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Abstract: Ti6Al4V cellular structures were produced by selective laser melting (SLM) and then filled either with beta-tricalcium 
phosphate (β-TCP) or PEEK (poly-ether-ether-ketone) through powder metallurgy techniques, to improve osteoconductivity and 
wear resistance. The corrosion behavior of these structures was explored considering its importance for the long-term performance of 
implants. Results revealed that the incorporation of open cellular pores induced higher electrochemical kinetics when being 
compared with dense structures. The impregnation of β-TCP and PEEK led to the creation of voids or gaps between the metallic 
matrix and the impregnated material which also influenced the corrosion behavior of the cellular structures. 
Key words: Ti6Al4V cellular structures; corrosion; multimaterial design; poly-ether-ether-ketone (PEEK); beta-tricalcium phosphate 
(β-TCP) 
                                                                                                             

 
 
1 Introduction 
 

Ti6Al4V is one of the most used Ti alloys in 
biomedical applications, such as orthopedic implants, 
due to its good mechanical properties. It is a lightweight 
metal, having high strength, good fracture toughness, 
low thermal expansion and lower elastic modulus 
(among metallic biomaterials) [1,2]. Additionally, it 
presents high biocompatibility and excellent capacity to 
resist corrosion, associated with the formation of a stable 
and compact oxide layer on its surface that is created 
spontaneously when exposed to oxygenated 
environments [3−6]. However, as other Ti alloys, this 
material presents no bioactivity which is required to 
reduce implant-tissue osseointegration time and, 
subsequently, to promote shorter healing time. Hence, 
several functionalization techniques are being studied to 
improve bioactivity [7]. Beta-tricalcium phosphate 
(β-TCP, Ca3(PO4)2), a bioactive material highly similar to 

the mineral phase of bone, has been applied to 
overcoming the lack of bioactivity [8−10]. The addition 
of this ceramic to a Ti matrix is expected to induce a 
natural bone tissue growth, and consequently promote a 
faster bone-tissue osseointegration [11,12]. On the other 
hand, Ti6Al4V also presents poor wear resistance and 
tends to release metallic ions and wear debris to the 
surrounding medium [13–15]. To overcome these  
issues, Poly-ether-ether-ketone (PEEK) and PEEK-based 
materials have been applied due to their excellent 
thermal and chemical stability and higher wear  
resistance, comparing to Ti and its alloys [16,17]. 
Furthermore, PEEK has excellent mechanical properties, 
such as low elastic modulus and relatively low 
manufacturing cost [18]. 

Selective laser melting (SLM) is an additive 
manufacturing technique that allows the production of 
customized and complex 3D parts from CAD data by 
using laser energy to melt metallic powders in a layer- 
by-layer process [19−23]. Among all the advantages, the 
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SLM technique allows the production of parts without 
the need for using additional steps [24,25]. Briefly, in 
this process, 3D CAD data are imported to an SLM 
software that slices the part into successive layers with a 
given layer thickness. The metallic powder is spread 
across the SLM platform and a laser beam scans the 
powder in predefined sites to melt it and, layer-by-layer, 
to produce the desired 3D part [20,22,24,26]. The 
processing parameters like laser power, scan speed, and 
scan spacing have a huge impact on the SLM 
components final properties. Many studies have been 
made to assess the influence of the processing 
parameters on the final properties of SLM components, 
in terms of physical, mechanical and microstructural 
properties [26−29]. BARTOLOMEU et al [26] have 
investigated the effect of SLM processing parameters on 
the final properties of Ti6Al4V samples such as density, 
hardness and shear strength and reported the optimal 
parameters for this technology on this material. ZHAO  
et al [30] produced Ti6Al4V alloy by electron beam 
melting (EBM) and SLM, compared their corrosion 
behavior in simulated body fluid and reported good 
corrosion resistance for the samples produced by EBM 
and SLM that were regarded by authors as suitable for 
implantation in vivo. However, some authors reported 
poorer corrosion resistance for the SLM-produced 
Ti6Al4V alloy due to a large amount of acicular α′ and 
less β-Ti phase in the microstructure [31,32]. 

