1ATb(i-1) 

and then evaluates the vector of residuals 

(2) r(i)=b-Ax(i)  

which has to be minimized in the least-squares sense, according to suitable convergence 
conditions defined by the algorithm itself. To solve the system, an additional number of constraints 
equations are set. The A matrix is represented in Figure 9.7 and is organized as shown. 

 

Figure 9.7 Data distribution in the parallel environment: different colors represent the system portion 
assigned to a single MPI task, with very few replica vector portions. 

The code was designed to solve the system equation with 108 primary stars observed an average 
of 7⋅102 times at the end of the 5 years of the mission lifetime. The system matrix A is represented 
as a very large sparse matrix. Figure 9.7 represents the data distribution in the parallel 
environment: different colors represent the system portion assigned to a single MPI task, with 
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very few replica vector portions. On each MPI task, each iteration (above described) is executed 
using the OpenMP paradigm. 

The parallel procedure is organized in different modules that are necessary to complete the 
process: data are provided by DPC (Data Processing Center) pipeline in FITS formats describing 
the system and must be re-organized in binary format to fill the system as above described. When 
the main run is complete and a solution is obtained, the final results must be converted into FITS 
datafile format and organized to be processed on the DPC complete pipeline. Sometimes also 
intermediate results must be converted into FITS files. 

9.2.1 Final ported application Software 

The core app has been extracted from the pipeline of the ESA Gaia mission (currently in 
production) which is a complex application based on a large set of codes and algorithms 
employing MPI+OpenMP. 

In the context of EuroEXA the kernel has been exploited in two different versions: one using a 
parallel paradigm with MPI and OmpSs and a second one with MPI + OpenACC.  

The hardest task to accomplish in the porting of the code was the positioning of the directives 
managing the data transfers between the host and the device: an inconvenient placing of these 
directives might make the computation dominated by the data movements, deleting the potential 
gain in performance. In our porting, we move ~95% of the data at the beginning of the entire cycle 
of iterations of the LSQR algorithm, making the code compute-bound rather than memory bound. 
The quantities that we transfer at the beginning of all the iterations are not modified during the 
computation and they are: 

1. The 1D vector containing the compactified coefficient matrix A (the matrix A with the only 
non-zero elements for each observation) (systemMatrix) 

2. The 1D vector of indices pointing to the position that each element of the compactified 
coefficient matrix had in the original total matrix A for the astrometric and the attitude 
sections (matrixIndex) 

3. The 1D vector of indices pointing to the position that each element of the compactified 
coefficient matrix had in the original total matrix A for the instrumental section (instrCol) 

4. The number of observations assigned to each MPI process (mapNoss) 

5. The number of coefficients assigned to each MPI process (mapNcoeff) 

6. The 1D vector containing the number of non-zero elements for each constraint equation 
(instrConstrIlung). 

The only quantities that need to be copied from the host to the device and from the device to the 
host at each iteration of the LSQR algorithm are the 1D vectors of the known terms, b 
(knownTerms), and of the unknowns, x (vVect), that are updated at each time step. Precisely, the 
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LSQR algorithm iterates the solution, up to convergence, through these two steps, respectively 
called “aprod mode 1” and “aprod mode 2”: 

1. " = $	 × 	' 

2. ' = $! × " 

that perform the calculations expressed in Eqs. (1) and (2) in Section 9.2. 

In the original MPI + OpenMP code, the computation related to modes 1 and 2 was performed in 
a separate routine, the aprod function, called at each iteration of the lsqr algorithm. To better 
handle the data dependencies and to optimize the code, we refactored the application, integrating 
the aprod mode 1 and 2 functions in the lsqr function. Specifically, these two new functions 
computing the aprod modes 1 and 2 take as input all the variables necessary for the computation 

SMP Acceleration: MPI + OmpSs 

The original AVU-GSR code from which we extracted the mini-app  is written using a parallel 
paradigm employing MPI and OpenMP. Each MPI task opens a set of OMP threads so that all 
the specific threads of a task run on a single node. The code is “thread-based”: each thread has 
a unique identifier and, depending on the specific input data and the matrix geometry, the 
algorithm has been designed to optimize the load balancing between threads of each MPI task. 

In order to use OmpSs the kernel was rewritten changing the paradigm from “thread-based” 
approach to “task-based”. We have ported and tested the application on the quad-CRDB at 
TOPIC exploiting the SMPs available in all nodes. The FPGA exploitation would require a (i) a 
deep refactoring of the host-accelerator communications and (ii) re-engineering of pillar 
algorithms of the application to benefit from FPGA acceleration. We start to tackle these items 
using GPUs, as described in the following. 

GPU Acceleration: MPI + OpenACC 

The application parallelized with MPI+OpenMP was also ported on GPU accelerators by replacing 
OpenMP with the OpenACC paradigm. With this porting, the computation of the equations 
(observations) assigned to each MPI process (coloured stripes in Figure 9.7) are parallelized on 
the GPU threads rather than on the CPU threads. Specifically, we run the MPI+OpenACC 
application on a node of CINECA Marconi100, a cluster computer having 980 computing nodes 
with two sockets per node, 16 physical cores per socket, 4 virtual cores per physical core and a 
memory of 256 GB. For each node, Marconi100 has 4 NVIDIA Volta V100 GPUs with a memory 
of 16GB each. 

The code ported with MPI+OpenACC runs on multiple GPUs, one per MPI task. On a node of 
Marconi100, with 4 GPUs, the optimal configuration to run the code is on 4 MPI processes, where 
the computation related to a single MPI task is assigned to a single GPU device. To compare the 
performances between the code written in MPI+OpenACC and in MPI+OpenMP we refer to a 
computation run on 4 MPI tasks.   
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We show below a schematic version of an extract of the code where these data transfers are 
highlighted. 

#pragma acc enter data 
copyin(systemMatrix,matrixIndex,instrCol,mapNoss,mapNcoeff,instrConstrIlung) 

... 

while(convergence condition) 

{ 

... 

#pragma acc enter data copyin(vVect,knownTerms) 
aprod_mode1(vVect, knownTerms, systemMatrix, matrixIndex, instrCol, instrConstrIlung, mapNoss, 
mapNcoeff); 
#pragma acc exit data copyout(vVect,knownTerms) 
 
... 
 
