
251Number

2022Publication Year

2023-02-08T11:07:53ZAcceptance in
OA@INAF

Doppio User ManualTitle

SCHIAVONE, FilomenaAuthors

O.A. PadovaAffiliation of first
author

http://hdl.handle.net/20.500.12386/33279;
https://doi.org/10.20371/INAF/TechRep/251

Handle

 Array Control and Data Acquisition SAG Sub-system Detailed Design

Doc. No. CTA-TRE-COM-303000-0005
Issue 1, Rev.: d, 2022-02-12

Page 1 of 98

Construction Project

Detailed Design
Of the

Science Alert Generation of the ACADA
System

Prepared by A. Bulgarelli 2022-02-12
 SAG Coordinator Date

Approved by
 ACADA System Engineer Date

Released by
 ACADA Coordinator Date

 Array Control and Data Acquisition SAG Sub-system Detailed Design

Doc. No. CTA-TRE-COM-303000-0005
Issue 1, Rev.: d, 2022-02-12

Page 2 of 98

Change Log

Issue Revi-
sion Date Section/Page

affected
Reason/ Remarks /

Initiation Docu-
ments

1 a 2020-10-15 All Sections New document

1 b 2022-01-14 All section

Inclusion of com-
ments received by
the following review-
ers: Igor Oya, Mu-
rach Thomas.

Feedback from dis-
cussions during the
coordination meet-
ings and during dedi-
cated technical meet-
ings.

Added more details
on data quality and
scientificpipelines.

1 c 2022-02-12 All sections Internal review

1 d 2022-08-26 All sections

CR31, CR54, CR55

Answer to RIXs
8789
48791 48792 48854
48869 48906 48966
48980 49009 48904
48978 49236 49237
49010 49039 49058
49165
+ changes for
REL1_step1

 Array Control and Data Acquisition SAG Sub-system Detailed Design

Doc. No. CTA-TRE-COM-303000-0005
Issue 1, Rev.: d, 2022-02-12

Page 3 of 98

1 2022-01-14 7.3.4
Inclusion of DPPS
statement for future
releases

List of Contributors

ACADA SAG Team INAF (A. Bulgarelli, N.

Parmiggiani, L. Baroncelli,
G. De Cesare, V. Fioretti,
A. Di Piano)
LAPP (G. Maurin, S. Ca-
roff, P. Aubert, E. Garcia,
T. Vuillaume)

Detailed design document

I. Oya CTA PO Template and 1st version.

 Array Control and Data Acquisition SAG Sub-system Detailed Design

Doc. No. CTA-TRE-COM-303000-0005
Issue 1, Rev.: d, 2022-02-12

Page 4 of 98

1 LIST OF ABBREVIATIONS ... 7
2 EXECUTIVE SUMMARY .. 8
3 REFERENCES ... 8

3.1 APPLICABLE DOCUMENTS (ADS) ... 8
3.2 REFERENCE DOCUMENTS (RDS) ... 8

4 INTRODUCTION .. 9
4.1 SCOPE OF THE DOCUMENT .. 9

5 ARCHITECTURE ... 9
5.1 INTRODUCTION ... 9
5.2 SUB-SYSTEM CONTEXT .. 10
5.3 LOGICAL ARCHITECTURE .. 11

5.3.1 Components ... 12
5.4 PHYSICAL ARCHITECTURE .. 14

6 DESIGN DECISIONS ... 15
6.1 GENERAL DESIGN PRINCIPLES ... 15
6.2 ASSUMPTIONS AND DEPENDENCIES ... 16
6.3 GENERAL CONSTRAINTS .. 17
6.4 DESIGN DECISIONS ... 17

6.4.1 Design decisions applicable to all sub-components ... 17
6.4.2 Reconstruction, Data Quality and High-Level analysis pipeline ... 18
6.4.3 High-Level Analysis Pipeline ... 19
6.4.4 SAG Pipeline Sub-array Supervisor and SAG Supervisor (SAG-SUP) ... 19

7 STRUCTURE AND BEHAVIOR THE INTERNAL STRUCTURE IS SHOWN IN THE FOLLOWING SECTION. . 19
7.1 PRODUCT TREE BREAKDOWN .. 19
7.2 COMPONENT: SAG-SUP .. 20

7.2.1 General description .. 20
7.2.2 Structure .. 21
 Class Diagrams ... 21
7.2.3 ... 21
7.2.4 General behavior .. 26
7.2.5 State machine .. 26
7.2.6 Command Interface ... 27
7.2.7 Activities ... 27
7.2.8 Sequences .. 28

7.3 COMPONENT: IMAGE PARAMETER EXTRACTOR AND LOW-LEVEL RECONSTRUCTION PIPELINE 33
7.3.1 General description .. 33
7.3.2 Structure .. 34
7.3.3 Class Diagrams ... 35
7.3.4 General behavior .. 35
7.3.5 State machine .. 36
7.3.6 Command Interface ... 36
7.3.7 Activities ... 36
7.3.8 Sequences .. 37

7.4 COMPONENT: ON-LINE DATA QUALITY SOFTWARE .. 39
7.4.1 General description .. 39
7.4.2 Structure .. 39
7.4.3 Class Diagram: rta-dq-lib ... 40
7.4.4 Class Diagram: rta-dq-pipe .. 41
7.4.5 General behavior .. 43
7.4.6 State machine .. 45

 Array Control and Data Acquisition SAG Sub-system Detailed Design

Doc. No. CTA-TRE-COM-303000-0005
Issue 1, Rev.: d, 2022-02-12

Page 5 of 98

7.4.7 Command Interface ... 46
7.4.8 Activities ... 47
7.4.9 Sequences .. 48

7.5 COMPONENT: HIGH-LEVEL ANALYSIS PIPELINE .. 51
7.5.1 General description .. 51
7.5.2 Structure .. 52
7.5.3 Class Diagrams ... 54
7.5.4 General behavior .. 58
7.5.5 State machine .. 59
7.5.6 Command Interface ... 59
7.5.7 Activities ... 60
7.5.8 Sequences .. 61

8 DATA MODEL ... 63
8.1 OVERALL INFORMATION FLOW DIAGRAM ... 63

8.1.1 DL0 ... 63
8.1.2 DL1 ... 65
8.1.3 DL2 ... 66
8.1.4 DL3 ... 68
8.1.5 Monitoring point .. 71

 COMPONENT: SAG-SUP ... 72
8.2 ... 72

8.2.1 Configuration ... 72
8.2.2 Run-Time Setup .. 72
8.2.3 Operations Logging .. 72
8.2.4 Alarms Triggered .. 73
8.2.5 Monitoring Points .. 73
8.2.6 Input Data .. 73
8.2.7 Output Data ... 73
8.2.8 Internal Data .. 74

 COMPONENT: IMAGE PARAMETER EXTRACTOR AND LOW-LEVEL RECONSTRUCTION PIPELINE 74
8.3 ... 74

8.3.1 Configuration ... 74
8.3.2 Run-Time Setup .. 77
8.3.3 Operations Logging .. 77
8.3.4 Alarms Triggered .. 78
8.3.5 Monitoring Points .. 78
8.3.6 Input Data .. 79
8.3.7 Output Data ... 79
8.3.8 Internal Data .. 79

8.4 COMPONENT: ON LINE DATA QUALITY .. 79
8.4.1 Configuration ... 79
8.4.2 Run-Time Setup .. 81
8.4.3 Operations Logging .. 81
8.4.4 Alarms Triggered .. 82
8.4.5 Monitoring Points .. 82
8.4.6 Input Data .. 83
8.4.7 Output Data ... 83
8.4.8 Internal Data .. 83

8.5 COMPONENT: HIGH-LEVEL ANALYSIS PIPELINE .. 83
8.5.1 Configuration ... 83
8.5.2 Run-Time Setup .. 83
8.5.3 Operations Logging .. 84
8.5.4 Alarms Triggered .. 84
8.5.5 Monitoring Points .. 85

 Array Control and Data Acquisition SAG Sub-system Detailed Design

Doc. No. CTA-TRE-COM-303000-0005
Issue 1, Rev.: d, 2022-02-12

Page 6 of 98

8.5.6 Input Data .. 85
8.5.7 Output Data ... 85
8.5.8 Internal Data .. 86

9 HUMAN MACHINE INTERFACES .. 86
10 PERFORMANCE ... 86

10.1 SYSTEM PERFORMANCE .. 86
10.2 DATA RATES ... 86
10.3 SYNCHONIZATION .. 86
10.4 CONTROL LOOPS ... 87
10.5 START-UP AND SHUT-DOWN .. 87
10.6 STATE TRANSITIONS ... 87
10.7 COMMAND HANDLING ... 88

11 FRAMEWORKS & LIBRARIES .. 88
11.1 EXTERNAL DEPENDENCIES: ... 88

11.1.1 SAG Pipeline Sub-Array Supervisor and SAG Supervisor (SAG-SUP) 89
11.1.2 Image Parameters Extractor and Low-Level Reconstruction Pipeline 89
11.1.3 On-Line Data Quality Software ... 90
11.1.4 High-Level Analysis Pipeline .. 90

11.2 FRAMEWORK/LIBRARY: MUNGE ... 91
11.2.1 Justification ... 91
11.2.2 Licensing .. 91
11.2.3 Version Control .. 91
11.2.4 Distribution/Installation .. 91
11.2.5 Obsolescence Handling ... 91

11.3 FRAMEWORK/LIBRARY: ACS .. 91
11.3.1 Justification ... 91
11.3.2 Licensing .. 91
11.3.3 Version Control .. 92
11.3.4 Distribution/Installation .. 92
11.3.5 Obsolescence Handling ... 92

11.4 FRAMEWORK/LIBRARY: ZEROMQ .. 92
11.4.1 Justification ... 92
11.4.2 Features ... 92
11.4.3 Licensing .. 92
11.4.4 Version Control .. 92
11.4.5 Distribution/Installation .. 92
11.4.6 Obsolescence Handling ... 92

11.5 FRAMEWORK/LIBRARY: SLURM .. 92
11.5.1 Justification ... 92
11.5.2 Features ... 93
11.5.3 Licensing .. 93
11.5.4 Version Control .. 93
11.5.5 Distribution/Installation .. 93
11.5.6 Obsolescence Handling ... 93

12 MISCELLANEOUS ASPECTS .. 94
12.1 DEPLOYMENT .. 94
12.2 EXCEPTION AND ERROR HANDLING ... 94
12.3 LOGGING AND TRACING .. 94
12.4 CONCURRENCY AND THREADING ... 94
12.5 DEBUGGING AND TROUBLESHOOTING .. 94
12.6 OPEN POINTS AND ISSUES ... 94

13 TRACEABILITY MATRIX ... 95

 Array Control and Data Acquisition SAG Sub-system Detailed Design

Doc. No. CTA-TRE-COM-303000-0005
Issue 1, Rev.: d, 2022-02-12

Page 7 of 98

13.1 FROM REQUIREMENTS .. 95
13.2 FROM USE CASES .. 97
13.3 FROM INTERFACES OF THE SUB-SYSTEM ... 98

1 List of Abbreviations

ACADA Array Control and Data Acquisition (corresponds to the previous

OES and ACTL systems, old naming may still be used in some
diagrams in this document)

ACS Alma Common Software
ADH Array Data Handler, corresponds to what previously was called

Data Handling System (DHS)
CC Central Control System
CDB Configuration database / Array Configuration System
CORBA Common Object Request Broker Architecture
CTA Cherenkov Telescope Array
CTA-N CTA Northern Array
CTA-S CTA Southern Array
CTAO Cherenkov Telescope Array Observatory
DBMS DataBase Management System
DL0 Data Level 0
DL1 Data Level 1
DL2 Data Level 2
DL3 Data Level 3
DL4 Data Level 4
DL5 Data Level 5
DQ Data Quality
FoV Field of View
IMPAR Image Parameter Extraction
IRF Instrument Response Function
HMI Human Machine Interface
HPC High-Performance Computing
RECO Reconstruction (Low Level Reconstruction)
REL1 ACADA Release 1
RTA Real-Time Analysis
SAG Science Alert Generation
SCI Scientific High-Level Analysis
SW Software
SUP Supervisor
UC Use Case

 Array Control and Data Acquisition SAG Sub-system Detailed Design

Doc. No. CTA-TRE-COM-303000-0005
Issue 1, Rev.: d, 2022-02-12

Page 8 of 98

2 Executive Summary
The scope of this document is to provide a detailed design description of the SAG Sub-
system of the Array Control and Data Acquisition (ACADA) System that will be operating
the instruments at both CTA-N and CTA-S installations.

The main audience of this document is the development team that is expected to implement
the sub-system. Motivations for the main design decisions taken are provided in connection
with requirements and standards.

3 References

3.1 Applicable Documents (ADs)
AD1: Array Control and Data Acquisition Architecture Design Document, CTA- Doc. No.
TRE-COM-303000-0001 Issue 2, rev g, 2021-05-28.
AD2: Requirement Specification for Science Alert Generation Pipeline of the
ACADA System, CTA-SPE-COM-303000-0006 Issue 1, Rev. f, 14.01.2022
AD3: Array Control & Data Acquisition Use Cases, Doc. No. CTA-TRE-COM-003000-
0001 ACADA Use Cases Issue 3, Rev. d, 2022-01-14.
AD4: Top-level Data Model, Doc. No. CTA-SPE-OSO-000000-0001, Issue 1, Rev. b,
2020-04-30.
AD5: ACADA-SUSS ICD, Doc. No. CTA-ICD-SEI-000000-0020, issue 1, revision a
(draft)
AD6: CTA-SPE-COM-303000-0029, 1b, ACADA Interface Specification
AD7: Scheduling Block Data Model , CTA-SPE-COM-000000-0003, Issue 1, Rev c,
2021-10-19

3.2 Reference Documents (RDs)
RD1: ADH Design Document, CTA- Doc. No. CTA-TRE-COM-303000-0004 Issue 1,
Rev. f, 2022-01-13
RD2: L. Baroncelli, et al, “rta-dq-lib: a software library to perform online data quality
analysis of scientific data”, ADASS conference, 2020, https://arxiv.org/abs/2105.08648
RD3: Development / Release Schedule for Array Control and Data Acquisition System –
Doc. No. CTA-PLA-ACA-303000-0005, Issue 1, Rev. c, 2022-01-14

 Array Control and Data Acquisition SAG Sub-system Detailed Design

Doc. No. CTA-TRE-COM-303000-0005
Issue 1, Rev.: d, 2022-02-12

Page 9 of 98

4 Introduction

This document describes writing SW design for the SAG sub-system in the context of the
ACADA system.

Throughout the document, UML is the preferred notation for depicting the component to
be designed. The modelling tool used is Sparx Enterprise Architect.

Throughout this document, the term “component” is used to refer to anything beyond the
level of the system to be designed. A component usually consists of several sub-compo-
nents. The main components of the SAG sub-system are:

1) SAG-SUP: Supervisors
2) SAG-RECO: Image Parameter Extractor and Low Level Reconstruction Pipeline
3) SAG-DQ: Data Quality
4) SAG-SCI: High-Level Analysis

4.1 Scope of the Document
This document describes the design of the SAG sub-system of the ACADA software system.

The document describes both the software elements and the run-time environment where
these software elements run. The goals of this document are to:
specify the design of the whole sub-system down to the level of details where the software
developers can work in implementing the software;
justify the specifics and design decisions according to their drivers, such as ACADA Archi-
tecture, requirements, use cases and interfaces;.

• provide input for the product acceptance process (verification and validation);
• provide input for product effort estimates for realizing the ACADA components.

In this document REL1 means is "ACADA Release 1", see [RD3].

5 Architecture

5.1 Introduction
The Science Alert Generation (SAG) system, part of the Array Control and Data Acquisition
(ACADA) system, analyses the telescope data online to detect transient gamma-ray events
with a foreseen data rate of tens of kHz.

The SAG-SUP is compounded by two main components, and is the interface with the rest of
the ACADA system: (i) SAG Pipeline Sub-Array Supervisor, a supervised component that
supervises the operation of the SAG pipeline component associated to a sub-array; (ii) the
SAG Supervisor, a supervised component with the same lifetime of the nightly operations
that manages the generation of scientific monitoring results to HMI, and proves input to the
ACADA Reporting Subsystems for the generation of reports to HMI, DPPS, and SUSS.