Many studies have been made on the production of 
porous structures, by SLM, to promote bone growth 
towards the implant, ensuring a good mechanical 
interlocking between implant and bone [33–35]. 
However, since these structures will be surrounded by 
corrosive body fluids, it is essential to assess their 
corrosion performance. Studies performed on highly- 
porous Ti [36] and Ti alloy [37] structures showed that 
increased porosity resulted in the formation of a less 
protective oxide film on the pore surfaces due to 
difficulties or delays on the electrolyte penetration 
through the innermost pores. 

Targeting biomedical applications, the present study 
aimed to evaluate the effect of porosity and the 
incorporation of β-TCP or PEEK on the corrosion 
behavior of Ti6Al4V-SLM structures. Ti6Al4V cellular 
structures were designed and produced by SLM in a way 
to obtain near-net-shape structures according to the 
predefined CAD model. Using these multifunctional 
structures, it can be possible to reduce the elastic 
modulus, to promote the bone ingrowth, as well, to 
improve the bioactivity and wear resistance by 
impregnating β-TCP and PEEK, respectively, into the 
open cells. 

 
2 Experimental 
 
2.1 Starting materials 

The Ti6Al4V starting powders used to produce the 
SLM samples were supplied from SLM solutions 
(Germany). Table 1 and Fig. 1(a) show the composition 
and particle size, respectively, according to the 
manufacturers. 
 
Table 1 Composition of Ti6Al4V powders (wt.%) 

Al V C Fe O N H Ti 

6.4 3.8 0.01 0.23 0.12 0.02 0.0074 Bal.

 

 

Fig. 1 Powder size distributions of Ti6Al4V (a), β-TCP (b) and 

PEEK (c) 
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After producing the Ti6Al4V cellular structures, 
two approaches were evaluated: bioactive impregnation 
of β-TCP and polymer impregnation of PEEK. The 
bioactive impregnation using β-TCP was carried out by 
using press and sintering technique. β-TCP powder was 
supplied from Trans-Tech, Inc, with a particle size 
distribution as presented in Fig. 1(b). The polymer 
impregnation using PEEK was carried out by using hot 
pressing. PEEK powder was supplied from Evonik 
Industries, with the particle size distribution presented in 
Fig. 1(c). 
 

2.2 Processing 
To fabricate dense and cellular structured Ti6Al4V 

samples, a commercial SLM equipment (SLM solutions, 
model 125HL) was used. The main characteristics of the 
equipment are shown in Table 2. Briefly, this equipment 

has an Yb-faser-laser, a focus beam diameter of 87 µm 
and a maximum laser power of 100 W. The process 
occurs under an Ar/N2 atmosphere keeping the 
temperature of the building platform at 200 °C. The 
present study used SLM processing parameters, a laser 
power of 90 W, a scan speed of 600 mm/s, a scan spacing 
of 80 µm and a layer thickness of 30 µm. 

Four different types of Ti6Al4V or Ti6Al4V-based 
samples were produced and investigated. Table 3 gives 
the component type and processing technique for each 
group of samples. 

After producing the cellular structured parts (SP2), 
β-TCP (SP3) and PEEK (SP4) were introduced into   
the available open cells (Fig. 2). On SP3 samples,  
β-TCP impregnation was performed through a press and 
sintering process. In this process, the cellular structures 
were placed in a steel mold. Thereafter, a solution of  

 
Table 2 SLM equipment (model 125 HL) characteristics 

Laser  
type 

Effective  
build volume/ 

mm3 

Laser  
power/ 

W 

Scanning
 speed/ 

(mmꞏs−1)

Layer 
 thickness/

µm 

Distance 
 between
 scanning
 lines/mm

Laser
 spot/

µm 

Inert gas (Ar/N2) 
flow during 
production/ 
(Lꞏmin−1) 