#pragma acc enter data copyin(vVect,knownTerms) 
aprod_mode2(vVect, knownTerms, systemMatrix, matrixIndex, instrCol, instrConstrIlung, mapNoss, 
mapNcoeff); 
#pragma acc exit data copyout(vVect,knownTerms) 
 
... 

} 

 

This porting provides a speedup of ~1.3 per LSQR  iteration with respect to the code parallelized 
with OpenMP, but further optimizations are in progress to obtain higher gains. This result can be 
visualized in the left-hand panel of the Figure 9.8, that shows the computation time of each LSQR 
iteration against the number of MPI tasks per node (bottom horizontal axis) on an entire node of 
Marconi100 for the code parallelized with MPI+OpenACC (red line) and for the code parallelized 
with OpenMP (blue line). The top horizontal axis represents the number of OpenMP threads. The 
middle panel shows the computation of the only mode 1 (speedup of 0.7) and the right panel of 
the only mode 2 (speedup of 2.5). 
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Figure 9.8 GaiaGsr OpenACC porting results at CINECA Marconi 100  

 

 

9.2.2 Unique EuroEXA Features supported and exploited 

The GaiaGsr application aims to utilize and exploit a number of unique features of the EuroEXA 
platform which heavily facilitated the conversion of the original code to a fully synthesizable one. 

In particular we are using OmpSs runtime to offload computations in a SMP manner. 

9.2.3 Porting Issues and Lesson Learned 

The porting of the code to the FPGA employing OmpSs has required us to change the paradigm 
from “thread-based” approach to “task-based”, isolating the most computationally intensive 
portion to run on the accelerator.  

The substantial gain in performance resulting from the parallelization over the Accelerators, might 
be lost due to the time employed in the data transfers between the host and the device. The 
porting of the code implied a careful study of the strategical points where to transfer data such 
that they did not dominate the overall computation and a deeper analysis for the insertion of the 
pragma instructions in the different code sections. 

9.3 LOFAR Gridding Code 
LOFAR (Low-Frequency Array) is an interferometric array of radio telescopes made of small 
antennas organized in several stations distributed in Europe. It makes observations of the sky in 
the 10MHz to 240MHz frequency range and exploits the aperture synthesis technique, which 
consists of a sophisticated data processing methodologies to obtain sky images from the collected 
signals, delivering the energy flux coming from a given region of the sky, at a given frequency.  
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Overall, the aperture synthesis methodology is performed in various steps (often repeated in 
multiple iterations), namely the calibration step, estimating and correcting for time, frequency and 
direction-dependent instrumental errors, followed by imaging, i.e. the process of converting the 
corrected visibilities into images through an inverse FFT calculation, then deconvolution corrects 
the resulting images for the incomplete sampling of the Fourier plane. Finally, denoising and 
source detection and characterisation are performed.  

A full analysis of all these steps of the LOFAR pipeline is beyond the scope of the project. We 
have hence focused on the most computationally demanding step when data grows to large 
volumes, as expected for the coming surveys of LOFAR. This is represented by the gridding 
algorithm of the imaging step, which consists in convolving the visibilities in the complex space to 
a cartesian mesh that can be then FFT-transformed to get the fluxes. This step, although simple 
from an algorithmic point of view, is challenging for HPC, due, in particular, to problems posed by 
efficient memory usage (in terms of distribution of data, locality of memory access, race 
conditions). Any solution that can optimize its execution has to be carefully explored. Furthermore, 
the application is data intensive and stresses the I/O phase which has to be properly parallelised 
and supported by the employ of fast I/O devices and specialised software solutions.  

We have developed a code based on the w-stacking method by Offringa et al. (2014, MNRAS, 
444, 606) using the C programming language, with some C++ extensions required by the CUDA 
GPU implementation, adopting a procedural programming approach. Schematically, the resulting 
code is shown in Figure 9.9, in which we highlight the parts that have been subject to a distributed 
parallel implementation and those that have been also accelerated through multi/many-threads 
approaches. 

 

Figure 9.9 Schematic Imagingvcode architecture. Different kind of HPC enabling are highlighted. 
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9.3.1  Final ported application software 

In the project we aim at experimenting the gridding code on different HPC architectures. The initial 
implementation has been enabled to HPC by using MPI for the distributed parallelism, OpenMP 
for multithreading and CUDA for the GPU.  

The I/O phase, originally based on the adoption of the CASACORE library, has been 
reimplemented in order to avoid any kind of dependence from external libraries and get rid of the 
Python driver. Parallel data reading has been implemented adopting basic POSIX solutions. 
However, further investigation regarding the adoption of MPI-I/O is in progress.  

The resulting code has been ported to the ARM architecture and is in the process of being enabled 
to FPGA adopting the OmpSs programming model. 

PLATFORM 
REQUIREMENTS 

Required  Achieved 
implemented 

Hardware x86/Arm + Xilinx FPGA yes 

Operating system Unix-like yes 

Languages C yes 

Compilers C++ NVCC OpenMP >= 4.5  yes 

Programming models MPI, OpenMP, CUDA, 
OmpSs@FPGA 

yes 

Low-level libraries MPI, OpenMP, CUDA, OmpSs yes 

High-level libraries None  

 

License 

The code is open-source, currently unlicensed. 

9.3.2  Unique EuroEXA Features supported and exploited  

The LOFAR Gridding application can exploit both FPGA (using OmpSs@FPGA) accelerated 
computing and efficient I/O through the usage of the parallel distributed filesystem deployed on 
the testbed. 

9.3.3  Porting Issues and lesson learned  

The porting on the ARM platform (4 CPUs Cortex-A53) has been accomplished using the gcc 
compiler, version 9.3.0. At the time of these tests the MPI environment was not available, hence 
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only the OpenMP version could be tested. Compilation and linking were successful with no 
particular issues. Standard “-O3” optimization has been adopted, together with the specific 
options “-march=armv8-a -mtune=cortex-a53 -mcpu=cortex-a53 “.  

A number of benchmarks have been performed on the Power9 (P9) architecture available on the 
Marconi100 supercomputing system at CINECA (Italian national HPC centre - 
https://www.hpc.cineca.it/hardware/marconi100). The benchmarks measure both the computing 
capabilities of the ARM architecture and those of the available filesystem. In the following table 
we present the results obtained using a small dataset, made of around 600000 points in the u-v 
plane and corresponding 10 million visibilities (the actual measurements), for a total amount of 
about 100 MB. 

