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Principal Component Analysis to correct data

systematics. Case study: K2 light curves.

A. Petralia · G. Micela

Rec;Acc

Abstract Instrumental data are affected by systematic effects that dominate
the errors and can be relevant when searching for small signals. This is the
case of the K2 mission, a follow up of the Kepler mission, that, after a fail-
ure on two reaction wheels, has lost its stability properties rising strongly the
systematics in the light curves and reducing its photometric precision. In this
work, we have developed a general method to remove time related systematics
from a set of light curves, that has been applied to K2 data. The method uses
the Principal Component Analysis to retrieve the correlation between the light
curves due to the systematics and to remove its effect without knowing any
information other than the data itself. We have applied the method to all the
K2 campaigns available at the Mikulski Archive for Space Telescopes, and we
have tested the effectiveness of the procedure and its capability in preserving
the astrophysical signal on a few transits and on eclipsing binaries. One prod-
uct of this work is the identification of stable sources along the ecliptic plane
that can be used as photometric calibrators for the upcoming Atmospheric
Remote-sensing Exoplanet Large-survey mission.

Keywords Data Analysis; Principal Component Analysis; K2; ARIEL

1 Introduction

Accurate light curves photometric analysis often is limited by systematics.
This is particularly crucial when systematics dominate the errors or when
very small signals (as for planetary transits) are searched. Systematic effects
are data modification that can arise from many different reasons, the change in
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time of the characteristics of a detector (eg. degradation of the CCD coating),
or a failure on a component of the instrument could be examples.

Here we discuss the case of the K2 mission (Howell et al., 2014). It uses the
same spacecraft of the Kepler mission (Borucki et al., 2010) that, after a failure
on two reaction wheels, has lost the functionality of observing continuously the
same portion of the sky. The K2 mission therefore entails a series of sequential
observing Campaigns of fields ∼ 100×100 deg2 distributed around the ecliptic
plane, limited to a duration of approximately 80 days.

Due to the telescope motion, the K2 original data are affected by strong
systematic errors that lead to a reduction on the photometry precision of a
factor 2-3 than the original Kepler mission. An automated procedure uses the
presearch data conditioning algorithm (Stumpe et al., 2014, hereafter PDC)
built to remove the systematics. In that procedure, a discrete wavelet anal-
ysis is carried out to divide each light curve into channels of different time
scales. Then, each channel is corrected separately by maximizing a Bayesian
posterior probability distribution function whose priors are obtained from a
cotrending basis vector generated by a set of highly correlated and quiet stars
(Smith et al., 2012), and the corrected light curves are obtained by combining
the channels again.

However, the need of a higher photometric precision for a better exoplanet
detection led different groups to develop their own procedure. Many proce-
dures rely on the measurements of the position of the stars and correcting
the intensity that correlates with the position. The latter can be evaluated
through the center-of-light or the Gaussian fit to the stellar point spread func-
tion as described in Vanderburg and Johnson (2014), by deriving the astro-
metric solutions from the behavior of multiple stars as in Huang et al. (2015),
or by employing Gaussian Processes as in Aigrain et al. (2015, 2016), and
in Crossfield et al. (2015) (see also Lund et al. (2015) and Armstrong et al.
(2015) for other methods that rely on the stellar position). Other techniques
avoid the measurement of the position as the pixel level decorrelation (de-
veloped for the Spitzer observations by Deming et al. (2015) and adapted by
Luger et al. (2016) to K2). In this technique, the intensities from the pixels
are normalized by the total flux in the chosen aperture and then used as basis
vectors for a linear least-squares fit to the aperture-summed flux.

In this work, since we are interested in time related systematics, we de-
velop an alternative procedure that applies the Principal Component Analysis
(hereafter PCA) on the intensity of the light curves of a given Campaign with
the goal to remove systematic effects in order to preserve the astrophysical
signal. PCA has been already used to remove systematic errors in transiting
exoplanet spectroscopy data (Thatte et al., 2010; Zellem et al., 2014), here we
apply it to photometric data, in which we assume that systematics does not
depend on the position across the detector, and, therefore, that their effect is
the same for all the light curve in a given campaign.