The SAG-RECO includes the Image Parameter Extractor and the Low Level Reconstruc-
tion components. The SAG-RECO implements a pipeline for fast reconstruction to process

 Array Control and Data Acquisition SAG Sub-system Detailed Design

Doc. No. CTA-TRE-COM-303000-0005
Issue 1, Rev.: d, 2022-02-12

Page 10 of 98

individual DL0 events and produces the corresponding DL3 data with a latency of less than
15 s. SAG-RECO shall provide a library or software component to integrate data-cubes
(DL0) into images, then clean images and extract image parameters from Cherenkov cam-
era images. The parameterized images (DL1 data) are then delivered to other SAG pipe-
lines. This library must be able to extract the image parameters at a rate of 1000
events/s/CPU/telescope.
The SAG system also performs an online Data Quality analysis (SAG-DQ) to assess the
instruments’ health during the data acquisition.
Two python libraries called rta-dq-lib and rta-dq-pipe have been developed to satisfy the
data quality analysis requirements. The first package implements the core logic of data qual-
ity analysis, while the second manages the parallel execution of multiple data quality analy-
sis pipelines.
The scientific pipelines (SAG-SCI) are a sub-system of the SAG based on a framework de-
signed to simplify the development of real-time scientific analysis pipelines. Using this
framework, developers and researchers can focus more on the scientific aspects of the pipe-
lines and integrate existing science tools, providing a common pipeline architecture and au-
tomatisms. The framework can be easily configured with new or existing science tools im-
plemented in different programming languages. The pipelines can execute all the analysis
automatically after the initial setup. The scientific analyses are performed in parallel and can
be prioritized. The pipelines distinguish between High-Level Analysis pipelines for Science
Monitoring to produce science quick look (DL4 and DL5 data levels, generation of sky maps
and light curves) for the Support Astronomer, and Science Alert Generation pipelines to
produce science alert candidates.

Slurm Workload Manager manages the workload of all the pipelines allowing to scale them
on a cluster of machines.

5.2 Sub-system Context
In this section, the context diagram is shown, including all relevant boundary systems and
relevant stakeholders.

 Array Control and Data Acquisition SAG Sub-system Detailed Design

Doc. No. CTA-TRE-COM-303000-0005
Issue 1, Rev.: d, 2022-02-12

Page 11 of 98

Figure 1: Context diagram for the ACADA/SAG sub-system

5.3 Logical Architecture
The logical architecture of the SAG sub-system is shown in the component diagram of the
next FigureFigure 2.

Figure 2: The components diagram illustrating the internal structure of the ACADA SAG sub-system.

 Array Control and Data Acquisition SAG Sub-system Detailed Design

Doc. No. CTA-TRE-COM-303000-0005
Issue 1, Rev.: d, 2022-02-12

Page 12 of 98

Figure 3: Package diagram illustrating the internal structure of the SAG sub-system.

5.3.1 Components

In the context of the SAG, the following components are present.

Table 1: Components of the SAG sub-system

Component Description
SAG Pipeline Sub-Array Su-
pervisor (SAG-SUP)

A supervised component that supervises the operation
of the SAG pipeline component associated to a sub-ar-
ray. The SAG Pipeline Sub-Array Supervisor is com-
posed of: SAGSubArrayManager, SAGSubArray-
Monitor, SAGreco, SAGdq, SAGsci

SAG Supervisor (SAG-SUP) A supervised component with the same lifetime of the
nightly operations that manages the generation of sci-
entific monitoring results to HMI, and provides input
to the ACADA Reporting Subsystems for the genera-
tion of reports to HMI, DPPS, and SUSS.

Image Parameter Extractor Part of the SAG-RECO, parameterizes Raw Cheren-
kov Camera images

Low-Level Reconstruction Pi-
peline Part of the SAG-RECO, A component that receives

Cherenkov Camera data from the ADH, selects signal-
like events (i.e., it performs a quick-look background
rejection/signal discrimination) and produces DL3 data
products. Depending on the configuration, it informs
ADH if the event should be stored, providing means
for further data volume reduction.

 Array Control and Data Acquisition SAG Sub-system Detailed Design

Doc. No. CTA-TRE-COM-303000-0005
Issue 1, Rev.: d, 2022-02-12

Page 13 of 98

On-Line Data Quality Software
(SAG-DQ)

A component that performs a real-time data quality
analysis to produce data quality indicators..

High-Level Analysis Pipeline
(SAG-SCI)

A component that receives the DL3 data and performs
the high-level processing to produce DL4-DL5 data
products. It includes the high-level scientific analysis
pipelines, that will be used to check the observation
status from a scientific point of view (sky maps, light
curves, and so on) and to generate candidates for inter-
nal Science Alerts.

The main components with a more refined view of the SAG-SUP (the SAG Supervisor and
of the SAG Sub-Array Supervisor components developed in ACS) are provided in the fol-
lowing figure and are described in section 7.2.
Two DBMS that store the results of the SAG-DQ and SAG-SCI pipelines are shown.
Slurm is the workload manager of the SAG system. The SAG subsystems external to ACS
listed in the previous table are shown as grey components.

Figure 4: Component diagram illustrating the internal structure of the SAG developed with ACS framework (red) and the
relationship with the SAG subsystems external to ACS (grey). Two DBMS that store the results of the SAG-DQ and SAG-SCI
pipelines are shown. Slurm is the workload manager of the SAG system. Green lines are the control path, blue lines are the
monitoring path.

 Array Control and Data Acquisition SAG Sub-system Detailed Design

Doc. No. CTA-TRE-COM-303000-0005
Issue 1, Rev.: d, 2022-02-12

Page 14 of 98

Slurm is the workload manager of the SAG system. Slurm is an open-source, fault-tolerant,
and highly scalable cluster management and job scheduling system for large and small Linux
clusters. The different pipeline subsystems submit all the tasks to Slurm, Slurm manage the
resources and the execution of the analysis. Slurm is capable of managing thousands of jobs
and can be easily scaled from one machine to thousands of machines. It can submit jobs in
parallel and manage different priorities between jobs. It can suspend low priority jobs to run
high priority jobs (useful if the SAG receives a science alert with high priority). Another key
feature of Slurm is the capability to log inside a database all the information about every job.
This logging system is useful to monitor the pipeline in real-time, viewing statistics about
the execution of jobs. Scaling the computing power used by Slurm does not require a change
in the pipeline subsystems software and it is not necessary to coordinate the workload of the
different pipelines.

5.4 Physical Architecture
The deployment diagram shows the structure of the subsystem to be designed in its physi-
cal eco-system of its use.
In the following figure, the scenario where the SAG is analysing the data of two sub-arrays
is shown. Each sub-array has a sub-array manager that allocates one pipeline for each sub-
array and related subsystems. The subsystems that are required to start Slurm jobs need to
be configured. In this example, only RECO and DQ subsystem are running.

 Array Control and Data Acquisition SAG Sub-system Detailed Design

Doc. No. CTA-TRE-COM-303000-0005
Issue 1, Rev.: d, 2022-02-12

Page 15 of 98

Figure 5: SAG deployment diagram. In this scenario two sub-array are managed by the SAG. The workload is managed by
Slurm in a transparent way for different SAG subsystems or it is possible to establish specific queues.

6 Design Decisions

6.1 General Design Principles
The SAG system is implemented using a combination of Python and C/C++ programming
languages. Python is used for the SAG-SUP, for the SAG-SCI and for some tasks of the
SAG-DQ, while C/C++ is used for the SAG-RECO as they require the best possible perfor-
mances. The logical interconnection between types of components, along with their type of
interface is outlined in the next Figure.

 Array Control and Data Acquisition SAG Sub-system Detailed Design

Doc. No. CTA-TRE-COM-303000-0005
Issue 1, Rev.: d, 2022-02-12

Page 16 of 98

Figure 6: SAG process view. In this scenario N lines of input data are processed separately by SAG-RECO and a final list of DL3
data is analysed by SAG-SCI. SAG-DQ processes each line of data in parallel.

All HPC processing components are stateless, except for some tasks of the RTA-DQ that are
stateful:
• Stateless components are simple functional components without a local state. They per-

form specific functions and are submitted to the workload manager.
• Stateful components can contain the history of the processed data between Observation

Blocks. They are managed by the workload manager.
For instance, a data quality task can produce a summary of the results of the analysis of
multiple Observation Blocks that must be kept by a stateful component.

The SAG Sub-Array Manager and the SAG Supervisor are the supervisors of the other sub-
components of the SAG system.
The SAG-SUP is the interface with the rest of the ACADA subsystems: the SAG subsystem
can be launched and controlled by other ACADA subsystems. All commands and monitor-
ing are achieved via CORBA remote procedure calls and ACS notification channels. The
exchange of Cherenkov, auxiliary and events timestamps data is achieved either by using
the zeroMQ middleware or direct TCP/IP sockets with the ADH. This low-level approach
was desired to ensure the best possible performances to handle high-throughput and high-
frequency streams.

Some results of SAG-RECO and SAG-SCI (DL3, DL4 and DL5) are in FITS file format.

6.2 Assumptions and Dependencies

The SAG shall run on a Linux RedHat derivate distribution and the ACS framework. The
version of the Linux distribution and ACS framework is defined by the Configuration Con-
trol Board for each release.

The SAG interfaces with other sub-systems inside ACADA shall be implemented with the
ACS framework.

 Array Control and Data Acquisition SAG Sub-system Detailed Design

Doc. No. CTA-TRE-COM-303000-0005
Issue 1, Rev.: d, 2022-02-12

Page 17 of 98

The SAG interfaces between internal components are implemented with the ACS frame-
work.

6.3 General Constraints
The constraints that have a significant impact on the SAG are the following:

- The use of ACS that drives the design and the interfaces with the rest of the
ACADA system

- The limited computing power, that requires HPC solutions for workflow and com-
puting management and the use of C++ for the most compute-intensive tasks.

6.4 Design Decisions
This section describes sub-system level design decisions.

6.4.1 Design decisions applicable to all sub-components

ID DD-SAG-1
Explanation
The ACS framework is the basic middleware of the ACADA sub-systems. The ACADA sub-systems are
implemented as ACS components. These components run in the on-site data center and can interact with
each other using this framework.
Pros & Opportunities

• ACS is used by all ACADA sub-systems providing standard interfaces
• ACS components can be implemented in different languages (Python, C++, Java)
• The share of interfaces through the IDL standard is easy
• ACS components can run in a distributed computing cluster

Cons & Risks
The learning curve of ACS is slow and the framework is complex
The already existing prototypes must be redesigned to support this framework

Assumptions and Quantification
The ACS framework is well maintained by the community
ACS workshops are offered by the community
There is a well-defined documentation

Trade-offs
• The slow learning curve is justified by the possibility to have the same interfaces for all ACADA

sub-systems and the possibility to interface software developed with different programming lan-
guages

ID DD-SAG-2
Explanation
Python for script
Pros & Opportunities

• Fast learning curve
• Reduced development time

Cons & Risks
Lower performances than compiled languages (Java, C++)
Many errors are found at run time (strongly and dynamically typed). Strong typing means that
the type of a value doesn't change in unexpected ways. A string containing only digits doesn't
magically become a number, as may happen in Perl. Every change of type requires an explicit
conversion. Dynamic typing means that runtime objects (values) have a type, as opposed to static
typing where variables have a type.

 Array Control and Data Acquisition SAG Sub-system Detailed Design

Doc. No. CTA-TRE-COM-303000-0005
Issue 1, Rev.: d, 2022-02-12

Page 18 of 98

Assumptions and Quantification
Python is largely used by the Scientific Community
Python is well documented and supported
Python allows the usage of Anaconda to manage packages

Trade-offs
• The fast development time and learning curve justifies the lower performances

6.4.2 Reconstruction, Data Quality and High-Level analysis pipeline

ID DD-SAG-3
Explanation
Slurm workload manager. Slurm is a framework for HPC.
Pros & Opportunities

• Slurm can manage processes in a cluster of machines
• It enables parallel processing
• There are failure management strategies
• It is possible to define priority, queues and sequences between processes
• It is possible to target specific machines and reserve resources
• All processes information are stored in a database or in the file system.

Cons & Risks
It requires the configuration of the service
It requires a fast network connection between machines

Assumptions and Quantification
Slurm is largely used
Slurm is well documented, free and open-source
Slurm will be maintained in the future years, and implements state-of-the-art technologies
High-throughput computing (HTC) is the deployment of resources to tackle a large computa-
tional burden where the individual computations do not need to interact while running. HTC dif-
fers from high-performance computing (HPC), where rapid interaction of intermediate results is
required to perform the computations, that is the case of the SAG.

Trade-offs
• Slurm has many useful functionalities that justify the initial setup of the service

The scripting part of the RECO and DQ components is implemented with Python, but the
core of the analysis is implemented with C++.

ID DD-SAG-4
Explanation
C/C++ are general-purpose and well know languages. C++ is an object-oriented programming language.
We decided to implement RECO and some DQ core functionalities using C++.
Pros & Opportunities

• C/C++ are programming language used to develop software with high performances.
• C++ is Object Oriented.
• C/C++ is largely used and known.

Cons & Risks
C/C++ requires more effort and time to develop software with respect to other languages
C/C++ learning curve is slower than other programming languages like Python.

Assumptions and Quantification
C/C++ will be maintained in the next years.
C/C++ has a large community.

Trade-offs

 Array Control and Data Acquisition SAG Sub-system Detailed Design

Doc. No. CTA-TRE-COM-303000-0005
Issue 1, Rev.: d, 2022-02-12

Page 19 of 98

• The high performances reached with these programming languages justify the slower learning
curve and development process.

6.4.3 High-Level Analysis Pipeline

ID DD-SAG-5
Explanation
MySQL is used as DBMS to implement the core functionalities of this component. The Science Logic im-
plemented in this component to configure different Science Tools is implemented using MySQL Triggers.
MySQL is one of the allowed database technologies by ACADA as indicated in AS-9 of AD1.
Pros & Opportunities

• MySQL is an open-source DBMS largely used in several domains.
• MySQL triggers are stored program invoked automatically in response to events.
• trigger management is done by MySQL.
• The data are not transferred to an external application during the invocation of triggers.

Cons & Risks
The architecture of this sub-system is hardly coupled with the MySQL framework.
It is hard to test and create an automated test for MySQL trigger.

Assumptions and Quantification
MySQL is a well-supported framework.
MySQL is known by all the developer's community.

Trade-offs
• The advantages of having automated triggers directly in the DBMS is greater than the risks of

coupling the architecture with a framework.

6.4.4 SAG Pipeline Sub-array Supervisor and SAG Supervisor (SAG-
SUP)

These functional components are highly based on the ACS framework. SAG Pipeline Sub-
Array Supervisor supervises all processes of the SAG and it manages the interfaces with
external sub-systems. Also, the SAG Supervisor is interfaced with ACADA subsystem. For
this reason, we decided to implement these functional components with several ACS com-
ponents in order to distribute the workload and to have higher fault tolerance.

7 Structure and Behavior
The internal structure is shown in the following section.

7.1 Product tree breakdown

 Array Control and Data Acquisition SAG Sub-system Detailed Design

Doc. No. CTA-TRE-COM-303000-0005
Issue 1, Rev.: d, 2022-02-12

Page 20 of 98

Figure 7: Class diagram illustrating the product tree of the SAG.

7.2 Component: SAG-SUP

7.2.1 General description
SAG-SUP consists of two main logical components: SAG Pipeline Sub-Array Supervisor
and SAG Supervisor.
Both logical components are developed using ACS and they provide interfaces to communi-
cate with the other ACADA subsystems. SAG Pipeline Sub-array Supervisor
The SAG Pipeline Sub-Array Supervisor is implemented with a dynamic ACS component
whose features are described by an ACS interface named SAGSubArrayManager. It super-
vises the operations of SAG pipeline components (see Sections 7.3, 7.4 and 7.5) associated
to a sub-array and it interfaces with the rest of the ACADA system. The list of managed
components is: SAGreco, SAGdq, SAGsci and SAGSubArrayMonitor.

The Central Control allocates one SAGSubArrayManager component for each Scheduling
Block, supervises its operation and shutdowns the component when the Scheduling Block
is completed.

The SAGSubArrayManager shall allocate SAG pipeline components for a Scheduling Block
and it shall supervise their operations: when a sub-array enters in observing state, the SAG-
SubArrayManager shall communicate this information to the SAG pipeline components and
they will start the actual processes that performs the data processing. When the observation
of a sub-array is stopped, the SAG pipelines components will be shut down in a controlled
manner.
SAGSubArrayManager shall inform the SAG pipeline components about changes in the sta-
tus or configuration of arrays, Observation Block changes, environmental condition changes,
and NSB status changes. In addition, the SAGSubArrayManager shall receive the modified
Scheduling Block when a sub-array configuration is modified, i.e. when telescopes are added
or removed from current Observation Block. The SAGSubArrayManager is also responsible
for meeting the following scenarios:

• when the execution of a Scheduling Block ends, all acquired data must be processed;
• when the execution of a Scheduling Block is cancelled, all acquired data must be

processed.

 Array Control and Data Acquisition SAG Sub-system Detailed Design

Doc. No. CTA-TRE-COM-303000-0005
Issue 1, Rev.: d, 2022-02-12

Page 21 of 98

The SAGSubArrayManager will be notified when the following scenario happens:

• ACADA performs an update of the observation position coordinates of the Array
Elements by an amount less than the size of the field of view without stopping ongo-
ing observations of the relevant sub-array. This scenario can happen, for example, .
due to ToO coordinates update.

• the observation time originally assigned to an Observation Block under execution, is
extended without the need to stop the observation.

