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ABSTRACT

Context. Understanding stellar activity in M dwarfs is fundamental to improving our knowledge of the physics of stellar atmospheres
and for planet search programmes. High levels of stellar activity (also frequently associated with flare events) can cause additional
variations in the stellar emission that contaminate the signal induced by a planet and that need to be corrected. The study of activity
indicators in active stars can improve our capability of modelling the signal generated by magnetic activity.

Aims. In this work we present measurements of activity indicators at visible wavelength for a star with a high activity level, AD Leonis,
observed with HARPS in 2006, and HARPS-N in 2018. Our aim is to understand the behaviour of stellar chromospheres of M stars,
studying the more sensitive chromospheric activity indicators. We also focus on characterising their variability and on finding the
correlations among these indicators to obtain information on the origin of the magnetic activity in low-mass stars.

Methods. We performed a study of the main optical activity indicators (Call H&K, Balmer lines, Na1 D;, doublet, He1 D3, and
other helium lines) measured for AD Leonis using the data provided by the HARPS-N high-resolution spectrograph at the Telescopio
Nazionale Galileo in 2018, and by the HARPS instrument at La Silla observatory in 2006. Spectra were flux-calibrated in units of
flux at the stellar surface. We measured excess flux of the selected activity indicators. The correlations between the different activity
indicators as well as the temporal evolution of fluxes were analysed. A stellar flare was identified during the 2018 observing run and
the He, HB, He 14471 A, and He 1 5876 A lines were analysed in detail by fitting the line profiles with two Gaussian components.
Results. We found that the Ca 11 H&K flux excesses are strongly correlated with each other, but the Ca It H&K doublet is generally less
correlated with the other indicators. Moreover, He is correlated with Na1 doublet and helium lines. Analysing the time variability of
flux of the studied lines, we found a higher level of activity of the star during the observations in 2018 than in 2006, while Ca 11 H&K
showed more intense emission on spectra obtained during the observations in 2006. Thanks to a detailed analysis of selected line

profiles, we investigated the flare evaluating the mass motion during the event.

Key words. stars: activity — stars: flare — stars: chromospheres

1. Introduction

Magnetic activity in late-type main-sequence stars is observ-
able evidence of the stellar magnetic fields. The generation and
intensification of surface magnetic fields in solar stars are gen-
erally due to a complex dynamo mechanism, whose efficiency is
determined by the interaction between differential rotation and
subphotospheric convection into the stellar interior and in which
meridional circulation plays an important role (Brun et al. 2015;
Brun & Browning 2017; Charbonneau 2020). Magnetic fields
reach the stellar surface and manifest themselves in a variety of
phenomena that we call stellar activity: starspots, chromospheric
plages, heating of the chromosphere and corona, impulsive
flares. Starspots are a manifestation of magnetic field lines going
through the stellar photosphere and obstructing the convective
welling up of hot plasma, producing these cool spots that are
darker than the surrounding photosphere. Chromospheric plage
regions correspond to enhanced network magnetic field and fac-
ula regions in the photosphere, which might surround sunspots,
but are not necessarily associated with them. Heating of the

Article published by EDP Sciences

stellar chromosphere and corona generates chromospheric emis-
sion lines. Impulsive flares are visible in all regions of the
spectrum, and are due to the reconnection of magnetic field lines
(Skumanich et al. 1975; Schrijver et al. 1989; Solanki et al. 2006;
Choudhuri 2017; He et al. 2018).

M stars are small cool main-sequence stars with effective
temperatures in the range 2400-800 K and radii between 0.10 and
0.63 Ry; they represent 75% of the stars in the solar neighbour-
hood (Reid et al. 2002; Henry et al. 2006). They are known to
generate the strongest photospheric magnetic fields among main-
sequence stars (Saar & Linsky 1985; Reiners et al. 2009; Shulyak
et al. 2017), showing magnetic activity as spots, flares, plages,
and other brightness inhomogeneities.

In recent years the exoplanet community have started to mon-
itor samples of M dwarfs, aiming to search for habitable planets
around these stars. From an observational point of view, there
are more chances of finding an Earth-like planet in the habit-
able zone as the host star’s mass decreases. Therefore, M dwarfs
are extremely interesting targets for planet discovery (Gomes
da Silva et al. 2012). However, magnetic activity increases with
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decreasing stellar mass (Hawley et al. 1996; West et al. 2008;
Newton et al. 2017).

Stellar activity has effects on the search of exoplanets: in
some cases the radial velocity periodicity, induced by stellar
activity and rotation, may produce spurious signals that mimic
planetary signals. This was the case, for example, of AD Leonis,
for which Tuomi et al. (2018) proposed the existence of a planet,
while Reiners et al. (2013) and Bonfils et al. (2013) have inter-
preted the RV signal present in the AD Leo spectra as being due
to magnetic activity; this thesis has also been recently confirmed
by Carleo et al. (2020). They use a multiwavelength approach
(visible and near-infrared) to shown that the signal is of stellar
origin. Therefore, a detailed study of magnetic activity in active
M stars could improve our capability of modelling the signal
generated by magnetic activity and increase our possibilities of
finding new exoplanet candidates.

In addition, stars with high levels of magnetic activity show
flares more frequently than inactive stars (Kowalski et al. 2009).
The large amounts of energy released by flares could poten-
tially affect the structure and temperature regime of exoplanetary
atmospheres, thereby affecting the size of the habitable zone
(Lammer et al. 2007). It is therefore crucial to better understand
and quantify the activity of M dwarfs in terms of strength and
variability.

Chromospheric activity is usually observed in the cores of
the Ca1l H&K lines and the HT Balmer lines. Other common
optical activity indicators include lines such as the Na D,
doublet, the Mg1 b triplet, or the Call infrared triplet. A simul-
taneous analysis of the different indicators of magnetic activity
could increase our knowledge of the chromospheric structure and
the radial-velocity variations (e.g. Montes et al. 2000; Stelzer
et al. 2013; Maldonado et al. 2017, 2019; Lanza et al. 2018). The
common approach is to study the relationship between pairs of
fluxes of different lines.

In this paper, we aim to understand the behaviour of stel-
lar chromospheres for M stars with high levels of activity. To
this end, we focus our study on one M dwarf, AD Leonis,
a very close active star, which was analysed through spectro-
scopic monitoring in the optical band. We present an analysis
of fluxes and profiles of the main optical activity indicators such
as chromospheric lines of H1, He 1, Na1, and CaTr.

This paper is organised as follows. We describe the target in
Sect. 2 and the observations in Sect. 4. We detail our procedure
in Sect. 5. Section 6 presents the analysis of the different spec-
tral lines sensitive to the activity. A flare analysis is discussed in
Sect. 7. Our conclusions follow in Sect. 8.

2. AD Leonis

AD Leonis (AD Leo, GJ 388, BD +20 2465) is classified as
dM4.5¢ (Tuomi et al. 2018) and is located in the immediate solar
neighbourhood, at a distance of ~4.97 pc (Gaia Collaboration
2018). Shkolnik et al. (2012) estimated a radial velocity of 12.5 +
0.2kms™!. Bonfils et al. (2013) estimated a mass of 0.42 M,
and a luminosity of 0.023 L. The star has a radius of 0.436 +
0.049 Ry and effective temperature of 3414 + 100K (Houde-
bine et al. 2016). Neves et al. (2012) estimated the metallicity
of AD Leo to be [Fe/H]=0.07, while Rojas-Ayala et al. (2012)
gave a value of 0.28 + 0.17.

Based on spectropolarimetry, Morin et al. (2008) reported
a stellar rotation period of 2.2399 + 0.0006 days; they also
gave alternative solutions at periods of 2.2264 and 2.2537 days.
The strongest evidence in favour of the short rotation period
of AD Leo comes from the Microvariability and Oscillations
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of Stars (MOST) photometric observations. MOST observations
were reported to contain strong evidence for a periodicity of
2.23f8:g? days (Hunt-Walker et al. 2012) caused by “spots dis-
tributed at different longitudes or, possibly, that the modulation
is caused by varying surface coverage of a large polar spot or a
spot that is viewed nearly pole on”. This suggests a young age,
estimated to be 25-00 Myr by Shkolnik et al. (2009).

Houdebine et al. (2016) reported a value for v sin i of AD Leo
equal to 2.63kms™! that produced a projected rotation period
of 8.38%|% days. Thus, since the rotation period of the star is
2.23 days, the star is oriented nearly pole-on with an inclination
of ~15 degrees, confirming the value reported by Morin et al.
(2008) and Reiners et al. (2012).

AD Leo has been observed to be variable on longer
timescales as well. Buccino et al. (2014) reported an approxi-
mately 7 yr activity cycle based on ASAS optical photometry
and CASLEO spectroscopy. Even though the period reported in
the ASAS photometry has a rather modest statistical significance
with a false alarm probability (FAP) of the order of 8%, together
with the spectroscopic data it indicates the presence of an
approximately seven-year activity cycle in a convincing manner.

AD Leo hosts a magnetic field with properties similar to
those observed for fully convective stars (Morin et al. 2008). A
high-resolution infrared spectrum of AD Leo, obtained with the
Kitt Peak 4 m Fourier Transform Spectrometer, clearly shows the
presence of strong magnetic fields (Saar & Linsky 1985). Lavail
et al. (2018) inspected circularly polarised spectra and estimate
an average large-scale magnetic field of ~300-30 G. Line broad-
enings in unpolarised spectra, also determined by small-scale
field structures, reveal instead a stronger overall magnetic field
(3100 G, Shulyak et al. 2017).

Since AD Leo is a magnetically active star, its emission from
the upper layers of the atmosphere (chromosphere and corona)
is intense. In particular, in the optical band AD Leo is char-
acterised by Ha, HB, and Ca1l H&K lines in emission, with
variable line profiles (shape and intensity) that depend on the
activity level at the time of observation, and by the presence of
phenomena directly related to stellar magnetic activity such as
flares. It is well known for its frequent (Pettersen et al. 1984;
Henry et al. 2006) and strong flares (e.g. Hawley & Pettersen
1991) that have been observed and studied in the optical, extreme
UV, and X-ray wavelength ranges (e.g. Hawley et al. 1995, 2003;
Mauas & Falchi 1996; Favata et al. 2000; van den Besselaar et al.
2003). The most important properties of this star are shown in
Table 1.

3. Activity indicators

High-resolution spectroscopy of activity diagnostics has
revealed to be a powerful tool to improve our understanding of
stellar chromospheres; optically thick photospheric lines with
broad absorption wings have core emission features that are
strictly linked to the chromosphere’s thermal structure. High-
resolution spectra are required to resolve these emission features
and to characterise their complex profiles that often consist of
emission peaks with a self-reversed dip at line centre. In particu-
lar, we analysed the fluxes and profiles of the HI Balmer series,
Hel, Na1, and Ca1r H&K.

He and Call K are two of the strongest optical emission
lines in active M dwarf chromospheres. Across the M spectral
class there is a range of emission strength in Ca1I K, and a wide
variety of both absorption and emission in Ha. The Ha core
appears to trace hotter regions of the chromosphere (>7000 K),
while Ca1l K is formed in the cooler regions between the
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Table 1. Target characteristics.

