

| Publication Year      | 2018                                                                                   |
|-----------------------|----------------------------------------------------------------------------------------|
| Acceptance in OA@INAF | 2022-07-14T14:17:01Z                                                                   |
| Title                 | The AGN Fueling/Feedback Cycle: A Multiphase Study of a Sample of Local Radio Galaxies |
| Authors               | PRANDONI, ISABELLA                                                                     |
| Handle                | http://hdl.handle.net/20.500.12386/32490                                               |

#### A Multi-phase study of a Sample of local Radio Galaxies

#### The feeding/feedback cycle in LERGS



Isabella Prandoni

IRA-INAF, Bologna

R. Paladino (IRA-INAF); P. Parma (IRA-INAF); H. de Ruiter (IRA-INAF) R. Laing (SKAO); M. Bureau (Oxford Univ.); T. Davis (Cardiff Univ.);

PhD Students: I. Ruffa (IRA-INAF); J. Warren (Oxford Univ.)

#### Focus of the talk

#### Jet/Radio Mode: L/L<sub>Edd</sub>≤0.01

- moderate radio power
- mostly FRI
- LERG
- Hosted by very massive (M>10<sup>11</sup> M<sub>sun</sub>) ETG little SF

AGN Fueling: hot gas (from the X-ray halo)

AGN feedback: mostly kinetic (radio jets)

#### radio jets:

- relativistic on pc scales (Giovannini+01)
- sub-relativistic on 1-10 kpc scales (Laing+99)



#### Focus of the talk

#### Jet/Radio Mode: L/L<sub>Edd</sub>≤0.01

- moderate radio power
- FRI or FRII
- LERG
- Hosted by very massive (M>10<sup>11</sup> M<sub>sun</sub>) ETG

Massive galaxies in local Universe  $\rightarrow$  100% RL (always switched on)

### Dominant RL-AGN population: L/L<sub>Edd</sub> ~10<sup>-5</sup>

AGN Fueling: hot gas (from the X-ray halo)

AGN feedback: mostly kinetic (radio jets)

#### radio jets:

- relativistic on pc scales (Giovannini+01)
- sub-relativistic on 1-10 kpc scales (Laing+99)





#### Our Project

- Better understanding of the feeding/feedback cycle in LERG
- role of LERG in the lifecycle of massive galaxies
- Statistical approach: well defined (volume-limited) LERG samples + control samples of RQ early-type galaxies
- Multi-wavelength (multi-phase) study of LERG (meso scale):
- warm ionized gas + stellar component (IFU)
- molecular gas (single dish and interferometry)
- deflections, co-spatial heating, outflows) detailed radio jet morphology (brightness gradients,
- I dust (high resolution optical imaging in two bands)

# A PILOT SOUTHERN RG SAMPLE

| Radio source | Host galaxy  | Z        | Log P <sub>1.4GHz</sub><br>(W Hz <sup>-1</sup> ) | <b>FR Type</b> |
|--------------|--------------|----------|--------------------------------------------------|----------------|
| PKS 0007-325 | IC1531       | 0.025641 | 23.9                                             | FRI            |
| PKS 0131-31  | NGC612       | 0.029771 | 25.0                                             | FRI/II         |
| PKS 0320-37  | NGC1316      | 0.005871 | 22.4                                             | FRI            |
| PKS 0336-35  | NGC1399      | 0.004753 | 22.5                                             | FRI            |
| PKS 0718-34  |              | 0.028353 | 24.6                                             | FRI            |
| PKS 0958-314 | NGC3100      | 0.008813 | 23.0                                             | FRI            |
| PKS 1107-372 | NGC3557      | 0.010300 | 23.3                                             | FR             |
| PKS 1258-321 | ESO443-G-024 | 0.017042 | 24.0                                             | FRI            |
| PKS 1333-33  | IC4296       | 0.012465 | 25.4                                             | FRI            |
| PKS 2128-388 | NGC7075      | 0.018479 | 23.9                                             | FRI            |
| PKS 2254-367 | IC1459       | 0.006011 | 23.0                                             | FRI *          |