This work was motivated by the search of a set of standard stars in order
to obtain high photometric stability (absolute and relative) for upcoming ex-
oplanetary missions. This is the case of ARIEL (Atmospheric Remote-sensing
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Exoplanet Large-survey mission, Tinetti et al., 2018) that is aimed at inves-
tigating the atmospheres of several hundreds of planets orbiting distant stars
in order to address the fundamental questions on how planetary systems form
and evolve. The observational strategy of Ariel is based on differential spec-
troscopy measurements in and out the transit (or occultation). Furthermore
in several cases it will perform repeated visits on the same target to reach the
needed signal to noise. As a consequence high photometric stability (absolute
and relative) is a requirement in order to guarantee the capability to recover
the planetary signal. Therefore it will be necessary to select a set of standard
stars, as constant as possible, possibly spread out in various sky directions
(in order to be sure that ARIEL may observe one of them at any time). The
photometric standard stars normally used from ground do not guarantee to
be enough stable, since from ground the stability requirement is typically of
the order of 0.01, while ARIEL will need stability of about 1-2 order of mag-
nitude higher. On the contrary modern photometric missions from space are
able to reach the needed precision, after removal of instrumental effects (ex.
Kepler, Borucki et al., 2010). Among the missions that achieve large fields of
view (CoRoT, Kepler and K2) K2 is the most suitable for this purpose because
may observe in a area spread on several sky directions.

We describe the data preparation in Section 2. In Section 3 we present
the method while in Section 4 we present the results, and we discuss them in
Section 5.

2 Data preparation

Our analysis has been conducted using all the K2 Data available at the MAST
Archive by June 2019. We have selected ’stars’ (Object type) with calibrated
’long cadence’ (Target type) light curves (see Tab. 1), with a magnitude
brighter than 11 (Kepler Magnitude), i.e. stars sufficiently bright to have a
high signal-to-noise ratio in K2, and with an observing time between 75 and
84 days. Selected data from each Campaign have been divided in two data
sets, those brighter than 10 (dataset A) and the others (dataset B). We have
applied the analysis on dataset A and checked its robustness by extending it
to dataset B (see Section 4.4). Data are available both original (raw) and PDC
corrected. Single randomly distributed NAN are present in both as well as for
long range intervals (few days). We have completely removed them from the
light curves, therefore our procedure has been applied to the subset of the raw
data in which the temporal bins of all sources (common between all the light
curves of a campaign) have finite values. This procedure excludes from the
analysis at most few percent of the time.

3 The method

The Principal Component Analysis (hereafter PCA) is a statistical technique
that uses an orthogonal linear transformation to convert a set of correlated
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Table 1 Number of light curves in each campaign, and in two different magnitude ranges.
(Campaign 10 and 11 are divided in two data set. In the case of Campaign 10, only the second
set were available while for Campaign 11 both, and they have been analysed separately).

Campaign A B

C01 338 549
C02 601 676
C03 407 758
C04 689 1018
C05 793 1135
C06 536 778
C07 405 448
C08 538 687
C10 261 696
C11 1535 2782
C12 463 717
C13 568 861
C14 461 657
C15 645 1171
C16 655 1018
C17 497 688
C18 543 798
C19 516 787

Total 10451 16224

variables into an uncorrelated one (see Raschka and Mirjalili, 2017, for an
implementation in python). It performs a change of coordinate system such
that variables are described along directions that maximize the correlation
between them, with the highly correlated components explaining the most of
the variance of the set:

Y = XA (1)

where X is a set of data to be analysed, the matrix A contains the coeffi-
cients of the transformation, and Y is the set of the transformed data. The
matrix of coefficients A is made by eigenvectors of the covariance matrix,
i.e. the principal components, whose elements are of the form CovMat(i, j) =∑p

k=1
(xik−x̄i)(xkj−x̄j)/(p−1), where p is the number of rows in the data set,

xik and xkj are data elements, x̄i and x̄j are, respectively, the mean of the ith
and jth column of the X matrix. The covariance matrix and its eigenvectors
satisfy the equation

CovMat(X)Ai = λiAi (2)

where λi is the eigenvalue of the eigenvector Ai, from which the relative vari-
ance of the data set along the direction of the component (vari) can be com-
puted as vari = λi/(

∑
i λi).

