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Abstract. We present a blind method to determine the properties of a foreground con-
tamination, given by a visibility mask, that affects a deep galaxy survey. Angular cross
correlations of density fields in different redshift bins are expected to vanish (apart from a
contribution due to lensing), but are sensitive to the presence of a foreground that modulates
the flux limit across the sky. After formalizing the expected effect of a foreground mask on
the measured galaxy density, under a linear, luminosity-dependent bias model for galaxies,
we construct two estimators, based on the average or square average galaxy density in a given
sky pixel along the line of sight, that single out the mask contribution if a sufficient number
of independent redshift bins is available. These estimators are combined to give a reconstruc-
tion of the mask. We use Milky-Way reddening as a prototype for the mask. Using a set
of 20 large mock catalogs covering 1/4-th of the sky and number-matched to Hα emitters
to mimic an Euclid-like sample, we demonstrate that our method can reconstruct the mask
and its angular clustering at scales `<∼ 100, beyond which the cosmological signal becomes
dominant. The uncertainty of this reconstruction is quantified to be 1/3-rd of the sample
variance of the signal. Such a reconstruction requires knowledge of the average and square
average of the mask, but we show that it is possible to recover this information either from
external models or internally from the data. It also relies on knowledge of how the impact
of the foreground changes with redshift (due to the extinction curve in our case), but this
can be tightly constrained by cross correlations of different redshift bins. The strong points
of this blind reconstruction technique lies in the ability to find “unknown unknowns” that
affect a survey, and in the facility to quantify, using sets of mock catalogs, how its uncertainty
propagates to clustering measurements.

ar
X

iv
:1

81
2.

02
10

4v
4 

 [
as

tr
o-

ph
.C

O
] 

 9
 A

pr
 2

01
9

mailto:pierluigi.monaco@inaf.it
mailto:enea.didio@berkeley.edu
mailto:emiliano.sefusatti@inaf.it


Contents

1 Introduction 1

2 The impact of a visibility mask on clustering measurements 4
2.1 The galaxy density contrast 4
2.2 Observed density contrast in presence of a foreground 5
2.3 Milky Way extinction 7

3 Simulated catalogs 9

4 Reconstruction of the visibility mask 11
4.1 Estimators of the mask-dependent term in the observed density contrast 11
4.2 Combining Mav and Msq into a best reconstruction of the mask 13

5 Angular power spectra and cross correlations of density fields 19
5.1 The contribution of lensing 19
5.2 Reconstructing the true angular clustering 21
5.3 Cross correlations as a blind test for the mask 25

6 Estimating 〈M 〉 and 〈M 2〉 26

7 Testing reddening maps 30

8 Conclusions 33

1 Introduction

The next generation of galaxy surveys, like Euclid [1], DESI [2], WFIRST [3], LSST [4],
eBoss [5] and the SKA [6] surveys, will map large fractions of the sky, going deep, well beyond
redshift one, and collecting data for billions of galaxies. They will provide measurements
of galaxy clustering to unprecedented sub-percent precision, providing tight constraints to
parameters like the equation of state of dark energy and its possible redshift evolution,
that may discriminate a pure cosmological constant from a dynamical component. With
statistical errors beaten down, the error budget will be dominated by systematics. A class
of these systematics is connected with foregrounds on the sky, internal to the Milky Way
or related to the nearest galaxies, that modulate the effective depth of the survey. We can
broadly divide such foregrounds into those that increase the background noise, like zodiacal
light, and those that decrease the signal, like Milky Way extinction. These foregrounds, if not
properly corrected for, create large-scale structure on degree scales, that is then projected to
the observed redshift to create fake structures at the ∼Gpc comoving scales that lie before
(in wave number) or at the peak of the galaxy power spectrum.

A very similar effect can be induced by more instrumental issues, like errors in the
zero-point calibration of photometry, straylight within the detector, image persistence in the
CCD, modulations of survey exposure time or decay of the instrument performance along its
lifetime, fiber collision or overlapping spectra in slitless spectroscopy. The impact of these
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features couples with the survey strategy to determine the effective flux limit of the survey
across the sky.

Every team involved in the preparation of the future surveys mentioned above is working
hard to model and subtract out these effects. Most of the approaches proposed so far are based
either on prior knowledge of the contaminant, or on removal of the most contaminated modes,
with some information loss. For instance, removal of contamination due to fiber collision can
be done, with some loss of information, by removing purely angular modes in the anisotropic
power spectrum [7, 8]. Experience with previous surveys teaches us that real data are often
affected by “unknown unknowns”, i.e. sources of contamination that were not accounted for in
the preliminary analysis. An example is given by the SDSS-III BOSS survey [9], where stars of
the same magnitude as the observed galaxies were decreasing the effective area of the survey,
creating spurious power when this decrease was not corrected for. The contamination was
found to be strong at scales just beyond the first Baryonic Acoustic Oscillation (BAO), and its
cause was found by correlating the galaxy density with a list of potential causes. Correction
of systematics in [10, 11] was based on template subtraction, assuming that each potential
foreground is contributing linearily to the observed density contrast; the corresponding linear
coefficients were found by cross-correlating the signal with the template. This method of
template subtraction, coupled with mode deprojection, was further developed by [12, 13].
Besides correlating the observed density with known sources, an often used approach is that of
computing cross correlations of very different surveys that are subject to different systematics;
in this case it is in principle possible to minimise the contamination. This technique has
been used to constrain primordial non-Gaussianities [14–16]. A caveat to this approach is
that the Galaxy is a source of contamination at all wavelengths, so it is not obvious to
understand at what level foregrounds at different wavelengths are really uncorrelated. 21 cm
intensity mapping analysis exploits the idea that foregrounds are modulated on very different
scales, and this makes it possible to perform a blind separation of signal and foreground
[17], at the cost of removing large-scale cosmological modes that lie in the same domain
as the contaminants. Besides, the analysis of the Cosmic Microwave Background (CMB)
can exploit, with component separation techniques, the fact that different components have
different Specral Energy Distributions (SEDs) [18], reaching a much higher precision level
in foreground subtraction. One could think to extend this principle to galaxy surveys using
redshift in place of wavelength: foregrounds could be fitted based on of how their impact on
the observed density changes with redshift, see [19, 20] for an example in this direction.

Several foregrounds can be readily subtracted once images are acquired and well cal-
ibrated; for instance, the precise origin of the background noise in an image (say zodiacal
light, extragalactic background, or straylight) should be known in advance to simulate a
survey and assess its completeness, but when images have been taken the noise level is di-
rectly measured. The case of Milky Way extinction is different, as the extragalactic light
is absorbed by dust grains and reprocessed in the mid and far infrared (FIR), and there is
no internal way to know the fraction of absorbed light. Extinction is typically subtracted
using models based on observed FIR emission maps of the Galaxy. In Schlegel, Finkbeiner
& Davis [21] (hereafter SFD) the authors used COBE and IRAS data to create a map of
FIR emission, then transformed this into a reddening map by calibrating it with reddening
values measured for a set of galaxies. More recently, the Planck Collaboration issued two
extinction or reddening maps, based on the same principles. The first map was issued with
the 2013 results [22] (hereafter P13): they used 353, 545 and 857 GHz maps, together with
IRAS 100 µm map, and fitted the SED of each pixel with a modified black body. They then
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used the radiance as a quantity supposedly well correlated with extinction, and calibrated
the coefficient of this linear correlation with reddening measured for a set of 53,399 SDSS
quasars. Care was taken in minimizing the impact of Cosmic Infrared Background (CIB)
fluctuations on reddening estimates. In 2015 a different map was issued, based on Planck
intermediate results [23] (hereafter P15): they added to the previous maps the IRAS 60 µm
and the WISE 12 µm bands, and fitted pixel-by-pixel SEDS with a physical dust model by
Draine & Li [24], where extinction AV is a parameter of the model. However, a check with
272,366 SDSS quasars showed that extinction was overestimated by a factor of 2.4, so the
extinction maps were corrected by that heuristic factor. We will show in this paper that the
level of agreement of these three reddening or extinction maps is insufficient to guarantee the
required accuracy in foreground subtraction.

These foregrounds are expected to be dominant at very large scales. In fact, at scales
beyond the peak of the power spectrum the clustering signal is expected to be weak, while
foregrounds, being driven by local astrophysical entities that surround the Earth, are clus-
tered on very large angular scales; the same is true for instrumental and survey issues (with
remarkable exceptions of fiber collision or spectra overlap that will be discussed in the con-
clusions). While their impact at the very important BAO scales is typically under control,
measuring clustering at the largest scales will be limited by foreground subtraction. There
are several science cases that require accurate measurements at the largest scale. In the stan-
dard scenario, these scales have been frozen once they exited the Hubble horizon during the
inflationary epoch, and they are the neatest fossil to understand the physical interactions at
the inflationary energy scale. These interactions may have generated some primordial non-
gaussianity, whose amplitude is usually parametrized by fnl. Planck has constrained this
parameter to be fnl = 0.8± 5.0 [25]. While the search of generic primordial non-gaussianity
requires an analysis beyond the 2-point statistics, local non-gaussianity generates a well-
defined scale-dependent galaxy bias [26] which is enhanced on large scales. This can be
exploited to achieve tighter constraints than Planck’s, especially using multiple tracers [27]
in future redshift surveys. Moreover, at the largest scales the simple Newtonian approxi-
mation may start to fail; in the last decade several efforts have been devoted to describing
galaxy clustering in a gauge-invariant relativistic framework [28–30] to meet the experimental
accuracy of coming surveys. These effects are expected to be relevant at the horizon scale
and their amplitude and detectability are comparable with fnl ∼ O(1) [31].

Proper subtraction of foregrounds is only part of the problem, the uncertainty on fore-
ground removal should be quantified in terms of its contribution to the covariance matrix
of clustering measurements, and propagated to parameter estimation. In a recent paper,
Colavincenzo et al. [32] (hereafter C17), the authors quantified, with an idealized foreground
model, the impact of the uncertainty of foreground subtraction on the covariance matrix of
the power spectrum of dark matter halos, showing that, although cosmological clustering and
foreground are assumed to be uncorrelated, the full covariance matrix is not simply the sum
of the cosmological one and that induced by the foreground, because of a rather long list of
mixed terms that can be quite significant.