- 11 objects with z<0.03 & E/S0 hosts
- extracted from
  Parkes 2.7 GHz
  survey (PKS; Ekers
  et al. 1989)
  [-17° < Decl. < -40° ]</li>
- All LERG
- Diverse environs
- \* sub-arcsec scale



### The Multi-wavelength dataset



The Multi-wavelength dataset

- H<sub>2</sub> / dust present in a significant fraction of RQ and RL ETG
- de Ruiter et al. 2002, Verdoes Kleijn & de Zeeuw 2005) nuclear dust more likely to be found in RL ETG (van Dokkum & Franx 95;
- Evidence for a relation between CO and dusty disks in ETG cores

→ Is H<sub>2</sub> more abundant in LERG wrt RQ ETG and/or Radio weak AGN?



I. Prandoni - Sesto 2018

### Master Radio Galaxy Sample

B2: volume limited sample of 23 objects with z<0.03;</p> 18 observed in CO [Prandoni+ 2007; Ocana-Flaquer+2010]

3C: volume limited sample of 26 objects with z<0.031 observed in CO [Lim+ 2003]

UGC: All galaxies with radio jets with v<7000 km/s (z<0.0233) sample of 18 objects observed in CO [Leon+ 2003] optical diameter > 1 arcmin

TANGO: 20 additional sources with 0.031<z<0.1 observed in CO [Ocana-Flaquer

+ Southern Sample: 11 objetcs with z<0.03

+2010] no uniform selection criteria

I. Prandoni - Sesto 2018

→ 76 distinct Radio Galaxies

### Comparison Sample – ATLAS<sup>3D</sup>

- 260 early-type galaxies (E/S0) with D<42 Mpc (z<0.01) [Cappellari+11]
- extracted from parent sample with -6° < Decl. < 64° and  $M_{K}$  < -21.5
- SAURON @ WHT
- 259 observed in CO with IRAM [Young+ 2011] → 56 detected
- radio weak AGN sub-sample: emission classified as AGN-powered based on radio/FIR properties 21 radio detected objects with radio
- no large scale jets







→ Is H<sub>2</sub> more abundant in LERGs wrt RQ ETG and/ore Radio weak AGN?





Is H<sub>2</sub> more abundant in LERGs wrt RQ ETG and/ore Radio weak AGN?

The Role of Molecular Gas in LERGs -

Cumulative Distribution (KM estimator)

- → Is H<sub>2</sub> more abundant in LERGs wrt RQ ETG and/ore Radio weak AGN?
- H<sub>2</sub> seems to be more abundant in LERG than in RQ ETG
- LERG mostly have log M(H2)~7.5 8 M<sub>sun</sub>
- radio weak AGN have same molecular mass properties as RQ ETG
- selection effects this result seems to be robust against scaling relations and distance
- this result remain consistent with HERG being richer in  $\rm H_2$

 $\rightarrow$  Is the H<sub>2</sub> morphology and kinematics different in RL and RQ ETGs ?

ALMA Cycle 3 Observations for 9 of the 11 RG in the Southern sample: [typical resolution of 0.6-0.7 arcsec / ~100-250 pc]

