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ABSTRACT
We introduce the public version of the BAyesian STellar Algorithm (BASTA), an open-source
code written in Python to determine stellar properties based on a set of astrophysical observ-
ables. BASTA has been specifically designed to robustly combine large datasets that include
asteroseismology, spectroscopy, photometry, and astrometry. We describe the large number of
asteroseismic observations that can be fit by the code and how these can be combined with
atmospheric properties (as well as parallaxes and apparent magnitudes), making it the most
complete analysis pipeline available for oscillating main-sequence, subgiant, and red giant
stars. BASTA relies on a set of pre-built stellar isochrones or a custom-designed library of
stellar tracks which can be further refined using our interpolation method (both along and
across stellar tracks/isochrones). We perform recovery tests with simulated data that reveal
levels of accuracy at the few percent level for radii, masses, and ages when individual oscilla-
tion frequencies are considered, and show that asteroseismic ages with statistical uncertainties
below 10% are within reach if our stellar models are reliable representations of stars. BASTA is
extensively documented and includes a suite of examples to support easy adoption and further
development by new users.

Key words: Asteroseismology — stars: fundamental parameters — methods: numerical —
methods: statistical — software: public release

1 INTRODUCTION

Obtaining reliable properties of field stars is of paramount impor-
tance for many fields in astrophysics. An accurate characterization
of exoplanets requires precise knowledge of the parent star radius

★ The code is available via https://github.com/BASTAcode/BASTA
† Formerly V. Silva Aguirre
‡ Formerly J. R. Mosumgaard

and mass, the ultimate fate and evolutionary remnant of a star can
only be determined if we know its initial mass, and the study of
the formation and evolution of our Galaxy is incomplete without
the distribution of stellar ages across the Milky Way. These are just
examples of how determining fundamental properties of stars has
become the cornerstone of research for a variety of subjects.

Empirical methods to determine physical characteristics of
stars are restricted to targets where e.g., years of monitoring are
feasible (eclipsing binaries), or their bright apparent magnitude
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allows the measurement of the angular diameter (interferometry).
This severely limits the number of stars where these techniques
are applicable, and demands the development of methods in which
some measured quantities (e.g., stellar effective temperature, surface
composition, and luminosity) are compared to model predictions to
infer stellar properties (such as age).

The advent of large-scale stellar surveys providing a myriad of
data for thousands of stars across the Galaxy has led to the further
development of algorithms that can combine different datasets to
determine stellar properties. These algorithms vary in the approach
used to extract the final parameters of stars (e.g., machine-learning,
neural networks, Bayesian inference), the method to determine un-
certainties (e.g., confidence intervals, Gaussian errors, Monte Carlo
sampling), and the set of stellar tracks/isochrones considered in the
analysis. Moreover, the possible combinations of input data are
different for these codes: while some rely on spectroscopic, photo-
metric, and astrometric data (e.g., StarHorse (Queiroz et al. 2018),
MADE (Das & Sanders 2019)), others have the capability of includ-
ing asteroseismic information (e.g., PARAM (Rodrigues et al. 2017),
Isoclassify (Huber et al. 2017), AIMS (Rendle et al. 2019)). The
latter point is of key importance: due to their dependence on the
internal stellar structure, reproducing the observed pulsation prop-
erties allows for a determination of the stellar radius, mass, and age
of solar-type stars and red giants to a level of precision that cannot
be achieved when fitting only atmospheric properties. Asteroseis-
mology has therefore become an invaluable tool for a large variety
of studies thanks to the rapidly increasing amount of data available
since the launch of the space-missions CoRoT, Kepler, and TESS,
which will continue to ramp up as future missions such as PLATO
2.0 (Rauer et al. 2014) begin to acquire data.

The irruption of asteroseismology in the scene of stellar proper-
ties determination poses tremendous challenges to fitting algorithms
due to the large variety of oscillation quantities that one can try to
reproduce. In stars whose driving mechanism is stochastic excitation
from their outer convective envelopes (called solar-like oscillators,
see e.g. Chaplin & Miglio 2013, for a review), the so-called global
asteroseismic parameters can almost always be determined if oscil-
lations are detected. If the data are of sufficient quality, individual
frequencies of oscillation (or combinations of them) can be repro-
duced in main-sequence stars, as well as modes of mixed character
that dominate the information content in subgiants. More evolved
red giants present a much richer spectrum of pulsation, where state-
of-the-art fitting algorithms reproduce only a subset of the observed
frequencies while also considering a probe of the stellar core in the
form of a gravity-mode period spacing. It is clear that fully exploit-
ing the richness of asteroseismic data from solar-like oscillators
requires algorithms capable of fitting a large variety of oscillation
properties, which become relevant at different evolutionary stages
and are strongly dependent on the data quality available. Moreover,
these data should be supplemented with knowledge of the stellar
effective temperature, a measurement of chemical composition, and
ideally a determination of luminosity or absolute magnitude from
astrometric and photometric data.

With this in mind we have developed the BAyesian STellar
Algorithm (BASTA), originally introduced in Silva Aguirre et al.
(2015). BASTA is a fitting tool written in Python (Van Rossum &
Drake 2009) designed to take advantage of the large variety of data
obtained by large-scale ground-based surveys and space missions to
precisely characterize stars. It has been built in a flexible way that
allows the user to choose any combination of input data to be fit
and, to the best of our knowledge, it is the fitting code that includes
the largest number of global asteroseismic quantities and individual

frequency diagnostics for solar-type stars, subgiants, and red giants.
Other codes do not include information from individual oscillation
frequencies (e.g., Isoclassify and PARAM), or glitch properties
(e.g. AIMS), or simply do not take any asteroseismic input (e.g.,
StarHorse and MADE). Moreover, BASTA allows to simultaneously
reproduce spectroscopic, photometric, astrometric, and asteroseis-
mic data in a self-consistent manner, and is the only code where
parallaxes can be fitted directly in addition to e.g., individual oscil-
lation frequencies without the need of transforming the astrometric
information into a luminosity estimate. BASTA can run using pub-
licly available compilations of stellar isochrones or tailor-made sets
of evolutionary tracks with a wide combination of input physics.
BASTA has been extensively used to determine stellar prop-

erties of both asteroseismic and non-seismic exoplanet host stars
discovered by Kepler (Silva Aguirre et al. 2015; Lundkvist et al.
2016; Bonomo et al. 2019), K2 (Johnson et al. 2018; Persson et al.
2018; Van Eylen et al. 2018a; Hjorth et al. 2019a; Korth et al.
2019; Lund et al. 2019), TESS (Gandolfi et al. 2018; Huber et al.
2019) and MASCARA (Talens et al. 2018; Hjorth et al. 2019b).
The sample of precise asteroseismic parameters originally derived
in Silva Aguirre et al. (2015) has enabled detailed studies of e.g.
exoplanet eccentricities (Van Eylen & Albrecht 2015) and the ra-
dius gap (Van Eylen et al. 2018b, see also Fulton et al. 2017).
Since then, the applications of BASTA have been extended to a large
variety of studies across fields of astrophysics such as characterisa-
tion of asteroseismic targets (e.g., Silva Aguirre et al. 2017, 2020b;
Serenelli et al. 2017; Stokholm et al. 2019), Galactic archaeology
(e.g., Casagrande et al. 2016; Silva Aguirre et al. 2018; Spitoni
et al. 2019, 2020; Nissen et al. 2020), open clusters (e.g., Lund
et al. 2016; Stello et al. 2016; Arentoft et al. 2019), and the study of
physical processes in stars such as rotation, convective overshoot,
and magnetic activity (e.g., van Saders et al. 2016; Hjørringgaard
et al. 2017; Booth et al. 2017). It has also been shown to be one of
the most accurate pipelines available in tests using artificial data of
main-sequence stars (Reese et al. 2016).

In this paper we introduce the public version of BASTA. We
describe the Bayesian approach followed when determining stellar
properties, the compilations of stellar track and isochrones available,
the main features and capabilities included in the code, and present
validation results of the fitting algorithm using artificial data.

2 THE BAYESIAN FRAMEWORK

We use Bayesian statistics for stellar properties inference. In this
framework, Bayes’ theorem combines our prior knowledge about the
model stellar parameters 𝚯 (which includes e.g., mass, radius and
age) with the information given by the data 𝑫 (such as measurements
of effective temperature, metallicity and oscillation frequencies),
to provide the posterior probability distribution of model stellar
parameters,

𝑃(𝚯|𝑫) = 𝑃(𝑫 |𝚯)𝑃(𝚯)
𝑃(𝑫) . (1)

Here, 𝑃(𝑫 |𝚯) or the likelihood is the probability of observing the
data given the model parameters, 𝑃(𝚯) or the prior is the probability
of parameters without seeing the data, and 𝑃(𝑫) or the evidence is
the total probability of observing the data (which is a normalising
constant).

We define the likelihood assuming Gaussian-distributed uncer-
tainties on all observables except the magnitudes (see Section 4.2.2).
BASTA is developed with great emphasis on enabling the user to fit a

MNRAS 000, 1–18 (2021)



The BAyesian STellar Algorithm 3

variety of observables including the ones coming from spectroscopy
(e.g. effective temperature, 𝑇eff , surface metallicity, [Fe/H], and
logarithm of surface gravity, log (𝑔)), astrometry and photometry
(e.g. parallax,𝜛, and apparent magnitudes,𝑚𝜁 ), and asteroseismol-
ogy (e.g. large frequency separation, Δ𝜈, frequency of maximum
power, 𝜈max, individual oscillation frequencies, 𝜈, and their combi-
nations, 𝑟01, 𝑟10, 𝑟02, 𝑟012 and 𝑟102). Note that there are correlations
among some of these observables which we account for in the fitting
process using the corresponding covariance matrix. To this purpose,
we define the full likelihood as the product of likelihoods of groups
of observables, 𝐷𝑖 ,

𝑃(𝑫 |𝚯) =
∏
𝑖

𝑃(𝑫𝑖 |𝚯). (2)

The group likelihoods are computed using the expression (except
for distances, see Section 4.2.2 below),

𝑃(𝑫𝑖 |𝚯) = 1√︁
2𝜋 |C𝑖 |

exp
(
−𝜒2

𝑖 /2
)
, (3)

where |C𝑖 | is the determinant of the covariance matrix, and

𝜒2
𝑖 =

1
𝑁𝑖

(
𝑶𝑖,obs − 𝑶𝑖,mod

)T C−1
𝑖

(
𝑶𝑖,obs − 𝑶𝑖,mod

)
. (4)

In Eq. 4, note the division by the number of observables, 𝑁𝑖 . Al-
though its inclusion is adhoc in a statistical sense, it can be useful
in artificially reducing the weight of a group of observables (nor-
mally the individual oscillation frequencies). In BASTA, the user can
choose to turn off this division.

