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Abstract

Precise measurements of the 21 cm power spectrum are crucial for understanding the physical processes of
hydrogen reionization. Currently, this probe is being pursued by low-frequency radio interferometer arrays. As
these experiments come closer to making a first detection of the signal, error estimation will play an increasingly
important role in setting robust measurements. Using the delay power spectrum approach, we have produced a
critical examination of different ways that one can estimate error bars on the power spectrum. We do this through a
synthesis of analytic work, simulations of toy models, and tests on small amounts of real data. We find that,
although computed independently, the different error bar methodologies are in good agreement with each other in
the noise-dominated regime of the power spectrum. For our preferred methodology, the predicted probability
distribution function is consistent with the empirical noise power distributions from both simulated and real data.
This diagnosis is mainly in support of the forthcoming HERA upper limit and also is expected to be more generally
applicable.

Unified Astronomy Thesaurus concepts: Reionization (1383); H I line emission (690); Radio interferometry (1346)

1. Introduction

The epoch of reionization (EoR)—when neutral hydrogen in
the intergalactic medium (IGM) was ionized by photons from
early galaxies and active galactic nuclei—remains one of the
most exciting frontiers in modern astrophysics and cosmology.
Precise measurements of this era will significantly enhance our
understanding of the origin of the very first stars, the process of
galaxy formation, and the thermal history of the IGM (Barkana
& Loeb 2001; Dayal & Ferrara 2018). Some measurements,

such as those of the optical depth of cosmic microwave
background (CMB) photons (Planck Collaboration et al. 2020),
the Gunn–Peterson trough in distant quasar spectra (Becker
et al. 2001, 2015; Fan et al. 2006; Bolton et al. 2011), quasar
damping wings (Davies et al. 2018), and the decrease in the
number density and clustering trends of Lyα emitters at high
redshifts (Ouchi et al. 2010; Stark et al. 2010; Bosman et al.
2018), have already established the basic parameters of the
EoR. Collectively, they suggest that reionization is a process
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that probably began at z? 10 and ended around z≈ 6.
However, the aforementioned probes paint an indirect and
incomplete picture of the EoR. For example, CMB measure-
ments are integral constraints over redshift, making the
extraction of detailed information technically difficult (often
involving a subtle kinetic Sunyaev–Zel’dovich effect or
polarization measurements); Lyα photons suffer from severely
saturated absorption that makes it difficult for them to probe
earlier times than the end of reionization; and low-mass
galaxies (i.e., those thought to be responsible for supplying a
large fraction of ionizing photons) are too faint to be directly
detected. A complementary probe capable of making direct
observations of the EoR is therefore desirable.

A strong candidate for a direct probe of reionization is the
21 cm line. Arising from the “spin flip” transition in the hyperfine
structure of atomic hydrogen, the 21 cm line is a promising way
to directly trace the evolution of H I regimes on different spatial
scales and eventually provide a comprehensive three-dimensional
picture throughout the history of reionization (Furlanetto et al.
2006; Morales & Wyithe 2010; Pritchard & Loeb 2012; Liu &
Shaw 2020). Current experimental efforts are focused on slightly
more modest—but still ambitious—observables. One example is
the global 21 cm signal, which is a single spectrum of 21 cm
absorption or emission averaged over the entire angular area of
the sky (Bowman et al. 2008; Singh et al. 2018). Recently, the
Experiment to Detect the Global Epoch of reionization Step
(EDGES) team reported a tentative detection of a 21 cm
absorption signature at z∼ 17 (Bowman et al. 2018a), although
this result remains controversial (Bowman et al. 2018b; Hills
et al. 2018; Bradley et al. 2019; Singh & Subrahmanyan 2019;
Sims & Pober 2020). Global signal measurements are com-
plemented by experimental efforts to map spatial fluctuations in
the 21 cm brightness temperature field. Most such efforts
currently focus on a measurement of the power spectrum, i.e.,
the variance in Fourier space. Power spectrum measurements
have the potential to significantly improve constraints on the
cosmological and astrophysical parameters of reionization
models and potentially even discover new fundamental physics
(e.g., McQuinn et al. 2006; Pober et al. 2014, 2015; Greig &
Mesinger 2015, 2017; Hassan et al. 2017; Kern et al. 2017; Park
et al. 2019; Ghara et al. 2020). Typically, these measurements are
pursued by low-frequency radio interferometer arrays, such as
the Murchison Widefield Array22 (Bowman et al. 2013; Tingay
et al. 2013), the Low Frequency Array23 (LOFAR; van
Haarlem et al. 2013), the Donald C. Backer Precision Array
for Probing the Epoch of Reionization24 (Parsons et al. 2010),
the Hydrogen Epoch of Reionization Array25 (HERA; DeBoer
et al. 2017), and the Square Kilometre Array26 (Mellema et al.
2013; Koopmans et al. 2015). Although no experiment has yet
to claim a detection of the 21 cm power spectrum at redshifts
relevant to the EoR, steady progress has been made in recent
years in the form of increasingly stringent and robust upper
limits (Dillon et al. 2014, 2015; Beardsley et al. 2016; Patil
et al. 2017; Barry et al. 2019; Kolopanis et al. 2019; Li et al.
2019; Mertens et al. 2020; Trott et al. 2020).

In this paper, we tackle the crucial problem of error
estimation in the context of 21 cm power spectrum

measurements. While an extensive literature on power
spectrum error estimation exists for CMB measurements and
galaxy surveys, there are several challenges that are unique to
21 cm cosmology. Chief among these is the fact that any
measured signals will be strongly contaminated by the
foregrounds, which are generally 4–5 orders of magnitude
stronger in temperature (de Oliveira-Costa et al. 2008; Jelić
et al. 2008; Bernardi et al. 2009). To overcome this obstacle,
some collaborations pursue a strategy of foreground subtrac-
tion, where models of foreground emission are subtracted from
the data (e.g., Harker et al. 2009; Bernardi et al. 2011;
Chapman et al. 2012; Cho et al. 2012; Shaw et al. 2015).
Different approaches to foreground subtraction make different
assumptions (see Liu & Shaw 2020 for examples), but all face
the same problem of attempting to subtract a large contaminant
from a large raw signal to reveal a small cosmological
signature. With empirical constraints on the low-frequency
radio sky being relatively scarce and generally imprecise, the
chances of mis-subtraction are high. Errors in such a
subtraction process, as well as the effects of subtraction
residuals, must therefore be propagated through to a final
power spectrum estimate.
In this paper, however, we do not tackle the problem of error

propagation in the context of foreground subtraction; instead,
we consider error estimation in the context of foreground
avoidance, where one aims to make cosmological measure-
ments exclusively in Fourier modes where foregrounds are
expected to be subdominant. Key to this is the notion of the
foreground wedge, a regime in Fourier space beyond which
spectrally smooth foregrounds cannot extend if observed using
an ideal interferometer (Datta et al. 2010; Morales et al. 2012;
Parsons et al. 2012b; Trott et al. 2012; Vedantham et al. 2012;
Hazelton et al. 2013; Thyagarajan et al. 2013; Liu et al. 2014a).
The limitation of foregrounds to the wedge is a theoretically
robust notion (Liu & Shaw 2020), and in principle, one can
make foreground-free measurements simply by avoiding the
regime. In practice, observations are never made using perfect
interferometers, and instrumental systematics such as having
nonidentical antenna elements, cable reflections, and cross
couplings (e.g., Kern et al. 2019, 2020a) complicate one’s
foreground mitigation efforts. These complications can result in
the appearance of contaminants outside of the foreground
wedge, and in this paper, we define and tackle the problem of
error estimation in two regimes: a noise-dominated regime and
a signal-dominated regime (whether these signals could be
foregrounds, systematics, or any other coherent signals).
Through a combination of analytic work, simulations of toy

models, and tests on small amounts of real data, we critically
examine different ways in which one can place error bars on
21 cm delay power spectra. Our goal is to produce a “buyer’s
guide” that enumerates the advantages and disadvantages of
various error estimation methods. Understanding these
strengths and weaknesses is crucial for setting upper limits,
diagnosing systematics, interpreting the results of null tests,
and the design and optimization of future telescopes
(Morales 2005; McQuinn et al. 2006; Parsons et al. 2012a).
Although we will focus primarily on the delay power
spectrum–style analysis (Parsons et al. 2012b) in support of
recent HERA upper limits (HERA Collaboration 2021, in
preparation), we expect many of our results to be more
generally applicable.

22 http://www.mwatelescope.org
23 http://www.lofar.org
24 http://eor.berkeley.edu
25 https://reionization.org
26 https://www.skatelescope.org
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This paper is organized as follows. In Section 2, we review
the basics of power spectrum estimation using the delay
spectrum technique, establishing our notation. In Section 3, we
propose several methods for estimating errors in 21 cm delay
power spectra. These approaches are then compared and
contrasted using simulations and real data in Section 4. We
then discuss the strengths and weaknesses of each error
estimation method in Section 5 before summarizing our
conclusions in Section 6. For readers’ convenience, we provide
dictionaries for a number of quantities defined in this paper in
Tables 1 and 2.

2. Power Spectrum Estimation via the Delay Spectrum

In this section, we review the delay spectrum approach to
21 cm power spectrum estimation (Parsons et al. 2012b) using
the the language of the quadratic estimator (QE) formalism (Liu
& Tegmark 2011) that we adopt in this paper.

The delay spectrum technique enables power spectra to be
estimated using just a single baseline of a radio interferometer,

with fluctuations in the 21 cm signal probed primarily in the
line-of-sight direction via spectral information. The starting
point is the visibility V(b, ν) measured by an interferometer’s
baseline b at frequency ν. Under the flat-sky limit, it is given by

⎛
⎝

⎞
⎠

( ) ( ) ( ) · ( )ò q q qn n n p
n

q= -b bV I A i
c

d, , , exp 2 , 12

where c is the speed of light, θ is the angular sky position, I(θ,
ν) is the source intensity function, and A(θ, ν) is the primary
beam function. If we express I(θ, ν) in terms of its Fourier
transform ˜( )huI , , i.e.,

( ) ˜( ) ( )( · )òq n h h= qp hn+uI I e d ud, , , 2ui2 2

then our visibility equation becomes

( ) ˜( ) ( )

˜( ) ˜ ( ) ( )

( · · )ò
ò

qn h n h q

h n h

=

= -

q qp hn

l
phn

+ - lb u

u b u

V I A e d ud d

I A e d ud

, , ,

, , , 3

u bi

i

2 2 2

2 2

Table 1
Dictionary of Highlighted Scalars and Functions

Quantity Definition/Meaning First Appearance

b; bp Baseline vector; vector of the pth index baseline Equation (1)
θ Angular sky position Equation (1)
ν; νi Frequency; frequency of the ith index channel Equation (1)
bλ; bλpi Normalized baseline vector in units of wavelength; normalized vector for baseline bp at frequency νi Equation (3)
u Fourier dual to θ Equation (2)
η; ηα Fourier dual to ν; αth index η mode Equation (2)
τ; τα Delay, i.e., Fourier dual to ν on a single baseline; αth index delay mode Equation (16)

A(θ, ν) Primary beam function at position θ and frequency ν Equation (1)
˜ ( )nuA , Spatial Fourier transform dual of primary beam function Equation (3)
γ(ν) Spectral tapering function at frequency ν Equation (14)
Ntime; Nblp Number of time instants; number of baseline pairs Equation (18)
Nboot Number of bootstrapping sample sets Equation (24)
I(θ, ν) Sky source intensity function at position θ and frequency ν Equation (1)
˜( )huI , Fourier transform of I at angular wavenumber u and line-of-sight wavenumber η Equation (2)
V(b, ν) Visibility measured by baseline b at frequency ν Equation (1)
P(u, η) Cylindrical power spectrum at angular wavenumber u and line-of-sight wavenumber η Equation (4)
Pα αth bandpower ( )hºa l abP P , Equation (8)

âP Estimator for the αth bandpower Pα Equation (9)
Mα Normalization scalar of the estimator for the αth bandpower Equation (11)
˜ ( ) ˜ ( )t ta abV x, ,p p Delay spectra of baseline bp at delay mode τα Equation (15)
˜ ( ) ˜ ( )t ta abV s, ,p psignal Signal component of Ṽ of baseline bp at delay mode τα Equation (16)
˜ ( ) ˜ ( )t ta abV n, ,p pnoise Noise component of Ṽ of baseline bp at delay mode τα Equation (16)

˜ ˜Px x1 2 Power spectra formed from visbilities x1 and x2 Equation (30)

Table 2
Dictionary of Highlighted Vectors and Matrices

Quantity Definition/Meaning Size First Appearance

xp Stacked visibilities at multiple frequencies of baseline bp Nfreq Equation (6)
Cpq Covariance matrices †º á ñC x xpq

p q Nfreq × Nfreq Equation (7)

Qpq,α Response of covariance Cpq to the αth bandpower Nfreq × Nfreq Equation (8)
Epq,α Matrix for QE of bandpower Pα, i.e., ˆ †=a

ax E xP p
pq

q
, Nfreq × Nfreq Equation (9)

W Window function matrix Ndelay × Ndelay Equation (10)
Rp Weighting matrix acting on xp Nfreq × Nfreq Equation (11)
QDFT,α Matrix taking Fourier transform in the estimator Nfreq × Nfreq Equation (11)
Upq Two-point correlation matrices º á ñU x xpq

p q
T Nfreq × Nfreq Equation (33)

Gpq Two-point correlation matrices †º á ñG x xpq
p q* Nfreq × Nfreq Equation (33)
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where we have defined ºl
nb b
c

as the normalized baseline
vector for baseline b in units of wavelength. In the angular
directions, we see that a visibility has a response to u modes
centered around bλ. If the primary beam A is fairly broad, Ã
will be highly compact, and the majority of the integral will be
sourced from u≈ bλ. We will use this fact later. From this, one
sees that a visibility V(b, ν) is a linear function of ˜( )huI , . This
quantity is directly related to the cylindrical power spectrum
P(u, η), which decomposes power into Fourier wavenumbers
perpendicular (u) and parallel (η) to the line of sight and is
formally defined as

˜ ( ) ˜( ) ( ) ( ) ( ) ( )h h d d h h há ¢ ¢ ñ º - ¢ - ¢u u u u uI I P, , , . 4D D*

Such a power spectrum can be recast into more conventional
cosmological coordinates via the relations27

( )
( )

( )
p pn

h= =
+

k̂
u

D
k

H E z

c z

2
,

2

1
, 5

c

21 0
2

where Dc is the line-of-sight comoving distance, ν21 is the rest
frequency of the 21 cm line, H0 is the Hubble parameter today,
and ( ) ( )º W + W +LE z z1m

3 , with ΩΛ and Ωm as the
normalized dark energy and matter density, respectively.

