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This paper considers optimal design of queueing networks in which each node consists of a single-server
FIFO queue and an infinite-server queue, which is referred to as incubation queue. Upon service com-
pletion at a FIFO queue, a job splits (forks) into two parts: the first part is routed to the next node on
its route, and the second part is placed in the incubation queue. Routing of the jobs of multiple types is
governed by a central decision maker that decides on the routes for each job type and aims to minimize
the mean turnaround time of the jobs, i.e., the time spent in the system until service completion at the
FIFO queue in the last node, and at all incubation queues on the job’s route, which may be viewed as
a join operation. We provide explicit results for the turnaround time when all service and inter-arrival
time distributions are exponential and invoke the Queueing Network Analyzer when these distributions
are general. We then develop a Simulated Annealing approach to find the optimal routing configuration.
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We apply our approach to determine the optimal routing configuration in a chemistry analyzer line.
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1. Introduction

Clinical chemistry laboratories perform various tests on body
liquids, thus playing an important role in diagnostics, monitoring
and prediction of diseases. Analysis of clinical chemistry samples
is performed on so-called analyzer lines, that consist of distinct
analyzer modules. Fig. 1 a depicts a small part of the laboratory
consisting of two modules. Typically, a small to medium sized
laboratory contains several analyzer lines that each contain around
four modules. Racks, containing several tubes with samples to
be tested, arrive in random order and visit the modules. At each
module, a rack joins the queue of the pipettor that handles racks
in order of arrival and transfers a defined sample volume from
the sample tubes into processing cells. These cells are located
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on the ample capacity incubator disc, where, according to a test-
specific schedule, dilution and reagent fluids are added, the fluid
is mixed, incubated and measured, after which the test results
become available. At the same time (after sample pipetting is
completed), the rack is routed to the next module on its route to
join the queue of the pipettor of that module. The modules to be
visited are determined by the test mix of the tubes in the rack.
The order in which the racks visit the modules mostly does not
affect the quality of the test results. The turnaround time (TAT)
or end-to-end sojourn time between arrival of samples in the
lab and availability of results is the most important performance
indicator as this determines the time until the medical doctor
receives the patient’s test results (Tsai et al., 2019). This paper
introduces a queueing network and optimization approach to
design a chemistry analyzer line that minimizes TAT.

A pipettor handles racks one by one in order of arrival and
may be modeled as a single server First-In-First-Out (FIFO) queue,
where the service duration is determined by the number of pipet-
ting operations for the required tests at the module. The service
times of different samples on the incubator disc are independent
and the incubator has ample positions, so that the incubator disc
may be modeled as an infinite-server queue. A natural model
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(a) Route of a rack visiting two modules.
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(b) Queueing network model.

Fig. 1. Laboratory configuration and queueing network model.

for an analyzer line is therefore a network of nodes in which
jobs of different classes follow a class dependent route along the
nodes that consist of two parts: a FIFO single-server queue and
an infinite-server incubation queue (Figure 1 b). Upon service
completion at a FIFO queue, a job splits into two parts: one part
routes to the incubation queue, and the other part to the next
FIFO queue on its route. Upon service completion at the incubation
queue, this part leaves the network. A job’s TAT ends when service
at all FIFO queues along its route and all its incubation times
are completed. Routing of jobs in the network is governed by
a central decision maker that aims to design the lab such that
the mean TAT of all jobs is minimized. To this end, the decision
maker determines a static routing configuration by dividing the
job classes into types, and assigning fixed routes to each type.

Our network has general inter-arrival, service and incubation
times characterized via their mean and variance. For some special
cases we provide explicit results. For the network with exponen-
tial inter-arrival, service, and incubation times we provide explicit
results for the joint queue length distribution at the FIFO and
incubation queues as well as the Laplace-Stieltjes Transform (LST)
of the TAT for a given routing configuration that specifies the route
for each job type. In case of a single job type, these results enable
closed form evaluation of the mean TAT. For the network with
general inter-arrival, service, and incubation times, we develop
an approximation to obtain the mean TAT. This approximation
involves the Queueing Network Analyzer (QNA) (Whitt, 1983b) to
obtain the mean sojourn times at the FIFO queues and the mean
TAT for a given routing configuration. The general optimization
problem for the decision maker is non-convex. Therefore, we
develop a Simulated Annealing (SA) approach to determine the
near-optimal routing configuration. Our approach includes several
approximation steps of which accuracy is investigated in detail in
numerical experiments. We apply our approach to the design of
a four module analyzer line in the clinical chemistry laboratory
of Erasmus MC, Rotterdam, the Netherlands. For the current load,
our optimal routing configuration routes jobs along the nodes
from high to low incubation time, which we find to be a good
heuristic for general parameter settings. For a 60% load increase,
our optimization approach yields roughly 5% reduction in mean
TAT compared to this heuristic, which illustrates the quality of the
heuristic. In light of the number of tests performed on a chemistry
analyzer line, optimization of the routing configuration may result
in a substantial improvement of laboratory performance.

Literature: Sample routing in laboratories has been analyzed
using operations research techniques. Sample routing between
blood collection sites and laboratories was studied using discrete-
event simulation (Lote, Williams, & Ulgen, 2009) and modeled as a
vehicle routing problem (Grasas et al., 2014; Zabinsky et al., 2020).
Lean principles have been applied inside the laboratory, resulting
in improved sample routing (Persoon, Zaleski, & Frerichs, 2006;
Rutledge, Xu, & Simpson, 2010).

We will use notation as introduced in Kelly (1979), that pro-
vides a general description of open and closed product-form
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queueing networks. For a tandem of FIFO single-server exponen-
tial queues the sojourn times at the queues are independent and
the distribution of the TAT is available in closed form (Kelly, 1979,
Theorem 2.2). Ordering of tandem queues is studied in Suresh &
Whitt (1988), where it is shown that arranging the queues in in-
creasing order of service time variability is an effective heuris-
tic to decrease the average sojourn time. For a network of FIFO
queues with multiple job types, fixed routes, and exponential ser-
vice times that do not depend on the job type, the marginal dis-
tribution of the sojourn time at each FIFO queue is known (Kelly,
1979, p. 63), from which the mean sojourn time in the network
may be obtained. Optimal design of networks of multi-server FIFO
and infinite-server queues with fixed routes is studied in Kerbache
& MacGregor Smith (2000), where an artificial holding queue is
introduced for each finite waiting room FIFO queue to register
blocked customers. Such overflow queues differ from our incuba-
tion queues. Exact results for the design of networks with expo-
nential service times and concave utility functions are presented
in Kameda & Zhang (1995); Shaler (2009). Our utility function TAT
is non-convex, see Appendix B. Like the references above, we con-
sider a centralized decision maker. Design of networks with selfish
customers or decentralized decision makers are presented in, e.g.,
(Ghosh & Hassin, 2021; Laan, Timmer, Boucherie, & NI, 2021). Op-
timal design of static routes is geared towards optimization of the
configuration of the laboratory. Dynamic routing is geared towards
the optimization of the operational process, see Shaler (2009) for
networks with concave utility function. Our network may be seen
as a fork-join network with a fork operation after each FIFO queue,
and one join operation when service at all queues along a job’s
route is completed. The generating function for the queue lengths
in fork-join queues are available for the M/M/1 system with two
parallel queues (Flatto & Hahn, 2006). Fork-join queues appear, e.g.,
in parallel or distributed storage and computing (Fidler, Walker, &
Bora, 2020; Zubeldia, 2020), proactive coordination between pre-
dicted ED patient admissions and inpatient bed management (Lee,
Chinnam, Dalkiran, Krupp, & Nauss, 2021), manufacturing systems
(Krishnamurthy, Suri, & Vernon, 2003), and container terminals
(Kumawat, Roy, De Koster, & Adan, 2021). Our network may also be
viewed as a network with regular jobs and positive signals, where
a job exits the FIFO queue as positive signal, then visits the incuba-
tion queue to increase the number of jobs in that queue by 1, after
which it immediately departs the incubation queue as regular job
to visit the next FIFO queue on its route. A product-form stochastic
upper bound for the stationary distribution of the number of jobs
in the network with random routing and exponential single server
queues is provided in Huisman & Boucherie (2011).

For our general network the TAT distribution is not available.
We approximate the mean TAT via mean sojourn time approxima-
tions for the FIFO queues using the QNA. The QNA, originally de-
veloped by Whitt (1983b), uses several heavy traffic results, such
as Kingman'’s approximation for the mean waiting time (Kingman,
1961). Accuracy of the QNA depends on the quality of the ap-
proximation of non-renewal arrival and departure processes by re-
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newal processes (Caldentey, 2001; Whitt, 1983a). The approxima-
tion quality of the QNA is studied for several multi-class single-
server queueing networks, e.g., Bitran & Tirupati (1988); Fendick,
Saksena, & Whitt (1991); Harrison & Nguyen (1990); Whitt (1983a).
The QNA has been used to compare system configurations, e.g., (Bai
& Menon, 2013; Yu & De Koster, 2008; Zonderland, Boer, Boucherie,
De Roode, & Van Kleef, 2009).

The general optimization problem, using the QNA, for the deci-
sion maker is non-convex. Global non-convex optimization is NP-
hard (Danilova et al., 2022). We develop an SA algorithm to solve
the optimization problem of the decision maker. Combining QNA
with mathematical optimization is used in Van Nyen, Bertrand,
Van Ooijen, & Vandaele (2006); Zhou, Wang, He, & Goh (2017).
Zhou et al. (2017) use QNA to obtain the lead time in a manu-
facturing system to determine the optimal batch size for differ-
ent product classes. The problem is formulated as a mixed inte-
ger program that is solved using a traversal algorithm. Van Nyen
et al. (2006) develop a heuristic method for near-optimal produc-
tion and inventory control decisions, where unimodality of the ob-
jective function in the review periods is postulated after extensive
tests, which motivated the use of a simple greedy search algorithm
called univariant search parallel to the axes. This greedy search al-
gorithm was shown to outperform SA. SA originates from the anal-
ogy between combinatorial optimization and the annealing process
of solids (Kirkpatrick, Gelatt, & Vecchi, 1983). Convergence theo-
rems for global continuous optimization using SA for real-valued
functions are studied in Bélisle (1992); Locatelli (2000). SA has
been applied to continuous optimization problems in healthcare
(Shepard, Cao, Afghan, & Earl, 2007; Wason & Jaki, 2012). In our
network decision variables are coupled. Our combined QNA and
SA approach yields a fast approach (run-time of several minutes
for the cases in Section 5.3) that is amenable for use in the de-
sign phase of a laboratory. We have used discrete-event simulation
(DES) to evaluate the accuracy of our approach. The run-time of
DES (around 15 hours for each scenario and parameter setting at
load 0.45 in Section 5.3) prohibits its direct use in optimal labora-
tory design.

Statement of contribution: The contribution of this paper is
fourfold. First, for the network with one job type, Poisson arrivals,
and exponential service and incubation times, we obtain the LST
of the TAT distribution. Second, for a given routing configuration
in the general network we develop a QNA-based approximation
of the mean TAT of each job type. We characterize the quality of
our approximations and show their accuracy for our purpose of
optimal route selection. Third, we develop an SA numerical opti-
mization approach that provides near-optimal routing configura-
tions and can handle large real-life instances such as the clinical
chemistry laboratory case. Fourth, we show that our approach al-
lows optimization of static routes in a real-world clinical chemistry
laboratory.

This paper is organized as follows. Section 2 introduces
our queueing network model for chemistry analyzer lines.
Section 3 considers Poisson arrivals, exponential service and in-
cubation times. Section 4 introduces our QNA and SA approach
to obtain near-optimal routing configurations for the general net-
work. Section 5 numerically supports the accuracy of our approx-
imations and applies our approach to a clinical chemistry labora-
tory. Section 6 concludes our paper.