In the Table 6 “Input” refers to efficient (and MPI parallel, not exploited in these tests) binary data 
load, “Processing” refers to the time needed for the gridding and “Output” is the time to write the 
results in a ASCII file (much slower than the input). Times are all in seconds. 

Table 6 Gridding Code performance comparison.  We compare the results obtained in Marconi100 
supercomputer at CINECA with the ones of the platform. Times are in seconds. 

 Input Processing Output 

Nthreads ARM P9 ARM P9 ARM P9 

1 0.44 0.02 6.48 1.78 5.40 0.40 

2 0.38 0.02 3.38 1.16 5.44 0.40 

4 0.43 0.02 1.87 0.82 5.21 0.41 

 

 

The processing time shows ARM results to be about 4 times slower than Power9 on a single 
core/thread. Multithreading, however, appears to be more efficient scaling almost linearly with the 
number of threads. On 4 threads the ARM architecture results to be slightly more than twice 
slower than the Power9. 

The processing time has also been compared to that obtained using the V100 GPU available on 
the Marconi100 system, which runs in 0.24sec (faster than the CPU, but not so much, due to 
small dataset size which leads to an inefficient exploitation of the accelerator).  

It is clear, however, how the component that has to be highly improved is the I/O subsystem, 
which leads to a strong slow-down of the application compared to that available for the Power9 
processor (GPFS filesystem). This is even more crucial when datasets of realistic size (>, >> GB) 
are considered. 
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10 BSC Application 
10.1 Alya 
Alya is the multi-physics simulation code developed at Barcelona Supercomputing Center (BSC).1 

10.1.1 Final ported application software  

Alya’s MicroPP particle code is highly imbalanced due to the mix of linear and non-linear finite 
elements. BSC ported MicroPP to hybrid MPI + OmpSs-2@Cluster, which combines the MPI 
programming model with task offloading to address the load balance. The actual translation to 
MPI + OmpSs-2@Cluster was relatively straightforward, starting from the pure MPI version. The 
key change was to identify the main kernel using the #pragma oss task annotation, as shown in 
Figure 10.1. OmpSs-2@Cluster does not have strong support for C++, meaning, for example that 
task annotations cannot reference C++ members (e.g. material_list). Also there can be no 
dependencies among the dependencies to an offloaded task, e.g. gp_ptr->u_k depends on 
*gp_ptr.  In both cases, the fix is to capture the values in a local variable, as shown at the 
beginning of Figure 10.1. 

In addition, some changes were needed related to memory management: (a) use the OmpSs-2 
memory allocation primitives, lmalloc and dmalloc, and (b) pack the tpu and tpvars arrays into a 
single allocation to allow them to be described using a single dependency. Finally, the application 
was modified to not call MPI_Init and MPI_Finalize, which are in fact called by the runtime, and 
to use the application communicator provided by the runtime via nanos6_app_communicator(), in 
place of MPI_COMM_WORLD. In total, 630 source code lines were added, modified or removed. 

By far the majority of the work in this task since D2.5 was in the Nanos6 runtime system, and the 
work has been documented in D3.3. In brief, we developed the initial implementation of the 
programming model and runtime to support hybrid MPI + OmpSs-2@Cluster, which was 
previously not supported. The hybrid support was integrated with BSC’s Dynamic Load 
Balancing (DLB) library’s DROM and LeWI support, in order to manage the sharing of resources 
within a single node (local vs offloaded tasks from different application MPI ranks). We also 
implemented a work-stealing load balancing scheduler and two approaches for multi-node load 
balancing (a local approach that converges to the solution and a global approach using a linear 
program formulation). Finally, many of the performance improvements reported in D3.3 were in 
response to performance issues exposed by MicroPP. 

material_t *tpmaterial0 = material_list[0]; 
material_t *tpmaterial1 = material_list[1]; 
material_t *tpmaterial2 = material_list[2]; 
// [...] 

 
1 Alya – High Performance Computational Mechanics. https://www.bsc.es/research-development/research-
areas/engineering-simulations/alya-high-performance-computational 
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double *tpu_k = gp_ptr->u_k; 
double *tpu_n = gp_ptr->u_n; 
double *tpvars_k = gp_ptr->vars_k; 
double *tpvars_n = gp_ptr->vars_n;    
// [...] 
 
 
if (gp_ptr->coupling == FE_LINEAR || 
      gp_ptr->coupling == MIX_RULE_CHAMIS) { 
 
      /* 
       * Computational cheap calculation 
       * stress = ctan_lin * strain 
       * 
       * All mixture rules are linear in Micropp 
       * so the homogenization of the stress tensor 
       * is this simple and cheap procedure. 
       */ 
 
      homogenize_linear(gp_ptr, tpell_cols, ell_cols_size); 
 
     } else if (gp_ptr->coupling == FE_ONE_WAY) { 
 
              #pragma oss task in(this[0])            \ 
                             in(tpell_cols[0; tell_cols_size])  \ 
                             in(tpmaterial0[0])             \ 
                             in(tpmaterial1[0])             \ 
                             in(tpmaterial2[0])             \ 
                             in(tpelem_type[0; tnelem])       \ 
                             inout(gp_ptr[0])         \ 
                             out(tpu_k[0; tnndim])        \ 
                             in(tpu_n[0; tnndim])         \ 
                             out(tpvars_k[0; tnvars])       \ 
                             in(tpvars_n[0; tnvars]) 
      homogenize_fe_one_way(gp_ptr, tpell_cols, tell_cols_size); 
 
     } else if (gp_ptr->coupling == FE_FULL) { 
      homogenize_fe_full(gp_ptr, tpell_cols, tell_cols_size); 
 
     } 

Figure 10.1 Identifying the non-linear finite-element kernel as an OmpSs-2 task 
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(a) 4 Vranks on 4 

nodes without 
offload 

(b) 4 V ranks on 4 
nodes with 

offload to next 

(c) 4 Vranks on 4 
nodes with 

offload to any 

(d) 4 Vranks on 2 
nodes without 

offload 
Figure 10.2: Representations of different executions of hybrid MPI + OmpSs@Cluster  