Since the power spectrum is a quadratic function of the
Fourier representation of the sky, we expect that one should be
able to estimate the power spectrum by forming some quadratic
function of visibilities. However, directly squaring some
functions of the visibilities will incur a noise bias, because
noise that is symmetrically distributed about zero will have a
positive contribution that does not average down with
cumulative samples. Fortunately, the noise bias can be avoided
by cross-multiplying nominally identical measurements rather
than squaring a single measurement. For instance, one might
choose to form quadratic combinations of data from adjacent
time samples of a single baseline’s time stream, or perhaps to
cross-multiply the time streams from two redundant baselines
that satisfy b1= b2= b for some b. In this paper, we will
consider power spectrum measurements that are formed from
cross-multiplications in both time and different copies of an
identical baseline. Utilizing both types of cross-multiplication
has the advantage of avoiding skewness in the probability
distributions of the measured power spectra, simplifying the
interpretation of our results. This is discussed in Appendix A.
In this section, however, we will—for simplicity—suppress
explicit reference to the data time stream and use notation that
explicitly refers to cross-correlating different baselines. Given a
pair of redundant baselines b1 and b2, we stack their measuring
visibilities at multiple frequencies ν1, ν2, ... at single time
instants into two data vectors x1 and x2, such that

⎛

⎝
⎜

⎞
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⎛
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1 2 2

2 1

2 2

To make an explicit connection between visibilities and
power spectra, we must examine the statistical properties of
these data vectors. For quadratic statistics, the key quantity is

the covariance matrix †º á ñC x x12
1 2 , which can be written as

( ) ( )
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where bλ1i and bλ2j are the normalized baseline vectors for
baseline b1 and b2 evaluated at frequencies νi and νj,
respectively, and lb is the mean of the two. In deriving
Equation (7), we first substituted Equation (3) for the
expressions of visibilities in the angle bracket and then factored
the evaluated cylindrical power spectrum out of the integral
over u. Next, we replaced the continuous integral on the power
spectra with discrete sums over a series of piecewise constant
bandpowers ( )hl abP , , such that
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Henceforth, we will adopt the notation ( )hºa l abP P , to mean
the value of the cylindrical power spectrum P(u, η) evaluated at
= lu b and η= ηα. The index α discretely runs over a series of

bins in η, and as long as these bins are narrow compared to the
scales over which the power spectrum changes, a piecewise
constant treatment is appropriate.
Equation (8) shows that the cross-baseline covariance matrix

of visibilities encodes information about the power spectrum
bandpowers via a family of response matrices Q12,α (with a
different matrix for every value of the bandpower index α).
Since the covariance is an ensemble-averaged quadratic
function of the data, one might venture that estimators for the
bandpowers can be constructed by forming quadratic combina-
tions of the data, i.e.,

ˆ ( )†=a
ax E xP , 91

12,
2

where E12,α is a matrix that can be chosen (within certain
limitations) by the data analyst. Taking the ensemble average
on both sides and inserting Equation (8) then yields

ˆ ( ) ( )å åá ñ = ºa
b

a b
b

b
ab bE QP P W Ptr , 1012, 21,

where W is the window function matrix. To ensure that our
estimated bandpowers are correctly normalized, we require that
each row of W sum to unity.
In the HERA power spectrum pipeline, we pick a family of

E12 matrices of the form

( )ºa
a

aE R Q RM , 1112,
1

DFT,
2

27 In addition to mapping the arguments of P, there is also an additional
multiplicative constant; see Liu et al. (2014a) for explicit expressions.
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where the matrix ( )ºa ph n n-aQ eij
iDFT, 2 i j is responsible for taking

the Fourier transform of the two copies of the data vectors in
the QE. The matrices R1 and R2 are weighting matrices that act
on visibilities from b1 and b2, respectively. In this paper, we
use R= TY, where both T and Y are diagonal matrices. The
former is used to impose a Blackman–Harris tapering function
on the spectral data, and the latter propagates data flags. With a
QE of this form, the normalization scalar, Mα, should take the
form

( )
( )=

å
a

b
a bR Q R Q

M
1

tr
, 12

1
DFT,

2
12,

which ensures that the rows of W sum to unity, and therefore
that the bandpowers are properly normalized. In our case, we
do use this normalization, but we approximate the Q12,β term in
the denominator. Rather than evaluating the full integral in
Equation (8), we make the approximation that bλ1i≈ bλ2i. In
fact, this is the motivation for the use of QDFT,α in
Equation (11) rather than Q12; notice that if bλ1i= bλ2i, then
Q12∝QDFT. Over large bandwidths, this will fail for long
baselines, since bλ≡ νb/c.

The approximation that we have just made is equivalent to the
delay spectrum approximation (Parsons et al. 2012b; Liu et al.
2014a). To see this, we can write our estimator in the continuous
limit. Our current form for E12,α is separable into the product of
two matrices that each involve only one of the two baselines. In
particular, if γ(ν) is the functional form of the Blackman–Harris
taper, then we have ( ) ( )( )g n g n=a ph n n-aE eij i

i
j

12,
1

2
2

i j , and its
action on each baseline’s visibilities in Equation (9) is to
compute the quantity

( ) ( ) ( )å n g n nDphn-bV e, , 13
i

i i
2 i

which is just a discrete approximation to

˜ ( ) ( ) ( ) ( )òh n g n n= phn-b bV V e d, , . 14i2

Note that Equation (14) is an equivalent expression of the delay
transform in Parsons et al. (2012b). Therefore,

ˆ
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Equation (15) just indicates that the QE is proportional to the
product of delay-transformed visibilities. This is an estimator
that is based on Fourier transforming the visibility spectra from
individual baselines, rather than combining information from
different baselines. In principle, only the latter can probe truly
rectilinear Fourier modes on the sky, since k⊥∝ bλ (which is a
frequency-dependent quantity); thus, to probe the same k⊥ at
multiple frequencies—which is needed to perform the Fourier
transform along the line-of-sight direction—one needs multiple
baselines. The delay spectrum approach uses the fact that bλ
evolves only slowly with frequency for short baselines to form
an approximate power spectrum estimator. We make this
approximation throughout this paper, as this is the choice that
has been made for the next iteration of power spectrum upper
limits from HERA observations. In recognition of this, we will

henceforth use τ to index our line-of-sight Fourier modes (as is
customary for delay spectra) instead of η (which is generally
used to denote true rectilinear line-of-sight wavenumbers;
Morales et al. 2012, 2019).
In the language of the delay spectrum, the foreground wedge

becomes particularly simple to describe: smooth-spectrum
foregrounds simply contaminate all modes below a particular
delay, the value of which depends on the baseline length
(Parsons et al. 2012b; Liu et al. 2014a; Liu & Shaw 2020).
Suppose we decompose the delay-transformed visibility into
the signal component Ṽsignal (mainly foregrounds, and we are
neglecting the much weaker EoR signal here) and the noise
component Ṽnoise, such that

˜ ( ) ˜ ( )
˜ ( ) ˜ ( )
˜ ( ) ˜ ( ) ( )

t t
t t

t t
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º +
º +

a a
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1 1

signal 1 noise 1

1 1

Since we are working on redundant baselines, we will
henceforth drop the subscript on s̃ , as the two baselines used in
Equation (15) should measure identical signals. Mathemati-
cally, then, the statement that the smooth-spectrum foregrounds
contaminate only low delay modes is given by

⎧
⎨⎩

ˆ ˜ ˜ ˜ ˜ ˜ ˜ ∣ ∣
˜ ˜
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t t

»
+ + <

a
aP
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otherwise,
172 1 0

1 2

* * *

*

where τα is the delay corresponding to the αth bandpower, and
τ0 is some critical delay value that separates parts of the power
spectrum that are foreground-dominated from those that are
not. In general, τ0 will depend on the properties of one’s
instrument, as well as the extent to which the assumption of
smooth foregrounds is good. At delays less than τ0, we have
assumed that the foreground signal is so large that the noise–
noise cross term can be neglected.
Throughout the rest of this paper, we will appeal to

Equation (17) for intuition when contemplating the behavior
of our power spectrum estimates at different delays. For now,
we note two of its important properties. First, while the power
spectrum of a signal ˜ ˜s s* will always be real valued, the overall
estimator âP is complex. It is possible to write down
symmetrized estimators that give real power spectra. However,
since the imaginary part is sourced by noise, it is a useful
diagnostic quantity to examine. Second, even though the noise–
noise terms may be negligible in the signal-dominated regimes,
there will still be a considerable uncertainty here that enters via
the signal–noise cross terms.
Until now, we have focused on power spectra estimated from

visibilities measured at single time instants. Given data from
multiple times, we can average the power spectra estimated
from individual measurements together. For a drift scan
telescope, this averaging of power spectra from different time
samples is tantamount to invoking statistical isotropy to justify
the spherical averaging of power spectra over different
wavevector k directions. In addition to averaging in time, if
we have multiple pairs of baselines within the same redundant
group of baselines, we may average over the power spectrum
estimates from multiple baseline pairs. The simplest way to do
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this is to perform an unweighted average,

ˆ ˆ ( ) ( )å=a aP
N N

P
1

time, blp , 18
time blp time,blp

where Ntime is the number of time integrations, Nblp is the
number of baseline pairs, ˆ ( )aP time, blp is the power spectrum
estimate (given by previous equations in this section) at a time

instant and a baseline pair (“blp”), and âP is the average of the
estimates. The type of averaging performed here may be termed
an “incoherent average,” to distinguish it from a “coherent
average,” where one averages over visibilities (or converts
them into a single image) before squaring them in power
spectrum estimation. The latter provides greater sensitivity if
calibration errors and other systematic effects can be brought
under control (Morales et al. 2019). The former retains the
ability to inspect the contributions from particular baseline
pairs and time until right before the final result, making some
systematics easier to diagnose. However, note that by employ-
ing a suitable fringe-rate filtering of the time-stream data, it is
in principle possible to recover the lost sensitivity from a
“square-then-add” approach (Parsons et al. 2016). In this paper,
we will focus on the error statistics of the incoherent average
approach, as this is what is currently used in the HERA
pipeline (HERA Collaboration 2021, in preparation).

Before we move into the discussion on error estimation
methods in the next section, it is worth noting that
Equation (18) is not the optimal way to obtain average power
spectra with the least variance. Generally, given a set of
estimates âP for bandpower Pα with measurement errors σ,
such that

ˆ ( )= +a a P DP , 19

an linear estimator of Pα is written as

ˆ ˆ ( )=a aKPP . 20

Here D is a column vector of 1 s. We need to select K such that
KD= I in order to achieve an unbiased constraint that satisfies

ˆá ñ =a aP P . For an arbitrary matrix K, the error bar

∣ ˆ ∣S º á - ñ =a a a K KP P t2 , where the error covariance matrix
ò≡ 〈σσt〉. The superscript t used here and throughout this
paper refers to the matrix transposition. Note that Equation (18)
is just a special case where [ ]= -K D D Dt t1 . When Σα is

minimized (optimal), âP and the corresponding Σα should take
the form of (Tegmark 1997; Dillon et al. 2014)

ˆ [ ] ˆ ( )=a a
- - - D D D PP , 21t t1 1 1

[ ] ( )S =a
- -D D , 22t 1 1

which amounts to an inverse covariance weighting of the data
in averaging it down. Equation (21) brings us the ability to
propagate the full covariance information over samples to
obtain a least-variance average result. The diagonal elements of
ò are easily interpreted as the variance in each individual
measurement, while the off-diagonal elements, reflected by the
coherency between time samples and baseline pair samples, are
far more complicated. If estimating the covariance matrix ò of
the preaveraged data is difficult, one may opt to weight the data
using some other matrix Γ instead of ò in Equation (21). In this

case, the final variance Σα ends up being

[ ] [ ] ( )G G G GS =a
- - - - - -D D D D D D . 23t t t t t1 1 1 1

In principle, one could model the off-diagonal elements of ò.
This is particularly important in the cosmic variance–
dominated regime where the sky signal—which is what
sources a cosmic variance error—is slowly drifting through
HERA’s field of view over the course of the day, thus inducing
strong correlations between different time samples. In this
paper, we do not consider the modeling of off-diagonal
covariances in ò (or between different α values in âP ). We
assume diagonal covariance matrices and set Γ= I; i.e., we use
Equation (18) when computing the “incoherently averaged”
power spectra, and here we are acknowledging other
possibilities only for completeness.