2. Queueing network model

Consider an open network of nodes j=1,...,J. We will use no-
tation for networks of queues as introduced in Kelly (1979, Chapter
3), that provides a general description of queueing networks. Jobs
of class c=1,..., C arrive to the network with inter-arrival times
A(c), with mean 1/Ay(c), variance 002 (c), and squared coefficient
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of variation (SCV) scvy(c) = 03 (C)}»% (c). Jobs require service from
a subset R(c) € {1,....]J} of the nodes, where each node may be
visited only once. Each node j consists of two parts: a FIFO single-
server queue j1 and an infinite-server incubation queue j2, see
Fig. 1 b. The operation of the node is as follows. Upon arrival, a
job joins the tail of the FIFO queue. Upon service completion at
the FIFO queue, the job splits into two parts: the first part routes
to the next node on its route, and the second part routes to the
incubation queue. Upon service completion of the part at the incu-
bation queue, this part leaves the network. The service time of jobs
of class ¢ in queue jk, Bji(c), has mean 1/u;,(c), variance oﬁ{(c),
and SCV scvgj(c), c=1,...,C, j=1,....J, k=1,2. A job departs
from the network when the service at the last FIFO node along its
route, and all incubation times at the nodes are completed. All ran-
dom variables for service and inter-arrival times are independent.
Let Z(s) = E[e~%], Re(s) > 0, denote the LST of a non-negative ran-
dom variable Z.

Jobs of class ¢ must visit all nodes in R(c), but the order in
which these nodes are visited may be different. To this end, jobs of
class ¢ may be divided into types ¢;, i = 1, ...,I(c), where each type
corresponds to a fixed route n(c;, 1), n(c;, 2), ..., n(c;, |R(c)|) that
is available for class ¢ along the nodes in R(c), with n(c;, j) the j-th
node visited by a job of type ¢;,i=1,..., I(c). Clearly, I(c) < |R(c)|!
as the routes per type are distinct and at most all permutations
of nodes in R(c) may be used to assign a route to a job of class
c. The TAT of a job is determined by the arrival time, the service
completion time at the FIFO queue in the last node on its route,
and the incubation times at all nodes on the job’s route. Routing
of the jobs in the network is governed by a central decision maker
that aims to minimize the mean time jobs spend in the network.
To achieve this goal, the decision maker divides the jobs of class ¢
into types by deciding what fraction p(c;) of jobs of class ¢ are of
type ¢, i=1,...,1(c), Zl’.(zcl) p(c)=1,¢c=1,...,.C

The tuple p = {(p(17) P(Cyc))} is called a routing configu-
ration. Let TAT(c;) denote the TAT of a job of type ¢; in the net-
work, i=1,...,1(c), c=1,...,C. The decision maker aims to find
the static routing configuration p* that results in minimum mean
TAT for the jobs:

.....

p* = argminy frar(p). with
frar(p) = XC: KZC): %);O(C)E[TAT(Q)]
1(6)5:l -
st. Y p(e) =1, c=1,...,C
l(;lgp(ci)fl,izl,...,l(c), c=1,....C (1)

with Ag = Zle Ao(c) the total arrival rate of jobs to the network,
p(ci)Ag(c)/ro the fraction of jobs of type c;, and E[TAT(c;)] the
mean TAT of jobs of type ¢;,i=1,...,1(c),c=1,...,C.

We are mainly interested in the TAT. Let S;;(¢;) and Sj,(c;) de-
note the sojourn time of a job of type c¢; in FIFO queue j1 and
incubation queue j2. Let TAT;(c;) denote the TAT from arrival to
node j up to and including the final node a job of type c; visits in
the network. The following result can readily be obtained.

Lemma 1. The TAT of job type c; can recursively be obtained as fol-
lows:

TAT (.. 1r(0))) (€1) = Snei k@)1 (6i) + Sniei k)2 (€i)s (2a)
TAT;(¢;) = Sj1(ci) + max{sjz (¢;), TAT 4 (Cz')},

j=n(c R =1),...,n(c;, 1), (2b)
TAT(¢;) = TATn(ci.l)(Ci)~ (2¢)
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Remark 2 (Sojourn time at the incubation queues; sojourn times
at the FIFO queues). The incubation queues are infinite-server
queues. The sojourn time of a job of type ¢; at incubation queue
Jj2 equals its service time Bj,(c), j=1,..., J, and is independent of
the sojourn times at all other queues in the network.

The sojourn times at the FIFO queues are not affected by the in-
cubation queues. Hence, to analyze the sojourn time of a job along
its path through the FIFO queues we may consider the network
without the incubation queues.

3. Exponential inter-arrival, service and incubation times

Section 3.1 introduces the network under the assump-
tion of exponential service, incubation and inter-arrival times.
Section 3.2 considers a tandem network with one job type.
Section 3.3 studies the general exponential network, and optimal
job routing is considered in Section 3.4.

3.1. Markov chain

Jobs of type ¢; arrive to the network, at node n(c;, 1), accord-
ing to a Poisson process with rate Aqg(c;). As jobs follow a fixed
route, jobs of type ¢; arrive with rate Aq(c;) at each queue on
their route. The service requirement of jobs of type c; is expo-
nential with rate w;(c). Let pj(c) = Ao(ci)/mj(c) and pjy :=
z‘c-':l Zf(:]) Pjk(ci). Assume that pj; <1, j=1,....].

Characterization of a queue with job types requires a descrip-
tion of the position of the jobs as well as rules for the state
change upon arrival of a new job or a service completion, see Kelly
(1979, Sec. 3.1). Suppose mj, jobs are present at queue jk. Con-
sider state xj = (X (1),..., X3 (my)), where x;(a) records the
type of the job in position a. In FIFO queue j1, the job in posi-
tion 1 is in service. If a job of type ¢; arrives it is added to the tail
of the queue, and the new state is x;.1 = (x;1 (1) xj1(mjp), ¢;).
If the job in position 1 completes service, the new state is
x}l = (xj1(2),...,x;1(mj)). In the incubation queue j2 all jobs
are in service. If the job in position a completes service, the
new state is ";'2 = Xp(1),....xpla-1),xp(a+1),...,x(mp)).
A new job arriving in state xj; = (xj3(1),...,x;(mj)) moves into
position a with probability 1/(mj, 4+ 1); jobs previously in posi-
tions a, ..., mj, move to positions a + 1 mj + 1.

The evolution of the number of jobs in the queues is recorded
by the Markov chain {X(t), teR} at state space X ={x=
(X1, %12, .. X1, &) 1 X = (X (1), . X (M), xj(a) € (g, i=
1,...,I(c), c=1,...,C}, a= 1....mpy, myeNg, j=1,....) k=
1, 2}. The description of the evolution of the queues is provided in
Section 2. The transition rates for x # &’ are:

.....

.....

qx.x')
Ao(ci), if x;] = (%1, cl-),x}2 =Xj, X, = Xy,
L#j,k=1,2,j=n(c 1),
if %) = (x1(2) xj1(mj1)), X1 (1) =¢;,
X, =(xp(1) xj2(a), ¢,
Xp(a+1) Xj2(Mjz)),
ijsx/lk:XU(’Z # J,
k=1,2,j=n(c, |R(c)]),
if ¥, = (x1(2) xj1(mj1)),
xj1 (1) =i, Xy = (X1, 6)
X, = (xp(1) xj2(a), ¢,
Xp(a+1) Xj2(Mj3)),
My, Xy =Xy, h# j, 6, k=1,2,
j=n(, 1), =n(cr+1),1 < [R(O)],
if x;z = (xj2(1) Xp(a—1),
xp(a+1) Xj2(Mj3)),
xp(a)=¢.a=1,..., My, Xy, = Xy,
C£jk=1,2j=1,....]

1
Mmp+1 Mj1 (C)a ,,,,,

.....

.....

1
mﬂjl (o), ifx, =(x;1(2),...,

.....

j2(C),

.....

.....
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3.2. A tandem network with one job type

In this section, we assume there is only one job type that ar-
rives with rate A and follows route 1,2,...,]J. Let M, record the
number of jobs in queue jk, 1,...,]J, k =1, 2. First we consider two
special cases: zero incubation times and zero service times. Then
we proceed with the general tandem network with one job type.

Consider the case with zero incubation times. As a consequence
Mjp=0,j=1,..., J. The random variables Mj;, j=1,..., J, are in-
dependent and the equilibrium distribution of the number of jobs

.,Mﬂ:mjl):l_[ A A

in the queues is (Kelly, 1979, p. 37):
mj
e M1 M1

J
P(My = my, ..
Wlthmﬂ € Np, ]= 1,....]

3)

The TAT is the sum of the sojourn times Sj; in the FIFO queues,
which are independent exponential random variables with rate
j1 — A, see (Kelly, 1979, Theorem 2.2). The LST is:

J
TAT(s) =[]

=1

M’ Re(s) > 0.
M1 — A+S
Now consider the case with zero service times at the FIFO
queues. As a consequence Mj; =0, j=1,...,]J. The resulting net-
work can now be viewed as a network of | M/M/oco queues in
parallel with simultaneous Poisson arrivals with rate A. We have
TAT = max;_; _;{Sj2}. As the incubation times are independent
random variables:
J J
P(TAT <x) = [ [PSp <x) =[] (1 -e"#*), x=>0. (4)
j=1 j=1
We have simultaneous Poisson arrivals to the incubation queues.
The random variables Mj,, j=1,...,]J, are not independent. The
joint generating function of the number of jobs in the queues is,

for |zj5] <1, j=1,....], (Choi & Park, 1992):
e Z]z)

J
=exp () (zz-1)pp

j=1

[Ty @en2 — 1) o2

J
m=1

(5)

J
{6, n=1 P2
n#m

Now consider the general tandem network with one job type.
The arrival processes to and the departure processes from the
FIFO queues coincide with those processes for the network with
zero incubation times. From Burke’s theorem (Kelly, 1979, The-
orem 2.1) we obtain that the arrival process to each queue jk,
j=1,...,], k=1,2, in the tandem with one job type, is a Pois-
son process with rate A. Thus, the marginal distributions of the
number of jobs in the queues are:

mj
P(Mj; =mj;) = (1 — k) (A) and

M1 M1
1A\ o
P(Mj =mp) = @ (M) e "z, (6)

with mj eNg, j=1,..., J, k=1,2. Observe that Mj, and M j, 1,
the queue lengths of queues j2 and (j+ 1)1, are not independent
as the queues have simultaneous arrivals, which prohibits a prod-
uct form expression for the joint probability of the number of jobs
in the queues.

We have the following results for the sojourn times.
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Lemma 3. In the tandem network with one job type, the sojourn
times of the jobs in the queues in the network are independent ex-
ponential random variables with rate jv;; — A for queues j1 and rate
Wjp for queues j2, j=1,..., I

Proof. The sojourn times at queue j2, j=1,...,], are exponential
random variables that are independent of the sojourn times of the
jobs at the FIFO queues. Also observe that the arrival processes to
the FIFO queues in the network with incubation queues and in the
network without these incubation queues coincide. Thus, the so-
journ times of the jobs at each of these | FIFO queues are indepen-
dent exponential random variables (Kelly, 1979, Theorem 2.2). As a
consequence the sojourn times at all the queues are independent
exponential random variables. O

Theorem 4. For the tandem network with one job type, the LST of
the TAT can recursively be obtained as follows:

TAT)(5) = 51 ()S2(5). (7a)
TAT;(s) = Sj1(5)Sj2(s) (s ——TAT 1 (1 j2) - P— TAT 44 (5)>,
j2 M2

j=J—1,....1, (7b)

TAT(s) = TAT; (s), (7¢)

~ ni ,)“ ~ ~ Wi .

where Sj;(s) = ﬁ and Sj>(s) = Bjp(s) = Wjis i=1,....]

