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Andrea Zappettinig and Ezio Carolif

aDepartment of Physics and Chemistry (DiFC), University of Palermo, Viale delle Scienze, Edificio 18, Palermo 90128,

Italy, bNuclear Physics National Institute (INFN), Unit of Pavia, via Agostino Bassi 6, Pavia 27100, Italy, cDepartment of

Physics, University of Pavia, via Agostino Bassi 6, Pavia 27100, Italy, dDepartment of Engineering, University of Palermo,

Viale delle Scienze, Edificio 6, Palermo 90128, Italy, eINAF/IASF Palermo, Palermo Italy, fINAF/OAS Bologna, Bologna,

Italy, gIMEM/CNR, Parco Area delle Scienze 37/A, Parma 43100, Italy, and hdue2lab s.r.l., Via Paolo Borsellino 2,

Scandiano, Reggio Emilia 42019, Italy. *Correspondence e-mail: leonardo.abbene@unipa.it

In the last two decades, great efforts have been made in the development of 3D

cadmium–zinc–telluride (CZT) detectors operating at room temperature for

gamma-ray spectroscopic imaging. This work presents the spectroscopic

performance of new high-resolution CZT drift strip detectors, recently

developed at IMEM-CNR of Parma (Italy) in collaboration with due2lab

(Italy). The detectors (19.4 mm � 19.4 mm � 6 mm) are organized into

collecting anode strips (pitch of 1.6 mm) and drift strips (pitch of 0.4 mm) which

are negatively biased to optimize electron charge collection. The cathode is

divided into strips orthogonal to the anode strips with a pitch of 2 mm.

Dedicated pulse processing analysis was performed on a wide range of collected

and induced charge pulse shapes using custom 32-channel digital readout

electronics. Excellent room-temperature energy resolution (1.3% FWHM at

662 keV) was achieved using the detectors without any spectral corrections.

Further improvements (0.8% FWHM at 662 keV) were also obtained through a

novel correction technique based on the analysis of collected-induced charge

pulses from anode and drift strips. These activities are in the framework of two

Italian research projects on the development of spectroscopic gamma-ray

imagers (10–1000 keV) for astrophysical and medical applications.

1. Introduction

The desire for room-temperature gamma-ray spectroscopic

imagers with sub-millimetre spatial resolution in 3D and

energy resolutions close to the superb resolutions of cooled

high-purity germanium (HPGe) detectors (0.3% FWHM at

662 keV) (Abbene et al., 2013a,b; Knoll, 2000) has stimulated

intense research activities on the development of 3D

cadmium–zinc–telluride (CdZnTe or CZT) detectors. Room-

temperature measurements of photon energy, timing and

3D positioning up to the megaelectronvolt region are key

requirements for several applications in astrophysics (Kuvvetli

et al., 2010), medical imaging (Abbaszadeh et al., 2016; Drezet

et al., 2007; Peng & Levin, 2010) and nuclear security (Johns &

Nino, 2019; Wahl & He, 2011, 2015). Since the first spectro-

scopic grade detector was fabricated (Butler et al., 1992), CZT

now represents the leading detector material over high-Z and

wide-band-gap compound semiconductors (Del Sordo, 2004,

2009; Johns & Nino, 2019; Owens & Peacock, 2004; Principato
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et al., 2013; Takahashi &Watanabe, 2001; Turturici et al., 2014).

Aside from its appealing physical properties (high atomic

number, wide band gap, high density), this success can mainly

be attributed to the important advancements in both crystal

growth and device fabrication technologies (Abbene et al.,

2016, 2020; Chen et al., 2008; Iniewski, 2014; Prokesch et al.,

2018; Szeles et al., 2008; Thomas et al., 2017; Veale et al., 2020;

Zappettini et al., 2009).

In general, 3D CZT detectors are developed through

different approaches. Sub-millimetre spatial resolution and

excellent energy resolution (<1% FWHM at 661.7 keV, after

spectral correction) are obtained with pixelated (He et al.,

1999; Kim et al., 2011; Zhang et al., 2012) and virtual Frisch-

grid (Bolotnikov et al., 2020) CZT detectors. In this case, the

detectors are used in parallel planar field (PPF) geometry,

i.e. irradiated through the cathode, producing 3D positioning

through the pixels/pads and the cathode-to-anode (C/A) ratio.

Interesting results are also obtained using CZT drift strip

detectors (Budtz-Jørgensen & Kuvvetli, 2017; Caroli et al.,

2010; Howalt Owe et al., 2019; Kalemci & Matteson, 2002;

Kuvvetli et al., 2010). Here the detectors are used in planar

transverse field (PTF) geometry and give 2D positioning

through cross-strip electrode patterns on the cathode/anode

electrodes and the third coordinate through the C/A ratio.

This last approach is more conservative than pixelated

detectors regarding the number of readout channels.