AD Leonis
Spectral type @ M4.5e
M, (My)® ~0.42
R.(R5)© 0.436 + 0.049
logg ~4.8
d (pc)@ ~4.9660 + 0.0017
L,(Lo)® ~0.023
T (K)© 3414 + 100
vsini (kms)© ~2.63
Pohot (d)© ~2.23
[Fe/H] 0.28 £0.17
RV (kms™ )@ 12.5+0.2
Bpal (G) ”’)' ~300-330
Bunpol (G) @ ~3100

References. Tuomi et al. (2018), ®Bonfils et al. (2013), “Houdebine
et al. (2016), “Gaia Collaboration (2018), ©Morin et al. (2008),
(NRojas-Ayala et al. (2012), @Shkolnik et al. (2012), ®Lavail et al.
(2018), @Shulyak et al. (2017).

temperature minimum and ~6000 K (Giampapa et al. 1982;
Cram & Mullan 1985; Walkowicz & Hawley 2009). Thus,
Hea and Cair K together offer complementary information on
chromospheric structure.

The Ca1l H (3968.47 A) and K (3933.66 A) lines are very
useful diagnostics of the solar chromosphere. The emission cores
of the H&K lines are weak for very quiet regions on the Sun, but
can exceed the local continuum in brightness for active stars,
particularly for active M dwarfs that have a weak continuum. For
FGK stars, the H&K lines show emission cores inside very broad
absorption wings because Ca Il is the primary ionisation stage in
the photospheres and lower chromospheres of these warm stars.
For M stars, CaT is the dominant ionisation stage in the photo-
sphere and lower chromosphere, and as a consequence the H&K
lines for these stars do not have broad absorption wings (Linsky
2017).

Observations of the solar surface indicate that the inho-
mogeneities on the surface may be due to contributions from
different regions and phenomena; Call K core emission corre-
sponds spatially to regions of concentrated magnetic field, such
as active plage regions and bright network grains, while Ha chro-
mospheric emission and absorption can be produced in filaments
protruding from active regions, in spots across the network of
the quiet Sun, and in enhanced emission from bright points dur-
ing flares (Hasan & van Ballegooijen 2008; Rutten 2006, 2007).
Consequently, examining the relationship between the Call and
Balmer lines can throw light on the nature of magnetic structures.

Scandariato et al. (2017), extending a previous study by
Martinez-Arndiz et al. (2010), analysed the short-term chromo-
spheric variability and the flux excess emitted in the Ca11 H&K
and He lines of a sample of 71 early-type M dwarfs with dif-
ferent levels of activity (inactive and moderately active stars).
They show that the Ca 11 H&K flux excesses are strongly linearly
correlated. When comparing the Ca1r H&K with the Ha chro-
mospheric line flux they found significantly more scatter, mostly
for the most active stars. The same sample of inactive and mod-
erately active stars was analysed by Maldonado et al. (2017), who
focused on average trends.

The sodium resonance doublet is an important photospheric
and chromospheric diagnostic. The typical profile of Na T doublet

shows extended wings and narrow cores. Active dwarfs with
He in emission have been shown to exhibit a distinctive core
emission of probable chromospheric origin (e.g. Giampapa et al.
1978; Worden et al. 1981; Panagi et al. 1991). Pettersen (1989)
was the first to detect the important chromospheric contribution
of the NaI D, lines in the core for active M dwarfs. A com-
plete study of the formation of the Nal D, lines proposed by
Andretta et al. (1997) confirmed that these lines are promising
diagnostics of the lower-middle chromosphere. Houdebine et al.
(2009) also shows that the main chromospheric contribution of
these indicators arises in a narrow line core, but they also note
some differences in the inner wings, suggesting that magnetic
activity could also affect the upper photosphere.

The Het1 Ds3 (5875.62 /O\) is also an interesting diagnostic
because it is formed in the lower transition region and it is mostly
detected in very active stars. All these chromospheric lines are
used in planet search programmes to identify stellar activity, and
they are all correlated to some extent with the RV jitter (e.g.
Gomes da Silva et al. 2012).

In this paper, we present a study of all these chromospheric
lines and their variability due to magnetic activity, focusing our
attention on a specific M dwarf, well known for its high level of
magnetic activity.

4. Observations

The high-resolution spectra of AD Leo analysed in this work
were obtained with two different instruments. We analysed
33 high-resolution spectra of AD Leo collected with HARPS
(Mayor et al. 2003), the fibre echelle spectrograph installed on
the 3.6 m European Southern Observatory (ESO) telescope in
the La Silla Observatory, Chile, obtained from January to May
2006. In addition we considered 63 HARPS-N (Cosentino et al.
2012) spectra collected in the context of the Global Architecture
of Planetary System (GAPS) programme (Covino et al. 2013)".
HARPS-N observations were performed in two different observ-
ing seasons: from April to June 2018 and from November 2018
to January 2019. All the data used in this work are listed in
Table C.1.

The two instruments have very similar performance with
a resolving power of R~ 120000 (HARPS) and R~ 115000
(HARPS-N) and a spectral coverage of 378—691 and 383-93 nm,
respectively. The spectra are provided already reduced using
ESO/HARPS-N standard calibration pipelines.

5. Analysis of the observations

We identified a number of lines sensitive to activity, listed in
Table 2. A strong emission is detected, even during the quiescent
state of the star, for the Ha, HB, Ca 11 H&K lines; an intermediate
emission above the continuum is observed for the He lines (He 1
D;, He1 4026 A and He1 4471 A); and the Na1 doublet (D, &
D,) shows emission in the core of the line profile.

These lines result from different excitation potentials, so
their formation requires different physical conditions that occur
in different parts of the active atmosphere of AD Leo. As a
result, changes in equivalent width and/or in line profile of these
lines can be explained by a direct or indirect impact of the

' AD Leo was originally part of the search of planets around young
stars of the GAPS 2 programme since a candidate planet around was
proposed by Tuomi et al. (2018) and then discarded by Carleo et al.
(2020).
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Table 2. Rest wavelength and integration ranges for the selected lines.

Line A Blue integration w Red integration
(A) ranges (A) (A) ranges (/3;)
CannK 3933.66  3932.20-3933.20  3933.20-3934.50  3934.50-3935.00
CanmH 3968.47  3967.70-3968.00  3968.00-3969.10  3969.10-3969.30
He14026 4026.19 4025.40-4026.10 4026.10-4026.70  4026.70-4027.00
He14471 4471.48 4470.00-4471.40  4471.40-4471.85  4471.85-4473.00
Hp 4861.35 4858.70-4859.60 4859.60-4864.00 4864.00-4864.20
He15876 5875.62 5875.30-5875.42  5875.28-5876.80  5876.90-5877.00
Na1D, 5889.95 5889.50-5889.80 5889.80-5890.70  5890.70-5891.00
Na1D, 5895.92  5895.70-5895.80 5895.90-5896.50  5896.60-5896.70
He 6562.79  6553.00-6555.00 6555.00-6570.00  6570.00-6572.00
Notes. Blue and red integration ranges were chosen to fit the
continuum.

magnetic activity on the whole stellar atmosphere and on its time
variability.

As a measure of the chromospheric activity strength, we
measured excess of fluxes, as described in the next sections. To
measure the emission caused by activity, we chose wavelength
integration ranges that are sufficiently broad for the broadest
emission even in case of a strong flaring event. These ranges
were set after a visual inspection of the spectra and are reported
in Table 2 for each line we considered.

In addition, other lines known as good indicators of chro-
mospheric activity, such as the MgI by, b,, by lines and FeT at
5270 10\, were analysed, showing the same behaviour as the other
lines studied in this work, even though their emission above the
continuum is less intense than for the other lines, and for this
reason they are not reported.

5.1. Flux rescaling

The HARPS and HARPS-N spectra are not calibrated in flux;
therefore, they have arbitrary units. The spectra provided by the
data reduction system (DRS) show night-to-night variations in
the continuum level at different wavelengths, due to atmospheric
differential absorption and instrumental effects. To correct them,
and to scale the observed spectra to the same flux reference, in
order to be able to compare the intensity of the analysed lines,
we compare them with synthetic spectra from the BT-Settl spec-
tral library provided by Allard et al. (2011)? with Teg, log(g),
and [Fe/H] corresponding to stellar parameters (see Table 1) in
analogy to the procedure adopted to compute the excess fluxes
provided by Scandariato et al. (2017). Both the observed and
the model spectra were degraded to low resolution, convolving
them with a Gaussian kernel with o =80 A, in order to avoid
discrepancies between the observed and the model lines profiles.
Finally, the observed-to-model flux ratio was used to rescale the
observed high-resolution spectra.

The flux calibration procedure may be less accurate in the
case of strong emission lines, sensitive to the magnetic activity,
because the model does not take into account the chromospheric
emission; therefore, to obtain a more precise calibration in those
areas, they are removed during this procedure.

We used the flux calibrated spectra to calculate the flux
for each line according to Eq. (1) with the same integration
ranges listed in Table 2. This value provides a measure similar
to the equivalent width (EW), but less influenced by continuum
flux estimation. This is important for lines located in spectral

2 We adopt the CIFIST2011 models (https://phoenix.ens-1lyon.
fr/Grids/BT-Settl/CIFIST2011bc/SPECTRA/)
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regions where the continuum is very low, and hence its relative
uncertainty is very high. The flux line is computed as

= Fep + For
Fline=ZFid/l_(c,b—2Q)W ()
iz

where dA is the width of the wavelength bin; F; is the observed
flux in the bin i of the line; n is the number of bins within the
line region, defined as W/dA; F.p and F, are the flux values
measured at the extremes of the integration range on the blue and
red side of the line, respectively; and W is the wavelength range
used for the integration, corresponding to the full line width (see
Table 2).

Several tests were done to find the most accurate method for
determining the continuum flux F.. We chose to fit the contin-
uum (in the blue and red integration ranges defined in Table 2)
with a linear function. This method shows that the continuum
flux is, with good approximation, constant over the considered
range in most of the analysed spectra; however, some spectra
show a slope and the linear fit allows us to take it into account.
The error of the continuum flux, 6F.;, was estimated by apply-
ing the standard error propagation theory on the uncertainties of
the fit parameters.

There are no obvious estimates for the statistical error of the
observed flux, F;. The spectrum is affected by the presence
of numerous minor lines that are not variable in time, and that
characterise every part of the spectrum. Since these lines are too
numerous to be isolated, and since they can affect the spectrum
in the continuum and in the profile of the line, we can assume that
the 6F; is the standard deviation with respect to the continuum
flux calculated in the N points outside the line (Eq. (2)):

(Fi = Fo;)
oF, =\ 2 )l @

The Fine uncertainty was estimated using Eq. (3), assuming
d1=0.01 A:

2 w 2
SFine = \/Z (6F,~ cu) + (6F02’b + 6F§,r)<?) +6F e ()

Here, Frunge takes into account the possible effects due to the
selection of the ranges used to estimate the continuum (6W). This
value was calculated as the half difference between the maxi-
mum and minimum values of the continuum flux obtained with
three different ranges for the continuum measurements.

5.2. Time series and line flux variability

Figure 1 shows the temporal variations of the analysed activity
indicators. In particular, Fig. 1 shows the variability of the inte-
grated line flux of the analysed lines with time. The left panel
shows HARPS data obtained in 2006; the middle and right pan-
els show two different observing seasons of HARPS-N dataset
performed in 2018.