Proof. From Lemma 1 we obtain

TAT(5) = 51 ()52 (5). (8)

TAT; = Sj; + Sjp + max{0, TAT; . —Sp}, j=J-1,....,1. (9)

If A is exponentially distributed with rate u, and A and S are inde-
pendent random variables, then the LST of W = max{S — A, 0} is:
~ S
W)= ——

$)=— m
see, e.g., (Adan & Resing, 2015, Section 7.5), where this result is
derived for Lindley’s equation. Lemma 3 implies that the sojourn
times Sj, in the incubation queues are exponential random vari-
ables, independent of TAT;, 1, which allow us to use (10) to obtain
(7b). O

S(u) - ﬁsf(s), (10)

Corollary 5. The mean TAT is obtained as follows:

]E[TAT]] = E[Sﬂ] + E[szl, (11a)
E[TAT;] = E[Sj1] + E[S2]P(Sj2 > TAT},;) + E[TAT 4],

j=J-1....1 (11b)

E[TAT] = E[TAT, ], (11¢)

where E[S;;] = ,%A and E[Sj,] =

g |
- e d =1,

Proof. We may obtain (11b) from (7b) by differentiation, or from
(2b) by taking expectations as follows. If X, Y are independent ran-
dom variables, and X is exponentially distributed, then

E[max{X,Y}] = E[Y] + E[max{X — Y, 0}] = E[Y] + E[X]P(X > Y),
(12)

where, for X exponentially distributed with rate w, we have used
that

E[max{X —Y,0}] = /0 YR () / " (x — y)perdx
y

- [ e mdR () [ " xpedx = E[X]¥ ().
0 0
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P(X > Y) = fow R (y) fyw je—rdx

- /0 T e mdR () = V().

Inserting X = Sj, and Y = TAT;,; in (12) yields (11b). O

(13)

Remark 6. Observe from (13) that P(Sj, > TATj,) = 'I:El'jﬂ (L)
This LST is obtained in Theorem 4, providing an explicit method to
calculate Corollary 5.

Remark 7 (Generally distributed incubation times). Observe that
Theorem 4 and Corollary 5 require the incubation times at all
nodes to be exponentially distributed. We may extend the results
of the equilibrium distribution in (6) and the independence result
in Lemma 3 to the network with generally distributed incubation
times. For (6) observe that the infinite-server queue is insensitive
to the distribution of the service time except for its mean (Taylor,
2011). For Lemma 3 observe that the service times at the queues
are independent random variables.

3.3. Multiple job types and fixed routes

This section considers the general exponential network with
multiple job types, fixed routes, exponential service times and
Poisson arrivals, under the assumption that the service rates at
the FIFO queues do not depend on the job types: j;(c) = uj,
j=1,....], c=1,..., C. We first consider the special cases with
zero incubation and zero service times.

Consider the case with zero incubation times. From (Kelly, 1979,
Theorem 3.1) we obtain that {X(t), t € R} has unique product
form equilibrium distribution

J
xx) =[[mn®j1). x=@u.....x1).

(14)
j=1
mjl)\, ‘
1) = (1= py) [ 228D
I=1 M1
A1 = (DX mp)), =1, (15)

The Arrival Theorem (Kelly, 1979, p. 63) gives that the marginal
distribution of the sojourn time in queue j1 is equal to the so-
journ time as if it were an isolated M/M/1 queue with Poisson
arrivals with rate Aj;, j=1,...,J. Hence, this marginal distribu-
tion is exponential with rate wj; —A;;. The sojourn times in the
queues are not independent in general, for example due to over-
taking (Melamed, 1982). The TAT of a job of type ¢; is

TAT(c) = Y S,

JjeRr(c)

(16)

Now consider the case with zero service times at the FIFO
queues. The route, and therefore its type, of a job ¢; does not
influence its TAT as its arrival results in |R(c)| simultaneous ar-
rivals to the incubation queues visited by class ¢ jobs. Hence
TAT(C;) = MaXjep(e) {Sp ()}, i=1,..., I(c), c=1,...,C. As the in-
cubation times are independent random variables:

P(TAT(c;) <x) = P(TAT(c) <x) = [] (1-e "2,
JeR(c)

x> 0.

(17)
The mean TAT of a job of type c; is readily obtained as:

E[TAT(c;)] = /0 ” (1 - 11 (1 —e*“ﬂ(c)"))dx

JjeRr(c)
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-,

[R()]

=2 X

r=1 {¢q,....6r}<{1,...]}

oo [R(O)]
(-1)*le ~(Zhot hem2(9))xdx

)
(_1 )r+1
> et Men2(0)

2

(18)

The result from Choi & Park (1992) for the joint probability gener-
ating function of the queue lengths does not extend to this case as
it requires that there is only one job class.

Now consider the general exponential network with multiple
job types and fixed routes. Observe again that the arrival process
to the FIFO queues in the network with incubation queues and in
the network without these incubation queues coincide. As a con-
sequence, the marginal distribution of the number of jobs in the
FIFO queues is given in (14) and (15).

Remark 8 (Generally distributed incubation times). For generally
distributed incubation times, the marginal distribution of the num-
ber of jobs in the FIFO queues is given in (14) and (15).

For this general exponential network we do not have explicit
results for the LST of the TAT. However, from the Arrival Theo-
rem (Kelly, 1979, p. 63) we readily obtain that for job class c the
marginal distribution of the sojourn at queue j1 is exponentially
distributed with rate wj; —Aj;. As the incubation times are inde-
pendent random variables, the sojourn time at queue j2 is expo-
nentially distributed with rate pj,(c). The mean sojourn time at
the queues is:

E[Sj1(0)] = and E[Sj(c)] =

o
(19)

Each job type proceeds along its fixed route through the nodes in
R(c) as if this route is a tandem network. This gives the following
result.

1 i
Mi1 —Ajp mip(c)”

Corollary 9. The mean TAT for job type c; is obtained as follows:

E[TAT (¢, i)y (€] = E[Snc |rio)p1 (] + ElSnc, |riopp2 (€], (20a)
E[TAT;(¢;)] = E[Sj1 ()] + E[Sj2 (©)P(Sj2(€) > TAT 41 (c))

+ E[TAT;1(cp)],  j=n(c, [R(c)|-1),...,n(c;, 1), (20b)
E[TAT(¢;)] = E[TAT, 1) ()], (20c)

withi=1,...,I(c),c=1,...,C.

Corollary 9 is obtained from Lemma 1 by considering
E[max{Sj,(c), TAT;;1(¢)}], j=1,....J, by analogy with the result
of Corollary 5. In contrast with the result of Corollary 5, we do not
have explicit results for P(Sj(c) > TAT;,(c;)) or the distribution
of TAT, j=1,...,]. Therefore, Corollary 9 does not enable us to
explicitly evaluate the mean TAT.

3.4. Optimal routing configuration

Let wji(c)=pj, c=1,..., C, j=1,...,]. Consider the case
with zero incubation times. Combining (16) and (1):
c I
ci)ro(c
fTAT(P)—ZZp( i)Ao(C) Z )\l
=1 i=1 jeRie) it = A
)‘-O(C)
= (21)
Z Z /'le

JeR(c)

For zero incubation times, the objective function does not depend
on the routing configuration as each job of class ¢ must visit all
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nodes in R(c) and the load of the nodes is determined only by the
arrival rate of jobs to the nodes. Optimal design of static routes is
considered in Kameda & Zhang (1995); Shaler (2009).

For zero service times at the FIFO queues, the type c; does not
influence its TAT as its arrival results in |R(c)| simultaneous ar-
rivals to the incubation queues visited by class c jobs. As a con-
sequence, the mean TAT of the jobs is the same for each routing
configuration.

4. General inter-arrival, service, and incubation times

This section considers the mean TAT for the network with mul-
tiple job types, fixed routes and generally distributed inter-arrival,
service and incubation times. The TAT distribution is not avail-
able in closed form. Thus, we do not have explicit results for the
term E[max{Sj,(c), TAT;;1(c;)}] in (2b), which also prohibits ex-
plicit evaluation of the mean TAT. We propose a two step approach
to approximate the mean TAT. First, in Section 4.1, we approximate
E[max{S;j;(c), TAT;,(c;)}], and subsequently in Section 4.2 we in-
voke the Queueing Network Analyzer (QNA). Section 4.3 considers
optimization of the routing configuration via a Simulated Anneal-
ing (SA) approach.

4.1. Approximation of the mean TAT

Evaluation of the mean TAT is cumbersome for generally dis-
tributed service and incubation times since we do not have an ex-
plicit expression for E[max{S;,(c), TAT; 1 (c;)}] in (2b).

We first elaborate on bounds for the expectation E[max{X,Y}]
for independent and non-negative random variables X, Y. We have

max{E[X], E[Y]} < E[max{X,Y}], (22)
E[max{X,Y}] < E[X] +E[Y], (23)
where (22) follows by Jensen’s inequality since f(X,Y)=
max(X,Y) is convex, and (23) follows from max{X.Y}=X+Y —

min{X, Y}. If we further assume that X and Y are independent and
that X is exponentially distributed we may evaluate the error in
the lower bound (22) as

E[max{X, Y}] — max{E[X], E[Y]}
_ {E[X]]P’(X >Y), if E[Y] > E[X],

E[Y] - E[X]P(X <Y), if E[Y]<E[X].
Assuming that X and Y are independent and both exponentially
distributed, we may sharpen the upper bound in (23) to
E[X]E[Y]
E[X]+E[Y]

If E[X] and E[Y] differ considerably in magnitude, then the upper
and lower bound, (23) and (22), tend to be close to E[X] if E[X] >>
E[Y], and close to E[Y], otherwise, so that the lower bound
max{E[X], E[Y]} may be a good approximation of E[max{X,Y}].

To approximate E[max{Sj,(c), TAT; 1(c;)}], observe that, of-
ten, the expected incubation time at queue j is smaller than
the expected TAT from the subsequent nodes on the route
of a job: E[Sj;(ci)] < E[TAT.(c))], j=n(c,1), £=n(cr+1), i=

L), r=1,...,|R(c)| =1, c=1,...,C. The longer the resid-
ual route of the job from node j, the larger the difference be-
tween these two expectations. In contrast, towards the end of
a job’s route the incubation time may outweigh the residual
TAT. This supports the approximation E[max{S;,(c), TAT;,;(c;)}] ~
max{E[S;,(c)]. E[TAT; 1 (c;)]}. In our numerical results we will also
consider the upper bound in (23), and the approximation resulting
from (25), see Section 5.2 and Section 5.3.

(24)

E[max{X,Y}] = E[X] +E[Y] - (25)
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Approximation 10 (Approximation of the mean TAT). For i=
1,..., I(c),c=1 C, let TAT(c;) be determined as
TATa(e, o) () = ElSu, o)1 (O] + ElSace, rep2 (O]
TAT;(c;) = EISj1 (©)] + max{E[S > ()], TAT ;14 (c))},
j=nc R -1),....n(c 1),
TAT(;) = TAT, 1) (€).

.....

4.2. Queueing Network Analyzer

Approximation 10 requires the mean sojourn times at the FIFO
queues. The sojourn times at the FIFO queues are not affected by
the incubation queues, see Remark 2. We will use the QNA to ap-
proximate the mean sojourn times at the FIFO queues in our net-
work.

