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a b s t r a c t 

This paper considers optimal design of queueing networks in which each node consists of a single-server 

FIFO queue and an infinite-server queue, which is referred to as incubation queue. Upon service com- 

pletion at a FIFO queue, a job splits (forks) into two parts: the first part is routed to the next node on 

its route, and the second part is placed in the incubation queue. Routing of the jobs of multiple types is 

governed by a central decision maker that decides on the routes for each job type and aims to minimize 

the mean turnaround time of the jobs, i.e., the time spent in the system until service completion at the 

FIFO queue in the last node, and at all incubation queues on the job’s route, which may be viewed as 

a join operation. We provide explicit results for the turnaround time when all service and inter-arrival 

time distributions are exponential and invoke the Queueing Network Analyzer when these distributions 

are general. We then develop a Simulated Annealing approach to find the optimal routing configuration. 

We apply our approach to determine the optimal routing configuration in a chemistry analyzer line. 

© 2023 The Authors. Published by Elsevier B.V. 
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. Introduction 

Clinical chemistry laboratories perform various tests on body 

iquids, thus playing an important role in diagnostics, monitoring 

nd prediction of diseases. Analysis of clinical chemistry samples 

s performed on so-called analyzer lines, that consist of distinct 

nalyzer modules. Fig. 1 a depicts a small part of the laboratory 

onsisting of two modules. Typically, a small to medium sized 

aboratory contains several analyzer lines that each contain around 

our modules. Racks, containing several tubes with samples to 

e tested, arrive in random order and visit the modules. At each 

odule, a rack joins the queue of the pipettor that handles racks 

n order of arrival and transfers a defined sample volume from 

he sample tubes into processing cells. These cells are located 
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n the ample capacity incubator disc, where, according to a test- 

pecific schedule, dilution and reagent fluids are added, the fluid 

s mixed, incubated and measured, after which the test results 

ecome available. At the same time (after sample pipetting is 

ompleted), the rack is routed to the next module on its route to 

oin the queue of the pipettor of that module. The modules to be 

isited are determined by the test mix of the tubes in the rack. 

he order in which the racks visit the modules mostly does not 

ffect the quality of the test results. The turnaround time (TAT) 

r end-to-end sojourn time between arrival of samples in the 

ab and availability of results is the most important performance 

ndicator as this determines the time until the medical doctor 

eceives the patient’s test results ( Tsai et al., 2019 ). This paper 

ntroduces a queueing network and optimization approach to 

esign a chemistry analyzer line that minimizes TAT. 

A pipettor handles racks one by one in order of arrival and 

ay be modeled as a single server First-In-First-Out (FIFO) queue, 

here the service duration is determined by the number of pipet- 

ing operations for the required tests at the module. The service 

imes of different sam ples on the incubator disc are independent 

nd the incubator has ample positions, so that the incubator disc 

ay be modeled as an infinite-server queue. A natural model 
nder the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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Fig. 1. Laboratory configuration and queueing network model. 
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or an analyzer line is therefore a network of nodes in which 

obs of different classes follow a class dependent route along the 

odes that consist of two parts: a FIFO single-server queue and 

n infinite-server incubation queue ( Figure 1 b). Upon service 

ompletion at a FIFO queue, a job splits into two parts: one part 

outes to the incubation queue, and the other part to the next 

IFO queue on its route. Upon service completion at the incubation 

ueue, this part leaves the network. A job’s TAT ends when service 

t all FIFO queues along its route and all its incubation times 

re completed. Routing of jobs in the network is governed by 

 central decision maker that aims to design the lab such that 

he mean TAT of all jobs is minimized. To this end, the decision 

aker determines a static routing configuration by dividing the 

ob classes into types, and assigning fixed routes to each type. 

Our network has general inter-arrival, service and incubation 

imes characterized via their mean and variance. For some special 

ases we provide explicit results. For the network with exponen- 

ial inter-arrival, service, and incubation times we provide explicit 

esults for the joint queue length distribution at the FIFO and 

ncubation queues as well as the Laplace–Stieltjes Transform (LST) 

f the TAT for a given routing configuration that specifies the route 

or each job type. In case of a single job type, these results enable

losed form evaluation of the mean TAT. For the network with 

eneral inter-arrival, service, and incubation times, we develop 

n approximation to obtain the mean TAT. This approximation 

nvolves the Queueing Network Analyzer (QNA) ( Whitt, 1983b ) to 

btain the mean sojourn times at the FIFO queues and the mean 

AT for a given routing configuration. The general optimization 

roblem for the decision maker is non-convex. Therefore, we 

evelop a Simulated Annealing (SA) approach to determine the 

ear-optimal routing configuration. Our approach includes several 

pproximation steps of which accuracy is investigated in detail in 

umerical experiments. We apply our approach to the design of 

 four module analyzer line in the clinical chemistry laboratory 

f Erasmus MC, Rotterdam, the Netherlands. For the current load, 

ur optimal routing configuration routes jobs along the nodes 

rom high to low incubation time, which we find to be a good 

euristic for general parameter settings. For a 60% load increase, 

ur optimization approach yields roughly 5% reduction in mean 

AT compared to this heuristic, which illustrates the quality of the 

euristic. In light of the number of tests performed on a chemistry 

nalyzer line, optimization of the routing configuration may result 

n a substantial improvement of laboratory performance. 

Literature: Sample routing in laboratories has been analyzed 

sing operations research techniques. Sample routing between 

lood collection sites and laboratories was studied using discrete- 

vent simulation ( Lote, Williams, & Ülgen, 2009 ) and modeled as a 

ehicle routing problem ( Grasas et al., 2014; Zabinsky et al., 2020 ). 

ean principles have been applied inside the laboratory, resulting 

n improved sample routing ( Persoon, Zaleski, & Frerichs, 2006; 

utledge, Xu, & Simpson, 2010 ). 

We will use notation as introduced in Kelly (1979) , that pro- 

ides a general description of open and closed product-form 
1102 
ueueing networks. For a tandem of FIFO single-server exponen- 

ial queues the sojourn times at the queues are independent and 

he distribution of the TAT is available in closed form (Kelly, 1979, 

heorem 2.2) . Ordering of tandem queues is studied in Suresh & 

hitt (1988) , where it is shown that arranging the queues in in- 

reasing order of service time variability is an effective heuris- 

ic to decrease the average sojourn time. For a network of FIFO 

ueues with multiple job types, fixed routes, and exponential ser- 

ice times that do not depend on the job type, the marginal dis- 

ribution of the sojourn time at each FIFO queue is known (Kelly, 

979, p. 63) , from which the mean sojourn time in the network 

ay be obtained. Optimal design of networks of multi-server FIFO 

nd infinite-server queues with fixed routes is studied in Kerbache 

 MacGregor Smith (20 0 0) , where an artificial holding queue is 

ntroduced for each finite waiting room FIFO queue to register 

locked customers. Such overflow queues differ from our incuba- 

ion queues. Exact results for the design of networks with expo- 

ential service times and concave utility functions are presented 

n Kameda & Zhang (1995) ; Shaler (2009) . Our utility function TAT 

s non-convex, see Appendix B . Like the references above, we con- 

ider a centralized decision maker. Design of networks with selfish 

ustomers or decentralized decision makers are presented in, e.g., 

 Ghosh & Hassin, 2021; Laan, Timmer, Boucherie, & Nl, 2021 ). Op- 

imal design of static routes is geared towards optimization of the 

onfiguration of the laboratory. Dynamic routing is geared towards 

he optimization of the operational process, see Shaler (2009) for 

etworks with concave utility function. Our network may be seen 

s a fork-join network with a fork operation after each FIFO queue, 

nd one join operation when service at all queues along a job’s 

oute is completed. The generating function for the queue lengths 

n fork-join queues are available for the M/M/1 system with two 

arallel queues ( Flatto & Hahn, 2006 ). Fork-join queues appear, e.g., 

n parallel or distributed storage and computing ( Fidler, Walker, & 

ora, 2020; Zubeldia, 2020 ), proactive coordination between pre- 

icted ED patient admissions and inpatient bed management ( Lee, 

hinnam, Dalkiran, Krupp, & Nauss, 2021 ), manufacturing systems 

 Krishnamurthy, Suri, & Vernon, 2003 ), and container terminals 

 Kumawat, Roy, De Koster, & Adan, 2021 ). Our network may also be 

iewed as a network with regular jobs and positive signals, where 

 job exits the FIFO queue as positive signal, then visits the incuba- 

ion queue to increase the number of jobs in that queue by 1, after 

hich it immediately departs the incubation queue as regular job 

o visit the next FIFO queue on its route. A product-form stochastic 

pper bound for the stationary distribution of the number of jobs 

n the network with random routing and exponential single server 

ueues is provided in Huisman & Boucherie (2011) . 

For our general network the TAT distribution is not available. 

e approximate the mean TAT via mean sojourn time approxima- 

ions for the FIFO queues using the QNA. The QNA, originally de- 

eloped by Whitt (1983b) , uses several heavy traffic results, such 

s Kingman’s approximation for the mean waiting time ( Kingman, 

961 ). Accuracy of the QNA depends on the quality of the ap- 

roximation of non-renewal arrival and departure processes by re- 
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ewal processes ( Caldentey, 2001; Whitt, 1983a ). The approxima- 

ion quality of the QNA is studied for several multi-class single- 

erver queueing networks, e.g., Bitran & Tirupati (1988) ; Fendick, 

aksena, & Whitt (1991) ; Harrison & Nguyen (1990) ; Whitt (1983a) .

he QNA has been used to compare system configurations, e.g., ( Bai 

 Menon, 2013; Yu & De Koster, 2008; Zonderland, Boer, Boucherie, 

e Roode, & Van Kleef, 2009 ). 