Developing readout electronics for 3D CZT detectors

is generally a difficult task due to the complex processing

required to analyse the wide variety of different pulse shapes

produced by these detectors. A wide variety of different

induced/collected charge pulses is typically generated by 3D

CZT detectors, related to the particular electrode patterns

and to the different mechanisms in pulse formation (drift,

induction, charge trapping, charge sharing and cross talk).

Currently, the digital pulse processing (DPP) approach, which

works on digitized detector pulses, allows dedicated pulse

analysis and better results than conventional analog electro-

nics (Bolotnikov et al., 2014; Howalt Owe et al., 2019; Zhu et

al., 2011).

Recently, in the framework of two Italian research projects

(3DCaTM and 3CaTS projects, funded by ASI and INFN,

respectively), new high-resolution 3D CZT drift strip detec-

tors have been developed. The goal of the 3CaTS project

(Fatemi et al., 2018) is to develop a new single-photon emis-

sion computed tomography (SPECT) system for real-time

therapeutic dose monitoring in the binary hadron therapy

termed boron neutron capture therapy (BNCT). The

3DCaTM project (Caroli et al., 2019) foresees the realization

of detectors able to provide simultaneous spectroscopy (10–

1000 keV), imaging, timing and scattering polarimetry as both

focal plane detectors on a space telescope implementing new

high-energy optics (e.g. broadband Laue lens), and small wide-

field instruments to be used on clusters of micro-satellites. The

3D CZT drift strip detectors (19.4 mm � 19.4 mm � 6 mm),

fabricated with a new surface passivation technique, are

characterized by very low-leakage currents between the drift

strips, allowing the application of high-drift bias voltages with

strong benefits in charge collection efficiency and energy

resolution.

In this work, we will present, for the first time, the spec-

troscopic abilities of these new detectors coupled to custom

32-channel digital readout electronics. All output pulses from

the anode, cathode and drift strips, measured in temporal

coincidence, were processed with dedicated analysis. The key

features of the induced/collected charge pulses will be inves-

tigated by means of simulations and measurements, focusing

on their role of detector performance enhancements. We will

show two main results. First, the detectors are characterized by

excellent room-temperature energy resolution without spec-

tral corrections due to the successful fabrication technique;

second, further spectroscopic improvements will be presented

by means of a new digital spectral correction technique.

2. The drift strip detectors

The concept of drift or steering electrodes was pioneered by

Gatti and Rehak in 1983 for silicon radiation detectors (Gatti

& Rehak, 1984a,b). This approach, combined with the elec-

tron charge sensing electrode geometries of the detectors

(pixels, strips, circular rings), was successfully used in CZT

detectors with strong improvements in charge collection effi-

ciency and energy resolution (Abbene et al., 2007; Alruhaili et

al., 2014; Lingren et al., 1998; Owens et al., 2007; Kalemci

& Matteson, 2002; Kuvvetli & Budtz-Jorgensen, 2005; Van

Pamelen et al., 1998). Recently, new CZT drift strip detectors

were realized at IMEM-CNR of Parma (Parma, Italy; http://

www.imem.cnr.it) in collaboration with due2lab (Reggio

Emilia, Italy; http://www.due2lab.com). The detectors were

fabricated from CZT crystals (19.4 mm � 19.4 mm � 6 mm)

grown by the travelling heather method (THM) technique.

More specifically, the prototypes were realized starting from

Redlen CZT pixel detectors after electrode removal and

surface treatments. As is well known (Chen et al., 2008;

Iniewski, 2014), Redlen (http://redlen.ca) is able to produce

spectroscopic grade CZT crystals with excellent charge-

transport properties (mobility-lifetime products of electrons

�e�e > 10�2 cm2 V�1). In this work, we used CZT materials

characterized by �e�e ranging from 1 � 10�2 cm2 V�1 to 3 �
10�2 cm2 V�1. The anode layout is characterized by gold-strip

electrodes with a pitch of 0.4 mm (0.15 mm strip width and

0.25 mm inter-strip gap) (top of Fig. 1); however, the cathode

side is divided into ten gold strips orthogonal to the anode

strips with a pitch of 2 mm (1.9 mm strip width and 0.1 mm

inter-strip gap), as shown in Fig. 1(bottom). The anode strips

are organized into collecting strips (1.6 mm pitch) and groups

of three drift strips between each collecting strip. The drift

strips are negatively biased to optimize electron charge

collection at the collecting strips. The key goal in CZT drift

strip detector development is to allow the application of high

bias voltages between the drift strips in order to optimize

electron charge collection, maintaining the leakage currents

(i.e. the electronic noise) to be as low as possible. To obtain

this, great efforts were made by our group in developing new

detector processing techniques. The realization of a drift strip
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structure is generally a challenging procedure; first, it requires

a double-patterning processing in segmenting both the

cathode and the anode; second, the surface passivation is a

critical operation in order to reduce the leakage currents.