The QNA basically assumes that all FIFO queues are indepen-
dent GI/G/1 queues for which the mean waiting time is approxi-
mated using a modified version of Kingman'’s approximation

Tj10j1(SCVqj1 + SCVsj1)gj1
exp [

2(1-pj) '
{ ]’
1,

_ 2(0-pj1) (1—scvgj1)
3pj1  SCVgj1+SCVsjy
with scvgjy the SCV of the aggregated inter-arrival times of the ar-
rival process to queue j1, scvgj; the SCV of the aggregated service
time distribution at queue j1, 7j; the mean service time of a ran-
dom job at queue j1, j=1,..., J, see Whitt (1983b). For scvgjy <
1, we obtain the Kraemer and Langenbach-Belz approximation
(Krdmer & Langenbach-Belz, 1976), and for scv,j; > 1, (27) reduces
to Kingman'’s approximation (Kingman, 1961). The QNA is included
in Appendix A. We obtain the approximate mean sojourn time, §j1,
of job type ¢; at queue j1 as

$1(0) =W +E[B; (0], j=1.....J c=1,....C (28)

We propose the following approximation for the mean TAT of
jobs of type c; that is obtained using the QNA for the mean sojourn
times in the FIFO queues in Approximation 10.

=

SCVgj1 < 1,

(27)
SCVgj1 = 1,

&1

Approximation 11 (Approximation of the mean TAT using the
QNA). Fori=1,...,I(c),c=1,...,C, let TAT(c;) be determined as

TAT (¢ ko)) (€1) = Suce, k)1 (€) + ElSne, ko201, (29a)
TAT;(c;) = Sj1(c) + max{E[Sp(c)]. TAT 41 (c)}.

j = n(ciﬂ |R(C)| —1),...,"((;1‘,1), (29b)
TAT(c;) = Wn(cij)(fil (29¢)

The QNA is exact for a network with one job type, Poisson ar-
rivals and exponential service times (Whitt, 1983b). In Section 5.3,
we investigate the quality of Approximation 11 using both inter-
changing of mean and max and the QNA for the relevant range of
parameters in our network.

4.3. Simulated Annealing for optimal routing configuration in the
QNA

This section introduces a Simulated Annealing (SA) approach to
obtain a near-optimal routing configuration in the QNA, and an
approximate upper bound on the optimality gap, for the network
with general inter-arrival, service and incubation times and multi-
ple job types.
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For real life instances, such as the clinical chemistry labora-
tory case, determining the optimal routing configuration from the
mathematical program (1) with TAT replaced by TAT is infeasible
considering the size of its solution space and its non-convex ob-
jective function. In Appendix B we provide a counterexample for
convexity of the objective function.

We follow the general SA setting, which requires a feasible ini-
tial solution, neighborhood, acceptance probabilities, and a cooling
scheme (van Laarhoven & Aarts, 1987). An initial solution may be
obtained by letting all job types visit their required nodes in de-
creasing order of the mean incubation times. Our numerical ex-
periments show that this is a good rule of thumb that is often
close to the optimal routing configuration. Alternatively, if an ini-
tial network design is already in place, we may select its rout-
ing configuration as the initial solution. The neighboring solutions
are constructed such that they lie close to the current solution
and that it is possible to reach each possible valid routing con-
figuration. Neighboring solutions are obtained by adding a uni-
formly distributed value to the current fractions: p(c;) := p(¢;) +
Unif(-0.01, 0.01), where values larger than 1 and smaller than 0
are rounded off to 1 and 0. The resulting fractions are normalized
such that for each job class these fractions sum up to 1:

_p@)
> p(e)
Acceptance of a neighboring solution depends on the acceptance
probabilities which are a function of the value of the current so-

lution (feurrent), the value of the neighboring solution ( fyejghp) and
the current cooling parameter (d):

1,
e(fcurrenl _fneighb )/d s

p(c) = i=1,...,I(c), c=1,...,C.

if fneighb = fcurrent,

IFDaccept(fneighb’ feurrent, d) = { if f ighb > fcurrent
neig| .

The SA algorithm can accept routing configurations that result in a
higher objective value to avoid getting stuck in a local minimum.
Closer to the stopping value for d, the algorithm is less likely to
accept a routing configuration that is worse. The cooling scheme
is chosen such that the fraction of accepted transitions for the ini-
tial value of the cooling parameter d is approximately equal to 1.
After a fixed number of k steps (in literature referred to as fixed
Markov chain length), the cooling parameter will be decreased by
a fixed factor. Both the decrease factor and the number of steps k
will depend on the problem instance, see Sections 5.3 and 5.4.2.

An approximate upper bound on the optimality gap of a near-
optimalsolution is obtained via comparison with the lower bound
of the objective function value in the QNA. A lower bound on the
objective value in the QNA is obtained as follows. Observe that tj;,
pj1 and scvgj; do not depend on the routing configuration as the
total arrival rate and service duration at the modules are the same
for each configuration. Observe from (27) that minimum waiting
times are then obtained by minimizing scv,j; and gj;, i.e. by as-
suming deterministic inter-arrival times of the jobs at the nodes.
Letting jobs route through the nodes from highest to lowest incu-
bation time and using these minimum waiting times at the FIFO
queues yields a lower bound on the objective function value and,
hence, an approximate upper bound on the optimality gap.

5. Optimal routing configurations

We start this section with an illustration of the relation be-
tween service times and incubation times for the network with
one job type, Poisson arrivals, exponential service and incuba-
tion times in Section 5.1. Section 5.2 investigates the impact of
Approximation 10 on the mean TAT and the routing configura-
tion. Section 5.3 provides numerical results on the accuracy of our
numerical procedure using the QNA and SA for general networks.
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Node 1 first
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(a) Two nodes

(b) Three nodes, pz2 =1
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Node 1 first

Node 1 first

(c) Three nodes, p32 =3

Fig. 2. Switching curve for the network of 2 and 3 nodes with A = 0.5 and uy; =1, and w3 = 1.

Section 5.4 applies our method to design the optimal routing con-
figuration for one analyzer line of the laboratory of the Erasmus
MC.

5.1. Impact of service and incubation times on the routing
configuration

The impact of the service and incubation times on the optimal
routing configuration is considered for a network of two and of
three nodes with one job type, Poisson arrivals, exponential service
and incubation times.

First, consider a network of two nodes, node 1 and node 2. Let
TAT,, and TAT,; denote the TAT when the jobs visit the nodes in
the sequence 12 and 21. From Corollary 5,

E[TAT 2] = E[St ]+ E[S12]P(S12 > S21 + S22) + E[S21] + E[S22].

with similar expression for E[TAT,;]. As all random variables are
exponential, we readily obtain

M2 (2 + o1 + U2 — A)

P(S12 < Sp1 +52) = , 30
(12 = 521 +322) (p12 + 21 — A) (12 + M22) (30)
so that
]E[TAT12] < E[TATm] —
22 (paz2 + 11 —A) — (12 + a1 —A) = 0. (31)

The switching curve E[TAT;,] = E[TAT,;] is depicted in Fig. 2 a
for A =0.5 and py; = 1. Above the curve it is optimal to first
visit node 1. The switching curve is symmetrical in the nodes. The
seemingly larger volume where first visiting node 1 is preferred is
due to setting pto1; = 1. As a rule of thumb, if ©q; does not deviate
much from wyq, then it is optimal to first visit the node with the
largest incubation time, which is in agreement with intuition.

Now consider a network of 3 nodes. We will compare E[TAT 3]
and E[TAT,3] denoting the mean TAT when the jobs visit
the nodes in the sequence 123 and 213. All expressions in
Corollary 5 may be explicitly evaluated to obtain a switching curve
E[TAT 53] = E[TAT,3] that is depicted for A = 0.5 and py; = 3 =
1 and two values for 3, in Figs. 2 b and 2 c. Observe that these
curves resemble the switching curve for the network of two nodes.
Visiting node 1 first becomes more favorable when q; increases.
Again, in agreement with intuition, among nodes 1 and 2, it seems
optimal to first visit the node with the largest incubation time.

The last two nodes in the network of three nodes have Pois-
son arrivals (Burke’s theorem (Kelly, 1979, Theorem 2.1)), and may
therefore be considered as a network of two nodes that should be
arranged such that the node with the largest incubation time is
visited first. As a consequence, as a rule of thumb, also in the net-
work of three nodes the nodes should be visited in decreasing order
of the incubation times.
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5.2. Accuracy of approximation 10

We first investigate the error in Approximation 10 for a tandem
network of five nodes. Then, we investigate the effects of the error
in this approximation on the routing configuration.

Section 4.1 indicates that the error E[TAT(c;)] —m(ci) in the
approximation is mainly incurred in the last nodes along a route
when the incubation times are identically and exponentially dis-
tributed. Following up on this claim, for a tandem of length 5
in which all jobs visit the nodes in the sequence 12345, Table 1
presents P(Sj, > TATj 1), 'lfﬁ?l']-, and the error in Approximation 10,
j=1,..., 4, for A = 0.5, and 7 scenarios for the exponential service
duration in the queues. We omitted T/A\TS as Approximation 10 is
exact for the last node in the tandem. In scenarios 1, 2, and 3, the
incubation times are all exponentially distributed with the same
rate. Observe that P(Sj, > TAT;,) increases in j. The error in the
approximation 'lfA\Tj for scenario 1 is equal to 0.17 for node 4, at
node 3 the error increases by 0.06 to 0.23; at node 2 the error in-
creases by 0.02 to 0.25; and at node 1 by 0.02 to 0.27. This shows
that for a tandem with identically distributed incubation times the
error in Tﬁj is mainly incurred in the last nodes on the route.
This result seems to extend to tandems in which the incubation
rates pj, are similar, as illustrated in scenarios 4 and 5. These
results support Approximation 10 that interchanges max and ex-
pectation. In scenarios 6 and 7, jobs visit the nodes in order of
substantially increasing incubation rates wj,. The monotonicity in
P(Sj, > TATj, 1) breaks down as the long incubation times at the
initial nodes of the tandem extend beyond the mean sojourn time
along the FIFO queues.

For the networks of Section 5.1 we now compare the switching
curves from the exact mean TAT and Approximation 10. For the
network with two nodes, let 'lfA\TU denote the approximated TAT
when node i is visited first. Approximation 10 gives

(i i =5 )

Xy —, ——+—1,
M2’ Mo — A U2
with similar expression for T/A\Tﬂ. The switching curve under
Approximation 10 is 1y = py. Fig. 3 a depicts the switching
curves for multiple values of 141;. The approximate switching curve
lies in the area where node 2 should be visited first under the ex-
act solution. Hence, the error between the switching curves is due
to visiting node 1 first instead of node 2 first as indicated by the
exact switching curves. The error in the TAT approximation is max-
imum at the curve 13 = tyy. On the switching curve @iy = oo
for A=0.5 w1 =0.6 and py; =1, Table 2 a presents the exact
values E[TATqy], E[TAT,;], as well as lower bound TAT obtained
from (22), T/A\le_exp, and fA\Tnexp under approximation (25), and
the upper bound T/A\TUB obtained from (23). The approximation
TAT is better for E[TAT,;] than for E[TAT13] as tq2 = Uy lies in
the area where node 2 must be visited first. Observe that the dif-
ference between E[TATi,], E[TATy;] and TAT decreases in 1. To

'lfA\TQ = #+ma
M1 — A
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Table 1

The error E[TAT;] —'l'/A\'l'j. Scenarios 1-3: wj; =1, scenarios 4-7: uj; =1, j=1,...,5.
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(Wj1s ij2) P(Sj2 > TATj44) TAT; + error
Scen.: :

j=1 2 3 4 5 1 2 3 4 1 2 3 4
1 (1,1) (1,1) (1,1) (1,1) (1,1) 0.013 0.027 0.060 0.167 11.00+0.27 9.00+0.25 7.00+0.23 5.00+0.17
2 (0.8,1) (0.9,1) (1,1) (1.1,1) (1.2,1) 0.014 0.034 0.081 0.206 11.93+0.33 8.60+0.32 6.104+0.29 4.10+0.21
3 (1.2,1) (1.1,1) (1,1) (0.9,1) (0.8,1) 0.010 0.017 0.037 0.115 11.93+0.18 10.50+0.17 8.83+0.15 6.83+0.12
4 (1,1.2) (1,1.1) (1,1) (1,0.9) (1,0.8) 0.008 0.020 0.055 0.168 11.25+0.27 9.25+0.26 7.25+0.24 5.25+0.19
5 (1,0.8) (1,0.9) (1,1) (1,1.1) (1,1.2) 0.022 0.034 0.065 0.163 10.83+0.28 8.83+0.25 6.83+0.21 4.83+0.15
6 (1,0.2) (1,0.4) (1,0.6) (1,0.8) (1,1) 0.222 0.129 0.129 0.214 11.00+1.91 9.00+0.8 7.00+0.48 5.00+0.27
7 (1,0.1) (1,0.3) (1,0.5) (1,0.7) (1,0.9) 0413 0.183 0.157 0.234 12.00+4.50 9.11+1.26 7.114+0.65 5.11+0.33

Table 2

TAT values on the switching curve i1 = oy for A = 0.5, iy = 0.6 and py = 3 =
M3 =1.