The general optimization problem, using the QNA, for the deci- 

ion maker is non-convex. Global non-convex optimization is NP- 

ard ( Danilova et al., 2022 ). We develop an SA algorithm to solve

he optimization problem of the decision maker. Combining QNA 

ith mathematical optimization is used in Van Nyen, Bertrand, 

an Ooijen, & Vandaele (2006) ; Zhou, Wang, He, & Goh (2017) . 

hou et al. (2017) use QNA to obtain the lead time in a manu-

acturing system to determine the optimal batch size for differ- 

nt product classes. The problem is formulated as a mixed inte- 

er program that is solved using a traversal algorithm. Van Nyen 

t al. (2006) develop a heuristic method for near-optimal produc- 

ion and inventory control decisions, where unimodality of the ob- 

ective function in the review periods is postulated after extensive 

ests, which motivated the use of a simple greedy search algorithm 

alled univariant search parallel to the axes. This greedy search al- 

orithm was shown to outperform SA. SA originates from the anal- 

gy between combinatorial optimization and the annealing process 

f solids ( Kirkpatrick, Gelatt, & Vecchi, 1983 ). Convergence theo- 

ems for global continuous optimization using SA for real-valued 

unctions are studied in Bélisle (1992) ; Locatelli (20 0 0) . SA has

een applied to continuous optimization problems in healthcare 

 Shepard, Cao, Afghan, & Earl, 2007; Wason & Jaki, 2012 ). In our

etwork decision variables are coupled. Our combined QNA and 

A approach yields a fast approach (run-time of several minutes 

or the cases in Section 5.3 ) that is amenable for use in the de-

ign phase of a laboratory. We have used discrete-event simulation 

DES) to evaluate the accuracy of our approach. The run-time of 

ES (around 15 hours for each scenario and parameter setting at 

oad 0.45 in Section 5.3 ) prohibits its direct use in optimal labora- 

ory design. 

Statement of contribution: The contribution of this paper is 

ourfold. First, for the network with one job type, Poisson arrivals, 

nd exponential service and incubation times, we obtain the LST 

f the TAT distribution. Second, for a given routing configuration 

n the general network we develop a QNA-based approximation 

f the mean TAT of each job type. We characterize the quality of 

ur approximations and show their accuracy for our purpose of 

ptimal route selection. Third, we develop an SA numerical opti- 

ization approach that provides near-optimal routing configura- 

ions and can handle large real-life instances such as the clinical 

hemistry laboratory case. Fourth, we show that our approach al- 

ows optimization of static routes in a real-world clinical chemistry 

aboratory. 

This paper is organized as follows. Section 2 introduces 

ur queueing network model for chemistry analyzer lines. 

ection 3 considers Poisson arrivals, exponential service and in- 

ubation times. Section 4 introduces our QNA and SA approach 

o obtain near-optimal routing configurations for the general net- 

ork. Section 5 numerically supports the accuracy of our approx- 

mations and applies our approach to a clinical chemistry labora- 

ory. Section 6 concludes our paper. 

. Queueing network model 

Consider an open network of nodes j = 1 , . . . , J. We will use no-

ation for networks of queues as introduced in Kelly (1979 , Chapter 

), that provides a general description of queueing networks. Jobs 

f class c = 1 , . . . , C arrive to the network with inter-arrival times

 (c) , with mean 1 /λ0 (c) , variance σ 2 (c) , and squared coefficient

0 

1103 
f variation (SCV) scv 0 (c) = σ 2 
0 
(c) λ2 

0 
(c) . Jobs require service from 

 subset R (c) ⊆ { 1 , . . . , J} of the nodes, where each node may be

isited only once. Each node j consists of two parts: a FIFO single- 

erver queue j1 and an infinite-server incubation queue j2 , see 

ig. 1 b. The operation of the node is as follows. Upon arrival, a 

ob joins the tail of the FIFO queue. Upon service completion at 

he FIFO queue, the job splits into two parts: the first part routes 

o the next node on its route, and the second part routes to the 

ncubation queue. Upon service completion of the part at the incu- 

ation queue, this part leaves the network. The service time of jobs 

f class c in queue jk , B jk (c) , has mean 1 /μ jk (c) , variance σ 2 
jk 
(c) ,

nd SCV scv s jk (c) , c = 1 , . . . , C, j = 1 , . . . , J, k = 1 , 2 . A job departs

rom the network when the service at the last FIFO node along its 

oute, and all incubation times at the nodes are completed. All ran- 

om variables for service and inter-arrival times are independent. 

et ̃  Z (s ) = E [ e −sZ ] , Re (s ) ≥ 0 , denote the LST of a non-negative ran-

om variable Z. 

Jobs of class c must visit all nodes in R (c) , but the order in

hich these nodes are visited may be different. To this end, jobs of 

lass c may be divided into types c i , i = 1 , . . . , I(c) , where each type

orresponds to a fixed route n (c i , 1) , n (c i , 2) , . . . , n ( c i , | R (c) | ) that

s available for class c along the nodes in R (c) , with n (c i , j) the j-th

ode visited by a job of type c i , i = 1 , . . . , I (c) . Clearly, I (c) ≤ | R (c) | !
s the routes per type are distinct and at most all permutations 

f nodes in R (c) may be used to assign a route to a job of class

. The TAT of a job is determined by the arrival time, the service 

ompletion time at the FIFO queue in the last node on its route, 

nd the incubation times at all nodes on the job’s route. Routing 

f the jobs in the network is governed by a central decision maker 

hat aims to minimize the mean time jobs spend in the network. 

o achieve this goal, the decision maker divides the jobs of class c

nto types by deciding what fraction p(c i ) of jobs of class c are of

ype c i , i = 1 , . . . , I(c) , 
∑ I(c) 

i =1 
p(c i ) = 1 , c = 1 , . . . , C. 

The tuple p = { (p ( 1 1 ) , . . . , p 
(
C I(C) 

)} is called a routing configu- 

ation. Let TAT (c i ) denote the TAT of a job of type c i in the net-

ork, i = 1 , . . . , I(c) , c = 1 , . . . , C. The decision maker aims to find

he static routing configuration p 

∗ that results in minimum mean 

AT for the jobs: 

p 

∗ = arg min p f TAT ( p ) , with 

f TAT ( p ) = 

C ∑ 

c=1 

I(c) ∑ 

i =1 

p(c i ) λ0 (c) 

λ0 

E [ TAT (c i )] 

s.t. 

I(c) ∑ 

i =1 

p(c i ) = 1 , c = 1 , . . . , C, 

0 ≤ p(c i ) ≤ 1 , i = 1 , . . . , I(c) , c = 1 , . . . , C, (1) 

ith λ0 = 

∑ C 
c=1 λ0 (c) the total arrival rate of jobs to the network, 

p(c i ) λ0 (c) /λ0 the fraction of jobs of type c i , and E [ TAT (c i )] the

ean TAT of jobs of type c i , i = 1 , . . . , I(c) , c = 1 , . . . , C. 

We are mainly interested in the TAT. Let S j1 (c i ) and S j2 (c i ) de-

ote the sojourn time of a job of type c i in FIFO queue j1 and

ncubation queue j2 . Let TAT j (c i ) denote the TAT from arrival to 

ode j up to and including the final node a job of type c i visits in

he network. The following result can readily be obtained. 

emma 1. The TAT of job type c i can recursively be obtained as fol- 

ows: 

AT n (c i , | R (c) | ) (c i ) = S n ( c i , | R (c) | ) 1 (c i ) + S n ( c i , | R (c) | ) 2 (c i ) , (2a) 

AT j ( c i ) = S j1 (c i ) + max 
{

S j2 (c i ) , TAT j+1 (c i ) 
}
, 

j = n ( c i , | R (c) | − 1 ) , . . . , n (c i , 1) , (2b) 

AT (c i ) = TAT n (c i , 1) (c i ) . (2c) 
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emark 2 (Sojourn time at the incubation queues; sojourn times 

t the FIFO queues) . The incubation queues are infinite-server 

ueues. The sojourn time of a job of type c i at incubation queue 

j2 equals its service time B j2 (c) , j = 1 , . . . , J, and is independent of

he sojourn times at all other queues in the network. 

The sojourn times at the FIFO queues are not affected by the in- 

ubation queues. Hence, to analyze the sojourn time of a job along 

ts path through the FIFO queues we may consider the network 

ithout the incubation queues. 

. Exponential inter-arrival, service and incubation times 

Section 3.1 introduces the network under the assump- 

ion of exponential service, incubation and inter-arrival times. 

ection 3.2 considers a tandem network with one job type. 

ection 3.3 studies the general exponential network, and optimal 

ob routing is considered in Section 3.4 . 

.1. Markov chain 

Jobs of type c i arrive to the network, at node n (c i , 1) , accord-

ng to a Poisson process with rate λ0 (c i ) . As jobs follow a fixed

oute, jobs of type c i arrive with rate λ0 (c i ) at each queue on

heir route. The service requirement of jobs of type c i is expo- 

ential with rate μ jk (c) . Let ρ jk (c i ) = λ0 (c i ) /μ jk (c) and ρ jk :=
 C 
c=1 

∑ I(c) 
i =1 

ρ jk (c i ) . Assume that ρ j1 < 1 , j = 1 , . . . , J. 

Characterization of a queue with job types requires a descrip- 

ion of the position of the jobs as well as rules for the state 

hange upon arrival of a new job or a service completion, see Kelly 

1979 , Sec. 3.1). Suppose m jk jobs are present at queue jk . Con-

ider state x jk = (x jk (1) , . . . , x jk (m jk )) , where x jk (a ) records the

ype of the job in position a . In FIFO queue j1 , the job in posi-

ion 1 is in service. If a job of type c i arrives it is added to the tail

f the queue, and the new state is x ′ 
j1 

= (x j1 (1) , . . . , x j1 (m j1 ) , c i ) .

f the job in position 1 completes service, the new state is 

 

′ 
j1 

= (x j1 (2) , . . . , x j1 (m j1 )) . In the incubation queue j2 all jobs

re in service. If the job in position a completes service, the 

ew state is x ′ 
j2 

= (x j2 (1) , . . . , x j2 (a − 1) , x j2 (a + 1) , . . . , x j2 (m j2 )) .

 new job arriving in state x j2 = (x j2 (1) , . . . , x j2 (m j2 )) moves into

osition a with probability 1 / (m j2 + 1) ; jobs previously in posi-

ions a, . . . , m j2 move to positions a + 1 , . . . , m j2 + 1 . 