The user can specify an informative prior on stellar mass as
given by the initial mass function (IMF). There are several versions
of IMF included in BASTA (Salpeter 1955; Miller & Scalo 1979;
Kennicutt et al. 1994; Scalo 1998; Kroupa 2001; Baldry & Glaze-
brook 2003; Chabrier 2003). To decrease the computation time, the
user can pre-select a region of the grid for which the likelihoods
are computed. This selection can be made on any available grid
properties with user-defined tolerances. Technically, this is equiva-
lent to assuming specific non-informative priors on certain stellar
parameters.

We can use the computed posterior probability 𝑃(𝚯|𝑫) to
derive the marginalized posterior for any model stellar parameter 𝜃
using the expression,

𝑃(𝜃 |𝑫) =
∫

𝑃(𝜃,𝚯′ |𝑫)𝑤𝚯𝑑𝚯
′, (5)

where 𝚯′ represents all the model parameters except 𝜃. The weight
𝑤𝚯 is used to account for the volume of the parameter space occu-
pied by the model characterized by 𝚯, i.e. half the distance to its
neighbouring points in all dimensions used to generate the grid (see
further details in section 3).

3 GRIDS OF STELLAR MODELS

The functionalities of BASTA rely on the use of collections of stellar
evolution tracks or isochrones to extract the properties of stars by
means of Bayesian inference. In its current version BASTA runs over
publicly available sets of isochrones and tracks as well as custom-
computed ones, which we process and store in Hierarchical Data
Format version 5 (HDF5) and make available upon request. The
functionalities and adopted input physics for each case are described
in the following subsections.

Case 𝜆ov 𝐷diff 𝜂

1 No No No
2 Yes No No
3 Yes No Yes
4 Yes Yes Yes

Table 1. Science cases of BaSTI tracks and isochrones available in BASTA.
Columns show combinations of convective core overshooting (𝜆ov), micro-
scopic diffusion (𝐷diff ), and mass loss (𝜂). See text for details.

3.1 BaSTI isochrones and tracks

Stellar properties can be determined with BASTA making use of the
recently updated library "a Bag of Stellar Tracks and Isochrones"
(BaSTI1). This compilation consists of evolutionary tracks and
isochrones that are available for four distinct science cases defined
by the inclusion of different physical processes as given in Table 1.
We give a brief description of its main features in this section, and
refer the reader to Hidalgo et al. (2018) and Pietrinferni et al. (2021)
for additional details.

The prescription for convective core overshooting consists of
instantaneous mixing beyond the region formally defined by the
Schwarzschild criterion, keeping the radiative temperature gradient
in this region. In the case of main-sequence models with convective
core, the overshoot region is defined by the distance 𝜆ov×𝐻𝑝 , where
𝐻𝑝 is the local pressure scale height and 𝜆ov is a free parameter.
It has been set equal to 0.2, decreasing to zero when the mass
decreases below a certain value. The approach used for decreasing
𝜆ov from its maximum value to zero depends on both the chemical
composition and stellar mass (see section 2.2 of Hidalgo et al. 2018,
for details). During the core-helium burning stage, regardless of the
considered science case, core mixing is modeled by accounting for
semiconvection and suppression of breathing pulses.

The science case including atomic diffusion follow the pre-
scription of Thoul et al. (1994), while mass-loss is taken into
account in the formulation of Reimers (1975) with an efficiency
of the free parameter 𝜂 set to 0.3. The temperature stratification
in the outer stellar layers is given by the Vernazza et al. (1981)
formulation, but for the case of very-low mass stellar models for
which outer boundary conditions based on accurate model atmo-
spheres have been adopted (see Hidalgo et al. 2018; Pietrinferni
et al. 2021, for a detailed discussion on this topic). For the adopted
physical framework and solar heavy element distribution (see sec-
tion 4.2.1 below), the calibration of a Standard Solar Model (SSM)
sets the value of the mixing length parameter 𝛼MLT, and of the
initial solar metallicity and He abundance. At the solar age, the
BaSTI SSM2 matches the solar luminosity and radius as well as the
present (𝑍/𝑋)� abundance ratio with a value for the mixing length
parameter 𝛼MLT = 2.006 (we refer to Hidalgo et al. 2018, for details
about the properties of the BaSTI SSM).

The BaSTI stellar models are available both for the Caffau
et al. (2011) solar heavy element mixture, and for an 𝛼−element
enhanced mixture3 ([𝛼/Fe] = +0.4). For each selected metallicity,
the corresponding initial helium abundance has been obtained by
adopting an He-enrichment ratio equal to Δ𝑌/Δ𝑍 = 1.31, and a

1 http://basti-iac.oa-abruzzo.inaf.it
2 We note that the BaSTI SSM has been calculated starting from the pre-
main sequence and including diffusion of He and heavy elements
3 The computation of a stellar model grid for an 𝛼−depleted mixture is in
progress.
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primordial He abundance equal to𝑌P = 0.247. From the calibration
of a SSM the resulting initial solar abundances are 𝑍ini = 0.01721
and𝑌ini = 0.2695. From the compilation of 21 metallicities initially
available with the release of the BaSTI models, we have increased
the resolution in chemical composition and age by interpolating
metallicity points for all science cases using the available online
routine provided by the BaSTI team.

The current release of the BaSTI library also contains evolu-
tionary tracks spanning masses from 0.1 M� to 15 M� . For a subset
of these (ranging from ∼ 0.7 M� to 4.0 M� with the lower limit
being metallicity dependent) the full interior structure is also pro-
vided throughout the evolution. The number of structures stored4

at each mass varies with metallicity, ranging from ∼ 300 individual
models at the high-mass end to more than 9,000 structures at the
low-mass end. These are stored in the standardised fgong format
described in the website5 of the Aarhus Red Giants Challenge (Silva
Aguirre et al. 2020a). The availability of interior structures allows
us to compute oscillation frequencies and determine asteroseismic
observables as described in Section 4.1.

Our grids of BaSTI isochrones and tracks reach ages up to
16 Gyr, which allow us to properly construct the posterior distribu-
tions of old stars without risking the appearance of an edge effect
(see e.g., Valle et al. 2014, 2015).

3.2 Custom-computed evolutionary tracks

While the use of publicly available compilations of tracks and
isochrones (such as BaSTI) makes it easy to compare the BASTA
results with those from other fitting codes, it poses a limit on our
flexibility to explore different combinations of input physics and
numerical implementations. For this reason, we developed algo-
rithms that calculate and process user-defined grids of evolutionary
tracks with any combination of input physics and make them readily
usable with BASTA. The limitations on the input physics are given
by the features available in an evolutionary code, and currently we
support the usage of GARSTEC (Weiss & Schlattl 2008) and the lat-
est publicly available version of MESA (Paxton et al. 2011, 2013,
2015).

In the case of GARSTEC, our running version of the code has
experienced a number of developments since the published version
of Weiss & Schlattl (2008). Updated nuclear reactions from Solar
Fusion II are available (Adelberger et al. 2011), and electron screen-
ing of nuclear reactions now also covers the intermediate regime
using the prescriptions of Dewitt et al. (1973) and Graboske et al.
(1973). The definition of convective boundaries follows the recipe
of Gabriel et al. (2014), and includes a treatment of semiconvective
mixing as described in Silva Aguirre et al. (2011). GARSTEC can
couple on-the-fly distilled information from the Stagger grid of
3D-hydrodynamical simulations of stellar atmospheres during the
evolution (Jørgensen et al. 2018; Mosumgaard et al. 2018, 2019;
Jørgensen & Weiss 2019). The prescription in GARSTEC for over-
shoot consists of a diffusive process with a diffusion constant given
by

𝐷 (𝑧) = 𝐷0 exp
(
−2𝑧
𝑓 𝐻𝑃

)
, (6)

where the constant 𝐷0 is derived from the MLT convective veloci-
ties, 𝑧 is the radial distance from the edge of the convective zone, 𝑓

4 The complete database of interior structures is publicly available at the
BaSTI URL repository.
5 https://github.com/vaguirrebkoch/aarhus_RG_challenge

is a free efficiency parameter, and 𝐻𝑃 is the pressure scale height.
For small convective cores the overshooting efficiency is limited
using a geometrical cut-off factor 𝑔cut that scales the local pressure
scale height as follows:

𝐻𝑃 = min

{
𝐻𝑃 , 𝐻𝑃

(
𝑅cz 𝑓

𝑔cut𝐻𝑃

)2
}
. (7)

Here 𝑅cz is the radial thickness of the convective zone. The default
value of the free parameter is 𝑔cut = 2, and it can be modified to
allow finer control over the size of small convective cores, a desired
feature in e.g., studies constraining the extent of convective cores
using asteroseismic data (Silva Aguirre et al. 2013; Deheuvels et al.
2016).

We have two different approaches for grid sampling. In the
first, which is the conventional approach, we compute tracks on a
predefined mesh of stellar parameters. The mesh points are typi-
cally equally spaced along each parameter. The stellar model grids
calculated in this manner are known as Cartesian grids. In the sec-
ond approach, we sample the parameter space uniformly using a
quasi-random number generator described in Sobol (1967). Note
that quasi-random number generators perform better than pseudo-
random number generators, specifically in high-dimensional spaces,
as the latter provides more clumpy distributions. We refer to grids
computed in this way as Sobol grids.