 

The execution of a hybrid MPI + OmpSs@cluster program can be represented as a graph, as 
shown by several examples in Figure 10.2. The MPI ranks visible to the application program are 
shown at the left-hand side of the figures and are labelled by the rank in the application’s 
communicator, which is known as the vrank (virtual rank). Figure 10(a) is an MPI-only execution 
of 4 vranks on 4 nodes and the bold lines indicate the node on which the main function, and 
therefore in this case the whole application rank, is executed. Figure 10(b) shows a scenario 
where OmpSs@Cluster is configured to enable offloading of tasks from each node to the next 
node sequentially, in case of load balancing issues. Figure 10(c) is the case in which all tasks 
from every vrank can be executed on any node. Finally Figure 10(d) shows a case where 4 vranks 
are executed on 2 nodes, without task offloading. Each edge in these graphs corresponds to an 
MPI process visible to the Operating System and MPI library. 

Early in the design, we decided to allow arbitrary graphs such as these, which are determined 
automatically given the user’s selection of the number of vranks, number of nodes and the degree 
(number of nodes on which the tasks of each vrank can be executed). Limiting the degree controls 
the overhead in the runtime system of managing processes on multiple nodes that can execute 
tasks, and it also limits the number of Operating System processes created on each node, which 
would otherwise grow excessively in proportion to the number of vranks in the whole program. 

Figure 10.3 shows a timeline of MicroPP without task offloading, on four nodes, corresponding to 
the graph in Figure 10.2(a). The timeline is created as a Paraver trace by enabling Extrae 
instrumentation in the Nanos6.conf configuration file and then running a script to post-process the 
trace to create the stacked bar-graphs. The four colours correspond to the four vranks in this 
execution and the nodes are shown in sequence, from the top to the bottom of the window. We 
see in Figure 10.3(a) that each node executes tasks from the vrank running on that node and that 
while node 0 is almost fully busy, the other nodes are busy only about one third of the time. Figure 
10.3(b) shows the coarse-grained allocation of cores to vranks using DROM, which is fixed 
throughout the execution. 
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(a) Timeline of number of busy cores per node 

 

(b) Timeline of number of owned cores per node 

Figure 10.3: Timeline of numbers of busy and owned cores per node without task offloading 

Figure 10.4 shows a timeline of MicroPP on four nodes, with task offloading enabled to the next 
node sequentially, which corresponds to the graph in Figure 10.2(b). In this case, the first two 
nodes are busy most of the time. In addition, much of the work from vrank 1 has been moved 
from Node 1 to Node 2 to leave more compute resources for vrank 2. Figure 10.4(b) shows that 
most of the cores on nodes 0 and 1 have been allocated to vrank 0. Note that this plot shows the 
ownership of cores according to DROM. It is possible for temporarily unused cores to be given to 
a different rank, using LeWI, but the ownership allows them to be rapidly returned once they are 
needed again. While the execution is not perfect, the time to completion has been reduced by 
about 36%.  
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(a) Timeline of number of busy cores per node 

 

(b) Timeline of number of owned cores per node 

Figure 10.4: Timeline of numbers of busy and owned cores per node with task offloading to one more node 

Finally, Figure 10.5 shows a summary of the complete set of results. The y-axis is the execution 
time per timestep, in milliseconds. Each group of bars is labelled by the number of vranks and the 
number of nodes on which they are executed. For example, “4 on 2” means that 4 vranks are 
executed on 2 nodes. We see that in all cases task offloading improves the execution time, in 
some cases significantly, for example, as mentioned above, by 36% when running 4 vranks on 4 
nodes. The low improvement for 8 vranks on 8 nodes when offloading to one other process is 
because Vrank 0’s secondary node, Node 1, also has a high load. For this example, it is necessary 
to enable task offloading to 2 secondary processes, which brings the improvement in execution 
time to 30%. These are significant figures given the small investment in porting effort needed to 
enable improved load balancing in the application. 
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Figure 10.5: MicroPP results showing reduced execution time due to task offloading 

 

 

 

PLATFORM 
REQUIREMENTS 

Required  Achieved 
implemented 

Hardware x86/ARM cluster, e.g. MareNostrum 4 yes 
Operating system Linux yes 
Languages Fortran 90, some CUDA and OpenACC Yes/no 
Compilers -  
Programming models MPI, OpenMP and OmpSs yes 
Low-level libraries Only MPI yes 
High-level libraries METIS  

 

License 

Alya can be licensed free of cost under a collaboration agreement. The MicroPP implementation 
is available open-source and freely downloadable (https://github.com/Ergus/micropp) and usable 
under GPL-3 license. 
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10.1.2 Unique EuroEXA Features supported and exploited 

MicroPP and OmpSs-2@Cluster are compatible with Arm CPUs as used by EuroEXA TB2. Task 
offloading requires low-latency communication of small MPI messages (up to hundreds of bytes). 
Subject to the availability of an MPI stack for the UNIMEM capabilities of the EuroEXA 
architecture, this could yield significant improvements to performance by improving the ability to 
load balance. 

10.1.3 Porting Issues and lesson learned 

The main porting issues encountered were due to the initially low performance of the OmpSs-
2@Cluster runtime, which was optimized concurrently with the application porting. As discussed 
in D3.3, several performance and correctness issues were encountered and corrected in the 
runtime. Together more than 10x performance was made, with only minor changes in the 
application code. This work was shared with the porting of InfOli to OmpSs-2@Cluster. 
Optimization of the runtime and fixing bugs took much longer than anticipated. Diagnosing the 
issues required extensive performance debugging, which was done with Extrae/Paraver tracing.  

Most of the changes, apart from the task annotation in Figure 10.1 and similar annotations on 
tasks related on initialization, are related to memory management, since OmpSs-2@Cluster 
requires the application to use a custom allocator, and memory allocated by tasks cannot be used 
by sibling tasks or the parent. We are working on ways to relax this requirement. 
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11 ECMWF applications 
The IFS, or Integrated Forecast System, is the global weather forecasting and climate research 
atmospheric model co-developed by ECMWF and Meteo-France and used operationally at both 
ECMWF and Meteo-France. Results from ECMWF operations are disseminated to Member State 
weather services. It has been in continuous development and operational use since the 1980s, 
and has been run on various hardware architectures, such as shared and distributed memory 
machines, vector and scalar multi-core processors. 