The evolution of the number of jobs in the queues is recorded 

y the Markov chain {X (t) , t ∈ R } at state space X = { x =
 x 11 , x 12 , . . . , x J1 , x J2 ) : x jk = (x jk (1) , . . . , x jk (m jk )) , x jk (a ) ∈ { c i , i =
 , . . . , I(c) , c = 1 , . . . , C} , a = 1 , . . . , m jk , m jk ∈ N 0 , j = 1 , . . . , J, k =
 , 2 } . The description of the evolution of the queues is provided in

ection 2 . The transition rates for x � = x ′ are: 

 ( x , x ′ ) 

= 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

λ0 (c i ) , if x ′ 
j1 

= ( x j1 , c i ) , x 
′ 
j2 

= x j2 , x 
′ 
�k 

= x �k , 

� � = j, k = 1 , 2 , j = n (c i , 1) , 
1 

m j2 +1 
μ j1 (c) , if x ′ 

j1 
= (x j1 (2) , . . . , x j1 (m j1 )) , x j1 (1) = c i , 

x ′ 
j2 

= (x j2 (1) , . . . , x j2 (a ) , c i , 

x j2 (a + 1) , . . . , x j2 (m j2 )) , 

a = 0 , . . . , m j2 , x 
′ 
�k 

= x �k , � � = j, 

k = 1 , 2 , j = n (c i , | R (c) | ) , 
1 

m j2 +1 
μ j1 (c) , if x ′ 

j1 
= (x j1 (2) , . . . , x j1 (m j1 )) , 

x j1 (1) = c i , x 
′ 
� 1 = ( x � 1 , c i ) 

x ′ 
j2 

= (x j2 (1) , . . . , x j2 (a ) , c i , 

x j2 (a + 1) , . . . , x j2 (m j2 )) , 

a = 0 , . . . , m j2 , x 
′ 
hk 

= x hk , h � = j, �, k = 1 , 2 , 

j = n (c i , r) , � = n (c i , r + 1) , r < | R (c) | , 
μ j2 (c) , if x ′ 

j2 
= (x j2 (1) , . . . , x j2 (a − 1) , 

x j2 (a + 1) , . . . , x j2 (m j2 )) , 

x j2 (a ) = c i , a = 1 , . . . , m j2 , x 
′ 
�k 

= x �k , 

� � = j, k = 1 , 2 , j = 1 , . . . , J. 
1104 
.2. A tandem network with one job type 

In this section, we assume there is only one job type that ar- 

ives with rate λ and follows route 1 , 2 , . . . , J. Let M jk record the

umber of jobs in queue jk , 1 , . . . , J, k = 1 , 2 . First we consider two

pecial cases: zero incubation times and zero service times. Then 

e proceed with the general tandem network with one job type. 

Consider the case with zero incubation times. As a consequence 

 j2 = 0 , j = 1 , . . . , J. The random variables M j1 , j = 1 , . . . , J, are in-

ependent and the equilibrium distribution of the number of jobs 

n the queues is (Kelly, 1979, p. 37) : 

 (M 11 = m 11 , . . . , M j1 = m j1 ) = 

J ∏ 

j=1 

(
1 − λ

μ j1 

)(
λ

μ j1 

)m j1 

, 

with m j1 ∈ N 0 , j = 1 , . . . , J. (3) 

he TAT is the sum of the sojourn times S j1 in the FIFO queues, 

hich are independent exponential random variables with rate 

j1 − λ, see (Kelly, 1979, Theorem 2.2) . The LST is: 

˜ AT (s ) = 

J ∏ 

j=1 

μ j1 − λ

μ j1 − λ + s 
, Re (s ) ≥ 0 . 

Now consider the case with zero service times at the FIFO 

ueues. As a consequence M j1 = 0 , j = 1 , . . . , J. The resulting net-

ork can now be viewed as a network of J M/M/ ∞ queues in 

arallel with simultaneous Poisson arrivals with rate λ. We have 

AT = max j=1 , ... ,J { S j2 } . As the incubation times are independent 

andom variables: 

 ( TAT ≤ x ) = 

J ∏ 

j=1 

P (S j2 ≤ x ) = 

J ∏ 

j=1 

(
1 − e −μ j2 x 

)
, x ≥ 0 . (4)

e have simultaneous Poisson arrivals to the incubation queues. 

he random variables M j2 , j = 1 , . . . , J, are not independent. The

oint generating function of the number of jobs in the queues is, 

or | z j2 | ≤ 1 , j = 1 , . . . , J, ( Choi & Park, 1992 ): 

 M 12 , ... ,M J2 
(z 12 , . . . , z J2 ) 

= exp 

( 

J ∑ 

j=1 

(z j2 − 1) ρ j2 

) 

×
J ∏ 

j=2 

exp 

⎛ ⎝ 

∑ 

{ � 1 , ... ,� j }⊆{ 1 , ... ,J} 

∏ j 
m =1 

(z � m 2 − 1) ρ� m 2 ∏ j 
m =1 

∏ j 
n =1 
n � = m 

ρ� n 2 

⎞ ⎠ . (5) 

Now consider the general tandem network with one job type. 

he arrival processes to and the departure processes from the 

IFO queues coincide with those processes for the network with 

ero incubation times. From Burke’s theorem (Kelly, 1979, The- 

rem 2.1) we obtain that the arrival process to each queue jk , 

j = 1 , . . . , J, k = 1 , 2 , in the tandem with one job type, is a Pois-

on process with rate λ. Thus, the marginal distributions of the 

umber of jobs in the queues are: 

P (M j1 = m j1 ) = 

(
1 − λ

μ j1 

)(
λ

μ j1 

)m j1 

and 

P (M j2 = m j2 ) = 

1 

m j2 ! 

(
λ

μ j2 

)m j2 

e 
− λ

μ j2 , (6) 

ith m jk ∈ N 0 , j = 1 , . . . , J, k = 1 , 2 . Observe that M j2 and M ( j+1)1 ,

he queue lengths of queues j2 and ( j + 1)1 , are not independent

s the queues have simultaneous arrivals, which prohibits a prod- 

ct form expression for the joint probability of the number of jobs 

n the queues. 

We have the following results for the sojourn times. 
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emma 3. In the tandem network with one job type, the sojourn 

imes of the jobs in the queues in the network are independent ex- 

onential random variables with rate μ j1 − λ for queues j1 and rate 

j2 for queues j2 , j = 1 , . . . , J. 

roof. The sojourn times at queue j2 , j = 1 , . . . , J, are exponential

andom variables that are independent of the sojourn times of the 

obs at the FIFO queues. Also observe that the arrival processes to 

he FIFO queues in the network with incubation queues and in the 

etwork without these incubation queues coincide. Thus, the so- 

ourn times of the jobs at each of these J FIFO queues are indepen- 

ent exponential random variables (Kelly, 1979, Theorem 2.2) . As a 

onsequence the sojourn times at all the queues are independent 

xponential random variables. �

heorem 4. For the tandem network with one job type, the LST of 

he TAT can recursively be obtained as follows: ˜ AT J (s ) = ̃

 S J1 (s ) ̃  S J2 (s ) , (7a) 

˜ AT j (s ) = ̃

 S j1 (s ) ̃  S j2 (s ) 

(
s 

s − μ j2 

˜ TAT j+1 ( μ j2 )−
μ j2 

s − μ j2 

˜ TAT j+1 ( s ) 

)
, 

j = J − 1 , . . . , 1 , (7b)

˜ AT (s ) = 

˜ TAT 1 (s ) , (7c) 

here ̃  S j1 (s ) = 

μ j1 −λ

μ j1 −λ+ s and ̃  S j2 (s ) = ̃

 B j2 (s ) = 

μ j2 

μ j2 + s , j = 1 , . . . , J. 

roof. From Lemma 1 we obtain ˜ AT J (s ) = ̃

 S J1 (s ) ̃  S J2 (s ) , (8) 

AT j = S j1 + S j2 + max 
{

0 , TAT j+1 − S j2 
}
, j = J − 1 , . . . , 1 . (9) 

f A is exponentially distributed with rate μ, and A and S are inde- 

endent random variables, then the LST of W = max { S − A, 0 } is: 

˜ 

 (s ) = 

s 

s − μ
˜ S ( μ) − μ

s − μ
˜ S (s ) , (10) 

ee, e.g., (Adan & Resing, 2015, Section 7.5) , where this result is 

erived for Lindley’s equation. Lemma 3 implies that the sojourn 

imes S j2 in the incubation queues are exponential random vari- 

bles, independent of TAT j+1 , which allow us to use (10) to obtain 

7b) . �

orollary 5. The mean TAT is obtained as follows: 

 [ TAT J ] = E [ S J1 ] + E [ S J2 ] , (11a) 

E [ TAT j ] = E [ S j1 ] + E [ S j2 ] P 

(
S j2 > TAT j+1 

)
+ E [ TAT j+1 ] , 

j = J − 1 , . . . , 1 , (11b) 

 [ TAT ] = E [ TAT 1 ] , (11c) 

here E [ S j1 ] = 

1 
μ j1 −λ

and E [ S j2 ] = 

1 
μ j2 

, j = 1 , . . . , J. 

roof. We may obtain (11b) from (7b) by differentiation, or from 

2b) by taking expectations as follows. If X , Y are independent ran- 

om variables, and X is exponentially distributed, then 

 [ max { X, Y } ] = E [ Y ] + E [ max { X − Y, 0 } ] = E [ Y ] + E [ X ] P (X > Y ) ,
(12) 

here, for X exponentially distributed with rate μ, we have used 

hat 

 [ max { X − Y, 0 } ] = 

∫ ∞ 

0 

d F Y (y ) 

∫ ∞ 

y 

(x − y ) μe −μx d x 

= 

∫ ∞ 

e −μy d F Y (y ) 

∫ ∞ 

xμe −μx d x = E [ X ] ̃  Y (μ) , 

0 0 

1105 
P (X > Y ) = 

∫ ∞ 

0 

d F Y (y ) 

∫ ∞ 

y 

μe −μx d x 

= 

∫ ∞ 

0 

e −μy d F Y (y ) = 

˜ Y (μ) . (13) 

nserting X = S j2 and Y = TAT j+1 in (12) yields (11b) . �

emark 6. Observe from (13) that P 

(
S j2 > TAT j+1 

)
= 

˜ TAT j+1 (μ j2 ) . 

his LST is obtained in Theorem 4 , providing an explicit method to 

alculate Corollary 5 . 

emark 7 (Generally distributed incubation times) . Observe that 

heorem 4 and Corollary 5 require the incubation times at all 

odes to be exponentially distributed. We may extend the results 

f the equilibrium distribution in (6) and the independence result 

n Lemma 3 to the network with generally distributed incubation 

imes. For (6) observe that the infinite-server queue is insensitive 

o the distribution of the service time except for its mean ( Taylor, 

011 ). For Lemma 3 observe that the service times at the queues 

re independent random variables. 