The SAGSubArrayManager is also responsible for supervising the SAGSubArrayMonitor
component, that monitors the SAG pipeline components to collect operational data, such as
processing rates. The component shall send the data to the MON subsystem through an ACS
notification channel.

The Supervisor tree described in [AD1] is realised deriving all ACS components from su-
pervision::Supervisor, supervision::Supervised.

7.2.1.1 SAG Supervisor
The SAG Supervisor is implemented with an ACS component whose features are described
by an ACS interface named SAGSupervisor. This component is supervised by the RM sub-
system, and it has the same lifetime of the nightly operations. It is responsible for the gen-
eration of scientific monitoring results of DL3 to be sent to the HMI, and also for providing
input to the ACADA Reporting Subsystems for the generation of reports for HMI, DPPS,
and SUSS.
To receive the Scheduling/Observation Blocks updates and data, it relies on the ACS notifi-
cation channels defined by the CC subsystem [AD6]. It also supervises a specialized version
of a SAGsci component (which interface is called SAGlazysci) used to process the DL3 data.
It cannot supervise the same SAGsci component supervised by the SAGSubArrayManager
due to conflicts in the role names of the supervision tree (the role name is generated using
the interface name + Scheduling Block id).

7.2.2 Structure
The internal structure is shown in the following section.

7.2.3 Class Diagrams
The following figures show the class diagrams of the SAG-SUP component. They are de-
fined using the UML notation.

 Array Control and Data Acquisition SAG Sub-system Detailed Design

Doc. No. CTA-TRE-COM-303000-0005
Issue 1, Rev.: d, 2022-02-12

Page 22 of 98

Figure 8: SAG-SUP relationship with logical components and IDL modules

7.2.3.1 Module::sag
The sag idl module contains the interfaces visible to the rest of the ACADA system. They
are listed in the following table.

 Array Control and Data Acquisition SAG Sub-system Detailed Design

Doc. No. CTA-TRE-COM-303000-0005
Issue 1, Rev.: d, 2022-02-12

Page 23 of 98

SAGSubArrayManager : «idlInterface»
This interface is used by the CC subsystem that supervises SAGSubArrayManager components, one for each
Scheduling Block.

Each SAGSubArrayManager component isconfigured with a scheduling block and it is in charge to supervise
SAGreco, SAGdq e SAGsci components that perform the data processing.

SAGSupervisor : «idlInterface»
This interface is used by the RM subsystem that supervises a SAGSupervisor component with the lifetime of an
observing night.

This interface manages the generation of scientific monitoring results to be sent to the HMI and provides inputs to
the ACADA Reporting Subsystems for the generation of reports to be sent to the HMI, DPPS, and SUSS.

7.2.3.2 IDLInterface: SAGSubArrayManager

This interface is used by the CC subsystem that supervises SAGSubArrayManager compo-
nents, one for each Scheduling Block.

Method Description
 configure configure (in sb::SchedulingBlock schedBlock, in ACS::uLongLongSeq telescope_ids)

: void Public

Description: this method will be called by the CC immediately after creating the SAG-
SubArrayManager for a particular SB, and when updating this SB or when updating the list
of allocated telescopes. When this method is called for the first time, it will dispatch a
worker thread that will instantiate in the background the the SAGreco, SAGdq and SAGsci
components.

startOB startOB (in sb::ObservationBlock obsBlock): void Public

Description: this method will be called by the CC when an OB state changes to RUNNING.
The SAG pipelines will start to process the data.

stopOB stopOB (in sb::ObservationBlock obsBlock): void Public

Description: this method will be called by the CC when an OB state changes to
COMPLETED_SUCCEDED or COMPLETED_CANCELED or
COMPLETED_TRUNCATED.

updateCame-
raEventCon-
nections

updateCameraEventConnections (in CameraEventsConnectionSeq connections)
: void Public

Description: called by ADHSupervisor to inform us about ZMQ Camera Event connections
to use in order to listen to incoming camera events. Called usually once when ADHSupervi-
sor is initialized, but may be called anytime if SDH instances were replaced. The complete
list of connections is always provided. Method should be sync and return quickly after tak-
ing note of the update. Reactions to the update (creation/configuration of pipelines) should
be handled internally.

7.2.3.3 IDLInterface: SAGSupervisor
This interface is used by the RM subsystem that supervises a SAGSubArrayManager com-
ponent. This interface manages the generation of scientific monitoring results to be sent to
the HMI and provides inputs to the ACADA Reporting Subsystems for the generation of
reports to be sent to the HMI, DPPS, and SUSS.

 Array Control and Data Acquisition SAG Sub-system Detailed Design

Doc. No. CTA-TRE-COM-303000-0005
Issue 1, Rev.: d, 2022-02-12

Page 24 of 98

The SAGSupervisor does not define any public interface methods, but it relies on the in-
herited ACS lifecycle management methods.

7.2.3.4 Module::sagint
The sagint module contains all the internal SAG interfaces listed in the following table.

SAGSubArrayMonitor : «idlInterface»

This interface allows the monitoring of the SAG pipeline components to collect operational data, such as pro-
cessing rates. This data is sent to the MON subsystem through an ACS notification channel.

SAGpipe : «idlInterface»

This interface allows to start and stop SAG data analysis pipelines. The pipelines are managed by SAGpipe com-
ponents, in particolar SAGreco, SAGdq and SAGsci that are supervised by the SAGSubArrayManager compo-
nent. When the SAGSubArrayManager supervisor shutdowns SAGreco, SAGdq and SAGsci, these components
will wait for the pipelines to finish the data processing and then they terminate.

SAGdq: «idlInterface»

This interface is used to start data quality analysis processes on Slurm. It is used internally within the SAG sy-
stem.

SAGreco : «idlInterface»

This interface is used to start reconstruction analysis processes on Slurm. It is used internally within the SAG sy-
stem.

SAGsci : «idlInterface»

This interface is used to start scientific analysis processes on Slurm. It is used internally within the SAG system
and it is supervised by the SAGSubArrayManager.

SAGlazysci : «idlInterface»

This is used to start scientific analysis processes on Slurm. It is used internally within the SAG system and it is
supervised by the SAGSupervisor.

7.2.3.5 IDLInterface: SAGpipe

Method Description
 configure configure (in sb::SchedulingBlock schedBlock, in ACS::uLongLongSeq telescope_ids)

: void Public

Description: this method will be called by the SAGSubArrayManager when a new SB is
available and also when a SB is updated or when updating the list of allocated telescopes.
This method will configure the configuration file of the corresponding pipeline and it may
start the actual slurm jobs.

startOB startOB (in sb::ObservationBlock obsBlock): void Public

 Array Control and Data Acquisition SAG Sub-system Detailed Design

Doc. No. CTA-TRE-COM-303000-0005
Issue 1, Rev.: d, 2022-02-12

Page 25 of 98

Method Description

Description: This method will be called by the SAGSubArrayManager when an OB state
changes to RUNNING. The SAG pipelines will start to process the data.

stopOB stopOB (in sb::ObservationBlock obsBlock): void Public

Description: This method will be called by the SAGSubArrayManager when an OB state
changes to COMPLETED_SUCCEDED or COMPLETED_CANCELED or
COMPLETED_TRUNCATED.

7.2.3.6 IDLInterface: SAGreco

Method Description
getStats getStats() : sag::recoMonitoringEvent Public

Description: ask for monitoring point events.

7.2.3.7 IDLInterface: SAGdq

Method Description
getStats getStats() : sag::dqMonitoringEvent Public

Description: ask for monitoring point events.

7.2.3.8 IDLInterface: SAGsci

Method Description
getStats getStats() : sag::sciMonitoringEvent Public

Description: ask for monitoring point events.

7.2.3.9 IDLInterface: SAGlazysci

Method Description
getStats getStats() : sag::sciMonitoringEvent Public

Description: ask for monitoring point events.

 Array Control and Data Acquisition SAG Sub-system Detailed Design

Doc. No. CTA-TRE-COM-303000-0005
Issue 1, Rev.: d, 2022-02-12

Page 26 of 98

7.2.4 General behavior
The SAGSupervisor and the SAGSubArrayManager are the interfaces of the SAG w.r.t.
ACADA.

7.2.5 State machine
Since the SAGSubArrayManager acts as the “controller” of the SAG subsystem, it must
have an interface which provides information on the current subsystem state in any given
moment. The SAGSubArrayManager is mapped to a state machine, which defines transitions
between all the possible states. The state machine of the SAGSubArrayManager depends on
the state machine of its supervised components. The figure below shows the state machine,
where “sc” stands for “supervised component”.
The state machine is reported in the following figure.

Figure 9: State machine of the SAG-SUP ACS components.

When the SAGSubArrayManager is created, its internal state will be equal to READY. The
required action to start the SAG analysis processes (or SAG pipelines, i.e. slurm jobs) is to
bring the SAGSubArrayManager's state to INITIALIZED. To be INITIALIZED the SAG-
SubArrayManager needs a scheduling block and the zmq connection parameters.

The scheduling block is passed through the configure(SchedBlock) api method that will be
called by the CC. When configure(SchedBlock) is called, the SAGSubArrayManager will

 Array Control and Data Acquisition SAG Sub-system Detailed Design

Doc. No. CTA-TRE-COM-303000-0005
Issue 1, Rev.: d, 2022-02-12

Page 27 of 98

create the SAG{Reco,Dq,Sci} ACS supervised components. The configure(SchedBlock)
call will return immediately, but it will trigger background configurations: the
SAG{Reco,Dq,Sci} components are created in separate threads. In addition, those subcom-
ponents will, in turn, do some internal configuration.

The zmq connection parameters are passed through the updateCameraEventConnec-
tions(CameraConnections []) API method that will be called by the ADH. The ADH can call
this method as soon as the SAGSubArrayManager component is alive, so before or after the
CC calls configure(SchedBlock).

When the SAGSubArrayManager's status is INITIALIZED, the startOB(ObsBlock) API
method can be called to start the SAG analysis processes, and its status will transact, after
some delay, to PROCESSING. This status is reached if and only if all the expected Slurm
jobs are up and running on the cluster. If this check fails, the status will transact to ERROR.
If startOB(ObsBlock) is called and the status is not INITIALIZED, an exception will be
raised.

The shutdown() call will kill immediately all the Slurm jobs associated to the scheduling
block. If this method is called while the status of the SAGSubArrayManager’s status is equal
to PROCESSING, the data analysis will be stopped even if there's data left to analyze. The
supervised components will be destroyed and the SAGSubArrayManager’s status will trans-
act back to READY.

The stopOB(ObsBlock) call will let the Slurm jobs to process all the data left and only then
they are stopped. In this case, the supervised components are not destroyed but they will be
ready to process the next observing block. The status of the SAGSubArrayManager will
transact to INITIALIZED. The stopOB(ObsBlock) call lets SAG know when the repointing
phase starts. This is important because we don't want to analyze the data taken during this
phase, assuming that the data stream does not stop during the repointing.
The stopOB(ObsBlock) call also allows a smoother transition of SAG's available computing
resources between an OB's end and the next one's start. Indeed during this time, SAG can
release any pipeline that finished its processing.

7.2.6 Command Interface
See the following subsections of each subsystem.

7.2.7 Activities

 Array Control and Data Acquisition SAG Sub-system Detailed Design

Doc. No. CTA-TRE-COM-303000-0005
Issue 1, Rev.: d, 2022-02-12

Page 28 of 98

Figure 10: SAGSubArrayManager activity diagram: Starts the pipelines for a new Scheduling Block.

7.2.8 Sequences
In this section we show relevant sequence diagrams to document the handling of various
use cases.
The following two diagrams put a relationship between the IDL interfaces and the imple-
mentation of the ACS components using Python language.

 Array Control and Data Acquisition SAG Sub-system Detailed Design

Doc. No. CTA-TRE-COM-303000-0005
Issue 1, Rev.: d, 2022-02-12

Page 29 of 98

Figure 11: SAG ACS components with implementation of the interfaces (part 1)

 Array Control and Data Acquisition SAG Sub-system Detailed Design

Doc. No. CTA-TRE-COM-303000-0005
Issue 1, Rev.: d, 2022-02-12

Page 30 of 98

Figure 12: SAG Supervisor with implementation of the interfaces (part 2)

7.2.8.1 Sequence: initialize SAGSupervisor
At the beginning of the observing night the Resource Manager activates the SAGSupervi-
sor ACS component.

 Array Control and Data Acquisition SAG Sub-system Detailed Design

Doc. No. CTA-TRE-COM-303000-0005
Issue 1, Rev.: d, 2022-02-12

Page 31 of 98

Figure 13: Initialise

7.2.8.2 Sequence: configure()
When a new SB is received, a dedicated SAG pipeline shall start in an automatic and con-
trolled way.

Figure 14: newSchedulingBlock()

7.2.8.3 Sequence: startOB()
When a sub-array enters in observing state, the CC informs the SAGSubArrayManager

 Array Control and Data Acquisition SAG Sub-system Detailed Design

Doc. No. CTA-TRE-COM-303000-0005
Issue 1, Rev.: d, 2022-02-12

Page 32 of 98

Figure 15: startOB()

7.2.8.3.1 Sequence: stopOB()
When a sub-array stops the observation, the Central Control shall inform the SAGSubAr-
rayManager that shall shutdown data processing in an automatic and controlled way.

Figure 16: stopOB()

7.2.8.4 Sequence: shutdown()
SAG shall receive information when the execution of a Scheduling Blocks is cancelled.
Analysis of the data taken until the cancellation command shall be executed.

 Array Control and Data Acquisition SAG Sub-system Detailed Design

Doc. No. CTA-TRE-COM-303000-0005
Issue 1, Rev.: d, 2022-02-12

Page 33 of 98

Figure 17: shutdown()

7.3 Component: Image Parameter Extractor and Low-Level Reconstruction
Pipeline

This component, also called SAG-RECO in this document is designed to perform data re-
construction in real-time during the observations.
DL0 data is received from the camera data handling with information about telescopes trig-
gered from sub-array triggering system. The image integration is performed to obtain a cam-
era map of integrated charges and a camera map of mean arrival time. From these maps, a
tailcut cleaning is performed and image parameters (first moments of the signal, global in-
tensity, time gradient...) are extracted by the Image Parameter Extractor (data level 1). These
parameters are fed into a model (such as random forests) trained on Monte-Carlo simulations
to reconstruct the event physical parameters (direction, energy and particle type - data level
2). The last stage of SAG-RECO applies selection cuts to produce DL3 data that are then
provided to the High-Level Analysis Pipeline (SAG-SCI). This component is also able, de-
pending on the configuration, to inform ADH if an event should be stored, providing means
for further data volume reduction.

7.3.1 General description

The document [AD2] defines a list of requirements for this component that are needed to
fulfill the use cases of the SAG system. This pipeline shall execute reconstruction in paral-
lels for different sub-array observing at the same time. It shall reconstruction an event with
a latency of 15 seconds. These are some of the main requirements for the SAG-RECO pipe-
line.

The input data for this component is the DL0 (R0 for Mini-ACADA) produced by the camera
data handler and the information about telescopes triggered from sub-array triggering sys-
tem.

 Array Control and Data Acquisition SAG Sub-system Detailed Design

Doc. No. CTA-TRE-COM-303000-0005
Issue 1, Rev.: d, 2022-02-12

Page 34 of 98

The SAG-RECO pipeline is composed of the following main components:
• Hillas parameters extraction (DL0 to DL1),
• Spatial reconstruction, energy estimation and background rejection (DL1 to DL2)
• Selections to keep good quality gamma events (DL2 to DL3)

This pipeline has interfaces with external systems and components:

• Camera data handling provides DL0 data to SAG-RECO
• Sub-array triggering provides information about telescopes triggered from sub-ar-

ray triggering system to SAG-RECO (not for ACADA REL1)
• SAG-RECO provides SAG-SCI the DL3 data
• SAG-RECO provides Camera data handling DL3 information to reduce data vol-

ume (only for final ACADA release)
• SAG-RECO provides DL1 and DL2 data SAG-DQ for monitoring reconstruction

processes

Many of these interfaces are managed through the SAGSubArrayManager component and
not directly by the SAG-RECO pipeline.

7.3.2 Structure
For the DL1, the telescope streams are merged at the DL1 level, and the DL2 are merged at
the sub-array level.

Figure 18: Low level reconstruction pipeline.

 Array Control and Data Acquisition SAG Sub-system Detailed Design

Doc. No. CTA-TRE-COM-303000-0005
Issue 1, Rev.: d, 2022-02-12

Page 35 of 98

7.3.3 Class Diagrams

Figure 19: Low level reconstruction interface.

