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Abstract. Cartilage related diseases are on the top list concerns of the World Health Organization, 
being the prevention of articular cartilage degeneration a major health matter for which there are 
few effective solutions. Using an extrusion-based approach and a polyester elastomer it was aimed 
to produce 3D structures with controlled architecture and with closer mimicry to cartilage native 
tissue. The obtained constructs demonstrated high reliability, being the addition of poly (glycerol 
sebacate) a procedure to enhance the properties of the constructs. 

Introduction 

Osteoarthritis (OA) is a chronic joint condition affecting over 250 million people worldwide [1]. 
Along with a significant impact on health-care and society, the Global Burden of Disease Study 
from the World Health Organization reported that knee OA is the 11th leading cause of disability, 
and shows a growing trend [2]. Although it may damage every joint in the human body, the most 
common disorders affect joints in the hips, knees, hands and spine. Thus, with a society facing a 
demographic transformation, with an epidemic increase of obesity, integrated interventions to 
weaken the problem are mandatory. Each year, more than 50 million people visit doctors because of 
joint pain; half of them with a damage of the articular cartilage. 

Apart from not being possible to reverse the underlying process, in its early stages OA symptoms 
can usually be effectively managed. In fact, adopting a healthy lifestyle may slow the disease 
progression, and help improve joint function and reduce pain [3]. On the other hand, in the 
following stages, surgery may be required. Thus, significant efforts are being developed worldwide 
in the fields of tissue engineering and regenerative medicine, but full cartilage restoration remains a 
paramount challenge [4]. Tissue engineering is a multidisciplinary scientific field, which applies a 
wide variety of methodologies. Therefore, multidisciplinary research teams can provide suitable 
inputs for its development [5,6]. One of the major goals is to produce biological substitutes to 
restore, maintain or improve tissue function, using biocompatible and biodegradable support 
structures, i.e. scaffolds, in conjunction with human cells [7]. 

Cartilage is a tissue with a huge complexity, which is present in the human body in three types: 
hyaline cartilage, fibrocartilage and elastic cartilage. Apart some resemblances, these types are quite 
different and play unlike roles for human functionality. For instance, the hyaline cartilage, also 
known as articular cartilage, has a major role in providing joints with a surface that combines low 
friction with high lubrication [8]. A deeper knowledge on cartilage characterization, bridging the 
gap between anatomy and physiology, may lead the way for better implants aiming cartilage repair 
and regeneration [9]. This is of even more interest as cartilage is an avascular tissue of the human 
body, hence with an extremely low capability for tissue regeneration. Regardless of the low 
metabolic activity and relatively poor ability to heal of chondrocytes, hyaline cartilage is a dynamic 
and responsive tissue, where the contribution of cell produced extracellular matrix components play 
a major role [10]. It is well documented in the literature that hyaline cartilage has remarkable 
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mechanical properties (elastic modulus of ~123MPa; mechanical tensile strength of 17 MPa; 
compressive modulus varying between 0.53 and 1.82 MPa; and compressive stress between  
14-59 MPa) [11,12] and lasting durability, despite its few millimetres of thickness. The referred 
complexity and properties demonstrate the challenges faced by research groups aiming to fully 
restore cartilage functionality.  

The interest in elastomeric biomaterials has been significantly increasing as they offer the 
possibility to engineer implantable structures resembling the elasticity of native tissues. Poly 
(glycerol-sebacate) (PGS) is a polyester elastomer originally synthesized by Langer’s group and 
widely explored for soft tissue engineering. Despite its useful properties of biocompatibility and in 
vivo biodegradation, the complex processing conditions remain the main difficulty to extend the 
range of applications. In addition, current biofabrication strategies for PGS-based biomaterials are 
limited to conventional processes (e.g. freeze drying, melt moulding, electrospinning), which 
prevent the fabrication of patient-specific constructs with controlled architectures, interconnectivity 
between pores, porosity and pore size. 

So, the main aim of the present work was to examine the feasibility for producing extrusion-
based scaffolds using PGS. It was hypothesized that scaffolds with incorporation of PGS would 
demonstrate properties resembling the cartilage native tissue. 

Materials and Methods 
Materials 
Commercial PGS (Regenerez®) was obtained from Sigma-Aldrich. PCL polymer (CAPA® 

6500, Mw: 50,000 Da) was purchased from Perstorp Caprolactones (Cheshire, UK).  Mixtures were 
prepared using chloroform (analytical grade) from Scharlau Chemie (Barcelona, Spain).  