Inert gas (Ar/N2)
 flow during 

filling of 
chamber/(Lꞏmin−1)

Yb-faser-laser 125×125×125 
40− 
100 

100− 
2000 

20− 
40 

0.07− 
0.15 

87 0.5 10 

 
Table 3 Testing samples 

Sample No. Ti6Al4V component type Processing technique 

SP1 Dense structure SLM 

SP2 Cellular structure SLM 

SP3 Cellular structure impregnated with β-TCP SLM + press and sintering 

SP4 Cellular structure impregnated with PEEK SLM + hot pressing 
 

 

Fig. 2 Fabrication details of Ti6Al4V cellular structures impregnated with β-TCP or PEEK 
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β-TCP powder and acetone was prepared and introduced 
into a steel mold where the cellular structure was already 
properly positioned. Then, using an upper punch, the 
pressure was slowly applied by a hydraulic press to force 
this solution to occupy the open cells. After 10 min under 
pressure, the samples were removed from the mold. To 
sinter the β-TCP powders, a subsequent sintering step 
was performed in a tubular furnace at 1100 °C for 2 h 
under a high vacuum (10−3 Pa), with heating and cooling 
rates of 5 °C/min. 

On SP4 samples, hot pressing was used to 
impregnate PEEK by applying simultaneously pressure 
and temperature. The cellular structures were inserted 
inside a steel mold, followed by the introduction of 
PEEK powder. After placing and positioning the mold 
inside the chamber, a residual pressure was applied to 
compressing the powder. Posteriorly, the mold was 
heated until 380 °C (above PEEK melting point of 
345 °C). Finally, the induction heating was turned off to 
decrease the temperature down to 300 °C and PEEK was 
pressed under 25 MPa for 5 s, to force it to fill the 
available space inside the open cells. 
 
2.3 Microstructural analysis 

Field emission gun scanning electron microscopy 
(FEG SEM, FEI Nova 200, USA) was used to 
characterize the surfaces before and after testing. The 
effect of the impregnation method on the microstructure 
of Ti6Al4V was evaluated on the surfaces etched with 
Kroll’s reagent (5% HNO3, 10% HF and 85% distilled 
water) and analyzed by SEM. Before corrosion tests, 
crystalline structures were characterized with X-ray 
diffraction using Bruker AXS D8 Discover equipment. 
Diffraction data were collected from 10° to 80° of 2θ, 
with a step size of 0.02° and counting time of 1 s/step. 
 
2.4 Corrosion tests 

Before testing, all samples were polished with 
different abrasive silicon carbide papers, ranging from 
0.125 to 0.0374 mm grit size. After grinding, samples 
were ultrasonically cleaned with propanol for 30 min in 
the case of SP2 and 10 min in the other three conditions. 
Regarding the cellular structure (SP2), due to its complex 
geometry, cleaning was done in a net positioned upside 
down, to avoid the accumulation of debris coming from 
grinding. 

A three-electrode cell assembly comprising the 
sample as the working electrode, a platinum electrode as 
the counter electrode, a saturated calomel electrode as 
the reference electrode, and 40 mL of NaCl (9 g/L) 
solution as the electrolyte was used for the 
electrochemical tests. Open-circuit potential (OCP)   
and cyclic polarization were carried out using a   
Gamry Potentiostat/Galvanostat/ZRA (Reference 600) 

equipment on samples having a geometric exposed area 
of 0.36 cm2 that was also used for normalizing the 
electrochemical results for SP1 samples. The exposed 
areas of SP2 and SP3 were calculated from the CAD 
model whereas only the metallic exposed area was 
considered for SP4 samples. Before cyclic polarization, 
OCP values were monitored until stabilization (the 
values of potential did not vary more than 40 mV in 1 h). 
Cyclic polarization curves were acquired using a scan 
rate of 1 mV/s, starting at −0.2 V (vs OCP), and the 
sweep direction was reversed at 1 V (vs SCE). 
 