Once the principal components and the transformed data are computed,
the set of data X ′ can be reconstructed back by reversing eq. 1 as follows
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X ′ = Y At (3)

where we used the orthogonality and the normalization of the eigenvectors,
i.e. AtA = I, with At is the transposed of A and I is the identity matrix.

Since we assume that, for a given campaign, systematic effects affect all
the light curves in the same way, we expect light curves to be highly corre-
lated with only few components explaining most of the variance (due to the
systematics) and the remaining ones explaining the very small variance due
to the uncorrelated intrinsic astrophysical signal among with the statistical
noise. Since eigenvalues and, accordingly, eigenvectors are in decreasing order
of the explained variance, we can reconstruct the ”true” data set X with eq. 3
by removing the first principal components, related to the systematics, and
taking only the components with low variance, related to the astrophysical
signal. Of course, if we eliminate too many components, we will remove part
of the astrophysical signal, therefore, we have to find the principal component
that separates the region in which eigenvectors describe the systematics by
the region in which they describe the astrophysical signal. We will refer to
this component as the cut-off component (see Section 3.1). We will determine
it by analysing how the variance varies when we iteratively remove the com-
ponent with the highest variance. The idea is that the variance explained by
components due to uncorrelated signals is low while the one due to highly
correlated components is high, therefore, since we will remove iteratively one
component at time, we will see a strong variation in the explained variance
until we have removed most of the correlated signal due to systematics. The
cut-off component will be the one since the variation of the variance become
smaller.

To account for the many different amplitudes of the stellar variability, we
have standardized each light curves (i.e. a column of the X data) shifting it
by its mean and dividing by its standard deviation. Consequently, the covari-
ance matrix becomes the correlation matrix, whose elements are of the form
CorMat(i, j) =

∑p
k=1

((xik − x̄i)/σi)(xkj − x̄j)/σj))/(p− 1), where σi and σj

are the standard deviation, respectively, of the ith and j column of matrix X .

3.1 PCA applied to light curves

In this study, the PCA is applied separately to each Campaign described in
Section 2 for which a set of dataX is a (p×n) matrix, where n is the number of
light curves (see Tab. 1) while p is the number of temporal bins used to study
each light curve (ranging from ∼ 2000 to ∼ 4000). The matrix of coefficients
A is a (n × n) matrix (as well as for CorMat) and is made by (column)
eigenvectors (n× 1), which are related to n eigenvalues.

Since we want to eliminate the correlated signal that comes from the first
components but we do not know the cut-off component, we run iteratively the
PCA by removing one component at time. We expect that at the first itera-
tion we remove the most correlated component and, therefore, the eigenvalues
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Fig. 1 (Left) Variances distributions obtained by applying the PCA on the original data,
with a set of removed components up to 60 for visual reasons. The distributions are colour
coded based on the number of components removed. We also show (dashed line) the variance
distribution of a simulated completely uncorrelated set of data. (Right) Integrated difference
(as defined in eq. 4) at different components removed, in which we show the fit for 20,40,60
components, color coded as for the left figure.

distribution is highly varying but it becomes flatter after at each iteration,
converging to the distribution of a completely uncorrelated set of data. As
reference of the limit of an uncorrelated set of data, we obtain its distribution
by simulating a new set of data by applying a bootstrap on the light curves,
i.e. by randomizing the temporal bins. We set a maximum of 80 iterations.
This number should be compared with the total number of eigenvectors, that
is the number of the light curves in a campaign (of the order of hundreds),
rather than the number of temporal bins (of the order of thousands), therefore
by using a maximum of 80 iterations we are conservative since we have veri-
fied that, removing 80 components, a substantial fraction of the astrophysical
signal is removed (as verified in light curves with transiting planets). In fact
the cut-off component is always much smaller than 80.