We can generate Cartesian and Sobol grids over a number of
stellar parameters including mass (𝑀ini), initial helium abundance
(𝑌ini), initial metallicity ([Fe/H]ini), alpha enhancement ([𝛼/Fe]),
mixing-length (𝛼MLT), overshoot and mass-loss (𝜂). The parameters
used to generate the grid define the dimension of the weight 𝑤𝚯
included in our marginalised posterior distribution (see Eq. 5). Note
that we construct grids over [Fe/H]ini (instead of initial metal mass
fraction), because this quantity is well constrained by the observed
metallicity, and hence allows convenient choice of the parameter
space over which one needs to calculate a grid to model the observed
star. We can either treat 𝑌ini as a free parameter similar to other
stellar parameters, or determine it from the [Fe/H]ini assuming
values for the primordial helium abundance (default 𝑌𝑝 = 0.248;
Fields et al. 2020), and the helium-to-metal enrichment ratio (default
Δ𝑌/Δ𝑍 = 1.4). The default values can be changed by the user. In
the case of GARSTEC, we have implemented alpha enhanced and
depleted mixtures of the Asplund et al. (2009) solar abundances,
ranging from [𝛼/Fe] = −0.2 to [𝛼/Fe] = 0.6 in steps of 0.1. We
adopt consistent opacity tables from OPAL for high-temperatures
(Iglesias & Rogers 1996) and the Ferguson et al. (2005) opacities
in the low-temperature regime.

4 AVAILABLE FITTING PARAMETERS

One of the core features of BASTA is its ability to handle inhomo-
geneities in the available data as long as they are contained in the
grid model parameters. BASTA can easily deal with heterogeneous
input and provide a robust set of stellar properties based on the
likelihood of the models in its grids. In the following sections, we
describe the quantities available for fitting asteroseismic, photomet-
ric, spectroscopic, and astrometric data. A complete and up-to-date
list of code parameters can be found in the code documentation
(available on GitHub).

MNRAS 000, 1–18 (2021)
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The BAyesian STellar Algorithm 5

4.1 Asteroseismology

The wealth of data from main-sequence and red giant stars pro-
vided by asteroseismic space missions has driven the development
of BASTA towards the study of solar-like oscillators. These are stars
whose oscillations are excited by the same mechanism as in the
Sun, and comprise the vast majority of targets where asteroseismic
quantities are available. For solar-like oscillators, there are several
observables that the user can select to be reproduced by the models
and fit with BASTA. In all grids of stellar models currently sup-
ported (see Section 3), theoretical oscillation frequencies have been
computed using the Aarhus adiabatic oscillation package (ADIPLS,
Christensen-Dalsgaard 2008).

4.1.1 Global asteroseismic quantities

The number of asteroseismic properties that can be extracted from
the power spectrum of a given star depends on the length of the
observations, the target’s apparent magnitude, and its evolutionary
state (since the time-scale for oscillations scales with the intrinsic
luminosity, see e.g., Kjeldsen & Bedding (1995, 2011)). If the data
reveal the signal of the oscillations, two basic seismic observables
that can be readily extracted are the average large frequency sep-
aration 〈Δ𝜈〉 and the frequency of maximum power 𝜈max. These
quantities, also known as the global asteroseismic parameters, scale
approximately with stellar properties as follows:(
〈Δ𝜈〉
〈Δ𝜈�〉

)2
' 𝜌̄

𝜌̄�
, (8)

𝜈max
𝜈max,�

' 𝑀

M�

(
𝑅

R�

)−2 (
𝑇eff
𝑇eff,�

)−1/2
, (9)

where 〈Δ𝜈�〉, 𝜈max,� , and 𝑇eff,� are the values measured in the
Sun. As 〈Δ𝜈〉 and 𝜈max are normalised to these reference solar
values, they can be specified by the user. By default, BASTA adopts
〈Δ𝜈�〉 = 135.1 𝜇Hz and 𝜈max,� = 3090 𝜇Hz from Huber et al.
(2011).

There is extensive literature devoted to the testing and validat-
ing the scaling relations by using independent constraints in stellar
masses and radii from e.g., binary stars, clusters, interferometry, and
parallaxes (see e.g., Silva Aguirre et al. 2012; Huber et al. 2012;
Miglio et al. 2012; White et al. 2013; Gaulme et al. 2016; Huber
et al. 2017; Sahlholdt et al. 2018; Sahlholdt & Silva Aguirre 2018;
Brogaard et al. 2018, to name a few). There is general agreement
that the scaling relations are accurate to within a few percent, but as
it is clear from Eqs. 8 and 9 these extrapolations from the solar val-
ues do not take into account variations with chemical composition
nor the evolutionary stage of the star.

To address some of these issues, several prescriptions have
been proposed to correct the 〈Δ𝜈〉 scaling relation, while the equa-
tion for 𝜈max is purely empirical and no corrections across the range
of interest in 𝑇eff and [Fe/H] have been derived yet (but see Belka-
cem et al. 2011, for an initial explanation on the theory behind Eq. 9).
We have implemented in BASTA four additional determinations of
the average large frequency separation that aim at further decreas-
ing the level of systematic deviation in the scaling relation Eq. 8. A
detailed comparison between the performance of each prescription
can be found in Viani et al. (2019).

The first two determinations consist of a linear fit as a function
of radial order to the model individual frequencies of ℓ = 0 weighted
by a Gaussian centred at 𝜈max, the only difference being the adopted

Full Width at Half Maximum of 0.25𝜈max (White et al. 2011) or
0.66𝜈0.88

max (Mosser et al. 2012a). The average large frequency sep-
aration 〈Δ𝜈〉 is determined from the slope of this fit and is meant
to mimic as close as possible the manner in which this quantity is
derived from the observations. This average large frequency sepa-
ration is available for the grids of stellar models where we compute
the individual oscillation frequencies (see Sections 3.1 and 3.2). As
a by-product of this calculation we obtain the dimensionless offset
𝜖 that can be used to correct for differences between the observed
and model radial order (see section 4.1.2 below).

The other two determinations are those of Sharma et al. (2016)
and Serenelli et al. (2017) who, based on the same principle of the
White et al. (2011) approach, have computed a correction factor
across the Hertzprung-Russell Diagram for the value of 〈Δ𝜈〉 ob-
tained from Eq. 8 that depends on the mass, metallicity, effective
temperature, and evolutionary state (hydrogen-core or-shell burn-
ing or core-helium burning) of the star. These corrections can be
computed for any grid of stellar tracks or isochrones, as they are
independent of the availability of theoretical oscillation frequencies.

As a final remark, we note that when defining the solar refer-
ence values 〈Δ𝜈�〉 and 𝜈max,� in Eqs. 8 and 9 there is an implicit
assumption that fitting a target with those values of 〈Δ𝜈〉 and 𝜈max
(and solar temperature and metallicity) will result in a star of 1 M�
and 1 R� (but not necessarily solar age, as this depends on the
input physics used to construct the models). To ensure this level of
consistency, all theoretical values of 〈Δ𝜈〉 in our grids of models are
re-scaled by a factor given by the fraction 〈Δ𝜈�〉/〈Δ𝜈�〉grid, where
〈Δ𝜈�〉grid is the average large frequency separation computed from
the individual ℓ = 0 modes of a solar model computed with the
same input physics of the corresponding grid using the FWHM of
White et al. (2011).

4.1.2 Individual oscillation frequencies

If the time-series of observations is of sufficient signal-to-noise
ratio and resolution, it is possible to extract individual oscillation
frequencies characterized by radial order 𝑛 and angular degree ℓ
(see e.g., Davies et al. 2016; Lund et al. 2017). For stellar disk-
integrated observations, as it is the case of the space missions,
geometrical cancellation suppresses the signal from all modes ex-
cept those with low degree ℓ ≤ 3. If the asymptotic theory can be
applied to describe the oscillation (e.g., Tassoul 1980), modes of
odd and even degree are separated by ∼ 〈Δ𝜈〉/2. As a result, the
observed oscillation spectrum contains one mode of each degree
ℓ = 1, 2, 3 between two consecutive ℓ = 0 modes. Departures from
this asymptotic description occur e.g., in the presence of mixed
modes (see Section 4.1.5).

Most current stellar evolutionary models use a rudimentary de-
scription of the outer-most layers of stars with convective envelopes
(e.g., the mixing-length theory of Böhm-Vitense 1958), leading to
systematic frequency shifts in the oscillation modes when com-
pared to observations (Christensen-Dalsgaard et al. 1996). In order
to correct for this effect, a so-called surface correction needs to
be applied to the model frequencies. There are three prescriptions
for the surface corrections implemented in BASTA and all include
power-law dependence on frequency. They aim at obtaining the
corrected model frequencies 𝜈cor

𝑛,ℓ
from the original model frequen-

cies 𝜈model
𝑛,ℓ

by determining the corresponding fitting coefficients of
the power law correction to make them as close as possible to the
observed frequencies 𝜈obs

𝑛,ℓ
.

The first prescription is the empirical power-law correction
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from Kjeldsen et al. (2008):

𝑟𝜈cor
𝑛,ℓ

− 𝜈model
𝑛,ℓ

=
𝑎

𝑄

(
𝜈model
𝑛,ℓ

𝜈0

)𝑏
, (10)

in which 𝑎 and 𝑟 are the fitting coefficients, 𝑏 is a fixed exponent,
and 𝜈0 is a reference frequency, typically chosen to be the frequency
of maximum power 𝜈max. 𝑄 is the ratio between the inertia of the
mode and the theoretical inertia that a radial (ℓ = 0) mode would
have at that frequency, determined by linear interpolation.