Several conclusions can be drawn from this figure. First, we
can confirm that the flux on the stellar surface for the analysed
lines is variable on both short (hours, days) and long (months,
years) timescales during the entire observed time. Second, dur-
ing the second season of 2018 (right panel) a flare is observed:
two points, corresponding to two observations obtained two
hours apart, highlight this phenomenon and allow us to follow
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Fig. 1. Line flux vs. time (MJDy is the start time of observations in 2006). Data obtained in 2006 are shown in the left panel. Data obtained in
2018 are shown in the middle and right panels. (F,) is the average of the logarithmic flux of each activity indicator for each season (for the second
season of 2018 these values exclude the flare event points). Black arrows mark the points relative to the flare event. The error bars are shown in the

plots, but for most of the points are too small to be visible.

its evolution. A more detailed analysis of the flare is described
in Sect. 7. Three other possible flare events are detected dur-
ing 2006 (left panel). Moreover, observing the time series of the
analysed activity indicators, we can assert that AD Leo was more
active in 2018 than in 2006. Unexpectedly, despite the lower
activity level, the time series of Ca 1T H&K show a higher flux in
2006 (see the average of the logarithmic flux (F,) in Fig. 1 and
the histograms in Fig. 2).

6. Flux—flux relationship

In the following we analyse the relationships between the chro-
mospheric fluxes of different activity indicators. We inspect the
presence of a correlation based on Spearman’s rank-order cor-
relation coefficient (p). Figure 2 shows the correlations between
the fluxes obtained from observations in 2018 (dark blue points)
and those in 2006 (red points), and the results of the statistical
tests separated for the two seasons are provided in Table 3.

It can be seen that most of the indicators show a significant
correlation (P < 1%) in both datasets. The Call K line has a
peculiar behaviour, with a weak correlation (1% < P < 3%) in
the 2006 season and no correlation (P > 3%) in 2018 with the
other indicators. The correlation between most of the analysed
lines implies that they have a similar origin and are likely formed

from the same material or from the same region of the star’s
atmosphere.

We evaluated the same correlations excluding the points rel-
ative to the flare to verify their impact. We found that they do not
influence the correlations among the indices.

Finally, we verified that the correlation among the activity
indices for the whole dataset is maintained when we join data
obtained 12 yr apart, with the only exception of the Ca1l H&K
index, for which there is no correlation with the other indices.

In addition, we estimated the Balmer decrements (Ha, HB),
which are indicators of the physical conditions of the emit-
ting regions (e.g. Landman & Mongillo 1979; Chester 1991).
Maldonado et al. (2017) showed the Balmer decrement as a
function of the effective temperature and overplotted the typi-
cal values of solar plages. Our result (~1.76) is compatible with
values of solar plages, suggesting that AD Leo is dominated by
them.

The comparison between Ha (or HB) and Ca1r (Ca11 H&K)
fluxes shows that the correlation between these two indicators is
less significant and more scattered than the correlations between
the other lines.

This result is consistent with the hypothesis that the phe-
nomena that produce the two lines are actually connected, but
the materials that generate them are in different regions of the
atmosphere. Moreover, we also tested the correlations between
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Fig. 2. Correlation plot of flux (logarithmic scale) between different activity indicators. The diagonal panels show the histogram of flux of each
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and more scattered. This figure also shows less activity of the star in 2006 (red points) than in 2018 (blue points). However, the flux of Call is
higher in 2006 than in 2018. This result can be interpreted as a major surface coverage of plages and filaments during the observations in 2006.

the indicators excluding the measurements taken during the flare.
These further tests return a value only slightly more significant
than the previous one.

The result obtained from the test is consistent with those pre-
sented by Scandariato et al. (2017), who show that Ha and Ca1l
H&K are correlated and that the correlation is more scattered
for the most active stars. Specifically, in Fig. 3, the blue bub-
bles represent an envelope of the results obtained by Scandariato
et al. (2017), while the orange points are the values obtained for
AD Leo in this study.

Furthermore, although all the other activity indicators are
more intense in 2018, the flux of Call H&K is higher in 2006
than in 2018. By considering the model of Meunier & Delfosse
(2009), which affirms that Call core emission is connected to
the active plage regions and bright network grains, while the
Ha line is produced from all the inhomogeneities present on the
stellar surface, our result can be interpreted with a major sur-
face coverage of plages and filaments during the observations on
2006. Even though the Balmer decrement suggests that AD Leo
is dominated by plages, this ratio does not allow us to distinguish
between the two observing seasons.

7. Flare analysis

Solar and stellar flares are observable evidence of magnetic
energy released on short timescales. The magnetic reconnec-
tion plays a key role in the reconfiguration of the magnetic field
lines and the conversion of magnetic energy into kinetic and ther-
mal energies of plasma (Forbes & Acton 1996; Priest & Forbes
2000). The impulsive X-ray and UV emission associated with
stellar flares can affect the stellar atmosphere.
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The most extreme solar flare that hit Earth was recorded in
1859 (Carrington 1859; Hodgson 1859). It released a flare energy
of 10* erg. Stellar flares are expected to be generated by the
same mechanism of solar flares with a wider range of energy
radiation and timescale (e.g. Benz & Giidel 2010; Doyle et al.
2018). Over short timescales of minutes to a few hours, they emit
energy ranging from 1023 erg (called nanoflares) (e.g. Parnell &
Jupp 2000) to 1033—1038 erg (called superflares) (e.g. Shibayama
et al. 2013).

From the standard solar flare model, flares are formed by
accelerated non-thermal electrons that propagate downward and
heat the chromosphere. As a consequence, the heated chro-
mospheric material moves upward (evaporation), filling the
coronal loop above. This material then cools down radiating
away its excess energy, and finally moves downward (condensa-
tion), going back to the lower layers of the stellar atmosphere
(Yokoyama & Shibata 1998). Because of the high tempera-
tures and large motions of the flaring material, chromospheric
emission lines during flares appear much broader than in the
quiescent state of star.

In the right panels of Fig. 1 we indicate with black arrows two
consecutive points obtained during the second observing season
of 2018, where the flux of all activity indicators is significantly
higher than the quiescent state of the star. Therefore, it is rea-
sonable to assume the presence of a flare. Since the two spectra
were obtained two hours apart, we have the possibility to follow
roughly the temporal evolution of the flare. We can suppose that
the first observation during the flare is relative to the maximum
phase of the flare, while the second point, with lower value of
flux than the first one, was obtained during the decaying phase
of the flare.
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Table 3. Statistical analysis of chromospheric activity indicators fluxes.

X-index Y-index 2006 (@ szuoﬁ ®) 2018 szulx
Ha Hp 0.965  0.000006% 0.941 0%
He CanrH 0.518 0.34% 0.490 0.01%
He CannK  (0438) (133%) 0233  64%
Ha Call 0.494 0.5% 0.409 0.12%
He He14026 0.816 0.0004%  0.769 0%
Ha He14471 0920 0.000018% 0.831 0%
Ha He15876  0.953  0.000006% 0.802 0%
He Nart 0.932  0.000012% 0.585 0.0003%
Hp CanlH 0.532 0.26% 0.459  0.027%
Hp Cant K (0.433) (1.43%) 0212 9.26%
Hp Call 0.489 0.6% 0.390 0.2%
HB He14026 0.821 0.0003%  0.831 0%
Hp Her4471  0.952  0.000006% 0.886 0%
Hp He15876  0.948  0.000006% 0.901 0%
Hp Nat 0.933  0.000012% 0.601 0.00018%
CantH Cant K 0.928  0.000018% 0.771 0%
CanrH He14026 0.597 0.07% 0.338 0.73%
CanlH He14471  0.543 0.21% 0.379 0.26%
CairH He15876  0.517 0.3% 0.408 0.12%
CanrH Nart 0.517 0.43% 0.520  0.004%
Can K He14026 0.511 0.38% 0.123 33%
CanK  Herd471 (0422) (1.69%) 0187  14%
CannK  He15876 (0.409) (21%) 0191  13%
CanK Na1 (0.404) (2.2%) 0.327 0.94%
Call Her14026 0.591 0.08% 0.268 3.37%
Call He14471  0.494 0.52% 0.336 0.76%
Call He15876  0.479 0.69% 0.344 0.63%
Call Nat 0.478 0.69% 0479  0.014%
He14026 Her14471 0.86 0.00009%  0.844 0%
He14026 He15876  0.842 0.00019%  0.808 0%
He14026 Nai 0.777 0.0011%  0.397 0.16%
He14471 He15876 0.943 0.000012% 0.919 0%
He14471 Nal 0.887  0.00005% 0.478  0.015%
He15876 Nai 0.947  0.000006% 0.536  0.002%
Na1Dl1 Na1D2 0.867 0.00001%  0.893 0%

Notes. In the third and fourth columns, we reported the Spearman coef-
ficient p and the value of the probability of a null hypothesis for the
dataset of 2006. In the last two columns we reported the same values for
the dataset of 2018. Weak correlations are reported in brackets, no cor-
relations are shown in boldface. “Rank correlation for two populations
® p_value denotes the two-sided significance of its deviation from 0 by
random chance, i.e. a small value indicates significant correlation.

The observed profiles of some selected spectral lines sensi-
tive to the stellar activity are broadened during the flare. This can
be due to the motion of material inside the magnetic loop.

We considered a number of lines where the broadening is
more evident (Ha, HB, He1 4471 A, He1 5876 A) and we fitted
each profile with two Gaussian components (see Crespo-Chacén
et al. 2006; Fuhrmeister et al. 2018). The Balmer lines show
a self-reversal absorption in the core, but this behaviour was
not taken into account because it does not have a significant
contribution on the following analysis of the flare. The fit with
two components results in a reasonably good description of the
line profile even in the most asymmetric cases. In general, the
Balmer lines display two distinct phases, called the impulsive
and the gradual phases, with broader profiles during the impul-
sive phase and narrower profiles during the gradual phase. We

25
20 A
15 A
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01 :4.0‘. ' 7

0 2 4 (Ii é
<Fu>[10° ergcm~2 571]

<Fhe> [10° ergcm™2 s71]

Fig. 3. Fux vs. Fu,. The blue bubbles map the region populated by the
stars analysed by Scandariato et al. (2017), the orange points are the flux
values obtained for AD Leo in this study.

Table 4. Fitted value of redshifts ov and sigma o (6v) of the narrow and
broad components for ID 79 and ID 80 spectra taken during the flare.

ID obs 79
Narrow Broad
Line v o (6v) v o (6v)
(kms™!) (kms™!) (kms™!) (kms™!)
Ha 0.55 31.10 1.77 155.38
Hp 1.50 26.51 4.31 129.03
He14471 0.68 793 15.77 16.73
He15876 2.06 8.21 10.13 15.49
ID obs 80
Narrow Broad
Line ov o(6v) ov a(6v)
(kms™") (kms™) (kms™") (kms™!)
Ha 0.68 28.82 29.52  170.99
Hp 1.48 22.34 34.95 86.30
He14471 0.96 6.38 21.49 11.00
He15876 0.28 8.72 15.78 9.35

Notes. The errors resulting from the fit are <0.1%.

do not consider the Call H&K even if they are strong emis-
sion lines because they are not significatively influenced by the
flare and they do not show broadening. Because the flare event
is supposed to be generated in different regions with respect to
the plages, the fact that CaTl lines are not broadened is consis-
tent with the hypothesis that this indicator is influenced by the
presence of plages and that AD Leo is dominated by them. The
results of the fit (the redshift and the sigma) for the narrow and
the broad components are provided in Table 4.