We then compare the variances distribution obtained from each iteration
with the previous one. At each iteration, the entire set of data is reconstructed
(from eq. 3) in order to feed the PCA at the subsequent iteration with the
new set of data, reconstructed without the component carrying the greatest
variance.

In Fig. 1(left) we show the variance explained by removing multiples of
ten components, in the case of Campaign 1. As one could expect the variance
rapidly falls after removing the first components, however the distribution of
the variance does not converge to an equally distributed variance distribution
(dashed line in Fig. 1(left)). This could be due to correlation at small temporal
scales of astrophysical signals in the light curves or non linear effects, and it
is a common behaviour among all the campaigns.

To estimate the cut-off, we study the variation of variances distribution at
each iteration. We expect that the variation of the variance distribution, with
respect the first iteration, depends on the nature of the component we are
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removing, if it is a systematics the variation will be higher than the variation
obtained by removing the astrophysical signal because systematics are shared
between all the light curves and therefore they produce highly correlated signal
while amplitude and timing of the astrophysical signal is different from one
source to the others and it produces an uncorrelated signal, therefore we expect
a different regime of variation before and after the cut-off component. To
quantify the difference of variance distributions, we evaluate at each iteration
the integrated difference (hereafter IntDiff), expressed by

IntDiff [j] =
∑

i

|var[i, j]− var[i, 0]| (4)

where var is the variance, indexes i and j indicate, respectively, the component
and the iteration. The result of this procedure for Campaign 1 is presented in
Fig. 1(right). The curve can be divided in three parts, the first is characterized
by a rapid growth, followed by a quasi-linear part and then a flat region. Our
interpretation is that the first part is dominated by the systematic effects,
that we want to remove, while the others by astrophysical signal and noise.
Now, we want to derive the component that separates the first two parts (i.e.
the cut-off component), therefore we fit the IntDiff curve with the function
A + |B|x + Ce−x/τ that is able to describe the initial rapid (exponential)
growth and the quasi-linear part.

To describe the first two parts as best as we can, we repeated the fit starting
from the range of (removed) components [0,20] and iteratively increasing the
range one component at time, up to [0,80]. For each iteration, the best fit has
been chosen minimizing the χ2, then we compare all the best fit obtained from
each iteration and we take as a final best fit the one which has the minimum
χ2 between iterations. The final best fit, for all the campaigns, is presented in
Fig. 2 and Fig. 3.

We consider the integer of 3τ as a good choice for the cut-off because it
reduces the exponential part by ∼ 95% and it, effectively, separates the ex-
ponential range from the linear region. In Fig. 3 we also show the obtained
cut-off component as a function of the Campaign. The choice on the τ param-
eter leads to values in the range 6− 26, with the majority of the cut-offs lying
in the range 11− 16 and only 4 values outside.

4 Results

Once the principal components are computed and the cut-off has been esti-
mated, we are able to remove their effects from the light curves making use of
the equation 3. How can we be sure that we remove only/all the systematic
effects? Since there is no an unequivocal way to check on the goodness of the
light curves, in the following we present different checks that we made in order
to validate the method and the reconstructed light curves.
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4.1 Global trends (large temporal scale effects)