3. Error Estimation Methodology

Placing robust error bars on power spectra is crucial to our
data analysis, whether it is for setting upper limits, diagnosing
experimental systematics, or eventually declaring a detection of
the cosmological 21 cm signal. Generally, contributions to the
error bars of observed power spectra come from three sources:
the EoR signal, noise, and foregrounds (Thyagarajan et al.
2013; Dillon et al. 2014, 2015; Trott 2014; Lanman &
Pober 2019). Of course, this is all complicated by the response
of one’s instrument, and ultimately, one’s ability to place
reliable error bars rests on one’s ability to understand the
behavior of each data source in the context of the instrument.
The intrinsic variance of the EoR signal, also known as

“cosmic variance,” is the ensemble covariance on all possible
realizations of the 21 cm temperature field. If the field is
Gaussian, then its cosmic variance is proportional to the square
of the power spectrum amplitude over the number of
independent modes. Lanman & Pober (2019), for example,
estimated that the cosmic variance could go as high as ∼35%
of the EoR signal for HERA-like fields of view with eight
hours of local sidereal time (LST) observations using only the
shortest (14.6 m) baselines of HERA. This uncertainty due to
cosmic variance is brought down to a level of a few percent for
the spherically averaged power spectrum when using all types
of baselines. Importantly, as reionization evolves, the 21 cm
temperature field is expected to become highly non-Gaussian,
and the excess contribution from the non-Gaussian component
could lift the cosmic variance in the Gaussian part staggeringly,
which is significant and should be considered for future high-
sensitivity measurements (Mondal et al. 2016, 2017; Shaw
et al. 2019). In this paper, however, we assume that at our
current levels of precision, the cosmic variance is subdominant
to noise and foregrounds.
For instrumental noise, we assume that the noise in the

visibility from each baseline is independent and Gaussian-
distributed. This is what one might expect based on the
statistics of correlator outputs in a radio interferometer, but it is
also an assumption that we will see borne out in our empirical
data in Section 4. With these well-understood statistical
properties, the noise-dominated delays (recall Equation (17))
are relatively easy to model, at least in principle.
The low-delay, foreground-dominated regimes are trickier to

model. One key problem is that the statistics of foregrounds are
not well understood, particularly at the low frequencies relevant
to us. There are different approaches that one can take to this
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roadblock. The first is where one attempts to make a
measurement of the cosmological 21 cm signal only, by
proactively subtracting (or simultaneously fitting) a foreground
model. To properly set error bars on such a power spectrum, it
is necessary to propagate uncertainties (accounting for the
possibility of mis-subtractions) in the foreground model to the
final errors (or, in the case of a simultaneous fitting, to allow
the errors on the cosmological signal to be appropriately
inflated as one marginalizes over foreground uncertainties).
While conceptually straightforward, these steps are difficult to
implement in practice without a deep understanding of
foreground statistics.

Instead, in this paper, we treat foregrounds as additive
systematics on the total sky emission. Crucially, this means we
only require empirical knowledge of the foregrounds them-
selves, not their full probability distribution. We simply
quantify the error bars on a measurement of total sky emission
due to instrumental noise, rather than the error bars on the
cosmological signal due to foreground uncertainties and noise.
Some understanding of foregrounds is still needed for setting
our errors because of the signal–noise cross terms in
Equation (17). Implicit in this approach is a strategy of
foreground avoidance in the hunt for a cosmological signal
detection, where it is hoped that the separation between
foreground-dominated and foreground-negligible regimes in
Equation (17) is a clean one. It is important to note, however,
that we seek to compute error bars that transition smoothly
between the regimes and are valid even if the conceptual
separation is not a clean one in practice.28

In addition to foregrounds, one can treat instrumental
systematics in the same way. In other words, interpreting
systematics as additive “signals,” the signal–noise cross term in
the variance of power spectra is sourced by not just
foregrounds but also other systematics, such as cable reflec-
tions and cross couplings (Kern et al. 2019, 2020a). We can
apply some models to remove systematics from the signal, but
the residuals due to mis-subtraction will still increase the total
uncertainties via the signal–noise cross term. Note, however,
that in this paper, we do not develop a comprehensive model to

account for all systematics, which is particularly difficult when
unknown modeling errors are present in complicated effects
(e.g., direction-dependent gains). We will instead argue that a
procedure of using the measured visibility itself to model the
foregrounds and systematics allows us to set robust upper
bounds, provided certain safeguards are in place to avoid
biases. We will leave more exquisite a priori characterizations
of foregrounds and systematics in the signal–noise cross terms
for the future.
Finally, one might worry that the averaging of power spectra

from multiple measurements together like Equation (18) might
complicate the statistics. Appendix B shows an example of this.
There we show that when averaging over redundant baseline
pairs, the variance of the average power spectra in the
foreground-dominated regime goes down roughly with -Nblp

1 2

and not -Nblp
1 because some baselines will appear in multiple

baseline pairs. In other words, in foreground-dominated (or
systematics-dominated) regimes, one cannot assume that
baseline pairs average together in an independent fashion.
This has consequences for certain methods of error bar
computation, such as the bootstrapping approach discussed in
the next subsection, which will tend to underestimate error bars
in these regimes. To avoid this, one might just use pairs in
which each baseline only appears once in all baseline pairs or
to compute a correction factor on the final results. In contrast to
the foreground-/signal-dominated regime, in the noise-domi-
nated regime, one obtains correct final error bars by assuming
that the baseline pair samples are independent (even if they are
not for the aforementioned reasons). In this paper, to avoid
averaging power spectra over correlated samples, we will
concentrate on the averaging of the power spectra of a single
baseline pair over multiple time samples.
We will have a more extensive discussion of the meaning of

our error bars in Section 5. For concreteness, however, we will
now propose several different methods for generating error bars
based on the HERA power spectrum pipeline before perform-
ing quantitative comparisons in Section 4. For the convenience
of our readers, we provide Table 3 as a quick preview.

3.1. Bootstrap

Bootstrapping is a natural method for computing the error
bars on the final averaged power spectrum with only minimal
a priori modeling assumptions. Within the 21 cm cosmology
literature, it has previously been used to set error bars on power
spectrum upper limits (Parsons et al. 2014; Ali et al. 2015;
although see Cheng et al. 2018 for caveats on these limits).
Bootstrapping is a process that goes hand in hand with the
averaging step described in Equation (18). Rather than
performing a single average, we repeatedly form a new set of

Table 3
Dictionary of Error Bars

Name Description Definition

σbs Error bar of the average power spectra by bootstrapping over the collection of samples Equation (24)
Pdiff Power spectra from differenced visibility used as a form of error bar Equation (26)
PN Analytic noise power spectrum Equation (27)
PSN Error bar based on PN but including the extra signal–noise cross term Equation (30)
σQE-N Error bar from the output covariance in QE formalism including only noise–noise term Equation (37)
σQE-SN Error bar from the output covariance in QE formalism including noise–noise and signal–noise terms Equation (38)
P̃SN Same as PSN but with an adjustment for noise double counting Equation (31)
˜ ‐sQE SN Same as σQE-SN but with an adjustment for noise double counting Equation (39)

28 We stress that our analysis does not cease to apply at a certain delay; it is
simply the case that at high delays, there is less of a pressing need to construct
detailed models for foreground subtraction, which to some extent mitigates the
need to consider the complicated statistical properties of this subtraction. It is
likely that our formalism can be generalized to encompass some foreground
subtraction, but detailed work beyond the scope of this paper would be
necessary. As an example, suppose one were to use information at τ = 0 and an
instrument model to subtract off leakage from other low (but nonzero) delay
modes. In such a scenario, one would need to account for the fact that the noise
contributions between different delay modes are now coupled. This can, in
principle, be accommodated with appropriate covariance matrix modeling, but
we leave this to future work.
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preaveraged data by resampling the original set with replace-
ment (i.e., allowing repeated entries). A new estimate of the

final average, ˆ ( )
P

k
, can be produced from the kth draw. The

scatter in the realizations of the final averaged power spectrum
is then quoted as an error bar σbs, such that

⎡
⎣⎢

⎤
⎦⎥

ˆ ˆ ( )
( ) ( )

å ås = -
N

P
N

P
1 1

, 24
k

k

l

l
bs
2

boot boot

2

where Nboot is the number of bootstrapping sample sets. In
essence, one is using the data themselves as an empirical
estimate of the distribution from which the data are drawn
(Efron & Tibshirani 1994; Press et al. 2007).

If the input data samples are independent and identically
distributed, bootstrapping will give the same error bars as the
true ones from the ensemble average. However, this assump-
tion is likely to be violated with our data. Consider the two axes
that we have at our disposal. One possibility is to bootstrap
over different time samples. Over short timescales, different
time integrations have relatively uncorrelated noise realiza-
tions. However, as our drift scan telescope moves across
different LST values, the sky brightness seen by the telescope
changes, leading to slow changes in the noise level for a sky
noise–dominated telescope. An alternative to bootstrapping
over time is to bootstrap over different copies of an identical
(“redundant”) baseline group. Here the downside is that it
remains an open question as to how truly redundant current
interferometric arrays are (Dillon et al. 2020) and precisely
what the consequences of nonredundancy are (Choudhuri et al.
2021).

With correlated data samples, bootstrapping tends to under-
estimate the true error bars on a final averaged power spectrum
(Cheng et al. 2018). On the other hand, nonstationary effects
such as nonredundancy can inflate bootstrap errors rather than
revealing the fact that the data in fact come from multiple
distributions. In later sections, we will compute error bars that
come from bootstrapping over different LSTs, but we will
interpret these results with caution given the caveats we have

just outlined. Of course, these caveats by no means diminish
the value of bootstrap errors as yet another consistency check,
particularly when one is diagnosing systematic effects (e.g.,
Kolopanis et al. 2019).

3.2. Direct Noise Estimation by Visibility Differencing

The foreground and EoR signal varies relatively slowly in
time (or frequency), such that after differencing the integrated
visibility between very close LSTs (or frequencies), the
normalized residual,

( ) ( )

( ) ( ) ( )

n n

n n

=
-

=
-

b b

b b

V
V t V t

V
V t V t

, , , ,

2
or
, , , ,

2
, 25

diff
1 2

diff
1 2

is almost noise-like. We can propagate such Vdiff through
power spectrum estimation pipelines to generate a noise-like
power spectrum Pdiff, such that

˜ ˜ ( )µP V V , 26diff diff diff
*

where appropriate proportionality/normalization constants
allow Pdiff to have the same units as—and therefore be directly
comparable to—power spectra. This quantity can be viewed as
a random variable that represents random realizations of the
noise in the system, which can be used to at least roughly
estimate error bars in noise-dominated regimes (see
Appendix C for more details). It can be computed from either
time-differenced or frequency-differenced visibilities. How-
ever, by differencing neighboring points in frequency, we are
in fact applying a high-pass filter in the delay space, which
means that power is suppressed at low delay modes. This is
illustrated in Figure 1, and for this reason, the time-differencing
method is preferred for empirical noise uncertainty estimation.
However, it is important to note that many correlators do not
dump data to disk fast enough for this to be feasible, as the sky

Figure 1. We generate ∼60 realizations of time streams of white Gaussian noise visibilities and compute the time- and frequency-differenced visibilities. Left: power
spectra from original visibilities. Middle: power spectra from time-differenced visibilities. Right: power spectra from frequency-differenced visibilities. In each panel,
we plot the power spectra from every realization, along with the mean (solid red) and standard deviation (dashed red) of power spectra over all realizations. We see
that power spectra from frequency-differenced visibilities are highly suppressed at low delays.
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changes nonnegligibly on a timescale of a few seconds. The
maximum time length of a single integration before reaching a
decorrelation threshold depends on the baseline length; thus,
one needs particular simulations for one’s instrument to
determine the suitable timescale (Wijnholds et al. 2018). For
the upgraded HERA correlator, it will be able to produce time-
differenced visibilities on a millisecond timescale for accurate,
empirical noise estimates.

3.3. Power Spectrum Method

With appropriate approximations (see Liu & Shaw 2020 for
details), it is possible to write down an analytic expression for
the noise power spectrum given a system temperature, Tsys, in
units of kelvin,

( )=
W

P
X Y T

t N N2
, 27N

2
eff sys

2

int coherent incoherent

where X≡Dc and ( )
( )

º
n

+Y c z

H E z

1 2

21 0
are conversion factors from

sky angles and frequencies to cosmological coordinates, Ωeff is
the effective beam area, tint is the integration time, Ncoherent is
the number of samples averaged at the level of visibility, and
Nincoherent is the number of samples averaged at the level of the
power spectrum (Zaldarriaga et al. 2004; Pober et al. 2013;
Cheng et al. 2018; Kern et al. 2020a). This is an estimate of the
rms of a power spectrum measurement in the limit that it is
purely thermal noise–dominated. The system temperature,
Tsys= Tsky+ Trcvr, is the sum of the sky and receiver
temperature and describes the total noise content of the
visibilities formed between cross-correlating data from differ-
ent antennas (Thompson et al. 2017).