(a) Network with two nodes.

M2 E[TAT1,] E[TATy; ] TAT le.exp mll.exp TATys
0.2 18.79 17.83 17.00 19.08 18.25 22.00
0.4 15.19 14.75 14.50 15.39 14.92 17.00
0.6 14.05 13.79 13.67 14.19 13.88 15.33
0.8 13.49 13.32 13.25 13.60 13.38 14.50
1 13.17 13.05 13.00 13.25 13.08 14.00
(b) Network with three nodes.
w2 E[TATi3]  E[TATy3]  TAT TATi23ep  TAT2i3exp  TATug
0.2 19.27 18.58 17.00 20.03 19.31 25.00
0.4 16.59 16.21 15.00 16.86 16.51 20.00
0.6 15.84 15.59 15.00 15.98 15.78 18.33
0.8 15.51 15.34 15.00 15.60 15.47 17.50
1 15.35 15.22 15.00 15.41 15.32 17.00
Switching curve using E[TAT]
—— Switching curve using TAT
#11=0.6 #11=0.8 H1=1

7| Node 1 first 7| Node 1 first | Node 1 first

Ha2
00 02 04 06 08 10
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00 02 04 06 08 10
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Node 2 first Node 2 first Node 2 first
T T T T T T T T T T T T T T T T T T
00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10

Hiz Hiz Hiz

(a) Two nodes.

U31=3, U32=1

| Node 1
| first

U31=1, t32=3

"

Node 2
first

M31=1, I32=1

| Node 1
| first

7| Node 1
| first

1

Node 2
first

Node 2
first

Haz
00 02 04 06 08 10

Ha2
00 02 04 06 08 10

!

Ha2
00 02 04 06 08 10

— T T T — T T T 1 —T— T I
00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10
Hiz Hi2 Hi2

(b) Three nodes, p11 = 0.6.

Fig. 3. Switching curves for the network with A = 0.5 and @y = 1.

understand this, observe that the term E[S13]P(S12 < Sp1 +Sy2) in
(30) is decreasing in 1. The upper bound fXTUB seems less accu-
rate, while TATq3 exp, and TATy; ey, S€€m to overestimate the true
values and are a good approximation of these values.

We now consider TAT;,3 and TAT,q3 for the network with three
nodes. The switching curve under Approximation 10 is @1y = oy if
max{1/12, 1/} = 1/(i431 — A) + 1/ 143, otherwise the order of
visiting nodes 1 and 2 is irrelevant. Fig. 3 b depicts these switch-
ing curves for three choices of w3y and s3;. The black square in-
dicates that for these parameters it is irrelevant in which order
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nodes 1 and node 2 are visited. The line @y = w9y is a good ap-
proximation of the true switching curve. Table 2 b presents the val-
ues of E[TAT123 ], E[TAT2]3], TAT, TAT123,EXp- TAT213‘EXp and TATUB on
12 = pp for A =05, uy =06 and py = U3 = u3x = 1. As for
two nodes, the difference between E[TAT;,3], E[TAT,3], and TAT
decreases in t15. Conclusions on the accuracy of 'lfA\TUB fA\'l'123,exp,
and ”ﬁﬁ\”l"n&exp coincide with the two node case.

Observe from Tables 2 a, and 2 b that it seems optimal for equal
incubation times L1 = [Lyy to Visit the nodes in increasing order of
the service times at the FIFO queues, which is intuitively clear as this
results in an earlier start of the first incubation time.

5.3. Accuracy of approximation 11 and optimal routing configurations

This section considers the accuracy of Approximation 11 using
objective function (1) with TAT replaced by TAT to obtain optimal
routes by comparison with discrete-event simulation (DES), where
we have used the replication/deletion approach using Welch'’s
graphical method (Law, 2015). Subsequently, we will study perfor-
mance of our SA approach to determine near-optimal routes. Ap-
proximations using (23) or (25) are considered for the scenarios
with non-zero incubation times.

Consider a network of three nodes with two job classes and
twelve possible job types, along with six scenarios for inter-arrival,
service and incubation times as displayed in Table 3. We will fo-
cus on the impact of the SCV of the inter-arrival and service times
and the mean of the incubation times. Therefore, in our experi-
ments, the incubation times are deterministic with different val-
ues for their means, the service times have mean E[Bj;(c)] =1,
c=1,2, j=1,2,3, and different SCV, the inter-arrival times have
different SCV, where these SCVs are chosen as deterministic (SCV
= 0), exponential (SCV = 1), or log-normal (SCV # 0, 1). For ex-
ample, Scenario 4 refers to the network in which both job classes
have Poisson arrivals, service times have SCV 0, 1, and 2 at the
three FIFO queues, and incubation times are 8, 4, 1, 1, 4, and 8 time
units. In our experiments we vary the load at the FIFO queues via
four cases of the arrival rates, ranging from A: A¢(1) = A¢(2) =0.2
(low-moderate load) to D: Ag(1) = Ag(2) = 0.45 (high load).

Motivation for the selection of the scenarios is as follows. Sce-
narios 1 and 2 contain the FIFO queues only and are included
to zoom in on the accuracy of the QNA in the relevant range
of system parameters for the FIFO queues. The QNA is exact for
the mean waiting times in Scenario 3 with exponential service
times (Whitt, 1983b). This scenario focuses on the impact of the
incubation times on the optimal routes. Scenarios 3, 4 and 5 con-
sider the impact of variability of the inter-arrival and service times.
Scenarios 1, 4 and 6 focus on the impact of the incubation times.
Note that the sojourn time of a job along its path through the FIFO
queues is identical in Scenarios 1, 4, and 6, as well as in Scenarios
2 and 5, see Remark 2.

Table 4 presents a comparison of the mean TAT along the
FIFO queues from our QNA approximation and DES including 95%
confidence interval (CI) for the case in which job type 1 passes
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Table 3
Job classes, job types and scenarios in the numerical experiments.

(a) Job classes.

c R(c)
1 {1,2,3}
2 {1,2,3}

(b) Job types.

Ci Route G Route

14 1,23 24 1,23

1, 1,3,2 2, 1,3,2

13 2,13 23 2,13

14 2,3,1 24 2,3,1

15 3,1,2 25 3,12

16 3,2,1 26 3,2,1

(c) Scenarios.

Scenario: 1 2 3 4 5 6
scv(1) 1 0 1 1 0 1
scv(2) 1 2 1 1 2 1
SCVsq1 0 1 1 0 1 0
SCVgp1 1 1 1 1 1 1
SCVg31 2 1 1 2 1 2
E[B12(1)] 0 0 8 8 8 0
E[Bx(1)] 0 0 4 4 4 8
E[B3,(1)] 0 0 1 1 1 0
E[B12(2)] 0 0 1 1 1 0
E[Bx(2)] 0 0 4 4 4 8
E[B3;(2)] 0 0 8 8 8 0

the queues in the sequence 123 and type 2 in the sequence 123
(p(17) =p(27) =1) or 321 (p(17) = p(2¢) = 1) for scenarios 1, 4
and 6 (top part) and scenarios 2 and 5 (bottom part). These tables
also list the mean waiting times at the queues to provide more de-
tailed insight into the origin of the approximation error. Note that
the mean waiting times at the FIFO queues in Scenarios 2 and 5
for route p(17) =1 and p(2;) =1 coincide since the service times
at these queues are identically distributed and all the jobs follow
the same route through these three queues.

Accuracy of the QNA depends on the quality of the approxi-
mation of non-renewal arrival and departure processes by renewal
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processes (Whitt, 1983a). The QNA uses several heavy traffic results
(Whitt, 1983b), which carries over in the observation that the QNA
performs better for load D than load A. In all considered cases, the
QNA approximation of frar(p) lies within 10% of the DES value.
The error in the QNA for Scenarios 1, 4 and 6 seems to a large ex-
tent be due to the waiting time errors for FIFO queue 2, which is
explained by the error in the SCV of the departure process approx-
imation from queue 1. Observe that larger relative errors in the
waiting times are mainly incurred at queues with low-moderate
load. As the waiting times for low-moderate load are relatively
small, the influence of this approximation error on the TAT is very
limited. We conclude that the QNA provides a sufficiently accurate
approximation of the mean TAT.

We proceed to determine optimal routing configurations for the
network with job types and scenarios listed in Table 3 under loads
A-D. In the experiments, for the SA algorithm the initial cooling
parameter was set to 4; the stopping value to 0.00005; the de-
crease factor to 0.995 and the Markov chain length to 75. Exper-
iments were conducted on an Intel Core i7-7700HQ 2.80GHz pro-
cessing system with 16GB of RAM. The run-time of this cooling
scheme was about 9 minutes.

Table 5 presents the near-optimal routing configurations from
the QNA for the 24 scenario/load combinations, the corresponding
value function frar(p), and its lower bound (LB) as described in
Section 4.3. Observe that the optimal routing configuration may
be deterministic, e.g., Scenario 4A-C, may randomize jobs over
different routes with fixed probabilities, e.g., Scenario 2, or may
have these probabilities in an interval, e.g., Scenario 3A. Random-
ized routes are typically obtained for scenarios with identically dis-
tributed service times, where the level of randomization increases
with the load, see Scenarios 2 and 5. Routing in increasing order
of service time variability is preferred for Scenario 1C-D, which
is in accordance with the heuristic of Suresh & Whitt (1988), as
Scenario 1 has incubation times equal to 0. Routing from high to
low incubation times is optimal for scenarios with identically dis-
tributed inter-arrival times and varying service times at the FIFO
queues, with some randomization for high loads, see Scenarios 3
and 4.