First of all, we consider that, because the systematic effects strongly affect all
the original light curves, if we add them all, we should see large temporal scale
effects, resulting in residual global trends. To account for the different flux
level and variability of each star, we subtract each light curve by its average
flux and divided it by its standard deviation. Therefore, we compared the
summed original light curves with the ones obtained applying our method and,
for comparison purpose, with the ones corrected by the built-in procedure, the
PDC, and their standard deviations. The result of this comparison is presented
in Fig. 4 and Fig. 5. As expected, a global trends is clearly visible in the original
light curve in each campaign. A small residual trend is also visible on the PDC
corrected light curve, meaning that although the systematic affects are strongly
mitigated, they are still present. However, if we look at the curves obtained
applying the PCA method, they appear, generally, flat with small oscillations,
meaning that light curves after the correction are reasonably uncorrelated.
This does not apply to Campaign 2 for which systematics are still present
and, indeed, PCA selects a very small number of components to be removed
(6). We also report a strange behaviour in Campaign 19 in the case for the PDC
correction that shows a trend much pronounced than the original light curves.
If we exclude Campaign 2 and 19 for which PDC and PCA show anomalous
behaviours, on average the PCA reduces the standard deviation of the light
curves with respect the PDC by ∼ 40% and the scatter of the global trends
by a factor of ∼ 3 (see Fig. 5 bottom-right).

4.2 A binary Eclipsing system (EPIC 211135350)

Another check is on the ability of the method in preserving the astrophysical
signal after the removal of the systematics. In Fig. 6 we show a light curves of
a binary eclipsing system (EPIC 211135350 in Campaign 4). We compare the
original (raw) data (top-left panel) with the corrected ones (top-right panel) by
the PDC and our PCA. As can be seen from the original data, strong spikes
occur all over the observational window, stronger in the last ∼ 20 days of
observation, and a deep transit is clearly visible, with a period of ∼ 10 days. By
applying both the PDC and PCA corrections, the spikes are removed, as can
be seen from the top-right panel. In the bottom panel, we focus the attention
on the transits. The PDC correction, in the worst cases, could produce several
NAN in proximity of the spike in/close to the transits. This effect results in a
loss of information that could be crucial if one want to address the properties of
the transit. The PCA correction, instead, remove the spikes inside the transit
preserving the data point, transit shape and depth.
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4.3 A planet transit around HD3167 (HIP2736, EPIC 220383386)

Among all the processed light curves, 26 stars have confirmed transiting plan-
ets by June 2019. As an example, we show in Fig. 7 the light curve of the star
HD3167 (HIP2736, EPIC 220383386, Campaign 8). This star has three con-
firmed orbiting planets, two of them has been revealed by the transit method
(HD3167b, HD3167c Vanderburg et al., 2016) while the other by the radial
velocity method (HD3167d, Christiansen et al., 2017).

In top panel we present the light curve in the full observation window for
the original data (left) and for the PDC and PCA corrected data (right). As
in the case presented in Section 4.2, strong spikes overrun the light curve,
but the PCA correction is able to remove them. However, we have noticed
that, occasionally, the PCA correction is not able to remove completely some
of the strongest spikes, resulting in the presence of artefacts in the processed
light curve. This can be due to our choice of the cut-off component that is
conservative, however, since they alter the light curve on a very small temporal
scale, their effect is not crucial. This can be seen in the bottom panel, in which
we show three transits of the planet HD3167b, and in particular in the bottom-
left panel as a small triangle-shaped feature, close to the transit. A cleaning
procedure, not implemented in this work, would remove these artefacts. In the
other two transits, instead, the spikes are effectively removed.

We have noticed that the PDC procedure could insert an offset in the data
in proximity of strong spikes (ex. bottom panel left or middle), but this is not
the case for the PCA procedure.

4.4 Stable sources

As a further check on the robustness of the method, we have extended the
analysis to data set B (stars with a magnitude between 10 and 11), for all
the campaign described in Sec 2, and we have applied the PCA separately to
this set of data and to the set obtained by combining it with the data set A
previously analysed (magnitude brighter than 10).

We are checking on the ability of the method in preserving the intrinsic
properties of a star. Here, we consider the subset of stable sources on the K2
campaign timescale, therefore, we look for stars that, for at least 95% of the
observing time, have variability lower than 10−4 and 2×10−4, relative to their
median. The list of stable sources is presented in Tab. 2.