To determine the full covariance matrix it is necessary to know not only the error on
foreground subtraction but also its correlations on the sky. Foregrounds mainly impact clus-
tering measurements through a modulation of survey depth. We will loosely call “visibility
mask”, or simply “mask”, a function of the sky position θ that is responsible for the modula-
tion of survey depth, though its specific impact may in general depend on the target redshift.
Throughout the paper we will use galactic extinction (more specifically, E(B−V ) reddening)

– 3 –



as a prototype mask. The starting idea is that (see e.g. C17) to first order a foreground
mask M acts on the survey in such a way that the observed density contrast δo is related to
the true galaxy density contrast δg as 1 + δo = (1−M )(1 + δg) (see equation (2.19) of C17).
The two-point correlation function of the density is then:

〈δo1δo2〉 = 〈δg1δg2〉+ 〈M1M2〉+ 〈δg1δg2〉〈M1M2〉 . (1.1)

Then, if we measure a cosmic correlation that is expected to be vanishing, 〈δg1δg2〉 = 0, like
the angular cross-correlation of two different and distant redshift bins, any significant signal
could be interpreted as the angular correlation of the foreground, and used to reconstruct
it. This will provide accurate results as long as the survey is deep enough to have a large
number of independent pairs of redshift bins.

In this paper we build on this idea, presenting a blind method to recover the mask to
which a cosmological catalog is subject. The method will be applied to a set of mock galaxy
catalogs on the past light cone covering 1/4 of the sky, generated with the PINOCCHIO
approximate method [33, 34], and calibrated to generate an Euclid-like survey of Hα emitters
[35] in a wide redshift range. The reconstruction of the mask will be based on estimators
of the average density contrast along the line of sight; the inversion of the relation between
mask and estimator requires knowledge of the first two moments of the mask, and we will
show how this information can be achieved with sufficient accuracy from an internal analysis
of the catalog. We will check that the cross correlation induced by light-cone effects, like
magnification bias due to lensing, does not affect the scale where our prototypical mask is
dominant and can be recovered. We will further show to what level this reconstruction can
be used to test different maps of galactic extinction, in the case this is the only present
foreground.

The paper is organized as follows. Section 2 gives a formalization of the problem, defin-
ing the observed density contrast and its dependence on the flux limit of the survey, and ex-
panding the equations in the case of galactic extinction as foreground. Section 3 describes the
simulated catalogs of dark matter halos in the past light-cone and the abundance-matching
connection of halos with galaxies. Section 4 describes the procedure adopted to obtain a “best
reconstruction” for the mask, starting from estimators of galaxy clustering that are sensitive
only to the mask term, and under the hypothesis that the first two moments of the mask are
known. Section 5 discusses how the angular clustering of the cosmological, unmasked mocks
can be recovered using the mask best reconstruction, and the crucial role of cross correlations
for the calibration of the mask. Section 6 discusses how the first two moments of the mask
can be estimated from the available data, and tests the performance of a best reconstruction
applied with no external information and calibrated on cross-correlations. Section 7 shows to
what extent an application of this procedure can be used to test reddening maps and recover
the extinction curve. Section 8 presents a final discussion and the conclusions.

2 The impact of a visibility mask on clustering measurements

2.1 The galaxy density contrast

A density measurement is based on counting galaxies that are observed in specified volumes.
The condition for a galaxy to be observed is typically expressed as a flux limit threshold. In
realistic cases, the probability of a galaxy being observed will be a smooth function of flux;
this will be quantified by a completeness function, obtained through detailed simulations of
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the observational setup. Knowledge of the completeness function allows one to recast the
observational condition into a strict flux limit threshold, that at a certain redshift z can be
recast into a luminosity threshold L0(z) by assuming a fiducial cosmology.

We call Φ(L|z) the galaxy luminosity function at redshift z, and φlocal(L|x) the local
luminosity function in a volume centred on the comoving position x, lying at the redshift z:
|x| = dc(z), where dc(z) is the comoving distance from the observer. The relation between
Φ and φlocal is given by an average over the shell of the survey volume within a redshift bin
∆z around z. We denote such an average by 〈· · · 〉, so that:

Φ(L|z) = 〈φlocal(L|x)〉 . (2.1)

We stress that 〈· · · 〉 does not denote an ensemble average in this paper. The integrals in
luminosity, from L0 to∞, of φlocal and Φ give, respectively, the local galaxy density ng(x|L0)
and the average galaxy density 〈ng〉(z|L0):

ng(x|L0) =

∫ ∞
L0(z)

φlocal(L|x)dL , 〈ng〉(z|L0) =

∫ ∞
L0(z)

Φ(L|z)dL . (2.2)

Under the assumption that the shape of the luminosity function is independent of en-
vironment, φlocal(L|x) differs from Φ(L|z) only in the normalization:

φlocal(L|x) = [1 + δφ(x)]Φ(L|z) . (2.3)

We define the galaxy density contrast in the usual way:

δg =
ng − 〈ng〉
〈ng〉

. (2.4)

We are using here two different symbols for δφ and δg because the two quantities have a
different relation with the underlying matter density contrast, due to the fact that galaxy
bias in general depends on galaxy luminosity. We will restrict ourself here to a simple linear,
luminosity-dependent bias model to relate the galaxy density contrast δg to the matter density
contrast δ in the same volume used to count galaxies:

δg(x|L0) = b1(L0, z)δ(x) , δφ(x|L) = β1(L, z)δ(x) (2.5)

where b1(L0, z) is the galaxy linear bias and

b1(L0, z) =
1

〈ng(z|L0)〉

∫ ∞
L0(z)

β1(L, z)Φ(L|z)dL . (2.6)

Getting back to equation 2.3, we note that a luminosity-dependent bias implies that δφ gets
a dependence on luminosity (equation 2.5), and so the shape of the local luminosity function
is not strictly universal. We will neglect this second-order effect in this paper.

2.2 Observed density contrast in presence of a foreground

A foreground contamination will have the effect of modulating the flux limit on the sky.
We denote here the sky position with the two-dimensional vector θ; this is related to the
comoving position x as its angular part in a spherical coordinate system, the radius r = |x|
being given by dc(z). We call Llim(θ, z) the flux limit in a given angular position θ of the sky,
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pointing to the position x. In the following, we will not explicitly write the z-dependence of
the various quantities. The observed number density will thus be:

no(x) =

∫ ∞
Llim(θ)

φlocal(L|x)dL . (2.7)

We can write the luminosity threshold as:

Llim(θ) = L0 + δL(θ) . (2.8)

In general, the perturbation δL(θ) will not average to zero over the survey. This is easy to
see in the case of galactic extinction: L0 will be the luminosity limit without extinction, and
δL will always be positive, as extinction acts in increasing the limiting flux and luminosity.

For small perturbations of the luminosity threshold δL, one can Taylor-expand the
observed density. It is convenient to define the quantity

ε ≡ δL/L0 (2.9)

and two redshift-dependent scaling functions related to the luminosity function and its L-
derivative:

SA(z) ≡ 〈ng〉(z)
Φ(L0|z)L0(z)

, (2.10)

SB(z) ≡ dΦ

dL
(L0|z)

L0(z)

2Φ(L0|z)
+

1

2
. (2.11)

Both scaling functions depend only on the shape of the luminosity function beyond or at L0.
The convenience of adding 1/2 to SB will be clear later. It is worth noticing that 2SB − 1 =
d ln Φ/d lnL evaluated at L = L0, and if Φ is modeled as a Schechter function with slope α
(including its negative sign) and characteristic luminosity L?, then SB = (α−L0/L? + 1)/2.

The observed density can be thus written as:

no

ΦL0
=

ng

ΦL0
− (1 + β1δ) ε−

(
SB −

1

2

)[
1 +

(
β1 + β′1

Φ

Φ′

)
δ

]
ε2 +O(ε3) . (2.12)

It is convenient to note that ng/ΦL0 = SA(1 + b1δ). In this equation the prime denotes a
derivative with respect to L, and again all L-dependent functions are evaluated at L0.

To compute 〈no〉 we can assume no correlation between δL(θ) (and thus ε(θ)) and
δ(x). This is true, in an ensemble-average sense, whenever the foreground is independent
of the cosmological signal. This covers most foregrounds, with some remarkable exceptions,
the obvious cases being density-dependent biases like fiber collision or spectra overlapping
in slitless spectroscopy. Moreover, a reddening map obtained from FIR observations will
be contaminated by the Cosmic Infrared Background, that gets a contribution by the same
surveyed galaxies (see discussion in [22]), so if extinction is corrected for using such a map
the residual foreground will be correlated with the cosmological signal; we will further discuss
this point in Section 8. We should notice, however, that even in the case of no correlation
between ε and δ, a given volume average does not guarantee that terms like 〈εδ〉 go to zero
exactly. We do not attempt here an estimation of the magnitude of these residual terms.
Their impact will be implicitely taken into account when we will quantify the accuracy of
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our method using simulations. Neglecting cross terms of mask and cosmological signal, the
average observed density is:

〈no〉
ΦL0

= SA − 〈ε〉 −
(
SB −

1

2

)
〈ε2〉+O(ε3) , (2.13)

so that the average density is affected by the foreground already at first order in ε if the
perturbation does not average to zero. The second-order effect is due to the curvature of the
luminosity function at the luminosity threshold, that gives an imbalance between galaxies
that get in or out of the selection.

The resulting galaxy density contrast can be written as the sum of a cosmological (Tcδ)
and a non-cosmological (Tnc) term:

δo =
no − 〈no〉
〈no〉

= Tnc + Tc δ , (2.14)

Tnc = − 1

SA
(ε− 〈ε〉)− 1

S2
A

〈ε〉(ε− 〈ε〉)−
SB − 1

2

SA
(ε2 − 〈ε2〉) +O(ε3) ,

Tc = b1 −
β1ε− b1〈ε〉

SA
−
(
SB − 1

2

) (
β1 + β′1

Φ
Φ′

)
SA

ε2

− β1

S2
A

〈ε〉 ε+
1 + SA

(
SB − 1

2

)
S2
A

b1〈ε2〉+O(ε3) .

If no foreground is present then ε = 0 and the non-cosmological term Tnc vanishes as expected.
We will consider later a (toy-model) case where bias is independent of luminosity; in this
case b1 = β1 and β′1 = 0, and equation 2.15 can be simplified to take the form compatible
with equation 2.19 of C17 and with the form assumed to obtain equation 1.1:

1 + δo = (1−A)(1 + δg) , (2.15)

where

A =
1

SA
(ε− 〈ε〉) +

1

S2
A

〈ε〉(ε− 〈ε〉) +
SB − 1

2

SA
(ε2 − 〈ε2〉) +O(ε3) . (2.16)

In this case Tnc = −A and Tc = 1−A.