Regarding our detectors, the CZT crystals were lapped with

abrasive SiC paper, polished and extensively cleaned before

starting the cleanroom process. The cathode strips are

patterned by means of wet-chemical electroless gold deposi-

tion, standard photolithography and subsequent Br-based

etching in ethylene glycol of the gap between the strips. On the

anode side, a dedicated surface passivation procedure was

applied in two steps: (i) deposition of negative photoresist

with the anode pattern on the as-polished CZT surface and

(ii) strip deposition by means of the wet-chemical electroless

technique from methanol solution, after a short Br-based

etching for surface oxide removal. This lithographic process

for the anode side is challenging if one considers that Au

electroless deposition is carried out in alcoholic solution

(instead of typical water solution) after photolithographic

patterning. Indeed, Au electroless deposition from methanol

provides better mechanical adhesion than water-based

deposition (Benassi et al., 2017), and patterning of the elec-

trodes prior to Au deposition avoids a detrimental etching step

and ensures lower leakage currents than the common wet

passivation techniques. In our case, the detectors are char-

acterized by very low-leakage currents between the drift strips

(<1 nA at 50 V and twice this value at 100 V) and uniformity

among them. Fig. 2 highlights the final packaging of the

detectors. The sensor unit support and electrical interface

board consist of five superimposed layers of different mate-

rials (Roger, Kapton and FR4) and are rolled together. By

means of a non-trivial bonding procedure, each metallic strip

of the 3D CZT sensor is electrically connected with conductive

glue to Au lines insulated by Kapton film.

With regards to the working mode, each detector is char-

acterized by 12 drift cells; as shown in Fig. 3, each drift cell is

defined by 15 strips: a collecting anode strip surrounded by

two drift strips on the right side (RD), two on the left side

(LD) and ten cathode strips. The two most external drift strips

are actually shared between adjacent drift cells. The central

drift strip of each group of three is more negatively biased

than the two drift strips close to the collecting anodes. The

dimensions of a single drift cell are 1.6 mm � 6 mm � 20 mm.

The anode drift strips and the cathode strips are negatively

biased to focus the electrons toward the collecting anode.

Regarding the signal readout, the drift strips are connected in

two groups of LD and RD drift strips. Each group contains

three drift strips. Therefore, a drift cell is characterized by 13

readout channels. Overall, each detector drives 24 readout

channels (12 collecting anode strips, 10 cathode strips and

2 drift anode strips).

3. Charge pulses in drift strip detectors

The complex strip electrode structure and the effects of

physical processes occurring in CZT detectors (charge sharing,

charge trapping) give rise to various charge pulses with

different features and shapes. In this section, we present an

overview of the charge pulses generated in CZT drift strip

detectors, with the goal to better understand, through simu-

lations and measurements, the nature of these pulses and their

role in detector performance. This is very important for a

proper setting of the pulse processing analysis and the

development of new strategies for spectroscopic and spatial

performance improvements. Generally, the generation of

pulses in CZT detectors can be clearly explained through the

Shockley–Ramo theorem (He et al., 2001; Knoll, 2000; Ramo,

1939; Shockley, 1938) with the concept of weighting potential.

The charge generated on an electrode is related to the varia-

tion of the weighting potential between the charge generation

and collection points. The presence of monotonic and non-
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Figure 1
Anode (top) and the cathode (bottom) layouts of the CZT drift strip
detectors. The anode strips (0.4 mm pitch; 0.25 mm gap) are orthogonal
to the cathode strips (2 mm pitch; 0.1 mm gap). The anode strips are
organized into collecting strips (1.6 mm pitch) and drift strips (0.4 mm
pitch) which are negatively biased to optimize electron charge collection.

Figure 2
Overview of the anode (left) and cathode (right) electrode bonding of the
3D drift strip CZT detectors.
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monotonic weighting potentials often creates pulses with

different shapes, strongly dependent on the charge carrier

generation positions and trajectories. Generally, the detector

pulses can be classified as ‘collected-charge’ and ‘induced-

charge’ pulses. The collected-charge pulses are generated by

charge carriers that are in fact collected by an electrode

(collecting electrode), whereas the induced-charge pulses on

a non-collecting electrode are generated by charge carriers

collected by another electrode. The movement of charge

carriers in the vicinity of the collecting electrode can induce a

small charge on the surrounding non-collecting electrodes.

This effect is known as ‘weighting potential cross talk’ (Guerra

et al., 2008; Brambilla et al., 2012) and the induced-charge

pulses are also called transient pulses (Bolotnikov et al., 2016;

Kim et al., 2011). Ideally, the induced-charge pulses should

have bipolar amplitude and should saturate to a zero-level

(baseline), highlighting that no charge is collected by the

electrode. In real detectors, owing to the presence of charge

sharing and charge trapping, the induced-charge pulses often

saturate to a non-zero level; moreover, the pulse shapes can

simultaneously contain components caused by charge collec-

tion and weighting potential cross talk (Bolotnikov et al.,

2014).

The wide variety of collected and induced-charge pulses

in CZT drift strip detectors is mainly represented by the

following pulse classes: (i) collected-charge pulses, (ii)

induced-charge pulses with zero-saturation level, (iii) induced-

charge pulses with negative and positive saturation levels.