The IFS is a so-called spectral model, as its dynamical core is based on the spectral transform 
method. One part of the computations is performed in spherical-harmonics space (dynamics), 
while the rest are performed in grid-point space (advection, physical processes), and spectral 
transforms are used to move from one space to the other at every model time step. The advection 
scheme is semi-Lagrangian, while time advancement is semi-implicit. The combination of these 
algorithmic choices allows very long time steps to be used, leading to efficient medium-range 
forecast computations. 

For the EuroEXA project, ECMWF demonstrates a key component of an atmospheric forecast, 
the cloud microphysics kernel, running on an FPGA. This kernel is representative of kernels in 
the physical parametrisations that constitute a significant fraction of the overall cost of a forecast. 
The IFS as a whole is run on the ARM host CPUs. 

11.1  ESCAPE dwarves - CLOUDSC 

11.1.1 Final ported application software 

The porting of meaningful amounts of the IFS physics code to FPGAs is a daunting task. The 
code language, style and scope mean that hand porting is unrealistic. For this reason, 
infrastructure targeted at allowing the automatic porting of physics kernels has been worked on. 

Currently, the source-to-source translation toolchain developed in-house includes different 
Fortran frontends that can parse source code into a high-level internal representation allowing 
composition of tailored code modification passes. From that, backends of varying degrees of 
maturity allow to produce Fortran, C, Python or Maxeler Java (MaxJ) source code. Since 
deliverable D2.5, significant progress has been made in developing data flow analysis and loop 
transformation passes including variable promotion and demotion that serve as building blocks in 
the transformation process of rewriting a physical parameterization. The current state is that this 
allows to automatically generate MaxJ source code, including necessary C and Fortran wrappers 
to call them from Fortran host code, capable of running in the simulation environment for 
algorithmic patterns commonly found in physical parameterizations. 

A crucial step on the road towards batch processing of physics kernels is the development of 
recipes that describe transformations required to translate the legacy code to the target 
programming model and achieve good performance. CLOUDSC, the operational cloud 
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microphysics parameterisation was chosen as a representative kernel for this task. Using the 
source-to-source translation toolchain, this was translated from Fortran 90 to C, yielding a version 
that produces bit-identical results. This version of the dwarf was then ported by hand to MaxJ. 
Additionally, an MPI-parallel version was developed that can work on independent streams of 
data in parallel, thus allowing the use of multiple devices to speed-up processing of larger data 
sets and emulating the use of the parameterisation in the full forecast model. 

PLATFORM 
REQUIREMENTS 

Required Achieved/Implemented 

Hardware Max5 DFE (DataFlow Engine) 
ALVEO U200 

yes 

Operating system -  
Languages MaxJ yes 
Compilers MaxCompiler yes 
Programming models -  
Low-level libraries -  
High-level libraries -  

 

License 

Source code for ESCAPE dwarves is governed by a specific ESCAPE license. CLOUDSC has 
been made available open source under Apache 2.0 in January 2022. Source code is available 
from https://github.com/ecmwf-ifs/dwarf-p-cloudsc . 

11.1.2 Unique EuroEXA Features supported and exploited 

The ESCAPE software has been ported on the platforms using the Maxeler MaxJ. 

11.1.3 Porting Issues and Lesson Learned 

One of the most important pieces in the porting process was the design of the algorithmic iteration 
space, as described in detail in the previous deliverable D2.5. Conceptually, this corresponds to 
defining a single loop that processes a set of input data streams and generates a stream of 
outputs which are modified exclusively in the current iteration of the loop. In practice this meant 
that loops had to be fused and reordered, impacting the scope of local variables and subsequently 
incurring the necessity to promote certain arrays. Doing so is a tedious task, in particular for long 
kernels with many local variables and loop-carried dependencies such as CLOUDSC, and can 
end in an error-prone trial-and-error style approach. The realisation that automatic dataflow 
analysis tools to identify cuts across variable scopes and dependencies might be able to aid this 
process significantly sparked the development of such analysis capabilities in the source-to-
source translation toolchain. 

Another pattern commonly found in the CLOUDSC kernel is the coexistence of similar streams of 
computation dependent on an inner loop condition. Identifying and sharing resources among such 
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mutually exclusive blocks poses the opportunity to save a considerable amount of resources. 
However, we have not yet developed strategies that would allow us to discover and resolve these 
situations reliably in all circumstances. 

The biggest obstacle in the manual porting process was mapping a kernel of this size to the limited 
real estate offered by the FPGA chip. The double precision version of the kernel used more than 
90% of some of the available resources on the Xilinx Virtex UltraScale+ VU9P FPGA used for 
development, requiring the design to span all three Super Logic Regions (SLR). This, in turn, 
requires signals to be passed to all three SLRs to keep them in lockstep and makes it harder for 
the compiler to get timings right and produce a bitstream successfully. To mitigate this problem 
to some extent, the so-called pipelining factor was lowered to reduce congestion in the pipeline 
without having to lower the clock frequency too much and the kernel was split into three parts: 
setup, solve and diagnostics with the second one being by far the biggest and requiring the most 
DSPs, even after moving as many additional computations into the setup phase for later use as 
possible. In the end, only after applying these modifications a double precision design was 
successfully generated. As a consequence, capabilities to move code sections were integrated 
into the source-to-source translation toolchain and can be triggered by in-source pragma 
annotations. 

The fact that CLOUDSC, like many other physical parameterisations, is very sensitive to 
numerical accuracy proved to be an obstacle in obtaining bit-identical results with the FPGA 
version and original CPU versions of the code. Tracking down the source of differences and 
proving correctness required in the end porting some of the Maxeler math library employed for 
frequently used exponential functions to CPU to be able to produce identical results, although 
different from the original CPU version. 

In preparation for TB3, the EuroEXA system supporting the Maxeler programming environment, 
bitstreams had to be generated for Alveo U200 FPGA accelerators. The FPGA chip on that card 
is virtually identical to the one used on Maxeler MAX5 dataflow engines, which had been used for 
developing the FPGA port. This allowed re-using the existing implementation of the kernel without 
modifications and required only minor changes to the accompanying so-called manager that 
specifies build configuration and data streams. 