7.3.4 General behavior
Raw data are received from the Array Data Handler (ADH) via Protocol Buffer data format
version 2.
First, charges are integrated. Integration consists in summing the calibrated signal for all
samples in order to increase the signal over noise ratio. The expected output is one single
image for the signal charge converted in photoelectrons and one image of the time of maxima
for all pixels. Maximum time of waveform is obtained on each pixel independently and used
to produce a time map.
Second, a cleaning step is performed. The cleaning step aim to remove the pixel containing
only noise and to select only pixel containing signal in the calibrated and integrated images.
A pixel is kept if it has a signal greater than a threshold and if at least one of its neigbours
has a signal greater than another threshold.
Third, Hillas parameters are computed. Hillas parameters are barycenters and projections to
extract position, orientation, asymmetry and other parameters of the electromagnetic shower
from cleaned images. Timing parameters are also computed using a weighted mean of max-
imum time in pixel time map.
After these steps, DL1 are produced. DL2 consists in computing the gammaness, arrival
direction and energy based on random forest trained on Monte Carlo simulations. These

 Array Control and Data Acquisition SAG Sub-system Detailed Design

Doc. No. CTA-TRE-COM-303000-0005
Issue 1, Rev.: d, 2022-02-12

Page 36 of 98

random forest will be provided by DPPS. Then, conversion to DL3 consists in performing
quality and gammaness selection on DL2, and in converting this to a gammapy compliant
format.

In the release 1 of ACADA, we are using the lstchain software to produce the steps DL1-
>DL3. In the future, the DPPS data processing pipeline will be used.

7.3.5 State machine

Figure 20: SAG-RECO state machine.

7.3.6 Command Interface

Starting the RECO analysis can be done with:

$ hiperta_stream_start --run_id <RUN_ID> [--config_file hiperta_stream_configuration.yml]

7.3.7 Activities

In the LST-1 framework, the camera is producing 4 streams of data. Each of this 4 stream
can be shared in a tunable number of threads (this is independent events) in order to pro-
duce DL1. After the production of DL1, the production of DL2 and DL3 can be as well
shared in multiple jobs in order to improve the speed of the DL3 production.

 Array Control and Data Acquisition SAG Sub-system Detailed Design

Doc. No. CTA-TRE-COM-303000-0005
Issue 1, Rev.: d, 2022-02-12

Page 37 of 98

Figure 21: SAG-RECO activities.

7.3.8 Sequences

7.3.8.1 low-level reconstruction

Figure 22: SAG-RECO sequences.

• DL0 (R0 in miniACADA) is reduced to DL1 data, containing:
o Integrated charge per pixel
o Mean arrival time per pixel
o Extracted image parameters

 Array Control and Data Acquisition SAG Sub-system Detailed Design

Doc. No. CTA-TRE-COM-303000-0005
Issue 1, Rev.: d, 2022-02-12

Page 38 of 98

• DL1 data is fed to previously trained random forests on Monte-Carlo simulations to
produce DL2 data:

o Event incoming direction in the sky as (altitude, azimuth)
o Event reconstructed energy
o Event gammaness (probability to be a gamma)

• DL3 data are produced from DL2 by applying selection cuts and converting sky co-
ordinates in RA/DEC

At each stage, the produced files are written to disk to be read by later stage as well as the
data quality.

 Array Control and Data Acquisition SAG Sub-system Detailed Design

Doc. No. CTA-TRE-COM-303000-0005
Issue 1, Rev.: d, 2022-02-12

Page 39 of 98

7.4 Component: On-Line Data Quality Software

7.4.1 General description

The On-Line Data Quality Software (SAG-DQ) is a logical component that performs real-
time data quality analysis. The latency to perform the data quality analysis must be less than
5 seconds with respect to the data provided as input. This software must be able to process
every data level from DL0 to DL3.

The SAG-DQ is composed of two software libraries, called rta-dq-lib and rta-dq-pipe. Both
software components have been developed using the Python programming language.
The rta-dq-lib library is dedicated to the rapid prototyping of data quality use cases. It allows
the user to define, through XML configuration files, the structure of the input data and, for
each input data field, which data quality results should be produced. There are two types of
data quality results: statistical data (such as distributions or rms) and data quality checks.
The aim of a data quality check is to verify if the values of the input data satisfy some con-
straints. If, for example, the pixel value of a telescope’s camera exceeds an upper bound
threshold , a warning or an alarm result will be generated.

The rta-dq-pipe is used to run in parallel an arbitrary number of data quality pipelines. The
goal is to split the data processing to achieve greater throughput. The software must be con-
figured with a configuration file in xml format, that specifies the number of pipelines and,
for each pipeline, its type and its input and output directories, along with the input and output
data formats.

The following paragraphs will describe both software packages, rta-dq-lib and rta-dq-pipe.

7.4.2 Structure
The next figure shows a process-level view of the SAG-DQ logical component. In this ex-
ample, three data quality pipelines (in blue) are running. They can be executed as linux
processes or slurm jobs and they execute the logic present within the rta-dq-pipe::DQAnal-
ysis and rta-dq-pipe::DQAggregator classes. Those classes internally use the rta-dq-
lib::DQLib in order to perform the computations.

 Array Control and Data Acquisition SAG Sub-system Detailed Design

Doc. No. CTA-TRE-COM-303000-0005
Issue 1, Rev.: d, 2022-02-12

Page 40 of 98

Figure 23: SAG-DQ process view

7.4.3 Class Diagram: rta-dq-lib

Figure 24: SAG-DQ class diagram

The class digram above shows the main classes present in the rta-dq-lib packages. The “en-
try point” is represented by the DQLib class, a static class that allows to construct DQPipe-
line objects. The latter is the core class that orchestrates the computations: it uses QC4DT,
AGGR4DT and TRNSF4DT objects to produce the data quality results.
The QC4DT class is used to perform quality checks. The constructor reads the correspond-
ing 'qualitychecks.xml' configuration file in order to set up the operational behavior of the
QC4DT object. The AGGR4DT class is used to aggregate data. The constructor reads the

 Array Control and Data Acquisition SAG Sub-system Detailed Design

Doc. No. CTA-TRE-COM-303000-0005
Issue 1, Rev.: d, 2022-02-12

Page 41 of 98

corresponding 'aggregations.xml' configuration file in order to set up the operational be-
havior of the AGGR4DT object. The TRNSF4DT class is used to transform data. The con-
structor reads the corresponding 'transaformations.xml' configuration file in order to set up
the operational behavior of the TRNSF4DT objects.
The templates for the configuration files can be found under the “xml_templates” direc-
tory.

More details for the DQPipeline class are provided in the next section.

7.4.3.1 Class: DQPipeline
This class provides the methods to interact with the rta-dq-lib.

Method Description
init() __init__ (self : , activity_id : , configuration_file_path : , obs_id : , debug_lvl : , com-

pute_pipe_performance : , compute_activities_performance :) : Public

Description:
It returns a DQPipeline instance.

:param activity_id: the DQPipeline id. :type activity_id: :class:`str`.
:param configuration_file_path: the relative or absolute path to the xml configuration file.
:type configuration_file_path: :class:`str`.
:param debug_lvl: it controls the verbosity of the output (0 => no output, 1 => info, warning
and critical messages, 2 => debug, info, warning and critical messages) :type debug_lvl:
:class:`bool`.

:returns: :class:`DQPipeline` -- A DQPipeline object.

join_acti-
vity_pro-
ducts()

join_activity_products (activity_products :) : Public

Description: join the output coming from different lines of parallel executions of this class.

process()
process (self : , events : , run_id :) : Public

Description: It runs the data quality analysis on the input events data.

:param events: a numpy structured array or a python dictionary.

:returns: :class:`dict` -- A dictionary representing a aggregated or transformed event.

7.4.4 Class Diagram: rta-dq-pipe

 Array Control and Data Acquisition SAG Sub-system Detailed Design

Doc. No. CTA-TRE-COM-303000-0005
Issue 1, Rev.: d, 2022-02-12

Page 42 of 98

Figure 25: rta-dq-pipe class diagram (part 1)

Figure 26: rta-dq-pipe class diagram (part 2)

 Array Control and Data Acquisition SAG Sub-system Detailed Design

Doc. No. CTA-TRE-COM-303000-0005
Issue 1, Rev.: d, 2022-02-12

Page 43 of 98

Figure 27: rta-dq-pipe class diagram (part 3)

Figure 25 shows the class diagrams that describe the rta-dq-pipe software structure. Figure
25 shows the core classes. DQPipelineBuilder is a static class that is needed to construct
rta-dq-pipe::DQPipeline objects. It needs a configuration file in xml format that describes
how many DQPipeline objects must be constructed and other details, such as the definition
of the input directories. The configuration file details will be explained further in this docu-
ment. The DQAnalysis class is a wrapper around the rta-dq-lib::DQPipeline core class: it
adds three main functionalities:

it handles the input, managing a queue of HDF5 files to process;
it can split a single input HDF5 file in several batches to speed up the computation
in a multithreading fashion;
it handles the output of the rta-dq-lib::DQPipeline: it can write it on file or it can in-
teract with a database.

Figure 26 shows the hierarchy of classes that manage the input. Classes FileSystemDS and
DatabaseDS implements the DataSource interface. They abstract the way new data is avail-
able: the first class hides the details of monitoring file system directories while the other
hides the details of polling a database. In addition, for each data source abstraction, there
are different classes that abstract the file type (Pickle, HDF5, Fits) and database connec-
tions (Mysql, Redis).
Figure 27 shows the classes that manage the output: one class can interact with a database,
while the other writes binary files.

7.4.5 General behavior

7.4.5.1 rta-dq-lib
The rta-dq-lib performs a set of standard operations to transform the input data in data
quality indicators. Two types of quality indicators are currently supported: quality checks
(that defines warning and alarms), and statistical data (such as distributions or averages).
This library is implemented in Python and it relies on Numpy to perform fast computa-
tions. In particular, the following Numpy operations are used:
Np.sum (to sum the element of an array) (axis=None)
Np.square (to apply the radix square functionto each array element)

 Array Control and Data Acquisition SAG Sub-system Detailed Design

Doc. No. CTA-TRE-COM-303000-0005
Issue 1, Rev.: d, 2022-02-12

Page 44 of 98

Min (to get the minimum element of an 1D/2D array)
Max (to get the maximum element of an 1D/2D array)
Np.add (to sum two arrays together)
indexing operations (to cut an array or select elements row-wise and column-wise)
Vector operations (to apply the same math operator to each array element)

The library assumes that the input data format is HDF5, i.e. a table composed of several
rows (the events) and several columns (events’ features). The feature’s data types can be
scalar, 1d array or 2d array.

A data quality check can be applied to any feature, and it verifies if the feature’s values sat-
isfy a custom constraint. The quality check is applied “column wise", so the same con-
straint is checked against each row. The different types of supported constraints are:

• "upperboundthreshold": an alert of type "warning" is raised if a value exceeds the
"ub_warning" threshold, an alert of type "alarm" is raised if a value exceeds the
"up_alarm" threshold. It must be "ub_warning" < "up_alarm".

• "lowerboundthreshold": an alert of type "warning" is raised if a value exceeds the
"lb_warning" threshold, an alert of type "alarm" is raised if a value exceeds the
"lb_alarm" threshold. It must be "lb_alarm" < "lb_warning".

• "rangethreshold": in this case, the value must be within the range ["lb_warning",
"ub_warning"]. If the value exceeds this range but it still contained in the range
["lb_alarm", "up_alarm"], an alert of type "warning" is raised. If the value exceeds
the range ["lb_alarm", "up_alarm"], an alert of type "alarm" is raised.

• The output of a quality check is a python dictionary: the "batch_event_ids" key
contains the event_ids of the processed events for a particular feature. Next figure
shows an example of a data check output for the "image" feature.

The output dictionary will contain an “image” key which value is another dictionary con-
taining the following keys:

• the "alarms_event_id" is a list that contains the index of the event that raised the
alarm. This index can be used to retrieve the event id, e.g. evt_id =
batch_event_ids[index];

• the "alarms" key contains a matrix: each element is an "alarm". Each "alarm" is an
array of 2 elements (e.g. [0,22]) with the following meaning: [index of the event
that raised the alarm, index of the pixel with the bad value];

• Note that the same event can raise multiple alarms: one for each camera pixel that
exceeds the alarm threshold value.

 Array Control and Data Acquisition SAG Sub-system Detailed Design

Doc. No. CTA-TRE-COM-303000-0005
Issue 1, Rev.: d, 2022-02-12

Page 45 of 98

The same logic is applied for the “warnings” key.

In order to define a quality check on a particular feature, the user of the library must write
a configuration file called “qualitychecks.xml”. The following code shows an example to
perform the quality check of a single feature, although it is possible to specify any number
of <qualitycheck> tags for a single <qualitychecker>.

At least two more configuration files are needed to start the software. As shown in the pre-
vious code snippet, the <qualitychecker> tag specifies a “data_type_in” attribute. The
string value associated to it (e.g. “lst_dl1_image”) links to another configuration file,
called “datatypes.xml”. The next code snippet shows an example:

The <datatype> tag defines the structure of a data level. Each <field> tag specify the name,
the data shape and the data type of a column present in the tabular data within the HDF5
input file.

The last required configuration file is called “dqpipelines.xml”. It comprises a pipeline put-
ting together several operations: quality checks, aggregations and transformations. The
next code snippet shows an example:

The aggregations and transformations activity also need to be defined in their own xml
configuration file. The software provides the xml templates for every configuration file
that describe their syntax and the possible values.

7.4.5.2 rta-dq-pipe
The rta-dq-pipe package is used to manage the parallel execution of multiple data quality
analysis pipelines. There are two types of supported pipelines: analysis pipelines (class
DQAnalysis) and aggregation pipelines (class DQAggregator). The idea is to split the input
data stream into different directories. Each directory is processed by a data quality analysis
pipeline. The results of those pipelines must be aggregated. Hence, a data qualitity aggre-
gation pipeline can be used to perform this task. Each pipeline uses the objects of the rta-
dq-lib library that contain the logic to process the data.

7.4.6 State machine

The following diagram shows the state machine of the SAG-DQ component.

 Array Control and Data Acquisition SAG Sub-system Detailed Design

Doc. No. CTA-TRE-COM-303000-0005
Issue 1, Rev.: d, 2022-02-12

Page 46 of 98

Figure 28: SAG-DQ state diagram

Table 2: State transitions of the state machine of the component

Transition Description
<Off → Initialized> Initialize the pipeline and configure the system.

<Initialized →Idle> Start the pipeline processes.

<Idle →Nominal> Start the watchdog process that waits for new data.

<Initialized → Warning>
<Idle → Warning>
<Nominal → Warning>

From all operational states it is possible to go in Warning state.

<Warn →Error> If the Warning state exceeds a critical level the pipeline goes in Error state.

<Initialized → Off>
<Idle → Off>
<Nominal → Off>
<Warning → Off>
<Error → Off>

From all states it is possible to power off the pipeline.

7.4.7 Command Interface
The following code snippet shows how to start the data quality pipelines:

 Array Control and Data Acquisition SAG Sub-system Detailed Design

Doc. No. CTA-TRE-COM-303000-0005
Issue 1, Rev.: d, 2022-02-12

Page 47 of 98

The first argument of the buildDQPipeline method specifies the configuration file that de-
scribes how many pipelines should be executed in parallel, their behaviour and how to sub-
mit them to Slurm. The following code snippet shows an example:

7.4.8 Activities
The activity diagram shown below describes the main SAG-DQ workflow during the data
quality checks of different data levels generated by the SAG-RECO. The interface between

 Array Control and Data Acquisition SAG Sub-system Detailed Design

Doc. No. CTA-TRE-COM-303000-0005
Issue 1, Rev.: d, 2022-02-12

Page 48 of 98

the two components are the HDF5 files generated by the SAG-RECO. The SAG-DQ peri-
odically checks that new files are available for the analyses and then processes these files.

Figure 29: Activity diagram of the SAG-DQ.

7.4.9 Sequences

7.4.9.1 Sequence: high level data quality analysis

The following figures show the sequence diagrams of the SAG-DQ component during the
startup and shutdown of the pipelines. They are defined using the UML notation.

 Array Control and Data Acquisition SAG Sub-system Detailed Design

Doc. No. CTA-TRE-COM-303000-0005
Issue 1, Rev.: d, 2022-02-12

Page 49 of 98

Figure 30: Sequence diagram for the startup of the SAG-DQ pipelines.

Figure 31: Sequence diagram for the shutdown of the SAG-DQ pipelines.

 Array Control and Data Acquisition SAG Sub-system Detailed Design

Doc. No. CTA-TRE-COM-303000-0005
Issue 1, Rev.: d, 2022-02-12

Page 50 of 98

7.4.9.2 Sequence: data quality of camera data (DL1)
Figure 32 shows how the rta-dq-pipe and rta-dq-lib can be used to satisfy the data quality of
camera data (DL1) use case.
In the diagram below, each red box represents a Python process and each process uses the
rta-dq-lib to perform the data quality operations: in particular, the goal for the implementa-
tion described below, is to generate four data quality indicators:
the distribution (1D histogram) of the camera pixel values for each pixel ;
the sum of the camera pixels;
the averages of the camera pixels;
the rms of the camera pixels.