Figure 4 shows the fits that we made on spectra obtained dur-
ing the flare. The red dotted line corresponds to the spectrum
obtained during the maximum phase of the flare (ID 79), the
blue dotted line to the spectrum obtained during the decaying
phase (ID 80) of the flare. The orange and light blue Gaussians
represent the broader components for the observation ID 79 and
ID 80, respectively, while the purple (ID 79) and green (ID 80)
are the narrow components obtained from the fit.
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The spectra in Fig. 4 show that the broadening of Balmer
lines is larger than that of the helium lines. The broad compo-
nents of the Balmer and helium lines are more redshifted than
the narrow components. Doyle et al. (1988) observed a similar
effect during flare on YZ CMi and suggest the presence of mate-
rial inside the loop corresponding to different flare kernels that
brighten successively one after another. Each downflow would
produce a redshifted contribution to the Balmer lines.

Moreover, Fig. 4 shows symmetric broadening during the
decay phase (light blue component), for Ho and HB, with o of
the order of hundreds of km s~!. This symmetric broadening can
be interpreted with the presence of material inside the magnetic
loop that undergoes blueshift and redshift simultaneously. The
exposure time (900 s) of the observations obtained with HARPS-
N, shorter than the evolution time of the flare, leads us to exclude
the possibility that we are monitoring the same material before
going uphill inside the loop and then downhill. This result can
be explained instead as the presence of turbulent motion that can
be dominant with respect to the coherent motion of the material
(uphill or downhill) (see Montes & Ramsey 1999; Fuhrmeister
et al. 2005). Ha monitors the lower regions of the magnetic loop;
in this region, due to the high density of the material, the turbu-
lent motion can be dominant with respect to the coherent motion
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of the material, which instead follows the magnetic field lines.
Globally, the lines are shifted due to the coherent motion, but the
broadening due to the turbulence is much larger and dominates
the shape of the line.

On the contrary, Fig. 4 (right panels) shows an asymmetri-
cal broadening of helium lines with velocity of the order of tens
of kms~!. This asymmetric broadening might be present even
in the Balmer lines, but it is clearly smaller than the symmetric
broadening shown in He and HB and for these reasons it cannot
be detected. We can suppose that the helium lines monitor an
upper region of the loop higher than He. If in the lower chromo-
spheric regions the kinetic energy density of the turbulent motion
is probably comparable to the magnetic energy density, in the
upper regions the magnetic energy density dominates the kinetic
energy density making the motion of the plasma less turbulent
and inducing it to move along the magnetic field lines. This effect
leads to a decrease in the line broadening and emphasises the
radial velocity shift.

In addition, despite the low temporal resolution, we iden-
tified a delay of a flare event for the Call H&K and Hel at
4026 A with respect to Balmer lines. The moment at which a line
reaches its maximum is related to the temperature that charac-
terises the formation of the line, and therefore it is also related to
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the height at which the line is formed. Therefore, we can suppose
that this delay, also observed by Crespo-Chacén et al. (2006),
confirms that these lines monitor different regions of the stellar
atmosphere with respect to the Balmer lines.

We also tried to estimate the luminosity and the energy
released during the flare. According to our data, the line lumi-
nosity, estimated by analysing the lines during the flare, is
significantly higher than the luminosity of the quiescent state
of the star. The energy released (~10%" erg to ~1.4 x 10* erg
for the Balmer lines) is consistent with the presence of a par-
ticularly intense flare event, stronger than the flares detected by
Crespo-Chacoén et al. (2006) who obtained an energy released
value of the order of 10?° erg. In support of our results, we men-
tion that Guenther et al. (2019), observing AD Leo for 222 h with
the Echelle spectrograph of the 2 m telescope Alfred—Jensch—
Teleskope in Tautenburg, detected 22 flares, the largest of which
emitted 2.9 x 103! erg in Ha and 1.8 x 10°? erg in HB. Muheki
et al. (2020), analysing more than 2000 spectra of AD Leo col-
lected with the same telescope in the context of the flare-search
programme of the Thiiringer Landessternwarte, also detected
numerous flares; the largest one emitted 8.32 x 103! erg in HB
and 2.12 x 102 erg in Ha. Results from both studies are compa-
rable to the energy released by our flare. A more detailed analysis
of the flare is described in Appendices A and B.

8. Summary and conclusions

In this paper we analysed the spectra of AD Leo using two
datasets HARPS and HARPS-N spectra, obtained 12 yr apart.
We measured the line profiles and the intensities of the sensitive
activity indicators, such as Ha, HB, Ca11t H&K, HeT at 4026 A,
4471 A, and 5876 A, and Na1 doublet. We derived the fluxes of
these lines and evaluated the correlations between them.

By analysing the time variability of the fluxes we found a
higher level of activity during 2018 than 2006, except for the
Ca1r H&K indicator that shows a higher flux on 2006. As sug-
gested by Hasan & van Ballegooijen (2008) and Rutten (2006,
2007), the CalI core emission originates from regions of con-
centrated magnetic field, such as active plages and bright grain
networks. According to this, the long-term variability of Call
suggests that the star had a larger coverage of plages during
the observations of 2006 than in 2018. Furthermore, the Balmer
decrements (Ha/Hp), calculated for the three observing seasons,
are compatible with the typical values of solar plages showed
by Maldonado et al. (2017), confirming that the stellar surface is
probably covered by a distribution of plages.

We searched for the correlation among the activity indica-
tors measured in this work. All lines show a good correlation
with each other, except for the Ca 11, particularly the K line, indi-
cating that the processes and regions of the formation of this
line differ from other lines. Many studies (e.g. Walkowicz &
Hawley 2009; Cincunegui et al. 2007) suggest that there is a cor-
relation between He and Ca1l K flux obtained for a sample of
different stars of different spectral types. However, Cincunegui
et al. (2007) have declared that ‘when we investigate this rela-
tion for individual observations of a particular stars, the general
trend is lost and each star shows a particular behaviour, ranging
from tight correlations with different slopes, to anti-correlations,
including cases where no correlations are found’. Walkowicz &
Hawley (2009) compared the equivalent width of Ha to the Ca 11
K surface flux measured from a sample of M stars. They found a
positive correlation between the measurements of these indica-
tors when comparing different stars, with a wide range of scatter

for the more active stars. Furthermore, they obtained multiple
measurements of EW of Balmer lines and Ca11 K in AD Leo and
showed that for individual active stars these two lines are not nec-
essarily correlated in time-resolved observations. Our flux values
obtained for Ca11 H&K and Ha follow the extrapolation of the
trend shown in Fig. 10 of Maldonado et al. (2017), confirming
that the same trend continues at a high activity level.

We also detected the presence of a flare during the second
season of HARPS-N data. Crespo-Chacén et al. (2006) moni-
tored AD Leo during four nights in 2001 and observed a large
number of short and weak flares occurring very frequently. We
measured the EWs? of the analysed lines to compare our results
to the published ones. The range of EW values that we obtained
during the entire observed time identified as the ‘quiescent’ state
of the star is consistent with the variability of Balmer lines EWs
obtained by Crespo-Chacén et al. (2006). Moreover, the surface
fluxes of the Balmer lines at flare maximum (F,x) obtained by
Crespo-Chacén et al. (2006) are an order of magnitude lower
than our results (see Table B.1). This implies, also due to our
low temporal resolution, that we are unable to resolve less intense
flares and that what we call quiescent state is indeed the super-
position of several weak flares. The flare that we observed is
a stronger and uncommon event. In this work we presented a
detailed analysis of the profile of selected emission lines to study
dynamic processes occurring during this phenomenon. In partic-
ular, we analysed the profiles of He, HB, and He 1 at 4471 A and
5876 A from two spectra collected during the flare and obtained
two hours apart, showing a significant broadening, while no evi-
dence of broadening is present in the Call lines. We fitted the
profiles combining a broad and a narrow Gaussian component,
finding that the broader one is redshifted with a velocity of the
order of tens of kms™'. This redshift can be interpreted as the
presence of material going downhill inside the magnetic loop,
according to the solar flare model. Globally, the shape of these
lines, especially for the Balmer lines, is symmetrically broadened
with o of the order of hundreds of kms~'. Since Ha monitors
the lower regions of the magnetic loop, we can suppose that in
this region, because of the high density of the material, the tur-
bulent motion can be dominant over the coherent motion of the
material that follows the magnetic field lines. Consequently, we
can suppose that the Balmer lines are also redshifted due to the
coherent motion of the material, but that this redshift is hidden
by the broadening due to the turbulence that is much larger and
dominates the shape of the lines.
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Appendix A: Delay of flare
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Fig. A.1. Time series of normalised flux of analysed activity indicators
to evidence the flare. MJD, = 53758.244, time of the first observation
obtained in 2006. The inset shows the zoom of the time series during
the flares. Shown is the delay on the flare event in the Call H and K

lines and in He I at 4026 A. Also shown are the pre-flare dips on the
time series of these indicators.

Figure A.l1 shows the time series of normalised fluxes with
respect to the quiescent state of the star. By inspecting the time
series of most activity indicators we can see the two points
related to the flare where the flux decreases going from ID 79 to
ID 80, two hours later, except for the He 14026 A and CaT1l lines.

In spite of the low temporal resolution we can see that Hel
4026 A and Cal lines show a delay with respect to the other
lines. Crespo-Chacén et al. (2006) reported a delay (up to 5 +
3 min) for the Ca 11 and He 1 4026 A lines in some weak and short
flares observed on AD Leonis. Our flare is much more intense
and it is possible that this effect is enhanced with respect to the
case of weaker flares. Houdebine (2003) studied the dynamics of
flares on dMe stars and show that the rise and decay times in the
Call line are usually longer than the rise and decay times in the
Balmer lines.

Appendix B: Luminosity and released energy

In order to estimate the flare energy released in the observed
chromospheric lines, we have converted the observed flux to
luminosity. The luminosity values obtained are provided in
Table B.1 as L,.x for the considered lines. We calculated the
value of luminosity for the quiescent state of star, Lquier, provided
in Table B.1, using the quiescent flux obtained from the aver-
age of the points outside the flare (red dashed lines in Fig. A.1).
Despite the low temporal resolution we estimated the released
energy by approximating the temporal evolution of the flare with
a vertical ascent phase and a phase of linear decay.

Considering the characteristic timescale of the flares (from a
few minutes to a few hours), it is unlikely that the flare ends in
the next point, obtained with an observation carried out 20 days
after the start of the flare. Therefore, we have drawn a straight
line passing through the two points corresponding to the two
observations performed two hours apart (dashed blue line) to

Table B.1. Value of maximum flux corresponding to the flare, value of
luminosity for the quiescent state of the star and in correspondence of
the maximum of the flare, and value of energy released during the flare.