The other implemented corrections are the two physically mo-
tivated surface corrections from Ball & Gizon (2014), first their
cubic correction:

𝜈cor
𝑛,ℓ

− 𝜈model
𝑛,ℓ

=
𝑎3 (𝜈model

𝑛,ℓ
/𝜈0)3

𝐼
, (11)

and secondly their combined correction, adding the cubic correction
from above to an inverse term:

𝜈cor
𝑛,ℓ

− 𝜈model
𝑛,ℓ

=
𝑎−1 (𝜈model

𝑛,ℓ
/𝜈0)−1 + 𝑎3 (𝜈model

𝑛,ℓ
/𝜈0)3

𝐼
. (12)

In these corrections, 𝑎−1 and 𝑎3 denotes the fitting coefficients,
and 𝐼 is the scaled mode inertia, typically normalized at the stellar
surface as (Aerts et al. 2010),

𝐼 =
4𝜋

∫ 𝑅

0
[
|𝜉𝑟 |2 + ℓ(ℓ + 1) |𝜉ℎ |2

]
𝜌0𝑟

2 d𝑟

𝑀
[
| ˜𝜉𝑟 (𝑅) |2 + ℓ(ℓ + 1) | ˜𝜉ℎ (𝑅) |2

] , (13)

where 𝜉𝑟 and 𝜉ℎ are the radial and horizontal components of the
displacement, 𝜌0 is the unperturbed stellar density, 𝑀 is the total
stellar mass, and 𝑅 is the photospheric radius.

When fitting individual oscillation frequencies, it is neces-
sary to correctly match each observed mode with its corresponding
theoretical counterpart of identical radial order 𝑛 as the surface
correction and thus the computation of the likelihood of the model
depend on the difference in frequency between the observed and
modelled frequency of the same radial order and angular degree.
Identifying the radial order in the observations of main-sequence
stars is relatively straight forward using the dimensionless offset 𝜖
(White et al. 2012), and BASTA has an option for the user to apply a
suitable correction to the radial order of the observed frequencies,
if desired. An example of the best fit model found by BASTA when
fitting the individual oscillation frequencies of the Kepler target
16 Cyg A is shown in Fig. 1.

4.1.3 Frequency combinations

Combinations of frequencies have been long used in asteroseismic
analysis to isolate the signature of a given stellar region and extract
detailed information about the structure of a star (e.g., Roxburgh &
Vorontsov 2003; Otí Floranes et al. 2005; Cunha & Metcalfe 2007;
Silva Aguirre et al. 2011). A simple example of this is the large
separation between modes of same angular degree and consecutive
overtone, Δ𝜈ℓ (𝑛) = 𝜈𝑛,ℓ − 𝜈𝑛−1,ℓ , that is related to the mean stellar
density (cf., Eq. 8). In BASTA we have included a number of combi-
nations as fitting parameters such as the small frequency separation:

𝑑02 (𝑛) = 𝜈𝑛,0 − 𝜈𝑛−1,2 , (14)

the 5-point small frequency separations:

𝑑01 (𝑛) =
1
8
(𝜈𝑛−1,0 − 4𝜈𝑛−1,1 + 6𝜈𝑛,0 − 4𝜈𝑛,1 + 𝜈𝑛+1,0) (15)

𝑑10 (𝑛) = −1
8
(𝜈𝑛−1,1 − 4𝜈𝑛,0 + 6𝜈𝑛,1 − 4𝜈𝑛+1,0 + 𝜈𝑛+1,1) , (16)

the frequency separation ratios:

𝑟02 (𝑛) =
𝑑02 (𝑛)
Δ𝜈1 (𝑛)

(17)

𝑟01 (𝑛) =
𝑑01 (𝑛)
Δ𝜈1 (𝑛)

, (18)

𝑟10 (𝑛) =
𝑑10 (𝑛)

Δ𝜈0 (𝑛 + 1) , (19)

and the set of ratios 𝑟010, 𝑟012, and 𝑟102:

𝑟010 = {𝑟01 (𝑛), 𝑟10 (𝑛), 𝑟01 (𝑛 + 1), 𝑟10 (𝑛 + 1), ...} , (20)
𝑟012 = {𝑟01 (𝑛), 𝑟02 (𝑛), 𝑟01 (𝑛 + 1), 𝑟02 (𝑛 + 1), ...} , (21)
𝑟102 = {𝑟02 (𝑛), 𝑟10 (𝑛), 𝑟02 (𝑛 + 1), 𝑟10 (𝑛 + 1), ...} . (22)

There are strong correlations between combinations including
five individual frequencies, and Deheuvels et al. (2016) showed that
the set 𝑟010 results in almost singular covariance matrices with large
condition numbers that can lead to overfitting the data as recently
suggested by Roxburgh (2018). Instead, the latter study recommends
the usage of 𝑟01 or 𝑟10 in combination with 𝑟02 to form the series
𝑟012 or 𝑟102, respectively. Here, the underlying problem is in the
use of conventional numerical methods to estimate the inverse of
covariance matrices, which turns out to be highly inaccurate if these
are ill-conditioned. We overcome this issue by using the Moore-
Penrose pseudo-inverse (see e.g. Strang 2006) of the covariance
matrices in the likelihood. The pseudo-inverse is calculated using
singular value decomposition and sets singular values to zero when
these are below a threshold that is defined relative to the largest
singular value.

The approach devised in BASTA to handle frequency combi-
nations attempts to give the user as much flexibility as possible
while keeping the statistical approach robust, and allows fitting any
of these quantities (𝑑01, 𝑑10, 𝑑02, 𝑟01, 𝑟10, 𝑟02, 𝑟010, 𝑟012, 𝑟102)
as desired. In all cases the user only needs to provide the indi-
vidual oscillation frequencies and BASTA will calculate the needed
combinations. It is possible to supply the code with the necessary
correlations across terms, and if these are not given then BASTA
calculates them by doing 10,000 Monte Carlo realisations drawn
from random Gaussian distributions of the individual frequencies.
An example of the fit to the frequency ratios obtained for 16 Cyg A
is shown in the top panel of Fig. 2.

4.1.4 Acoustic glitches

There are regions inside solar-like oscillating stars where the sound
speed changes at length scales substantially shorter than the local
wavelengths of the acoustic waves. These regions are known as
acoustic glitches in the stellar structure, and the two most promi-
nent are the helium ionization zone and the base of the envelope
convection zone. Glitches in the acoustic structure of stars leave
tiny signatures in the observed oscillation frequencies currently de-
tectable from space borne missions (see e.g. Miglio et al. 2010;
Mazumdar et al. 2012) as well as from ground-based facilities (see
e.g. Bedding et al. 2010; Grundahl et al. 2017). The bottom panel of
Fig. 2 shows an example of glitch signatures as seen in the oscillation
frequencies of 16 Cyg A observed by the Kepler satellite.
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Figure 1. Échelle diagram of the main-sequence star 16 Cyg A and the subgiant star HR 7322. The coloured circles show the observed oscillation modes (red:
ℓ = 0, green ℓ = 1, blue: ℓ = 2) from Lund et al. (2017) and Stokholm et al. (2019), respectively, while the coloured symbols with a black outline show the
modes predicted from model with the highest likelihood (same colour coding), corrected using the combined surface correction from Ball & Gizon (2014)
and scaled using the observed Δ𝜈 of the star. The size of the symbols from the model are scaled inversely with their normalized mode inertias: the larger the
symbol, the greater the probability of the mode being observed. The lighter coloured symbols with no outline are not matched to any observation, but still
predicted by the model.

The detection of the glitch signatures can provide useful in-
formation about stellar interior, e.g. they can be used to measure
the location of the base of envelope convection zone as well as to
infer the surface helium abundance (see e.g. Mazumdar et al. 2014;
Verma et al. 2014, 2017, 2019; Verma & Silva Aguirre 2019). The
perturbation to the oscillation frequencies due to acoustic glitches
can be derived using the asymptotic theory of stellar oscillations
(see e.g. Houdek & Gough 2007),

𝛿𝜈 = 𝐴He𝜈𝑒
−8𝜋2Δ2

He𝜈
2

sin(4𝜋𝜏He𝜈 + 𝜓He)

+ 𝐴CZ
𝜈2 sin(4𝜋𝜏CZ𝜈 + 𝜓CZ), (23)

where the two terms on the right-hand side represent contribu-
tions from the helium and base of the convection zone glitches,
respectively. The parameters 𝐴He, ΔHe, 𝜏He and 𝜓He depend on the
properties of the helium ionizing layers, whereas 𝐴CZ, 𝜏CZ and 𝜓CZ
depend on the properties of the base of the convection zone. The
parameter 𝜏CZ is of particular importance as it provides an estimate
of the acoustic depth of the base of the convective envelope. An-

other quantity of interest is the average amplitude of helium glitch
signature,

〈𝐴𝜈〉 =

∫ 𝜈2
𝜈1

𝐴He𝜈𝑒
−8𝜋2Δ2

He𝜈
2
𝑑𝜈∫ 𝜈2

𝜈1
𝑑𝜈

=
𝐴He [𝑒−8𝜋2Δ2

He𝜈
2
1 − 𝑒−8𝜋2Δ2

He𝜈
2
2 ]

16𝜋2Δ2
He [𝜈2 − 𝜈1]

, (24)

which has been used in the past to measure the envelope helium
abundance of solar-type stars.

We have implemented in BASTA the capability to fit the ob-
served glitch parameters. The helium and convection zone glitch
parameters are extracted from oscillation frequencies using the
Method A of Verma et al. (2017, 2019). Briefly, in Method A,
we modelled the total oscillation frequency,

𝑓 (𝑛, ℓ) =
4∑︁

𝑘=0
𝑏𝑘 (ℓ)𝑛𝑘 + 𝛿𝜈, (25)

where the first term represents the smooth component of oscillation
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Figure 2. Ratios and glitch signatures for 16 Cyg A as a function of oscillation frequencies. In the top panel, the black and green circles represent the observed
ratios 𝑟02 and 𝑟01, respectively, while the black and green diamonds show the corresponding quantities for the best-fitting model (see the legend). In the bottom
panel, the circles represent the sum of the observed glitch signatures from the helium ionization zone and the base of convection zone, while the diamonds
show the same for the best-fitting model.

frequencies while the second term arises from glitches (see Eq. 23).
The polynomial coefficients 𝑏𝑘 (ℓ) are determined together with the
glitch parameters by fitting Eq. 25 to the oscillation frequencies
using nonlinear optimization method based on Broyden-Fletcher-
Goldfarb-Shanno (BFGS) algorithm (see e.g. Fletcher 1987). To
estimate the uncertainties in the glitch parameters, we repeat the
fitting process using 1,000 realisations of the individual oscillation
frequencies and estimate the full covariance matrix. The uncertain-
ties in the glitch parameters correspond to the square root of the
diagonal terms in the matrix, which are consistent with the error
bars obtained from the Hessian matrix.