Fabrication of 3D scaffolds 
PGS-PCL and PCL membranes were prepared by solvent casting, to obtain 3D scaffolds through 

an additive manufacturing system. PCL pellets were dissolved in chloroform at 50°C and the 
solution was deposited in Petri dishes and dried at room temperature. The PGS-PCL mixture was 
prepared through the dissolution of PCL pellets (50% (w/w)) and PGS 50% (w/w) in chloroform at 
50°C. After obtaining a homogeneous solution, the PGS-PCL mixture was deposited in Petri dishes 
and dried at room temperature. 

Scaffolds were produced by using a layer-by-layer manufacturing system [13]. All 3D structures 
were prepared with an inter-filament distance of 650 μm, nozzle diameter of 300 μm and 0º/90º pore 
configuration. Control PCL and PGS-PCL scaffolds were obtained using the same processing 
conditions (deposition velocity of 5 mm/s and liquefier temperature of 80ºC), with 10 rpm of screw 
rotation velocity. 

Characterization of 3D scaffolds  
The surface topographies of scaffolds were examined by optical microscope Daffodil MCX100 

(Micros Austria) connected to a digital camera at a magnification of 40x. 
The thermal properties of the samples were evaluated with a STA 6000 (Perkin Elmer). Samples 

of 6-7 mg were placed in alumina pans and empty pans were used as reference. All samples were 
first heated at a range of 15–120 ºC at a heating rate of 10 ºC/min and held isothermally for 5 min to 
mitigate any prior thermal history. Then, the samples were cooled to 15 ºC at 10 ºC/min, held 
isothermally for 10 min and then reheated to 160 ºC at the same rate. After each test, the melting 
point region from the thermograph was analysed to determine the heat of fusion (ΔHfus) and the 
melting temperature (Tm); the crystallization region was analysed to determine the crystallization 
temperature (Tc) of all samples. To evaluate the thermal degradation, the samples were exposed to a 
temperature ramp from 15 ºC to 600 ºC, at a heating rate of 10 ºC/min. Initial degradation 
temperature (TDon) and peak degradation temperature (TDp) were determined using the first 
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derivative curve to analyse the thermal degradation of the specimens. The flow rate of nitrogen was 
20 mL/min during all the runs. 

FT-IR analyses of all samples were performed with an ATR Fourier transform infrared 
spectrometer (Alpha FT-IR spectrometer, Bruker, Belgium). The spectra were averaged over 64 
scans at a resolution of 4 cm-1. All tests were performed in triplicate. 

Results 

Development and characterization of PGS-PCL scaffolds 

In Figure 1 the PGS-PCL 3D structures are presented. It was possible to obtain a controlled 
architecture with a porous structure, and with remarkable flexibility. Micrographs (Figure 2) were 
assessed to explore the alignment and orientation of the filaments, and their morphological 
characteristics (Table 1), both with and without PGS. 
 

 
 

Figure 1.3D structures of PCL/PGS 

A)  B)  
Figure 2. Micrographs (magnification: 40x) of PCL (a) and PGS-PCL (b) scaffolds 
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Table 1. Scaffolds morphological values (mean ± sd) 
 

Scaffold Filament diameter (μm) Pore size (μm) 

PCL 274.3 ± 3.1 313.7 ± 4.5 

PGS-PCL 275.0 ± 4.6 303.0 ± 3.0 

Thermal behaviour  

The thermal properties were studied by DSC and TGA (Figure 3) and the thermal parameters are 
summarized in Table 2.  
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Figure 3. Thermal properties of: (A) PCL, (B) PGS and (C) PCL/PGS. (1) DSC thermograph: cooling cycle, (2) 
DSC thermograph: 2nd heating cycle, (3) TGA thermograph and (4) DTG thermograph 
 

Table 2. Thermal properties of the samples (mean ± sd) 
 

 DSC TGA DTG 
 𝑇𝑇𝑐𝑐 (∘C) 𝑇𝑇𝑚𝑚 (∘C) Δ𝐻𝐻fus (J/g) Mass loss (%) TDon(∘C) TDp (∘C) 

PCL 37.28 ± 0.29 58.30 ± 0.18 50.79 ± 2.80 99.32 ± 0.40 384.84 ± 2.93 410.07 ± 0.61 

PGS * * * 96.88 ± 0.70 404.04 ± 7.37 422.76 ± 3.19 

PGS-PCL 37.30 ± 0.05 57.40 ± 0.19 41.56 ± 3.01 98.13 ± 0.42 385.63 ± 3.89 412.91 ± 3.72 
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Chemical characterization 

In Figure 4 the FTIR spectra of PGS-PCL and PCL membrane are presented. 
 