Line Fimax Lquiet Linax Energy
(10° ergs~'ecm™2) (10 ergs™!)  (10% ergs™") (10 erg)
Can K 7.155 +0.016 47 £ 11 83+19 -
CannH 7.730 £ 0.007 53+12 89+20 -
He 14026 0.282 +0.012 1.5+0.3 3+0.7 -
He1 4471 0.58 £0.06 1.3+£03 6.7+1.7 37+12
Hp 289+0.4 71+16 334+75 137 +£40
He 15876 2.01+£0.03 6.6+15 23+5 9+3
Na1 D2 0.730 £ 0.007 2.6+0.6 84+19 11+4
Na1Dl1 0.56 +0.02 1.7+04 6.4+15 7+2
Hea 23.86+0.13 127 +28 276 + 62 136 + 62

Notes. The errors take into account the error on the stellar radius, which
has the greatest influence on the final values.
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Fig. B.1. Example of the triangle used to calculate the energy released
during the flare in a given line. The dashed light blue line, parallel to the
ordinate axis and passing through the point of flare maximum, repre-
sents the rising phase of the flare; the dashed blue line, passing through
the two points corresponding to the two observations performed two
hours apart, approximate the decay phase of the flare. The dashed red
line shows the quiescent state of the star. MJDy = 53758.244, time of the
first observation obtained in 2006. The inset shows the zoom-in on the
triangle.

reconstruct the shape of the flare (see Fig. B.1). The rising phase
of the flare is approximated with one straight line (dashed light
blue line) parallel to the ordinate axis and passing through the
point of flare maximum. From the area of this triangle we have
obtained the value of energy released during the flare provided in
Table B.1. This is likely a conservative estimate since we cannot
be sure that we observed the true flare maximum.

For the lines where the flare shows a delay we have only one
point related to the flare, so we are not be able to calculate the
energy released with the previous technique mentioned.

We note that the luminosity of the maximum of the flare is
greater than the luminosity of the quiescent state of the star by a
factor of between ~2 and ~5. These results suggest that the ratio
Liax / Lquiet 18 higher for the lines we suppose are formed in the
upper layers of the stellar atmosphere, like the helium lines.
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Appendix C: Data
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Table C.1. HARPS and HARPS-N observations.
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Dataset HARPS and HARPS-N

ID obs.

Date obs.

ID obs.

Date obs.

O 01NN WN—=O

2006-01-23T05:50:40.777
2006-01-25T05:51:44.132
2006-01-26T06:28:08.689
2006-02-17T05:08:51.940
2006-02-19T05:10:02.902
2006-03-15T03:35:31.947
2006-03-16T03:59:36.755
2006-03-17T03:57:09.285
2006-03-18T03:41:26.807
2006-03-19T03:33:55.815
2006-03-20T03:27:16.811

2006-03-21T01:26:51.761

2006-03-21T02:40:26.046
2006-03-21T05:24:18.323
2006-03-22T00:48:00.516
2006-03-22T03:29:23.648
2006-03-22T05:04:07.360
2006-03-23T00:57:34.300
2006-03-23T03:57:20.767
2006-04-04T02:31:22.549
2006-04-05T00:43:43.084
2006-04-06T03:50:55.581
2006-04-07T03:22:37.338
2006-04-08T02:49:45.071
2006-04-09T02:26:12.065
2006-04-10T03:30:17.109
2006-04-11T02:34:49.554
2006-05-06T02:04:42.614
2006-05-08T01:30:29.280
2006-05-09T00:39:34.279
2006-05-12T00:51:00.460
2006-05-13T00:17:03.541

2006-05-16T01:21:13.214

2018-04-04T22:41:25.606
2018-04-05T22:45:01.749
2018-04-06T21:39:55.987
2018-04-07T22:36:04.836
2018-04-27T23:11:22.072
2018-04-29T21:16:07.356
2018-04-29T21:34:24.920
2018-04-29T22:03:09.306
2018-04-30T00:48:30.207
2018-05-03T21:36:00.027
2018-05-04T21:55:50.636
2018-05-04T23:46:58.038
2018-05-05T23:58:38.798
2018-05-06T21:50:35.356
2018-05-06T23:32:25.529
2018-05-07T22:04:47.710

49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96

2018-05-09T22:32:35.186
2018-05-09T23:47:46.114

2018-05-10T22:27:20.700
2018-05-10T23:39:34.923
2018-05-12T22:05:00.407
2018-05-12T23:45:11.480
2018-05-13T22:25:29.185
2018-05-13T23:56:32.158
2018-05-14T22:30:43.244
2018-05-15T00:01:09.165
2018-05-15T21:11:35.361

2018-05-15T23:30:22.494
2018-05-27T20:59:25.662
2018-05-27T21:24:55.599
2018-05-27T22:56:06.024
2018-05-28T21:03:58.534
2018-05-28T21:23:35.972
2018-05-28T21:34:03.413
2018-05-29T21:15:42.131

2018-05-29T22:53:49.473
2018-05-30T21:28:00.923
2018-05-31T21:28:09.476
2018-06-02T21:17:36.977
2018-06-05T21:26:30.380
2018-06-07T21:24:36.344
2018-06-09T22:22:20.949
2018-11-16T05:57:05.053
2018-11-26T06:04:08.981
2018-11-27T06:04:27.010
2018-11-29T06:21:38.890
2018-12-01T04:07:57.348
2018-12-01T06:07:14.296
2018-12-22T03:05:48.342
2018-12-29T06:11:43.793
2018-12-30T06:45:42.584
2018-12-31T07:03:15.062
2019-01-01T03:32:58.198
2019-01-03T07:08:57.897
2019-01-04T04:39:46.320
2019-01-05T04:41:12.333
2019-01-08T01:19:55.980
2019-01-09T01:22:25.777
2019-01-12T06:01:49.512
2019-01-19T01:13:58.959
2019-01-20T03:38:34.651
2019-01-21T02:30:12.323
2019-01-25T03:28:00.107
2019-01-28T02:08:17.490
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Table C.2. Equivalent Width HARPS Data 2006.

ID Obs. EWho EWyg EWcanm EWcank EWcan EWher026 EWieraa71 EWherss7e EWnar
A) A) (A) A) A) A) A) A) A)
0 3.40+0.09 343+0.10 10.86+0.09 1892+0.17 12.47+0.08 0.407+0.004 0.126+0.016 0.059+0.017 0.36+0.03
1 430+0.10 4.64+0.09 10.8 £0.2 21.04+£0.15 18.11+£0.12 0.720+£0.012 0.163 +£0.015 0.102+0.017 0.45+0.03
2 3.45+0.09 3.60+0.11 10.74 £ 0.04 18.6+0.2 10.91 £0.04 0.439+0.013 0.126+0.017 0.069 +0.018 0.36+0.02
3 3.68+0.09 3.79+0.08 9.50+0.14 1827+£0.19 1241+0.11 0.577+0.014 0.131 £0.011 0.079+0.018 0.40+0.03
4 3.27+0.09 3.24+0.11 11.13+£0.06  18.24+0.08 13.76+0.05 0.489+0.011 0.103+0.015 0.045+0.017 0.33+0.03
5 3.35+0.09 336+0.10 1025+0.06 16.97+0.09 12.16+0.05 0.446+0.013 0.107+£0.015 0.062+0.017 0.37+0.02
6 7.07+0.10 7.09+0.12 10.53+0.17 21.2+0.3 13.74 +0.14  1.020+0.014 0.20+0.02 0.155+0.017 0.58+0.03
7 439+0.09 446+0.09 10.10+0.08 18.27+0.08 13.89+0.06 0.659+0.013 0.157+0.013 0.100£0.017 0.45+0.03
8 3.84+0.09 4.15+0.10 11.07+0.09 20.6+0.2 1224 +0.09 0.661 £0.014 0.129+0.017 0.083+0.017 0.44+0.03
9 4.00+£0.09 3.86+x0.08 7.76+0.04 16.27+£0.07 9.96+0.03 0.579+0.013 0.162+0.014 0.098+0.017 0.45+0.03
10 3.22+0.09 3.20+0.11 1022+0.08 20.23+0.18 12.04+0.08 0.409 +0.015 0.14 +0.02 0.043+0.018 0.35+0.02
11 3.50+0.09 343+£0.09 9.34+0.07 15.65+0.13 10.70+£0.06 0.456+0.014 0.125+0.014 0.052+0.017 0.37+0.02
12 3.45+0.10 3.53+0.09 9.61 +0.03 18.20+0.12 10.28+0.03 0.491 +£0.015 0.125+0.014 0.070+0.017 0.40+0.03
13 349+0.09 345+0.11 10.56+0.04 18.2+£0.3 10.69+0.04 0.458+0.014 0.11+0.02 0.058+0.017 0.40+0.03
14 3.79+0.10 4.03+0.08 9.78 £0.15 17.7+0.2 1250+0.12 0.534+0.016 0.147+0.017 0.083+0.018 0.44+0.03
15 347+0.09 3.48+0.10 10.68+0.04 18.54+0.10 11.85+0.04 0.466+0.016 0.11+0.02 0.047+0.018 0.37+0.03
16 3.53+£0.09 3.55+0.11 10.21 +0.11 179+0.2 11.78 £0.09  0.461 £0.015 0.113+0.018 0.060+0.018 0.38 +0.02
17 3.65+0.09 3.80+£0.09 9.89+0.07 18.20+0.06 14.14+0.05 0.484+0.017 0.147+0.015 0.088+0.018 0.42+0.02
18 4.09+0.09 4.52+0.09 10.67+0.05 18.29+0.07 13.66+0.04 0.695+0.017 0.157+0.015 0.104+0.017 0.48+0.03
19 3.68+0.09 3.85+0.10 10.33+£0.05 1794+0.06 13.51+0.04 0.541+0.015 0.142+0.019 0.081+0.017 0.44+0.03
20 5.14+0.09 5.48+0.07 7.97 +0.06 152+0.3 8.27+0.06 0914+0.016 0.187+0.012 0.147+0.017 0.56+0.03
21 337+0.09 3.32+0.11 11.69+0.05 1791+£0.09 13.23+0.04 0.466+0.013 0.108+0.012 0.049+0.017 0.39+0.03
22 3.95+0.09 3.98+0.11 9.68 +0.10 16.51+0.10 13.10+0.07 0.560+0.014 0.152+0.013 0.087+0.017 0.42+0.02
23 3.38+0.09 3.54+0.10 10.17+0.06 17.60+0.08 13.00+0.05 0.473+0.013 0.137+0.019 0.070+0.018 0.39+0.03
24 597+0.09 549+0.11 5.056+0.011 14.69+0.14 5.114+0.011 0.611+0.005 0.243+0.019 0.199+0.019 0.66+0.03
25 3.57+£0.09 3.66+0.11 10.95+0.04 18.1£0.2 11.17£0.04 0.508+£0.013 0.138 +£0.018 0.075+0.018 0.41 +0.03
26 3.27+0.09 3.23+0.11 10.78 £0.06  17.75+0.06 14.25+0.04 0.346+0.003 0.118=£0.018 0.056+0.017 0.38 +0.03
27 3.37+0.09 3.41+0.10 9.99 +0.09 18.29+0.10 13.64+0.07 0.488+0.011 0.141+0.014 0.073+0.018 0.40+0.03
28 418+0.09 4.49+0.06 8.20+0.10 189+0.2 9.79+0.09 0.709+0.013 0.171 +£0.018 0.143+0.017 0.56+0.03
29 3.62+0.09 3.80+0.09 10.10%0.11 18.14 £0.05 16.51+£0.05 0.537+0.012 0.144+0.016 0.068+0.018 0.41+0.03
30 3.59+0.09 3.51+0.07 8.80+0.02 15.90+0.08 9.44+0.02 0.483+0.011 0.15+0.03 0.074 £0.017 0.40+0.03
31 3.63+0.09 3.77+0.10 10.46+0.05 18.6+0.2 10.81 £0.05 0.536+0.012 0.125+0.016 0.078+0.018 0.43+0.03
32 3.58+0.09 3.75+0.10 10.55+0.06 179+0.2 11.01 £0.06  0.539 +0.012 0.14 +0.02 0.074 £0.017 0.41+0.03
Table C.3. Equivalent Width HARPS-N Data 2018.
ID Obs. EVYHQ EVYH,B EWgaIIH EWSZaIIK EVVOCaII EWHOeI4026 EWHDeI4471 EWI—IOe15876 EVYNaI
A) A) A) A) A) A) A) A) A)
33 523+0.10 5.67+£0.15 1295+0.06 20.2+0.3 13.29+0.06 0.898+0.013 0.190+0.014 0.135+0.017 0.59+0.03
34 4.68+0.09 4.79+0.10 11.77+0.07 20.04+0.13 13.51+£0.06 0.770+0.012 0.180+0.014 0.110+0.017 0.50+0.03
35 5.12+0.10 4.99+0.06 8.7+0.5 19.0+ 1.5 95+04 0.663+0.017 0.20+0.06 0.20+£0.02  0.60+0.02
36 4.09+0.09 4.10+£0.07 895+0.03 1574+0.15 9.15+0.03 0.594+0.012 0.162+0.015 0.100+0.017 0.46+0.03
37 432+0.10 4.63+£0.09 11.63+0.12 1710+0.10 14.87+0.08 0.760+0.011 0.174+0.014 0.100+0.017 0.48+0.03
38 4.69+0.10 499+0.09 9.76+0.06 18.74+0.17 10.79+0.06 0.780+0.012 0.197+0.019 0.130+0.017 0.54 +0.03
39 447+0.09 4.74+0.10 1090+£0.09 18.71+£0.18 12.50+0.08 0.730+0.012 0.179+0.013 0.119+0.016 0.50+0.03
40 432+0.09 4.63+0.10 11.70+0.05 20.15+0.10 13.54+0.05 0.686+0.012 0.182+0.013 0.110+0.017 0.49+0.03
41 434+0.09 449+0.09 10.51+0.11 17.81+0.12 14.00+£0.08 0.536+0.008 0.165+0.016 0.100+0.017 0.46+0.03
42 437+010 4.57+0.09 12.53+0.08 16.0+0.3 12.79+0.08 0.650+0.013 0.174+0.018 0.104 +0.017 0.47+0.02
43 417+0.09 439+£0.08 9.20+0.03 1643+0.09 9.93+0.03 0.452+0.003 0.165+0.019 0.112+0.018 0.47+0.03
44 390+0.09 391+0.10 11.40+0.14 16.4+0.2 1295+0.12 0.591+£0.013 0.126+0.017 0.078 +0.017 0.43+0.03
45 506010 4.53+£0.06 524+0.05 691+0.08 570+0.04 0.726+0.013 0.20+£0.02 0.144+0.016 0.52+0.03
46 424+0.09 453+0.10 11.39+0.08 1747+0.13 13.02+0.07 0.686+0.012 0.15+0.02 0.103+0.017 0.49+0.03
47 411+£0.10 441+0.10 1227+0.06 17.82+0.15 13.00£0.06 0.497+0.004 0.170+0.017 0.099+0.017 0.47+0.03
48 4.06+0.09 4.24+0.09 1217+0.05 1828+0.10 13.46+0.05 0.613+0.013 0.163+0.014 0.094+0.017 0.45+0.03
49 449+0.09 479009 11.02+0.11 16.79+0.19 1247+0.10 0.790+0.010 0.182+0.014 0.113+0.016 0.49+0.03
50 496+0.10 5.19+0.07 872+0.03 18.04+0.09 9.51+0.03 0.899+0.011 0.228+0.015 0.166+0.016 0.56+0.03
51 430+0.10 4.63+£0.09 10.81+£0.10 18.65+0.19 12.38+0.09 0.814+0.011 0.183+0.018 0.109+0.017 0.50+0.03
52 431+0.10 4.45+0.11 12.25+0.19 16.3+0.2 13.99+0.14 0.750+0.010 0.116+0.017 0.085+0.018 0.45+0.03
53 3.97+0.09 4.14+0.08 10.19+0.10 16.6 £0.2 11.39+0.09 0.489+0.006 0.152+0.016 0.091+0.018 0.47+0.03
54 3.60+0.10 3.64+0.09 12.12+0.14 16.97+0.17 14.20+0.11 0.563+0.009 0.124+0.015 0.067 +£0.017 0.39+0.03
55 500+0.10 5.12+0.06 7.78+0.04 1583+0.13 8.32+0.03 0.892+0.010 0.203+0.016 0.156+0.017 0.59+0.03