The measured pulses (i.e. the output pulses from charge

sensitive preamplifiers) are the result of photoelectric inter-

actions of 662 keV photons from a 137Cs source. The simulated

pulses come from a custom procedure organized into three

main blocks: (i) radiation–semiconductor interaction with

Monte Carlo methods (Geant4) (Agos-

tinelli et al., 2003), (ii) electric and

weighting field calculation by the finite

element method (FEM) with COMSOL

Multiphysics and (iii) calculation of the

charge carrier transport and pulse

formation in a MATLAB environment

(Bettelli et al., 2020). The charge carrier

transport properties used in the simu-

lation are typical of Redlen CZT

materials for low-flux applications (LF-

CZT materials): �e of 1100 cm
2 V�1 s�1

and �e of 11 ms for electrons and �h of

88 cm2 V�1 s�1 and �h of 0.2 ms for holes
(Thomas et al., 2017).

Fig. 4 shows an overview of simulated

and measured pulses from the anode,

cathode and drift strips (electrode

voltages: �350 V for the cathodes,

�200 V for the central drift strips and

�100 V for the adjacent drift strips).

Photon interactions near the cathode

(top) and the anode (bottom) are

mainly focused (the black circular

points represent the photon interaction positions). For each

photon interaction, the measured pulses are detected in

temporal coincidence. Both simulations and measurements

produce similar results on the key features of the pulses.

3.1. Collected-charge pulses

Positive and negative collected-charge pulses are typically

created by anode and cathode strips, respectively. As shown in

Fig. 4, the weighting potential of the anode strips, similarly to

pixel detectors (Abbene et al., 2018a; Barrett et al., 1995), is

shrunk near the anode, thus reducing the contribution of the

holes in the charge pulses (single-electron charge sensing

pulses). However, as also observed in pixel detectors, single-

electron charge sensing is reduced for photon interactions

near the anode. The shape of collecting anode pulses (positive

light-blue pulses of Fig. 4) strongly depends on the charge

generation point (photon interaction). For photon interactions

near the cathode (top side of Fig. 4), the anode pulses are

characterized by a leading edge with slow and fast slopes,

following the behaviour of the anode weighting potential;

however, near the anode (bottom side of Fig. 4), only a fast

slope features the leading edge. In particular, the presence of

the slow leading edge represents a critical issue on the esti-

mation of the arrival time of the events.

Due to a coarse strip segmentation, the weighting potential

of the cathode strips spans between the cathode and anode

electrodes, producing charge pulses more sensitive to the hole

contribution. Contrary to the anode pulses, the collected-

charge pulses from cathode strips have a well defined slope of

the leading edge (negative blue pulses of Fig. 4), with benefits

in arrival time estimation. The peaking times of the pulses can

reach maximum values of 2 ms and 3 ms for the anode and
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Figure 3
Layout of a single drift cell of the 3D drift strip CZT detectors. Each drift cell (1.6 mm � 6 mm �
20 mm) contains a collecting anode strip and four drift strips, two RDs and two LDs of the collecting
strip. The bias voltage values are optimized to collect electron charges on the collecting anode. The
PTF and PPF irradiation geometries are also shown.
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cathode, respectively. This indicates that a long shaping time

constant of the shaper amplifier is required to avoid ballistic

deficit distortions (Knoll, 2000).

3.2. Induced-charge pulses with zero-saturation level

Positive induced-charge pulses (dark-yellow pulses) with

zero-saturation level are observed in drift strips, as shown on

the top side of Fig. 4. These pulses are mainly caused by

photon interactions near the cathode and are related to the

electron charge drift: the electron charge, drifting towards the

anode, also intercepts the non-monotonic weighting potential

of the drift strips (dark-yellow curve). The pulses rise as the

electron charge moves to the collecting anode and then

rapidly decrease to zero as the electrons are collected. Their

amplitude (pulse height) can be used to estimate the photon

interaction positions among the anode/drift strips (x-posi-

tioning) (Howalt Owe et al., 2019; Budtz-Jørgensen &

Kuvvetli, 2017). These pulses are also observed in cathode

strips and can be helpful to improve z-positioning among the

cathodes, with spatial resolution better than the geometrical

strip pitch (2 mm).

3.3. Induced-charge pulses with positive- and negative-
saturation levels

Induced-charge pulses with a negative saturation level are

also characteristic of drift strips, particularly for photon

interactions near the anode, as shown in the bottom side of

Fig. 4. This negative saturation level is due to the charge

induced by holes trapped in the detector (Bolotnikov et al.,

2014, 2016; Zhu et al., 2011), as also confirmed by our simu-

lation. Since the amplitude of this negative level is related to

hole trapping, this information can be used to reduce the

effects of incomplete charge collection in the collected-charge

pulses of the anode strips, detected in temporal coincidence.