2.3 Milky Way extinction

As a prototype of foreground contamination that modulates survey depth δL(θ), we choose
Milky Way extinction. Extinction at a wavelength λ, quantified as a magnitude, is denoted
as Aλ = R(λ)E(B − V ), where E(B − V ) is the reddening and R(λ) an extinction curve.
Reddening only depends on the sky position, so we define the “visibility mask” M (θ) :=
E(B − V ) as the reddening. We will assume (see next section) that our Euclid-like catalogs
consist of galaxies that are detected in Hα emission, so the impact of extinction on galaxy
selection acquires a redshift dependence. The luminosity limit of the survey is:

Llim(θ, z) = L0100.4R(z)M (θ) , (2.17)

where R(λ) is computed at the wavelength of the Hα line at redshift z, 6563× (1 + z) Å. It
is useful to define the scaling function:

SC(z) = 0.4 ln 10R(z) . (2.18)
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Extragalactic surveys usually observe sky areas with E(B−V )<∼ 0.1, so, for a typical extinc-
tion curve, the largest values of SCM will range from ∼ 0.2 in the R band (z ∼ 0) to ∼ 0.03
in the K band (z ∼ 2.4). The relative variation of flux limit ε is then worked out to second
order as:

ε(θ, z) = eSC(z) M (θ) − 1 = SC(z)M (θ) +
1

2
S2
C(z)M 2(θ) +O(M 3) , (2.19)

The observed density contrast is thus expressed as:

δo = Tnc + Tc δ , (2.20)

Tnc = −SC
SA

(M − 〈M 〉)−
S2
C

S2
A

〈M 〉(M − 〈M 〉)−
SBS

2
C

SA
(M 2 − 〈M 2〉) +O(M 3) ,

Tc = b1 −
SC
SA

(β1M − b1〈M 〉)−
SBS

2
C

SA
(β1M

2 − b1〈M 2〉)−
S2
C

S2
A

β1M 〈M 〉

−
(
SB − 1

2

)
S2
C

SA
β′1

Φ

Φ′
M 2 +

S2
C

S2
A

b1〈M 2〉+O(M 3) .

For a bias that is independent of luminosity:

1 + δo = (1−A)(1 + δg) , (2.21)

with

A =
SC
SA

(M − 〈M 〉) +
S2
C

S2
A

〈M 〉(M − 〈M 〉) +
SBS

2
C

SA
(M 2 − 〈M 2〉) +O(M 3) . (2.22)

This clarifies the reason why we added 1/2 to the definition of SB in equation 2.11: it was
done to get here a more compact form for Tnc. It is worth noticing here that the three
functions SA, SB and SC for a survey can be computed from the galaxy luminosity function
and from the extinction curve, and so it is possible to assume them as known functions. We
will discuss the role of the extinction curve in Section 7.

It is important to stress the domain of validity of equation 2.20: we have assumed no
correlation between ε(θ) and δ(x) and we have neglected residual correlations due to the
fact that volume averages are not ensemble averages; we have assumed no environmental
dependence of the shape of the luminosity function, a linear bias scheme and a second-order
expansion of the integral and of the exponential that relates ε and M . Next step, carried
out in Section 4.1, is to construct estimators that can average out the cosmological term Tcδ
and single out the mask-dependent term Tnc in that equation.

Real surveys will be affected by several foregrounds at the same time, so what one
would measure is their combined effect. However, the way different foregrounds impact as a
function of redshift, i.e. their SC(z) functions, may be different. For instance, a photometric
selection based on a single apparent magnitude, or a wavelength-independent modulation of
the photometric zero-point, would give a constant SC function. The present method should
then be generalized to a sum of contributions, grouped according to the shape of their SC(z)
functions. For sake of simplicity we will not consider this extension in this paper.
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3 Simulated catalogs

To build and test our method, we generated a set of 20 large simulated catalogs of dark matter
halos on the observer past light cone. The catalogs were generated with the PINOCCHIO1

approximate method [33, 34]; see [36] for a review on this technique.
PINOCCHIO is a parallel code that implements the following semi-analytic scheme:

starting from a linear density contrast field sampled on a regular cubic grid (as in the con-
struction of initial conditions for an N-body simulation), it predicts, for each grid element (or
particle), the time at which it is expected to collapse (to suffer orbit crossing). This is done
by smoothing the linear density contrast on a set of scales, computing the collapse time using
ellipsoidal collapse as in [37], and then taking for each particle the earliest obtained collapse
time. Collapsed particles are then grouped into halos with an algorithm that mimics their hi-
erarchical assembly. Halo positions are computing using 3rd-order Lagrangian Perturbation
Theory [38–40].

With the latest version of the code, we run 20 independent realizations of a box of
3.2 Gpc/h, sampled with 40963 particles. We used a WMAP cosmology with Ω0 = 0.285,
ΩΛ = 0.715, Ωb = 0.044, h = 0.695, σ8 = 0.828, ns = 0.9632. Each particle has a mass of
3.77×1010 M�/h and, as we identified halos of at least 20 particles, the smallest resolved halo
has mass 7.54×1011 M�/h. Halos were output on the past light cone, from z = 2.5 to z = 0,
on a comoving volume given by the projection of a sky circular area with semi-aperture of
60◦, thus covering 1/4 of the sky. The box was replicated using periodic boundary conditions
to fill the cone volume.

We produced a sample of mock galaxy catalogs that broadly mimic the spectroscopic
survey of the forthcoming Euclid satellite. This will observe star-forming galaxies through
slit-less spectroscopy over disconnected regions covering ∼ 1/3 of the sky (separated by the
Milky Way and the ecliptic). Such galaxies will mainly be detected through their Hα emission
line (blended with [NII]), in a redshift range that has been revised (with respect to the
initial red book [1] assumption) to be from 0.9 to 1.75. We will make use of a larger redshift
range, in order to have a larger number of independent redshift bins. Indeed, the amount
of information available to reconstruct the mask will not be limited to this spectroscopic
sample, it will be possible to apply the same technique to the photometric sample, to more
distant emission line galaxies (e.g. Lyman-α emitters) and to quasars, thus justyfing the first
tests of the method on a larger redshift range. This point will be further discussed in the
conclusions.

Assuming a one-to-one relation between halo mass and galaxy luminosity in the Hα
line (as in a naive Halo Occupation Distribution model - HOD - with one single galaxy in
each halo), halos were number-matched to galaxies using the luminosity function of model 1
of Pozzetti et al. (2016) [35]. This was done by dividing the redshift range from 0 to 2.5 in
bins of width δz = 0.05; for each bin the cumulative mass function of halos was computed
by averaging over the 20 light cones. Since halo masses take discrete values multiples of the
particle mass, we redefine halo masses by assuming that a halo of Np particles of mass Mp has
a mass distributed in the interval from NpMp to (Np + 1)Mp, with a mass function equal to
a power-law interpolation of the numerical halo mass function at the same mass and redshift
bin. The relation between halo mass M and Hα luminosity L was then found by tracking at
which M and L values the cumulative mass and luminosity functions give the same number
density. The matching luminosities were interpolated with polynomials in mass and redshift,

1http://adlibitum.oats.inaf.it/monaco/pinocchio.html
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to construct a function that assigns a luminosity to each halo. This interpolation induces
very little differences in the luminosity function at a redshift around z = 1.3, where the Φ?

parameter of the Schechter fit in model 1 of Pozzetti has a break. These differences are far
smaller than the ∼ 0.2 uncertainty in the number density of Hα galaxies.

With this naive HOD model we obtained 20 mock galaxy catalogs covering 1/4 of the
sky, with known angular position, observed redshift (including redshift-space distortions)
and Hα luminosity matching model 1 of Pozzetti. We assumed that the redshift is known
without observational uncertainty. Mock galaxy samples were selected using a flux limit of
2×10−16 erg s−1 cm−2. As a matter of fact, the halo mass limit of 20 particles sets a redshift-
dependent luminosity completeness, that may be higher than the luminosity corresponding
to the flux limit; in this case the sample is incomplete and this happens at z < 0.75, so we
will consider in this paper the redshift range from z = 0.8 to z = 2.4. One obvious problem
of these mock catalogs is that, assuming a one-to-one relation between halos and galaxies,
the 1-halo term that dominates clustering on small scales is completely missing. Because we
are mostly focused on very large scales, this issue is not a worry in this context.

Due to the luminosity dependence of (linear) bias, the Tc term in equation 2.20 for
the observed density contrast is complicated by the presence of three bias terms b1, β1 and
β′1. These do not enter in the reconstruction of the visibility mask, that is based on Tnc

in the same equation, so their relevance is limited. However they introduce a further level
of complication in the analysis, that is convenient to avoid at this stage. We decided to
remove the luminosity dependence of bias with the following procedure: for each redshift
bin used in the abundance matching procedure, we shuffle the values of halo masses, and
Hα luminosities, among all the halos. The halo mass function is unchanged, and so is the
abundance matching procedure. This way, a selection in luminosity will imply a random
sampling of the halos, so the selected sample will have the same linear bias b1 independent of
luminosity. As a consequence, equation 2.21 will apply in place of equation 2.20. We however
warn the reader that bias generally depends on luminosity, so these mock catalogs can be
considered only as a convenient toy model of galaxy clustering.

For the mask, we considered the three extinction maps described above, SFD, P13
and P15. All maps are provided to the community as HEALPIX maps of either E(B −
V ) reddening (SFD and P13) or AV extinction. SFD is provided in a pixelization with
NSIDE=512 while Planck maps are characterised by the higher resolution of NSIDE=2048.
As large scales are of interest here, we resampled Planck maps to NSIDE=512 and used
RV = 3.1 to relate reddening and extinction: AV = 3.1E(B − V ). We will use P13 as our
reference visibility mask: Mtrue = MP13 = E(B − V )P13. For the extinction curve R(λ)
we adopted the determination of [41]. To avoid the plane of the Milky Way the axis of the
light cone was oriented toward the north galactic pole. Mocks were masked by imposing a
different limiting flux in each healpix sky cell. Galaxy catalogs are divided into Nz = 17
redshift bins, centered around zi = 0.8 + i∆z, with i ranging from 0 to Nz − 1 and ∆z = 0.1,
twice the value used for abundance matching. The total redshift range is thus limited to
0.75 < z < 2.45. Maps of galaxy density contrast δo were computed, for each redshift bin,
by counting galaxies in each (equal area) sky pixel covered by our survey, using the same
NSIDE=512 healpix map used for the mask, then dividing the counts by the mean number of
galaxies per pixel and subtracting 1. This was done for both the unmasked and the masked
versions of the catalogs.