In the current implementation, we do not use the parameters
associated with the base of convection zone glitch in the stellar
properties determination as it is typically difficult to reliably extract
them from the contemporary frequency precision for two reasons:
(1) the small amplitude of the base of convection zone signature, and
(2) the issue caused by aliasing (Mazumdar & Antia 2001). Having
said that, it is straightforward to modify the current implementation
to use the glitch parameters related to the base of convection zone.

4.1.5 Mixed modes and the frequency matching routine

As stars evolve beyond the core-hydrogen burning phase their oscil-
lation pattern develop irregularities: when the helium core contracts
as a product of stellar evolution, the frequency of the g-modes in-
creases and interactions between the p-mode behaviour near the
surface and the g-mode behaviour near the core take place. Modes
can experience mixed properties and exchange nature, causing these
so-called mixed modes to deviate from the regular oscillation pat-
tern of the p-modes and thus to be visible in an échelle diagram as
avoided crossings.

Mixed modes have a substantial diagnostic potential as they are
sensitive to properties of the stellar core. However, mixed modes
complicate the analysis of individual frequencies as this departure
from simple asymptotic theory results in the presence of more than
one non-radial mode of a given angular degree between two consec-
utive ℓ = 0 modes, and some of these theoretically predicted mixed
modes do not reach observable amplitudes. This complicates the
matching of model modes to observed modes which can lead to in-
correct computations of the surface correction and of the likelihood
evaluation of the given model.

To address this issue we note that the amplitude of a mode
can be roughly estimated from the mode inertia (see Eq. 13). The

MNRAS 000, 1–18 (2021)



The BAyesian STellar Algorithm 9

frequency fitting procedure in BASTA uses a mode matching algo-
rithm, where the observed modes are matched to their most-likely
counterpart in the model using their frequencies as well as their in-
ertias as a proxy of the likelihood of observability. We describe the
matching procedure and assumptions in the following paragraphs.

The frequency matching routine is based on mode counting.
Even though the extracted frequencies can be uncertain at times
as they depend on the power spectrum background and systematic
effects in the pipeline, these effects do not change the relative or-
dering of the modes. An ℓ = 1 mode and an ℓ = 0 mode will not
exchange order due to effects such as the surface effect. Due to the
physical nature of the radial modes, avoided crossings do not occur
in the pattern of the ℓ = 0 modes. We therefore use the observed
radial modes to define a number of frequency intervals. If higher
angular degree modes are observed outside the frequency range en-
compassed by the radial modes, the frequency binning is extended
to lower and higher frequencies in steps of Δ𝜈.

BASTA counts how many modes of a given angular degree
ℓ ≠ 0 are present in each frequency bin between two consecutive
radial modes. When there is an equal number of model and observed
modes, the modes are matched based only on frequency. We note
in passing that this is the typical case for main-sequence stars that
do not present avoided crossings. If there are more observed modes
than modelled modes in a given range, the model is rejected as it
fails to accurately describe the observed pattern.

If, between two ℓ = 0 modes, 𝑗 modelled modes exists with
inertias 𝐼1 < · · · < 𝐼 𝑗 and 𝑘 observed modes of same angular degree
with 𝑗 > 𝑘 , we need to select 𝑘 modelled modes to match one-to-
one to the observed modes. This is usually the case when avoided
crossing takes place in the model, but not all mixed modes have
high enough amplitudes to be observed. Intuitively, one might think
to just pick the 𝑘 modelled modes with the lowest inertia as they
should have the highest likelihood of being observed. However,
small differences in inertia might cause this to result in a miss-
matching. Instead, BASTA selects two inertia thresholds 𝑎 and 𝑏

(with 𝑎 < 𝑏) and subdivides the modelled modes into a set 𝐴 with
inertias less than 𝑎, a set 𝐵 with inertia between 𝑎 and 𝑏, and a set
𝐶 for inertias greater than 𝑏. The set 𝐴 thus contains modes that are
likely to be detected, while set 𝐶 contains modes that are unlikely
to be observed, and set 𝐵 contains modes that are somewhere in
between.

By picking all modes in 𝐴 and a subset of 𝐵 such that 𝑘
modes are selected in total, the modes can be matched one-to-one
in frequency to the observed modes. Specifically, the thresholds 𝑎
and 𝑏 are chosen based on the 𝑘’th smallest modelled inertia 𝐼𝑘 :
𝑎 is 𝐼𝑘/10 and 𝑏 is 10𝐼𝑘 . This ensures that |𝐴| ≤ 𝑘 ≤ |𝐴| + |𝐵 |,
where |𝐴| is the number of modes in the set. Each possible match
is evaluated based on the total L1 distance in frequency space and
the subset of 𝐵 that minimises this metric is chosen. This match
between the observed and modelled modes will then be used in the
following surface effect and model likelihood computation.

Figure 1 shows the échelle diagrams for two examples of as-
teroseismic fitting to individual frequencies using this matching
algorithm. The code can nicely reproduce the observed oscillation
pattern of the main-sequence star 16 Cyg A, and also follow the
rapid evolution of a distinct dipole mixed mode in the bright F6
subgiant star HR 7322. Further examples of matching the mixed-
mode pattern in subgiant stars are given in Section 6 and Appendix B
below.

4.1.6 Period spacing

The observed power spectra of red-giant stars exhibit a complex
pattern due to the presence of mixed modes. As described above,
mixed modes behave as gravity modes in the inner regions of the
star and as acoustic modes in the outer layers, and hence their
observations provide a unique opportunity to probe the conditions
deep in the stellar core (see e.g. Beck et al. 2011; Bedding et al.
2011; Mosser et al. 2012b). The detection of the mixed modes
makes it possible to measure the gravity mode period spacing, and
currently measurements of the asymptotic period spacing for the
dipole modes are available for several thousands of Kepler red-
giant stars (see e.g. Stello et al. 2013; Mosser et al. 2014; Datta
et al. 2015; Vrard et al. 2016).

We can use the observed dipole mode asymptotic period spac-
ing inBASTA as a quantity to be fitted. The corresponding asymptotic
period spacing for the models is computed according to the formula,

Δ𝑃1 =
√

2𝜋2
(∫

𝑁

𝑟
𝑑𝑟

)−1
, (26)

where 𝑁 is the Brunt-Väisälä frequency, 𝑟 the radial coordinate
and the integration is performed over the radiative interior. A few
necessary considerations regarding the integral in Eq. 26: (1) the
integrand has a numerical singularity, and (2) tabulated values of 𝑟
have variable step size. These make rectangle and trapezoidal rules
for the integration inaccurate (particularly if the step size is not very
small), and the Newton-Cotes formulas with higher order accuracy
inapplicable. For this reason, we use an adaptive Gauss-Kronrod
quadrature method (7-points Gauss rule combined with 15-points
Kronrod rule) to compute the integral with high accuracy (Kronrod
1965). This requires the values of the integrand at intermediate 𝑟
(other than the tabulated values), which is obtained using the basis
spline interpolation.

4.2 Atmospheric properties

4.2.1 Surface chemical composition

Fitting the observed surface chemical composition requires certain
assumptions about the relation between measured number density
ratios of a given element and the metal mass fraction used to con-
struct stellar models. For a given grid of evolutionary tracks or
isochrones characterised by hydrogen, helium, and metal mass frac-
tions (𝑋 + 𝑌 + 𝑍 = 1), BASTA assumes the following mapping:

[M/H] = log10

(
(𝑍/𝑋)model
(𝑍/𝑋)�

)
(27)

[Fe/H] = [M/H] − corr ( [𝛼/Fe]) . (28)

The equations above depend on the solar heavy element distribution
adopted to construct the grid, and a correction factor corr( [𝛼/Fe])
which is determined by comparing stellar tracks with and with-
out the inclusion of alpha-elements enhancement (see Salaris et al.
1993). These correction factors, valid when all alpha-elements are
equally enhanced, change according to the considered solar mix-
ture. We have determined them for the fixed alpha enhancements
of [𝛼/Fe] = +0.4 in the Grevesse & Noels (1993) and Grevesse
& Sauval (1998) solar mixtures, as well as all the available val-
ues of [𝛼/Fe] for the Asplund et al. (2009) solar composition (see
Section 3.2). We adopt corr( [𝛼/Fe]) = 0.3016 as given by Pietrin-
ferni et al. (2021) when dealing with the Caffau et al. (2011) com-
pilation, which is appropriate for an alpha-enhancement value of
[𝛼/Fe] = +0.4.
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Under these assumptions, all custom-constructed grids used
in BASTA are mapped from the input [Fe/H]ini and [𝛼/Fe] into
[M/H] using Eq. 28, and then the ratio (𝑍/𝑋)model is determined
using Eq. 27. The BaSTImodels on the other hand follow the inverse
procedure where we use their initial mass fractions of 𝑋 and 𝑍 as
given in their database to determine [M/H] following Eq. 27, and
[Fe/H] is then calculated for the corresponding case of [𝛼/Fe]
using Eq. 28 and the solar mixture of Caffau et al. (2011). This
procedure ensures that all surface abundance ratios are computed
in a consistent manner, but it is up to the user to ensure that the
combination of input values of [Fe/H]ini and [𝛼/Fe] are reasonable
for observed stars. We note in passing that the surface abundance
by mass of elements such as 3He, 12C, 13C, 14N, and 16O are also
available in our custom-computed grids.