Finally, a major enabler of successful development work and porting efforts was the Maxeler 
simulator. Considering that generating a bitstream for the double precision version takes in the 
order of days due to some of the resources offered by the FPGA being used almost entirely, this 
tool allowed testing correctness before undertaking the lengthy build procedure. 

11.2  Integrated Forecast System (IFS) 
The IFS as a whole has been tested on ARM platforms. The GNU compiler environment used to 
target EuroEXA host processors is capable of building the IFS and all its dependencies. The IFS 
in its entirety has not been ported to FPGAs, as this is well beyond the scope of the EuroEXA 
project. However, once the toolchain currently under development is able to target FPGA 
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execution from Fortran code and the software infrastructure for offloading parameterizations is in 
place in the full IFS, real tests can be carried out with specific physics components being offloaded 
to FPGA. 

The horizontal discretisation in IFS is based on the spectral transform methods and requires 
transformation from spectral to grid point space and back in every time step. This involves 
transposing data across nodes and results in global communication patterns that could potentially 
benefit from the UNIMEM capabilities of the EuroEXA architecture. 

Licence 

Source code for IFS is proprietary to ECMWF. 

11.2.1 Final ported application software 

The atmospheric forecast model of the IFS, including physical parameterizations and wave model, 
was compiled for Aarch64 instruction set architecture. The MPI communication features used in 
the IFS, in particular in the communication-intensive spectral transforms, are all contained in the 
list of features supported by the UNIMEM communication layer, promising compatibility with the 
interconnect features. 

11.2.2 Unique EuroEXA Features supported and exploited  

The IFS can run on ARM CPUs similar to those used in the EuroEXA platform and make extensive 
use of the interconnect between nodes. Subject to the availability of an MPI stack for the UNIMEM 
capabilities of the EuroEXA architecture, this could yield significant improvements to the parallel 
performance, in particular in the communication-intensive spectral transforms. 

11.2.3 Porting Issues and Lesson Learned 

Generating binaries for applications to run on the CRDB nodes of test bed 2 requires compiling 
for the Aarch64 instruction set architecture. The default development environment for these nodes 
consists of a x86 Docker container that contains the necessary cross-compilation infrastructure 
to create binaries for the target system. Unfortunately, cross-compiling a complex application like 
the IFS is not a trivial endeavour. In particular some external dependencies, such as the widely-
used HDF5 library, do not support cross-compilation. This is due to certain checks during the 
configure phase that are carried out by compiling and running small test programs to determine 
data type sizes. Naturally, this approach does not work when cross-compiling and, unfortunately, 
there is no officially supported way of providing this information in a different form. Instead of 
applying in-depth modifications to the build process, a qemu emulation environment was used 
with an Aarch64 Debian 9.6 image that comes with the same build toolchain as in the Docker 
container to produce binaries. 
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12 FORTH Applications 
12.1  Satellite Image Processing 

12.1.1 Final ported application software 

In D2.2 we presented our early efforts on the hardware implementation of the inference stage of 
a Neural Network (NN); the Neural Network was developed by researchers at FORTH and it 
expects as input signals of 1800 features.  

In D2.2 we created an early prototype of the architecture and we verified that our neural network 
is working properly both as a standalone design and as part of TB0. In this deliverable, we report 
the output of the next milestone, which involves the scaling of the architecture, both horizontally 
and vertically. We can achieve horizontal scaling with the use of multiple FPGAs and QFDBs. 

For the vertical scaling of the architecture, we have moved in two dimensions. First, we increased 
the operating batch size in a sustainable way. In other words, we optimized the architecture so 
that it can support more than one query in parallel without a proportional increase of resources. 
Secondly, we mitigated the design in a larger platform, such as the CRDB platform, which features 
a VU9 Xilinx FPGA which provides approximately four times more resources than the one used 
on the QFDB 

In this deliverable, the porting procedure provides post-synthesis results on the actual CRDB 
FPGA, combined with memory hierarchy design considerations from fully implemented and 
downloaded designs on the previous platform, the QFDB 

PLATFORM 
REQUIREMENTS 

Required Achieved/Implemented 

Hardware CRDB – ported architecture from 
QFDB 

Yes (achieved for QFDB – 
synthesized for CRDB) 

Operating system --  
Languages C++ yes 
Compilers Vivado yes 
Programming models OmpSs Planned – the CRDB porting of our 

architecture supports a clock rate 
of 200MHz, which is necessary 
for the integration with OmpSs,  
and leaves enough FPGA 
resources for OmpSs. 

Low-level libraries -  
High-level libraries -  

 

License 
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Proprietary to FORTH 

The architecture of the Neural Network used (and the data that have been used for training) are 
proprietary. 

12.1.2 Unique EuroEXA Features supported and exploited 

The application runs on ARM CPUs in the EuroEXA platform and makes extensive use of the 
interconnect between nodes. It uses the ARM CPU to store model parameters and load them to 
FPGAs when necessary. ARM CPUs also handle inputs and route them to proper available 
devices. The goal is to achieve in the end an elastic application, which in the presence of high 
load can scale to multiple boards.  

The CRDB hardware platform offers a large enough FPGA to provide enough parallelism for 
batches of up to 8-13 different inputs to be served in parallel without any latency or energy 
overheads 

12.1.3 Porting Issues and Lessons Learned 

Migrating the CNN design to the CRDB presented certain challenges. First of all, the custom IPs 
of the design have to be repackaged for the targeted part and we need to ascertain whether all 
Xilinx IPs used in the design are also available for the new target platform. We would then have 
to integrate the network into the CRDB architecture, which could potentially create problems or 
lower the performance of the network, due to sharing of processors resources. Problems with bus 
sizes are not anticipated and the design should pass Synthesis and Implementation with relative 
ease since the VU9 is a much larger FPGA. However, depending on whether or not an OS will be 
used, a driver may need to be written in place of the Vivado SDK program. It has to be noted here 
that the overabundance of resources makes batching most useful, but applying it would require a 
bottom up redesign of the architecture.  Another important problem we found is that, in QFDB, 
our architecture depends on the ARM processor to bring input and state data in-and-out of 
FPGAs. In CRDB, we had to refactor our design to replace ARM cores. The solution that we gave 
was to replace the ARM processor with a soft-core MicroBlaze CPU. Anyway a non-trivial platform 
migration from QFDB to CRDB has been done.  
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13 Summary 
This deliverable described in details final porting, optimization and adaptations of the applications 
on the EuroEXA platform based on available system software and runtime environments. The 
project is providing a set of runtimes and software and libraries designed optimized for EuroEXA 
testbeds (e.g. OmpSs, MaxJ, GAPSI, MPI etc). In the D2.4 we described their main features 
utilized by the applications as discussed in the sections above. Those runtimes and optimized 
libraries not only result into more efficient applications (e.g. in terms of performance or power 
consumption), but also impact positively on the porting activities simplifying the adaptation and 
also minimizing the hardware “lock in” that has a negative impact on applications maintainability 
beyond the project lifetime.   