 
 

Figure 4. FTIR-ATR spectra of PCL, PGS and PGS-PCL samples 

Discussion 

Gathering tissue engineering and regenerative medicine, researchers have been interested in 
developing alternative approaches for restoring joint functionality. For instance, the creation of 
constructs with a structure and composition resembling native cartilage and yielding similar 
mechanical behaviour [14]. One of the most promising methodologies is the use of additive 
manufacturing (AM) processes. AM technologies allow the production of complex 3D structures 
with a high level of control, predefined geometry, size and interconnected pores, in a reproducible 
way. This controlled organization enhances the vascularization and, thus, transport of oxygen and 
nutrients throughout the whole structure, providing an adequate biomechanical environment for 
tissue regeneration [15]. However, adapting the adequate technology with enhanced biomaterials to 
obtain customized implants that mimic the native tissue, remains an utmost challenge. The present 
study produced PGS-PCL scaffolds with controlled architecture. The constructs presented high 
reliability (coefficient of variation lower than 2%), demonstrating the feasibility of having 
elastomer-based scaffolds by an extrusion process. 

Biodegradable and biocompatible elastomeric biomaterials are appealing for tissue engineering 
and drug delivery, as they resemble the elasticity of native extracellular matrix network. Such 
materials also have the ability to recover from medium to large deformations with minimal irritation 
to the surrounding tissues, while maintain the original function. PGS is a polyester elastomer 
developed by the Langer’s group through a polycondensation reaction of glycerol and sebacic acid, 
yielding to a biocompatible and biodegradable elastomeric material. Experimental results showed 
that PGS implants are totally absorbed in vivo after 60 days of implantation, contrasting with the 
weight loss of 17 ± 6% after 60 days of in vitro degradation in PBS [16]. Importantly, the 
degradation products of PGS are eliminated through natural pathways [17]. 

Regarding DSC results, experiments with pure PGS were also done. However, it was not 
possible to observe the melting and crystallization temperatures in the heating and cooling cycles 
performed, respectively, which was due to a limitation of the instrument used in the study. In 
previous works Gaharwar et al. [18] and Zhao et al. [19] calculated the melting temperature at  
≈10 °C. On the other hand, Wang et al. [16] revealed two crystallization temperatures at −52.14 °C 
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and −18.50 °C. PCL Tc and Tm  were in agreement with the previously published reports [13, 14, 
17], and the melting enthalpy was calculated to be 50.79 J/g. PGS-PCL scaffold exhibited a small 
decrease of melting temperature, which can be related to a possible miscibility of PGS and PCL 
and/or the presence of the other polymer [14, 17]. The weight loss characteristic of PCL, PGS and 
PGS-PCL was evaluated by thermal gravimetric analysis (TGA) (Figure 3 (3)). The derivative curve 
of the thermal decomposition spectra of all the samples indicates a step degradation profile and was 
calculated to evaluate the onset degradation temperature and peak degradation temperature. The 
addition of PGS induced a minimal increase in TDon  and TDp, suggesting that adding PGS within 
the PCL network enhances the thermal stability, when compared with pure PCL. 

PCL exhibited alkyl groups at 2943 and 2864 cm-1, and the strongest band at 1720 cm-1 which 
represent a carbonyl stretching, due to the presence of an ester in its composition. The spectra of 
PGS shows the same peaks for alkyl groups and peaks at 1720 cm-1 attributed to the presence of 
ester and carbonyl groups (C=O). There is also a band between 3600 and 3200 cm-1 for hydroxyl 
bond stretch vibration.  In the PGS-PCL spectra, the main change observed was the broader 
hydroxyl signal at 3436 cm-1. According to Wang and co-workers [16], an intense OH stretch 
indicates that the hydroxyl groups are hydrogen bonded. The polymer surface is very hydrophilic 
because of the hydroxyl groups attached to its backbone. The peak at 1163 cm-1 is stronger in the 
PGS-PCL spectra than in the PCL spectra, and represents the C-O stretching in the crystalline phase 
[18]. Another difference is the peak at 730 cm-1 which is more intense in the PCL than PGS-PCL 
spectra, representing a stretching band of a methylene group [21]. 

Conclusions  

In the last years, the world has assisted to an increase in the number of debilitating conditions 
and severe pain caused by cartilage defects, being the scientific and clinical community aware of the 
major problem that our society is facing. Regarding treatment, tissue science and regenerative 
medicine have emerged as promising disciplines concerning tissue and/or organ repair and 
regeneration. In fact, choosing the right approach for tissue regeneration is a major concern for 
every researcher in this field. The present study demonstrated that it is feasible to 3D print PGS-
PCL scaffolds, thus, enhancing their mechanical properties. 
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