4.2.2 Synthetic photometry, parallaxes, and distances

All grids of stellar models available in BASTA (cf., section 3) can
be mapped from the theoretical H-R diagram to various photomet-
ric systems using bolometric corrections (BCs) tables provided by
Hidalgo et al. (2018). This allows us to determine synthetic magni-
tudes in more than 15 photometric systems including those that are
of relevance for asteroseismic and exoplanet studies (e.g., Kepler
and TESS passbands), compilations of bright stars (Tycho-2 and
Hipparcos), large photometric surveys (e.g., 2MASS, Skymapper,
sloan, and VISTA), and naturally all Gaia data releases. A list of
the photometric systems currently available in BASTA is provided in
Table A1.
BASTA supports the inclusion of parallaxes as a fitting pa-

rameter together with at least one apparent magnitude 𝑚𝜁 . The
evaluation is then done by comparing the grid-model absolute mag-
nitude 𝑀𝜁 , computed from the bolometric luminosity and effective
temperature using bolometric corrections, to the measured absolute
magnitude computed from the apparent magnitude 𝑚𝜁 , an estimate
of extinction, and the distance modulus from the observed parallax
𝜇 = 5 log(𝑑) − 5. The computation of the observed absolute mag-
nitude undergoes multiple transformations and thus the assumption
of this value being normally distributed like the other fitting param-
eters is weak. Instead this parameter is evaluated by constructing
the likelihood distribution of 𝑀𝜁 and including it in the calculation
of the posterior using Eq. 2.

The procedure when parallax is included as a fitting parameter
is as follows. In the first step, BASTA constructs prior distributions
in distance and apparent magnitude using their observed values.
The distance distribution is analytically calculated from the mea-
sured parallax and its associated uncertainty using the exponentially
decreasing space density prior with a scale length of 1.35 kpc de-
scribed in Bailer-Jones (2015) and Astraatmadja & Bailer-Jones
(2016). For the apparent magnitude 𝑚𝜁 , we assume a normal dis-
tribution with the observed values of 𝑚𝜁 and its uncertainty as the
mean and standard deviation, respectively.

In the second step, BASTA samples over the distance and ap-
parent magnitude distributions to calculate the reddening. When
multiple distributions are considered it is difficult to properly sam-
ple the tails of all distributions if one just draws samples following
the distributions and let the number density of the samples deter-
mine the probability density function. If we draw samples from
two normal distributions, then the odds of drawing values at e.g.
3 standard deviations away from the mean in both distributions is
less than 1 in 100,000. This means that the tails of the resulting
distribution would be artificially steep. To overcome this, BASTA

draws the samples systematically over a large range of values for
each given parameter.

For a number 𝑁 of samples in distance, BASTA draws half of
them linearly across a range of 𝑑 ∈ [10(−0.4) , 10(4.4) ] pc, and the
other half as quantiles of the normal distribution around the mode
of the distance distribution derived from the observed parallax as
described above. Similarly, we produce 𝐾 apparent magnitude sam-
ples distributing half of them linearly across the limiting magnitudes
published by each relevant survey (or else assume𝑚𝜁 ∈ [−10, 25]),
and the rest from a normal distribution around the observed apparent
magnitude.

For each of the 𝑁×𝐾 pairs of distance and apparent magnitude
we determine the reddening E(𝐵−𝑉) using the latest version of the
Bayestar dust map (currently Bayestar19, see Green et al. 2019),
and if the target falls outside of its coverage we apply the simpler
map of Schlegel et al. (1998). Since Bayestar provides multiple
estimates of the colour excess at each distance, we determine the
individual reddening values using the median and standard deviation
of those samples. To transform the reddening values into absorption
𝐴𝜁 estimates at a given filter 𝜁 , we use extinction coefficients from
Table 6 in Schlafly & Finkbeiner (2011) assuming the Cardelli
et al. (1989) relation 𝐴𝜁 = 3.1×E(𝐵 − 𝑉). For filters not contained
in that compilation, we default to the temperature and metallicity
dependent extinction coefficients from Casagrande & Vandenberg
(2014).

We compute the absolute magnitudes 𝑀𝜁 from our 𝑁 × 𝐾
groups of distance, apparent magnitude, and absorption using the
distance modulus. This sample is converted into a probability dis-
tribution function by weighting each obtained absolute magnitude
by the underlying observed distance and apparent magnitude prob-
ability distributions. This distribution is then included in the com-
putation of the posterior (see Eq. 2). We note that in cases where the
parallax uncertainty is smaller than 5% and the absolute magnitude
prior is symmetric (i.e., if the distance between the median and each
quantile is within a predefined threshold), we fit a Gaussian function
to the probability distribution of absolute magnitudes and use the
analytical expression in the computation of the likelihood.

Figure 3 shows an example of the distance sampling procedure.
The fitting includes effective temperature, metallicity, and parallax
using the 2MASS filters. For the purpose of this example we have
modified the apparent 𝐽-magnitude to be in disagreement with the
other two magnitudes, as it can be seen in the Kiel diagram. The
right panel of Fig. 3 shows the probability density function of log (𝑔)
predicted by each of the filters. If BASTA did not sample the tails
of the magnitude distributions far from their median values and
standard deviations, the full likelihood as defined in Eq. 2 will be
zero. The designed sampling scheme avoids this singularity and
provides a robust statistical solution.

In addition to fitting parallax directly, distances can be de-
termined in BASTA independent of any parallax input as long as
one photometric apparent magnitude is provided to the code. In
this case, we solve for the distance and absorption iteratively us-
ing the magnitudes and the dust map until convergence is reached
(normally within 3 iterations). If multiple apparent magnitudes are
given as input we derive a distance in each passband and determine a
joint distance by multiplying the individual probability distribution
functions.
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5 INTERPOLATION

If the resolution of the grid used with BASTA is lower than what is
desired, the grid can be interpolated to match a user-defined resolu-
tion. BASTA includes this option and can interpolate along or across
stellar evolution tracks or isochrones (or both along and across,
which we refer to as the combined option), and every parameter of
the grid can be included in this interpolation. The individual proce-
dures for each type of interpolation are described in the following
sections.

To minimize computation time, the interpolation of
tracks/isochrones can be limited to only a section of the original grid
given by limits in any of the grid parameters. When fitting multiple
stars simultaneously, these limits can be applied on a star-by-star
basis (and thus producing one interpolated sub-grid per star), or as
a single set of limitations for the full collection of stars (producing
only one new sub-grid of tracks/isochrones).

5.1 Interpolation along tracks/isochrones

For interpolation along the tracks/isochrones the user must define
two relevant quantities. The first is the desired resolution in a stellar
property between consecutive points in the track, normally an ob-
served quantity that will be fitted (e.g., large frequency separation,
or individual oscillation frequencies). The second relevant quantity
is a (smoothly varying) grid parameter to be used as the indepen-
dent variable in the interpolation. We refer to this parameter as the
"base parameter", where typical examples are age, central hydrogen
content, or central density for stellar evolution tracks, or the initial
mass for the case of isochrones. The user can choose which base
parameter will be used, or BASTA will consider age/initial mass as
default for stellar tracks/isochrones.

Once these two quantities are defined, the number of points
along each interpolated track/isochrone is estimated as the number
of points needed to satisfy the desired resolution assuming an equal
spacing in the base parameter. The interpolation is performed as a
1-dimensional function using either a linear or cubic method via
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scipy.interpolate.interp1d (from the scipy package, Vir-
tanen et al. 2020) on a track-by-track basis. The new base along
with the interpolated parameters are stored and replace the origi-
nal track. Therefore one should consider these as completely new
evolutionary tracks, instead of simple refinements of the original.

5.2 Interpolation across tracks/isochrones

Interpolation across tracks or isochrones can be applied to grids of
identical microphysics. The base for this interpolation is formed by
the parameters used to construct the original grid (see Section 3),
and their spacing gives the original grid resolution. For a Cartesian
interpolated grid a desired resolution can be set for each of these
parameters, and the code determines the minimal amount of tracks
needed to satisfy this resolution one parameter at the time. For a
Sobol-sampled interpolated grid the user defines a multiplicative
increase in the number of tracks of the selected section of the grid.
BASTA then automatically determines a homogeneous distribution
of new tracks in the base parameters that meets the required increase
in the number of tracks. To retain this homogeneity, the resulting
grid consists solely of interpolated tracks and the original ones
are excluded. An example of these tracks assignments can be seen
in Fig. 4. We note that a Sobol sampled interpolated grid can be
constructed starting from a Cartesian grid, as shown in the right
panel of the figure.

The enveloping tracks used to interpolate each new track
are determined from a tessellation of the base parameters using
scipy.spatial.Delaunay (based on the qhull package Barber
et al. (1996)). The number of tracks considered to envelop a new
track correspond to the number of parameters in the base plus one.
In the example shown in Fig. 4 this requires three enveloping tracks
for each new track (there are two parameters in the base, 𝑀ini and
[Fe/H]ini). The tessellation divides the original grid into triangles,
as it can be seen in the example.

In addition to the enveloping tracks, the user must define a
single additional smoothly varying quantity that runs along the
evolution of the track to perform the interpolation (e.g., age, central
hydrogen content, central density). We note that, when applying
the combined interpolation method, this quantity does not need to
be the same as the one selected for interpolation along the track.
For example, the user can choose central hydrogen content when
interpolating across tracks, and the subsequent interpolation along
tracks can be performed with age as the independent variable.

To avoid extrapolations, the range of the smoothly varying
parameter in the new track is limited to an interval that is con-
tained by all enveloping tracks, and its spacing is determined as
the mean of the spacing in the enveloping tracks. Using this basis,
each parameter in the new track is interpolated separately using
scipy.interpolate.LinearNDInterpolater (that relies on a
new tessellation of the points along each enveloping track). Individ-
ual oscillation frequencies are treated as independent parameters,
and are therefore interpolated individually.

As a test of our interpolation procedure, Fig. 5 shows the results
of reconstructing an evolutionary track extracted from the Sobol grid
presented in the middle panel of Fig. 4. The top panel depicts the
evolution of the large frequency separation Δ𝜈 as a function of age
for the three enveloping tracks determined from the tessellation of
the base parameters, as well as the track reconstructed with our
combined interpolation approach. The bottom panel presents the
outcome of the combined interpolation procedure as the fractional
difference in Δ𝜈 between the interpolated track and the original
track. Deviations are at the 10−4 level, an order of magnitude smaller

than the uncertainty in Δ𝜈 measured for the best Kepler targets (see
Fig. 6 in Yu et al. 2018).