.3. Multiple job types and fixed routes 

This section considers the general exponential network with 

ultiple job types, fixed routes, exponential service times and 

oisson arrivals, under the assumption that the service rates at 

he FIFO queues do not depend on the job types: μ j1 (c) = μ j1 , 

j = 1 , . . . , J, c = 1 , . . . , C. We first consider the special cases with

ero incubation and zero service times. 

Consider the case with zero incubation times. From (Kelly, 1979, 

heorem 3.1) we obtain that {X (t) , t ∈ R } has unique product

orm equilibrium distribution 

( x ) = 

J ∏ 

j=1 

π j1 ( x j1 ) , x = ( x 11 , . . . , x J1 ) , (14) 

j1 ( x j1 ) = (1 − ρ j1 ) 

m j1 ∏ 

l=1 

λ0 (x j1 (� )) 

μ j1 

, 

x j1 = (x j1 (1) , . . . , x j1 (m j1 )) , j = 1 , . . . , J. (15) 

The Arrival Theorem (Kelly, 1979, p. 63) gives that the marginal 

istribution of the sojourn time in queue j1 is equal to the so- 

ourn time as if it were an isolated M/M/1 queue with Poisson 

rrivals with rate λ j1 , j = 1 , . . . , J. Hence, this marginal distribu- 

ion is exponential with rate μ j1 − λ j1 . The sojourn times in the 

ueues are not independent in general, for example due to over- 

aking ( Melamed, 1982 ). The TAT of a job of type c i is 

TAT (c i ) = 

∑ 

j∈ R (c) 

S j1 , 

so the mean TAT is E [ TAT (c i )] = 

∑ 

j∈ R (c) 

1 

μ j1 − λ j1 

. (16) 

Now consider the case with zero service times at the FIFO 

ueues. The route, and therefore its type, of a job c i does not 

nfluence its TAT as its arrival results in | R (c) | simultaneous ar- 

ivals to the incubation queues visited by class c jobs. Hence 

AT (c i ) = max j∈ R (c) { S j2 (c) 
}

, i = 1 , . . . , I(c) , c = 1 , . . . , C. As the in-

ubation times are independent random variables: 

 ( TAT (c i ) ≤ x ) = P ( TAT (c) ≤ x ) = 

∏ 

j∈ R (c) 

(
1 − e −μ j2 (c) x 

)
, x ≥ 0 . 

(17) 

he mean TAT of a job of type c i is readily obtained as: 

 [ TAT (c i )] = 

∫ ∞ 

0 

(
1 −

∏ 

j∈ R (c) 

(
1 − e −μ j2 (c) x 

))
d x 
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f

= 

∫ ∞ 

0 

| R (c) | ∑ 

r=1 

∑ 

{ � 1 , ... ,� r }⊆{ 1 , ... ,J} 
( −1 ) 

r+1 e −( 
∑ r 

m =1 μ� m 2 (c) ) x d x 

= 

| R (c) | ∑ 

r=1 

∑ 

{ � 1 , ... ,� r }⊆{ 1 , ... ,J} 

( −1 ) 
r+1 ∑ r 

m =1 μ� m 2 (c) 
. (18) 

he result from Choi & Park (1992) for the joint probability gener- 

ting function of the queue lengths does not extend to this case as 

t requires that there is only one job class. 

Now consider the general exponential network with multiple 

ob types and fixed routes. Observe again that the arrival process 

o the FIFO queues in the network with incubation queues and in 

he network without these incubation queues coincide. As a con- 

equence, the marginal distribution of the number of jobs in the 

IFO queues is given in (14) and (15) . 

emark 8 (Generally distributed incubation times) . For generally 

istributed incubation times, the marginal distribution of the num- 

er of jobs in the FIFO queues is given in (14) and (15) . 

For this general exponential network we do not have explicit 

esults for the LST of the TAT. However, from the Arrival Theo- 

em (Kelly, 1979, p. 63) we readily obtain that for job class c the 

arginal distribution of the sojourn at queue j1 is exponentially 

istributed with rate μ j1 − λ j1 . As the incubation times are inde- 

endent random variables, the sojourn time at queue j2 is expo- 

entially distributed with rate μ j2 (c) . The mean sojourn time at 

he queues is: 

 [ S j1 (c)] = 

1 

μ j1 − λ j1 

and E [ S j2 (c)] = 

1 

μ j2 (c) 
, j = 1 , . . . , J. 

(19) 

ach job type proceeds along its fixed route through the nodes in 

 (c) as if this route is a tandem network. This gives the following

esult. 

orollary 9. The mean TAT for job type c i is obtained as follows: 

 [ TAT n (c i , | R (c) | ) (c i )] = E [ S n (c i , | R (c) | )1 (c)] + E [ S n (c i , | R (c) | )2 (c)] , (20a) 

 [ TAT j (c i )] = E [ S j1 (c)] + E [ S j2 (c)] P 

(
S j2 (c) > TAT j+1 (c i ) 

)
+ E [ TAT j+1 (c i )] , j = n (c i , | R (c) | − 1) , . . . , n (c i , 1) , (20b) 

 [ TAT (c i )] = E [ TAT n (c i , 1) (c i )] , (20c) 

ith i = 1 , . . . , I(c) , c = 1 , . . . , C. 

Corollary 9 is obtained from Lemma 1 by considering 

 [ max { S j2 (c) , TAT j+1 (c i ) } ] , j = 1 , . . . , J, by analogy with the result

f Corollary 5 . In contrast with the result of Corollary 5 , we do not

ave explicit results for P 

(
S j2 (c) > TAT j+1 (c i ) 

)
or the distribution 

f TAT j , j = 1 , . . . , J. Therefore, Corollary 9 does not enable us to

xplicitly evaluate the mean TAT. 

.4. Optimal routing configuration 

Let μ j1 (c) = μ j1 , c = 1 , . . . , C, j = 1 , . . . , J. Consider the case

ith zero incubation times. Combining (16) and (1) : 

f TAT ( p ) = 

C ∑ 

c=1 

I(c) ∑ 

i =1 

p(c i ) λ0 (c) 

λ0 

∑ 

j∈ R (c) 

1 

μ j1 − λ j1 

= 

C ∑ 

c=1 

λ0 (c) 

λ0 

∑ 

j∈ R (c) 

1 

μ j1 − λ j1 

. (21) 

or zero incubation times, the objective function does not depend 

n the routing configuration as each job of class c must visit all 
1106 
odes in R (c) and the load of the nodes is determined only by the

rrival rate of jobs to the nodes. Optimal design of static routes is 

onsidered in Kameda & Zhang (1995) ; Shaler (2009) . 

For zero service times at the FIFO queues, the type c i does not 

nfluence its TAT as its arrival results in | R (c) | simultaneous ar- 

ivals to the incubation queues visited by class c jobs. As a con- 

equence, the mean TAT of the jobs is the same for each routing 

onfiguration. 

. General inter-arrival, service, and incubation times 

This section considers the mean TAT for the network with mul- 

iple job types, fixed routes and generally distributed inter-arrival, 

ervice and incubation times. The TAT distribution is not avail- 

ble in closed form. Thus, we do not have explicit results for the 

erm E [ max { S j2 (c) , TAT j+1 (c i ) } ] in (2b) , which also prohibits ex-

licit evaluation of the mean TAT. We propose a two step approach 

o approximate the mean TAT. First, in Section 4.1 , we approximate 

 [ max { S j2 (c) , TAT j+1 (c i ) } ] , and subsequently in Section 4.2 we in-

oke the Queueing Network Analyzer (QNA). Section 4.3 considers 

ptimization of the routing configuration via a Simulated Anneal- 

ng (SA) approach. 

.1. Approximation of the mean TAT 

Evaluation of the mean TAT is cumbersome for generally dis- 

ributed service and incubation times since we do not have an ex- 

licit expression for E [ max { S j2 (c) , TAT j+1 (c i ) } ] in (2b) . 

We first elaborate on bounds for the expectation E [ max { X, Y } ]
or independent and non-negative random variables X , Y . We have 

ax { E [ X ] , E [ Y ] } ≤ E [ max { X, Y } ] , (22) 

 [ max { X, Y } ] ≤ E [ X ] + E [ Y ] , (23) 

here (22) follows by Jensen’s inequality since f (X, Y ) = 

ax (X, Y ) is convex, and (23) follows from max { X, Y } = X + Y −
in { X, Y } . If we further assume that X and Y are independent and

hat X is exponentially distributed we may evaluate the error in 

he lower bound (22) as 

E [ max { X, Y } ] − max { E [ X ] , E [ Y ] } 
= 

{
E [ X ] P (X > Y ) , if E [ Y ] ≥ E [ X ] , 
E [ Y ] − E [ X ] P (X ≤ Y ) , if E [ Y ] < E [ X ] . 