The drift strips also give rise to induced-charge pulses with

positive saturation levels (Fig. 5). These pulses, mainly related

to photon interactions near the cathode, are caused by the

charge induced by electrons trapped in the detector. Due to

the moderate trapping of electrons, the number of these pulses

is very low when compared with that of the holes. Fig. 5 also

shows the presence of three different cathode pulses that can

be attributed to the effects of charge sharing among cathode

strips. If a 137Cs photon is fully absorbed near the cathode side

of the CZT detector, the size (FWHM) of the electron cloud,

after drifting through the entire thickness of the crystal, can be

estimated to about 350 mm (range of the photoelectrons,

diffusion and repulsion) (Bettelli et al., 2020; Kim et al., 2011,

2014; Bolotnikov et al., 2007). In particular, the pulse from

cathode 7 (brown pulse) is an example of mixed induced-

collected-charge pulses, owing to the effects of both charge

sharing and weighting potential cross talk. Fortunately, due to

the focusing effects of the drift strips, these pulses are not

present in collecting anode strips. Mixed induced-collected-
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Figure 4
Measured and simulated pulses from the anode, cathode and drift strips. Calculated electric and weighting potential profiles are also reported. Collected
and induced-charge pulses are clearly visible, related to photon interaction near the cathode (top) and near the anode (bottom).
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charge pulses generally have a strong presence in pixel

detectors (Bolotnikov et al., 2014, 2016), representing a critical

issue in the estimation of pulse heights (photon energies).

4. The electronics: preamplifiers and digital electronics

The collecting anode strips, the drift strips and the cathode

strips were a.c.-coupled to hybrid charge-sensitive preampli-

fiers (CSPs) and processed by 32-channel digital electronics.

Both the CSPs and the digital electronics were developed

at DiFC of the University of Palermo (Italy). The CSPs are

characterized by an equivalent noise charge (ENC) of 100

electrons and equipped with a resistive-feedback circuit with a

decay time constant of 150 ms. The digital electronics consist of
eight digitizers (DT5724, 16 bit, 100 MS s�1, CAEN S.p.A.,

Italy; http://www.caen.it) driven by an

original firmware (Abbene et al., 2015,

Abbene & Gerardi, 2015; Gerardi &

Abbene, 2014). The data from each

channel are transmitted through USB to

PCs, where the user can control both the

acquisition and the analysis. Due to the

complex analysis required by the

different pulse shapes, we performed, at

this step, a mixed online/offline pulse

processing. For each CSP output

channel, the digital system performs

online pulse detection, time-tag trig-

gering and provides to the PCs a

sequence of selected pulses with the

related arrival times (‘snapshot wave-

form’); therefore, these pulses are

analysed offline for dedicated pulse

shape and height analysis. The details of

online operations and outputs from

each CSP output channel are described

below:

(i) Pulse detection and arrival time

estimation: the CSP output waveforms

are shaped using the classical single

delay line (SDL) shaping technique

(Knoll, 2000), acting as the classical

differentiation; the trigger time is

generated and time-stamped through

the ARC (amplitude and rise time

compensation) timing marker (at the

leading edge of the SDL pulses), able to

reduce the effects of time jitters and

amplitude and rise time walks.

(ii) Snapshot waveforms (SWs): a

sequence of CSP output pulses with the

related arrival times are provided to

PCs (Fig. 6) for the offline pulse shape

and height analysis; each CSP pulse,

selected through a pile-up rejection

(PUR), is centred on a time window, the

duration of which is termed ‘snapshot

time’ (ST); a pulse is accepted if it is not preceded and not

followed by another pulse in the ST/2 time windows.

We stress that SWs are quite different from the classical

waveforms of a digitizer; this operation mode allows dedicated

analysis of the pulses and, due to the estimation of the arrival

times, enables the possibility of time coincidence analysis

(TCA) with the preservation of the pulse shape. Moreover,

each SW is characterized by the absence of empty waveform

zones, i.e. with no pulses. On the contrary, empty zones are

typically present in the classical waveforms, especially at low-

input counting rates, requiring larger output files and, there-

fore, with critical issues in synchronization and data trans-

mission.

The SWs are processed offline with dedicated analysis

taking into account the different features of collected-charge
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Figure 5
Simulated and measured pulses from the anode, cathode and drift strips. Induced-charge pulses with
positive saturation levels can be attributed to the electron trapping. Mixed induced-collected charge
pulses (cathode 7) are also observed, due to both charge sharing and weighting potential cross talk.
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pulses and induced-charge pulses. The height (i.e. the photon

energy), the saturation levels (contribution induced by

trapped charges) and the peaking time (i.e. the pulse shape) of

the pulses are estimated offline after SDL and trapezoidal

shaping.

5. Experimental

The spectroscopic response of the detectors was investigated

by X-ray and gamma-ray calibration sources (main gamma

lines: 241Am, 59.5 keV and 26.3 keV; 57Co, 122.1 keV and

136.5 keV; 137Cs: 661.7 keV). The 3D working mode of the

detectors foresees the PTF irradiation geometry (xy plane),

exploiting the 20 mm thickness of the CZT material in the z

direction. For comparison, the spectroscopic performance

through the PPF geometry (zx plane) was also evaluated. All

measurements were performed at T = 25�C.