3 Results and discussion 
 
3.1 Microstructural characterization 

Figure 3 shows the representative morphologies of 
the raw powders. Figures 3(a), (b) and (c) correspond to 
 

 
Fig. 3 SEM images of raw powders: (a) Ti6Al4V; (b) β-TCP;  

(c) PEEK 
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the Ti6Al4V, β-TCP and PEEK powders, respectively. 
From these figures, it is possible to observe that Ti6Al4V 
had a spherical shape, β-TCP powder was characterized 
by an aggregate of spherical particles and PEEK powder 
had an irregular shape. 

3D parts, produced by SLM based on the CAD data, 
are presented in Fig. 4. It is possible to verify from the 
images that the samples were successfully produced by 
this technique, once the geometry of the CAD model and 
the SLM processed sample was very similar. 

Figure 5 presents the samples before corrosion 
testing. Regarding SP1 (dense) samples (Fig. 5(a)), no 
evidence of pronounced porosity was observed, 
suggesting that the processing technique was efficient to 
promote the densification of the samples. The open 
cellular structures can be seen in Fig. 5(b) showing the 
viability of SLM to produce such geometries. On the 

other hand, Figs. 5(c) and (d) show the Ti6Al4V cellular 
structures impregnated with β-TCP and PEEK, 
respectively. It was possible to observe that the 
impregnation process of β-TCP was not as efficient as 
PEEK, once the holes were not totally filled with the 
ceramic material. 

Figure 6 presents the XRD patterns of each sample. 
Regarding SP1 and SP2 samples, no significant 
differences were detected in the XRD pattern where 
hexagonal close-packed (HCP) and body-centered cubic 
(BCC) crystalline structures of Ti were detected. On the 
other hand, by adding β-TCP to the cellular structure 
(SP3), it was possible to observe a new peak (≈31°) that 
corresponds to the β-TCP phase. Analyzing the SP4 
pattern, new peaks were observed corresponding to the 
PEEK pattern, which is in accordance with the XRD 
patterns for this material [38−40]. 

 

 
Fig. 4 SLM structure of CAD model (a) and as-built sample (b) 
 

 
Fig. 5 SEM images of SLM-produced samples: (a) SP1; (b) SP2; (c) SP3; (d) SP4 
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Fig. 6 XRD patterns of tested samples showing distinctive 

phase constituents 

 
The acid etched microstructures of the metallic 

matrix of SP1, SP2, SP3, and SP4 are given in Fig. 7. 
Ti6Al4V alloy is known for its structure composed of α 
phase (HCP) and β phase (BCC). SEM images revealed 
the presence of acicular α′ martensite, that is hard to 
observe on the XRD spectra since α and α′ phases have 
HCP structure with very close lattice parameters [32]. 
The XRD results of SP3 together with the microstructure 
presented in Fig. 7(c) suggested that the martensite  
phase was decomposed into α and β phases when 
subjected to high temperatures (temperatures above the β 
transus) [41]. 

 
3.2 Corrosion behavior 

In order to normalize the electrochemical data, the 
electrolyte exposed area of 1.92 cm2 for the SP2 calculated 

from the CAD model by considering the following areas 
is shown in Fig. 8, where A1 is the area of the pore walls 
(green) that are presented both on top and bottom of the 
sample, A2 corresponds to the area of the interconnecting 
walls between pores, A3 represents the superficial area 
(blue) of the sample, A4 is the bottom area (orange) and 
A5 represents the top walls (red). 

As it is shown in Fig. 5(c), the β-TCP impregnation 
was not fully achieved on SP3. In this sense, the exposed 
area was determined on the CAD model (Fig. 9) by 
considering the areas shown by arrows in Fig. 9 (top 
areas of A1, A2, A3, and A5). According to this  
assumption, the exposed area is calculated as 1.23 cm2. 
Nevertheless, it is worthy to stress that these area 
calculations are approximations and particularly on SP3, 
the irregularity inside the open cells made it difficult to 
obtain accurate calculations. Therefore, future works on 
the optimized samples should use more accurate 
techniques, such as micro-CT, to calculate the exposed 
area more precisely. For the SP4 sample, since the 
impregnation was almost fully achieved, only the 
metallic area was considered (0.26 cm2). 