There are many ways in which the key quantity Tsys can be
estimated. For example, we can take advantage of the
differenced visibilities discussed in the previous subsection.
These differences can then be converted into an estimate of Tsys
via the relation

({ }) ( ){ }n
=

W

D
V p q

k

c

T

B t
,

2
, 28

b p p q
rms

2

2

sys, ,

where kb is the Boltzmann constant, Ωp is the integrated beam
area, B is the bandwidth, and Δt is the integration time at a
single time sample. The “rms” subscript signifies taking the
rms of the differenced visibilities, and p and q are indices
denoting two different antennas that form a baseline {p, q}.
This serves to emphasize the fact that we can have a distinct
system temperature for every baseline.

Another way to estimate Tsys—which we use in this paper—
is to use autocorrelation visibilities, i.e., visibilities formed by
correlating a single antenna’s data with itself. The system
temperature on a non-autocorrelation baseline {p, q} is then
related to the geometric mean of the autocorrelation visibilities
of the two constituent antennas as (Jacobs et al. 2015)

({ }) ({ }) ( ){ }
n

=
W

V p p V q q
k

c
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2
. 29

b p
p q

2

2 sys, ,

In Figure 2, we plot the system temperatures predicted using
both methods for some HERA data. The lower scatter with the
second method is why we recommend its usage.

The noise power spectrum PN correctly describes the error
bars assuming that our instrument measures nothing but noise.
This may be a suitable approximation for noise-dominated
delays. More generally, however, when a signal (be it
foreground or systematics) exists, the cross terms of
Equation (17) provide an additional contribution to the noise
scatter/error bars.29 This term exists regardless of whether
one’s foreground mitigation strategy is based on subtraction or
avoidance. In the former case, the foreground residuals after
subtracting a model from the data enter into the final
expression; in the latter case, the whole foreground contrib-
ution is propagated as a systematic signal in the data. We show
how to take this into account in Appendix D, where we define
PSN as

( ) ( )˜ ˜º +P P P P2 Re , 30x xSN
2

N N
2

1 2

which serves as a characterization of the error bars on the total
sky emission, consistent with the form derived in Kolopanis
et al. (2019). Here ( )˜ ˜PRe x x1 2

, the real part of the power spectra
formed from x1 and x2, serves as a stand-in for a signal-only
power spectrum PS, assuming that the signal dominates the
noise (whether this “signal” takes the form of foregrounds,
systematics, or the cosmological signal).
Using real data helps us approximate the true PS when we do

not possess good a priori models. However, by using real data,
our estimate of the first term of Equation (30) can, in principle,
be negative because x̃1 and x̃2 contain different noise
realizations. This can cause problems, since the signal-only
power spectrum is expected to be nonnegative. We thus enforce
a hard prior on this term and set negative values of ( )˜ ˜PRe x x1 2 to

Figure 2. Comparison of two ways to estimate the system temperature based
on HERA data. The system temperatures of the cross-correlation visibilities on
two 14.6 m baselines (indexed by HERA antenna numbers (23, 37) and (36,
51)) are averaged across the LST range of 6.10–6.46 hr. The green regime,
from frequency channel number 515 to 695, shows the HERA data band used
for analysis in this paper. The labels “auto” and “rms” indicate the method
(either from products of autovisibilities or the rms of differenced visibilities) by
which the curves of system temperatures are calculated. And the values of the
temperatures shown in the labels are the average values over the band specified
by the green regime. We see that the results from two methods are consistent to
5%, though the curves from autocorrelations are far less scattered.

29 We stress that this scatter/error is still due to instrumental noise and not the
variance of the signal term. Even for a perfectly constant and known signal, the
presence of the cross term alters the uncertainty, essentially having the signal
term act as a multiplicative amplifier for noise fluctuations.
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zero. In this way, PSN
2 is always positive, and the error bar PSN

is at worst a conservative estimate. When we average the power
spectra with error bars, this conservatism leads to a substantial
bias between PSN and PN in our final error estimates in the
noise-dominated regime. This is because ( )˜ ˜PRe x x1 2

in the first
term of Equation (30) is empirical—and therefore contains
noise—which effectively yields a double counting of the
noise–noise term in the variance. This double counting does
not result in an average bias if one does not enforce our prior,
since in a noise-dominated regime, ( )˜ ˜PRe x x1 2

has zero mean.
Our prior ensures that PSN> PN. Despite this, we will show
that Equation (30) is a reasonable approximation over broad
swaths of the power spectrum. Moreover, if we understand the
statistics of noise fluctuations, one can simply predict—and
correct for—the double-counting bias in PSN. In the noise-
dominated regime, PN characterizes the scatter in ( )˜ ˜PRe x x1 2

.
Thus, one can estimate the expectation value of the extra noise
contribution from the first term of Equation (30) by computing

⎡
⎣⎢

⎤
⎦⎥

( )

( )

( )

˜ ˜

òp

p

á ñ

= -

=

¥

P P

P
y y P dy P

P

2 Re

2
1

2
exp 2

. 31

x x N

N 0

2
N
2

N

N
2

1 2

The integral runs over only positive values, since we are
imposing a nonnegative prior. Note that here we have neglected
any complicated window function effects in inserting the
measured power spectrum, essentially assuming that all power
is locally sourced at the delay where it is measured. In
principle, these effects can be taken into account in a more
general derivation within the QE formalism, but we leave this
for future work.

We see from Equation (31) that the excess of PSN above PN

in the noise-dominated regime is proportional to PN; thus, we
can just subtract it from the initially computed PSN. We then
define a modified “PSN” free from the double-counting noise
bias as30

˜ ( ) ( )pº - + -P P P1 1 1 . 32SN SN N

The reduction of double-counting noise bias in this way also
holds where signal dominates over noise. Since PN, PSN, and
P̃SN are all either power spectra or constructed from products of
power spectra, we name this methodology of error estimation
the “power spectrum method.”

3.4. Covariance Method

The QE formalism leads to a natural way to write down an
analytic form of error bars by propagating the input covariance
matrices on visibilities into the output covariance matrices on
bandpowers, which we name the “covariance method” (see
Appendix E for more details). Provided three set of matrices
below containing the full frequency–frequency two-point

correlation information of complex visibilities

( )

ºá ñ

º á ñ

º á ñ

C x x

U x x

G x x

,

,
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the variance in the real part of âP is
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and the variance in the imaginary part of âP is
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To get the final error bar on the power spectra, we should
accurately model input covariance matrices on visibilities and
propagate them into an output covariance matrix on band-
powers. Generally, we assume that the input covariance
matrices can be decomposed as C≡Csignal+ Cnoise.
Assuming the distributions of the real and imaginary parts of

the noise in visibilities are independently and identically
distributed (IID) at the same frequency and uncorrelated
between different frequency channels, our expressions simplify
considerably. With these assumptions, Cnoise

11 and Cnoise
22 are

diagonal, and Cnoise
12 , Unoise

11 , Unoise
22 , Unoise

12 , Gnoise
11 , Gnoise

22 , and Gnoise
12

are all zero. Analogous to Equation (29), one can estimate the
diagonal terms of Cnoise

11 and Cnoise
22 using the amplitudes of

autocorrelation visibilities. For a baseline {p, q} composed of
two antennas p and q, its Cnoise is

( ) ({ } ) ({ } )

({ } ) ({ } )

( )

{ } { } n n

n n

º á ñ

»
D

C t V p q t V p q t

V p p t V q q t

N B t

, , , , , ,

, , , , , ,
,

36

ii
p q p q

i i

i i

noise,
, , ,

noise noise

nights

*

where BΔt is the product of the channel bandwidth and
integration time, and Nnights is the total number of nights of data
analyzed from a drift scan telescope.
Inserting only Cnoise for C in Equations (34) and (35), we

have another estimate of the noise power variance as

[ ( ˆ )] [ ( ˆ )]

{ [ ]}

( )‐s

=

=

=

a a

a aE C E C

P Pvar Re var Im
1

2
tr

. 37

12,
noise
22 21,

noise
11

QE N
2

By taking the trace on the products of matrices, we have in fact
taken a weighted average of covariance information over
frequencies. The quantity σQE-N should be equal to PN from the
previous subsection, provided that in computing Tsys using
Equation (27), we average over frequencies to obtain an
effective Tsys in the same way. In this way, we see that the

30 Here we derived the correction factor p + - »1 1 1 0.251, assuming
that ( )˜ ˜PRe x x1 2 follows a Gaussian distribution. This is appropriate, assuming
that enough power spectra formed from data at different times have been
incoherently averaged together for the central limit theorem to apply (we will
examine this point further in Section 4.1). For a single snapshot in time, the
measured power spectrum follows a Laplacian distribution (again, see
Section 4.1), and the correction factor becomes - »3 2 1 0.225. Since
the difference is small and, in practice, we operate in the Gaussianized regime
anyway, we use p + -1 1 1 in our definition.
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analytic noise power spectrum essentially reduces to a special
case of Equation (37).

Of course, the fully covariant treatment here also implicitly
includes the signal–noise cross terms discussed in previous
sections. Including both Csignal and Cnoise in C gives

[ ( ˆ )] [ ( ˆ )]

{ [

]}

( )‐s

=

=

+

+

=

a a

a a

a a

a a

E C E C

E C E C

E C E C

P Pvar Re var Im
1

2
tr

. 38

12,
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22 21,

noise
11

12,
signal
22 21,

noise
11

12,
noise
22 21,

signal
11

QE SN
2

Since we have assumed that only Cnoise
11 and Cnoise

22 are nonzero,
the extra signal–noise cross terms entering into the expression
are just their couplings with the signal counterparts. For that
last contribution, we estimate Csignal as

[ ] ( )= = +C C x x x x
1

2
. 39ij ij i j i jsignal,

11
signal,
22

1, 2, 2, 1,* *

Note that this way of modeling Csignal is Hermitian and noise
bias–free when taking the ensemble average but not positive
definite. With a similar argument to PSN in Section 3.3, we
enact a hard nonnegative prior on Csignal, where rows and
columns containing negative diagonal elements are set to zero.
This procedure can be shown to give signal–noise cross terms
in Equation (38) that are always nonnegative. However, this
means that σQE-SN suffers from the same double-counting noise
bias with PSN, and analogously, we may construct a modified
“σQE-SN” that is also free from the bias as

˜ ( ) ( )‐ ‐ ‐s s p s= - + -1 1 1 . 40QE SN QE SN QE N

Generally speaking, the power spectrum method of the
previous subsection is a special case of the covariance method
of this subsection. For example, if we estimate PN in a way that
carefully accounts for the frequency dependence of Tsys, we
should find that when we insert it into the expression for PSN

that PSN= σQE-SN. The covariance method has the advantage
of providing off-diagonal covariances between different band-
powers in addition to variances.

3.5. Summary

The methods of error bar estimation introduced in this
section can be categorized into two groups.

1. σbs, PSN, σQE-SN. These estimate error bars on the total
emission, including both contributions from signal–noise
cross terms and noise–noise terms.

2. Pdiff, PN, σQE-N. These estimate the true error bars only in
the limit where the delay power spectrum is noise-
dominated (they may be called the noise levels), only
including contributions from the noise–noise terms.

Before we jump into a quantitative discussion using the HERA
power spectrum pipeline to compute these error bars in the next
section, it is important to stress that there are other methods of
error estimation that we do not cover in this paper. For
example, LOFAR has used the Stokes V parameter as an
estimator of noise level (Patil et al. 2017; Gehlot et al. 2019;
Mertens et al. 2020), since the astrophysical sky is expected to

exhibit only extremely weak circular polarization. However,
reliably estimating Stokes V power requires more accurate
polarization calibration solutions than are currently available
for HERA (Kohn et al. 2019). Since one of our goals is to test
our error estimation methods on HERA data, we will omit
discussion of Stokes V techniques in this paper.

4. Tests

In this section, we quantitatively examine the error
estimation methods introduced in Section 3. We apply them
to 21 cm delay power spectra estimated from both simulated
data and HERA Phase I data. We directly compare the relative
amplitudes of the error bars predicted by each method, delay
mode by delay mode. We also study how the error bars respond
to systematics and foregrounds in different regimes of delay
space.