| Ð                     | C                           | ר ה<br>ה                    | ר כ                   | G                           | G/P                         |                       | ס                              | -                           |     | Env.                     |           |  |
|-----------------------|-----------------------------|-----------------------------|-----------------------|-----------------------------|-----------------------------|-----------------------|--------------------------------|-----------------------------|-----|--------------------------|-----------|--|
| IC 1459               | NGC 7075                    | $IC 4296^2$                 | ESO 443-G 024         | NGC 3557                    | NGC 3100                    | PKS 0718-34           | NGC 612                        | IC 1531                     | (1) |                          | Target    |  |
| $492^{1}$             | 560                         | 680                         | $786^{1}$             | 440                         | 345                         | $334^{1}$             | 780                            | 260                         | (2) | $(\mathrm{km \ s}^{-1})$ | Line FWHM |  |
| $640^{1}$             | 640                         | 880                         | $1000^{1}$            | 484                         | 470                         | $480^{1}$             | 840                            | 280                         | (3) | $(\mathrm{km \ s}^{-1})$ | Line FWZI |  |
| < 0.4                 | $1.0 \pm 0.1$               | $1.6 {\pm} 0.1$             | < 0.1                 | $7.0 \pm 0.7$               | $18{\pm}1.8$                | < 0.1                 | $273 \pm 27$                   | $2.0 \pm 0.2$               | (4) | $(Jy \text{ km s}^{-1})$ | SCOΔν     |  |
| $< 6.3 \times 10^{6}$ | $(1.7 \pm 0.2) \times 10^8$ | $(1.2 \pm 0.8) \times 10^8$ | $< 2.1 \times 10^{7}$ | $(3.6 \pm 0.4) \times 10^8$ | $(6.8 \pm 0.8) \times 10^8$ | $< 3.9 \times 10^{7}$ | $(1.2 \pm 0.2) \times 10^{11}$ | $(6.4 \pm 0.6) \times 10^8$ | (5) | $(M_{\odot})$            | $M_{H2}$  |  |

Table 5. Main  ${}^{12}CO(2-1)$  integrated parameters.

Ruffa, IP+ in prep.

I. Prandoni - Sesto 2018





 $\rightarrow$  Is the H<sub>2</sub> morphology and kinematics different in RL and RQ ETGs ?

+2013] ATLAS<sup>3D</sup> CO-rich sub-sample (40 objects) observed with CARMA [Alatalo



 $\rightarrow$  Is the H<sub>2</sub> morphology and kinematics different in RL and RQ ETGs ?

ALMA Observations for 9 of the 11 RG in the Southern sample:



 $\rightarrow$  Is the H<sub>2</sub> morphology and kinematics different in RL and RQ ETGs ?

ALMA Observations for 9 of the 11 RG in the Southern sample:



 $\rightarrow$  Is the H<sub>2</sub> morphology and kinematics different in RL and RQ ETGs ?





I. Prandoni - Sesto 2018

- $\rightarrow$  Is the H<sub>2</sub> of internal or external origin?
- kinematic major axis misalignment between stellar and gas components 13 (33%) of ATLAS<sup>3D</sup> CO-rich sub-sample show significant (>30°) → external origin
- 2 with other signs of external origin
- → 38% external [Alatalo+13]

### $\rightarrow$ Is the H<sub>2</sub> of internal or external origin?

2 (33%) with kinematic axis misalignments



Warren+in prep.







### Preview: The case of NGC 3100

#### → Evidence of feeding/feedback?

- Detailed modeling of CO kinematics
- Combined CO/ warm ionized gas analysis



#### Summary

- H<sub>2</sub> is more abundant in LERG than in RQ ETG
- $H_2$  is more abundant in LERG than in radio weak (no large scale radio jets)

Based on our ongoing multi-phase study of a pilot LERG sample (11 sources):

- H<sub>2</sub> morphology and kinematics similar in LERG and gas-rich RQ ETGs
- $H_2$  disks are very frequent in cores of LERGs (rings also present)
- LERG seem to have smaller disks/rings (sub-kpc) than gas-rich RQ ETGs
- H<sub>2</sub> is of external origin in at least 33-50% of LERG (similar fractions for gas-rich RQ ETGs)
- NGC 3100: detailed kinematic modeling  $\rightarrow$  tentative evidence of H<sub>2</sub> radial inflows (AGN feeding?)
- along radio jet (AGN feedback in action?) NGC 3100: link between disrupted CO morphology and presence of OIII emission

### **Open Questions**

- CCA? Are the many observed sub-kpc/kpc scale  $H_2$  disks in LERGs in agreement with
- observe? Can the various evolutionary phases of CCA (see Lakhchaura talk) explain what we
- Can gas/stars misalignments be explained in CCA?
- How the environment fit in?
- Are LERG statistically important for galaxy-scale feedback?