Table 5 includes the lower bound of frar(p) assuming de-
terministic inter-arrival times, see Section 4.3. This lower bound

Table 4
Comparison of TAT and waiting times from QNA and DES including 95% CI.
QNA DES QNA DES QNA DES QNA DES
Ao(c) A: 0.2 B: 0.3 C: 04 D: 0.45

Scenarios 1, 4 and 6: p(1;) =1 and p(2;) =1

frar(p) 491 4.79+0.035 7.11 6.93+0.077 13.51 13.754+0.255 26.39 27.92+0.792
E[Wi] 0.33 0.34+0.004 0.75 0.75+0.007 2.00 2.00+0.031 4.50 4.584+0.217
E[W] 0.62 0.49:0.009 1.26 1.104£0.035 2.89 2.97+0.090 5.95 6.75+0.345
E[W3] 0.96 0.96+0.042 2.10 2.09+0.071 5.62 5.78+0.205 12.94 13.594+0.657
Scenarios 1, 4 and 6: p(1;) =1 and p(26) =1
frar(p) 5.00 4.9240.046 7.51 7.38+0.045 15.06 14.75+0.281 30.19 30.38+0.776
E[Wi] 0.33 0.33+0.005 0.75 0.75+0.022 2.00 1.94+0.077 4.51 4.37+0.070
E[Wy] 0.67 0.634+0.034 1.51 1.46+0.052 4.06 3.84+0.180 9.18 9.05+0.323
E[W5] 1.00 0.97+0.027 2.25 2.17+0.040 6.00 5.98+0.383 13.51 13.95+0.925
Scenarios 2 and 5: p(1;) =1 and p(2;) =1
frar(p) 5.00 4.56+0.012 7.50 6.92+0.050 15.00 14.25+0.330 30.00 28.80+0.852
E[Wn] 0.67 0.4640.004 1.50 1.17+0.028 4.00 3.52+0.114 9.00 8.24+0.378
E[W>] 0.67 0.53+0.006 1.50 1.3440.020 4.00 3.82+0.116 9.00 8.72+0.441
E[W5] 0.67 0.56+0.008 1.50 1.414+0.013 4.00 3.91+0.135 9.00 8.85+0.272
Scenarios 2 and 5: p(1;) =1 and p(2¢) =1
frar(p) 4.99 4.52+0.018 7.47 6.82+0.084 14.94 14.084+0.417 29.92 29.21+0.640
E[Wh] 0.58 0.50+0.007 1.24 1.2040.029 3.08 3.39+0.129 6.67 7.97+0.146
E[Wy] 0.67 0.52+0.015 1.50 1.314+0.038 4.00 3.77+0.149 9.00 8.87+0.509
E[W3] 0.73 0.504+0.010 1.73 1.31+0.026 4.86 3.934+0.202 11.16 9.38+0.832
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Table 5
Routing configurations for the network with 6 job types.
Scenario 1 3 4 6 Scenario 1 3 4 5 6
Xo(0) A: 0.2 Xo(C) B: 0.3
p(11) 0 1 p(17) 1 1 0 p(17) 0 1 1 1 1 0
p(12) 0.28 0 p(13) 0 0 0 p(13) 0 0 0 0 0 0
p(13) 0.72 0 0 0 0 p(13) p(13) 1 0 0 0 0 p(13)
p(ly) 0 0 0 0 0 p(ly) p(1a) 0 0 0 0 0 p(1a)
p(1s) 0 0 0 0 0 0 p(1s) 0 0 0 0 0 0
p(1) 0 0 0 0 0 0 p(1g) 0 0 0 0 0 0
p(21) 0 0 0 0 0 0 p(21) 0 0 0 0 0 0
p(2,) 0.30 0 0 0 0 0 p(22) 0 0 0 0 0 0
p(23) 0.70 0.46 0 0 0 p(23) p(23) 1 0.06 0 0 0 p(23)
P(24) 0 0.01 0 0 0 p(24) p(24) 0 0.20 0 0 0 p(24)
p(25) 0 0.02 p(25) 0 0 0 p(25) 0 0.61 0 0 0 0
p(26) 0 0.51 p(26) 1 1 0 p(26) 0 0.13 1 1 1 0
frar(p) 4.95 4.94 9.67 9.67 9.66 9.67 Frar(p) 7.26 7.29 10.5 10.50 10.48 10.50
LB 3.53 3.37 9.12 9.20 9.12 9.12 LB 468 4.44 9.48 9.60 9.48 9.48
Xo(c) :04 lo(c) D: 0.45
p(11) 1 1 1 1 1 0 p(11) 1 1 p(17) 1 1 0
p(13) 0 0 0 0 0 0 p(13) 0 0 0 0 0 0
p(13) 0 0 0 0 0 1 p(13) 0 0 p(13) 0 0 1
p(14) 0 0 0 0 0 0 p(14) 0 0 0 0 0 0
p(1s) 0 0 0 0 0 0 p(1s) 0 0 0 0 0 0
p(16) 0 0 0 0 0 0 p(1g) 0 0 0 0 0 0
p(21) 1 0.22 0 0 0 0 p(21) 1 0.19 0 0 0 0
p(22) 0 0.09 0 0 0 0 p(22) 0 0.14 0 0 0.07 0
p(23) 0 0.12 0 0 0 1 p(23) 0 0.15 0 0 0 1
Pp(24) 0 0.13 0 0 0 0 p(24) 0 0.14 p(24) 0 0.38 0
p(25) 0 0.29 0 0 0.14 0 p(2s) 0 0.22 0 0.85 0.14 0
p(26) 0 0.15 1 1 0.86 0 p(26) 0 0.16 p(26) 0.15 0.41 0
frar(p) 13.51 14.17 16.00 16.06 15.89 13.89 frar(p) 26.39 27.99 31.00 30.34 29.76 26.94
LB 8.37 8.08 10.69 11.03 10.69 10.69 LB 15.85 15.54 16.54 17.85 16.54 15.85
Table 6 ) 0.3 the optimal strategies under (25) and (22) are similar as the
fTA;(ng;Slng QNA for the current lab load (100%) and load increase to 120%, 140% optimal values fTAT(p) do not show a signiﬁcant difference in the
an : DES. For load 0.45 the average values for DES are different, but the
Load Historic Optimal High to low Low to high confidence intervals overlap. Loads in the clinical chemistry labs,
100% 857.93 s 841.42 s 841.42 s 903.75 s which is our main application, are low to moderate. Therefore, we
120% 884.78 s 867.87 s 867.87 s 941.21 s conclude that for the loads of interest approximation (22) is pre-
140% 938.98 s 922.65 s 923.15 s 995.86 s ferred over (25)'
160% 1152.52 s 1097.22 s 1149.97 s 1270.07 s

underestimates the waiting times and clearly is more accurate
with reducing load. The lower bound provides a good bench-
mark for loads A and B for scenarios with high incubation times
(Scenarios 3-6). Table C.7 provides further details on the QNA
and DES objective values for three routes under loads B and D,
the near-optimal routing configuration displayed in Table 5 (0),
routing from high to low incubation time (H), and the determin-
istic version of O in which the largest p(c;) per class i is set to
1 (D). Table C.7 underpins the accuracy of our approach using
Approximation 11 as for all routing configurations (O, H, D) the
approximation for frar(p) lies within 10% of the DES value. This
table also reveals that the optimal routing configuration often
routes from high to low incubation times. Furthermore, the deter-
ministic routing configuration (D) is a good approximation of our
near-optimal routing configuration.

Table C.8 provides a comparison of the optimal routing config-
urations and objective function values using the QNA under three
approximations, where O refers to the lower bound approximation
(22), Oexp to approximation (25), and Oyp to approximation (23), as
well as routing from high to low incubation time, H. Comparison of
the rows for frar(p) shows that approximation (22) yields the best
approximation of the DES values for load 0.3 and that for high load
0.45 approximations (25) and (22) show similar performance; in
all cases the upper bound (23) shows poor performance. For load
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5.4. Case study: Clinical chemistry laboratory at Erasmus MC

This section applies our method to the optimal design, mini-
mizing mean TAT, of a clinical chemistry laboratory analyzer line
using data obtained from Erasmus MC, Rotterdam, the Netherlands.
A description of an analyzer line is included in Section 1 and Fig. 1.

5.4.1. Input data

The analyzer line of the clinical chemistry laboratory of Eras-
mus MC has 4 analyzer modules and is operational 24/7. Techni-
cal details of these modules affect the TAT only via the pipetting
duration and incubation times. For lab design, the TAT during the
busiest time of day is of main importance, as the physician has to
wait the longest for test results in this time frame. Therefore, we
consider samples arriving between 9 AM and 2 PM on weekdays
in March 2019. The data contained 2232 racks, which in total con-
tained 6708 clinical chemistry samples. This results in 150 tests
per hour at peak load on this analyzer line. We obtained 15 job
classes characterized by the modules visited by a rack, resulting in
64 possible job types (Table D.10). A sample may require multiple
tests on a single module, that are processed in parallel on the in-
cubator disc, in which case the incubation time is the maximum of
these times as this is the time when the test results for the mod-
ule become available. From the laboratory information system (LIS)
and analyzer log files, for each job class we obtained the mean
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and SCV of the service duration at the pipettor and incubator disc
(Table D.9), the historical lab routes and the mean TAT that was
found to be 17.86 minutes. Our model does not incorporate delays
caused by transport and scanning of the samples, with the largest
deviations as compared to reality observed between arrival at an
analyzer line and arrival at the initial node, that is estimated from
the LIS to be 2 minutes. Smaller transport delays that cannot be es-
timated accurately from the LIS occur between analyzer modules.

5.4.2. Optimal routing configuration

We used (1) with TAT replaced by TAT to compare the historical
mean TAT with the mean TAT from our model using the historical
laboratory routes, which was found to be 14.30 minutes (857.93
seconds, see Table 6). This result should be compared to the his-
torical value of 17.86 minutes, minus the initial delay of 2 minutes
and additional minor transport delays between modules. This indi-
cates that (1) using TAT provides a good estimate of the historical
mean TAT.

We invoked our optimization method to determine optimal al-
location of jobs to routes. Calculating the mean waiting time of
a specific analyzer line routing configuration using the QNA takes
0.01 to 0.05 seconds. For SA, the initial value of the cooling pa-
rameter was set to 40, the stopping value was set to 0.0005, with
a decrease factor of 0.999 and Markov chain length of 100. The
run-time of the algorithm is approximately 7 hours, which is ac-
ceptable considering we are interested in optimal laboratory design
that typically has a duration of several weeks or months.

Table 6 compares the performance of four routing configura-
tions: historical lab route, best route found using our optimization
method, jobs routed from highest to lowest incubation time, and
jobs routed from lowest to highest incubation time that is included
to compare performance of the other routes with a route that intu-
itively does not perform well. Results are presented for the current
lab load and scenarios in which the lab load is increased to 120%,
140% and 160% of the current lab load. The routing configurations
used in Table 6 are detailed in Table D.10.

The current load at the four FIFO queues is 0.23, 0.57, 0.48, and
0.13. The optimal routing configuration for the current lab load has
a mean TAT of 841.42 seconds. The lower bound on the objective
function value is 801.10 seconds, see Section 4.3, which is expected
to be a good benchmark for the current load, see Section 5.3.
The gap of 31.32 seconds (5.03%) between our optimum and this
minimum value indeed may be completely allocated to the ad-
ditional waiting times at the FIFO queues since the inter-arrival
times are not deterministic as assumed in the lower bound calcu-
lations, which indicates that our method closely approximates the
optimal value.

The optimal routing configuration for the current lab load
routes jobs from highest to lowest incubation time and provides
a 2% decrease in mean TAT compared to the historic laboratory
route. As the load increases, the heuristic routing configuration
high to low continues to perform well, but above 140% load our
optimal routing configuration (Table D.10) outperforms this heuris-
tic. The possible improvement in mean TAT increases with the
load. When increasing the load to 160%, resulting in loads 0.38,
0.92, 0.76 and 0.20 at the four FIFO queues, our proposed route
results in a 5% reduction of the mean TAT.

Our results support that routing jobs according to the heuristic
that routes jobs from high to low incubation times is optimal for
the current load, as well as for increased load up to 140% of the
current load. For a 60% load increase, our optimization approach
yields roughly 5% reduction in mean TAT compared to this heuris-
tic, which illustrates the quality of the heuristic, as well as the gain
that may be achieved by optimization. In light of the number of
tests performed on a chemistry analyzer line (150 per hour at cur-
rent peak load in Erasmus MC), optimization of the routing con-
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figuration may result in a substantial improvement of laboratory
performance.

6. Discussion and conclusion

Motivated by chemistry analyzer lines, we have considered op-
timal design of queueing networks in which each node consists of
a single-server FIFO queue and an infinite-server incubation queue.
A job departing from a single-server queue forks to the incubation
queue and the next FIFO queue on its route. We have provided ex-
act results for the queue length distribution and TAT as well as a
QNA and SA optimization approach to determine the optimal rout-
ing configuration for a central decision maker that aims to mini-
mize the mean TAT for all jobs.