(24) 

ssuming that X and Y are independent and both exponentially 

istributed, we may sharpen the upper bound in (23) to 

 [ max { X, Y } ] = E [ X ] + E [ Y ] − E [ X ] E [ Y ] 

E [ X ] + E [ Y ] 
. (25)

f E [ X] and E [ Y ] differ considerably in magnitude, then the upper

nd lower bound, (23) and (22) , tend to be close to E [ X] if E [ X] >>

 [ Y ] , and close to E [ Y ] , otherwise, so that the lower bound

ax { E [ X] , E [ Y ] } may be a good approximation of E [ max { X, Y } ] . 
To approximate E [ max { S j2 (c) , TAT j+1 (c i ) } ] , observe that, of-

en, the expected incubation time at queue j is smaller than 

he expected TAT from the subsequent nodes on the route 

f a job: E [ S j2 (c i )] < E [ TAT � (c i )] , j = n (c i , r) , � = n (c i , r + 1) , i =
 , . . . , I(c) , r = 1 , . . . , | R (c) | − 1 , c = 1 , . . . , C. The longer the resid-

al route of the job from node j, the larger the difference be- 

ween these two expectations. In contrast, towards the end of 

 job’s route the incubation time may outweigh the residual 

AT. This supports the approximation E [ max { S j2 (c) , TAT j+1 (c i ) } ] ≈
ax { E [ S j2 (c)] , E [ TAT j+1 (c i )] } . In our numerical results we will also

onsider the upper bound in (23) , and the approximation resulting 

rom (25) , see Section 5.2 and Section 5.3 . 
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pproximation 10 (Approximation of the mean TAT) . For i = 

 , . . . , I(c) , c = 1 , . . . , C, let ̂ TAT (c i ) be determined as ̂ AT n (c i , | R (c) | ) (c i ) = E [ S n (c i , | R (c) | )1 (c)] + E [ S n (c i , | R (c) | )2 (c)] , ̂ TAT j (c i ) = E [ S j1 (c)] + max { E [ S j2 (c)] , ̂  TAT j+1 (c i ) } , 
j = n (c i , | R (c) | − 1) , . . . , n (c i , 1) , ̂ TAT (c i ) = 

̂ TAT n (c i , 1) (c i ) . 

.2. Queueing Network Analyzer 

Approximation 10 requires the mean sojourn times at the FIFO 

ueues. The sojourn times at the FIFO queues are not affected by 

he incubation queues, see Remark 2 . We will use the QNA to ap-

roximate the mean sojourn times at the FIFO queues in our net- 

ork. 

The QNA basically assumes that all FIFO queues are indepen- 

ent GI/G/ 1 queues for which the mean waiting time is approxi- 

ated using a modified version of Kingman’s approximation 

 j1 = 

τ j1 ρ j1 ( scv a j1 + scv s j1 ) g j1 
2(1 − ρ j1 ) 

, 

g j1 = 

{
exp 

[
− 2(1 −ρ j1 ) 

3 ρ j1 

(1 −scv a j1 ) 

scv a j1 + scv s j1 

]
, scv a j1 < 1 , 

1 , scv a j1 ≥ 1 , 
(27) 

ith scv a j1 the SCV of the aggregated inter-arrival times of the ar- 

ival process to queue j1 , scv s j1 the SCV of the aggregated service 

ime distribution at queue j1 , τ j1 the mean service time of a ran- 

om job at queue j1 , j = 1 , . . . , J, see Whitt (1983b) . For scv a j1 <

 , we obtain the Kraemer and Langenbach-Belz approximation 

 Krämer & Langenbach-Belz, 1976 ), and for scv a j1 ≥ 1 , (27) reduces 

o Kingman’s approximation ( Kingman, 1961 ). The QNA is included 

n Appendix A . We obtain the approximate mean sojourn time, S j1 , 

f job type c i at queue j1 as 

 j1 (c) = W j1 + E [ B j1 (c)] , j = 1 , . . . , J, c = 1 , . . . , C. (28)

We propose the following approximation for the mean TAT of 

obs of type c i that is obtained using the QNA for the mean sojourn 

imes in the FIFO queues in Approximation 10 . 

pproximation 11 (Approximation of the mean TAT using the 

NA) . For i = 1 , . . . , I(c) , c = 1 , . . . , C, let TAT (c i ) be determined as

AT n (c i , | R (c) | ) (c i ) = S n (c i , | R (c) | )1 (c) + E [ S n (c i , | R (c) | )2 (c)] , (29a) 

AT j (c i ) = S j1 (c) + max { E [ S j2 (c)] , TAT j+1 (c i ) } , 
j = n (c i , | R (c) | − 1) , . . . , n (c i , 1) , (29b) 

AT (c i ) = TAT n (c i , 1) (c i ) . (29c) 

The QNA is exact for a network with one job type, Poisson ar- 

ivals and exponential service times ( Whitt, 1983b ). In Section 5.3 , 

e investigate the quality of Approximation 11 using both inter- 

hanging of mean and max and the QNA for the relevant range of 

arameters in our network. 

.3. Simulated Annealing for optimal routing configuration in the 

NA 

This section introduces a Simulated Annealing (SA) approach to 

btain a near-optimal routing configuration in the QNA, and an 

pproximate upper bound on the optimality gap, for the network 

ith general inter-arrival, service and incubation times and multi- 

le job types. 
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For real life instances, such as the clinical chemistry labora- 

ory case, determining the optimal routing configuration from the 

athematical program (1) with TAT replaced by TAT is infeasible 

onsidering the size of its solution space and its non-convex ob- 

ective function. In Appendix B we provide a counterexample for 

onvexity of the objective function. 

We follow the general SA setting, which requires a feasible ini- 

ial solution, neighborhood, acceptance probabilities, and a cooling 

cheme ( van Laarhoven & Aarts, 1987 ). An initial solution may be 

btained by letting all job types visit their required nodes in de- 

reasing order of the mean incubation times. Our numerical ex- 

eriments show that this is a good rule of thumb that is often 

lose to the optimal routing configuration. Alternatively, if an ini- 

ial network design is already in place, we may select its rout- 

ng configuration as the initial solution. The neighboring solutions 

re constructed such that they lie close to the current solution 

nd that it is possible to reach each possible valid routing con- 

guration. Neighboring solutions are obtained by adding a uni- 

ormly distributed value to the current fractions: p(c i ) := p(c i ) + 

nif (−0 . 01 , 0 . 01) , where values larger than 1 and smaller than 0

re rounded off to 1 and 0. The resulting fractions are normalized 

uch that for each job class these fractions sum up to 1: 

p(c i ) := 

p(c i ) ∑ I(c) 
i =1 

p(c i ) 
, i = 1 , . . . , I(c) , c = 1 , . . . , C. 

cceptance of a neighboring solution depends on the acceptance 

robabilities which are a function of the value of the current so- 

ution ( f current ), the value of the neighboring solution ( f neighb ) and

he current cooling parameter ( d): 

 accept ( f neighb , f current , d) = 

{
1 , if f neighb ≤ f current , 

e ( f current − f neighb ) /d , if f neighb > f current . 

he SA algorithm can accept routing configurations that result in a 

igher objective value to avoid getting stuck in a local minimum. 

loser to the stopping value for d, the algorithm is less likely to 

ccept a routing configuration that is worse. The cooling scheme 

s chosen such that the fraction of accepted transitions for the ini- 

ial value of the cooling parameter d is approximately equal to 1. 

fter a fixed number of k steps (in literature referred to as fixed 

arkov chain length), the cooling parameter will be decreased by 

 fixed factor. Both the decrease factor and the number of steps k 

ill depend on the problem instance, see Sections 5.3 and 5.4.2 . 

An approximate upper bound on the optimality gap of a near- 

ptimalsolution is obtained via comparison with the lower bound 

f the objective function value in the QNA. A lower bound on the 

bjective value in the QNA is obtained as follows. Observe that τ j1 , 

j1 and scv s j1 do not depend on the routing configuration as the 

otal arrival rate and service duration at the modules are the same 

or each configuration. Observe from (27) that minimum waiting 

imes are then obtained by minimizing scv a j1 and g j1 , i.e., by as- 

uming deterministic inter-arrival times of the jobs at the nodes. 

etting jobs route through the nodes from highest to lowest incu- 

ation time and using these minimum waiting times at the FIFO 

ueues yields a lower bound on the objective function value and, 

ence, an approximate upper bound on the optimality gap. 

. Optimal routing configurations 

We start this section with an illustration of the relation be- 

ween service times and incubation times for the network with 

ne job type, Poisson arrivals, exponential service and incuba- 

ion times in Section 5.1 . Section 5.2 investigates the impact of 

pproximation 10 on the mean TAT and the routing configura- 

ion. Section 5.3 provides numerical results on the accuracy of our 

umerical procedure using the QNA and SA for general networks. 
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Fig. 2. Switching curve for the network of 2 and 3 nodes with λ = 0 . 5 and μ21 = 1 , and μ31 = 1 . 
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ection 5.4 applies our method to design the optimal routing con- 

guration for one analyzer line of the laboratory of the Erasmus 

C. 

.1. Impact of service and incubation times on the routing 

onfiguration 

The impact of the service and incubation times on the optimal 

outing configuration is considered for a network of two and of 

hree nodes with one job type, Poisson arrivals, exponential service 

nd incubation times. 

First, consider a network of two nodes, node 1 and node 2. Let 

AT 12 and TAT 21 denote the TAT when the jobs visit the nodes in 

he sequence 12 and 21. From Corollary 5 , 

 [ TAT 12 ] = E [ S 11 ] + E [ S 12 ] P ( S 12 > S 21 + S 22 ) + E [ S 21 ] + E [ S 22 ] , 

ith similar expression for E [ TAT 21 ] . As all random variables are 

xponential, we readily obtain 

 ( S 12 ≤ S 21 + S 22 ) = 

μ12 (μ12 + μ21 + μ22 − λ) 

(μ12 + μ21 − λ)(μ12 + μ22 ) 
, (30) 

o that 

 [ TAT 12 ] ≤ E [ TAT 21 ] ⇐⇒ 

μ22 (μ22 + μ11 − λ) − μ12 (μ12 + μ21 − λ) ≥ 0 . (31) 

he switching curve E [ TAT 12 ] = E [ TAT 21 ] is depicted in Fig. 2 a

or λ = 0 . 5 and μ21 = 1 . Above the curve it is optimal to first

isit node 1. The switching curve is symmetrical in the nodes. The 

eemingly larger volume where first visiting node 1 is preferred is 

ue to setting μ21 = 1 . As a rule of thumb, if μ11 does not deviate

uch from μ21 , then it is optimal to first visit the node with the

argest incubation time, which is in agreement with intuition. 