4.1. Simulations from a Toy Model

We start with simulations from a toy model. This allows us to
generate a large number of realizations, with which we can
numerically test the validity of our error bars in the ensemble-
averaged limit. Our simulated visibilities include only the
foregrounds and noise. For the foreground portion of the visibilities,
we draw a random visibility from a frequency–frequency
covariance matrix of the form [ ( ) ]n n= - -C A lexpij i j

2 2 ,
where A and l characterize the amplitude and correlation length
of the foreground signal, respectively. The adopted covariance
model creates smoothly varying functions in frequency space,
which is roughly in accordance with the relatively flat spectral
structure of real foregrounds. Here we simulate visibilities on two
redundant baselines for 20 consecutive time stamps. We set A= 25
and l= 5 MHz, and the foreground visibilities are kept the same on
each baseline and over all time stamps. The noise components of
the visibilities on each baseline at each time stamp are
independently drawn from the same white Gaussian distribution

( )s = 0, 12 . We produce ∼10,000 realizations of such
visibilities and then use hera_pspec code31 to estimate the
delay power spectra and compute the error bars discussed
previously.
In Figure 3, we plot the power spectra together with a few of

the error bar types computed from one time stamp of data from
the simulations. We compute Pdiff by differencing visibilities
between one time stamp and the next. We use Equations (37)
and (38) to calculate the error bars of the “covariance method,”
while we evaluate Cnoise using the exact covariance matrix
from which noise visibilities are drawn, since we did not
simulate visibilities on autocorrelation baselines. In the top
panel of Figure 3, the green shaded regime (which ranges from
±50 to ±750 ns) is where the foreground power is dominant
over the noise power. We see that Pdiff and σQE-N are
insensitive to the foreground power in this regime, and when
moving to higher delays, the noise levels characterized by Pdiff,
σQE-N, and σQE-SN are very close to one another. Compared to
the other two, Pdiff shows much more scatter from delay to
delay, since it is a more empirical estimation of noise based on
examining what amounts to noise realizations. Notice also that,
as expected by construction, the σQE-SN curve always lies
above σQE-N, due to the fact that we enforce a zero clipping on
the signal–noise cross term.

31 https://github.com/HERA-Team/hera_pspec
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In the bottom panel of Figure 3, we plot histograms of power
spectra at three delays (τ= 320.0, 640.0, and 960.0 ns) by
accumulating data points from ∼10,000 realizations. The
results here are therefore representative of ensemble-averaged
expectations. At each delay, we also plot theoretical predictions
for the probability distribution functions (PDFs). Precisely
what form these PDFs take will depend on the delay. In the
low-delay regime, Equation (17) shows that the variation
comes from single powers of visibility noise, which we assume
is Gaussian. (Recall that we are not modeling the signal as a
random field, in the sense that it does not participate in our
ensemble average.) The result is a Gaussian PDF. At high
delays, Equation (17) shows that the power spectrum is the
cross-multiplication of two independent realizations of noise.
The resulting PDF is a Laplacian. Both of these distributions
take one free parameter (the standard deviation of power), and
we show predictions where this standard deviation is specified
by σQE-SN and σQE-N. At τ= 320.0 and 640.0 ns, we plot
Gaussian reference PDFs. At τ= 960.0 ns, we plot a Laplacian
reference PDF. We see that at τ= 320.0 ns, where the
foreground power is overwhelmingly dominant, the shape of
the histogram is indeed Gaussian-like, and its envelope
matches the PDF curves using σQE-SN. At τ= 960.0, where
noise is dominant, the shape of the histogram is indeed

Laplacian-like, and its envelope matches the PDF curves using
σQE-N (since σQE-N does not suffer from the conservatism of
σQE-SN discussed in Section 3.3). With τ= 640.0 ns, we have a
transition case between the two extremes. The distribution of
power spectra will be skewed, since neither the signal nor the
noise dominates on this occasion (for a mathematical proof of
the skewness, see Appendix F). The histogram does not match
the PDF predicted by either standard deviation, but note from
the widths of the PDFs that an error bar given by σQE-SN is a
conservative error, as we designed it to be.
In Figure 4, we present the same types of error bars plus a

bootstrapped one on power spectra that were formed by
incoherently averaging over 20 time stamps. We see in the
green regime that σbs agrees with σQE-SN. All of the different
kinds of error bars agree well with each other in the noise-
dominated regime, and with the extra time-averaging step
(compared to Figure 3), Pdiff exhibits less scatter. Again, we
plot histograms of the averaged power spectra from Monte
Carlo simulations against Gaussian PDF curves at τ= 320.0,
640.0, and 960.0 ns. One feature to note from the histogram is
that each distribution has become nearly Gaussian. This is
simply due to the central limit theorem, as power spectra are
averaged together incoherently. In addition to σQE-SN and
σQE-N, we also plot the PDFs using ˜ ‐sQE SN, which eliminates

Figure 3. Error bars on single baseline pair power spectra at one time stamp from simulations described in Section 4.1. In the top panel, we plot the power spectra
together with error bar types Pdiff, σQE-SN, and σQE-N. The green shaded regime ranges from ±50 to ±750 ns, where the foreground power is dominant over the noise
power. In the bottom panels, we plot histograms of bandpowers from ∼10,000 realizations at τ = 320.0 (strongly foreground-dominated regime), 640.0 (transition
regime), and 960.0 (noise-dominated regime) ns, along with PDF curves predicted using the σQE-SN and σQE-N values at the same delay. At τ = 320.0 and 640.0 ns,
the PDF takes a Gaussian form. At τ = 960.0 ns, the PDF takes the form of a Laplacian. The P(kP) values used in the histograms have been subtracted from the mean
value of all realizations. We can see that the error bars are roughly comparable to each other in amplitudes in the noise-dominated regime. At τ = 320.0, the envelope
of the histogram matches exactly with the PDF using σQE-SN. At τ = 960.0, the envelope of the histogram matches the PDF using σQE-N, while we see that the PDF
using σQE-SN is broader. Therefore, using σQE-SN will lead to a more conservative estimate of errors in this delay regime.
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the double-counting bias in σQE-SN. It is as expected that the
PDF using ˜ ‐sQE SN is closer to the one using σQE-N at the noise-
dominated delay mode.

4.2. Application to HERA Phase I Data

The HERA Phase I data used for analysis in this paper
consist of 18 observing nights taken in the Karoo Desert, South
Africa, from 2017 December 10 to 28. The HERA array
consisted of ∼40 functional antennas during observations,
which were taken across a 100–200MHz band comprised of
1024 channels and dual polarization “X” and “Y” feeds. (See
Table 1 of Kern et al. 2020b for more details on the array and
correlator specifications during the observations.) The data
used in this work were first preprocessed with the HERA
analysis pipeline (internally called H1C IDR2.232). This
includes automated metric evaluation and data flagging for
faulty antennas and radio frequency interference (RFI). In
addition, the data are redundantly calibrated (Dillon et al.
2020), absolutely calibrated (Kern et al. 2020b), binned, and
averaged across observing nights; inpainted over RFI gaps in
frequency; and then treated for known instrumental systematics
(Kern et al. 2020a).

We pick a slice of HERA Phase I visibilities taken from a
14.6 m redundant baseline group during an LST range of
5.75–6.10 hr. The visibilities in each time stamp are integrated
over ∼10 s. We select visibilities falling within a
150.3–167.8MHz band to compute the power spectra. We
use pseudo-Stokes I visibilities VpI, which are constructed by
combining the visibilities from a cross-correlation of two X
feeds (“XX”) and a cross-correlation of two Y feeds (“YY”) as
follows:

( ) ( )= +V V V
1

2
. 41pI XX YY

In forming the delay power spectra, we cross-correlate
visibilities from different baselines (e.g., b1− b2, b1− b3,
b2− b3, etc.) and between odd and even time stamps (e.g.,
t1− t2, t3− t4, t5− t6, etc.) to form delay power spectra. In this
way, we obtain power spectra on 253 baseline pairs at 30 time
stamps.
We show the power spectra from one baseline pair at one

time stamp in Figure 5, together with error bar types Pdiff,
σQE-SN, σQE-N, PSN, and PN. The Pdiff errors are computed from
time-differenced visibilities; e.g., for power spectra at the cross
time stamp t1–t2, we form Vdiff ∝V(t2)–V(t1), and then we cross-
multiply Vdiff from two different baselines to obtain the
corresponding Pdiff for that baseline pair. We calculate σQE-SN
and σQE-N using Equations (37) and (38) with Csignal and Cnoise

Figure 4. Error bars on time-averaged power spectra over 20 time stamps from simulations in Section 4.1. The figure follows similar conventions to Figure 3, except
(top) σbs is added and (bottom) all PDFs take the form of Gaussians, and the ones specified by ˜ ‐sQE SN are appended. We observe good agreement between σbs and σQE-
SN in the foreground-dominated regime and the consistency of all types of labeled error bars in the noise-dominated regime. After the incoherent average, we see
histograms at all delays become Gaussian. Additionally, ˜ ‐sQE SN is clearly different from σQE-SN, where the signal is less dominant. Especially at τ = 960.0 ns, the PDF
using ˜ ‐sQE SN is closer to the exact noise-dominated version using σQE-N.

32 http://reionization.org/manual_uploads/HERA069_IDR2.2_Memo_
v3.html
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specified by Equations (36) and (39). Equations (27) and (30)
give the expressions for PSN and PN. See hera_pspec for
detailed implementation.

In the top panel of Figure 5, we see that all error bars agree
well with each other in the noise-dominated regime (the red
curve for PN is almost exactly underneath the brown curve for
σQE-N, making the former difficult to see; the same is true for
the teal curve for PSN versus the bright green curve for σQE-SN).
The green shaded regime ranging from ±20 to ±200 ns is
where foregrounds are expected to dominate. Here we see that
Pdiff also responds to the foreground power, similar to PSN and
σQE-SN. This tells us that the time-differenced visibilities
contain nonnegligible foreground residuals, which is not
surprising, since the sky is expected to evolve nonnegligibly
over the ∼10 s of difference between our time samples.

In Section 3, we argued that the “covariance method” and the
“power spectrum method” should be equivalent to each other.
In the middle and bottom panels of Figure 5, we compute the
relative difference in magnitudes between error bars, setting
σQE-SN and σQE-N as the benchmarks, respectively. We see that

PSN differs from σQE-SN and PN from σQE-N by less than 1%, so
they are essentially equivalent in our pipeline. On the other
hand, Pdiff can differ from σQE-N at more than the 10% level
due to the fact that it is highly scattered. Note that σQE-SN and
PSN are also scattered at some delays, whereas they are equal to
σQE-N and PN at other delays. This is due to our imposition of a
nonnegative prior on the signal–noise cross term.
In Figure 6, we show the power spectra with error bars on

the same baseline pair as in Figure 5 but with the further step of
incoherently averaging over 30 time samples. We still see that
all error bars (with bootstrap errors σbs added) agree well in the
noise-dominated regime. At low delays, σbs peaks at an even
higher value than σQE-SN. This is because the sky is not
unchanged over different time stamps, so the bootstrapped error
bars over the time samples are inflated. After incoherently
averaging, we still see PSN differing from σQE-SN and PN

differing from σQE-N by less than 1%. On the other hand, Pdiff

and σbs differ from σQE-N at roughly the 10% level in the noise-
dominated regime. We also see that in the limit of noise
domination, σQE-SN has a relative bias over σQE-SN by about

Figure 5. Error bars on single baseline pair power spectra at one time stamp from HERA Phase I data. The visibilities are selected from a band spanning
150.3–167.8 MHz. Top: power spectra with error bars. The green shaded regime ranging from ±20 to ±200 ns is expected to be foreground-dominated. Middle:
absolute relative difference between selected error bars with σQE-N. Bottom: absolute relative difference between selected error bars with σQE-SN. We see numerically
that PSN differs from σQE-SN by less than 1% and that the same is true for PN and σQE-N.
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30%. Therefore, using σQE-SN or PSN leads to a conservative
estimate of one’s errors, as we expected. For comparison, we
also plot the results of ˜ ‐sQE SN, which eliminates the double-
counting noise bias in σQE-SN. The relative difference between
˜ ‐sQE SN and σQE-N is reduced to a few percent in the noise-
dominated regime, while ˜ ‐sQE SN is not significantly modified
from σQE-SN in the foreground-dominated regime. Thus, if we
want a compromise on reflecting the properties of the signal–
noise cross term while not introducing noise bias, ˜ ‐sQE SN might
be our choice.

What we have established so far is the relative agreement (or
lack thereof) between different types of error bars in different
regimes. However, we have not yet established the absolute
validity of these error bars on real data (i.e., we have not ruled
out the possibility that they are all incorrect in the same way).
For simulated power spectra, we were able to compare the
Monte Carlo histograms with the PDF curves predicted from
the error bars. The good match between the two gave us
confidence in applying our error estimation methods. Might we

perform similar analyses for power spectra from real data?
Unfortunately, in real observations, we only have one
realization of the sky, so we cannot reach an ensemble average
limit by accumulating data points from a large number of
realizations. Also, unlike simulated data with understood
statistics, real data will contain systematics that make their
statistics more complicated and difficult to understand
(although this may change as the field of 21 cm cosmology
continues to mature).
For now, we may partially achieve our goal by checking the

distributions of noise-like modes in our power spectra of real
data. The noise-like modes refer to power spectra at higher
delays, where noise power is thought to be dominant and
systematics are negligible. As we discussed in Section 3, we
expect the noise visibilities to be Gaussian-distributed. This
makes it possible to analytically compute the resultant statistics
of the power spectra. In Appendix G, we derive the
mathematical form of the PDF of incoherently averaged noise-
dominated power spectra. The final result, Equation (G6), shows

Figure 6. Error bars on single baseline pair power spectra incoherently averaged over 30 time samples from the same slice of HERA Phase I data as Figure 5. Our
plotting conventions also follow those of Figure 5 for other conventions. We add results from ˜ ‐sQE SN in each panel. In the middle panel, we see that the relative
difference between ˜ ‐sQE SN and σQE-N drops remarkably from ∼30% to a few percent compared to the σQE-SN, demonstrating the effectiveness of our noise-double-
counting bias removal. On the other hand, in the bottom panel, we see that going from σQE-SN to ˜ ‐sQE SN results in significant changes only at the noise-dominated
delays; thus, there one can always elect to use ˜ ‐sQE SN even in foreground-dominated regimes.
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that the correct PDF is a weighted sum of a series of Laplacian
distributions. As a numeric test of the derivation, we produce
Monte Carlo histograms of incoherently averaged power spectra
from pure Gaussian noise visibilities with an increasing number
of averaged samples in Figure 7. We generate ∼10,000
realizations of power spectra with multiple time samples and
evaluate the power spectra at a single time stamp, as well as what
it would be if incoherently averaged over five or 15 time stamps.
For realizations at each time sample, we can calculate the error
bar σQE-N of the power spectra and substitute it into
Equation (G6). It is clear that the predicted PDF matches the
envelope of the histograms and that the shape of the histograms
of the averaged power spectra become increasingly Gaussian
when averaging is over more time stamps. This is again a result
of the central limit theorem.