The red box is a python process that executes the class rta-dq-pipe::DQAnalysis, reads the
HDF5 input file and processes it with an instance of the rta-dq-lib::DQPipeline.. The diagram
shows the operational configuration of the rta-dq-lib used by the analysis process. Finally,
the Python process writes the rta-dq-lib's output as pickled binary objects. The diagram
shows also several "analysis processes" executing in parallel to speed up the data analysis.

The "merger process" uses the rta-dq-lib to read the pickled results written in parallel by the
"analysis processes", to unpickle and merge them and write the results in a DB.

Figure 32: 33communication diagram of the data quality of camera data (DL1) use case.

 Array Control and Data Acquisition SAG Sub-system Detailed Design

Doc. No. CTA-TRE-COM-303000-0005
Issue 1, Rev.: d, 2022-02-12

Page 51 of 98

7.5 Component: High-Level Analysis pipeline

This component is designed to perform scientific analyses in real-time during the observa-
tions and to detect candidate science alerts that must be sent to the Transient Handler system.
The High-Level Analysis pipeline is also called SAG-SCI within this document.

7.5.1 General description

The document [AD2] defines a list of requirements for this component that are needed to
fulfil the use cases of the SAG system. This pipeline shall execute analysis in parallels for
different sub-array observing at the same time. It shall detect candidate science alerts with a
latency of five seconds and with an integral sensitivity within a factor two of that required
for the off-line analysis. These are some of the main requirements for the SAG-SCI pipeline.

The input data for this component is the DL3 produced by the low-level reconstruction pipe-
line. This data is saved into a MySQL database and triggers the SAG-SCI pipeline analysis
automatically.

The results of the scientific analyses are stored into a MySQL database, and the Human
Machine Interface can read this information and show it to the Science User.

The SAG-SCI pipeline is composed of the following main components: DL3 Merger, Data
Model, Science Logic, Pipeline Manager, Wrappers to the Science Tools and Task Manager.
This pipeline has interfaces with external systems and components:

• Low-level reconstruction pipeline as Data Source for input DL3 data
• science tools to perform analysis and to grant high flexibility
• Transient Handler to send candidate science alerts and to receive internal and exter-

nal science alerts
• Monitoring system to send all the monitoring information from software processes
• Alarm system to send all the alarms during the scientific analyses
• Source catalogues to be used during the scientific analysis [AD5].

Many of these interfaces are managed through the SAGSubArrayManager component and
not directly by the SAG-SCI pipeline. They are defined in more detail in the next section.

 Array Control and Data Acquisition SAG Sub-system Detailed Design

Doc. No. CTA-TRE-COM-303000-0005
Issue 1, Rev.: d, 2022-02-12

Page 52 of 98

7.5.2 Structure

Figure 34: High-Level pipeline architecture

The input for the SAG-SCI is the DL3 data produced by the SAG-RECO pipeline and col-
lected by the DL3 merger. The SAG-RECO stores the DL3 in HDF5 files, the DL3 merger
can detect new files and import the information contained in these files into the DL3 data-
base. In addition, the DL3 merger updates the Data Model with the time window contained
in the imported DL3 files.

The Data Model (DM) consists of all the entities present in this framework: Data Sources,
Instruments, Observations, Analysis, Science Tools, and more. The DM is very flexible and
allows different analysis and Science Tools configurations. The DM is designed to satisfy
the SAG-SCI requirements. A part of this DM is static and must be configured manually by
the Configuration Manager before starting data acquisition. The other part is dynamically
updated during the operations by the Pipeline Manager.

The Science Logic (SL) defines the set of rules used by the pipeline to
know When and How to execute the configured analysis during operations. The Science
Logic is implemented with MySQL triggers to improve the performances and reduce the
latency. This component retrieves the analysis configuration from the static part of the DM
and then updates the dynamic part. This set of rules, defined in advance, allows the pipeline
to operate in real-time autonomously.

The Pipeline Manager (PM) and the Task Manager (TM) execute the analysis and manage
priority between different tasks and queues. The PM component executes the analyses gen-
erated by the SL rules on the available computational resources. Since the number of these
analyses can potentially be very high, the pipeline manager submits these processes to the
TM component, which executes them in parallel, optimising the computational resources.
The TM performs analyses on multiple computing nodes and coordinates them.

 Array Control and Data Acquisition SAG Sub-system Detailed Design

Doc. No. CTA-TRE-COM-303000-0005
Issue 1, Rev.: d, 2022-02-12

Page 53 of 98

The PM is a software written in Python that periodically queries the DM to check if the
triggers have created new analyses to execute. When the pipeline manager finds new anal-
yses, it creates a new directory in the file system, queries the DM to obtain all the information
necessary to execute these analyses (time window, science tools, configurations, and more)
and saves this information in a file written using the Extensible Markup Language (XML).
The following figure shows an example of XML files that the PM create during an analysis.
Each science tool requires the development of a specific wrapper. A wrapper is a Python
script that interfaces the science tools with the pipeline reading the configurations required
to execute the analysis from the XML file written by the PM. The wrapper can be used to
execute analysis using the same science tool with different configurations without changing
the system architecture. It is possible to add new science tools without modifying the pipeline
architecture; the developer needs to add a few rows into the DM database and to create the
Python wrapper. This interface between the pipeline and the science tools provides great
flexibility to upgrade the pipeline with new software when required.

Each wrapper is structured in order to provide an executable for the analysis and one for the
post analysis. The former takes three configuration files in input: a) a file containing the
observation configuration; b) a file containing the analyses configuration; c) a target file
containing the spatial and spectral models of any sources to be considered for the analysis,
included the background. The latter uses the updated results file produced by the analysis to
store all information in the database.

Currently, the SAG-SCI consists of two science tools wrappers: one implementing analyses
with a dedicated, highly optimised Real-Time Aperture PHotometry (rtaph) tool and another
implementing the use of the gammapy software package.

The wrapper to the rtaph tool enables the computation of all photometric quantities (on
counts, off counts, alpha parameter, counts excess), the Li & Ma significance, an analytic
estimation for the integral flux and the counts map

The wrapper to the gammapy software package implements the computation of all photo-
metric quantities (on counts, off counts, alpha parameter, count excess), the Li & Ma signif-
icance, a spectral model fitting procedure and the resulting estimation of integral flux.

Both wrappers enable analyses to be executed canonically or in stack mode, provided that
results of previous connected analyses are found in the database. Stacking can be performed
throughout a set of observations when operating in wobble mode. Analyses can be performed
for targeted sources as well as candidate sources localised through a hotspot search within
the field of view of the observation.

The parameters contained inside this XML file are configured for each science tools inside
the DM as a template of the XML file that the pipeline manager shall produce at run-time.
A section of the XML file contains dynamical parameters with \#@@\# tag that are dynam-
ically defined by the pipeline for each run while the static part is customized by the Config-
uration Manager and can contain fixed parameters for a specific science tool. After preparing
all the configuration files necessary to interface the pipeline with the science tools, the PM
submits the analysis to the TM.

 Array Control and Data Acquisition SAG Sub-system Detailed Design

Doc. No. CTA-TRE-COM-303000-0005
Issue 1, Rev.: d, 2022-02-12

Page 54 of 98

Figure 35: Example of XML configuration file.

We implement the TM using Slurm, an open-source, fault-tolerant, and highly scalable clus-
ter management and job scheduling system for large and small Linux clusters. The PM sub-
mits all the analysis created by the SL to Slurm. Slurm manages the resources and the exe-
cution of the analysis.
We decided to use Slurm because it can manage thousands of jobs and is easily scaled from
one machine to thousands of machines. It can manage jobs in parallel and different priorities
between jobs. It can suspend low priority jobs to run high priority jobs. Another key feature
of Slurm is the capability to log inside a database all the information about every job. This
logging system is useful to monitor the pipeline in real-time, viewing statistics about the
execution of jobs. Scaling the computing power used by Slurm does not require a change in
the pipeline manager software. Within the DM, it is possible to configure the priorities be-
tween jobs, which will then be respected by Slurm, and to reserve resources for a specific
type of analysis.

Sky maps of DL4-DL5 are stored in FITS format in the filesystem.

When the SAG-SCI detect a Candidate Science Alerts, the related SubArrayManager sends
the information to the Transient Handler using the provided interface defined in [AD6]. On
the other hand, when the Transient Handler receives an External or Internal Science Alerts
it sends information to the SAG-SCI. The interface is through a new Scheduling Block that
is received from the Central Control using the control flow described in the sequence dia-
gram of Sect. 7.2.8.2.

7.5.3 Class Diagrams

The SAG-SCI module is structured in packages, each tasked with a specific purpose. The
module contains all scripts for running multiple scientific analyses in parallel, collecting
the results and store them in the database. It can interrogate the database for query of previ-
ous analyses results as well. The core of the module also comprises a set of tools that re-
duce the DL3 taken as input in DL4 and DL5 scientific results.

7.5.3.1 Package: gammapipecommon

 Array Control and Data Acquisition SAG Sub-system Detailed Design

Doc. No. CTA-TRE-COM-303000-0005
Issue 1, Rev.: d, 2022-02-12

Page 55 of 98

Figure 36: Class diagram of the package gammapipecommon

The gammapipecommon package contains the parent configuration classes. These classes
initialise the common configuration of each job, observation and post-analysis. They store
the values of common parameters, and are thus inherited by the individual configuration of
each science tools wrapper. In this class there is also a collection of common utility, such
as methods for the conversion of time and coordinates.

7.5.3.2 Package: pipelinemanager
This package contains the software that manages the pipeline to execute the scientific anal-
yses automatically. It contains a class Utility with several methods that are used by the
pipelines, a class Watcher, and a class Handler that are in charge of monitoring a directory
and executing a function whenever a new file is written in the directory (e.g., when the
SAG-RECO completes a new DL3 file).

Several components of this software are not classes but scripts. In future releases, the goal
is to refactor this part of the software with an object-oriented pattern.

Figure 37: Class diagram of the package pipelinemanager

 Array Control and Data Acquisition SAG Sub-system Detailed Design

Doc. No. CTA-TRE-COM-303000-0005
Issue 1, Rev.: d, 2022-02-12

Page 56 of 98

7.5.3.3 Package: tools

Figure 38: Class diagram of the package tools

 Array Control and Data Acquisition SAG Sub-system Detailed Design

Doc. No. CTA-TRE-COM-303000-0005
Issue 1, Rev.: d, 2022-02-12

Page 57 of 98

The tools package comprises the core classes of the High-Level Analysis, alongside a col-
lection of functions to allow for querying the database and other support utilities for the
scientific analysis. The main classes are:

• Fits, this class contains all methods and functionalities to read, update, and create
data files in FITS format. Among its utilities are the methods to update header in-
formation, compute counts map, smoothed counts map and produce empty tem-
plates;

• IRF, this class allows to extract data from the Instrument Response Functions in
FITS format;

• EffectiveArea, this class specifically operates on the Effective Area extension of an
Instrument Response Function in FITS format. It has methods that allow to extract
the effective area for a given region in the field of view;

• PSF, this class specifically operates on the Point Spread Function extension of an
Instrument Response Function in FITS format. Its methods allow to correct the ef-
fective area extracted within a region for the containment radius of the instrument
resolution;

• MyXml, this class is a wrapper of the lxml software package. It provides methods
for reading, manipulating and creating XML files that are specifically used for the
SAG-SCI configuration files, target files and results outputs.

• Photometrics, this class comprises the algorithms for dedicated tools of aperture
photometry. The algorithms supported are the “cross” and “reflection” background
estimation methods, both of which can function in Wobble mode;

• SkyImage, this class allows the creation of counts map PNG images. It contains
methods that can display DL4 files in FITS format, but also methods that can take a
DL3 file as input, reduce it on memory to a DL4 and produce the resulting plot. It
can produce plots of counts map as well as smoothed counts map;

• PipeLoggerConfig and Singleton, these classes allow to log information throughout
the entire SAG-SCI module.

7.5.3.4 Package: rtaph

Figure 39: Class diagram of the package rtatools

This package is the wrapper of a dedicated Real-Time Aperture PHotrometry (rtaph) tool,
for the SAG-SCI module. It contains all the scripts necessary to perform aperture photome-
try analyses, using independent tools based on the analytic Li & Ma formula. The main
classes are:

• PhotometryConfiguration, it initialises the tool-specific analysis configuration;

 Array Control and Data Acquisition SAG Sub-system Detailed Design

Doc. No. CTA-TRE-COM-303000-0005
Issue 1, Rev.: d, 2022-02-12

Page 58 of 98

• Detection, it contains the full length of the scientific analysis;
• ImportResults, it allows to store the analysis results inside the database;
• PostAnalysis, handles the post-analysis operations, including the database update.

7.5.3.5 Package: gammapy

Figure 40: Class diagram of the package gammapy

This package is the wrapper of the gammapy software package, for the SAG-SCI module.
It allows to perform scientific analyses both on/off and full field of view, using the science
tool API. The main classes are:

• GAnalysisConfiguration, it initialises the tool-specific analysis configuration, in-
cluding the option of running a hotspots search within the field of view before the
aperture photometry;

• GAnalysis, it contains the gammapy analysis wrapping functions to perform the
configuration, hotspots search, spectral fit and analysis;

• Detection, it contains the full length of the scientific analysis;
ImportResults, it allows to store the analysis results inside the database;
PostAnalysis, handles the post-analysis operations, including the database update.

7.5.4 General behavior

We designed the SAG-SCI to perform new analyses when one of the following two condi-
tions occurs. The first condition occurs when the DL3 merger checks the presence of new
data and updates the data index into the database to communicate to the pipeline that new
data has arrived. The second condition occurs when the pipeline receives external or internal
science alerts from the Transient Handler. This last condition is used to search for a coun-
terpart of the science alert inside the data stream of the ongoing observation. Using the data
index , the pipeline verifies if the data archive contains the required time window for the
analysis. If yes, the analysis is performed; otherwise, the pipeline waits until the required
data arrives to start suspended analyses.

 Array Control and Data Acquisition SAG Sub-system Detailed Design

Doc. No. CTA-TRE-COM-303000-0005
Issue 1, Rev.: d, 2022-02-12

Page 59 of 98

7.5.5 State machine

Figure 41: SAG-SCI state diagram

Table 3: State transitions of the state machine of the component

Transition Description
<Off → Initialized> Initialize the pipeline and configure the system.

<Initialized →Idle> Start the pipeline processes.

<Idle →Nominal> Start the watchdog process that waits for new data.

<Initialized → Warning>
<Idle → Warning>
<Nominal → Warning>

From all operational states it is possible to go in Warning state.

<Warn →Error> If the Warning state exceeds a critical level the pipeline goes in Error state.

<Initialized → Off>
<Idle → Off>
<Nominal → Off>
<Warning → Off>
<Error → Off>

From all states it is possible to power off the pipeline.

7.5.6 Command Interface

The SAG-SCI pipeline can be started from the command line by executing python scripts
that run in an infinite loop until the stop signal.

The submit_job.py and cancel_job.py manage the submission and the removal of jobs to
Slurm. The update_job_status.py read the status of each job from Slurm and updates the
database.

 Array Control and Data Acquisition SAG Sub-system Detailed Design

Doc. No. CTA-TRE-COM-303000-0005
Issue 1, Rev.: d, 2022-02-12

Page 60 of 98

7.5.7 Activities

Figure 42: SAG-SCI activity diagram

 Array Control and Data Acquisition SAG Sub-system Detailed Design

Doc. No. CTA-TRE-COM-303000-0005
Issue 1, Rev.: d, 2022-02-12

Page 61 of 98

7.5.8 Sequences

Figure 43: SAG-SCI sequence diagram: the SubArrayManager starts the pipelines

Figure 44: SAG-SCI sequence diagram: the SubArrayManager starts the data processing

 Array Control and Data Acquisition SAG Sub-system Detailed Design

Doc. No. CTA-TRE-COM-303000-0005
Issue 1, Rev.: d, 2022-02-12

Page 62 of 98

Figure 45: SAG-SCI sequence diagram: the SubArrayManager stop the data processing

Figure 46: SAG-SCI sequence diagram: the SubArrayManager stop the pipelines

 Array Control and Data Acquisition SAG Sub-system Detailed Design

Doc. No. CTA-TRE-COM-303000-0005
Issue 1, Rev.: d, 2022-02-12

Page 63 of 98

8 Data Model

8.1 Overall Information Flow Diagram

In this section we report the overall data flow. Some data types are reported in pseudo-code.

Figure 47: Overall data flow diagram

8.1.1 DL0
Since the CTAO has not yet released the DL0 data model, the specifications shown here
can only be considered as preliminary.