Now consider a network of 3 nodes. We will compare E [ TAT 123 ] 

nd E [ TAT 213 ] denoting the mean TAT when the jobs visit 

he nodes in the sequence 123 and 213. All expressions in 

orollary 5 may be explicitly evaluated to obtain a switching curve 

 [ TAT 123 ] = E [ TAT 213 ] that is depicted for λ = 0 . 5 and μ21 = μ31 =
 and two values for μ32 in Figs. 2 b and 2 c. Observe that these

urves resemble the switching curve for the network of two nodes. 

isiting node 1 first becomes more favorable when μ11 increases. 

gain, in agreement with intuition, among nodes 1 and 2, it seems 

ptimal to first visit the node with the largest incubation time. 

The last two nodes in the network of three nodes have Pois- 

on arrivals (Burke’s theorem (Kelly, 1979, Theorem 2.1) ), and may 

herefore be considered as a network of two nodes that should be 

rranged such that the node with the largest incubation time is 

isited first. As a consequence, as a rule of thumb, also in the net- 

ork of three nodes the nodes should be visited in decreasing order 

f the incubation times . 
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.2. Accuracy of approximation 10 

We first investigate the error in Approximation 10 for a tandem 

etwork of five nodes. Then, we investigate the effects of the error 

n this approximation on the routing configuration. 

Section 4.1 indicates that the error E [ TAT (c i )] − ̂ TAT (c i ) in the

pproximation is mainly incurred in the last nodes along a route 

hen the incubation times are identically and exponentially dis- 

ributed. Following up on this claim, for a tandem of length 5 

n which all jobs visit the nodes in the sequence 12345, Table 1 

resents P (S j2 > TAT j+1 ) , 
̂ TAT j , and the error in Approximation 10 ,

j = 1 , . . . , 4 , for λ = 0 . 5 , and 7 scenarios for the exponential service

uration in the queues. We omitted 

̂ TAT 5 as Approximation 10 is 

xact for the last node in the tandem. In scenarios 1, 2, and 3, the

ncubation times are all exponentially distributed with the same 

ate. Observe that P (S j2 > TAT j+1 ) increases in j. The error in the 

pproximation 

̂ TAT j for scenario 1 is equal to 0.17 for node 4; at 

ode 3 the error increases by 0.06 to 0.23; at node 2 the error in-

reases by 0.02 to 0.25; and at node 1 by 0.02 to 0.27. This shows

hat for a tandem with identically distributed incubation times the 

rror in 

̂ TAT j is mainly incurred in the last nodes on the route. 

his result seems to extend to tandems in which the incubation 

ates μ j2 are similar, as illustrated in scenarios 4 and 5. These 

esults support Approximation 10 that interchanges max and ex- 

ectation. In scenarios 6 and 7, jobs visit the nodes in order of 

ubstantially increasing incubation rates μ j2 . The monotonicity in 

 (S j2 > TAT j+1 ) breaks down as the long incubation times at the 

nitial nodes of the tandem extend beyond the mean sojourn time 

long the FIFO queues. 

For the networks of Section 5.1 we now compare the switching 

urves from the exact mean TAT and Approximation 10 . For the 

etwork with two nodes, let ̂ TAT i j denote the approximated TAT 

hen node i is visited first. Approximation 10 gives 

̂ AT 12 = 

1 

μ11 − λ
+ max 

{ 
1 

μ12 

, 
1 

μ21 − λ
+ 

1 

μ22 

} 
, 

ith similar expression for ̂ TAT 21 . The switching curve under 

pproximation 10 is μ12 = μ22 . Fig. 3 a depicts the switching 

urves for multiple values of μ11 . The approximate switching curve 

ies in the area where node 2 should be visited first under the ex- 

ct solution. Hence, the error between the switching curves is due 

o visiting node 1 first instead of node 2 first as indicated by the 

xact switching curves. The error in the TAT approximation is max- 

mum at the curve μ12 = μ22 . On the switching curve μ12 = μ22 

or λ = 0 . 5 , μ11 = 0 . 6 and μ21 = 1 , Table 2 a presents the exact

alues E [ TAT 12 ] , E [ TAT 21 ] , as well as lower bound 

̂ TAT obtained

rom (22) , ̂ TAT 12 , exp , and 

̂ TAT 21 , exp under approximation (25) , and 

he upper bound 

̂ TAT UB obtained from (23) . The approximation ̂ AT is better for E [ TAT 21 ] than for E [ TAT 12 ] as μ12 = μ22 lies in

he area where node 2 must be visited first. Observe that the dif- 

erence between E [ TAT ] , E [ TAT ] and 

̂ TAT decreases in μ . To
12 21 12 
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Table 1 

The error E [ TAT j ] − ̂ TAT j . Scenarios 1–3: μ j2 = 1 , scenarios 4–7: μ j1 = 1 , j = 1 , . . . , 5 . 

Scen.: 

(μ j1 , μ j2 ) P (S j2 > TAT j+1 ) ̂ TAT j + error 

j = 1 2 3 4 5 1 2 3 4 1 2 3 4 

1 (1,1) (1,1) (1,1) (1,1) (1,1) 0.013 0.027 0.060 0.167 11.00 + 0.27 9.00 + 0.25 7.00 + 0.23 5.00 + 0.17 

2 (0.8,1) (0.9,1) (1,1) (1.1,1) (1.2,1) 0.014 0.034 0.081 0.206 11.93 + 0.33 8.60 + 0.32 6.10 + 0.29 4.10 + 0.21 

3 (1.2,1) (1.1,1) (1,1) (0.9,1) (0.8,1) 0.010 0.017 0.037 0.115 11.93 + 0.18 10.50 + 0.17 8.83 + 0.15 6.83 + 0.12 

4 (1,1.2) (1,1.1) (1,1) (1,0.9) (1,0.8) 0.008 0.020 0.055 0.168 11.25 + 0.27 9.25 + 0.26 7.25 + 0.24 5.25 + 0.19 

5 (1,0.8) (1,0.9) (1,1) (1,1.1) (1,1.2) 0.022 0.034 0.065 0.163 10.83 + 0.28 8.83 + 0.25 6.83 + 0.21 4.83 + 0.15 

6 (1,0.2) (1,0.4) (1,0.6) (1,0.8) (1,1) 0.222 0.129 0.129 0.214 11.00 + 1.91 9.00 + 0.8 7.00 + 0.48 5.00 + 0.27 

7 (1,0.1) (1,0.3) (1,0.5) (1,0.7) (1,0.9) 0.413 0.183 0.157 0.234 12.00 + 4.50 9.11 + 1.26 7.11 + 0.65 5.11 + 0.33 

Table 2 

TAT values on the switching curve μ12 = μ22 for λ = 0 . 5 , μ11 = 0 . 6 and μ21 = μ31 = 

μ32 = 1 . 

(a) Network with two nodes. 

μ12 E [ TAT 12 ] E [ TAT 21 ] ̂ TAT ̂ TAT 12 , exp 
̂ TAT 21 , exp 

̂ TAT UB 

0.2 18.79 17.83 17.00 19.08 18.25 22.00 

0.4 15.19 14.75 14.50 15.39 14.92 17.00 

0.6 14.05 13.79 13.67 14.19 13.88 15.33 

0.8 13.49 13.32 13.25 13.60 13.38 14.50 

1 13.17 13.05 13.00 13.25 13.08 14.00 

(b) Network with three nodes. 

μ12 E [ TAT 123 ] E [ TAT 213 ] ̂ TAT ̂ TAT 123 , exp 
̂ TAT 213 , exp 

̂ TAT UB 

0.2 19.27 18.58 17.00 20.03 19.31 25.00 

0.4 16.59 16.21 15.00 16.86 16.51 20.00 

0.6 15.84 15.59 15.00 15.98 15.78 18.33 

0.8 15.51 15.34 15.00 15.60 15.47 17.50 

1 15.35 15.22 15.00 15.41 15.32 17.00 

Fig. 3. Switching curves for the network with λ = 0 . 5 and μ21 = 1 . 
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nderstand this, observe that the term E [ S 12 ] P (S 12 ≤ S 21 + S 22 ) in

30) is decreasing in μ12 . The upper bound 

̂ TAT UB seems less accu- 

ate, while ̂ TAT 12 , exp , and 

̂ TAT 21 , exp seem to overestimate the true 

alues and are a good approximation of these values. 

We now consider TAT 123 and TAT 213 for the network with three 

odes. The switching curve under Approximation 10 is μ12 = μ22 if 

ax { 1 /μ12 , 1 /μ22 } ≥ 1 / (μ31 − λ) + 1 /μ32 , otherwise the order of

isiting nodes 1 and 2 is irrelevant. Fig. 3 b depicts these switch- 

ng curves for three choices of μ31 and μ32 . The black square in- 

icates that for these parameters it is irrelevant in which order 
1109 
odes 1 and node 2 are visited. The line μ12 = μ22 is a good ap-

roximation of the true switching curve. Table 2 b presents the val- 

es of E [ TAT 123 ] , E [ TAT 213 ] , 
̂ TAT , ̂ TAT 123 , exp , 

̂ TAT 213 , exp and 

̂ TAT UB on

12 = μ22 for λ = 0 . 5 , μ11 = 0 . 6 and μ21 = μ31 = μ32 = 1 . As for

wo nodes, the difference between E [ TAT 123 ] , E [ TAT 213 ] , and 

̂ TAT

ecreases in μ12 . Conclusions on the accuracy of ̂ TAT UB 
̂ TAT 123 , exp , 

nd 

̂ TAT 213 , exp coincide with the two node case. 

Observe from Tables 2 a, and 2 b that it seems optimal for equal

ncubation times μ12 = μ22 to visit the nodes in increasing order of 

he service times at the FIFO queues , which is intuitively clear as this 

esults in an earlier start of the first incubation time. 

.3. Accuracy of approximation 11 and optimal routing configurations 

This section considers the accuracy of Approximation 11 using 

bjective function (1) with TAT replaced by TAT to obtain optimal 

outes by comparison with discrete-event simulation (DES), where 

e have used the replication/deletion approach using Welch’s 

raphical method ( Law, 2015 ). Subsequently, we will study perfor- 

ance of our SA approach to determine near-optimal routes. Ap- 

roximations using (23) or (25) are considered for the scenarios 

ith non-zero incubation times. 