For each of the tools and applications, we present the work done and the relevance for the project, 
with a general view towards Exa-scale. The applications have been used also to test the platform, 
during the deployment phases. The results of the optimizations and the performance studies will 
be presented in the evaluation deliverable. 

Respect to D2.5, we move the HPCG development and implementation discussion to WP3 
deliverable D3.5.  

Our work was extremely successful, and the results demonstrate the importance of a co-design 
that must involve all the layers of an HPC ecosystem: real application developers, system 
software and runtime developers and hardware developers. 

 

13.1  Porting considerations and Lesson Learned 
Beside the technical achievements, this work also allowed us to develop a good knowledge of the 
problems (and solutions) on porting and developing applications for Exa-scale platforms. Other 
communities and researchers could benefit of our experience, learnt lessons and failures. 

Porting applications to the FPGA is a more complex process than porting it to other accelerators. 
This is a time-consuming task due to the long compilation times that leads to a slow feedback 
loop between the code modifications and the production of performance results.  

Additionally, even though high level languages (e.g. C/C++ OpenCL) is supported by the Xilinx 
vendor, highly reducing the programming effort required, allowing a much higher software 
portability, we found that the ecosystem, on which OmpSs@FPGA and Maxeler compilers rely 
on, is not as mature as other traditional FPGA low level programming languages. On the other 
hand, the development of high-level frameworks, available in the context of the EuroEXA project, 
are fundamental towards a wide adoption of FPGAs in the HPC context. During the project also 
the  high-level programming abstractions for FPGAs evolved (as discussed in WP3 deliverables), 
libraries are being developed, and leading to better programmability and simplifying code porting. 
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In the following, we summarize the main cross-cutting issues faced by all WP2 partners: 

• all WP2 partners faced the challenge of code refactoring in order to exploit FPGAs on the 
CRDB. Most of the changes to the program are related to memory management between 
host and device. How the kernels communicate with the memory interface or among them 
is fundamental to achieve the desired performance from the FPGA devices;; 

• at the same time, many applications benefit from the unique feature of FPGA accelerators 
given by the presence of on-chip memories, such as BRAM and URAM. These kinds of 
memories allow, for instance, to easily implement as a shift register the complex stencil 
operations on which many applications rely on. On other architectures, such as CPUs and 
GPUs, custom data layouts have to be implemented to mitigate the sparse memory 
accesses, avoiding the possibility of reaching the theoretical maximum memory 
bandwidth;  

• another fundamental stage in the porting process was the design of the algorithmic 
iteration space. In practice, this means that loops had to be fused and/or reordered, 
heavily impacting the scope of local variables. Doing so is a tricky task, in particular for 
complex kernels with many loop-carried dependencies, and can be error-prone imposing 
an iterative trial-and-error style approach. The latest issue might be partially mitigated by 
automatic dataflow analysis tools to identify dependencies across variable scopes; 

• scientifical codes are very sensitive to numerical accuracy, which requires most of the time 
double precision arithmetic, which is resource-hungry and (occasionally) performance-
poor on FPGAs. Some WP2 partners experimented with data compression and reduced 
precision arithmetic if applicable as a feasible workaround to the limited data transfer rate, 
on-chip memory and DSPs. This imposed a further detailed analysis to provide a reliable 
implementation of the  kernels; 

• the design space exploration of code and performance in large FPGA like the VU9 on the 
CRDB is crucial. Analysis performance with HLS tools and scripting can allow to automate 
the process. However the most time consuming FPGA compilation is due to the place and 
routing processes during the bitstream creation. High Kolmogorov kernel complexity 
heavily impacts on the routability of the design of such a kernel. A lesson we learnt is that 
it is fundamental to split complex kernels in several compute blocks, to implement them 
as separated independent functions (function level pipeline), able to communicate 
between them thanks to data streams implemented as FIFOs in the FPGA.; 

• latest OmpSs@FPGA advanced hardware features  allow the programmer to constrain 
kernels to a particular Super Logic Region (SLR). Programmers benefit from these 
features, preventing the possibility that a kernel is automatically placed by Vivado  across 
2 SLRs, usually negatively impacting timing. Additionally, users can apply register slices 
in between the SLR crossings to further help timing at the cost of using additional fpga 
resources. The downside is that kernels have to be split into smaller kernels that fit single-
SLR resource capability. The latest process cannot be performed on complex kernels, so 
the biggest obstacle in the porting process is mapping the kernels using >80% of DSPs 
on the EuroEXA platform,  requiring the design to span all three SLRs; 
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• Applications are using either OmpSs@Cluster or a combination of MPI and OmpSs to use 
more nodes at the same time, and the results in terms of performance has been described 
in Deliverable 2.7  
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APPENDIX A  Applications Technical Annex. 
In this appendix we collect the technical aspects of two applications: Neuromarketing code and 
GADGET. In particular we summarize how to compile and run the codes on different 
architectures. 