The cyclic polarization curves of the different tested 
materials are presented in Fig. 10. Average values of the 
last 10 minutes of φOCP, corrosion potential (φ(i=0)) and 
corrosion current density (Jcorr) (obtained by Tafel 
extrapolation), and Jpass values (derived from the curves) 
are given in Table 4. As it is very well known [3,42], Ti 
has a strong affinity to oxygen which leads to its ability 
to create a stable passive film in any environment that 
contains oxygen, characterized by a well-defined 
passivation plateau. The reverse curves of all tested 
materials evolved on the left-hand side of the forward 

 

 
Fig. 7 SEM images of acid etched samples: (a) SP1; (b) SP2; (c) SP3; (d) SP4 
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Fig. 8 Schematic representation of total area in contact with electrolyte for cellular structures (unit: mm) 

 

 
Fig. 9 Schematic representation of total area in contact with electrolyte for SP3 sample 
 
curves, i.e., for the same potential the current density on 
the backward scan presented lower values, indicating 
their ability to resist to localized corrosion [43]. 

A clear passivation plateau was observed on the 
cyclic polarization curve of SP1 (Fig. 10(a)) at 
(0.39±0.04)×10−5 A/cm2 (Jpass). On the other hand, the 
transition from cathodic to anodic domain was 
characterized by a φ(i=0) of (−423±25) mV (Table 4). The 
representative evaluation of the cyclic polarization curve 
of the cellular structures (SP2) is presented in Fig. 10(b). 
The forward scan was characterized by a φ(i=0) of 
(−141±59) mV (Table 4) with a passivation current 
density (Jpass) of (1.53±0.07)×10−5 A/cm2. The passiva- 
tion plateau observed on SP2 shifted to higher current 
density values and presented some local increments on 
the current. These samples were characterized by the 
existence of interconnected holes that may allow a delay 
in electrolyte flow, that eventually may result in creation 

of less protective oxide film on the inner cell surface, 
which may be responsible for the increased Jpass values, 
as already reported for Ti [36] and Ti−Nb based [37] 
highly-porous structures. Nevertheless, since the exposed 
area was calculated over a CAD  model, and since 
as-built samples presented rough cell surfaces (Fig. 5), 
the real exposed area may be increased, which may have 
an influence on obtaining increased Jpass values. 

Figure 10(c) represents the cyclic polarization curve 
of SP3. Despite having lower corrosion potential 
compared with SP2, φ(i=0)=(−492±18) mV, it has the 
capability of forming a stable passive film evidenced by 
a well-marked passivation plateau. Furthermore, 
comparing SP1 and SP3 polarization curves, the 
corrosion potentials of both plots were very similar 
(φ(i=0)=(−423±25) mV vs φ(i=0)=(−492±18) mV). 
However, Jpass of SP3 was higher than that of SP1 
((2.51±0.02)×10−5 A/cm2). As also mentioned above, 
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Fig. 10 Cyclic polarization curves of tested materials: (a) SP1; (b) SP2; (c) SP3; (d) SP4 
 
Table 4 Electrochemical data derived from cyclic polarization 

curves for tested materials 

Sample φOCP 
φ(i=0)/ 

mV 

Jcorr/ 

(10−7 Aꞏcm−2) 

Jpass/ 

(10−5 Aꞏcm−2)

SP1 −386±23 −423±25 − 0.39±0.04 

SP2 −59±53 −141±59 − 1.53±0.07 

SP3 −459±22 −492±18 − 2.51±0.02 

SP4 −153±10 −209±22 5.03±0.49 − 

 
although a model was followed to calculate the exposed 
area on SP3 sample, this model may have some 
deviations since it is very difficult to simulate the 
impregnation process with β-TCP, that eventually may 
lead to a deviation on the Jpass values, in addition to the 
possible heterogeneities on the passive film due to the 
delays on the electrolyte penetration. 