6. Overview of the spectroscopic performance

Fig. 7 shows the measured 662 keV photopeaks of uncolli-

mated 137Cs spectra for a collecting anode strip at different

cathode bias voltages. The drift strip bias voltages of �100 V

for adjacent drift strips and �200 V for central drift strips

represent the best compromise between charge collection

improvements and leakage current increasing. The results

clearly highlight that the best energy resolution was obtained

at low cathode voltage values (�350 V; 583 V cm�1). This is

due to the particular electrode structure of the detector: once

the drift strip voltages are fixed, higher cathode voltages

worsen the electron charge collection on the collecting anode,

as confirmed through simulations (Fig. 8). We obtained spectra

with excellent energy resolution of 1.3% FWHM at 661.7 keV

without any corrections for charge sharing or trapping. This is

a key result, confirming the important technological progress

obtained in the fabrication of CZT drift strip detectors.

Typically, energy resolutions of 3–4% at 662 keV were

obtained from uncollimated raw 137Cs spectra measured with
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Figure 6
Overview of an SW from a single channel (collecting anode strip) of the
digital readout electronics. Each CSP output pulse, detected online, is
given within a user-selected time window of 9 ms (ST) and time-tagged
with its arrival time. The SWs are transmitted to PCs for dedicated offline
pulse processing.

Figure 7
662 keV photopeaks of the measured 137Cs spectra from a collecting
anode strip at different cathode bias voltages; fixed drift strip voltages
(adjacent drift strips: �100 V; central drift strips: �200 V) are used. The
detector, irradiated in PTF geometry, shows the best energy resolution
(1.3% FHWM at 661.7 keV) at a cathode voltage of �350 V
(583 V cm�1).

Figure 8
Calculated electric potential and simulated electron induced current at different cathode voltages (adjacent drift strips: �100 V; central drift strips:
�200 V). The results clearly show that the induced current on the collecting anode strip is enhanced at �350 V.
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other CZT drift strip prototypes (Budtz-

Jørgensen & Kuvvetli, 2017; Howalt

Owe et al., 2019; Kalemci & Matteson,

2002; Kuvvetli et al., 2010). Fig. 9 shows

uncollimated 57Co spectra measured

using the PTF and PPF geometries. At

low energies (241Am and 57Co sources),

the PPF geometry ensures better

performance than that of PTF due to

charge generation near the cathode

side. In this case the pulses are less

sensitive to the hole contribution.

However, at higher energies (137Cs source), with charge

generation points spanning the overall cathode to anode

depth, similar performance characterizes the two irradiation

geometries, as reported in Table 1. In this case, the PTF

geometry will ensure higher detection efficiency over the

20 mm thickness.

7. Spectroscopic improvements with cathode signals
(C/A ratio, cathode peaking time, electron drift time)

A critical issue observed in 3D CZT drift strip detectors is

represented by the presence of non-uniform spectroscopic

response over the cathode–anode depth, with increasing

degradations for photon interactions near the anode (Budtz-

Jørgensen & Kuvvetli, 2017; Howalt Owe et al., 2019).

Regarding our detectors, evidence of the presence of these

distortions was given by the differences observed in detector

performance between PTF and PPF geometries, as shown in

the previous section. These distortions are better highlighted

by the measured spectra (Fig. 10) from collimated 57Co photon

beams (Pb collimator; circular hole diameter � = 1 mm) irra-

diated in PTF geometry at three different positions between

the cathode and anode. The photopeak centroid is reduced by

about 6% from the cathode to the anode and the energy

resolution worsens from 3.2% (near the cathode) to 7.5%

(near the anode) FWHM at 122.1 keV. This is due to the fact

that the weighting potential behaviour of the collecting anode

near the anode increases the sensitivity of the pulses to the

hole contribution and hence to their trapping effects. In

general, mitigation of these non-uniformities can be obtained

through the analysis of some features of the cathode and

anode pulses. In our case the cathode to anode (C/A) ratio, the

cathode peaking time and the electron drift time were esti-

mated with the goal to exploit their potential in performance

recovery. As is well known (Bolotnikov et al., 2016; Kim et al.,

2014; Budtz-Jørgensen & Kuvvetli, 2017; Van Pamelen et al.,

1998; Verger et al., 2007; Yi et al., 2013), the C/A ratio is widely

used in CZT detectors to compensate for these distortions.

However, some critical issues must be taken into account

when the C/A ratio is used in CZT drift strip detectors. First,

owing to the low cathode bias voltages (�350 V), the energy

spectra from the cathode strips are very poor [Fig. 11(a)]. This

creates significant fluctuations in C/A ratio values and

problems in energy calibration of the cathodes. Here, the

cathode calibration was successfully performed through low-

energy spectra (241Am and 57Co sources) measured in PPF
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Figure 9
Measured 57Co spectra of a collecting anode strip in PTF and PPF
geometries. Energy resolution of 4.9% and 3.3% FWHM at 122.1 keV
were obtained in PTF and PPF geometries, respectively.