How to compile the Neuromarketing code 
For the multi-node version (OpenMP in a single machine) 

You need comment the lines 24 & 25 of define_csp.fpga.h in order to execute the code in 
host executing the following command: g++ -fopenmp csp_tb.cpp MY_NNET.cpp 

You can select the number of kernels in line 105 of define_csp.fpga.h 

For the MPI-enabled version (MPI installed required) 

You need comment the lines 24 & 26 of define_csp.fpga.h in order to execute the code in 
host executing the following command: 

   * S/W compilation with MPI: mpicxx -O3 csp_tb_mpi.cpp MY_NNET.cpp -
mcmodel=large 

                 * S/W running: mpiexec -np 2 ./a.out (total_nodes + 1) 

You can select the number of MPI-nodes in line 105 of define_csp.fpga.h 

For the FPGA version 

You need comment out the line 24 of define_csp.fpga.h in order to execute the code in FPGA 
executing the following command (from ompss_at_fpga_2.5.2-euroexa docker): 

* make CROSS_COMPILE=aarch64-linux-gnu- BOARD=euroexa_crdb 
FPGA_HWRUNTIME=som FPGA_CLOCK=200 
FPGA_MEMORY_PORT_WIDTH=512 bitstream-p 

You can select the number of kernels in line 105 of define_csp.fpga.h and line 754 of 
MY_NNET.cpp 

How to compile GADGET code 
This is the application repository where all the related software versions have been uploaded: 
https://github.com/euroexa/Exa-HiGPUs. 
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The current application software, ported to EuroEXA CRDB, consists of the following files, along 
with a brief description of their functionality: 

● make.def. It defines how the application is built: 

○ to compile to x86, x86_64 architecture: 

■ using the standard GCC selecting the CPU to generate code for at 
compilation time by determining the processor type of the compiling 
machine (-march=native flag). Moreover, the user is allowed to build 
different application versions, i.e. enabling/disabling MPI, 
enabling/disabling source code for automatic profiling (namely, time-to-
solution of stages of the application, MPI overhead), enabling/disabling 
compiler optimizations, enabling/disabling debugging support, 
enabling/disabling the application to perform a single time step of 
integration for the aim of benchmarking architectures; 

○ to compile using OmpSs targeting any supported FPGA by OmpSs@FPGA 
framework: 

■ we take advantage of the feature of the source-to-source OmpSs 
(Mercurium) compiler of splitting the compilation stage of host code and 
FPGA kernels. The part of the code to be run on the host SMP can be 
compiled as stated above, while the user is allowed to build only the FPGA 
IP block, or the bitstream enabling/disabling the hardware instrumentation. 
In the first case the OmpSs@FPGA toolchain is stopped after Vivado HLS 
is issued, allowing the programmer to analyze in detail the throughput/area 
trade-off and experimenting with different #pragma HLS directives; 

● make.fpga. It selects the FPGA model, the frequency and the memory port width of the 
bitstream. The file must be edited by the user before issuing the OmpSs@FPGA toolchain; 

● Makefile. It orchestrates all the compilation options described above; 

● include/parameters.fpga.h: this header file contains the macros to select at compile time 
the FPGA resources, namely the number of particle to load in BRAM/URAM per block 
(BURST_LEN) and the factor of unrolling (FACTOR_UNROLL) of the main loop of the 
algorithm. This header file must be edited by the user before issuing the compilation. The 
impact of such macros can be checked stopping the OmpSs@FPGA toolchain at the HLS 
step (see above); 

● include/constant.fpga.h. This header file automatically places the local arrays on 
BRAM/URAM with the right array partitioning based on the unrolling factor set in 
include/parameters.fpga.h; 

● src/hw_evaluation_kernel.c. It contains the kernel exploiting the FPGA. Our 
implementation guarantees that all the loops are performed in pipelines with an initiation 



 
 

 

 
This document is FIXME Public/Confidential and was produced under  
the EuroEXA project (EC Contract No. 754337)  
 

88 

D2.6:  Final ported application software 
 
EuroEXA – H2020 – EU.1.2.2. – FET Proactive 
 

interval of one clock cycle. We rely on custom memory management (Nanos++ APIs) for 
memory allocation in kernel space and for memory movement from host DRAM and 
BRAM/URAM and vice versa; we select it as the most optimal solution to manage data 
movements. 

LFRic Installation Procedure 
Install/get_lfric.sh is an installation script for GNU/Linux machines. It tries to minimise the amount 
of external, globally installed packages by compiling a large part of LFRic's dependencies from 
source. Evidently, a basic building system must be in place to compile these dependencies and 
to avoid a chicken-or-egg conundrum, this is prepared using an available package manager, thus 
requiring root privileges. It has been successfully tested on: 

• Ubuntu Server 18.04.5, 21.04 and 21.10; 
• CentOS Linux 8.4.2105; 
• Fedora Server 34. 

Going forward, a Docker container image is probably a better solution than this potentially hard 
to maintain script. For convenience, install/get_lfric.sh creates env_lfric.sh which defines a few 
environment variables, including: 

• the executable path, compiler, linker and loader flags; 
• both build, namely optimisation and target platform, and execution settings: 

o variable PROFILE expands to production, for "risky optimisation"; the other options 
are full-debug and fast-debug for no and safe optimisations only, respectively; 

o variable LFRIC_TARGET_PLATFORM expands to meto-spice, enabling 
Psyclone's optimisations for the UK Met Office's SPICE system; the other options 
include meto-xc40, meto-xcs and monsoon-xc40 for their Cray XC40, Cray XCS 
and MONSooN systems, respectively; 

o variable OMP_NUM_THREADS expands to 1, for single-thread executions by 
default; 

• some useful shortcuts: 
o variable TOPLEVEL expands to the directory where install/get_lfric.sh is executed 

from; 
o variable LFRIC_DIR expands to LFRic's installation directory, $TOPLEVEL/lfric-

fallowdeer.1.16068 by default; 
o variable GUNGHO expands to the path of LFRic's main executable, 

$LFRIC_DIR/gungho/bin/gungho; 
o command cds is aliased to LFRic's source directory, cd 

$LFRIC_DIR/gungho/source; 
o command cdm is aliased to LFRic's build directory, cd $LFRIC_DIR/gungho. 
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Modified Source Files 

Under modded you will find all source files Ashworth et al. originally created or modified. We, 
Nobre et al., have since enabled the execution without configured FPGA communication device 
ports, simplified makefiles, fixed some bugs, cleaned and refactored the code and performed 
some optimisations as described below. 

The contents of this folder may be copied over LFRic's original sources, e.g. cp -R modded/. 
$LFRIC_DIR. Compile just as exemplified in install/get_lfric.sh, i.e. cdm; make clean build. Next, 
to identify execution hotspots and gauge our progress, we've been using the following benchmark. 

 