AS53, page 13 of 17



Table C.3. continued.

A&A 642, A53 (2020)

ID Obs. E\YHH EVYHﬁ Ewg:am—x EWOCaIIK EWcan EWHQeI4026 EW]—{eI4471 EWgerssr6 EV‘{NaI
(A) (A) (A) (A) (A) (A) (A) (A) (A)
56 495+0.10 545+0.07 9.91+0.04 16.8+0.2 10.14+0.04 0.906+0.010 0.22+0.02  0.150+0.017 0.57+0.03
57 4.01+0.09 4.18+0.10 11.71+0.09 1796+0.14 13.56+0.08 0.471+0.004 0.148+0.013 0.093+0.017 0.45+0.03
58 3.81+0.10 3.94+0.09 11.6 £0.3 17.35+0.12 16.65+0.11 0.610+0.012 0.142+0.013 0.083+0.016 0.43+0.03
59 398+0.09 4.15+0.10 12.01+0.12 15.14+0.12 13.54+0.09 0.621+£0.012 0.136+0.018 0.077+0.017 0.45+0.03
60 3.80+0.10 3.87+0.10 11.08+0.06 13.63+0.08 12.03+0.05 0.628+0.011 0.154+0.014 0.082+0.018 0.42+0.03
61 433+£0.10 4.54+0.09 9.92+0.04 16.07+0.16 10.30+0.04 0.601 £0.007 0.178£0.015 0.110+£0.016 0.50+0.02
62 414+0.09 4.33+0.09 11.34+0.07 179+03 11.72+0.07 0.659+0.012 0.153+0.016 0.099+0.016 0.48+0.03
63 3.88+0.09 4.00+0.10 12.0+0.3 1701 £0.17 15.49+0.14 0.606 +0.012 0.15+0.02 0.080+0.017 0.43+0.03
64 423+0.09 4.17+010 10.15+£0.08 1747+0.09 13.50+0.06 0.614+0.011 0.161£0.015 0.099+0.017 0.45+0.03
65 413+0.10 3.93+0.09 9.48+0.06 1597+0.12 10.87+0.05 0.612+0.011 0.161 +£0.019 0.096+0.017 0.43 +0.03
66 415+0.10 3.96+0.07 8.69+0.09 18102 10.03+0.08 0.465+0.004 0.169+0.018 0.119+0.017 0.47 +0.03
67 422+0.10 4.39+0.11 13.1+0.4 14.06+0.10 14.00+0.10 0.541+0.006  0.19+0.02 0.109+£0.018 0.51+0.03
68 420+0.10 4.31+0.10 16.8+ 1.9 12.6+£0.8 13.2+0.7 0.561+0.015 0.13+£0.05 0.121+0.019 0.48+0.03
69 4.09+0.09 4.14+0.09 10.07+0.09 18.12+0.11 13.31+0.07 0.477+0.005 0.165+0.018 0.091+0.017 0.45+0.03
70 481+£0.09 528+0.08 11.25+0.04 18.52+0.09 12.27+0.03 0.859+0.011 0.201+0.014 0.134+0.016 0.56+0.03
71 3.80+0.09 3.90+0.10 12.03+0.11 1744 +0.16 13.82+0.09 0.591+0.013 0.138+0.017 0.073+0.018 0.42+0.03
72 4.00+£0.09 4.08+£0.09 9.76+0.03 17.12+0.14 10.16+0.03 0.642+0.010 0.150+0.018 0.099 +0.017 0.45+0.03
73 459+0.10 4.59+0.07 8.60+0.04 1449+0.09 9.71+0.04 0.506+0.003 0.187+0.015 0.119+0.016 0.48+0.03
74 4.08+0.09 4.33+0.08 1231+0.07 19.27+0.17 13.36+0.07 0.686+0.012 0.155+0.016 0.088+0.017 0.45+0.03
75 421+0.10 4.47+0.10 11.93+0.08 19.08+0.17 13.26+0.07 0.586+0.013 0.139+0.014 0.098+0.018 0.49 +0.03
76 3.85+£0.10 4.01+0.09 10.60+0.04 17.86+0.10 11.65+0.04 0.552+0.012 0.175+0.015 0.091 +£0.018 0.45+0.03
77 3.64+0.10 3.83+0.10 10.75+0.06 17.22+0.08 12.95+0.05 0.502+0.013 0.123+0.016 0.075+0.017 0.45+0.03
78 397+£0.09 3.77+0.06 6.61+0.07 11.14+0.10 799+0.06 0427+0.011 0.157+0.014 0.104+0.016 0.51 £0.03
79 8.97+0.09 17.6+0.5 1.699+0.006 5.60=+0.08 1.73+£0.01 1.066+0.006 0.239+0.008 0.41+0.04 1.44+0.04
80 715+0.11 8.13+£0.07 9.71+0.02 19.8+£0.3 9.76+0.02 1467+0.014 0.318+0.019 0.27+0.02 0.87+0.04
81 419+0.10 4.03+0.10 11.07+£0.09 17.09+0.09 13.98+0.06 0.547+0.012 0.144+0.018 0.075+0.017 0.42+0.03
32 4.09+£0.10 4.19+0.07 9.10£0.05 1643+0.11 1043+0.05 0.461+0.003 0.173+£0.019 0.107+0.017 0.48 +0.03
83 349+0.09 357+0.10 10.99+0.09 16.84+0.09 13.86+0.06 0.509 +0.013 0.13+0.02  0.060+0.018 0.40+0.03
84 4.02+£0.10 429+0.08 10.21+0.08 1741+£0.09 13.31+£0.06 0.651+0.012 0.165+0.019 0.107+0.017 0.49 +0.03
85 3.75+0.10 3.97+0.09 11.13+0.08 1616 £0.12 12.60+0.06 0.533+0.013 0.165+0.018 0.076+0.017 0.45+0.03
86 3.96+0.10 4.21+0.11 11.14+0.11 18.7+0.3 1221+0.11 0.591+0.013 0.152+0.017 0.096+0.018 0.48 +£0.03
87 390+0.10 4.05+0.10 11.04+0.10 18.19+0.10 14.37+0.07 0.555+0.012 0.152+0.016 0.088+0.017 0.45+0.03
33 432+0.10 4.79+0.08 10.81+0.04 19.07+0.10 12.00+0.04 0.682+0.014 0.181+0.019 0.124+0.018 0.55+0.03
89 4.17+0.10 4.34+0.11 1224+0.07 17.37+0.12 13.68+0.06 0.668+0.013 0.159+0.019 0.092+0.017 0.48+0.03
90 395+£0.10 4.16+0.09 12.19+0.11 18.13+0.10 1537+0.08 0.599+0.012 0.169+0.018 0.086+0.017 0.46 +0.03
91 393+0.09 3.90+0.06 6.80+0.08 12.74+0.14 842+0.07 0.573+0.012 0.166+0.012 0.099+0.016 0.45+0.03
92 4.63+£0.10 4.67+0.09 10.71+0.18 175+0.2  13.46+0.14 0.534+0.006 0.181+£0.013 0.112+0.017 0.49+0.03
93 479+0.10 4.71+0.08 9.88+0.07 15.69+0.11 11.54+0.06 0.552+0.014 0.160+0.012 0.095+0.017 0.45+0.03
94 3.84+0.10 4.13+0.08 949+0.03 15.88+0.14 9.80+0.03 0.582+0.013 0.153+0.016 0.099+0.017 0.48 +£0.03
95 460+£0.09 4.74+0.10 10.74+0.10 14.71+0.13 12.34+0.08 0.693+0.015 0.166+0.016 0.115+0.017 0.50+0.03
96 376 £0.09 3.87+0.11 11.17£0.13 1624 +0.14 13.39+0.10 0.547+0.013 0.127+0.017 0.076 £0.018 0.42 +0.03
Table C.4. Fluxes HARPS data 2006.
ID Obs. FlXHa FIXH’B FlXCaIIH leCaIIK leCaII
(10° erg stem™®) (10° erg stem™@) (10° erg sT'em™?) (10° erg sT'em™?) (10° erg slem™)