Figure 1 shows the three scaling functions, SA(z), SB(z) and SC(z), computed for our
catalog selection, based on the assumed luminosity function and extinction curve. The figure
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Figure 1. Scaling functions SA(z), SB(z) and SC(z) for our sample selection, and linear galaxy bias
b1(z), computed for halos with mass M ≥ 20Mp.

shows also the value of the linear bias b1(z), measured at a set of redshifts (where outputs
for the whole periodic simulation box were available) by comparing the halo power spectrum,
measured with the code of [42], with the linear power spectrum; values at other redshifts are
obtained by interpolation. This bias is computed for all the halos with M ≥ 20Mp, so it
applies to the catalogs obtained with shuffled halo masses and is independent of luminosity.

4 Reconstruction of the visibility mask

4.1 Estimators of the mask-dependent term in the observed density contrast

The non-cosmological term Tnc of equation 2.20 depends only on the visibility mask, and
can be singled out by averaging, pixel by pixel, the observed density measurement δo over
several redshift bins, under the assumption that the cosmic density contrast δ averages to
zero, at least in an ensemble-average sense, along the same line of sight. This averaging
will be imperfect because it will be carried out over a limited volume (and with redshift-
dependent weights given by Tc), and not over a large number of realizations; in this paper
we will carefully quantify this residual by applying the method to our set of mock catalogs.

In Tnc the mask appears through the terms 〈M 〉, (M − 〈M 〉) and (M 2 − 〈M 2〉).
The inversion of this relation is affected by multiple solutions at low mask values, the most
interesting regions for an extragalactic survey. However, prior knowledge of the first two
moments of the mask, 〈M 〉 and 〈M 2〉, allows to recast the problem in a more convenient
way. In the following we will assume that 〈M 〉 and 〈M 2〉 are known, we will demonstrate
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in Section 6 that these moments can be worked out to a sufficient accuracy, either by using
external data or by internally estimating them from the galaxy survey.

With prior knowledge of the first two moments of the mask, it is possible, using equa-
tion 2.13, to recover the true average galaxy density 〈ng〉 from the observed 〈no〉 and from
the SB and SC scaling functions:

〈ng〉
ΦL0

=
〈no〉
ΦL0

+ SC(z)〈M 〉+ SB(z)SC(z)2〈M 2〉 . (4.1)

It is useful to define a rescaled density contrast δr as:

δr :=
no

〈ng〉
− 1 = Tnc + Tc δ = −

[
SC
SA

M +
SBS

2
C

SA
M 2

]
+

[
b1 −

SC
SA

β1M −
SBS

2
C

SA
β1M

2 +

(
SB − 1

2

)
S2
C

SA
β′1

Φ

Φ′
M 2

]
× δ +O(M 3) . (4.2)

When bias is independent of luminosity:

1 + δr = (1−A)(1 + δg) , A =
SC
SA

M +
SBS

2
C

SA
M 2 . (4.3)

In what follows we denote the values of the SA, SB and SC functions, evaluated at the
central redshift zi of the i−th bin, as SAi = SA(zi), SBi = SB(zi) and SCi = SC(zi). We
define two estimators that average out, in an ensemble average sense, the cosmological signal
and single out the redshift average of Tnc term, that depends only on the mask M . The
average density estimator Eav(θ) in each sky pixel is defined as:

Eav(θ) ≡ 1

Nz

∑
i

δr([zi,θ]) ' − 1

Nz

∑
i

SCi
SAi

M − 1

Nz

∑
i

SBiS
2
Ci

SAi
M 2 +O(M 3) . (4.4)

The sum is over all Nz redshift bins; here we have made it explicit that the position x is
decomposed into angular and redshift coordinates: x = [zi,θ]. The square average density
estimator Esq(θ) is defined as:

Esq(θ) ≡ 1

Np

∑
i

∑
j>i

δr([zi,θ])δr([zj ,θ])

' 1

Np

∑
i

∑
j>i

SCiSCj
SAiSAj

M 2 +
1

Np

∑
i

∑
j>i

SCiSCj(SBiSCi + SBjSCj)

SAiSAj
M 3 +O(M 4) . (4.5)

Here Np = Nz(Nz − 1)/2 is the number of independent pairs of redshift bins, considering
each pair only once; for Nz = 17 we have Np = 136. The sum in equation 4.5 could be
limited by removing nearby redshift bin pairs, that may be affected by residual cosmological
correlation. We will show in Section 5.3 that this correlation is marginal, in the following we
keep all redshift bin pairs to maximize the signal.

The quadratic and cubic algebraic equations 4.4 and 4.5 can be inverted to provide, for
each pixel, estimates of the mask term that we will call Mav and Msq. It is important to
notice that the two mask reconstructions are tightly correlated, we will later quantify and use
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this property. The computation of the coefficients in equations 4.4 and 4.5 is independent of
any clustering measurement, and depends only on the knowledge of the luminosity function
and extinction law. The resulting quantities provide noisy reconstructions of the mask, the
noise being due to incomplete averaging-out of the cosmological signal (including its shot
noise). As a first step, we illustrate the degree of recovery of the mask by applying it to
a resampling of the galaxy density field. The maps of density contrast δo(zi), computed as
described in Section 3, are resampled to a healpix NSIDE=64 grid, and rescaled to obtain
δr(zi) (equation 4.2) using for 〈M 〉 and 〈M 2〉 the values computed using the true P13 mask
at the same resampling. Densities δr(zi) are then used to compute the two estimators Eav

and Esq. Finally, equations 4.4 and 4.5 are numerically inverted to obtain, pixel by pixel,
the mask reconstructions Mav and Msq.

Figure 2 shows, for one mock catalog, orthogonal projections of maps of the true (P13)
visibility mask and of the reconstructions Mav and Msq. The main large-scale features are
neatly recovered, though noise is evident. A more quantitative analysis reveals that both
reconstructions give a nearly unbiased estimate of the true mask for M ≤ 0.1, with a scatter
that at this resolution amounts to ∼0.03 mag.

It is worth stressing that this level of agreement is obtained thanks to the second-order
expansion of the integral in equation 2.12, the first-order expansion gives a much more biased
estimate of the mask. A third-order expansion would likely improve the results at M > 0.1,
but real large-scale surveys tend to avoid such relatively high extinction regions.

4.2 Combining Mav and Msq into a best reconstruction of the mask

When applied to the density field computed on the native NSIDE=512 healpix grid, the
two reconstructions show a much higher level of scatter at the pixel-by-pixel level. It is
very instructive to analyse their angular power spectra. To this aim, we used the 20 mock
light cones constructed with the procedure described in Section 3. Using the procedure
described above in Section 3, we computed the angular density maps in redshift bins of
width ∆z = 0.1 on a healpix grid of NSIDE=512, computed from these the Eav and Esq

estimators and used them to obtain Mav and Msq by inverting equations 4.4 and 4.5. We
used the implementation of the ANAFAST code provided by the Healpy package to compute
the C` angular power spectra of the three reddening mask presented above and, for each mock,
of the two reconstructed masks Mav and Msq. To account for the simple survey geometry,
that encompasses 1/4th of the sky, we multiplied all results by a factor of 4. Figure 3
shows the results in terms of `(` + 1)C`. The green, blue and red lines give respectively
the angular power spectra of the P13 “true” mask Mtrue = E(B − V )P13 and its two Mav

and Msq reconstructions; these are denoted by a band as thick as the standard deviation of
measurements over the 20 realizations. The bands with lighter colors give the power spectra
of reconstruction residuals, Mav −Mtrue and Msq −Mtrue. As a reference, we report in this
plot (as a black continuous line) the measurement of angular clustering, averaged over our 20
light cones, of galaxies in the cosmological, unmasked samples at a fiducial redshift of z = 1.5
(this signal includes shot noise). Because of a fortunate combination of matter clustering and
halo bias, the level of this signal is pretty stable with redshift, so this line is representative
of the expected level of clustering in the whole redshift range considered. The black dashed
line gives for reference 1/100th of the cosmological signal.

Both reconstructions reproduce the power spectrum of the mask at `<∼ 30, with a con-
stant bias on large scales that amounts to ∼ 15% for Mav and ∼ 25% for Msq. At higher `’s
the power spectra of reconstructions nose up to roughly follow the shape of the cosmological
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Figure 2. P13 reddening MP13 = E(B − V )P13 used to mask the mock catalogs (upper panel), and
reconstructions Mav (middle panel) and Msq (lower panel) based on Eav and Esq estimators. All
maps are orthogonal projections of the survey, a cone of 60◦ of semi-aperture located at the north
galactic pole, and are shown at a healpix resolution of NSIDE=64.

signal. The power spectra of reconstruction residuals are very informative to analyse. On
very large scales they run parallel to the mask spectrum, while their raise at higher `-values
is broadly parallel to the cosmological signal. This can easily be interpreted as the effect
of incomplete averaging out of the cosmological signal. The Esq-based reconstruction gives
lower residuals because the averaging is performed not over all redshift bins (Nz = 17) but
over all bin pairs (Np = 136) thus reducing the residual cosmological signal by a factor of
3, to a level that is more than a factor of 100 below the cosmological signal. The Eav-based
reconstruction gives percent-level residuals for ` < 100.

This result allows us to quantify the angular scales beyond which the reconstruction
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Figure 3. Angular power spectra of the true mask Mtrue (green curve) and its reconstructions Mav

and Msq (blue and red curves). Reconstructions are averaged over the 20 light cones, the line width
marks the standard deviation of the obtained clustering measurements. The cyan and pink lines
give the power spectrum of the reconstruction residuals Mav −Mtrue and Msq −Mtrue. The black
continuous line gives, as a reference, the measured clustering signal of galaxies at z = 1.5, averaged
over the 20 cosmological, unmasked mocks, and including shot noise. The dashed black line is 1/100th
of the previous curve. The lower panel gives the ratio between the two reconstructions and the true
mask, and between the P15 and SFD masks and the true (P13) mask.

power spectra are dominated by the cosmological signal contamination. Notably, these scales
will be valid as long as the foreground that contaminates a given survey has a power spectrum
similar to the one used to create the mocks, that is biased toward larger scales. Because this
excess small-scale power is correlated with the cosmological signal, it is important to filter it
out. We do this by multiplying the am` coefficients of the spherical harmonics expansion of
the reconstructed mask by a Gaussian smoothing function of `:
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Figure 4. Pixel-by-pixel scatterplots of reconstructed and true masks. In all panels grey dots denote
pixel values, lines the average in bins of the quantity on the x-axis, the lighter-colored area the sample
variance on the mean, errorbars the 16th and 84th percentiles in the same bins, averaged over the
20 mocks. The lower sub-panels give the residuals over the bisector line, denoted as a black line;
here points are not reported. Upper panels: correlation of smoothed Mav and Msq versus the true
mask. Lower panels: correlation of the two smoothed reconstructions (left) and correlation of the
best reconstruction with the true mask (right).