Consider a network of three nodes with two job classes and 

welve possible job types, along with six scenarios for inter-arrival, 

ervice and incubation times as displayed in Table 3 . We will fo- 

us on the impact of the SCV of the inter-arrival and service times 

nd the mean of the incubation times. Therefore, in our experi- 

ents, the incubation times are deterministic with different val- 

es for their means, the service times have mean E [ B j1 (c)] = 1 ,

 = 1 , 2 , j = 1 , 2 , 3 , and different SCV, the inter-arrival times have

ifferent SCV, where these SCVs are chosen as deterministic (SCV 

 0), exponential (SCV = 1), or log-normal (SCV � = 0, 1). For ex-

mple, Scenario 4 refers to the network in which both job classes 

ave Poisson arrivals, service times have SCV 0, 1, and 2 at the 

hree FIFO queues, and incubation times are 8, 4, 1, 1, 4, and 8 time

nits. In our experiments we vary the load at the FIFO queues via 

our cases of the arrival rates, ranging from A: λ0 (1) = λ0 (2) = 0 . 2

low–moderate load) to D: λ0 (1) = λ0 (2) = 0 . 45 (high load). 

Motivation for the selection of the scenarios is as follows. Sce- 

arios 1 and 2 contain the FIFO queues only and are included 

o zoom in on the accuracy of the QNA in the relevant range 

f system parameters for the FIFO queues. The QNA is exact for 

he mean waiting times in Scenario 3 with exponential service 

imes ( Whitt, 1983b ). This scenario focuses on the impact of the 

ncubation times on the optimal routes. Scenarios 3, 4 and 5 con- 

ider the impact of variability of the inter-arrival and service times. 

cenarios 1, 4 and 6 focus on the impact of the incubation times. 

ote that the sojourn time of a job along its path through the FIFO 

ueues is identical in Scenarios 1, 4, and 6, as well as in Scenarios 

 and 5, see Remark 2 . 

Table 4 presents a comparison of the mean TAT along the 

IFO queues from our QNA approximation and DES including 95% 

onfidence interval (CI) for the case in which job type 1 passes 
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Table 3 

Job classes, job types and scenarios in the numerical experiments. 

(a) Job classes. 

c R (c) 

1 {1,2,3} 

2 {1,2,3} 

(b) Job types. 

c i Route c i Route 

1 1 1,2,3 2 1 1,2,3 

1 2 1,3,2 2 2 1,3,2 

1 3 2,1,3 2 3 2,1,3 

1 4 2,3,1 2 4 2,3,1 

1 5 3,1,2 2 5 3,1,2 

1 6 3,2,1 2 6 3,2,1 

(c) Scenarios. 

Scenario: 1 2 3 4 5 6 

scv (1) 1 0 1 1 0 1 

scv (2) 1 2 1 1 2 1 

scv s 11 0 1 1 0 1 0 

scv s 21 1 1 1 1 1 1 

scv s 31 2 1 1 2 1 2 

E [ B 12 (1)] 0 0 8 8 8 0 

E [ B 22 (1)] 0 0 4 4 4 8 

E [ B 32 (1)] 0 0 1 1 1 0 

E [ B 12 (2)] 0 0 1 1 1 0 

E [ B 22 (2)] 0 0 4 4 4 8 

E [ B 32 (2)] 0 0 8 8 8 0 
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he queues in the sequence 123 and type 2 in the sequence 123 

 p(1 1 ) = p(2 1 ) = 1 ) or 321 ( p(1 1 ) = p(2 6 ) = 1 ) for scenarios 1, 4

nd 6 (top part) and scenarios 2 and 5 (bottom part). These tables 

lso list the mean waiting times at the queues to provide more de- 

ailed insight into the origin of the approximation error. Note that 

he mean waiting times at the FIFO queues in Scenarios 2 and 5 

or route p(1 1 ) = 1 and p(2 1 ) = 1 coincide since the service times

t these queues are identically distributed and all the jobs follow 

he same route through these three queues. 

Accuracy of the QNA depends on the quality of the approxi- 

ation of non-renewal arrival and departure processes by renewal 
Table 4 

Comparison of TAT and waiting times from QNA and DES including 95% CI. 

QNA DES QNA DES 

λ0 (c) A: 0.2 B: 0.3 

Scenarios 1, 4 and 6: p(1 1

f TAT ( p ) 4.91 4 .79 ±0.035 7 .11 6 .93 ±0.077 

E [ W 11 ] 0.33 0 .34 ±0.004 0 .75 0 .75 ±0.007 

E [ W 21 ] 0.62 0 .49 ±0.009 1 .26 1 .10 ±0.035 

E [ W 31 ] 0.96 0 .96 ±0.042 2 .10 2 .09 ±0.071 

Scenarios 1, 4 and 6: p(1 1

f TAT ( p ) 5.00 4 .92 ±0.046 7 .51 7 .38 ±0.045 

E [ W 11 ] 0.33 0 .33 ±0.005 0 .75 0 .75 ±0.022 

E [ W 21 ] 0.67 0 .63 ±0.034 1 .51 1 .46 ±0.052 

E [ W 31 ] 1.00 0 .97 ±0.027 2 .25 2 .17 ±0.040 

Scenarios 2 and 5: p(1 1 )

f TAT ( p ) 5.00 4 .56 ±0.012 7 .50 6 .92 ±0.050 

E [ W 11 ] 0.67 0 .46 ±0.004 1 .50 1 .17 ±0.028 

E [ W 21 ] 0.67 0 .53 ±0.006 1 .50 1 .34 ±0.020 

E [ W 31 ] 0.67 0 .56 ±0.008 1 .50 1 .41 ±0.013 

Scenarios 2 and 5: p(1 1 )

f TAT ( p ) 4.99 4 .52 ±0.018 7 .47 6 .82 ±0.084 

E [ W 11 ] 0.58 0 .50 ±0.007 1 .24 1 .20 ±0.029 

E [ W 21 ] 0.67 0 .52 ±0.015 1 .50 1 .31 ±0.038 

E [ W 31 ] 0.73 0 .50 ±0.010 1 .73 1 .31 ±0.026 

1110 
rocesses ( Whitt, 1983a ). The QNA uses several heavy traffic results 

 Whitt, 1983b ), which carries over in the observation that the QNA 

erforms better for load D than load A. In all considered cases, the 

NA approximation of f TAT ( p ) lies within 10% of the DES value. 

he error in the QNA for Scenarios 1, 4 and 6 seems to a large ex-

ent be due to the waiting time errors for FIFO queue 2, which is 

xplained by the error in the SCV of the departure process approx- 

mation from queue 1. Observe that larger relative errors in the 

aiting times are mainly incurred at queues with low–moderate 

oad. As the waiting times for low–moderate load are relatively 

mall, the influence of this approximation error on the TAT is very 

imited. We conclude that the QNA provides a sufficiently accurate 

pproximation of the mean TAT. 

We proceed to determine optimal routing configurations for the 

etwork with job types and scenarios listed in Table 3 under loads 

–D. In the experiments, for the SA algorithm the initial cooling 

arameter was set to 4; the stopping value to 0.0 0 0 05; the de-

rease factor to 0.995 and the Markov chain length to 75. Exper- 

ments were conducted on an Intel Core i7-7700HQ 2.80GHz pro- 

essing system with 16GB of RAM. The run-time of this cooling 

cheme was about 9 minutes. 

Table 5 presents the near-optimal routing configurations from 

he QNA for the 24 scenario/load combinations, the corresponding 

alue function f TAT ( p ) , and its lower bound (LB) as described in

ection 4.3 . Observe that the optimal routing configuration may 

e deterministic, e.g., Scenario 4A–C, may randomize jobs over 

ifferent routes with fixed probabilities, e.g., Scenario 2, or may 

ave these probabilities in an interval, e.g., Scenario 3A. Random- 

zed routes are typically obtained for scenarios with identically dis- 

ributed service times, where the level of randomization increases 

ith the load, see Scenarios 2 and 5. Routing in increasing order 

f service time variability is preferred for Scenario 1C–D, which 

s in accordance with the heuristic of Suresh & Whitt (1988) , as 

cenario 1 has incubation times equal to 0. Routing from high to 

ow incubation times is optimal for scenarios with identically dis- 

ributed inter-arrival times and varying service times at the FIFO 

ueues, with some randomization for high loads, see Scenarios 3 

nd 4. 

Table 5 includes the lower bound of f TAT ( p ) assuming de- 

erministic inter-arrival times, see Section 4.3 . This lower bound 
QNA DES QNA DES 

C: 0.4 D: 0.45 

 

) = 1 and p(2 1 ) = 1 

13 .51 13 .75 ±0.255 26 .39 27 .92 ±0.792 

2 .00 2 .00 ±0.031 4 .50 4 .58 ±0.217 

2 .89 2 .97 ±0.090 5 .95 6 .75 ±0.345 

5 .62 5 .78 ±0.205 12 .94 13 .59 ±0.657 

 

) = 1 and p(2 6 ) = 1 

15 .06 14 .75 ±0.281 30 .19 30 .38 ±0.776 

2 .00 1 .94 ±0.077 4 .51 4 .37 ±0.070 

4 .06 3 .84 ±0.180 9 .18 9 .05 ±0.323 

6 .00 5 .98 ±0.383 13 .51 13 .95 ±0.925 

 = 1 and p(2 1 ) = 1 

15 .00 14 .25 ±0.330 30 .00 28 .80 ±0.852 

4 .00 3 .52 ±0.114 9 .00 8 .24 ±0.378 

4 .00 3 .82 ±0.116 9 .00 8 .72 ±0.441 

4 .00 3 .91 ±0.135 9 .00 8 .85 ±0.272 

 = 1 and p(2 6 ) = 1 

14 .94 14 .08 ±0.417 29 .92 29 .21 ±0.640 

3 .08 3 .39 ±0.129 6 .67 7 .97 ±0.146 

4 .00 3 .77 ±0.149 9 .00 8 .87 ±0.509 

4 .86 3 .93 ±0.202 11 .16 9 .38 ±0.832 
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Table 5 

Routing configurations for the network with 6 job types. 