0 9.24 +0.19 5.03+0.09 4.817 +0.008 4.905 +0.009 4.857 +0.006

1 11.59 +£0.20 6.84 +0.08 6.580+0.016 6.678 +0.008 6.661 +0.007

2 9.32+0.19 5.33+0.10 5.503 +0.007 5.668 +0.012 5.545 +0.006

3 9.82+0.19 5.76 £ 0.08 5.274 +0.012 4.941 +0.008 5.042 +0.007

4 8.79+0.19 478 +0.11 5.163 +0.007 5.035+0.007 5.098 +0.005

5 9.05+0.18 4.89+0.10 5.876 +0.009 6.044 +0.008 5.968 +0.006

6 18.32 +0.18 11.05 +0.08 8.742 +0.017 8.242 +0.014 8.437 +0.011

7 11.77 +£0.18 6.69 +0.09 6.230 +0.008 6.183 +0.007 6.204 +0.005

8 10.36 +£0.19 6.31 +0.09 5.436 +0.008 5.623 +0.009 5.518 +0.006

9 10.79 £0.19 6.04 +0.08 4.966 +0.007 5.208 +0.007 5.089 +0.005

10 8.72+0.19 470 +0.11 5.828 +0.008 6.205 +0.008 6.003 +0.006

11 9.45+0.20 5.01 £0.09 5.683 +0.011 5.846 +0.009 5.781 £ 0.007

12 9.34+0.20 5.19+0.09 5.700 £ 0.007 5.417 +£0.008 5.579 +0.006

13 9.48 +0.19 5.13+0.10 5.400 +0.008 5.621 +£0.013 5.455+0.007

14 10.27 +£0.20 6.00 +0.07 5.928 +0.014 6.325+0.013 6.140 +£0.010
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Table C.4. continued.

C. Di Maio et al.: Spectroscopic monitoring of AD Leonis

ID Obs. Flxy, Flxyg FlXcamn FlXcank FlXcan
(10° ergs™'em™2) (103 ergs™'em™2)  (10° ergs™'em™2)  (10° ergs™'em™2)  (10° ergs™! cm™?)
15 9.39+0.20 5.09+0.10 5.163 +0.007 5.010 £ 0.007 5.082 +0.005
16 9.61 +0.18 5.25+0.10 6.022 +0.010 6.027 £0.012 6.024 +£0.008
17 991 +0.19 5.64 +=0.09 6.324 +0.009 6.603 +0.007 6.491 = 0.006
18 11.05+0.18 6.78 £0.08 6.727 +0.009 6.550 +0.007 6.619 = 0.005
19 9.94 +0.18 5.62+0.09 5.681 +0.008 5.609 +0.005 5.627 +£0.004
20 13.73 £0.18 9.09 +£0.05 7.351 £0.014 7.37+0.02 7.357 £0.012
21 9.09 +0.18 4.83+0.11 4.864 +0.007 4.972 +0.007 4.916 + 0.005
22 10.63 +0.18 5.89+0.10 5.597 +£0.010 5.687 +£0.008 5.649 + 0.006
23 9.16 £0.18 5.15+0.10 4.810 +0.007 4.826 +0.005 4.821 +0.004
24 15.72 +0.17 9.99+0.09 5.718 £0.010 5.539+0.011 5.644 +0.007
25 9.61 +0.19 5.29+0.10 5.102 +0.007 5.007 +0.009 5.063 +0.006
26 8.84+0.18 470 +0.11 4.600 = 0.008 4.755 +0.003 4.733 £0.003
27 9.05+0.19 5.11 +£0.09 5.836 +0.009 5.817 £ 0.006 5.823 +£0.005
28 11.21 +£0.18 7.04 +0.05 5.837+0.013 5.566 +0.011 5.687 +£0.008
29 9.72+0.19 5.48 +0.08 5.785 +0.012 5.892 +0.005 5.876 = 0.005
30 9.63+0.18 5.21 +£0.07 6.186 + 0.008 6.303 +£0.007 6.252 +0.005
31 9.77+0.19 5.55+0.09 5.635+0.007 5.725 +£0.012 5.657 +0.006
32 9.61 +0.18 5.53+0.09 6.178 £ 0.007 6.085+0.012 6.154 £ 0.006
Table C.4. continued.
ID Obs. FlXhe14026 FlXHer4471 FlXHerss76 FlxXNar
(100 ergs™'em™2)  (10°ergs™'em™)  (10° ergs™'em™)  (10° ergs™' cm™2)

0 0.099 +0.012 0.073 +£0.012 0.44 +0.03 0.131 +0.003

1 0.133 +£0.011 0.127 £0.014 0.55+0.03 0.2686 + 0.0060

2 0.099 +0.013 0.086 +0.013 0.44 +0.03 0.160 + 0.007

3 0.106 + 0.008 0.098 +0.013 0.49 +0.03 0.200 +0.006

4 0.080+0.011 0.055+0.013 0.41 +£0.03 0.171 £ 0.006

5 0.082 +0.012 0.077 £0.013 0.44 +0.03 0.173 £0.007

6 0.174 +0.019 0.195 +£0.018 0.72 +0.03 0.415 +£0.007

7 0.126 = 0.009 0.126 £0.014 0.55+0.03 0.250 +£0.007

8 0.102 +£0.012 0.103 +£0.013 0.53+0.03 0.243 +£0.007

9 0.132 +0.011 0.123 +£0.015 0.55+0.03 0.215 +£0.007

10 0.113 £0.016 0.053+0.014 0.42 +0.03 0.161 +£0.008

11 0.100 +£0.011 0.065+0.013 0.45+0.03 0.169 +0.007

12 0.099 = 0.010 0.088 =0.013 0.48 +£0.03 0.183 +0.008

13 0.082+0.016 0.072 +£0.013 0.47+0.03 0.175 £ 0.007

14 0.120+0.013 0.104 +£0.013 0.53+0.03 0.207 +£0.008

15 0.083 +£0.018 0.059 +£0.014 0.45+0.03 0.183 +0.008

16 0.087 £0.014 0.073 +£0.013 0.46 +0.03 0.184 +0.008

17 0.117 £ 0.011 0.110+0.013 0.51 +£0.03 0.195 +0.009

18 0.130+0.011 0.130+£0.014 0.58 +£0.03 0.267 +£0.008

19 0.114 £ 0.015 0.101 £0.013 0.53+0.03 0.215 +0.007

20 0.163 +0.008 0.187 +0.019 0.71 £0.04 0.375+0.007

21 0.079 +£0.008 0.060 +0.013 0.46 +0.04 0.177 £ 0.007

22 0.121 =0.010 0.107 £0.013 0.51 +0.03 0.220 +0.007

23 0.108 +£0.015 0.087 +£0.013 0.47+0.03 0.179 = 0.007

24 0.217 +£0.015 0.26 +0.03 0.82+0.03 0.222 +0.003

25 0.113 +£0.015 0.092 +£0.013 0.49 +0.03 0.199 +0.007

26 0.090 +0.015 0.069 +£0.013 0.45+0.03 0.111 £ 0.003

27 0.115+0.010 0.091 £0.013 0.48 +£0.03 0.176 + 0.006

28 0.141 +£0.014 0.180 +0.018 0.68 +£0.03 0.274 £ 0.007

29 0.115+0.012 0.085 +£0.013 0.50+0.03 0.195 +0.007

30 0.129 £ 0.021 0.093 +£0.012 0.48 +£0.03 0.180 + 0.006

31 0.102 +£0.014 0.096 +£0.014 0.51 +0.03 0.197 £ 0.006

32 0.119 +0.017 0.092 +£0.013 0.49 +0.03 0.199 +0.007
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Table C.5. Fluxes HARPS-N data 2018.

ID Obs. FIXHQ FlXHﬁ FIXCaIIH leCaIIK FlXCuH
(10° ergs~'em™2)  (10° ergs™'ecm™2)  (10° ergs™' cm™2) (10° ergs™' cm™2)  (10° ergs™' cm™2)

33 14.04 £0.19 8.58 £0.11 5.836 +0.007 4.717 £ 0.009 5.466 +0.005
34 12.60 +0.19 7.17 £0.08 5.565 +0.008 5.131 £0.007 5.335+0.005
35 13.78 £0.18 8.97 £0.05 3.62+£0.03 3.03+£0.03 3.324+£0.018
36 11.08 £0.18 6.15+0.07 4.653 +0.007 4.331 +£0.009 4.533 +£0.006
37 11.7+£0.2 6.84 £0.08 4.770 £0.009 4.224 £0.007 4.418 £ 0.005
38 12.6 £0.2 7.48 +0.08 5.609 +0.008 4.946 +0.008 5.303 £ 0.006
39 12.00+0.18 711 £0.09 5.252 £0.008 5.120 £ 0.009 5.193 £ 0.006
40 11.64 £ 0.19 6.79 £ 0.08 5.080 +0.007 4.848 +0.007 4.952 +0.005
41 11.71 £0.19 6.64 +£0.08 4.796 +0.009 4.535+0.007 4.644 +0.006
42 11.77 £0.19 6.93 +0.09 5.293 +0.008 3.826 +0.011 4.737 +0.007
43 11.23£0.18 6.57£0.08 4.665 +0.007 4.420 £ 0.004 4.490 £ 0.004
44 10.53 £0.19 5.85+0.09 4.428 +0.009 3.657 +0.008 4.005 +0.006
45 13.57+£0.19 7.98 £0.05 5.332+0.009 4.146 £ 0.014 4.986 +0.008
46 11.49 +0.19 6.60 +0.08 5.761 + 0.008 5.004 +0.006 5.295 +0.005
47 11.16 £0.19 6.49 +£0.09 4.523 £0.007 4.135+£0.007 4.334 £0.005
48 11.03 +£0.19 6.11 £0.08 4.708 +0.007 4.573 £0.007 4.638 +0.005
49 12.10+£0.19 7.04 £0.08 5.000 +0.009 4.816 +£0.010 4.921 £0.007
50 13.33+0.19 8.14+0.05 5.781 £ 0.008 5.339+0.007 5.549 +0.005
51 11.6 £0.2 6.91 £0.08 5.173 £0.008 4.667 +0.009 4.950 +0.006
52 1.6 £0.2 6.38+£0.10 5.412+0.013 5.525 +0.012 5.475 +0.009
53 10.71 £0.19 6.01 £0.07 5.151+£0.008 5.003 +0.008 5.076 +0.006
54 9.8+0.2 5.24 +0.08 4.334 +0.009 4.203 +0.008 4.258 +0.006
55 13.39+0.19 8.12+£0.06 5.012 +£0.007 4.416 + 0.008 4.782 +0.005
56 13.26 £ 0.19 8.07 +£0.05 6.108 + 0.009 5.755+0.012 5.984 +0.007
57 10.87 £0.19 6.07 +0.09 4.737 +0.008 4.686 +0.007 4.710 £ 0.005
58 10.3+0.2 5.69 +0.08 4.910+0.016 4.721 +£0.007 4.753 + 0.006
59 10.78 £0.19 5.99 +0.09 4.964 +0.009 4.660 + 0.006 4.759 +0.005
60 10.2+0.2 5.55+0.09 4.335+0.007 5.270 £ 0.009 4.710 £ 0.006
61 11.62 £0.19 6.73 £0.08 4.457 +0.008 4.222 +0.009 4.364 +0.006
62 11.19£0.19 6.30+0.08 5.628 +0.009 5.189 £0.011 5.461 +0.007
63 10.49 £0.19 5.68 +0.09 5.318 +£0.013 4.849 +0.009 4.996 +0.007
64 11.45+0.19 6.19 +0.09 4.398 +0.008 4.189 +0.007 4.274 +0.005
65 11.22£0.19 5.91+0.09 4.820+0.009 4.297 +0.008 4.529 +0.006
66 11.2+£0.2 6.19 £0.07 4.405 +0.009 4.332 +0.009 4.371 +£0.006
67 11.4+0.2 6.77 £0.10 5.852+0.018 5.921 +0.007 5.912 +0.007
68 11.4+£0.2 6.08 +£0.08 8.21+0.07 6.47 £0.05 7.05 +0.04