Confronting our results with real data, we use the power
spectra from the same HERA Phase I data set as Figures 5 and
6 to generate the histograms. To accumulate sufficient data
points for a histogram, we view all noise-like modes in power
spectra over different redundant baseline pairs as independent
realizations. And we carry out the incoherent average over the
time axis. Because the noise level at different baseline pairs
may differ, all power spectra are first normalized by being
divided over their corresponding σQE-N and then subtracted
from the mean of all data points. After the normalization, we
have a uniform error bar σQE-N for all data points at each time
sample. We then make histograms and compare their envelopes
with the PDF of “sum of Laplacians” predicted using
Equation (G6).

Before we jump to the results, we first take a look at the data
set, which includes RFI gap inpainting but without the removal
of systematics. For the histograms drawn in Figure 8, we
evaluate the distributions of power spectra at delays larger than
2000 ns and between 500 and 1500 ns. In the former case, we
see that the shapes of the histograms are perfectly consistent
with the predicted PDF, and the distributions become more
Gaussian and narrower with an increasing number of averaged

samples, similar to what we saw in Figure 7. In the latter case,
we observe that the histograms are flattened and much wider
compared to the predicted PDF, and there exist evidently hefty
wings on either end. Numerically, the fractions of outliers
beyond 3σ in each histogram are (7.95%, 10.70%, 11.46%),
which greatly exceed the corresponding values from the
predicted PDFs (1.36%, 0.57%, 0.24%). This is a remarkable
proof that significant systematics exist at lower delays in
inpainted-only data, as we expect.
We produce histograms for the systematics-removed data, as

we used for Figures 5 and 6, in Figure 9. At delays larger than
2000 ns, we still see a good match between the Monte Carlo
histograms and the predicted PDFs, while at delays between
500 and 1500 ns, we see that the deviations between the
histograms and PDFs are highly suppressed compared to
Figure 8. This is not surprising, since we have exerted
systematics removal. Though there is still a little excess above
the PDFs in the histograms on the far ends, this does not
substantially affect the error bars that one might quote on a
power spectrum measurement (which serve as a summary
statistic for the main bulk of the PDF rather than its wings).
However, such deviations are worth keeping an eye on,
especially when performing rigorous jackknife or null tests in
an attempt to understand the systematics in one’s instrument.
As noted above, the excessive wings of the histograms in the
bottom panels of Figure 8 can serve as a diagnostic tool for
systematics that lead to deviations from Gaussian noise-like
visibilities. They may also be used to investigate the related
question of how instrumental systematics (e.g., Kern et al.
2019, 2020a) might affect the validity of one’s error bars.
Readers should interpret Figures 8 and 9 as a quality check of
HERA Phase I data that shows that the power spectra at high
(<2000 ns) and middle (500–1500 ns) delays after systematics
mitigation are close to the predicted behaviors of Gaussian
noise visibilities. Thus, σQE-N (along with other equivalent
methods) validates itself a successful tool to characterize the
noise statistics in real data. However, we will still quote ˜ ‐sQE SN

Figure 7. We plot the histograms of incoherently averaged power spectra over certain time stamps from pure noise simulations. The histogram in each column
contains ∼10,000 data points. We compute σQE-N and refer to Equation (G6) to evaluate the “sum of Laplacians” PDF. Data points have been subtracted from the
mean over all realizations. We also plot the equivalent Gaussian PDF with the same variance as the “sum of Laplacians” PDF. The green arrows point to the dotted
vertical lines representing 3σ and 5σ, where σ is the square root of the variance of the predicted PDF. We see that the envelopes of the histograms match the PDFs
predicted using Equation (G6) very well. As a check, the fractions of outliers beyond 3σ in each histogram are (1.27%, 0.57%, 0.25%), while the corresponding values
from the predicted PDFs are (1.34%, 0.58%, 0.22%), a very close agreement. And with more time samples to be incoherently averaged, the shape of the histogram
becomes increasingly Gaussian, which is a consequence of the central limit theorem. As expected, we also see the distribution get narrower with more samples
averaged together.
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as a more robust error bar on reporting EoR upper limits at
those delays. One should be aware that not all systematics can
be cleanly corrected for, which means that, in principle, the
statistics can be much more complicated than the simple
Gaussian distribution shown here. Along this theme, we urge
readers to always perform consistency checks on the data,
including but not limited to the ones we have performed here.

5. Discussion

In previous sections, we have examined a number of
different methods for assigning error bars to a HERA power
spectrum. Here we perform a comparison of the different types
of error bars, highlighting the advantages and disadvantages
of each.

We first compare the error bars using the “covariance
method” (σQE-N and σQE-SN) to those computed using the
“power spectrum method” (PN and PSN).

1. The covariance method error bars analytically take the
covariance of the input visibilities and propagate them
through to the output covariance of the bandpowers via
general formulae given by Equations (34) and (35). There
are two weaknesses to this approach. First, the output
errors will only be as good as the modeling of the input
covariances. This modeling is particularly difficult for
foregrounds and systematics, which can have statistical
properties that are not entirely understood. In this paper,
we adopt a strategy where we view systematics as
nonrandom and empirically estimate them from the real
data. The other weakness of our covariance method is that
our derivations rely on Gaussianity. (Indeed, it would be
strange for this method to only require an input
covariance—a two-point function—if it were capable of
capturing the effects of non-Gaussianity.) This assump-
tion will also be violated by foregrounds and systematics,
as well the cosmological signal (which is an effect that

Figure 8. Histograms of power spectra at noise-like modes from the same HERA Phase I data used in Figures 5 and 6, including RFI gap inpainting but without the
removal of systematics. The data points are accumulated from power spectra at the same delays from different redundant baseline pairs. Because their noise levels may
differ, they are first normalized by dividing out their corresponding σQE-N and then having the mean of all data points subtracted off. In this way, we have a uniform
σQE-N for all points, and we use Equation (G6) to compute the “sum of Laplacians” PDF. Refer to Figure 7 for other plotting conventions. Top: histograms from power
spectra at all delays larger than 2000 ns, where there are ∼27,000 points in each column. Bottom: histograms from power spectra at delays between 500 and 1500 ns,
where there are ∼9000 points in each column. As a check, in the top panels, the fractions of outliers beyond 3σ in each histogram are (1.49%, 0.65%, 0.40%), which
are close to the corresponding values from the predicted PDFs (1.36%, 0.57%, 0.24%). In the bottom panels, the fractions of outliers beyond 3σ in each histogram are
(7.95%, 10.70%, 11.46%), which greatly exceed the corresponding values from the predicted PDFs (1.36%, 0.57%, 0.24%).
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was modeled in Mondal et al. 2016, 2017; Shaw et al.
2019).

Sidestepping these modeling restrictions on the
covariance method are the noise-dominated bandpowers
at high delays. In this regime, we use a diagonal input
covariance matrix Cnoise, with its diagonal elements set by
the autocorrelation visibilities as Equation (36). The
resulting error bars we call σQE-N (see Table 3 for the
reminder of our notation). These error bars are confirmed
by tests on simulations and real data in Figures 7 and 9,
which verify that the error bars do properly account for
the spread seen in an ensemble of Monte Carlo
simulations. Further bolstering our confidence in using
the covariance method are their agreement with other
error metrics at our disposal. Figures 5 and 6 show that in
the noise-dominated regime, the error bars using the
covariance method are in excellent agreement with the
bootstrap errors σbs, error bars using the power spectrum
method, and the power spectrum of differenced data Pdiff.

2. The agreement between these different error estimation
methods raises the question of why one might favor the
covariance method over others. Consider first a

comparison between σQE-N and PN from the power
spectrum method. These two methods are in fact quite
similar, because PN is also an analytically propagated
measurement of error, as one can see, for instance, in the
derivation of Zaldarriaga et al. (2004). The difference is
one of generality, whether in the inputs, intermediate
steps, or outputs. On the input side, PN assumes
uncorrelated noise between visibilities whose amplitude
is governed by the radiometer equation; σQE-N can accept
an arbitrary input covariance (even though in our tests,
we take it to be diagonal). During the actual propagation
of errors, the derivation of PN assumes that fluctuations in
uvν space are uncorrelated; σQE-N makes no such
approximations. Finally, on the output side, the power
spectrum method returns a single error bar; the
covariance method provides a full bandpower covariance
matrix.

Of course, in reality, not all delay modes are noise-
dominated, and reliable error bars need to be placed even in
signal-dominated regimes (whether this signal comes in the
form of instrument systematics, foregrounds, or, ultimately, the

Figure 9. Histograms of power spectra at noise-like modes from inpainted and systematics-mitigated HERA Phase I data. The power spectra used here come from
exactly the same data set as in Figures 5 and 6. As a check, in the top panels, the fractions of outliers beyond 3σ in each histogram are (1.48%, 0.63%, 0.39%), which
are close to the corresponding values from the predicted PDFs (1.36%, 0.57%, 0.24%). And in the bottom panels, the fractions of outliers beyond 3σ in each histogram
are (2.19%, 1.32%, 0.80%), which slightly exceed the corresponding values from the predicted PDFs (1.36%, 0.57%, 0.24%), but at a much lower level than the
disagreement seen in Figure 8.
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cosmological signal). It is difficult to place rigorous error bars
on bandpowers in these regimes; unless one has a physical
model for all of the systematics involved (with knowledge of
their probability distributions), it is an ill-defined problem to
ask how errors propagate. Unfortunately, the presence of
unexplained (or at least not fully explained) systematics is the
current state of affairs in 21 cm cosmology, and truly rigorous
error bars will need to wait for future work on the modeling of
systematics.

Even with well-defined (if not perfectly characterized)
systematics, the meaning of one’s error bars is subtle. For
instance, foregrounds such as a continuum of unresolved point
sources can be appropriately treated as a random field. Given
this, one’s approach might be to say that the unresolved point
sources contribute some effective power spectrum to the
measurement. With such a formalism, there is a fundamental
limit to how well these foregrounds can be characterized, since
they come with their own form of cosmic variance. In other
words, if one is trying to place constraints on foregrounds, one
must account for the fact that the particular realization of
foregrounds that we see may not be representative of
foregrounds in general. This sort of error is difficult to compute
in general, as the squared nature of the power spectrum means
that the non-Gaussian—and therefore nontrivial—four-point
function of the foregrounds needs to be known.

A goal of characterizing the general statistical properties of
all possible foregrounds, however, may be unnecessarily
ambitious. In particular, for a cosmological measurement, one
is not particularly concerned with the behavior of a “typical”
foreground; one is primarily concerned with how our particular
realization of foregrounds affects our observations. As a
concrete example, if our Galaxy’s synchrotron emission
happens to be anomalously bright compared to a typical
galaxy’s synchrotron emission, it is our own brighter fore-
grounds that we need to deal with. With such a mindset, it is
more appropriate to consider all foregrounds as nonrandom
components of our data. By this, we do not mean that the
foregrounds need to be spatially or spectrally constant; rather,
we mean that in hypothetical random draws for taking
ensemble averages, the cosmological signal and the instru-
mental noise change with each new realization, but the
foregrounds remain the same. If the foregrounds are not
formally random, our error bars are the result of instrumental
noise (and, in principle, cosmic variance of the cosmological
signal, although this contribution is small for current upper
limits).

It is important to stress, however, that even if our error bars
are due to the randomness of instrumental noise, the resulting
error bars are not simply what one obtains from imagining a
noise-only measurement and propagating the noise fluctuations
through to a power spectrum. This is because the power
spectrum is a squared statistic. Thus, in the squaring of a
measurement that contains both noise and a (nonrandom)
signal, there are signal–noise cross terms to contend with.
These terms are zero in expectation but do not have nonzero
variance. This means that knowledge of the signal (whether
from systematics or foregrounds) is needed to correctly account
for instrumental noise errors in non-noise-dominated regimes.

1. In short, even if we lower our ambitions and forgo
incorporating knowledge about signal statistics into our
error calculations, understanding the signal itself is
necessary for computing noise-sourced error bars. This

requirement is where noise-only computations like PN

and σQE-N fall short.
2. This shortcoming is remedied by generalized versions of

PN and σQE-N, which we dub PSN and σQE-SN. These are
given by Equations (30) and (38). The key idea is that in
signal-dominated regimes, the measured data themselves
can be a good approximation to the signal. Thus, we may
reinsert the data in an appropriate way to capture signal
terms in our general expressions. Figures 3 and 4 show
that these error bars work well in both signal-dominated
and noise-dominated regimes.