The impact of our interpolation procedure can be seen in Fig. 6,
where we compare the obtained posterior PDFs for mass, radius,
age and density when fitting data of the Kepler target 16 Cyg A.
For this example we considered as input parameter the effective
temperature and metallicity from Ramírez et al. (2009) and the large
frequency separation and frequency of maximum power derived by
Lund et al. (2017). These data were then fitted to a Sobol grid in
its original resolution, and an interpolated grid constructed with
the combined method and an increase in resolution by a factor of
5 in the number of tracks (across tracks) and spacing of 0.1𝜇Hz
between the lowest observed ℓ = 0 frequency (along tracks). The
derived quantities are in very good agreement (and certainly within
their respective uncertainties), but the resulting distributions are
significantly smoother after the interpolation procedure.

Before closing this section we note that when the combined
method is chosen the interpolation across tracks/isochrones is per-
formed before interpolation along the tracks/isochrones to increase
computation efficiency. We have tested the inverse case (along be-
fore across), and confirmed the differences in the recovery procedure
presented in Fig. 5 are of the same magnitude regardless of the order
of the interpolation. This inverse case (along before across) is still
available for usage in BASTA at a much larger computational cost.

6 VALIDATION WITH ARTIFICIAL DATA

We performed a thorough end-to-end validation of BASTA to quan-
tify the robustness of our pipeline in retrieving stellar properties.
For this purpose we produced artificial data from models extracted
from a grid and used the same grid to fit the observables, which is
equivalent to assuming that the underlying stellar models are true
representations of the observations. By quantifying the deviations
in our derived parameters from the true values we can estimate the
level of accuracy of our pipeline, as these will depend exclusively
in the reliability of BASTA. In addition, our obtained uncertainties in
stellar properties provide an estimate of the typical statistical pre-
cision, which in turn depends on the assumed observational errors
and the combination of input quantities fitted. We emphasise that
this exercise allows us to test the accuracy and statistical precision
obtained for a given set of observables and their measured uncer-
tainty, but we cannot account for deviations between the physical
and observed properties of a real star and those predicted by a grid
of stellar models. This additional systematic uncertainty undoubt-
edly exists and remains to be quantified, but it depends on our many
shortcomings in theory of stellar evolution and goes well beyond
the scope of this paper.

For this particular exercise we constructed a Sobol grid
of stellar models using GARSTEC comprising 3,000 evolutionary
tracks, a mass range between 0.8 − 1.5 M� , initial metallicity
−0.5 <[Fe/H]ini < +0.5, the Asplund et al. (2009) solar mixture,
and an enrichment law Δ𝑌/Δ𝑍 = 1.4. The tracks were evolved
from the pre-main sequence to a value of the large frequency sep-
aration Δ𝜈 = 10 𝜇Hz, roughly corresponding to the lower RGB.
We determined individual oscillation frequencies of angular degree
ℓ = 0, 1, 2, 3 for stars down to a value of Δ𝜈 = 30 𝜇Hz, and only
radial modes for more evolved stars. The coverage of the grid was
selected to ensure that we can test our fitting procedures in vari-
ous types of stars (main sequence, subgiants, and red giants) which
have different observed quantities to be fitted (individual frequen-
cies, mixed-modes, period spacing).

MNRAS 000, 1–18 (2021)



The BAyesian STellar Algorithm 13

97.5

100.0

102.5

105.0

107.5

110.0

 (
Hz

)

Interpolated track Simplex Interpolated points Enveloping tracks

5.5 6.0 6.5 7.0 7.5 8.0
Age (Gyr)

0.00006

0.00008

0.00010

0.00012

0.00014

0.00016

(
)/

or
g

225

250

275

300

325

350

375

400

425

ce
n (

g/
cm

3 )

Figure 5. Example of the performance of our interpolation scheme. Top: large frequency separation as a function of age for the interpolated track (mint green)
and the enveloping tracks used for the interpolation. The latter have been color-coded according to the base quantity used along the track (the central density
𝜌cen). Bottom: fractional difference in Δ𝜈 between the original and interpolated track. See text for details.

Age (Myr) = 6573.054+633.784
1208.964

1.0
0

1.0
4

1.0
8

1.1
2

M
 (

M
)

M (M ) = 1.065+0.037
0.016

1.2
00

1.2
15

1.2
30

1.2
45

1.2
60

R t
ot

 (
R

)

Rtot (R ) = 1.232+0.013
0.009

45
00

60
00

75
00

90
00

Age (Myr)

0.7
95

0.8
10

0.8
25

 (
g/

cm
3 )

1.0
0

1.0
4

1.0
8

1.1
2

M (M )
1.2

00
1.2

15
1.2

30
1.2

45
1.2

60

Rtot (R )
0.7

95
0.8

10
0.8

25

 (g/cm3)

 (g/cm3) = 0.807+0.007
0.007

Age (Myr) = 6352.564+864.784
755.261

1.0
0

1.0
4

1.0
8

1.1
2

M
 (

M
)

M (M ) = 1.071+0.023
0.023

1.2
0

1.2
2

1.2
4

1.2
6

R t
ot

 (
R

)

Rtot (R ) = 1.233+0.010
0.009

45
00

60
00

75
00

90
00

Age (Myr)

0.7
80

0.7
95

0.8
10

0.8
25

 (
g/

cm
3 )

1.0
0

1.0
4

1.0
8

1.1
2

M (M )
1.2

0
1.2

2
1.2

4
1.2

6

Rtot (R )
0.7

80
0.7

95
0.8

10
0.8

25

 (g/cm3)

 (g/cm3) = 0.808+0.007
0.007

Figure 6. Posterior distributions of stellar parameters for the Kepler target 16 Cyg A obtained fitting the set (𝑇eff , [Fe/H], Δ𝜈, 𝜈max) with a Sobol grid of
different resolutions. Left: original grid. Right: interpolated grid. See text for details.

We assume the following observational uncertainties (taken
from Serenelli et al. (2017) and Lund et al. (2017) for main-sequence
and subgiant targets, and Yu et al. (2018) for red giant stars): 70 K in
𝑇eff , 0.1 dex in [Fe/H], 0.1 dex in log (𝑔), 0.5% of the observed value
in Δ𝜈, and 2% in 𝜈max. These are typical uncertainties in the global

asteroseismic properties for Kepler stars observed for more than
50 days (see Serenelli et al. 2017). The asymptotic period spacing
uncertainty is assumed to be 1.5 %, which corresponds to the average
uncertainty measured by Vrard et al. (2016) for RGB stars in the
range 10 𝜇Hz≤ Δ𝜈 ≤ 30 𝜇Hz. For the individual frequencies of
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oscillation we adopt a two-step process where we first identify which
modes would be detected given an assumed observation length, and
then determine their uncertainties following a recipe derived from
Kepler targets.

For a given theoretical mode calculation we estimate which
modes would likely be measurable based on results from the main-
sequence stars included in the LEGACY study (Lund et al. 2017).
From the LEGACY data we first estimate the typical minimum and
maximum frequencies of measured ℓ = 0 modes in units of 𝜈max,
and derive simple linear relations of these frequencies as a func-
tion of 𝜈max. The typical frequency intervals of measurable ℓ = 0
modes are found to range from ±0.4 𝜈max at 𝜈max = 1000 𝜇Hz to
approximately±0.2 𝜈max at 𝜈max = 4000 𝜇Hz. We then estimate the
expected relative amplitude of ℓ = 0 modes at these frequency lim-
its, using a relation for the envelope width of the assumed Gaussian
modulation of mode amplitudes around 𝜈max. This relation is deter-
mined from fits to LEGACY data, and includes both a dependence
on 𝜈max and 𝑇eff (Lund et al., in prep.). By including mode visibili-
ties from Lund et al. (2017) we can then estimate the corresponding
relative amplitudes of non-radial modes and assess which of these
exceeds the limit for detectability set by the ℓ = 0 modes. Following
Ball et al. (2018) we include information on the mode inertia for
non-radial modes, where we divide amplitudes by the square-root
of the𝑄-factor (ratio of the mode inertia relative to the ℓ = 0 inertia
at the corresponding frequency, see also Eq. 10)

Concerning frequency uncertainties for the modes deemed
measurable from the above procedure we use a polynomial relation
between the frequency uncertainties in units of 𝜈max of ℓ = 0 modes
from the LEGACY data and the corresponding relative frequency
away from 𝜈max. At 𝜈max the typical minimal uncertainty is found
to be of the order ∼7.6 × 10−5 𝜈max, which for a 𝜈max = 2000 𝜇Hz
star corresponds to 𝜎𝜈 ∼ 0.15 𝜇Hz. Away from 𝜈max the typi-
cal uncertainties increase by factors of 5 (𝜈 ∼ −0.4 𝜈max) to 10
(𝜈 ∼ +0.4 𝜈max).

With the observational uncertainties in all relevant observa-
tional quantities defined, the validation procedure was designed as
follows. We selected 443 models from the grid to be used as artificial
targets mimicking the observed distribution in large frequency sep-
aration of the Kepler main-sequence and subgiant sample of Lund
et al. (2017) (see Fig 7). This sample reaches values ofΔ𝜈 ' 20𝜇Hz,
which we extended in same proportion as the last bin toΔ𝜈 ' 10𝜇Hz
to encompass the base of the RGB. We considered various sets of
input quantities (see Table 2) and generated the synthetic data by
drawing a sample from a normal Gaussian distribution with the
model value of the relevant parameter as the mean and a standard
deviation given by the observational uncertainty described above.
In that manner, each quantity in the input set does not exactly cor-
respond to the model value but it has been perturbed by typical
observational uncertainties. This is the closest we can simulate ob-
servations of a real star, under the assumption that the underlying
grid of models is a true representation of the physics at play in stellar
evolution.