(am` )smoothed,i = (am` )i exp

(
−
(
`

`i

)2
)
. (4.6)

where i = av or sq. Here the smoothing angular scales for the Mav and Msq reconstructions,
`av and `sq, are kept separated to allow for a stronger filtering of the Mav reconstruction,
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Figure 5. Orthogonal projections of the best reconstruction Mbest for the reconstructed mask (left
panel), obtained with one of the mock catalogs, and of the true P13 reddening map used to mask the
mock galaxy catalogs (right panel).

that is more contaminated by the cosmological residual. Good values for these smoothing
scales are found to be `av = 90 and `sq = 120. In the following, we will only use the smoothed
versions of the Eav- and Esq-based reconstructions.

Figure 4 shows, in the two upper panels, the correlation between the two smoothed
versions of the reconstructions with the true visibility mask Mtrue. Here the grey points
represent the values obtained in all pixels in the survey for one single mock catalog; the lines
give the mean of the reconstructed mask in bins of Mtrue, averaged over the 20 mocks, while
the bands with lighter color around the mean give the sample variance (standard deviation)
of the mean. Errorbars give the scatter of pixels in the same bins (quantified by the 16th
and 84th percentiles), averaged over the 20 mocks. Residuals over the bisector line (denoted
by a black line) are reported in the lower sub-panels. Mav gives a remarkably unbiased
reconstruction of the mask, with a bias below 0.01 mag with the exception of the very first
point, and a scatter raising from 0.01 mag at low extinctions to 0.03 mag at Mtrue = 0.15.
Msq gives a more biased reconstruction, with an overestimate of 0.03 mag at the lowest
reddening, turning negative beyond Mtrue > 0.05; the scatter is lower than the Mav case.
The flattening of Msq at low extinctions is mostly due to the quadratic nature of the relation
between the estimator Esq and Msq, that forces mask values to be positive.

It is convenient to combine the two reconstructions to obtain a nearly unbiased estimate
of the mask with low residuals. One way could be to fix the bias of Msq by using the relation
found with mocks; the accuracy of this reconstruction would depend much on how mocks
have been constructed. A more conservative procedure can be built on the basis that we
can directly measure the relation between the two reconstructions, and that this has a low
scatter. This relation is shown in the lower left panel of figure 4. Using this relation, one
can force one reconstruction to have the same bias as the other one, and because Mav is
nearly unbiased, we use this relation to transform Msq. We fit the relation Msq = f(Mav)
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Figure 6. Angular power spectra of the true mask Mtrue (green curve) and of the best reconstruction
Mbest (orange curve). Reconstructions are averaged over the 20 light cones, the line width marks the
standard deviation of the obtained clustering measurements. The light orange line gives the power
spectrum of the reconstruction residuals Mbest−Mtrue. The black continuous line gives, as a reference,
the measured clustering signal of galaxies at z = 1.5, averaged over the 20 cosmological, unmasked
mocks. The dashed black line is 1/100th of the previous curve. The lower panel gives the ratio
between the reconstructions and the true mask.

with a polynomial (extrapolated as a linear relation for M > 0.2), reported on the figure as
a dashed line. This fit is performed only once, we checked that f(Mav) is the same for all
cases considered in this paper. We then correct Msq to have the same bias as Mav, that is
known to be very low, by constructing the following “best reconstruction”:

Mbest = Msq − [f(Mav)−Mav] (4.7)

Figure 4 gives, in the lower right corner, the correlation of Mbest with the true mask. It shows
how this best reconstruction is biased in the same way as Mav, i.e. by less than 0.01 mag,
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with the only exception of the first bin. The quality of the reconstruction can be appreciated
in Figure 5, that shows the best reconstructed reddening map obtained with one specific
catalog beside the original P13 map at the NSIDE=512 resolution used to mask the catalogs.

Figure 6 shows the angular power spectrum of the best reconstruction and its residual
(the orange and lighter colored bands), compared with that of the true mask (in green).
We compare these also to the angular power spectra of P15 and SFD masks (in dark blue
and maroon respectively), as the differences between the masks can be taken as an order-
of-magnitude indication of its uncertainty. The angular clustering is recovered by the best
model in an almost unbiased way for ` < 50, while some gradual loss of power is present up to
` ∼ 100, where the reconstruction drops. This loss is mostly due to the lower value of the `av

smoothing scale; however, due to the higher contamination of Mav, a less strong smoothing
would increase both power and residuals. This choice keeps the power spectrum of residuals
well below 1%, thus avoiding significant correlation of signal and noise. If a better match of
the power spectrum is needed, it would be better to use these simulations to increase high-`
power, boosting both signal and contamination, than increase `av, that would boost only the
contamination.

5 Angular power spectra and cross correlations of density fields

5.1 The contribution of lensing

The reconstruction described in the previous sections relies on the assumption that the cross-
correlation of cosmological signal in different redshift bins is vanishing. However, correlations
in real data will be induced by gravitational lensing, mostly through magnification bias. This
effect is not present in the mock catalogs that we are using for this analysis. To understand
the expected influence of lensing, we show in figure 7 measured angular auto- (left panels) and
cross- (right panels) correlation functions of galaxies at redshifts z = 1.0, 1.5 and 2.0. In all
panels the green and blue lines give the clustering of unmasked and masked catalogs, averaged
over the 20 realizations, while the areas in lighter colors give the corresponding sample
variance (quantified by the standard deviation over the 20 mocks). In the left panels the
contribution of a Poissonian shot noise is subtracted from the signal, estimated as 4πfsky/N ,
where fsky = 0.25 is the fraction of the sky covered by the survey and N is the number
of galaxies in the redshift bin. The left-side column shows that the auto correlations of
unmasked catalogs agree very well, as expected, with linear theory predictions, while masked
catalogs show excess power at the same scale where the mask correlation is significant. On
the right-side colum, the unmasked catalogs show cross-correlations consistent with noise
around a vanishing value, while cross-correlations remain significant at ` < 100.

These measurements are compared with linear theory predictions, reported in the plots
as magenta dashed lines. Linear theory predictions have been computed with classgal [43–
45]. The redshift-dependent angular power spectra between i-th and j-th redshift bins are
obtained as

c
(ij)
` = 4π

∫
dk

k
∆

(i)
` (k) ∆

(j)
` (k) PR (k) (5.1)

where PR is the dimensionless primordial curvature power spectrum and ∆
(i)
` (k) is the full

angular transfer function in the i-th redshift bin. In this work we consider the main contri-
butions, namely density, redshift space distortion (RSD) and lensing convergence defined as
follows:
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Figure 7. Left panels: angular correlation of the galaxy density field in redshift bins centered at
z = 1, 1.5 and 2, of width ∆z = 0.1. The green lines give the cosmological signal averaged over the
20 unmasked mock catalogs, the blue lines give the same measurement for catalogs masked with the
P13 reddening map. Lighter-colored areas denote sample variance. The magenta dashed lines give
the theoretical expectation including clustering, redshift-space distortions and lensing. Right panels:
cross correlation of density fields at the same redshifts as above, with the same color coding.
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∆
δ(i)
` (k) =

∫
dr Wi (r) b1Tδ (k, r) j` (kr) , (5.2)

∆
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` (k) =

∫
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∆
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)
j`
(
kr′
)
, (5.4)

where the Fourier transfer functions T (k, r) are normalized to the primordial curvature per-
turbation and they refer, respectively, to density, velocity and Bardeen potentials, j` are the
spherical Bessel functions and j′′` their second derivative with respect to the argument. The
redshift binning is denoted by the function Wi, normalized to unity. The shape of Wi is
assumed to take into account redshift errors; here we are assuming no error on spectroscopic
redshift, so we used a shape very near to a square window function, checking that results are
insensitive to further sharpening.

Linear predictions depend on the galaxy bias b1(z) and the magnification bias s(z). Here
the bias is assumed to be independent of luminosity, so these predictions are comparable with
our mocks where the luminosity dependence of bias has been removed by shuffling halo masses
(see Section 3). Linear bias b1 was obtained as explained in Section 3 and is reported in
figure 1, magnification bias s(z) is defined as the logarithmic slope of the luminosity function
at the threshold luminosity, so s(z) = 2SB(z)− 1.

The upper panels show that the clustering of cosmological unmasked catalogs follows
very closely linear theory, despite missing the lensing term. This is no surprise, because the
contribution of lensing (whose level is appreciable in the right panels) is negligible for auto
correlations with respect to clustering and RSD for redshift bins of the width ∆z = 0.1 (see
e.g. [46]). This is not the case for cross correlations, where the expectation for clustering
and RSD is very low, and the signal is dominated by lensing, that is missing in the mock
catalogs. For the masked mocks, expected lensing and measured cross correlation cross at
` ∼ 50−100, after which lensing follows the envelope of the wide fluctuations. This illustrates
once again that the importance of a foreground like Milky Way extinction is limited to the
largest angular scales.

5.2 Reconstructing the true angular clustering

The customary way to correct for a given foreground is to create a random catalog that is
subject to the same selection bias as the measured one. This would be straigthforward to
implement, and would make it possible to measure clustering in redshift space and assess
how well the cosmological clustering signal is recovered. We leave this project to future
work, and test here only the recovery of angular clustering. Equation 2.20, that relates the
observed density contrast with the matter one, can be inverted if the mask M is known or
a reconstruction for it is available. The process is more complicated for the general case of
luminosity-dependent bias, but if luminosity dependence is absent, as in our mock catalogs
based on shuffled halo masses, then b1 = β1 and β′1 = 0, so the inversion is easily performed:

1+δg =

[
1 +

SC
SA

(
1 +

SC
SA

M

)
(M − 〈M 〉) +

SBS
2
C

SA
(M 2 − 〈M 2〉) +O(M 3)

]
(1+δo) (5.5)
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Figure 8. Reconstructed angular correlation of masked catalogs at redshifts z = 1.0 (upper left),
1.5 (upper right), 2.0 (lower left) and 2.4 (lower right). In the main panels the green and blue lines
give the angular clustering of unmasked and masked catalogs, ligher colored areas giving the sample
variance. Orange, black, dark blue and maroon lines give the average of the reconstructed angular
correlation using respectively the best reconstruction, the true P13 mask, the P15 and SFD masks.
The lower panels give the residual with respect to the average true correlation of the unmasked mocks,
the lighter coloured areas give the sample variance of the ratio of reconstructed and true clustering
using the true mask (gray) and the best reconstruction (orange).