///Table of waveform of the high gain signal(nbrow = 5896)
class TelescopeEvent{
 uint64 event_id
 uint16 waveformHi[Nsamp, Npix]
 uint16 waveformLo[Nsamp, Npix]
}
///All simulated Corsika events(nbrow = 10965)
class Shower{
 uint64 event_id
 uint64 obs_id
 float32 true_alt
 float32 true_az
 float32 true_core_x
 float32 true_core_y

 Array Control and Data Acquisition SAG Sub-system Detailed Design

Doc. No. CTA-TRE-COM-303000-0005
Issue 1, Rev.: d, 2022-02-12

Page 64 of 98

 float32 true_energy
 float32 true_h_first_int
 uint64 true_shower_primary_id
 float32 true_x_max
}
///Configuration of the simulated events(nbrow = 1)
class ShowerConfiguration{
 uint64 atmosphere
 uint64 core_pos_mode
 float32 corsika_bunchsize
 int32 corsika_high_E_detail
 int32 corsika_high_E_model
 int32 corsika_iact_options
 int32 corsika_low_E_detail
 int32 corsika_low_E_model
 int32 corsika_version
 float32 corsika_wlen_max
 float32 corsika_wlen_min
 uint64 detector_prog_id
 int32 detector_prog_start
 int32 diffuse
 float32 energy_range_max
 float32 energy_range_min
 float32 injection_height
 float32 max_alt
 float32 max_az
 float32 max_scatter_range
 float32 max_viewcone_radius
 float32 min_alt
 float32 min_az
 float32 min_scatter_range
 float32 min_viewcone_radius
 uint64 num_showers
 uint64 obs_id
 float32 prod_site_B_declination
 float32 prod_site_B_inclination
 float32 prod_site_B_total
 float32 prod_site_alt
 float32 run_array_direction[Ngain]
 uint64 shower_prog_id
 int32 shower_prog_start
 uint64 shower_reuse
 int32 simtel_version
 float32 spectral_index
}
///Layout of the subarray(nbrow = 4)
class InstrumentLayout{
 string camera_type
 string name
 uint64 num_mirrors
 float32 pos_x
 float32 pos_y
 float32 pos_z
 string tel_description
 uint64 tel_id
 string type
 uint64 type_id
}
///Geometry of LSTCam(nbrow = Npix)
class CameraGeomatry{
 float32 pix_area
 uint64 pix_id
 float32 pix_x
 float32 pix_y
}
///Reference shape of LSTCam(nbrow = Nrefsamp)
class CameraReadout{
 float32 reference_pulse_sample_time
 float32 reference_pulse_shape_channel0
 float32 reference_pulse_shape_channel1
}

 Array Control and Data Acquisition SAG Sub-system Detailed Design

Doc. No. CTA-TRE-COM-303000-0005
Issue 1, Rev.: d, 2022-02-12

Page 65 of 98

8.1.2 DL1
Since the CTAO has not yet released the DL1 data model, the specifications shown here
can only be considered as preliminary.

///(nbrow = 5896)
class ImageParameter{
 float32 hillas_x
 float32 hillas_y
 float32 hillas_phi
 float32 hillas_width
 float32 hillas_length
 float32 hillas_intensity
 float32 morphology_num_pixels
 float32 hillas_skewness
 float32 hillas_r
 float32 hillas_kurtosis
 float32 hillas_psi
 float32 is_good_event
 float32 timing_slope
 float32 timing_intercept
 float32 leakage_pixels_width_1
 float32 leakage_pixels_width_2
 float32 leakage_intensity_1
 float32 leakage_intensity_2
 float32 morphology_num_islands
 float32 total_intensity
float32 telAltitude
float32 telAzimuth
 uint64 event_id
 uint64 obs_id
 uint64 tel_id
float64 triggerTime
uint64 eventType
int32 quality
}
///(nbrow = 5896)
class CalibratedImage{
 uint64 event_id
 uint64 obs_id
 uint64 tel_id
float64 triggerTime
uint64 eventType
 float32 image[Npix]
 float32 peak_time[Npix]
}
///Trigger information(nbrow = 10965)
class Trigger{
 uint64 event_id
 uint64 event_type
 uint64 obs_id
 float64 time
uint32 timestampSecond
uint32 timestampQns
}
///All simulated Corsika events(nbrow = 10965)
class Shower{
 uint64 event_id
 uint64 obs_id
 float32 true_alt
 float32 true_az
 float32 true_core_x
 float32 true_core_y
 float32 true_energy
 float32 true_h_first_int
 uint64 true_shower_primary_id
 float32 true_x_max
}
///Configuration of the simulated events(nbrow = 1)
class ShowerConfiguration{
 uint64 atmosphere
 uint64 core_pos_mode
 float32 corsika_bunchsize

 Array Control and Data Acquisition SAG Sub-system Detailed Design

Doc. No. CTA-TRE-COM-303000-0005
Issue 1, Rev.: d, 2022-02-12

Page 66 of 98

 int32 corsika_high_E_detail
 int32 corsika_high_E_model
 int32 corsika_iact_options
 int32 corsika_low_E_detail
 int32 corsika_low_E_model
 int32 corsika_version
 float32 corsika_wlen_max
 float32 corsika_wlen_min
 uint64 detector_prog_id
 int32 detector_prog_start
 int32 diffuse
 float32 energy_range_max
 float32 energy_range_min
 float32 injection_height
 float32 max_alt
 float32 max_az
 float32 max_scatter_range
 float32 max_viewcone_radius
 float32 min_alt
 float32 min_az
 float32 min_scatter_range
 float32 min_viewcone_radius
 uint64 num_showers
 uint64 obs_id
 float32 prod_site_B_declination
 float32 prod_site_B_inclination
 float32 prod_site_B_total
 float32 prod_site_alt
 float32 run_array_direction[Ngain]
 uint64 shower_prog_id
 int32 shower_prog_start
 uint64 shower_reuse
 int32 simtel_version
 float32 spectral_index
}
///Layout of the subarray(nbrow = 4)
class InstrumentLayout{
 string camera_type
 string name
 uint64 num_mirrors
 float32 pos_x
 float32 pos_y
 float32 pos_z
 string tel_description
 uint64 tel_id
 string type
 uint64 type_id
}
///Geometry of LSTCam(nbrow = Npix)
class CameraGeomatry{
 float32 pix_area
 uint64 pix_id
 float32 pix_x
 float32 pix_y
}
///Reference shape of LSTCam(nbrow = Nrefsamp)
class CameraReadout{
 float32 reference_pulse_sample_time
 float32 reference_pulse_shape_channel0
 float32 reference_pulse_shape_channel1
}

8.1.3 DL2
Since the CTAO has not yet released the DL2 data model, the specifications shown here
can only be considered as preliminary.

class ImageParameter{

float32 hillas_x
float32 hillas_y
float32 hillas_phi
float32 hillas_width

 Array Control and Data Acquisition SAG Sub-system Detailed Design

Doc. No. CTA-TRE-COM-303000-0005
Issue 1, Rev.: d, 2022-02-12

Page 67 of 98

float32 hillas_length
float32 hillas_intensity
float32 morphology_num_pixels
float32 hillas_skewness
float32 hillas_r
float32 hillas_kurtosis
float32 hillas_psi
float32 is_good_event
float32 timing_slope
float32 timing_intercept
float32 leakage_pixels_width_1
float32 leakage_pixels_width_2
float32 leakage_intensity_1
float32 leakage_intensity_2
float32 morphology_num_islands
float32 total_intensity

 float32 telAltitude
 float32 telAzimuth
 Float32 log_reco_energy
 Float32 reco_energy
 Float32 reco_disp_dx
 Float32 reco_disp_dy
 Float32 reco_src_x
 Float32 reco_src_y
 Float32 reco_alt
 Float32 reco_az
 Float32 gammaness

uint64 event_id
uint64 obs_id
uint64 tel_id

 float64 triggerTime
 uint64 eventType
 int32 quality
}///Trigger information(nbrow = 10965)
class Trigger{

uint64 event_id
uint64 event_type
uint64 obs_id
float64 time

uint32 timestampSecond
uint32 timestampQns
}
///All simulated Corsika events(nbrow = 10965)
class Shower{

uint64 event_id
uint64 obs_id
float32 true_alt
float32 true_az
float32 true_core_x
float32 true_core_y
float32 true_energy
float32 true_h_first_int
uint64 true_shower_primary_id
float32 true_x_max

}
///Configuration of the simulated events(nbrow = 1)
class ShowerConfiguration{

uint64 atmosphere
uint64 core_pos_mode
float32 corsika_bunchsize
int32 corsika_high_E_detail
int32 corsika_high_E_model
int32 corsika_iact_options
int32 corsika_low_E_detail
int32 corsika_low_E_model
int32 corsika_version
float32 corsika_wlen_max
float32 corsika_wlen_min
uint64 detector_prog_id
int32 detector_prog_start
int32 diffuse
float32 energy_range_max
float32 energy_range_min
float32 injection_height
float32 max_alt

 Array Control and Data Acquisition SAG Sub-system Detailed Design

Doc. No. CTA-TRE-COM-303000-0005
Issue 1, Rev.: d, 2022-02-12

Page 68 of 98

float32 max_az
float32 max_scatter_range
float32 max_viewcone_radius
float32 min_alt
float32 min_az
float32 min_scatter_range
float32 min_viewcone_radius
uint64 num_showers
uint64 obs_id
float32 prod_site_B_declination
float32 prod_site_B_inclination
float32 prod_site_B_total
float32 prod_site_alt
float32 run_array_direction[Ngain]
uint64 shower_prog_id
int32 shower_prog_start
uint64 shower_reuse
int32 simtel_version
float32 spectral_index

}
///Layout of the subarray(nbrow = 4)
class InstrumentLayout{

string camera_type
string name
uint64 num_mirrors
float32 pos_x
float32 pos_y
float32 pos_z
string tel_description
uint64 tel_id
string type
uint64 type_id

}
///Geometry of LSTCam(nbrow = Npix)
class CameraGeomatry{

float32 pix_area
uint64 pix_id
float32 pix_x
float32 pix_y

}
///Reference shape of LSTCam(nbrow = Nrefsamp)
class CameraReadout{

float32 reference_pulse_sample_time
float32 reference_pulse_shape_channel0
float32 reference_pulse_shape_channel1

}

8.1.4 DL3
Since the CTAO has not yet released the DL3 data model, the specifications shown here
can only be considered as preliminary.

General Structure :

Events Header:

 Array Control and Data Acquisition SAG Sub-system Detailed Design

Doc. No. CTA-TRE-COM-303000-0005
Issue 1, Rev.: d, 2022-02-12

Page 69 of 98

Events Table:

GTI Header:

GTI Table:

Pointing Header:

 Array Control and Data Acquisition SAG Sub-system Detailed Design

Doc. No. CTA-TRE-COM-303000-0005
Issue 1, Rev.: d, 2022-02-12

Page 70 of 98

Effective Area Header:

Effective Area Table:

Energy Dispersion Header:

 Array Control and Data Acquisition SAG Sub-system Detailed Design

Doc. No. CTA-TRE-COM-303000-0005
Issue 1, Rev.: d, 2022-02-12

Page 71 of 98

Energy Dispersion Table:

8.1.5 Monitoring point

The SAG sends monitoring points to the MON system through an ACS notification chan-
nel. The data model of these monitoring points is defined in the diagram below.

 Array Control and Data Acquisition SAG Sub-system Detailed Design

Doc. No. CTA-TRE-COM-303000-0005
Issue 1, Rev.: d, 2022-02-12

Page 72 of 98

Figure 48: Data model of the monitoring points.

8.2 Component: SAG-SUP

8.2.1 Configuration

The SAG-SUP receives the configurations from the Central Control System and Resource
Manager when the ACS components are started.

8.2.2 Run-Time Setup

During the operations the configurations are received through the Scheduling Block sent
by the CC. The data model of the Scheduling Block is described in [AD7].

8.2.3 Operations Logging

The logging infrastructure is provided by the ACADA MON sub-system. The SAG-SUP
ACS components generate ACS logs that are collected by the MON sub-system.

Table 4: Logging information component SAG-SUP

Log name Log level Condition to trigger Description
ACS compo-
nents logs

TBD periodically

 Array Control and Data Acquisition SAG Sub-system Detailed Design

Doc. No. CTA-TRE-COM-303000-0005
Issue 1, Rev.: d, 2022-02-12

Page 73 of 98

8.2.4 Alarms Triggered

This section lists the alarm generated by the SAG-SUP during the operations.

Table 5: Alarm triggered component SAG-SUP

Alarm
name

Alarm
Family

Alarm Criticallity Description

Unable to
start the sys-
tem

 The sub-system cannot be started and this is
reported as an Alarm.

Unable to
get the status
of ACS
components

 The sub-system is not able to get the status
of ACS components

 One of the
ACS compo-
nent is in the
Alarm state

8.2.5 Monitoring Points

The SAG-SUP collects and sends to the MON system a list of monitoring points shown in
the table below.

Table 6: Monitoring Points for Component SAG-SUP

Point
name

Descrip-
tion

Type Sample rate Alarm Condition

Status of the
ACS compo-
nents

The staus of
all ACS
components

state 1 Hz

Status of the
pipelines

The status of
SAG-RECO,
SAG-DQ
and SAG-
SCI pipe-
lines for
each SB.

state 1Hz

8.2.6 Input Data

The SAG-SUP component does not receive input data but only configurations.

8.2.7 Output Data

The SAG-SUP component does not produce output data.

 Array Control and Data Acquisition SAG Sub-system Detailed Design

Doc. No. CTA-TRE-COM-303000-0005
Issue 1, Rev.: d, 2022-02-12

Page 74 of 98

8.2.8 Internal Data
The internal data are sent and received using the ACS components. These interfaces are
defined in the IDL.

8.3 Component: Image Parameter Extractor and Low-Level Reconstruction
Pipeline

8.3.1 Configuration

DL0 -> DL1 configuration :

DL1 -> DL2 configuration :

 Array Control and Data Acquisition SAG Sub-system Detailed Design

Doc. No. CTA-TRE-COM-303000-0005
Issue 1, Rev.: d, 2022-02-12

Page 75 of 98

 Array Control and Data Acquisition SAG Sub-system Detailed Design

Doc. No. CTA-TRE-COM-303000-0005
Issue 1, Rev.: d, 2022-02-12

Page 76 of 98

 Array Control and Data Acquisition SAG Sub-system Detailed Design

Doc. No. CTA-TRE-COM-303000-0005
Issue 1, Rev.: d, 2022-02-12

Page 77 of 98

DL2 -> DL3 configuration :

8.3.2 Run-Time Setup

The SAG-RECO is configured using the parameters contained in the Scheduling Block
[AD7].

Table 7: Run-time Setup Data component SAG-RECO

Parameter Data
Type

Description

Scheduling Block struct The Scheduling Block is needed to retrieve all the information
about the sub-array configuration and scientific targets.

8.3.3 Operations Logging

 Array Control and Data Acquisition SAG Sub-system Detailed Design

Doc. No. CTA-TRE-COM-303000-0005
Issue 1, Rev.: d, 2022-02-12

Page 78 of 98

The SAG-RECO ACS components use the ACS log system while the software components
external to ACS provide the logs to the ACS infrastructure using an ACS client.

Table 8: Logging information component SAG-RECO

Log name Log level Condition to trigger Description
SAG-
RECO-
logs

TBD periodically

8.3.4 Alarms Triggered

The Alarms are managed through the ACS Alarm System.
Table 9: Alarm triggered component SAG-RECO

Alarm
name

Alarm
Family

Alarm Criticallity Description

Unable to
start the sys-
tem

 The sub-system cannot be started and this is re-
ported as an Alarm.

Data flow in-
terrupted

 The sub-system is not able to receive the input
data.

8.3.5 Monitoring Points

The table below lists the monitoring points of the SAG-RECO component.

Table 10: Monitoring Points for Component SAG-RECO

Point name Descrip-
tion

Type Sample rate Alarm Condition

recoInputDataRate The DL0
data rate re-
ceived by
SAG

double 1 Hz monitoring point outside
the nominal range

recoInputEventRate The DL0
events rate
received by
SAG

double 1 Hz monitoring point outside
the nominal range

re-
coDL0DL1ProcRate

The SAG-
RECO pro-
cessing rate
in Hz of the
step DL0-
>DL1

double 1 Hz monitoring point outside
the nominal range

re-
coDL1DL2ProcRate

The SAG-
RECO pro-
cessing rate
in Hz of the
step DL1-
>DL2

double 1 Hz monitoring point outside
the nominal range

 Array Control and Data Acquisition SAG Sub-system Detailed Design

Doc. No. CTA-TRE-COM-303000-0005
Issue 1, Rev.: d, 2022-02-12

Page 79 of 98

re-
coDL2DL3ProcRate

The SAG-
RECO pro-
cessing rate
in Hz of the
step DL2-
>DL3

double 1 Hz monitoring point outside
the nominal range

8.3.6 Input Data
The SAG-RECO receives input data from the ADH with the DL0 data format.

Table 11: Input data of the component SAG-RECO

Data Description

DL0 See Sect. 8.1.1

8.3.7 Output Data
The SAG-RECO produces DL1, DL2 and DL3 data level as output data. These data are
used by the SAG-DQ and SAG-SCI components.