69 11.04 £0.19 6.12+0.09 4.431 +0.009 4.069 +0.007 4.203 +£0.005
70 1291 £0.19 7.93+0.07 5.395 +0.007 5.125 £ 0.007 5.270 £ 0.005
71 10.34 £0.19 5.57 £0.09 4.596 +0.009 4.078 +£0.007 4.280 +0.006
72 10.86 £ 0.19 6.02 £0.08 4.463 +£0.007 4.316 = 0.008 4.400 + 0.005
73 12.36 £0.19 6.86 +0.06 5.155+0.007 5.021 +£0.009 5.104 £ 0.005
74 11.06 £0.18 6.35+0.07 5.011 £ 0.008 4.849 +0.008 4.939 £ 0.006
75 11.4+0.2 6.57 £0.09 4.625 +0.007 4.731 £0.008 4.675 +0.005
76 10.39+0.19 5.75 +0.08 4.507 £0.007 4.116 £ 0.003 4.173 £0.003
77 9.9+0.2 5.58 +0.09 4.521 +0.007 4.511 £0.007 4.516 +0.005
78 10.79 £0.19 6.09 £ 0.06 3.491 +£0.009 2.742 £ 0.009 3.082 +0.006
79 23.86+0.15 28.9+04 2.655+0.011 2.387+0.013 2.551 +£0.008
80 18.8 £0.2 13.20+0.04 7.705 £0.007 7146 £ 0.016 7.610 £ 0.007
81 11.5+0.2 5.81 +£0.09 4.520+0.008 3.928 +0.007 4.164 +0.005
82 1.1 £0.2 6.31 £0.06 4.327 £0.008 3.641 £0.007 3.943 £ 0.005
83 9.5+0.2 5.06 +0.10 3.846 +0.007 3.725 +0.005 3.758 £0.004
84 10.9+£0.2 6.32+0.07 4.705 £0.009 3.985 +0.006 4.239 £0.005
85 10.2+0.2 5.74 +£0.09 4.701 +0.008 4.483 +0.007 4.572 +0.005
86 10.8 £0.2 6.15+0.10 4.547 +£0.010 4.278 £ 0.010 4.421 £0.007
87 10.6 £0.2 5.88 +0.09 4.450 +0.008 4.137 £0.007 4.279 +0.005
88 11.7+£0.2 7.02+0.07 4.910 £ 0.007 4.622 £0.007 4.770 £0.005
89 11.3+£0.2 6.25+0.10 5.371 £0.007 4.734 +0.008 5.081 +£0.005
90 10.7+£0.2 5.99 £0.08 4.685 +£0.009 4.028 +£0.005 4.168 £ 0.004
91 10.6 £0.2 6.16 £0.06 3.986 +0.011 3.618 +0.009 3.777 £0.007
92 12.5+0.2 6.92 £0.08 5.339+£0.015 4.439 +0.009 4.692 +0.008
93 12.8+0.2 6.99 +0.07 4.454 +0.008 3.722 +£0.007 4.034 +0.005
94 10.5+0.2 6.18 £0.08 4.439 £0.007 3.842 +£0.008 4.198 +0.005
95 12.36 +£0.18 7.02+0.09 5.186 +0.011 3.982 +0.008 4.383 +0.006
96 10.2+£0.2 5.57+0.10 4.569 +0.009 4.399 +0.008 4.479 + 0.006
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Table C.5. continued.
ID Obs. FlXel4026 FlXHer4471 FlXeiss76 FlXnar
(100 ergs'em™) (10%ergs' em™®)  (10°ergs ! cm™?)  (10° ergs~! cm™?)
33 0.162 £ 0.011 0.169 £ 0.016 0.71 £0.03 0.343 £ 0.006
34 0.149 +0.010 0.135+0.014 0.60+0.03 0.292 +0.006
35 0.20+0.05 0.26 +£0.03 0.73 £0.02 0.220 £ 0.004
36 0.135+0.012 0.126 +£0.014 0.56+0.03 0.226 +0.006
37 0.143 £ 0.010 0.122 +£0.014 0.59+0.03 0.280 +0.006
38 0.175 £0.016 0.163 £0.016 0.66 +0.03 0.284 £ 0.006
39 0.150 £ 0.010 0.147 £0.015 0.62+0.03 0.268 +0.006
40 0.149 £ 0.010 0.136 £0.014 0.60+0.03 0.259 £ 0.006
41 0.135+0.013 0.124 £ 0.014 0.56+0.03 0.162 +0.003
42 0.148 £ 0.013 0.131 £0.014 0.57+0.03 0.249 +0.007
43 0.137 +0.016 0.140 +0.016 0.57 +£0.03 0.154 +0.003
44 0.092 £0.010 0.098 +0.013 0.52+0.03 0.211 £ 0.006
45 0.158 +£0.013 0.186 +0.017 0.66 +0.03 0.271 +£0.006
46 0.134 £0.017 0.128 £0.014 0.59+0.03 0.258 +0.006
47 0.142 £ 0.012 0.124 £0.015 0.58 +0.03 0.171 £0.003
48 0.130+£0.010 0.115+0.013 0.54 +£0.03 0.223 +£0.006
49 0.150 £ 0.010 0.140+0.014 0.60+0.03 0.277 £ 0.006
50 0.204 +0.012 0.208 +£0.019 0.69+0.03 0.323 +£0.006
51 0.150 +£0.014 0.135+0.015 0.60+0.03 0.285 +0.006
52 0.090 +0.013 0.105+0.013 0.54 +0.03 0.261 +0.006
53 0.130+£0.012 0.111 £0.013 0.56+0.03 0.156 +£0.003
54 0.100 £ 0.012 0.082 £ 0.012 0.48 £0.03 0.196 + 0.006
55 0.174 £ 0.012 0.196 +0.019 0.73 £0.03 0.339 +0.006
56 0.182 +£0.015 0.188 £ 0.018 0.70 £ 0.03 0.338 £0.006
57 0.121 +£0.009 0.113+0.013 0.54 +0.03 0.153 +£0.003
58 0.117 £ 0.009 0.103 +£0.012 0.52+0.03 0.217 £ 0.006
59 0.109 +0.014 0.094 +0.012 0.54 +0.03 0.226 +0.006
60 0.120 £ 0.006 0.101 £0.013 0.51 £0.03 0.219 £ 0.006
6l 0.143 +£0.011 0.135+£0.013 0.61 £0.03 0.180 £ 0.002
62 0.123 +£0.012 0.123 £0.015 0.58+0.03 0.238 +0.006
63 0.119 £ 0.017 0.099 +0.012 0.52+0.03 0.213 £ 0.006
64 0.131 £0.011 0.122 +0.013 0.54 +£0.03 0.227 +0.006
65 0.138 £ 0.016 0.121 £0.014 0.52+0.03 0.222 +0.006
66 0.139+0.014 0.149 +0.015 0.56+0.03 0.156 +£0.003
67 0.175 +£0.012 0.138 +0.014 0.61 +£0.03 0.173 £0.003
68 0.08 +0.02 0.140 +0.014 0.57 +£0.03 0.232 £0.008
69 0.136 +£0.015 0.113+0.013 0.55+0.03 0.154 £ 0.003
70 0.172 £0.011 0.167 £0.016 0.68 +£0.03 0.309 £ 0.006
71 0.114 +0.014 0.091 £0.013 0.50+0.03 0.214 + 0.006
72 0.121 £0.014 0.122 +0.014 0.54+0.03 0.225 £ 0.006
73 0.162 +0.012 0.148 £ 0.015 0.59+0.03 0.173 £0.003
74 0.129 +£0.013 0.108 +0.013 0.54 +£0.03 0.242 +0.006
75 0.109 + 0.009 0.119+0.014 0.59+0.03 0.227 £ 0.007
76 0.142 +0.011 0.113+£0.014 0.55+0.03 0.201 + 0.006
77 0.099 £0.014 0.093 £0.013 0.54+0.04 0.192 £ 0.007
78 0.124 £ 0.010 0.130+0.014 0.62+0.03 0.208 +0.006
79 0.207 £ 0.007 0.57 £0.06 2.01+0.03 0.713 £ 0.006
80 0.282+0.014 0.34+0.03 1.09 +0.03 0.615 +0.006
81 0.116 +£0.014 0.093 £ 0.013 0.50+0.03 0.196 + 0.007
82 0.142+£0.015 0.132+0.014 0.58+0.03 0.152 +0.003
83 0.101 £0.016 0.072 £0.013 0.48 +0.03 0.182 + 0.007
84 0.134 +£0.015 0.133+£0.014 0.59+0.03 0.237 £ 0.006
85 0.134 £0.014 0.094 +0.012 0.53+0.03 0.198 +£0.007
86 0.123 £0.013 0.117 £0.013 0.58 £0.03 0.219 £ 0.007
87 0.121 £0.012 0.107 £ 0.013 0.54 +0.03 0.205 £ 0.007
88 0.147 £0.015 0.155+£0.015 0.66 +0.03 0.255 +0.007
89 0.131 £0.015 0.112+0.012 0.57 £0.03 0.246 +0.007
90 0.135+0.014 0.105 +0.012 0.56+0.03 0.222 +0.006
91 0.136 +£0.008 0.127 +£0.013 0.56+0.03 0.208 + 0.006
92 0.158 £0.010 0.142 +0.014 0.61 £0.03 0.177 £0.003
93 0.132 +£0.008 0.118 £0.012 0.55+0.03 0.211 £0.007
94 0.121 £0.013 0.123 +0.014 0.58+0.03 0.224 +0.007
95 0.141 £ 0.011 0.144 £ 0.013 0.62+0.03 0.258 +0.007
96 0.098 +£0.013 0.095+0.013 0.51 £0.03 0.200 +0.007
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