Figure 10(d) shows the cyclic polarization curves of 
samples impregnated with PEEK (SP4). The corrosion 
potential of this material was (−209±22) mV and Jcorr was 
(5.03±0.49)×10−7 A/cm2. It was possible to observe that 
for these samples that there was a deviation on the 
passivation plateau, which can be related with the 
presence of some narrow gaps between the polymeric 
and metallic transition that might act as active zones that, 
consequently, promoted some discontinuities on the 
passive film [44]. 

Therefore, although the presence of β-TCP and 
PEEK was not expected to influence directly the 
corrosion behavior of Ti6Al4V, the impregnation process 
led to some interfacial voids or gaps between the 
impregnated material and the metallic matrix that 
eventually influenced the corrosion behavior of these 
structures. 

Figure 11 shows the SEM micrographs of the 
surfaces after corrosion testing. There were no visible 
changes in the surface morphology on none of the 
samples when compared with the as-processed ones. 
However, further analysis of the impregnated    
samples (Figs. 11(c) and (d)) may explain the different 
results obtained on the electrochemical tests. As  
already mentioned, and as can be seen in Fig. 11(c), the 
impregnation process was not fully accomplished on  
SP3, which led to increased exposed area and possibly 
led to some difficulties on electrolyte penetration that 
apparently influenced the corrosion behavior. Moreover, 
in the case of SP4 (Fig. 11(d)), the impregnation process 
was fully achieved; however, some gaps were visible on 
the material surface that apparently affected the 
corrosion behavior. Therefore, these results showed that 
further work should be performed to optimize the 
impregnation process to avoid discontinuities at the 
interface between the impregnated material and the  
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Fig. 11 Lower and higher magnification SEM micrographs of surfaces after corrosion tests: (a) SP1; (b) SP2; (c) SP3; (d) SP4 
 
metallic matrix. After optimization, further 
electrochemical analysis such as electrochemical 
impedance spectroscopy should be carried out to better 
understand the corrosion mechanisms. 

 
4 Conclusions 
 

(1) Processing of Ti6Al4V alloy by SLM led to the 
formation of acicular α′ martensite, along with α and β 

phases. Further sintering process applied for β-TCP 
resulted in the decomposition of the martensite phase 
into α and β phases. 

(2) Corrosion studies revealed that the introduction 
of open cellular porosity on Ti6Al4V or uncompleted 
impregnation process could influence the corrosion 
behavior through the presence of interconnected pores or 
gaps between the metal and the impregnated material 
leading to the difficulties or delays on the electrolyte 
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penetration that may create heterogeneities on the 
passive film. 

(3) No evidence of localized corrosion was 
observed on the polarization curves neither for the 
cellular structures nor for the β-TCP or PEEK 
impregnated structures; however, some narrow gaps 
between the impregnated PEEK and the Ti6Al4V matrix 
probably acted as active zones and promoted some 
discontinuities on the passive film. 
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PEEK 或 β-TCP 充填的生物医用 Ti6Al4V 
激光选区熔化结构的腐蚀行为 
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摘  要：用激光选区熔化(SLM)制备 Ti6Al4V 多孔结构，通过粉末冶金法充填 β-TCP 或 PEEK，以期提高材料的

骨传导性和耐磨性能。考虑到这些结构对种植体长期性能的重要性，对其腐蚀行为进行探讨。结果表明，与致密

结构相比，开放孔洞的引入导致更高的电化学动力学。β-TCP 和 PEEK 充填导致空洞或金属基体与充填材料之间

产生间隙，影响多孔结构的腐蚀行为。 

关键词：Ti6Al4V 多孔结构；腐蚀；多材料设计；PEEK；β-TCP 
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