Figure 8 shows the angular power spectra of galaxy density contrasts computed using
equation 5.5, at redshifts z = 1.0, 1.5, 2.0 and 2.4. The bright blue and green lines show
respectively the angular power spectrum of the (masked) observed density contrast δo and of
the true galaxy density contrast δg, the lighter-colored areas around them give their sample
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Figure 9. Ratio of sample variance over signal for the true angular power spectrum of galaxies (green
line), for the ratio between reconstructed and true power spectrum using the true mask (gray line)
and the best reconstruction (orange line).

variance (as in figure 7). The recovery of the true galaxy power spectrum is performed using
the true P13 mask (black lines), the P15 (dark blue lines) and SFD (maroon lines) masks,
and the best reconstruction (orange lines). For each panel, the lower sub-panel shows the
ratio of the reconstructed power spectrum over the one of the unmasked catalog, i.e. the
quantity to recover. Lighter-colored gray and orange areas give the sample variances of the
ratios obtained with the true mask and with the best reconstruction.

An important thing to notice is that the recovery of the true galaxy density field is
affected by some uncertainty even when the true mask is used; this is due to the statistical
nature of the correction applied to the observed density contrast. To have a better quantifi-
cation of this, figure 9 reports, for the first redshift z = 1.0 (other redshifts give very similar
results), the ratio of variance over signal for the cosmological angular power spectrum and
for the ratios of the two reconstructions (with the true mask and with the best reconstruc-
tion). The uncertainty in the reconstruction obtained with the true mask is always nearly
a factor of ten below sample variance, raising to higher values only at high `’s, when the
shot-noise-subtracted signal drops. The best reconstruction carries a higher uncertainty by
a factor of 3, that is anyway lower by another factor of 3 than the sample variance; however,
it must be kept in mind that this bias is systematic, and cannot be decreased by averaging
over several `’s.

As for averages, correcting with the true mask always gives an unbiased reconstruction of
the power spectrum, while correcting with other masks gives results that significantly deviate
from the true clustering at low `’s; compared with the clustering of the masked catalogs,
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Figure 10. Angular cross-correlation of masked catalog for z1 = 1.0 and z2 = 2.0. The green and
blue line gives the average measurement of the masked catalog, lighter blue areas gives its sample
variance (16th and 84th percentiles). Orange, black, dark blue and maroon lines give the average of
the predicted cross-correlation using respectively the best reconstruction, the true P13 mask, the P15
and SFD masks. The lower panels give the residual with respect to the average true cross correlation.

correcting densities with the “wrong” mask gives an improvement of only a factor of ∼ 3− 4
in terms of the ` at which clustering deviates significantly from the true solution. Clearly
deviations from true clustering are much less dramatic than the option of not correcting at
all, yet deviations at low `’s go beyond the sample variance of the measurement.

The best reconstruction gives on average a remarkably unbiased estimate down to very
low `’s. Sample variance is important at the largest angular scales, but always at the level
of ∼ 20 % and below sample variance by a factor of 3. At ` = 30− 50 we find a systematic
underestimation of ∼ 5 %; it is plausible that this bias could be removed by working on the
combination of Eav and Esq estimators, we leave this refinement to future work.
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5.3 Cross correlations as a blind test for the mask

The cross-correlations of δo1 ≡ δo(θ1, z1) and δo2 ≡ δo(θ2, z2) for z1 6= z2 will depend only
on the mask term, so it is possible to predict them, given the mask reconstruction. Calling
M1 = M (θ1) and M2 = M (θ2):

〈δo1δo2〉 = F1F2 〈(M1 − 〈M 〉)(M2 − 〈M 〉)〉+ (F1G2 + F2G1)〈(M1 − 〈M 〉)(M 2
2 − 〈M 2〉)〉

+G1G2 〈(M 2
1 − 〈M 2〉)(M 2

2 − 〈M 2〉)〉 (5.6)

Fi =
SCi
SAi

(
1 +

SCi
SAi
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2
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Figure 10 shows, as an example, the cross correlation of observed density at redshifts z1 = 1.0
and z2 = 2.0. The blue line gives the average measurement, the lighter blue area its sample
variance. Black, dark blue, maroon and orange lines give the predicted cross correlation based
respectively on the true mask, P15, SFD and the best reconstruction, the last with its sample
variance. While the black line unsurprisingly gives the right level of correlation, the best
reconstruction (orange line) gives again a remarkably unbiased prediction of this correlation,
while the same is not true for P15 and SFD masks, that show sizeable discrepancies in various
` ranges.

At the largest scales, while auto-correlations are dominated by the foreground, for cross
correlations this is the only contributing term. In this paper we have constructed estimators
of the non cosmological term of observed density contrast, used them to reconstruct the
mask, and used the reconstructed mask to check that observed cross correlations are correctly
predicted. This logical progression could have been reversed: we could have started from the
measured cross correlations of observed density contrast and use it to infer the angular power
spectrum of the mask. These two quantities are related to the mask through equation 5.6,
that however includes correlations of the terms M − 〈M 〉 and M 2 − 〈M 2〉. Even assuming
knowledge of the first two moments of the mask, it is not straightforward to invert this
relation to obtain 〈M1M2〉. The presence of square terms of the mask in that equation is
due to the second-order expansion of the integral in equation 2.12, and we know that a first-
order expansion, that would make the direct measurement of the angular power spectrum of
the mask possible, is not sufficiently accurate.

To better quantify the level of agreement with which cross correlations are recovered,
we measure the average of `(` + 1)C` in the multipole range ` ≤ 30, where the signal is
strongest and sample variance is still limited (figure 10). Figure 11 shows such average cross
correlation for all redshift pairs z1 and z2. Here the dots show the average over 20 mocks
and the errorbars give their sample variance. Measurements are shown as a function of
z1, points at fixed z2 are displaced vertically to ease the comparison, so vertical values are
arbitrary. Points corresponding to auto-correlations, with z1 = z2, are not shown because
they are obviously affected by the cosmological signal. The black and orange lines give the
predictions obtained with the true mask and the best reconstruction, for the latter we report
its sample variance as a lighter colored area. The prediction based on the true mask (black
line) follows well the data points; we computed a reduced χ2 to test if the differences are
significant, and found some systematics due to nearby redshift bins, that show some degree of
anti-correlation of putative cosmological origin, and to the last bin, hinting to some possible
weakness in the mock construction near the edge of the light cone. Excluding these bins (so
limiting then the analysis to 91 bin pairs), we found acceptable values of the reduced χ2,
though the prediction is biased high on average by 3%.
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Map true estimated diff. true estimated diff.
〈M 〉 〈M 〉 〈M 2〉 〈M 2〉

P13 0.0474 0.0453 4.5% 0.00356 0.00350 1.7%
P15 0.0451 0.0457 1.1% 0.00382 0.00370 3.1%
SFD 0.0396 0.0417 5.5% 0.00277 0.00289 4.2%

Table 1. Values of the first two moments of the masks, and estimated values using the procedure
described in this section.

Being the cosmic correlation not exactly vanishing for nearby redshift bins, these could
be removed from the estimate of Esq to achieve a cleaner reconstruction; however, this advan-
tadge would be counterbalanced by an increase of the residuals due to imperfect averaging
out; given that cosmic correlation has in figure 11 just an effect at the 2σ level, compared to
sample variance, we prefer here to keep a larger number of bin pairs. We plan to deepen the
effect of these correlations in future work.

Predictions of cross correlations based on the best reconstruction show some mild dis-
crepancy, that is quantified as a reduced χ2 of ∼ 2 for 91 measurements defined above.
Predictions are biased high by 10%, that is at the level of 1σ but is systematic on all mea-
surements. As shown in the previous sections, the practical effect of this bias is very small,
but because cross correlations can be measured, this bias can in principle be removed by fur-
ther calibrating the reconstruction scheme to best reproduce the average cross correlations.
One possibility could be to use this constrain to measure at least one of the two moments
of the mask; however the mask enters equation 5.6 through M − 〈M 〉 and M 2 − 〈M 2〉,
so cross correlations are insensitive to the values of 〈M 〉 and 〈M 2〉. We checked that it
is possible to obtain unbiased cross correlations by increasing 〈M 〉 by 0.04, leading to an
almost doubled, unacceptable value. Conversely, a multiplicative fudge factor applied to the
reconstructed mask of 0.97 can make the predictions of the cross correlations as (nearly)
unbiased as those produced with the true mask, with negligible impact on the pixel-by-pixel
correlation of figure 4.

We conclude this section stressing that, whatever the mask model or reconstruction
scheme is, cross correlations provide a blind test for foreground removal. Suppose all known
foreground corrections have been applied to a deep galaxy sample, then one would expect
cross correlations to be consistent with a vanishing signal (quantified through mocks), so a
significantly non-vanishing value would show that foreground removal is not complete. The
angular power spectrum of the cross correlations would immediately give clues on the nature
of this foreground, one could then calibrate the weights of the various components to minimise
the residual cross correlations, then apply the reconstruction scheme presented here to model
the missing residual, and quantify its uncertainty using mock catalogs.

6 Estimating 〈M 〉 and 〈M 2〉

The results presented up to now rely on prior knowledge of the first two moments of the
mask, 〈M 〉 and 〈M 2〉. We demonstrate in this section that it is possible to recover this
information either from external sources or internally, without compromising the effectiveness
of the method.

As a first step, we test the degradation of the results obtained using the first two
moments computed from a different reddening map, P15 or SFD. When computed on the
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Figure 11. Average value of the cross correlation power spectrum C`, for ` ≤ 30, of pairs of masked
density fields at redshifts z1 and z2, as a function of z1 and for all z2. Points and curves are displaced
vertically to distinguish the curves. Red points and errorbars give its average measurement (over the
20 mock catalogs) and sample variance (standard deviation). Black and orange lines give the predicted
value using the true P13 mask and the best reconstruction, results obtained with the “wrong” P15
and SFD masks are not shown for sake of clarity, but deviate significantly from the measurements.

same sky area, the three maps give values of 〈M 〉 that differ at most by 20%, and values
of 〈M 2〉 that differ at most by 38%. These figures are reported in table 1; we can take
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Figure 12. Angular clustering of best reconstruction for the mask (left panels) and reconstructed
angular clustering of galaxies (right panels) for reconstructions that use 〈M 〉 and 〈M 2〉 from P15
(upper panels) and SFD (lower panels). Symbols and colors are as in figures 6 and 8.

their difference as an order-of-magnitude indication of their measurement error. Figure 12
shows the angular power spectrum of the reconstructed mask (left figures, similar to figure 6)
and the reconstructed galaxy angular clustering (right figures, similar to figure 8) at z = 1,
obtained using the values of the two moments from P15 or SFD, in place of the true ones.
Results show clearly that using the “wrong” values of the first two moments leads to nearly
indistinguishable results; the most remarkable difference is seen at the largest scales, where
the lower power of the SFD mask happens to compensate the slight overestimate of the mask
power spectrum noticeable in figure 11, thus beating down the residuals.