The distribution of the recovered fractional values in density,
radius, mass, and age for the main-sequence artificial targets are
shown in Fig. 8 (equivalent figures for the subgiant and RGB targets
are given in Appendix B). As we can see, the inferred properties
are generally in good agreement with the corresponding underlying
input parameters. The inclusion of asteroseismic data dramatically
improves the quality of the recovered properties compared to the
cases where only atmospheric parameters are used.

As is also visible in Fig. 8, the inferred properties do not match
exactly with the underlying model values. To ensure that this is

a result of finite precision of the data, we reduced the assumed
standard uncertainties by a factor of 10−4 and repeated the above
validation. BASTA recovered the original model in 440 out of 443
cases, and in 3 cases we pick the model just before or after which is
expected due to the perturbation to the model parameters that defines
the input observables. These results confirm that the differences are
due to finite data precision and are not an artifact of combined
effects of priors and weights.

Since we have determined stellar properties assuming typical
observed uncertainties in various sets of input, we can use the BASTA
results to quantify the statistical uncertainty obtained across evo-
lutionary phases for various sets of input. Table 2 summarizes the
results, where we have listed for each stellar property the average
of the 16th and 84th percentiles normalized by the median derived
by BASTA. It is clear from the table how the accuracy increases
as asteroseismic quantities are included in comparison to just the
spectroscopic input, as well as the additional gain from including
individual frequencies. This exercise also shows that, if our stellar
models are a good representation of the observed stars, statistical
uncertainties below the 10% level in age are within reach thanks to
the advent of asteroseismology.

Another interesting point arising from the validation is the ex-
tremely high precision in the recovered stellar properties for subgiant
stars when individual oscillation frequencies are fitted. As mixed-
modes evolve rapidly and are very sensitive to the conditions in the
stellar core, such a small statistical uncertainty is not surprising as
long as the code is capable of identifying the correct underlying
model. We remind the reader that in subgiant stars the number of
model non-radial oscillation frequencies between two radial modes
exceeds the number of observed frequencies as their visibility de-
pends in the inertia. The procedure we described in Section 4.1.5
can successfully identify which mixed-modes should be visible and
thus avoids an artificial increase in the statistical uncertainties due
to miss-identified modes. We include a few representative Échelle
diagrams from the validation procedure in Appendix B where the
accuracy of the algorithm is demonstrated.

7 NOTES ABOUT CODE DEVELOPMENT AND
CONTRIBUTING

The core developers of BASTA have customized the code following
the needs of our own research fields. As the code begins to be used
by scientists around the world, we expect that the inclusion of addi-
tional features will become highly desirable. Naturally the amount
of proposed improvements to the code will increase proportionally
to the number of users, and it will go beyond the available time of
the core developers to implement them and maintain a stable version
of BASTA.

For these reasons we rely on the git version-control system
and the GitHub repository6 to encourage users to develop and share
their contributions with the rest of the users. New features, addi-
tions, or extensions should be in separate branches/forks so that
they do not need the direct involvement of the core developing
team. Once the new additions are completed, the code developers
will be happy to handle the pull request and make it part of the stable
version of BASTA after proper testing has been completed. A more
detailed contribution guide can be found on the GitHub reposi-
tory along with the installation instructions and a tracker for is-

6 https://github.com/BASTAcode/BASTA
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Table 2. Fractional uncertainties in stellar properties across evolutionary phases determined for different sets of input. The values are calculated as the average
of the 16th and 84th percentiles normalised by the derived median. See text for details.

Phase Input set 𝛿𝜌/𝜌 𝛿𝑅/𝑅 𝛿𝑀/𝑀 𝛿Age/Age

MS 𝑇eff , [Fe/H], log (𝑔) 0.3223 0.1179 0.0558 0.2880
Δ𝜈 ≥ 60 𝑇eff , [Fe/H], Δ𝜈, 𝜈max 0.0101 0.0124 0.0364 0.1620
(185 stars) 𝑇eff , [Fe/H], 𝜈𝑖 0.0005 0.0010 0.0029 0.0177

SG 𝑇eff , [Fe/H], log (𝑔) 0.3290 0.1356 0.0947 0.3262
60 < Δ𝜈 < 30 𝑇eff , [Fe/H], Δ𝜈, 𝜈max 0.0098 0.0142 0.0393 0.1175
(178 stars) 𝑇eff , [Fe/H], 𝜈𝑖 0.0001 0.0002 0.0005 0.0009

RGB 𝑇eff , [Fe/H], log (𝑔) 0.3240 0.1283 0.1291 0.4635
Δ𝜈 ≤ 30 𝑇eff , [Fe/H], Δ𝜈, 𝜈max 0.0101 0.0213 0.0592 0.2227
(80 stars) 𝑇eff , [Fe/H], 𝜈𝑖 0.0009 0.0075 0.0217 0.0937

𝑇eff , [Fe/H], Δ𝜈, ΔP1 0.0097 0.0313 0.0915 0.3447

Full Sample 𝑇eff , [Fe/H], log (𝑔) 0.3253 0.1269 0.0847 0.3350
𝑇eff , [Fe/H], Δ𝜈, 𝜈max 0.0099 0.0147 0.0417 0.1551
𝑇eff , [Fe/H], 𝜈𝑖 0.0004 0.0018 0.0053 0.0247

sues/bugs/suggestions. We encourage the users to follow the project
on GitHub (please “watch” and select “custom/releases” as a min-
imum) to get notifications and updates on new developments. We
welcome any participation including pull requests.

8 CONCLUDING REMARKS

We have introduced the public version of the BAyesian STellar
Algorithm (BASTA), an open-source code that determines stellar
properties using a set of observables and a grid of stellar mod-
els/isochrones. It is flexible in its input and can combine a large
number of spectroscopic, photometric, astrometric, and asteroseis-
mic input to extract properties of stars under a statistically robust
Bayesian scheme. The large number of functionalities included in
BASTA, combined with the various sets of publicly available or
custom-computed grids of stellar models/isochrones, make it the
most versatile pipeline for stellar analysis currently available.

We have thoroughly described the type of input that can be
given to retrieve stellar properties, and discussed the assumptions
made when predicting these quantities from the underlying grids
of evolutionary models. We have performed an extensive validation
test that confirms the reliability of BASTA in determining accurate
stellar properties, and use these results to quantify the typical sta-
tistical uncertainties obtained for various combinations of fitting
parameters. Our results show that asteroseismic ages with statistical
uncertainties below the 10% level are achievable for datasets of the
quality obtained by the Kepler satellite, and the only limiting factor
is the reliability of our stellar evolution and pulsation models.

We hope to have provided the community with a useful anal-
ysis tool for stellar properties, which is specifically designed to
meet the challenges of large inhomogeneous datasets available in
the era of large-scale stellar surveys. Its capability of combining a
wide range of input data makes it an invaluable tool to fully exploit
the potential of current stellar catalogues (by simultaneously fitting
e.g., TESS, APOGEE, 2MASS, and Gaia eDR3 data), and its fu-
ture developments will make it ready for the challenge of the next
data deluge from surveys such as PLATO 2.0 (Rauer et al. 2014),
WEAVE (Dalton et al. 2014), 4MOST (de Jong et al. 2019), and the

Legacy Survey of Space and Time at the Vera Rubin Observatory
(LSST, Ivezić et al. 2019).
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APPENDIX A: PHOTOMETRIC SYSTEMS

Table A1 gives a list of the currently available synthetic colors for all
tracks and isochrones used with BASTA. Additional sets are added
as new passbands become available.

APPENDIX B: VALIDATION FIGURES FOR SUBGIANT
AND RGB TARGETS

We include in this section the validation figures for the subgiant and
RGB targets, equivalent to Fig. 8. We also show a few representa-
tive Échelle diagrams obtained in the validation procedure showing
the performance of the frequency matching algorithm described in
Section 4.1.5 in the presence of mixed-modes. This paper has been

typeset from a TEX/LATEX file prepared by the author.
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Table A1. Available photometric systems.

Photometric system Calibration Passbands Zero-points

UBVRĲHKLM Vegamag Bessell & Brett (1988); Bessell (1990) Bessell et al. (1998)
HST-WFPC2 Vegamag SYNPHOT SYNPHOT
HST-WFC3 Vegamag SYNPHOT SYNPHOT
HST-ACS Vegamag SYNPHOT SYNPHOT
2MASS Vegamag Cohen et al. (2003) Cohen et al. (2003)
DECam ABmag DES collaboration 0
Gaia DR1 Vegamag Jordi et al. (2010) Jordi et al. (2010)
Gaia DR2 Vegamag Maíz Apellániz & Weiler (2018) Maíz Apellániz & Weiler (2018)
Gaia eDR3 Vegamag Gaia Collaboration et al. (2020) Gaia Collaboration et al. (2020)
JWST-NIRCam Vegamag JWST User Documentation SYNPHOT
SAGE ABmag SAGE collaboration 0
Skymapper ABmag Bessell et al. (2011) 0
Sloan ABmag Doi et al. (2010) Dotter et al. (2008)
Strömgren Vegamag Maíz Apellániz (2006) Maíz Apellániz (2006)
VISTA Vegamag ESO Rubele et al. (2012)
Tycho+Hipparcos ABmag Bessell & Murphy (2012) Bessell & Murphy (2012)
Kepler ABmag Kepler collaboration 0
TESS ABmag TESS collaboration 0
WISE W1 & W2 Vegamag WISE Collaboration Wright et al. (2010)
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Figure B1. Same as Fig. 8 for the targets in the subgiant phase.
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Figure B2. Same as Fig. 8 for the targets in the RGB phase.
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Figure B3. Échelle diagram of a subgiant validation star of Δ𝜈 ' 60𝜇Hz.
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Figure B4. Échelle diagram of a subgiant validation star of Δ𝜈 ' 50𝜇Hz.
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Figure B5. Échelle diagram of a subgiant validation star of Δ𝜈 ' 40𝜇Hz.
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Figure B6. Échelle diagram of a subgiant validation star of Δ𝜈 ' 30𝜇Hz.
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