Table 1
Energy resolution (FWHM) at different energies of a collecting anode strip of the 3D CZT drift
strip detector in PTF and PPF geometries.

The energy resolution values refer to raw energy spectra with no spectral correction. The Fano noise was
calculated using a Fano factor of F = 0.1 (Devanathan et al., 2006; Kuvvetli & Budtz-Jorgensen, 2005;
Owens & Peacock, 2004).

Irradiation geometry

Energy resolution
at 59.5 keV (keV)
Fano noise: 0.4 keV

Energy resolution
at 122.1 keV (keV)
Fano noise: 0.6 keV

Energy resolution
at 661.7 keV (keV)
Fano noise: 1.3 keV

Planar transverse field 4.2 (7%) 6.0 (4.9%) 8.6 (1.3%)
Planar parallel field 3.3 (5.6%) 4.0 (3.3%) 7.9 (1.2%)

Figure 10
Collimated (� = 1 mm) 57Co spectra of a collecting anode strip in PTF
geometry at different irradiation positions. The energy spectra show
photopeak centroid shifts of about 6% from the cathode to the anode
side; the energy resolution is 3.2% and 7.5% FWHM at 122.1 keV near
the cathode and anode, respectively.
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geometry, obtaining quite good linearity. Second, charge

sharing is present among the cathode strips (Fig. 5) and,

therefore, charge sharing addition (CSA) is necessary to

correctly estimate the total charge from the cathode strips. As

previously demonstrated (Abbene et al., 2018b; Allwork et al.,

2012; Brambilla et al., 2012; Bolotnikov et al., 1999; Gaskin et

al., 2003; Kalemci & Matteson, 2002; Kim et al., 2011), CSA

simply consists of a sum of the energies of the coincidence

events among the collecting electrodes (cathode strips in our

detectors). Fig. 11(b) shows the 57Co spectra from a cathode

strip (cathode 3) and from all cathodes after CSA [red line of

Fig. 11(b)]. Due to the small inter-strip gap (0.1 mm), if

compared with the strip pitch (2 mm), no charge losses are

observed after CSA. The peaking time of the cathode pulses

also follows the depth of interaction between the cathode and

anode; due to the similar peaking time values of the shared

pulses, it can be helpful when CSA fails. The electron drift

time is the time between the charge generation of the electron

cloud until its collection at the anode strip. This is very helpful

for double-event positioning of Compton interactions

(Compton camera). The estimation of the drift time is strongly

influenced by the correct measurement of the arrival times of

the pulses which is more critical for the anode pulses due to

their slow leading edge for photon interactions near the

cathode. In our case, to take this into account, we estimated

the electron drift time Tdrift using the following approach,

Tdrift ¼
Tanode � Tcathode þ Tanode peaking time if Tanode >Tcathode

Tanode peaking time if Tanode � Tcathode

�

ð1Þ
where Tanode and Tcathode are the arrival times of the anode and

cathode strip pulses, respectively, and Tanode peaking time is the

peaking time of the anode pulses.

Fig. 12 shows the scatter plots, zoomed in on the 662 keV

photopeak region, of the measured C/A ratio, the cathode

peaking time and the electron drift time versus the height of

the pulses from a collecting anode strip. Photopeak shifts,

mainly related to interactions near the anode, are visible at

low values of these features. The curvature at high C/A values

(C/A > 0.7) also confirms the presence of a small contribution
from the electron trapping for photon interactions near the

cathode. The scatter plot related to the cathode peaking time

is more smeared out. This is probably due to the presence of

two opposite tendencies in the values of cathode peaking time;

one is related to the holes that tend to increase the cathode

peaking time near the anode, another to the electrons which

tend to reduce this value. Through the measured scatter plots,

we approached a possible performance recovery. In particular,

the corrected anode energy Ecorr is obtained as follows:

Ecorr ¼ EmeasðFÞ
Ebest photopeak

EphotopeakðFÞ
; ð2Þ

where F is the measured feature (C/A, cathode peaking time

or drift time), Emeas(F) is the measured raw energy,

Ebest photopeak is the best photopeak energy (estimated from the

energy spectra measured in PPF geometry) and Ephotopeak(F)

is the photopeak of the energy spectrum associated with the

feature F. The 137Cs energy spectra after spectral correction

(C/A and drift time) using equation (2) are shown in Fig. 13. In

general, the C/A correction gives a slightly better energy

resolution (1% FWHM at 661.7 keV) than that of the drift

time (1.16% FWHM at 661.7 keV). However, C/A correction

requires the rejection of some C/A ratio values which give

poor results [blue line of Fig. 13(a)], while drift time correction

allows the analysis of all events.