As mentioned above, the reason why results are insensitive to exact values of the mo-
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Figure 13. Left panel: average residuals of the Mav reconstruction (as the lower sub-panels of figure 4
for mocks masked with the three reddening maps (P13, dark blue; P15, green; SFD, maroon), as a
function of the true mask Mtrue (different for the three cases). Continuous lines: 〈M 〉 and 〈M 2〉 are
computed from the true mask; the lighter-colored areas give the sample variance of the mean. Dotted
lines: the same as the continuous line, shifted down by the corresponding value of 〈M 〉. Dashed lines:
reconstruction computed with 〈M 〉 = 0 and 〈M 2〉 = 0. Right panel: cumulative fraction of pixels
as a function of reddening. Colors are as for the left panel, continuous lines give the true masks,
dashed lines give results for Mav reconstructions with 〈M 〉 = 0 and 〈M 2〉 = 0. The black horizontal
line marks the fiducial 10−2 level chosen in the text, the vertical line gives the 0.008 value of M1%

(below which we have 1% of sky pixels), the other segments mark the expected position of M1% for
the Eav-based reconstructions.

ments is visible in equation 5.6: the mask enters this equation for the cross correlation
through M − 〈M 〉 and M 2 − 〈M 2〉, plus a 〈M 〉 term in the Fi coefficients, so a constant
bias in the 1st moment of the mask has only 2nd-order effects on the cross correlation, and
consequently in the ability to subtract the contamination from the cosmological signal, while
a bias in the 2nd order moment will have 3rd-order effects that are neglected here.

We further show that it is possible to recover 〈M 〉 and 〈M 2〉, to sufficient accuracy,
from an internal analysis of the survey data and some calibration on the mock catalogs. To
this aim we consider the Eav-based Mav,0 reconstruction, applied to the survey assuming zero
values for the two moments. This is equivalent to applying the Eav estimator, equation 4.4,
directly to the observed density δo (equation 2.20) in place of the rescaled δr (equation 4.2).
At leading order in M , adequate for the least reddened sky pixels, it is easy to demonstrate
that Mav,0 = M − 〈M 〉, so a mask reconstruction obtained assuming 〈M 〉 = 0 is shifted,
with respect to the true mask, exactly by 〈M 〉. This is shown on the left panel of figure 13,
where we report the average (and sample variance) of Mav−Mtrue obtained using the mocks
masked with the three P13, P15 and SFD masks, assuming exact knowledge of the moments
(the continous lines surrounded by lighter colored areas) and zero moments (the dashed lines
surrounded by lighter colored areas). The quantities reported in this figure are analogous to
the residuals of Mav shown in the upper left panel of figure 4 (without the errorbars used to
denote the scatter). It is worth highlighting that to produce this figure we used mock catalogs
masked with the three reddening maps, and for each set of mocks we compare results with
the corresponding true map. The dotted lines here are the continuous lines shifted by the
corresponding value of 〈M 〉; they are shown to demonstrate that the shift is very similar to
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the first moment of the mask.
Unfortunately, the quantity reported in figure 13 is not observable. We therefore identify

a procedure to get a good estimate of 〈M 〉. In the right panel of figure 13 we report the
cumulative distribution of reddening values obtained with Mav applied to mocks masked with
the three reddening maps, both using the true 〈M 〉 (continuous lines) and using 〈M 〉 = 0
(dashed lines). These cumulative distributions are very robust to sample variance, so we just
show the average curve. To quantify the shift we choose a bona fide fraction of 10−2, and
quantify from mocks that this fraction is obtained at M ' 0.008 for the three masks used.
We define an estimate 〈M 〉est of the first moment as the distance between 0.008 and the
M1% value below which we find 1% of sky pixels:

〈M 〉est = −M1% + 0.008 . (6.1)

The obtained values are reported in table 1, and are accurate to within 5.5% at worst. This
demonstrates that such an internal procedure, calibrated on mock catalogs, gives a potentially
more accurate estimate than using an external model for the map.

The estimate of 〈M 2〉 is even less problematic, because the reconstruction is not very
sensitive to its exact value. Once 〈M 〉 has been fixed, a very good estimate is obtained by
finding the best reconstruction Mbest0 assuming a vanishing value of 〈M 2〉, then using the
value of 〈M 2

best0〉. We find such values to be biased high, for all three maps, by a constant
0.0007, that is broadly consistent with the idea that the final square average is the sum of
the true one and the squared scatter around the mean, quantified here as

√
0.0007 = 0.026

mag. Using this mock-calibrated fix, we obtain:

〈M 2〉est = 〈M 2
best0〉 − 0.0007 . (6.2)

The average values of this estimate for the three maps are reported in the table; they are
found to be within ∼ 4.2% of the true value, a very adequate level of accuracy.

We are now in the position to present the best reconstruction of the mask assuming no
prior knowledge of its moment. We implement this procedure: (i) the Eav estimator and Mav

are computed assuming 〈M 〉 = 〈M 2〉 = 0; (ii) equation 6.1 is used to obtain an estimate
of 〈M 〉; (iii) the best reconstruction is constructed assuming 〈M 2〉 = 0; (iv) equation 6.2
is used to obtain an estimate of 〈M 2〉; (v) the best reconstruction is recomputed. One
could further multiply the result by 0.97 to optimize the reproduction of the observed cross
correlations (Section 5.3). Figure 14 shows the main results of the reconstruction: angular
power spectrum of the mask (as in figure 6), pixel-by-pixel scatterplot of reconstructed and
true masks (as in figure 4), reconstructed correlation of the cosmic signal at z = 1 (as in
figure 8) and predicted cross correlation between z = 1 and z = 2 (as in figure 10). None of
the results is found to suffer a degradation of accuracy.

7 Testing reddening maps

The results presented above demonstrate that the technique described in this paper can
recover the reddening map with a precision that is comparable, and sometimes competitive, to
the difference between available reddening maps. The argument in principle can be reversed:
if extinction is the only foreground, reddening maps, obtained as reconstructed foreground
masks from deep and wide galaxy surveys, can be used to constrain and test models for
galaxy extinction, and thus help in shedding light on the complex physics of dust in the
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Figure 14. Performance of the best reconstruction obtained by estimating the first two moments of
the mask from internal data. Upper left panel: angular power spectrum of the mask, as in figure 6.
Upper right panel: pixel-by-pixel scatterplot of reconstructed and true masks, as in the lower right
panel of figure 4. Lower left panel: reconstructed galaxy angular power spectrum at z = 1, as in
figure 8. Lower right panel: Angular cross correlation between z = 1 and z = 2, as in figure 10.

solar neighborhood. We have already shown evidence in this sense: figure 6 shows that the
reconstructed power spectrum of the mask is more compatible with the P13 power spectrum
than with the other two, P15 showing some power excess at ` ∼ 100 and SFD some lack of
power at the largest angular scales. Figure 10 shows that cross correlations are predicted
to better accuracy by the best reconstruction than by the P15 and SFD masks. If reported
in figure 11, predictions of P15 and SFD systematically lie above (P15) and below (SFD)
the measured values. It is important to stress that this cross correlation test alone, that is
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Figure 15. Upper panels: pixel-by-pixel scatterplots of the best reconstruction, obtained with mocks
masked with the P13 reddening map, as a function of P15 or SFD reddening. Symbols and colors are
as in figure 4. Lower panels: relation between P13, P15 and SFD maps; here averages are of course
computed for a single realization, so no sample variance is reported.

completely independent of the reconstruction procedure, would be enough to test reddening
maps and assess the one that best fits the data.

The same conclusion holds true at the pixel-by-pixel level. Figure 15 shows the scat-
terplots of the best reconstructions, as in figure 4, compared with the P15 and SFD masks.
For reference, the lower panels show the scatterplot of P13 versus P15 and SFD. It is clear
that, despite of the higher level of scatter, the agreement of the best reconstruction with the
true P13 mask is better than the agreement with the other two masks. This evidence alone
would be enough to disfavour SFD, while P13 and P15 are nearly unbiased due to the very
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similar calibration on quasars, and so are more difficult to distinguish with this test.
The weak point of this program is that it relies on the assumption, true for our mock

catalogs, that galactic extinction is the only foreground that affects the survey. This will
clearly not be the case in general, and other foregrounds, for example contamination from field
stars, may be confused with extinction. However, different foregrounds may be characterised
by different SC scaling functions, that quantify the redshift modulation of the impact of
the foreground. Two foregrounds that have proportional SC functions, e.g. a redshift-
independent constant, would not be separable; in the case of Hα emitters considered here,
the effect of galactic extinction is modulated in a peculiar way by the extinction curve R(λ),
so its separation from other components is possible.

The way to break the degeneracy between different foregrounds is to fully exploit the
ability to predict cross correlations at large scales, e.g. as quantified in figure 11. As an
example, we show in figure 16 the prediction of cross correlations performed assuming a flat
SC(z) function. While the angular maps result very similar, the predicted redshift dependence
of cross correlations is in stark disagreement with observations. It would be easy to assume
a functional form for SC(z) (e.g. a polynomial) and obtain the coefficients from fitting cross
correlations; we plan to test this procedure in the future.

8 Conclusions

In this paper we have proposed a blind method to determine the properties of a foreground
contamination that affects a deep galaxy survey. As a prototypical foreground, we have
considered Milky Way extinction, and used three different extinction maps (Schlegel et al’s
SFD and the two P13 and P15 Planck maps) available in the literature. We have developed
the method and tested its validity using a set of 20 mock halo catalogs generated with the
PINOCCHIO code. We have simulated an Euclid-like survey of Hα emitters covering 1/4th
of the sky in the redshift range 0.75 < z < 2.45, by abundance-matching the halo mass
function with the luminosity function of model 1 of Pozzetti; this way the impact of the
foreground is modulated in redshift by the extinction curve.

The method we propose is based on the fact that (i) foregrounds act in modulating
the flux limit of the galaxy survey, (ii) cross correlations of galaxy density fields in differ-
ent redshift bins have a small cosmological contribution, dominated by lensing at ` > 100
and vanishing at larger angular scales. By expanding to second order of flux modulation
the observed number density of galaxies, we have shown that the measured signal of cross
correlations can be associated to a foreground mask. We have identified two estimators, the
average density contrast Eav of a sky pixel along the line of sight and the average Esq of
products of density contrasts at different redshift bins in the same sky pixel, that average
out (in an ensemble-average sense) the cosmological signal, and single out a contribution
that depends only on the foreground mask. Assuming that the first two moments of the
foreground mask are known, it is possible to relate these estimators to polynomials of the
mask, that can be easily inverted to reconstruct the visibility mask.