3. Although we treat foregrounds and systematics as a
single signal term that is directly estimated from
measured data in this paper, we note that for future
high-sensitivity detections, more elaborate modeling of
both is needed. Of course, there is also the possibility of
unknown systematic effects, which our formalism does
not account for.

4. Moreover, two cautionary warnings are in order when
applying Equations (30) and (38). The first is that because
the measured data are now part of the error bars
themselves, it can be dangerous to use these error bars
to inform data weightings for downstream averages in
one’s pipeline (e.g., in further incoherent time averaging
of power spectra or incoherent averaging of power
spectra from different baselines). If the data weightings
are coupled to the data themselves, our so-called QEs are
no longer quadratic. As shown in Cheng et al. (2018), a
blind application of the usual methods for normalizing
QEs leads to power spectrum estimates that are biased
low (“signal loss”). For this reason, while PSN and σQE-SN
are fine ways to compute error bars, we recommend that
any error-motivated data weightings be based on PN and
σQE-N instead.

5. The second warning is that there almost certainly exist
regimes that are neither signal- nor noise-dominated,
where signal and noise are comparable in magnitude.
Here it becomes necessary to contend with the fact that a
noisy measurement of the signal can be unphysically
negative. Said differently, if our estimate of the signal
itself contains noise, we are in effect double counting the
noise in our error computations. One approach is to enact
a hard prior on the positivity of the signal. This is what
was done in all computations of PSN and σQE-SN in this
paper. However, Figures 3 and 4 show that this has the
effect of inflating the error bars. Given that this is a
conservative bias on the errors, this may or may not be
appropriate, depending on one’s application.

6. A slightly more accurate approach is to assume that
instrumental noise is Gaussian-distributed and quantita-
tively predict and correct the noise bias in the errors.
Implementing this correction gives P̃SN and ˜ ‐sQE SN, which
are given by Equations (32) and (40), respectively.
Figures 3 and 4 show that this corrects the bias and gives
error bars that are no longer overly conservative.
However, because this correction is designed to give
unbiased errors in expectation, it will occasionally give
error bars that are slightly smaller than the error predicted
by noise-only estimators such as PN. In practice,
however, we find that this is a reasonably rare occurrence.

With the aforementioned difficulties with error estimation in
the presence of poorly characterized signals, one may be
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tempted to make use of more empirically based error estimates.
These estimates also come with their strengths and weaknesses.

1. As discussed in Section 3.2, Pdiff from frequency-
differenced data suffers from a bias at low delays.
Figure 1 shows that even at reasonably high delays of
∼1500 ns, the bias can be significant. Thus, while Pdiff

from frequency-differenced data is a useful asymptotic
check at high delays, it is not a robust estimator of our
errors. Implementing Pdiff using time-differenced data
does not have the delay-dependent bias, as one can also
see in Figure 1. However, care must be taken to ensure
that the time differencing is small enough to suppress any
sky signal that is coherent between adjacent time samples
(Dillon et al. 2015). In addition, with a differencing
scheme, one is ultimately constructing noise realizations,
not noise statistics. The resulting error bars thus show
considerable scatter. In that sense, the analytically
propagated error bars vary in a more physically
plausible—smoother—way with time and frequency.

2. The problem of a noisy error bar estimate persists with
σbs. However, bootstrapping has several appealing
features that make it a crucial check on the analytically
propagated error bars. First, no assumptions are made
regarding the Gaussianity of the input data. Thus, the fact
that our σbs agrees with our analytically propagated errors
—which assumed the input noise in the visibilities—is an
essential validation of our assumptions. In a similar way,
σbs may potentially capture increased variance due to
systematics, since it is a measure of the uncertainties of
total sky emission. However, the bootstrap method is
known to suffer from some important limitations. For
example, as noted in Appendix B, if systematics are
correlated between samples, the bootstrap method tends
to underestimate errors. Also, bootstrapped error bars will
be inflated from nonstationary effects such as sky
brightness changes and nonredundancies between nom-
inally identical baselines. Precisely how these nonsta-
tionary effects should be folded into one’s error
estimation is reserved for future work, but the correct
approach will certainly be more sophisticated than a
simple inflation of errors. That said, this increase in
bootstrap errors due to nonstationarity can serve as a

useful diagnostic for further examination of unexpected
systematics.

In Table 4, we summarize the discussion in this section with
a succinct listing of the pros and cons of each error estimation
method.

6. Conclusions

In this paper, we have systematically studied a variety of
error bar methodologies in 21 cm power spectrum estimation.
We have synthesized some of the common techniques in the
literature, outlining their relative strengths and weaknesses in
quantifying noise levels and accounting for residual systema-
tics. Specifically, we considered a variety of types of error
estimators, including the following.

1. Power spectrum methods. This includes the standard PN

estimator for the noise power spectrum found in the
literature (Zaldarriaga et al. 2004; Parsons et al. 2012a;
Pober et al. 2013; Cheng et al. 2018; Kern et al. 2020b)
and the PSN estimator that involves cross products with
signal power spectra PS, as detailed in Kolopanis et al.
(2019). Here we set PS to be the real values of
experimentally observed power spectra, which is a good
approximation when the signal dominates the noise. Our
implementation of PSN leads to a double-counting bias
compared to PN that is considerable in noise-dominated
regimes, and we show how a modified form, P̃SN, can
eliminate this bias.

2. Covariance methods. This consists of propagating a data
covariance matrix between frequencies per time stamp
and per baseline pair through the QE formalism to the
bandpower covariance matrix (Liu & Tegmark 2011;
Dillon et al. 2014; Liu et al. 2014a, 2014b), including
error metrics described here: σQE-N for noise-dominated
spectra and σQE-SN that includes signal–noise terms.
These have the same variance predictions as PN and PSN

by construction but also provide bandpower covariance
information.

3. Other methods. Other methods studied in this work
include the bootstrapping method that can lead to
misreported errors when not handled carefully (Cheng
et al. 2018), as well as the method of using differenced

Table 4
A Summary of the Advantages and Disadvantages of Different Error Estimation Methods in 21 cm Power Spectrum Estimation

Error Bar Type Pros Cons

Bootstrap (σbs) Easy to implement with minimal a priori assumptions;
can be useful as a reference statistics in diagnosis of
systematics

Not strictly applicable in the presence of nonindependent
and nonstatistically stationary data samples

Power spectra from differenced visibilities
(Pdiff)

Data product close to raw data Provides noise realizations rather than direct error bars,
resulting in considerable scatter

Power spectrum method (PN and PSN) Accurately captures variances/error bars in noise-
dominated (both PN and PSN) and signal-dominated
(PSN) regimes

Does not contain covariance information between different
bandpowers; PSN requires nonnegativity prior on the
signal, which slightly inflates errors; downstream
data weightings using PSN at risk of signal loss

Covariance method (σQE-N and σQE-SN) Same accuracy as PN and PSN for variance informa-
tion and additionally provides full covariance
information

Derivation assumes data is Gaussian; σQE-SN requires
nonnegativity prior on the signal, which slightly
inflates errors; downstream data weightings using
σQE-SN at risk of signal loss

Modified covariance method (˜ ‐sQE SN ) and
modified power spectrum method P̃SN

Eliminates conservative double counting of noise in
noisy estimates of the signal

Occasional error predictions that are slightly smaller than
instrumental noise expectations from σQE-N and PN
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visibilities as noise realizations propagated through a
power spectrum estimator. We show that differencing in
frequency is ill advised for this approach. Differencing in
time avoids some problems, but either differencing
scheme generates error estimates that are rather scattered.
However, we stress that the importance of these more
empirically based methods is useful cross-checks (e.g., in
the manner performed in this paper) that can also be
helpful diagnostics for systematics (e.g., Kolopanis et al.
2019).

Using simulations and real HERA Phase I data, we show that
these methods are generally in agreement with each other,
demonstrating their robustness and applicability to future delay
power spectrum measurements from HERA. Importantly, we
show that for bandpowers that are not completely dominated by
noise, one needs to go beyond the standard thermal noise
estimates and account for signal–noise cross terms in order to
fully describe the uncertainty on the bandpower. In a series of
Appendices, we also examine sources of skewness in
probability distributions of measured power spectrum band-
powers (Appendices A and F), derive exact expressions for the
probability distributions of incoherently summed delay power
spectra (Appendix G), and examine whether common baselines
in the cross-multiplication of multiple baseline pairs affect
assumptions about error independence (Appendix B). The
insights gained in this paper regarding error estimation are
applicable in 21 cm cosmology beyond HERA. They provide a
foundation upon which to develop rigorous error estimation
methods that will prove to be key in unlocking the potential of
the 21 cm line as a powerful probe of our high-redshift
universe.

This material is based upon work supported by the National
Science Foundation under grant Nos. 1636646 and 1836019
and institutional support from the HERA collaboration
partners. This research is funded in part by the Gordon and
Betty Moore Foundation. HERA is hosted by the South African
Radio Astronomy Observatory, which is a facility of the
National Research Foundation, an agency of the Department of
Science and Innovation. Parts of this research were supported
by the Australian Research Council Centre of Excellence for
All Sky Astrophysics in 3 Dimensions (ASTRO 3D) through
project No. CE170100013. G.B. acknowledges funding from
the INAF PRIN-SKA 2017 project 1.05.01.88.04 (FORECaST)
and support from the Ministero degli Affari Esteri della
Cooperazione Internazionale—Direzione Generale per la
Promozione del Sistema Paese Progetto di Grande Rilevanza
ZA18GR02 and the National Research Foundation of South
Africa (grant No. 113121) as part of the ISARP RADIO-
SKY2020 Joint Research Scheme, the Royal Society and the
Newton Fund under grant NA150184, and the National
Research Foundation of South Africa (grant No. 103424).
P.B. acknowledges funding for part of this research from the
European Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation program (grant
agreement No. 948764) and from STFC grant ST/T000341/1.
J.S.D. gratefully acknowledges the support of NSF AAPF
award No. 1701536. N.K. acknowledges support from the MIT
Pappalardo fellowship. A.L. acknowledges support from the
New Frontiers in Research Fund Exploration grant program,
the Canadian Institute for Advanced Research (CIFAR) Azrieli
Global Scholars program, a Natural Sciences and Engineering

Research Council of Canada (NSERC) Discovery Grant and a
Discovery Launch Supplement, the Sloan Research Fellowship,
and the William Dawson Scholarship at McGill.

Appendix A
Skewness in Power Spectra Estimated from Multiple

Identical Baselines

In this Appendix, we consider a source of skewness in
probability distributions of delay spectra. In particular, we
consider the noise properties of power spectra formed from a
set of identical (“redundant”) baselines. We show that even if
each baseline is measuring Gaussian random noise with mean
zero, the resulting power spectra will exhibit some skewness.
We emphasize, however, that this skewness vanishes if one
additionally splits the data into two distinct sets of time samples
(e.g., even and odd time stamps) and estimates power spectra
that are not only cross-baselines but also cross-times.
As a concrete example, suppose that on the ith copy of a

particular baseline, we measure ˜ º +x c idi i i after taking the
delay transform, where ci and di are independently Gaussian-
distributed random variables with a variance σ2/2. This
represents the behavior of x̃i at noise-dominated delays. If
only two identical baselines were available, cross-multiplying
them to obtain a power spectrum would yield

˜ ˜ ( )( ) ( )
( ) ( )

= + - = +
+ -

x x c id c id c c d d
i d c c d . A1

1 2 1 1 2 2 1 2 1 2

1 2 1 2

*

Consider the real part. Since c1 and c2 are independent random
variables, c1c2 is a symmetric distribution about zero (and, in
fact, is given by K0, the zeroth-modified Bessel function of the
second kind). The same reasoning holds for the d1d2 term.
Since {ci} and {di} are independent, it follows that c1c2 and
d1d2 are also independent. The result is that the probability
distribution for c1c2+ d1d2 is given by the convolution of the
distributions for the individual terms. With the two contributing
distributions both symmetric about zero, their convolution
inherits this property and is in fact given by the Laplacian
distribution discussed in Section 4.1.
The situation is different when we have more than two

baselines. Taking all possible pairwise combinations (exclud-
ing the multiplication of a baseline with itself to eliminate noise
bias), we obtain

[ ˜ ˜ ˜ ˜ ˜ ˜ ] ( )
( ) ( )

+ + = + +
+ + +

x x x x x x c c c c c c
d d d d d d

Re
, A2

1 2 1 3 2 3 1 2 1 3 2 3

1 2 1 3 2 3

* * *

where we have grouped our result into two terms that can be
considered separately because {ci} and {di} are independent.
Consider the first term. It has zero mean,

( )
á + + ñ = á ñá ñ + á ñá ñ + á ñá ñ =c c c c c c c c c c c c 0,

A3
1 2 1 3 2 3 1 2 1 3 2 3

because the different {ci} are independent. However, the
resulting distribution has a skewness to it, which can be seen by
the fact that the third moment is nonzero:
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(Of course, in principle, we should be taking the cube of
Equation (A2) in its entirety, not just the first term. However,
the independence of {ci} and {di} means that we reach the
same conclusion.) The nonzero third moment shown here
arises because the three terms that make up the sum are
correlated as a triplet, even though each pair has no average
covariance. For instance, the covariance between c1c2 and
c1c3 is

( )á ñ - á ñá ñ = á ñá ñá ñ =c c c c c c c c c c c 0. A51 2 1 3 1 2 1 3 1
2

2 3

This implies that even though c1c2, c1c3, and c2c3 are not
independent, for the purposes of computing the variance of the
final result, one obtains the same result even if one pretends
that these contributions are independent. This result is explored
in more detail in the first half of Appendix B.