8. Spectroscopic improvements with drift strip signals

In previous sections, we presented some induced-charge

pulses from drift strips characterized by negative saturation

levels. Through simulation, we also demonstrated that this

saturation level is due to the charge induced by trapped holes,

opening the possibility to use this feature to reduce the effects

of incomplete charge collection. Fig. 14(a) shows the scatter

plot, zoomed in on the 662 keV photopeak region, of the

negative saturation level versus the height of the pulses from a

collecting anode strip. Photopeak lowering is increased for
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Figure 11
(a) Measured energy spectra from a cathode strip (PTF geometry).
(b) 57Co energy spectrum (red line) of all cathode strips after CSA.
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higher negative saturation levels. By employing equation (2)

with this new feature F (i.e. the negative saturation level), we

obtained a full photopeak recovery [Fig. 14(b)] and significant

improvements in the energy spectra (0.8% FWHM at

661.7 keV), as shown in Fig. 14(c). The 137Cs energy spectrum

with the collecting anode strip events in temporal coincidence

with all events from drift and cathode strips is shown in Fig. 15.

The correction was only applied to the anode strip pulses in

temporal coincidence with the induced-charge pulses with

negative saturation levels. An excellent energy resolution of

0.9% FWHM at 661.7 keV characterizes the measured spec-

trum. To the best of our knowledge, this result represents the

best energy resolution value obtained with 3D CZT drift

detectors (Budtz-Jørgensen & Kuvvetli, 2017; Caroli et al.,

2010; Howalt Owe et al., 2019; Kalemci & Matteson, 2002;

Kuvvetli et al., 2010).

9. Conclusions

The spectroscopic performance of new high-resolution 3D

CZT drift strip detectors (19.4 mm � 19.4 mm � 6 mm) is

presented. The detectors are designed to ensure room-

temperature measurement of photon energy, timing and 3D

positioning up to the megaelectronvolt region, with a

moderate number of readout channels (24) for each detector.

Due to the focusing effects of the drift strips, charge sharing

and mixed induced-collected-charge pulses are not present in
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Figure 12
Scatter plots of (a) the C/A ratio, (b) the relative cathode peaking time
and (c) the relative drift time versus the height of the pulses from a
collecting anode strip.

Figure 13
Measured 137Cs energy spectra corrected with equation (2). (a) C/A ratio
correction (black and blue lines). (b) Drift time correction (blue line).
Energy resolutions of 1% and 1.16% FWHM at 661.7 keV are obtained
for the C/A ratio and drift time correction, respectively.
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collecting anode strips. As reported in the literature, mixed

induced-collected-charge pulses have a strong presence in

pixelated CZT detectors, representing a critical issue in the

correct estimation of the pulse heights. Very good room-

temperature energy resolution (1.3% FWHM at 661.7 keV) of

the raw energy spectra (with no correction) demonstrates the

important advances in device fabrication technology obtained

at IMEM/CNR (Parma, Italy) and by due2lab (Reggio Emilia,

Italy). Dedicated digital pulse processing, developed at the

University of Palermo (Italy), allowed us to exploit the

features of the wide range of collected and induced charge

pulses from the strips, with excellent results in detector

performance enhancements. In particular, the non-unifor-

mities over the cathode–anode depth, typically present in CZT

drift strip detectors, were recovered through the relation of

the anode pulses with the C/A ratio, cathode peaking time and

drift time (1.0–1.16% FWHM at 661.7 keV). Excellent spec-

troscopic improvements (0.8–0.9% FWHM at 661.7 keV) were

obtained with a new approach, based on the relation of the

anode strip pulses with negative saturation levels of the

induced-charge pulses from the drift strips.

Ongoing activities involve the full characterization of the

spatial capabilities of the detectors in 3D event reconstruction.

Future work will focus on the capabilities of 3D CZT drift

strip detectors as Compton cameras.
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Figure 14
(a) Raw and (b) corrected [equation (2)] scatter plots of the negative
saturation level versus the height of pulses from a collecting anode strip.
(c) Excellent energy resolution is obtained after correction considering
only the induced-charge pulses with negative saturation level.

Figure 15
Measured uncollimated 137Cs energy spectrum from a collecting anode
strip after spectral correction. The energy spectrum is obtained with the
collecting anode strip events in temporal coincidence with all pulses from
drift and cathode strips. The correction was only applied to the anode
strip pulses in temporal coincidence with the induced-charge pulses with
negative saturation levels.
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Bettelli, M., Amadè, N. S., Seller, P., Veale, M. C., Fox, O., Sawhney,
K., Zanettini, S., Tomarchio, E. & Zappettini, A. (2020). J.
Synchrotron Rad. 27, 319–328.

Agostinelli, S., Allison, J., Amako, K., Apostolakis, J., Araujo, H.,
Arce, P., Asai, M., Axen, D., Banerjee, S., Barrand, G., Behner, F.,
Bellagamba, L., Boudreau, J., Broglia, L., Brunengo, A., Burkhardt,
H., Chauvie, S., Chuma, J., Chytracek, R., Cooperman, G., Cosmo,
G., Degtyarenko, P., Dell’Acqua, A., Depaola, G., Dietrich, D.,
Enami, R., Feliciello, A., Ferguson, C., Fesefeldt, H., Folger, G.,
Foppiano, F., Forti, A., Garelli, S., Giani, S., Giannitrapani, R.,
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