This reconstruction technique would be applied to a real survey as follows. (i) The lumi-
nosity function at the survey flux limit should be known with great detail from a deep field,
so as to determine SA(z) and SB(z). (ii) Luminosity dependence of bias can be measured,
up to a constant, by computing how the two-point correlation function (or power spectrum)
changes when the sample is selected with an increasing flux limit. (iii) The SC(z) function
must be first assumed, under some plausible hypothesis. (iv) The density contrast field is
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Figure 16. Average value of the cross correlation power spectrum C`, for ` ≤ 30, of pairs of masked
density fields at redshifts z1 and z2, as a function of z1 and for all z2. Symbols are as in figure 11,
but best reconstruction predictions (orange lines) have been produced here by assuming a flat SC(z)
function.
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computed for each redshift bin. (v) The Eav and Esq estimators are computed, the corre-
sponding masks are obtained by inverting equations 4.4 and 4.5 and the best reconstruction
Mbest is obtained through equation 4.7. (vi) The cross-correlation test is applied to the ob-
tained mask to validate the assumed SC(z) function, if a good match is not found point (v)
is iterated using some parameterization of this function, until a good fit of cross correlations
is found. (vii) The mask thus obtained is used to produce a random catalog for clustering
statistics. (viii) The mask can also be used to straightforwardly obtain the galaxy density
contrast on the sky and the galaxy angular power spectrum using equation 5.5.

In the plausible case that different foregrounds, characterized by different SC(z) func-
tions, are present at the same time, the method should be extended to take this higher
complexity into account. Such extension is straightforward, and it would possibly bene-
fit from the application of Bayesian inference methods based on forward modeling, as that
proposed, e.g., by [20].

The reconstructed foreground mask reproduces very well, on relatively large angular
scales (` < 100), the properties of the reddening map used to mask the mock catalogs
(P13), at a level that would make it possible to distinguish it form P15 or SFD: extinction
is recovered at the pixel-by-pixel level with a bias that is below 0.01 mag, and a scatter
ranging from 0.01 to 0.03 mag, slightly growing with reddening. The reconstructed mask is
smoothed in spherical harmonic space at ` ∼ 100, to remove the small-scale signal that is
dominated by the imperfect averaging out of the cosmological signal, due both to the limited
number of redshift bins and to the use of volume averages in place of ensemble averages. The
so-obtained reconstruction of the mask can be used to remove the spurious power from the
angular correlation function. We showed that this removal gives unbiased results up to ` of a
few, where the cosmological signal is two orders of magnitude below the contamination, with
a statistical uncertainty of ∼ 20%, a (systematic) factor of 3 below the sample variance of
the observable. This technique can then have an impact on constraints on primordial non-
gaussianities, whose measurement is limited by sample variance, thoug constraints can be
improved by adopting multi-tracer techniques [27] to beat cosmic variance. These techniques
allow to extract information also from the largest scales probed by the surveys. Indeed,
as shown in Ref. [31], it is crucial to being able to recover information from scales larger
than `min . 10 to provide constraints of the order σ (fnl) ∼ O (1), which will be able to
discriminate between different inflationary models. We leave to further work an assessment
on how well our approach will help in this field.

One could take from this analysis the main message and use cross correlations of dif-
ferent redshift bins as a powerful blind diagnostic of the presence of residual foregrounds,
after having removed all known sources. This would show both residual contaminations and
possible effects of “unknown unknowns”, while the redshift dependence of cross correlations
would help in modeling and constraining the residual foregrounds. Or one could take a more
aggressive path, and apply this method to raw data, modeling the resulting mask as the sum
of plausible elements with their SC(z) functions. Once the components are identified, some
sophisticated statistical approach, analogous to component separation for the CMB, would
allow a complete characterization of foregrounds.

It is worth to list here and discuss the assumptions that have been done to obtain this
result.

The effect of foregrounds has been assumed to be the modulation of survey depth on the
sky. This is fine for galaxy clustering, but other observables will need different formalizations;
for instance, fiber collision would impact not simply at the flux limit but in a (known) range
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of fluxes, and would mostly add spurious signal to small scales; conversely, 21 cm intensity
mapping would sample the whole luminosity function, so the noise would be purely additive.

The luminosity function has been expanded to second order in the modulation of flux
limit. We have found a first-order expansion to be inaccurate already at reddening values of
∼ 0.05, while a second-order expansion is fine at least to E(B − V ) ∼ 0.1, where most sky
pixels lie in typical extragalactic surveys. An eventual expansion to higher order would further
complicate the algebra and would require knowledge of M 3 and of the second derivative of
the luminosity function and bias, but would be feasible.

The shape of the luminosity function has been assumed to be universal. We know
that this is not true (see e.g. [47], or [48] for the environment dependency of the stellar
mass function), and the way this universality is violated depends crucially on density and
in general on galaxy selection. However, this is a general problem, any correction of galaxy
number counts to absorb, say, a known modulation of flux limit will rely on knowledge of
the slope of the luminosity function. The only way to tackle this issue is to make many
simulations and tests with plausible variations of Φ(L).

Galaxy bias has been treated at a linear level. More importantly, the luminosity de-
pendence of (linear) bias has been taken into account in the analytic development, but the
tests performed in this paper have been done by removing this dependence by shuffling halo
masses before abundance-matching them with Hα galaxies. While linear bias is considered
adequate at the very large scales where a foreground like the Milky Way has an impact,
the removal of luminosity dependence of bias has been done in this paper only for sake of
simplicity. This assumption does not influence the mask reconstruction, because bias enters
only the cosmological term Tcδ of δo in equation 2.15 that is averaged out by the estimators.
It would only complicate the comparison with linear theory predictions and the recovery of
true clustering.

The luminosity function and the extinction curve have been assumed to be know with
arbitrarily good accuracy. In other words, the SA(z), SB(z) and SC(z) functions have been
assumed to be known without error. The uncertainty on the luminosity function for a survey
with millions of galaxies is expected to be so small that its error is going to be negligible
and violations of the universality of Φ(L) are likely to be much more serious. Conversely,
as commented in Section 5.3, one could use cross correlations to measure SC(z) (and the
extinction curve in case the foreground is galactic extinction). Results obtained assuming a
flat SC(z) function have been shown to provide completely wrong cross correlations but a
very similar angular mask M , so the uncertainty in SC(z) is likely to have little impact on
the reconstructed foreground mask.

Foregrounds have been assumed to be uncorrelated with the cosmological signal, i.e.
δ(x) and δL(θ) are statistically independent. This is true in an ensemble average sense but
not for volume averages, and this contributes to the residuals. Also, this is not necessary true
in some cases. For instance, if magnitudes are corrected using an extinction map based on
FIR dust emission, fluctuations of the Cosmic Infrared Background (CIB) could be present in
this correction in case dust emission is not perfectly separated from the CIB. This worry has
been taken seriously, e.g. by the Planck collaboration in the presentation paper of the P13
map. However, the power spectrum of CIB fluctuations should parallel the cosmic signal, that
is steeply rising (see figure 3), while the angular power of the reddening masks we have used
show a declining spectrum, hinting to a low contamination of this type. A more complicated
case arises when the contamination correlates with source density, like for fiber collision or
overlapping spectra in slitless spectroscopy. In this case the averaging out of cosmic signal is
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not obvious, and tests would be needed to estimate the impact of this correlation and model
its behaviour.

Because light cone effects are not present in the mocks that we have produced, the
role of lensing has only been estimated to affect a different range of scales with respect
to extinction. Luminosity-dependent bias would further boost this effect at high redshift,
creating a potential overlap that should be modeled. The redshift dependence of the impact
of lensing can be computed theoretically, so it would be easy to model its impact on the cross
correlations and subtract it out. However, the accuracy of this subtraction must be assessed.

The main points of strength of the method we are proposing are the following:
(i) It requires a very limited set of assumptions on the foreground. The first two moments

of the mask, that are needed to build the best reconstruction, can be estimated from the
data with some calibration on the mock catalogs, and the subtraction of the cosmic signal
depends very mildly on their exact value. Knowledge of the SC(z) function, that modulates
in redshift the impact of the angular mask, is crucial, but it can be recovered from the redshift
evolution of the cross correlations.

(ii) Because the mask is reconstructed from the same survey that needs to be corrected,
it is accurate exactly where it needs to be. For instance, for the Milky Way extinction case
considered here the foreground has most power on large angular scales, so the reconstructed
mask is dominated by imperfect foreground removal at ` > 100. But, thanks to the the
available number of independent redshift bins, the level of contamination is below 1% of the
cosmological signal; the mask cannot be recovered only because it has such a low angular
power that it is not going to affect the survey. A foreground with a flatter or mildly raising
angular power spectrum would be measurable at much higher `’s.

(iii) It is straightforward to compute the uncertainty with which the foreground mask
is recovered, by applying this method to a large set of simulated catalogs. The covariance
matrix of clustering statistics is usually computed using mock catalogs, so one would just need
to apply the method to the same set of mocks used for the cosmological covariance, masking
them with some model mask that augments the best reconstruction obtained from data with
high-` power. Such a covariance matrix would then account for the residual correlation of the
reconstructed mask with the cosmological signal, due to its imperfect averaging out by the
Eav and Esq estimators. This is a crucial point of merit: one could get from figure 15 that the
uncertainty in the recovery of the mask, at the pixel-by-pixel level, is larger than the difference
between the available maps, but it is possible to fully characterise this uncertainty and its
contributions to the covariance matrices of any statistics for which the cosmic covariance is
computed with mock catalogs. The same is not true for reddening maps recovered from FIR
observations: an unknown gradient in dust composition or properties across the sky would
give highly correlated errors that would be almost impossible to characterize.

(iv) This method can be applied to photometric redshift catalogs. Clearly, nearby
redshift bins would be contaminated by the redshift uncertainty, to a level that would be
easy to detect from cross correlation (see figure 11), so the number of usable redshift bin
pairs would be lower; but it would be easy to get deep catalogs with much lower shot noise.
One could also strengthen the result using Lyman-break galaxies or quasars at much higher
redshift. In principle, it is straightforward to add information from complementary surveys,
even though the control of uncertainties would be complicated by the need to have mocks
that model several types of objects at the same time.

(v) Finally, cross correlations could be a powerful diagnostic for catastrophic redshift
errors. Figure 11 would show peaks at specific redshift intervals that correspond to misinter-
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preted lines, if this contamination is significant.
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