Table 12: Output data of the component SAG-RECO

Data Description

DL1 See Sect. 8.1.1
DL2 See Sect. 8.1.1
DL3 See Sect. 8.1.1

8.3.8 Internal Data
The SAG-RECO component receives DL0 as input from the ADH and reconstructs the
data from DL0 to DL3 through other data levels. For this reason, the output of one layer of
the SAG-RECO pipeline is the input of the following layer.

8.4 Component: On Line Data Quality

8.4.1 Configuration
The Data Quality component load configurations from XML files during start-up of the sys-
tem. These configurations define the input data format, aggregation analysis and data quality
checks.

The configurations are contained in different XML files:

1) Quality check

 Array Control and Data Acquisition SAG Sub-system Detailed Design

Doc. No. CTA-TRE-COM-303000-0005
Issue 1, Rev.: d, 2022-02-12

Page 80 of 98

Figure 49: Example of quality check configuration

2) Aggregations

Figure 50: Example of aggregations configuration

3) Input Data Format

 Array Control and Data Acquisition SAG Sub-system Detailed Design

Doc. No. CTA-TRE-COM-303000-0005
Issue 1, Rev.: d, 2022-02-12

Page 81 of 98

Figure 51: Example of input data format

8.4.2 Run-Time Setup

The SAG-DQ is configured using the parameters contained in the Scheduling Block
[AD7].

Table 13: Run-time Setup Data component SAG-DQ

Parameter Data
Type

Description

Scheduling Block struct The Scheduling Block is needed to retrieve all the information
about the sub-array configuration and scientific targets.

8.4.3 Operations Logging

The SAG-DQ ACS components use the ACS log system while the software components
external to ACS provide the logs to the ACS infrastructure using an ACS client.

Table 14: Logging information component SAG-DQ

Log name Log level Condition to trigger Description
SAG-DQ-
logs

TBD periodically

 Array Control and Data Acquisition SAG Sub-system Detailed Design

Doc. No. CTA-TRE-COM-303000-0005
Issue 1, Rev.: d, 2022-02-12

Page 82 of 98

8.4.4 Alarms Triggered

The Alarms are managed through the ACS Alarm System.

Table 15: Alarm triggered component SAG-DQ

Alarm
name

Alarm
Family

Alarm Criticallity Description

Unable to
start the sys-
tem

 The sub-system cannot be started and this is
reported as an Alarm.

Data flow
interrupted

 The sub-system is not able to receive the in-
put data.

8.4.5 Monitoring Points

The table below lists the monitoring points of the SAG-DQ component.

Table 16: Monitoring Points for Component SAG-DQ

Point name Description Type Sam-
ple
rate

Alarm
Condition

dqDL1ProcRate The SAG-DQ processing rate in Hz of the
DL1 data.

double 1 Hz Monitoring
point out-
side the
nominal
range

dqDL2ProcRate The SAG-DQ processing rate in Hz of the
DL2 data.

double 1 Hz Monitoring
point out-
side the
nominal
range

dqDL3ProcRate The SAG-DQ processing rate in Hz of the
DL3 data.

double 1 Hz Monitoring
point out-
side the
nominal
range

dqDL1MergeRate The SAG-DQ merge rate in Hz of the DL1
data.

double 1 Hz Monitoring
point out-
side the
nominal
range

dqDL2MergeRate The SAG-DQ merge rate in Hz of the DL2
data.

double 1 Hz Monitoring
point out-
side the
nominal
range

dqDL3MergeRate The SAG-DQ merge rate in Hz of the DL3
data.

double 1 Hz Monitoring
point out-
side the
nominal
range

 Array Control and Data Acquisition SAG Sub-system Detailed Design

Doc. No. CTA-TRE-COM-303000-0005
Issue 1, Rev.: d, 2022-02-12

Page 83 of 98

8.4.6 Input Data

The SAG-DQ uses as input data the DL1, DL2 and DL3 data generated by the SAG-RECO
pipelines.

Table 17: Input data of the component SAG-DQ

Data Description

DL1 See Sect. 8.1.1
DL2 See Sect. 8.1.1
DL3 See Sect. 8.1.1

8.4.7 Output Data

The SAG-DQ generates different data types in output to show the results of the data qual-
ity checks.

Table 18: Output data of the component SAG-DQ

Data Description

Histograms 1D and 2D histograms describing the distribution of analysed values (e.g. Hillas parame-
ters).

Time Series Time series of a value processed by the data quality pipeline (e.g. trigger rate).
Camera Plots The image of a single event trigger seen by a camera.

8.4.8 Internal Data
Internal data are data saved in the MySQL database.

8.5 Component: High-Level Analysis Pipeline

8.5.1 Configuration
The SAG-SCI pipeline is configured using the information stored in the Data Model de-
scribed in Section 7.5.2. The main information are related to the sub-array configuration,
observation parameters and targets.

8.5.2 Run-Time Setup
During the SAG-SCI run-time, all the analyses executed by the pipeline uses three XML
files to retrieve configurations. These configurations contain static information (e.g. Obser-
vation parameters) and dynamic information updated for each analysis (e.g. time window,
sky position etc.).

 Array Control and Data Acquisition SAG Sub-system Detailed Design

Doc. No. CTA-TRE-COM-303000-0005
Issue 1, Rev.: d, 2022-02-12

Page 84 of 98

The following figures show examples of XML configuration files.

Figure 52: Example of job configuration for scientific analyses

Figure 53: Example of target configuration for scientific analyses

Figure 54: Example of observation configuration for scientific analyses

8.5.3 Operations Logging

The SAG-SCI ACS components use the ACS log system while the software components
external to ACS provide the logs to the ACS infrastructure using an ACS client.

Table 19: Logging information component SAG-SCI

Log name Log level Condition to trigger Description
SAG-SCI-
logs

TBD periodically

8.5.4 Alarms Triggered
 The Alarms are managed through the ACS Alarm System

 Array Control and Data Acquisition SAG Sub-system Detailed Design

Doc. No. CTA-TRE-COM-303000-0005
Issue 1, Rev.: d, 2022-02-12

Page 85 of 98

Table 20: Alarm triggered component SAG-SCI

Alarm
name

Alarm
Family

Alarm Criticallity Description

Unable to
start the sys-
tem

 The sub-system cannot be started and this is
reported as an Alarm.

Data flow
interrupted

 The sub-system is not able to receive the in-
put data.

8.5.5 Monitoring Points

The table below lists the monitoring points of the SAG-SCI component.

Table 21: Monitoring Points for Component SAG-SCI

Point name Description Type Sample
rate

Alarm
Condition

sciProcRate The time required by the SAG-SCI to
perform the scientific analysis.

statEvent 1 Hz

blindSearchProcRate The time required by the SAG-SCI to
perform a blind search scientific anal-
ysis.

statEvent 1 Hz

dl3MergeRate The time required by the SAG-SCI to
perform the merge of DL3 files pro-
duced by the SAG-RECO analysis.

statEvent 1 Hz

8.5.6 Input Data
The SAG-SCI uses the DL3 data generated by the SAG-RECO pipelines as input to gener-
ate scientific results.

Table 22: Input data of the component SAG-SCI

Data Description

DL3 See Sect. 8.1.1

8.5.7 Output Data
The SAG-SCI pipelines generate several types of results that depend on the configuration
and on the science tool that performed the analysis.

Table 23: Output data of the component SAG-SCI

Data Description

Lightcurves Time series plot that shows the flux or the significance value as a function of time of a
sky position.

Counts Maps Images showing for each pixel the binned number of photons.
Analysis re-
sults

The results obtained with the scientific analysis (e.g. flux, source position, etc.)

 Array Control and Data Acquisition SAG Sub-system Detailed Design

Doc. No. CTA-TRE-COM-303000-0005
Issue 1, Rev.: d, 2022-02-12

Page 86 of 98

Candidate
Science Alerts

The SAG-SCI sends to the TH the detection with a significance over a configured thresh-
old.

8.5.8 Internal Data
Internal data are data saved in the MySQL database.

9 Human Machine Interfaces
The HMI interface of the SAG System is provided by HMI System.

10 Performance

10.1 System Performance
The SAG must handle 0.3 Gbps assuming 5% of pixels survived zero-suppression, with a
maximum data rate of 9 Gbps in case no zero-suppression is applied.

10.2 Data Rates
The data streams handled by the component and the performance properties of each are
listed in the following table (from [RD1]):

Table 24: Data streams handled by the component

Data
Stream

Description

Telescope
triggers

Max: 15kHz
Typical SST: 600Hz
Typical MST: 7kHz
Typical LST: 15kHz

Array trigger Max: 40 kHz
Average multiplicity: 5

DL0 input
for SAG

Average: 0.3 Gbps assuming 5% of pixels survived zero-suppression
Max: 9 Gbps in case no zero-suppression is applied

10.3 Synchonization
The synchronization needed between this component and other components within the sub-
system or other sub-systems, or stakeholders are listed in the following table:

Table 25: Synchronization items for the component

Data
Stream

Description

Scheduling
Block

An input Scheduling Block used to start sub-array pipelines. This is received from Cen-
tral Control [AD6].

Alarm Alarms are received and used to decide the workflow of the processes. Alarms are re-
ceived from Alarm System [AD6].

Monitoring
points

Some monitoring points are used to decide the workflow of the processes. These moni-
toring points are received from the Monitoring System [AD6]. Monitoring points could
be:

 Array Control and Data Acquisition SAG Sub-system Detailed Design

Doc. No. CTA-TRE-COM-303000-0005
Issue 1, Rev.: d, 2022-02-12

Page 87 of 98

1. environmental conditions (cloudiness, atmospheric transmission, atmospheric
extinction profile): to select the right IRF.

2. NSB: to select the right IRF.
3. pointing info: to select the center of the FoV.
4. status for each telescope: to select the right IRF.

Candidate
Science Alerts

Candidate Science Alert are sent to the Transient Handler [AD6].

10.4 Control Loops
The control loops implemented by these components are listed in the following table:

Table 26: Control loops deployed within the component

Data
Stream

Description

Incoming com-
mands from CC

Waiting for new commands or new Scheduling Blocks from CC change the control
loop.

DL0 Incoming DL0 data starts the data processing of the reconstruction and data quality
pipelines

10.5 Start-up and Shut-down
The start-up of the SAG Supervisor and of the SAG Sub-Array Pipeline Supervisor requires
a few seconds. The remaining part of the SAG pipelines is started when new a Scheduling
Block is received and requires a few seconds. The same time is required to shutdown the
pipelines and the SAG Supervisor.

10.6 State Transitions
The performance required/expected for each state transition are listed in the following ta-
ble:

Table 27: Performance of the state transitions of the SAG-DQ and SAG-SCI pipelines

Transition Execution Time (s) Comments
<Off → Initialized> Some milliseconds Initialize the pipeline and configure the system.

<Initialized →Idle> Some milliseconds Start the pipeline processes.

<Idle → Nominal> Some milliseconds Start the watchdog process that waits for new data.

<Nominal -> Idle > Up to 20 seconds The pipelines are not receiving new data but need to analyse the data
buffer.

<Initialized → Warn-
ing>
<Idle → Warning>
<Nominal → Warn-
ing>

Some milliseconds From all operational states it is possible to go in Warning state for exam-
ple if data stream or data flow connection are lost even if the data is ex-
pected.

<Warn →Error> Some milliseconds If the Warning state exceeds a critical level the pipeline goes in Error
state.

< Error -> Off > Some milliseconds Nothing is happening in Error state. Pipelines need to be restarted.

<Initialized → Off>
<Idle → Off>
<Nominal → Off>
<Warning → Off>
<Error → Off>

Some milliseconds From all states it is possible to power off the pipeline.

 Array Control and Data Acquisition SAG Sub-system Detailed Design

Doc. No. CTA-TRE-COM-303000-0005
Issue 1, Rev.: d, 2022-02-12

Page 88 of 98

10.7 Command Handling
The performance required/expected for handling each command, are listed in the following
table. Note, it may be necessary to take the parameters or data submitted with the com-
mand into account, as it may influence the execution time:

Table 28: Performance of the command execution of the component

Transition Execution Time (s) Comments
SAG-RECO 2 s
SAG-DQ 2 s
SAG-SCI 5 s

11 Frameworks & Libraries
The following external/3rd party frameworks (SW packages) are needed for the implemen-
tation of the component:

Table 29: SW Frameworks/Packages used by the component

Framework/SW
Package

Description

ACS
ZeroMQ Handles network sockets

11.1 External dependencies:

This section lists the used external libraries for each SAG component. It is indicated the
version used when this document is written but the software will be compatible also with
newer versions of libraries.

Library Description
pytest This is a python testing tool used to implement unit tests.
pyest-cov Handles network sockets
scipy Scipy is a library with modules useful for the scientific computations.
lxml Library for processing XML in python.
regions A library to manage regions.
matplotlib A library to generate diagrams and plots.
swig A wrapper to integrate C and C++ programs in Python.
opencv Computer vision library.
mysql-connec-
tor-python

A library to work with MySQL database in Python.

blosc High performance compressor optimized for binary data.
hdf5 A library to work with the HDF5 data format.
zmq (ZeroMQ) Asynchronous messaging library that can be used in distributed ap-

plication.
coverage A tool to measure the code coverage of Python programs.

 Array Control and Data Acquisition SAG Sub-system Detailed Design

Doc. No. CTA-TRE-COM-303000-0005
Issue 1, Rev.: d, 2022-02-12

Page 89 of 98

unittest-xml-re-
porting

A runner of unittest to save the test results in XML.

cmake A tool used to control the software compilation process.
make An automation tool to build executable programs from source code.
ctapipe Low-level data processing pipeline software for CTA.
gammapy A Python package for gamma-ray astronomy.
h5py A Python library to work with HDF5 data format.
jupyter A web-based interactive platform to develop and run Python pro-

grams.
notebook A web-based interactive platform to develop and run Python pro-

grams.
joblib A set of tools to provide lightweight pipelining in Python.
pytest-runner A plugin for the pytest library.
pytest-ordering A pytest plugin to run the test in any order.
ctapipe_io_lst A plugin for ctapipe to add new input data sources for LST zfits.
lstchain Library for high-level analysis of LST telescope.
ctaplot Python plotting library for CTA.
pyirf Python library to generate the Instrument Response Functions for

CTA
numpy A Python library of mathematical functions, random number genera-

tion and other useful features.
tables A Python library to format data into plaint-text tables.
astropy A library of common features used in Astronomy.
watchdog A library to monitor the file system events (e.g. new file created).
pandas A Python tool for data manipulation and analysis.
fast-histogram High performance library to generate histogram in python.
hurry.filesize A Python library to print the byte size in human-readable format.
defusedxml A python library to work with XML data format.

11.1.1 SAG Pipeline Sub-Array Supervisor and SAG Supervisor (SAG-SUP)

Python packages:

• Python >= 3.6.9
• pytest >= 6.2.4
• pytest-cov >= 2.10.1
• unittest-xml-reporting >= 3.0.4
• coverage >= 5.3

11.1.2 Image Parameters Extractor and Low-Level Reconstruction Pipeline

• hdf5 103.0.0 (hdf5_serial 103.0.0 + hdf5_cpp 103.0.0)
• zmq >= 5.2.2blosc >= 1.17.1
• Slurm >= 17.11.12g++/gcc : >= 7.3
• cmake : >= 3

 Array Control and Data Acquisition SAG Sub-system Detailed Design

Doc. No. CTA-TRE-COM-303000-0005
Issue 1, Rev.: d, 2022-02-12

Page 90 of 98

• make : >= 4

Python packages:

• Python>=3.7
• pip>=21.0
• ctapipe>=0.8.0
• gammapy>=0.18
• h5py>=3.1.0
• jupyter>=4.7.1
• Notebook>=6.2.0
• Joblib>=1.0.0
• pip
• pytest_runner>=5.2
• pytest-ordering>=0.6
• https://github.com/cta-observatory/ctapipe_io_lst/archive/v0.6.0.zip and above
• lstchain>=0.6.3
• ctaplot>=0.5.6
• pyirf>=0.4.0

11.1.3 On-Line Data Quality Software
Python packages:

• Python>=3.8
• numpy >= 1.20.3
• tables >= 3.6.1
• astropy >= 4.2.1
• watchdog >= 2.1.2
• pandas >= 1.1.4
• fast-histogram >= 0.9
• hurry.filesize >= 0.9
• defusedxml >= 0.7.1
• mysql-connector-python >= 8.0.22
• matplotlib >= 3.4.2 [Testing and benchmarking]
• pytest >= 6.2.4 [Testing and benchmarking]
• pytest-cov >= 2.10.1 [Testing and benchmarking]
• unittest-xml-reporting >= 3.0.4 [Testing and benchmarking]
• coverage >= 5.3 [Testing and benchmarking]
• psutil >= 5.8.0 [Testing and benchmarking]

11.1.4 High-Level Analysis Pipeline

Python packages:

Pipeline:

• Python>=3.6

 Array Control and Data Acquisition SAG Sub-system Detailed Design

Doc. No. CTA-TRE-COM-303000-0005
Issue 1, Rev.: d, 2022-02-12

Page 91 of 98

• astropy>=3.0
• lxml>=4.1.1
• mysql-connector-python>=8.0.18
• watchdog>=2.1.6

Science Tools wrappers:

• astropy>=4.2.1
• scipy>=1.6.2
• lxml>=4.6.3
• regions>=0.4
• matplotlib>=3.4.2
• swig>=4.0.2
• opencv>=3.4.2
• mysql-connector-python>=8.0.18
• Gammapy>=0.18.2

11.2 Framework/Library: Munge

11.2.1 Justification
Munge is an authentication service for creating and validating credentials used to manage
the connections of Slurm nodes.