If we look for stable sources at 10−4, we find 7 sources in data set A and
1 in dataset B. If we combine the two data set the number increases to 12.
If we move to 2 × 10−4, we find 108 and 249 sources, respectively, for the
dataset A and B, with the number of stable sources that increases to 413
in the joint dataset. We have checked that stable sources in A and B, when
analysed separately, are present in dataset A+B, with only few exceptions,
therefore, since the number of stable sources increases in the joint dataset, the
PCA benefits from larger dataset.
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Table 2 Stable sources grouped by data set, campaign and stability threshold (10−4 and
2× 10−4, i.e. for more than 95% of the time they have a variation relative to their median
lower than this threshold).

Campaign A B A+B
(variation relative to the median) (10−4 / 2× 10−4) (10−4 / 2× 10−4) (10−4 / 2× 10−4)

C01 0/0 0/1 0/3
C02 0/0 0/0 0/0
C03 0/4 0/5 0/9
C04 0/3 0/6 0/8
C05 2/11 0/14 2/25
C06 0/1 0/12 0/10
C07 0/2 0/5 0/10
C08 0/4 0/7 0/10
C10b 0/0 0/6 0/4
C11a 0/16 0/43 1/69
C11b 0/10 0/12 0/22
C12 0/1 0/2 0/3
C13 0/4 0/7 0/11
C14 0/6 0/19 0/29
C15 0/3 0/13 0/18
C16 0/6 0/3 0/12
C17 0/3 0/11 0/17
C18 2/16 1/21 2/34
C19 0/18 0/62 5/119

Total 7/108 1/249 10/413

We have checked if our dataset contains previously selected photometric
standards. We have looked for them in different catalogues of photometric stan-
dards (Stetson, 2000; Landolt and Uomoto, 2007; Landolt, 2007, 2009, 2013;
Clem and Landolt, 2013; Bohlin and Landolt, 2015; Clem and Landolt, 2016)
through a cross-match with the GAIA catalogue. We have found only three
sources EPIC 201777342 in Campaign 1 (GAIA ID 2537344740061139968),
212688775 in Campaign 6/17 (GAIA ID 3630256618010788864) and 220226402
in Campaign 8 (GAIA ID 2537344740061139968). None of the photometric
standards fit out stability thresholds, i.e. variation lower than 10−4 or 2×10−4

with respect to the median for more then the 95% of the observational time,
but two of them (EPIC 212688775, 220226402) become stable if we set the
threshold to 6× 10−4 while the other is stable at 2× 10−2. This is compatible
with the stability threshold of observations from ground that require maximum
magnitude variations in the range 10−2 − 10−3 (ex. Stetson, 2000).

5 Discussion and Conclusions

In this work, we have developed a procedure that removes systematic effects
from a set of light curves on the entire observation time, here applied to K2
data. The procedure makes use of the Principal Component Analysis to iden-
tify systematics, and it strongly relies on the individuation of the cut-off com-
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ponent that separates systematics (supposed to explain most of the data vari-
ance) from the astrophysical signal. Once the cut-off component is selected,
data reconstruction is a trial process that involves a simple matrix inversion.

We found that the PCA can clean up the light curves from systematics
(ex. spikes, offsets) while it is able to preserve their intrinsic properties (ex.
transit depth and stability/variability). However, the original data treatment
(ex. spike treatment) is crucial and it can alter (at very small temporal scales)
the results, therefore, our method could benefit from a cleaning procedure at
the beginning of the pipeline (e.g. a σ-clipping procedure).

Another delicate step of the procedure is the selection of the cut-off com-
ponent. Here, we retrieve it from a fit as three times the cut-off (τ) of the
exponential part of the fitting function, for all the campaigns. This should be
optimised by applying a fine tuning procedure on the selection that can better
characterize each campaign.

The strength of the method rely on the fact we do not need to know any
information more than data itself to retrieve the systematics, therefore, it is
quite simple to apply to other data from completely different instruments.