Generalizations: Our results may be extended to incubation
queues of different types. This is clear in Lemma 1, as we only re-
quire the maximum of the sojourn time at the incubation queue
and remaining part of the route. Theorem 5 requires the so-
journ time at the incubation queue to be exponentially distributed,
which is also the case if the incubation queue is a single-server
FIFO queue with exponential service requirement. Our exact re-
sults may be extended to more general queues j1, such as those
modeled using the (¢, y, 8)-protocol (Kelly, 1979, Section 3.1).
Approximation 11 that uses the QNA requires the queues j1 to be
FIFO queues, but allows for multi-server queues and general incu-
bation queues as long as the mean sojourn time for these queues
is known. Setting all incubation times to zero shows that our novel
QNA and SA approach may also be used for the optimal design of
networks of single-server FIFO queues.

Our results may be extended to include several parallel incu-
bation queues as this requires evaluation of the maximum sojourn
time over these queues. By setting the service times at the first
FIFO queue to zero, this shows that we may also approximate
the TAT distribution of a fork-join queue with an arbitrary num-
ber of parallel queues. We assume that the nodes in the network
are distinct and therefore the set of nodes visited by a job are
uniquely defined. An interesting extension is to allow for duplicate
nodes, where a job should visit one of these duplicate nodes. The
QNA also allows for approximation of the variance of the sojourn
times per node assuming independence of the sojourn times at the
nodes. Among our aims for further research is exploring how such
results may be used to approximate the variance of the TAT and
the fraction of samples that completes TAT before the due date.

Limitations and further research: Our QNA and SA approach
shows good performance in terms of accuracy and computation
time for realistic size network design challenges. A possible di-
rection for future research is to improve the QNA approximation
(Caldentey, 2001; Harrison & Nguyen, 1990), and the SA algorithm
using approaches such as improvement of the cooling scheme, the
stopping value and the Markov chain length (van Laarhoven &
Aarts, 1987).

In highly congested analyzer lines, blocking of jobs in between
modules might occur, which is not included in our model. A pos-
sible extension of our model is to further develop the approach of
Kerbache & MacGregor Smith (2000) to include incubation queues.

Our results consider optimal design of a laboratory via static
route allocation. Dynamic routes are of interest to avoid conges-
tion in an operational setting. Extension of the results for networks
of FIFO queues with exponential service times and concave utility
functions (Shaler, 2009) to include incubation queues is of consid-
erable interest for daily operation of laboratories.

Conclusion: We have illustrated the intricate relation between
TAT, service and incubation times. A heuristic routing configuration
supported by our theoretical results routes jobs along the nodes in
decreasing order of the incubation times. Our numerical results re-
veal that this heuristic is close to optimum for realistic network
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parameters, which make the results amenable for inclusion in the
lab ICT system that routes samples in analyzer lines. The accuracy
of our approach supports its use in design of clinical chemistry lab-
oratories.

Appendix A. Queueing Network Analyzer

The Queueing Network Analyzer (QNA) is developed in Whitt
(1983b) to approximate the mean sojourn times at the queues of
a network of multi-server FIFO queues with multiple job types
and general inter-arrival and service time distributions. Below, we
present the QNA for a network of single-server FIFO queues and
the expressions for the mean sojourn times in the FIFO queues
in our network used in Section 4.2. The mean sojourn times at
the FIFO queues in our network are not affected by the incubation
queues, so that the QNA yields an approximation of the sojourn
times in the FIFO queues in the network with incubation queues,
recall Remark 2.

The QNA uses as input the mean and the variance of the inter-
arrival and service times of each job type. The arrival rate of type
¢; jobs is Ag(c;) = p(ci)Ag(c). The squared coefficient of variation
(SCV) of the arrival process of job type ¢; is (Whitt, 1983b):

sev(c)) =p(c;))od (A3 (0)+1-p(c), i=1,...,1(c), c=1,...,C

The service requirements of a job at queue jk on its route depend
on its class and therefore 1, (c;) = fji(c). The SCV of the service
time of job type ¢; at queue jk on its route is

scvgir(ci) = 07 (©) i (©)?,
i=1,....,1(c), c=1,..., j=1,...,] k=1,2.
The aggregated external arrival rate to queue j1 is:

Cc I(o)

Moji =) ) k(e i{n(ei, 1) = j}.

c=1 i=1
The aggregated internal flow rate from queue j1 to queue j'1:

C 1(0) IR(©)|-1

Apjn=_ Y Y Aole)i{n(c, &) = jn(c, e+1) = j'}

c=1i=1 ¢=1
The departure rate from queue j1 out of the network is:

C I(o)

Ajto =Y > Ao(ci{n(ci, [R()]) = j}.

=1 i=1

The total aggregated arrival flow rate to queue j1 is:

J
)\j] = Z)\,j!]j].
j'=0

The routing matrix Q has elements qj;; equal to the proportion
of jobs that go from queue j1 to queue j'1. The element gjj can
be seen as the probability that a job exiting queue j1 will then go
to queue j'1:

J
s with Zqﬂj']:l'
=1

Ajijn

S o e

Service time parameters are obtained by averaging the service
times of jobs that visit queue j1:

Y ) Y RO A () E[Briey o1 (©)]1{n(ci. 0) = j}
Y&, YO S RO o () 1{n(c, €) = j) '

The SCV of the service time at queue j1 is calculated as follows:

qj1j1 =

Tj1 =
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SCVsj1

_ Yo Zfi? Zlfi(lc” Ao (Ci)]E[Bn(c,Al)l (C)]z (5Vsn(e.01 () +1) L{n(c;. £)=j} B

1.
2y SR o () 1in(e, 0=}

The utilization of queue j1 is given by:

o1 =AjiTj1.
The proportion of arrivals to j/1 that came from j1 is equal to:
Ajiin s
Pjij1 = )\_'1 s with: ijlj’l =1.
J j=1

The SCV of the external arrival process to queue j1 is:

scvpjr = (1 —ujp)

C I(o) .
Ao(ep)1{n(c;, 1) = j}
+u;j E Escv(ci) ,
g {1 5 (zﬁl S (e 1{n(e 1) = j})}

where
1
14+4(1 - pp)?(wp—1)

uj =uj(pj1, vjr) =

and
C Io) . 27
Ao(c)i{n(c, 1) = j} )
Vj1 =
g Zl Z] (z;] Y19 ho(e)1{n(ci, 1) = j}

The approximation of the SCV of the arrival process at each queue
is calculated as follows:

J
SCVgj1 = aj1 + Z SCVaj]bjr]j1 & scvg = (I — BT)‘la.
j=1
The aj; and bj;; are constants depending on the input data:

N
ajp=1+uj (pOleCVOjl =1+ ppp((1=gqjajn) + q]‘fljlpfrlxj’l)>
jr=1

and
bjij1 =ujpjijnqj (1 - ,0]21)’
with

Xj1 = 1+ m;?%(max{scvgj;, 0.2} — 1),

-1

J
2
al‘ld U]‘] = ij/]ﬂ

=0

1
S 1+40 - pj)2(vji - 1)

Uﬂ

Given tjq, pj1, SCVqj1 and scvgjy, we can calculate the approxi-
mate mean waiting times, and thus the approximate mean sojourn
times at the FIFO queues using (27) and (28).

Appendix B. Example non-convexity of the QNA objective
function

This section gives an example of a small network for which the
objective function of the QNA is non-convex. We will follow the
steps of the QNA as outlined in Appendix A.

Consider a network of two nodes with one job class and 2
possible job types. Type 1; visits the queues in order 12, while
type 1, visits them in order 21. We consider zero incubation times
and the service discipline at the FIFO queues only depends on the
queues fuji(¢;) = pj1, j=1,2. The arrival rate of type 1; jobs is
ro(1) = p(1))Ag, i=1,2, p(11) + p(15) = 1. The SCV of the arrival
process of job type 1; is scv(1;) = p(1)ogr3 +1—p(1), i=1,2.
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The mean service time at queue j1 is 7j; = 137 The SCV of the ser- B 0 unp(11)?(1 - A2t
vice time of job type 1; at queue j1 on its route is scvsjy = 04 1, uyn p(12)%(1 = 2373, 0 ’
i=1,2, j=1,2. The total aggregated arrival flow rate to queue j1 1 —
L, . : . Ui = . j=1,2,
is Aj; = Ao. The routing matrix Q is j1 11401 — Aoti)?(p(11)% + p(12)21_1 )
0 p(11)  p(1y) xj1 = 1+ (max{scvy;,02} - 1), j=1,2.

Q=|p(12) 0 p(11)

p(17) p(1y) 0 Mathematica (version 12.3) was used to find scvyj;, j = 1,2, and to

. . . determine whether these functions are convex or not. We find:
The utilization of queue j1 is pj; = AgTj;. The proportion of ar-

rivals to j’1 that came from j1 is captured in the following matrix: pU12) (Ap02) i —p(12) 1) +p() (ApQnog—p(+1)-1 | 4
_ 41—t )2(—1)+1
SCVan = L 0 (1t (4t )
0 p(17) p(1y) (@0 —Rot)2 (—1)+1) (40 —hoTo)2 (v-1)+1)
P= P(lz) 0 p(11) p(1 )2(1 _A272 ) p(11) (A3 p(1) %0 —p(11)+1)+p(12) (A3 p(13)0d —p(1)+1) -1 +1
p(11)  p(1y) 0 2 021 40—t 2(v—1)+1
(11)2p(13)2 (1-2372 ) (1-22374) ’
401 = 2ora? 0= 1)+ 1) (1= (g
The SCV of the external arrival process to queue j1 is scvgj = ( ) (4020 @-D+1) (41-doa 2 -1 +1)
. : : —14+p(1,) (1-p(1)+A2p(15)0¢ 1,)(1-p(11)+A3p(11) 7}
p(1))0325+1~p(1)), j=1.2. The approximation of the SCV of 1 +2012)(1p(12) A p(12)0d) 210 (1l hp( )
the arrival process at each queue is: al = 1_ p(1)2p(15)? (1—2372) (1-233)
(A+4(—1+) (120 111)2) (A+4(—1+1) (1-2o 21 )?)
scvg = (I—BT)aq, p(11)2(1 7)%1121)(1 T —1+p<m(1—p(1.>+x1%ﬁ(liiigv))m1ﬁ(l:;mezmgpm)r;xu>)
. + ,
with P(11)2p(12)2 (1-1372) (1-A373)
A+4(-1+0)(1 - )‘0’“)2)(1 - (1+4(7|+V1)(1*102111)Z)(10+2(71+V§(12110721)2))
1+U11(P(11)[P(11)002)\%+1—P(11)1—1 )
B +p(12)(1 = p(13) + p(12) p3;x21)) with
1+ uxn (p(12)[p(12)0gA3 +1 - p(1)] -1 |’ 1
2 V= —————.
+p(1) (1 = p(11) + p(11) p2x11)) p(11)2 + p(1,)2
Table C1
Objective function values for a selection of routing configurations under loads B and D.
Scenario 1 2 3 4 5 6
Route 0 H D 0 H D 0 H D 0 H D 0 H D 0 H D
Xo(c) B: 0.3
p(17) 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0
p(12) 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
p(13) 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0.5 1
p(14) 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0.5 0
p(1s) 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
p(1) 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
p(21) 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
p(22) 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
p(23) 1 1 1 006 1 0 0 0 0 0 0 0 0 0 0 1 0.5 1
p(24) 0 1 0 020 } 0 0 0 0 0 0 0 0 0 0 0 0.5 0
p(25) 0 ) 0 061 1 1 0 0 0 0 0 0 0 0 0 0 0 0
p(26) 0 1 0 013} 0 1 1 1 1 1 1 1 1 1 0 0 0
far(p) 726 751 726 729 750 734 1050 10.50 1050 1050 1050 10.50 10.48 1048 1048 1050 10.50 10.50
QNA
frar(p) 710 746 7.0 684 7.07 681 1140 1140 1140 1152 1152 1152 1091 1091 1091 1123 1131 11.23
DES +0.07 +0.14 +0.07 +0.06 +0.05 =+0.05 =+0.07 =+0.07 =+0.07 =+0.05 =+0.05 +0.05 +0.05 +0.05 =+0.05 +0.05 =+0.03 =+0.05
Ao (€) D: 0.45
p(11) 1 ) 1 1 ') 1 1 1 1 1 1 1 1 1 1 0 0 0
p(12) 0 ) 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
p(13) 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0.5 1
p(14) 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0.5 0
p(15) 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
p(1) 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
p(21) 1 1 1 019 | 0 0 0 0 0 0 0 0 0 0 0 0 0
p(22) 0 1 0 014 ] 0 0 0 0 0 0 0 007 0 0 0 0 0
p(23) 0 ) 0 015 1} 0 0 0 0 0 0 0 0 0 0 1 0.5 1
p(24) 0 1 0 014 0 0 0 0 0 0 0 038 0 0 0 0.5 0
p(25) 0 1 0 022 1 0 0 0 085 0 1 014 0 0 0 0 0
p(26) 0 1 0 016 1 0 1 1 1 015 1 0 041 1 1 0 0 0
frar(p) 26.39 30.15 2639 2799 30.00 2962 31.00 31.00 31.00 3034 31.19 3037 29.76 3092 3092 2694 30.18 26.94
QNA
frar(p)  27.92 3037 27.92 2860 2939 2859 31.44 3144 3144 32.01 3217 32.08 3091 3090 3090 29.40 3090 29.40
DES +079 £091 +079 +0.41 4079 +0.62 +0.17 +0.17 +0.17 +1.67 4077 +0.60 +032 +1.10 +1.10 +0.81 +0.76 +0.81
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Both scvg11 and scvgy; are neither convex nor concave in p(17) and
p(21). Recall (27):