11.2.2 Licensing
The software is distributed under the GNU General Public License.

11.2.3 Version Control
The SAG works with versions of Munge >= 0.5.11.

11.2.4 Distribution/Installation
It can be installed as a Linux service.

11.2.5 Obsolescence Handling
This service is cited in the official Slurm documentation so we can assume that it will be
maintained.

11.3 Framework/Library: ACS

11.3.1 Justification
ACS framework is the main framework of the ACADA system.

11.3.2 Licensing
The software licensing of the SAG is based on CTA software policy and licensing.

 Array Control and Data Acquisition SAG Sub-system Detailed Design

Doc. No. CTA-TRE-COM-303000-0005
Issue 1, Rev.: d, 2022-02-12

Page 92 of 98

11.3.3 Version Control
The updating of the framework follows the ACADA plans.

11.3.4 Distribution/Installation
ACS is distributed with ACADA SDK.

11.3.5 Obsolescence Handling
The obsolescence of ACS is managed by ACADA management team.

11.4 Framework/Library: ZeroMQ
ZeroMQ is a networking library and provides sockets that carry atomic messages across
various transports like in-process, inter-process, TCP, and multicast. Connection patterns
are: N-to-N with patterns like fan-out, pub-sub, task distribution, and request-reply. Its asyn-
chronous I/O model gives you scalable multicore applications, built as asynchronous mes-
sage-processing tasks. It has a score of language APIs and runs on most operating systems.

11.4.1 Justification
ZeroMQ is needed to receive DL0 from the ADH (see [RD1]).

11.4.2 Features
The library is message-based, supports multi-languages and is multi-protocol (allows to
send/receive messages via a variety of protocols).

11.4.3 Licensing
GNU Lesser General Public License V3

11.4.4 Version Control
The current code works with any version of the ZeroMQ >= 4.1

11.4.5 Distribution/Installation
This package comes via yum: yum install zmq-devel

11.4.6 Obsolescence Handling
This library is open source.

11.5 Framework/Library: Slurm
Slurm is a job scheduler for Linux and Unix-like kernel used in HPC context. It is free and
open-source.

11.5.1 Justification

 Array Control and Data Acquisition SAG Sub-system Detailed Design

Doc. No. CTA-TRE-COM-303000-0005
Issue 1, Rev.: d, 2022-02-12

Page 93 of 98

The Slurm features satisfy the SAG requirements related to more than one component:

GEN-0030 SAG pipelines shall mitigate the impact of all foreseeable partial failures, in-
cluding loss of computing nodes and software component failures, implementing automatic
recovery procedures of the pipeline workflow.

GEN-0060 SAG pipelines shall use parallel processing methods to speed up the pro-
cessing.

SUP-035 SAG shall dynamically allocate the needed computing resources and free them
when they are no more needed.

SCI-210 SAG/High-Level pipeline shall manage the priority between different processes,
executing first the high-priority tasks and suspending low-priority task if all resources are
busy.

11.5.2 Features

Slurm has several fueatures, the most important for the SAG are:

• No single point of failure is managed with backup daemons and fault-tolerant job op-

tions.
• High performance (up to 10000 job submissions per second)
• High scalability (up to thousands of cores)
• The possibility to create queues and reservations for specific jobs
• The possibility to define the priority between jobs, suspend low priority jobs to execute

high priority jobs and then resume low priority jobs.
• Parallel execution of the jobs
• Storage of information about jobs in a database.
• The status and other parameters of jobs can be retrieved in real-time.

11.5.3 Licensing
GNU General Public License

11.5.4 Version Control
The current code works with any version of the Slurm >= 17.11.12

11.5.5 Distribution/Installation
The service can be installed using the source code or the yum package manager.

11.5.6 Obsolescence Handling
This library is open source and the large usage of this software leads to the assumption that
it will be maintained in the future.

 Array Control and Data Acquisition SAG Sub-system Detailed Design

Doc. No. CTA-TRE-COM-303000-0005
Issue 1, Rev.: d, 2022-02-12

Page 94 of 98

12 Miscellaneous Aspects

12.1 Deployment
The components are deployed in the ACADA standard way.

12.2 Exception and Error Handling
The components of the SAG Supervisor and of the SAG Sub-Array Pipeline Supervisor use
the standard error handling defined for ACADA components (based on ACS).

12.3 Logging and Tracing
The components of the SAG Supervisor and of the SAG Sub-Array Pipeline Supervisor use
the standard logging and tracing defined for ACADA components (based on ACS).

12.4 Concurrency and Threading
The concurrency of the jobs submitted by SAG-RECO, SAG-DQ and SAG-SCI are man-
aged by Slurm. Slurm is also able to manage the multithreading capabilities of SAG-DQ.

12.5 Debugging and Troubleshooting
Debugging and troubleshooting is performed using standard development tools.

12.6 Open Points and Issues

This section lists the open points and issues of the SAG sub-systems. Each issue has a se-
verity and a comment.

Table 30: Issues

Issue Severity
(L/M/H)

Comments

Lack of official
DL0, DL1, DL2 and
DL3 data model

High SAG-RECO, SAG-DQ and SAG-SCI use these data formats, that
currently are preliminary and not complete. Changes in these data
formats will have an impact on the software developed.

Lack of official
DPPS scheme to
produce IRFs

High SAG-SCI needs IRFs, there will be provided by DPPS but the
current status is that no clear scheme of production of these IRFs
is provided.

Lack of official
DL4 and DL5 data
models

High The SAG-SCI produces results in DL4 and DL5 data format. We
need to know the right format that the system shall generate.

Lack of reference
test dataset for sci-
entific analyses

Medium To test different SAG-SCI pipeline configurations we need an of-
ficial test dataset with all possible data that will be analysed by the
SAG (e.g. GRBs, AGNs and more)

Specify Log Level
for Logging infor-
mation component
from SAG.

Low Logging information component from SAG must be specified in
the next ACADA releases.

Details on data
quality and scien-
tific analysis

Low Details on data quality and scientific analysis for each telescope
will be provided in Annexes of this document for both LST, MST,
SST.

 Array Control and Data Acquisition SAG Sub-system Detailed Design

Doc. No. CTA-TRE-COM-303000-0005
Issue 1, Rev.: d, 2022-02-12

Page 95 of 98

Comparison with
the DPPS DL0 to
DL3 offline pipeline
is missing

Low Since the DPPS DL0 to DL3 pipeline does not exist yet, a compar-
ison with the offline pipeline is not possible yet, it will be done
when the DL0 to DL3 pipeline will exist.

Pending SAG-HMI
interface definition

Low Discussion with HMI team is needed to define this interface

ACADA-SUSS
ICD on source cata-
logues

Low Offical ACADA-SUSS ICD must be released.

13 Traceability Matrix

13.1 From Requirements
The following table defines the mapping between level C (sub-system) requirements, and
design items.

Table 31: Traceability Matrix of requirements to design items

Requirement Design Item Comments
ARC-010 SAG-RECO The SAG-RECO results are stored in HDF5 files.

DQ-010

SAG-DQ The design of this component is described in Sec-
tion 7.4. In particular, the performances of the anal-
yses are obtained using high-performance libraries
to execute the analyses (Section 7.4.5)

DQ-020

SAG-DQ The SAG-DQ pipeline can be configured using
XML files to process different data levels (DL1,
DL2, DL3). This behaviour is described in Section
7.4.8.

DQ-030
SAG-DQ The analyses performed by the SAG-DQ are based

on external libraries that allow the execution of re-
quired analyses, Section 7.4.5.

DQ-040 SAG-DQ In Section 7.4 all the analysis types performed by
the SAG-DQ are described.

EXP-010

All SAG components The SAGSubArrayManager component has a
method “updateSchedulingBlock” that can be used to
update the configuration of the system when the ar-
ray configuration is changed. The pipelines are flex-
ible enough to react to these updates.

FL-0010 All SAG components The design decisions taken and described in Section
6 take into account the CTA life-time.

GEN-0010

All SAG ACS components The SAG implements ACS components for the su-
pervision of the processes and to manage the inter-
faces between component inside and outside the
SAG (Section 6).

GEN-0020 All SAG components All the SAG software components are developed
and tested in a Linux environment.

GEN-0040 All SAG components
GEN-0050 All SAG components

GEN-0060
All SAG components The design decisions taken (Slurm workload man-

ager and programming languages) allow parallel
processing.

GEN-0150 All SAG components

GEN-0200 All SAG components The design of the SAG components are described in
Section 7.

 Array Control and Data Acquisition SAG Sub-system Detailed Design

Doc. No. CTA-TRE-COM-303000-0005
Issue 1, Rev.: d, 2022-02-12

Page 96 of 98

GEN-0210 All SAG components

GEN-0220
SAG-SCI This component receives the DL3 from the low-

level reconstruction pipeline and performs a quick-
look analysis. It is described in Section 7.5.

GEN-0230
All SAG components The SAG software component, as described in Sec-

tion 7 and 8, can be configured using XML, JSON
and Databases to allow high flexibility.

GEN-0240 All SAG components Section 7
HMI-010 SAG-SCI and SAG-DQ The SAG pipelines describe in Section 7.4 and 7.5

stores the results of analyses in a database and the
HMI is able to retrieve this information.

HMI-020 All SAG components
HMI-060 SAG-Supervisor, SAG-DQ The SAGSupervisor described in Section 7.2.1.2

generates summaries of data quality results that are
sent to the SUSS.

HMI-070 SAG-SUP The results of the pipelines are stored to be re-
trieved by the SAG-HMI.

INT-010 All SAG components The input data models are described in Section 8.
INT-020 SAG-RECO Section 7.3
INT-030 SAG-RECO Section 7.3
INT-040 SAG-RECO Section 7.3
INT-050 SAG-SUP Section 7.2
INT-070 SAGSubArrayManager A dedicated interface receives all information

needed for SAG-RECO and the IRF needed by
SAG-SCI. Not implemented for ACADA REL1
[AD3]

INT-080 SAG-RECO, SAG-DQ,
SAG-SCI

The outputs of the pipelines are described in Sec-
tion 7.

INT-090 SAG-RECO and SAG-SCI The SAG-RECO reconstructs data from DL0 to
DL3 and the SAG-SCI performs scientific analysis
on DL3 producing DL4 and DL5.

INT-100 SAG-Supervisor, SAG-SCI Section 7.5
INT-130 SAG-Supervisor https://forge.in2p3.fr/projects/acada-coordina-

tion/wiki/SAG-MON
INT-140 SAG-SCI, SAG-Supervisor Section 7.2.1.2
INT-150 SAGSubArrayManager The SAGSubArrayManager collects information

about the analysis status from other software com-
ponents and sends this status to the CC (Section
7.2.1.1).

REC-005 SAG-RECO Section 7.3
REC-010 SAG-RECO Section 7.3
REC-020 SAG-RECO Section 7.3
REC-030 SAG-RECO Section 7.3
REC-040 SAG-RECO Section 7.3
REC-050 SAG-RECO Section 7.3
REL-0010 All SAG components The design decisions taken (Slurm workload man-

ager, ACS etc) allow the management of failure to
improve the availability of the system.

SCI-010 SAG-SCI The SAG-SCI is designed to perform the required
scientific analyses (Section 7.5)

SCI-020 SAG-SCI Section 7.5
SCI-030 SAG-SCI Section 7.5

 Array Control and Data Acquisition SAG Sub-system Detailed Design

Doc. No. CTA-TRE-COM-303000-0005
Issue 1, Rev.: d, 2022-02-12

Page 97 of 98

SCI-040 SAG-SCI The SAG-SCI implements a local storage system to
collect DL3 results (Section 7.5)

SCI-045 SAG-SCI Section 7.5
SCI-050 SAG-SCI Section 7.5
SCI-060 SAG-SCI The SAG-SCI can be configured to perform anal-

yses on different time scales (Section 7.5)
SCI-070 SAG-SCI The SAG-SCI can read configuration in a database

to define the threshold to generate Candidate Sci-
ence Alerts (Section 7.5)

SCI-090 SAG-SCI Section 7.5
SCI-120 SAG-SCI The SAG-SCI can read configuration in a database

to define the threshold to avoid the duplication of
candidate science alerts.

SCI-140 SAG-SCI The SAG-SCI can read configuration in a database
to define the threshold to avoid the duplication of
candidate science alerts.

SCI-160 SAG-SCI The SAG-SCI can visualize if there are data quality
alarms and avoid the generation of candidate sci-
ence alerts.

SCI-180 SAG-SCI
SCI-200 SAG-SCI The SAG-SCI can be configured to perform anal-

yses using different science tools (Section 7.5).
SCI-210 SAG-SCI The SAG-SCI can manage priority between pro-

cesses using the Slurm workload manager (Section
7.5).

SUP-010 SAG-SUP Section 7.2.1.1
SUP-020 SAG-SUP Section 7.2.1.1
SUP-030 SAG-SUP The usage of Slurm allows to execute pipelines in

parallel.
SUP-035 SAG-SUP The usage of Slurm allows to dynamically allocate

resources when needed.
SUP-040 SAG-SUP Section 7.2.1.1
SUP-050 SAG-SUP Section 7.2.1.1
SUP-060 SAG-SUP Section 7.2.1.1
SUP-070 All SAG components. The SAG pipelines have a buffer to store the input

data and process these data when a stop signal is re-
ceived.

SUP-080 SAG-SUP Section 7.2.1.1
SUP-110 SAG-SUP Section 7.2.1.1
SUP-140 SAG-SUP The SAGSubArrayManager collects information

from other components and sends it to the MON
system.

13.2 From Use Cases

The following table defines the mapping between ACADA use cases, and design items for
REL1.

Table 32: Traceability Matrix of interfaces to design items

Use Case Design Item Comments

 Array Control and Data Acquisition SAG Sub-system Detailed Design

Doc. No. CTA-TRE-COM-303000-0005
Issue 1, Rev.: d, 2022-02-12

Page 98 of 98

ACADA-UC-110-1.2 All SAG components This UC is described in diagrams of
Sections 7.2.7 and 7.2.8.

ACADA-UC-110-3.1 All SAG components Sections 7.2.8.4 and 7.2.8.5
ACADA-UC-110-3.2 All SAG components Sections 7.2.8.4 and 7.2.8.5
ACADA-UC-110-3.3 All SAG components Sections 7.2.8.4 and 7.2.8.5
ACADA-UC-110-3.4 All SAG components Sections 7.2.8.4 and 7.2.8.5
ACADA-UC-120-2.1 SAG-SUP Sections 7.2.8.2 and 7.2.8.3.
ACADA-UC-120-2.2 All SAG components Secions 7.2.7, 7.2.8.2, 7.2.8.3, 7.3.7,

7.4.8, and 7.5.7.
ACADA-UC-120-2.3 SAG-DQ Secction 7.4.8.
ACADA-UC-120-2.4 SAG-SCI Section 7.5.2.
ACADA-UC-120-3.1 All SAG components Section 7.2.8.3.1
ACADA-UC-130-3.2 SAG-SCI
ACADA-UC-130-3.3 SAG-SCI
ACADA-UC-170-1.1 SAG-SUP Section 7.2.1.2
ACADA-UC-170-1.3 SAG-SUP Section 7.2.1.2

13.3 From Interfaces of the Sub-system

The following table defines the mapping between sub-system interfaces, and design items.
Details are provided in [AD6].

Table 33: Traceability Matrix of interfaces to design items

Interface/ICD Design Item Comments
SAG-ALARM SAGSubArrayManager and SAGSupervisor This interface is implemented us-

ing the ACS Alarm system.
SAG-MON SAGSubArrayManager and SAGSupervisor This interface is implemented

with the ACS Notification Chan-
nel https://redmine.cta-observa-
tory.org/projects/acada-coordina-
tion/wiki/SAG-MON

SAG-TH SAG-SCI and SAGSubArrayManager This interface is implemented us-
ing the ACS components.
https://redmine.cta-observa-
tory.org/projects/acada-coordina-
tion/wiki/TH-SAG . Section
7.5.2.

SAG-ADH SAGReco This interface is implemented us-
ing ZeroMQ and Protocol Buffer.
Section 7.3.

SAG-RM SAGSupervisor Section 7.2
SAG-CC SAGSubArrayManager Section 7.2
SAG-SUSS SAGSubArrayManager and SAGSupervisor [AD5]