One of the first products of the analysis will be the identification of stable
sources that can be used as photometric calibrators along the ecliptic plane
that can be used for projects as ARIEL that require very stable photometric
calibrators.
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Lüftinger T, Maggio A, Maldonado J, Maillard JP, Mall U, Marquette JB,
Mathis S, Maxted P, Matsuo T, Medvedev A, Miguel Y, Minier V, Morello
G, Mura A, Narita N, Nascimbeni V, Nguyen Tong N, Noce V, Oliva F,
Palle E, Palmer P, Pancrazzi M, Papageorgiou A, Parmentier V, Perger
M, Petralia A, Pezzuto S, Pierrehumbert R, Pillitteri I, Piotto G, Pisano G,
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Fig. 2 Integrated difference of the variance at different component removed (black line) for
Campaign 1 to 11a, in which the best fit (cross points) and the component at 3τ (vertical
dashed line) are shown.



16 A. Petralia, G. Micela

0 20 40 60 80
Removed Components

0.0

0.2

0.4

0.6

0.8

1.0

1.2

In
te

gr
at

ed
 d

iff
er

en
ce

c11b

0 20 40 60 80
Removed Components

0.0

0.2

0.4

0.6

0.8

1.0

1.2

In
te

gr
at

ed
 d

iff
er

en
ce

c12

0 20 40 60 80
Removed Components

0.0

0.2

0.4

0.6

0.8

1.0

1.2

In
te

gr
at

ed
 d

iff
er

en
ce

c13

0 20 40 60 80
Removed Components

0.0

0.2

0.4

0.6

0.8

1.0

1.2

In
te

gr
at

ed
 d

iff
er

en
ce

c14

0 20 40 60 80
Removed Components

0.0

0.2

0.4

0.6

0.8

1.0

1.2

In
te

gr
at

ed
 d

iff
er

en
ce

c15

0 20 40 60 80
Removed Components

0.0

0.2

0.4

0.6

0.8

1.0

1.2

In
te

gr
at

ed
 d

iff
er

en
ce

c16

0 20 40 60 80
Removed Components

0.0

0.2

0.4

0.6

0.8

1.0

1.2

In
te

gr
at

ed
 d

iff
er

en
ce

c17

0 20 40 60 80
Removed Components

0.0

0.5

1.0

1.5

In
te

gr
at

ed
 d

iff
er

en
ce

c18

0 20 40 60 80
Removed Components

0.0

0.5

1.0

1.5

In
te

gr
at

ed
 d

iff
er

en
ce

c19

0 5 10 15 20
Campaign number

0

5

10

15

20

25

30

C
ut

-o
ff 

co
m

po
ne

nt

Fig. 3 Same as Fig. 2 but for Campaign 11b to 19. We also show the cut-off component as
a function of the Campaign (bottom right) and two horizontal dashed lines mark the values
11 and 16.
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Fig. 4 Global trends obtained by adding all the light curves (shifted by their mean and
divided by their standard deviation) of a campaign for the original data (black line), PDC
corrected (blue dashed line) and PCA corrected data (red line), for all the campaign. A
straight line (dashed red line) y = 0 is also shown for clearness and the figures order is the
same as in Fig. 2.
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Fig. 5 Same as Fig. 4 but for Campaign 11b to 19 and, in the bottom panel, the standard
deviation of the global trends as a function of the campaign. In the case of the Campaign
11 we average the two values obtained for the campaign 11a and 11b.
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Fig. 6 (Top panel) Light curve in the full observational window (∼ 70 days), in the case
of the original data (left - black line), the PDC corrected data (right - dashed red line) and
the PCA corrected one (right - blue line), in which the coloured arrows mark the position
of the three transits shown in the bottom panel. (Bottom panel) Light curves in a short
temporal window (8 hrs) around the transits, at the time marked by the arrows in the top
panel, and colour coded based on the transit. Each plot shows the original (dotted line), the
PDC (dashed line) and the PCA (continuous line) corrected data. For clearness, the original
data has been shifted upward by 105 while the PCA corrected one is shifted downward by
the same quantity.
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Fig. 7 Same as for Fig. 6 but for the star (HIP2736, EPIC 220383386). In this case the shift
applied to the original data and the PCA corrected data in the bottom panels is 2.5 × 103

while in the top-right panel the PCA corrected light curve is shifted upward by 4e3.