_ Ti1Pj (SCVqj1 +5CVsi1 )gij1

2(1-pj1) ’
{ :

2(1-p; T—scvg;j

exp [ *5

1,
Observe that scvsj; does not depend on p(1;). For scvgj; =1 we
have gj; = 1, and Wﬂ is linear in scvyj; and scvgj;, and therefore
not convex in p(1;) and p(21). For SCVqj1 < 1, gj1 is not convex in
p(17) and p(21). The objective function is a linear combination of
TAT(c;), which in turn consists of summing and maximizing over a

non-convex part (W ;) and a constant (E[Bj;] or E[S,]). Therefore,
the objective function for this small example is non-convex.

=

SCVgj1 < 1,
SCVgj1 > 1.

gt (B.1)

Appendix C. Objective values for selected loads and accuracy of
approximations

Table C2

European Journal of Operational Research 310 (2023) 1101-1117

Appendix D. Input parameters and routing configurations for
case study

Table D.9 gives the input parameters for the arrival and service
times of the job classes for the case study in Section 5.4. There
is no incubation queue at node 1, i.e,, Bj3(c) =0, c=1,...,C. The
incubation time at node 3 is deterministic and equal to 10 minutes,
i.e., B3;(c) =600s, scvgg; =0, c=1,...,C.

Table D.10 provides the details of the routing configuration and
job types in Section 5.4.

Objective function values for a selection of routing configurations under loads B and D, including three objective function approximations. The columns give the correspond-
ing routing configuration. For each routing configuration the value of frar(p) is then determined for each approximation (22), (25), (23) and via DES in the corresponding
rows, i.e., in the row (22) the value 13.75 indicates the value of frar(p) for the listed optimal routing configuration under Oyp evaluated using approximation (22) in the

QNA.
Scenario 4 5
Route Oexp Ous H Oexp Ous
Ao(c) 0.3
p(17) 1 1 0 1 1 1 1 1
p(1) 0 0 0 0 0 0 0 0
p(13) 0 0 1 0 0 0 0 0
p(1g) 0 0 0 0 0 0 0 0
p(1s) 0 0 0 0 0 0 0 0
p(1g) 0 0 0 0 0 0 0 0
p(21) 0 0 0 0 0 0 0 0
p(22) 0 0 0 0 0 0 0 0
p(23) 0 0 1 0 0 0 0.06 0
p(24) 0 0 0 0 0 0 0.19 0
p(25) 0 0 0 0 0 0.11 0.61 0
p(26) 1 1 0 1 1 0.89 0.14 1
frar(p) (22) 10.50 10.50 13.75 10.50 10.48 10.50 11.03 10.48
(25) 14.63 14.63 15.47 14.63 14.58 14.57 14.76 14.58
(23) 20.51 20.51 20.26 20.51 20.47 20.41 20.29 20.47
DES 11.52 11.52 13.94 11.52 10.91 10.95 11.47 10.91
+0.05 +0.05 +0.06 +0.05 +0.05 +0.03 +0.04 +0.05
Mo(c) 0.45
p(17) 1 1 0 1 1 1 0 1
p(12) 0 0 0 0 0 0 0 0
p(13) 0 0 1 0 0 0 0 0
p(14) 0 0 0 0 0 0 1 0
p(1s) 0 0 0 0 0 0 0 0
p(1p) 0 0 0 0 0 0 0 0
p(21) 0 0.76 0 0 0 0 0.22 0
p(22) 0 0 0 0 0.07 0.09 0.16 0
p(23) 0 0 1 0 0 0 0.14 0
p(24) 0 0 0 0 0.38 0.26 0.19 0
p(25) 0.85 0.24 0 0 0.14 0.26 0.14 0
p(26) 0.15 0 0 1 0.41 0.39 0.15 1
frar(p) (22) 30.34 30.60 31.44 31.19 29.76 29.83 34.20 30.92
(25) 33.15 32.62 33.63 34.51 33.13 33.07 35.63 34.16
(23) 41.06 39.58 39.94 43.19 41.44 41.3 40.99 42.92
DES 32.01 32.14 33.82 32.17 30.91 31.40 35.30 30.90
+1.67 +1.46 +0.74 +0.77 +0.32 +0.15 +0.69 +1.1
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Table D1
Arrival and service time input parameters for the laboratory case study. The time unit is seconds.
1 2 3 4
c Jo(c) x 10° scv(c) E[Bn (0)] SCVs11 E[By1 (0)] SCVs21 E[B2(c)]/60 SCVs22 E[B31 (0)] SCVg31 E[B41 (0)] SCVsa1 E[B42(c)]/60 SCVsa2
1 1.957 1.58 26.32 0.74 9.80 0.01
2 0.759 1.87 47.06 0.28
3 0.457 249 26.70 0.36 16.89 0.05
4 0.395 0.94 2121 0.59
5 0.451 1.06 23.51 0.33 7.03 025 28.01 0.46 20.72 0.09
6 0.975 140 36.30 0.47 10.00 0.00 50.78 0.22
7 1.062 1.54 19.78 0.21 32.16 0.24 9.72 0.02
8 4228 194 27.77 0.25 59.56 0.32 10.00 0.00 50.82 0.16
9 0.142 3.39 26.40 119 43.63 0.22
10 2.537 1.71 2934 0.21 62.87 0.26 10.00 0.00 57.81 0.28 30.92 0.30 18.41 0.09
1 0.056 137 25.03 0.27 40.63 041 18 0.13
12 0.321 0.90 4139 0.28 9.87 0.01 47.75 0.32 26.22 0.20 20.00 0.08
13 0.327 1.01 23.62 0.19 55.65 117 9.74 0.02 32.21 0.22 16.56 0.14
14 0.056 2.01 65.39 043 28.63 0.12 18.14 0.07
15 0.056 222 3037 0.26 61.61 0.30 33.67 022 15.56 0.22
Table D2

Routing configurations discussed in Section 5.4.

Routing configuration

Historic Optimal route High to Low to
n(c;. 1) n(c;. 2) n(c;.3) n(ci, 4)
lab route lab load (100%) 120% load 140% load 160% load low Bj, high Bj,

1 1 1 1 1 1 1 1

2 1 1 1 1 1 1 1

3 1 1 1 1 1 1 1
4 1 1 1 1 1 1 1

1 2 0.90 0 0 0.16 0.72 0 1

2 1 0.10 1 1 0.84 0.28 1 0

1 3 0.74 0 0 0.29 0.20 0 1

3 1 0.26 1 1 0.71 0.80 1 0

1 4 0.11 0 0 0.78 0.82 0 1
4 1 0.89 1 1 0.22 0.18 1 0
2 3 0.68 0.5 0.5 0.05 0.01 0.5 0.5
3 2 0.32 0.5 0.5 0.95 0.99 0.5 0.5
2 4 0.08 0 0 0.01 0 0 1
4 2 0.92 1 1 0.99 1 1 0
3 4 0.44 0 0 0.24 0.28 0 1
4 3 0.56 1 1 0.76 0.72 1 0

1 2 3 0.50 0 0 0 0 0 0.5
1 3 2 0.32 0 0 0.02 0.74 0 0.5
2 1 3 0.08 0 0 0.02 0 0 0
2 3 1 0.01 0.5 0.5 033 0 0.5 0
3 1 2 0.08 0 0 0 0 0 0
3 2 1 0.01 0.5 0.5 0.62 0.26 0.5 0

1 2 4 0 0 0 0 0.01 0 1

1 4 2 0.25 0 0 0.01 0.35 0 0
2 1 4 0 0 0 0 0 0 0
2 4 1 0 0 0 0.01 0 0 0
4 1 2 0.70 0 0 0.47 0.29 0 0
4 2 1 0.06 1 1 0.51 0.36 1 0

1 3 4 0.11 0 0 0.28 0.11 0 1

1 4 3 0.44 0 0 0.46 0.05 0 0
3 1 4 0 0 0 0.01 0.06 0 0
3 4 1 0 0 0 0.10 0.18 0 0
4 1 3 0.44 0 0 0.05 0.30 0 0
4 3 1 0 1 1 0.11 0.30 1 0
2 3 4 0.02 0 0 0 0.03 0 0.5
2 4 3 0.06 0 0 0.02 0 0 0
3 2 4 0 0 0 0 0 0 0.5
3 4 2 0.06 0 0 0.34 0.01 0 0
4 2 3 0.58 0.5 0.5 0.51 0.19 0.5 0
4 3 2 0.29 0.5 0.5 0.14 0.77 0.5 0

1 2 3 4 0.01 0 0 0 0 0 0.5
1 2 4 3 0.03 0 0 0 0 0 0

1 3 4 2 0.02 0 0 0 0 0 0

1 3 2 4 0 0 0 0 0 0 0.5
1 4 2 3 011 0 0 0 0 0 0

1 4 3 2 0.05 0 0 0 0.32 0 0
2 1 3 4 0 0 0 0 0 0 0
2 1 4 3 0.02 0 0 0 0 0 0
2 3 4 1 0 0 0 0 0 0 0
2 3 1 4 0 0 0 0 0 0 0
2 4 1 3 0.01 0 0 0 0 0 0
2 4 3 1 0 0 0 0 0 0 0
3 1 2 4 0 0 0 0 0 0 0
3 1 4 2 0.01 0 0 0 0 0 0
3 2 1 4 0 0 0 0 0 0 0
3 2 4 1 0 0 0 0 0 0 0
3 4 1 2 0.02 0 0 0 0 0 0
3 4 2 1 0 0 0 0 0 0 0
4 1 2 3 0.38 0 0 0.16 0 0 0
4 1 3 2 0.20 0 0 0.49 0.21 0 0
4 2 1 3 0.06 0 0 0.03 0 0 0
4 2 3 1 0.01 0.5 0.5 0.01 0 0.5 0
4 3 1 2 0.05 0 0 0.10 0 0 0
4 3 2 1 0 0.5 0.5 0.21 0.46 0.5 0
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