To summarize, the different moments of the distribution
provide different insights into power spectrum estimation with
different baseline pair combinations. The mean of the
distribution is zero, indicating that there is no bias (as one
might expect for cross-correlation spectra). The variance turns
out to be the same expression as if we had completely
independent baseline pairs, so the noise averages down with the
number of baseline pairs, as one might naively have expected
them to (without worrying about correlations). However, the
skewness is nonzero. This complicates the interpretation of null
tests that implicitly assume that the probability distributions of
noise-dominated delays are symmetric.

Importantly, these considerations do not apply when we
consider the imaginary part, which is given by

[ ˜ ˜ ˜ ˜ ˜ ˜ ]
( )

+ + = + -
+ - -

x x x x x x c d c d c d
c d c d c d

Im
. A6

1 2 1 3 2 3 2 1 3 1 1 2

3 2 1 3 2 3

* * *

This has a third moment given by
( )á + - + - - ñc d c d c d c d c d c d2 1 3 1 1 2 3 2 1 3 2 3

3 . To get terms
that are nonzero under the expectation value, we require terms
that contain squares of the random variables when we multiply
out the polynomial. For example, the first term c2d1 must be
multiplied onto c2d3 because there is no other c2 term in the
expression to pair to. This gives us c2

2 d1d3. However, we now
need to multiply this onto d1d3 or we end up with a stray d1 and
d3. But none of the terms are the product of two {di}, so no
matter what terms we pair this up with, it will average to zero.
This logic applies to any of the terms, so the distribution of the
imaginary part will not be skewed. Because of this, statistical
tests involving the imaginary part of a power spectrum
estimator can be more easily interpreted using symmetric
distributions.

Our result here has implications for how one should avoid
the noise bias in power spectrum measurements. Two
commonly used methods for doing so are to cross-multiply

either different identical baselines or different time stamps
together. Here we have shown that employing only one of these
will incur a skewness. (While our discussion above focused on
cross-multiplying different baselines, the same conclusions
hold if we consider cross-multiplying more than two groups in
time; after all, the indices in our mathematical expressions can
simply be considered time-stamp indices instead of baseline
indices.) However, if we perform cross-multiplications across
both time and baseline axes, the skewness vanishes. To see
this, imagine that we split our data into odd and even time
samples, labeled with superscripts “o” and “e,” respectively.
Equation (A2) then becomes

˜ ˜ ˜ ˜ ˜ ] ( )
( ) ( )

+ + = + +
+ + +

x x x x x c c c c c c

d d d d d d , A7

e o e o e o e o e o e o

e o e o e o
2 1 3 2 3 1 2 1 3 2 3

1 2 1 3 2 3

* * *

and, cubing this expression as before to compute the third
moment, one finds no nonzero terms after taking the ensemble
average.

Appendix B
Variance of Averaged Power Spectra from Dependent

Baseline Pair Samples

In this Appendix, we consider the effect of having common
baselines between different baseline pairs used to form power
spectra. Inside a redundant baseline group consisting of Nbl

different baselines, we can construct up to ( )= -N N N 1blp
1

2 bl bl

different baseline pairs, and we can form a power spectrum using
each pair. Consider the averaged power spectrum over these
baseline pairs and the variance of this average. The form of the
averaged power spectrum is

( )
( )( )=

å

-
>

P
P

N N 1
, B1

p q p pq,

1

2 bl bl

where the sum is over all possible (p, q) pairs of baselines. The
variance of the averaged power spectrum does not simply go
down with -Nblp

1 because the data being averaged together are
not fully independent of each other. For example, P12 and P13

both carry information from baseline number 1.
Let the signal be ˜ º +s a bi, and let ˜ º +n c d ip p p and

˜ º +n c d iq q q be the noise realizations in the pth and qth
baselines. The signal s̃ is identical in each baseline, since we
are assuming that we are combining data from identical
(“redundant”) baselines. The random variables cp, dp, cq, dq, ...
are IID normal variables with variance σ2. In the foreground-
negligible regime, recall from Equation (17) that the average
power spectrum is given by

( )

( ) ( )
( )

( )

( ) ( )

=
å

-

=
å +

-
+

å -

-

>

> >

P
n n

N N

c c d d

N N
i

c d c d

N N

1

1 1
. B2

p q p p q

p q p p q p q p q p p q q p

,

1

2 bl bl

,

1

2 bl bl

,

1

2 bl bl

*
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We notice
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which means that the variance in the real part of P is
( )
s
-N N

4

1

4

bl bl
.

For the imaginary part, we compute
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so that the variance of the imaginary part of P is also
( )
s
-N N

4

1

4

bl bl
.

Since the number of baseline pairs is given by ( )-N N 1 2bl bl ,
and 2σ4 is the variance we would expect to get from a single
baseline pair, we can see that P averages down in a manner that
is identical to the scenario where the baseline pairs are
independent.

In foreground-dominant regimes, the average power spec-
trum goes to

( )

( ) ( )

( )
( ) ( )

( )
( )

( )

( )
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=
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å + + + + +

-

+
å - + -

-

>

>

>

P
s s s n n s

N N

a b a c c b d d

N N

i
a d d b c c

N N

1

1

1
. B5

p q p q p

p q p p q p q

p q p q p p q

,

1

2 bl bl

,
2 2

1

2 bl bl

,
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* * *

The variance in the real part is ( )s+a b

N

4 2 2 2

bl
, and the variance in

the imaginary part is ( )( )
( )

s+ +
-

N a b

N N

4 1

3 1
bl

2 2 2

bl bl
. They now go down

roughly as -Nblp
1 2 and are larger than the variance from

independent samples by factors of ( )-N 1bl and (Nbl+ 1)/3,
respectively.

Appendix C
Time-differenced Visibilities as Noise Estimators

In this Appendix, we establish the validity of using time-
differenced visibilities as a way to estimate noise error bars.
The key idea is that if we form residuals of data vectors
xp(ν, t) by subtracting data from the pth baseline in
adjacent time bins (t1 and t2) from each other, the result
should be noise-dominated. The same holds true for delay-
transformed visibilities, where the residual can be written as
˜ ( ) ˜ ( )t t-n t n t, ,p p2 1 . Suppressing τ and demoting the time
variable to a subscript for notational brevity, we write ˜ =np t,

+c d ip t p t, , , where cp, dp, ... are IID normal variables with
variance σ2. The power spectra constructed from such residuals
are

⎡
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1 1*

From this, we see that

⎡
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⎤
⎦⎥

[ ( )] ( ) ( )
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+
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2
2
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This is again the variance expected for a noise-dominated
power spectrum. Therefore, what we have shown is that
∣ ( )∣PRe diff can serve as an estimator that in expectation is equal
to the correct noise errors for the measured power spectrum

˜ ˜Px x1 2 in noise-dominated regimes. However, since this result
only holds in expectation, we expect that in practice, it will
exhibit considerable scatter as an error estimate.

Appendix D
Signal-dependent Error Bar from Power Spectrum Method

In this Appendix, we derive an expression for the variance
on the power spectrum in the presence of foregrounds or
systematics (or any “signal”). A similar derivation is presented
in Kolopanis et al. (2019). Given two delay spectra ˜ ˜ ˜= +x s n1 1
and ˜ ˜ ˜= +x s n2 2, the power spectra formed from ˜ ˜x x1 2* are

˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜
[ ( ) ( ) ]

[ ( ) ( ) ] ( )

˜ ˜ = + + +

= + + + + + + +
+ - + - + -

P s s s n n s n n

a b a c c b d d c c d d
a d d b c c d c d c i, D1

x x 2 1 1 2

2 2
1 2 1 2 1 2 1 2

2 1 1 2 2 1 1 2

1 2 * * * *

where we have written ˜ = +s a bi, ˜ = +n c d i1 1 1 , and ˜ =n2

+c d i2 2 .
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Consistent with the rest of the paper, we assume that a and b
are not random variables, so that 〈s〉= s. The true sky power
spectrum is then given by ˜ ˜ = +P a bss

2 2, and c1, d1, c2, and d2
in the noise parts are IID random normal variables. We then
have

[ ( )] [ ( )
( ) ]

( )

( ) ( )

˜ ˜
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= + + +
+ + + +

= + á ñ + á ñ
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b d d c c d d
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P P P

P P P P

Var Re Var

2 2

2

2 Re . D2

x x
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x x

2 2
1 2
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2 2
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2

1
2 2

N N
2

N N
2

SN
2

1 2

1 2

In the above, we have used the relation ( )+ =c c d dvar 1 2 1 2

á ñ =c P2 1
2 2

N
2, where PN is the analytic noise power spectrum.

We have also used ( )˜ ˜ ˜ ˜= á ñP PRess x x1 2 . This shows that PSN is a
general form for error bars in the existence of foregrounds or
systematics (or, again, any “signal”).

Appendix E
Covariance Method

In this Appendix, we provide more explicit derivations of the
expressions quoted in Section 3.4 for the covariance method of
error estimation.

E.1. Variance

If âP is a complex number representing a power spectrum
estimate of the αth bandpower, its real and imaginary parts are
given by ( ˆ ˆ )+a aP P1

2
* and ( ˆ ˆ )-a aP P

i

1

2
* , respectively. The

variance in the real part of âP is
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while the variance in the imaginary part of âP is
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Recall that âP is defined as ˆ †= = åa
a ax E x x E xP ij i ij j1

12,
2 1,

12,
2,* .

We define three sets of matrices containing all of the two-point
correlation information for the complex estimator C12, U12, and
G12, such that

( )º á ñ º á ñ º á ñC x x U x x G x x; ; . E3ij i j ij i j ij i j
12
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Equipped with these definitions, we can generate the following
equations
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where =a aE Eij ji
12, 21,* . Setting α= β in these equations then

allows us to evaluate Equations (E1) and (E2).
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E.2. Covariance

The covariance between the real part of âP and the real part
of b̂P is
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and the covariance between the imaginary part of âP and the
imaginary part of b̂P is
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These can be evaluated in the same way as the variances above.

Appendix F
Skewness in Distributions of Power Spectra at Intermediate

Delays

In this Appendix, we consider the PDFs of power spectra
where neither signals (e.g., foregrounds) nor noise are
dominant and both must be considered. Using the same
notation as Appendix D, the power spectra formed from
˜ ˜ ˜= +x s n1 1 and ˜ ˜ ˜= +x s n2 2 are

˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜
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Note that a and b are constants and c1, d1, c2, and d2 are IID
randomly normal variables. For the real part of ˜ ˜Px x1 2, we have

( ) ( )˜ ˜á ñ = +P a bRe . F2x x
2 2
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After subtracting from the mean, its third moment is
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This nonvanishing third moment implies that the probability
distribution of the power spectra is skewed. This skewness
disappears for either signal- or noise-dominated cases. These
results are evident in the histograms shown in Figure 3.

Appendix G
Probability Distribution for an Incoherent Sum of Delay

Transform–Estimated Power Spectra

In this Appendix, we derive the probability distribution for
noise in a power spectrum that has been formed by the
incoherent (i.e., after squaring) averaging of power spectra
from individual time integrations. The resulting probability
distribution is used in Figures 7–9 to validate our error bar
methodology.

For a noise-dominated delay power spectrum estimate, the
power spectrum value u measured at one instant in time is

distributed as a double exponential,
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s s
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2
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2
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where it is assumed that the power spectra are estimated by
cross-correlation—thus eliminating noise bias—and where σ is
the standard deviation on the resulting power spectrum.
Now suppose we average together a number of these power

spectra. Let the power spectrum value at the ith time step be
given by ui. The average value is then

( )åºz w u , G2
i

i i

where {wi} are a set of weights. Note that the error on each xi
may be different, so we define
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We now write down the probability distribution p+ (z) for z.
First, we define yi ≡ wi ui, such that

⎜ ⎟
⎛
⎝

⎞
⎠

( )
∣ ∣

( )
s s

= -p y
w

y

w

1

2
exp

2
. G4i i

i i

i

i i

With this notation, z=∑iyi, and we can write down z by using
the fact that the probability distribution of a sum of two random
variables is the convolution of their individual distributions. By
the convolution theorem, this is equivalent to multiplying the
Fourier transforms of the individual probability distributions

( )p ki , and thus
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where we have used the fact that in our case,
( ) ( ) s= + -p k w k1 2i i i

2 2 2 1. This integral can be evaluated by
contour integration, giving
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This is a weighted sum of the double exponential distributions,
and the curves in Figures 7–9 labeled “sum of Laplacians” are
the plots of this formula.
In closing, we note one peculiarity about this derivation: our

contour integration assumed that none of the wi σi values were
exactly equal. In principle, this is a reasonable assumption,
since for a drift scan telescope that is sky noise–dominated, the
noise power is continually changing from one time integration
to the next. In practice, however, if this change is happening
slowly, two adjacent time integrations may have similar
enough noise properties to make Equation (G6) numerically
problematic. If this is indeed the regime that one is in, it is
advisable to instead use an approximate expression by letting

s k eº +w2 i i i and then Taylor expanding to leading order
in εi.
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