Scenario 1 2 3 4 5 6 Scenario 1 2 3 4 5 6 

λ0 (c) A: 0.2 λ0 (c) B: 0.3 

p(1 1 ) 0 1 p(1 1 ) 1 1 0 p(1 1 ) 0 1 1 1 1 0 

p(1 2 ) 0 .28 0 p(1 2 ) 0 0 0 p(1 2 ) 0 0 0 0 0 0 

p(1 3 ) 0 .72 0 0 0 0 p(1 3 ) p(1 3 ) 1 0 0 0 0 p(1 3 ) 

p(1 4 ) 0 0 0 0 0 p(1 4 ) p(1 4 ) 0 0 0 0 0 p(1 4 ) 

p(1 5 ) 0 0 0 0 0 0 p(1 5 ) 0 0 0 0 0 0 

p(1 6 ) 0 0 0 0 0 0 p(1 6 ) 0 0 0 0 0 0 

p(2 1 ) 0 0 0 0 0 0 p(2 1 ) 0 0 0 0 0 0 

p(2 2 ) 0 .30 0 0 0 0 0 p(2 2 ) 0 0 0 0 0 0 

p(2 3 ) 0 .70 0 .46 0 0 0 p(2 3 ) p(2 3 ) 1 0 .06 0 0 0 p(2 3 ) 

p(2 4 ) 0 0 .01 0 0 0 p(2 4 ) p(2 4 ) 0 0 .20 0 0 0 p(2 4 ) 

p(2 5 ) 0 0 .02 p(2 5 ) 0 0 0 p(2 5 ) 0 0 .61 0 0 0 0 

p(2 6 ) 0 0 .51 p(2 6 ) 1 1 0 p(2 6 ) 0 0 .13 1 1 1 0 

f TAT ( p ) 4 .95 4 .94 9.67 9 .67 9 .66 9.67 f TAT ( p ) 7 .26 7 .29 10.5 10 .50 10 .48 10.50 

LB 3 .53 3 .37 9.12 9 .20 9 .12 9.12 LB 4 .68 4 .44 9.48 9 .60 9 .48 9.48 

λ0 (c) C: 0.4 λ0 (c) D: 0.45 

p(1 1 ) 1 1 1 1 1 0 p(1 1 ) 1 1 p(1 1 ) 1 1 0 

p(1 2 ) 0 0 0 0 0 0 p(1 2 ) 0 0 0 0 0 0 

p(1 3 ) 0 0 0 0 0 1 p(1 3 ) 0 0 p(1 3 ) 0 0 1 

p(1 4 ) 0 0 0 0 0 0 p(1 4 ) 0 0 0 0 0 0 

p(1 5 ) 0 0 0 0 0 0 p(1 5 ) 0 0 0 0 0 0 

p(1 6 ) 0 0 0 0 0 0 p(1 6 ) 0 0 0 0 0 0 

p(2 1 ) 1 0 .22 0 0 0 0 p(2 1 ) 1 0 .19 0 0 0 0 

p(2 2 ) 0 0 .09 0 0 0 0 p(2 2 ) 0 0 .14 0 0 0 .07 0 

p(2 3 ) 0 0 .12 0 0 0 1 p(2 3 ) 0 0 .15 0 0 0 1 

p(2 4 ) 0 0 .13 0 0 0 0 p(2 4 ) 0 0 .14 p(2 4 ) 0 0 .38 0 

p(2 5 ) 0 0 .29 0 0 0 .14 0 p(2 5 ) 0 0 .22 0 0 .85 0 .14 0 

p(2 6 ) 0 0 .15 1 1 0 .86 0 p(2 6 ) 0 0 .16 p(2 6 ) 0 .15 0 .41 0 

f TAT ( p ) 13 .51 14 .17 16.00 16 .06 15 .89 13.89 f TAT ( p ) 26 .39 27 .99 31.00 30 .34 29 .76 26.94 

LB 8 .37 8 .08 10.69 11 .03 10 .69 10.69 LB 15 .85 15 .54 16.54 17 .85 16 .54 15.85 

Table 6 

f TAT ( p ) using QNA for the current lab load (100%) and load increase to 120%, 140% 

and 160%. 

Load Historic Optimal High to low Low to high 

100% 857 .93 s 841 .42 s 841 .42 s 903 .75 s 

120% 884 .78 s 867 .87 s 867 .87 s 941 .21 s 

140% 938 .98 s 922 .65 s 923 .15 s 995 .86 s 

160% 1152 .52 s 1097 .22 s 1149 .97 s 1270 .07 s 
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nderestimates the waiting times and clearly is more accurate 

ith reducing load. The lower bound provides a good bench- 

ark for loads A and B for scenarios with high incubation times 

Scenarios 3–6). Table C.7 provides further details on the QNA 

nd DES objective values for three routes under loads B and D, 

he near-optimal routing configuration displayed in Table 5 (O), 

outing from high to low incubation time (H), and the determin- 

stic version of O in which the largest p(c i ) per class i is set to

 (D). Table C.7 underpins the accuracy of our approach using 

pproximation 11 as for all routing configurations (O, H, D) the 

pproximation for f TAT ( p ) lies within 10% of the DES value. This 

able also reveals that the optimal routing configuration often 

outes from high to low incubation times. Furthermore, the deter- 

inistic routing configuration (D) is a good approximation of our 

ear-optimal routing configuration. 

Table C.8 provides a comparison of the optimal routing config- 

rations and objective function values using the QNA under three 

pproximations, where O refers to the lower bound approximation 

22) , O exp to approximation (25) , and O UB to approximation (23) , as

ell as routing from high to low incubation time, H. Comparison of 

he rows for f TAT ( p ) shows that approximation (22) yields the best 

pproximation of the DES values for load 0.3 and that for high load 

.45 approximations (25) and (22) show similar performance; in 

ll cases the upper bound (23) shows poor performance. For load 
1111 
.3 the optimal strategies under (25) and (22) are similar as the 

ptimal values f TAT ( p ) do not show a significant difference in the 

ES. For load 0.45 the average values for DES are different, but the 

onfidence intervals overlap. Loads in the clinical chemistry labs, 

hich is our main application, are low to moderate. Therefore, we 

onclude that for the loads of interest approximation (22) is pre- 

erred over (25) . 

.4. Case study: Clinical chemistry laboratory at Erasmus MC 

This section applies our method to the optimal design, mini- 

izing mean TAT, of a clinical chemistry laboratory analyzer line 

sing data obtained from Erasmus MC, Rotterdam, the Netherlands. 

 description of an analyzer line is included in Section 1 and Fig. 1 .

.4.1. Input data 

The analyzer line of the clinical chemistry laboratory of Eras- 

us MC has 4 analyzer modules and is operational 24/7. Techni- 

al details of these modules affect the TAT only via the pipetting 

uration and incubation times. For lab design, the TAT during the 

usiest time of day is of main importance, as the physician has to 

ait the longest for test results in this time frame. Therefore, we 

onsider samples arriving between 9 AM and 2 PM on weekdays 

n March 2019. The data contained 2232 racks, which in total con- 

ained 6708 clinical chemistry samples. This results in 150 tests 

er hour at peak load on this analyzer line. We obtained 15 job 

lasses characterized by the modules visited by a rack, resulting in 

4 possible job types ( Table D.10 ). A sample may require multiple 

ests on a single module, that are processed in parallel on the in- 

ubator disc, in which case the incubation time is the maximum of 

hese times as this is the time when the test results for the mod- 

le become available. From the laboratory information system (LIS) 

nd analyzer log files, for each job class we obtained the mean 
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nd SCV of the service duration at the pipettor and incubator disc 

 Table D.9 ), the historical lab routes and the mean TAT that was

ound to be 17.86 minutes. Our model does not incorporate delays 

aused by transport and scanning of the samples, with the largest 

eviations as compared to reality observed between arrival at an 

nalyzer line and arrival at the initial node, that is estimated from 

he LIS to be 2 minutes. Smaller transport delays that cannot be es- 

imated accurately from the LIS occur between analyzer modules. 

.4.2. Optimal routing configuration 

We used (1) with TAT replaced by TAT to compare the historical 

ean TAT with the mean TAT from our model using the historical 

aboratory routes, which was found to be 14.30 minutes (857.93 

econds, see Table 6 ). This result should be compared to the his- 

orical value of 17.86 minutes, minus the initial delay of 2 minutes 

nd additional minor transport delays between modules. This indi- 

ates that (1) using TAT provides a good estimate of the historical 

ean TAT. 

We invoked our optimization method to determine optimal al- 

ocation of jobs to routes. Calculating the mean waiting time of 

 specific analyzer line routing configuration using the QNA takes 

.01 to 0.05 seconds. For SA, the initial value of the cooling pa- 

ameter was set to 40, the stopping value was set to 0.0 0 05, with

 decrease factor of 0.999 and Markov chain length of 100. The 

un-time of the algorithm is approximately 7 hours, which is ac- 

eptable considering we are interested in optimal laboratory design 

hat typically has a duration of several weeks or months. 

Table 6 compares the performance of four routing configura- 

ions: historical lab route, best route found using our optimization 

ethod, jobs routed from highest to lowest incubation time, and 

obs routed from lowest to highest incubation time that is included 

o compare performance of the other routes with a route that intu- 

tively does not perform well. Results are presented for the current 

ab load and scenarios in which the lab load is increased to 120%, 

40% and 160% of the current lab load. The routing configurations 

sed in Table 6 are detailed in Table D.10 . 

The current load at the four FIFO queues is 0.23, 0.57, 0.48, and 

.13. The optimal routing configuration for the current lab load has 

 mean TAT of 841.42 seconds. The lower bound on the objective 

unction value is 801.10 seconds, see Section 4.3 , which is expected 

o be a good benchmark for the current load, see Section 5.3 . 

he gap of 31.32 seconds (5.03%) between our optimum and this 

inimum value indeed may be completely allocated to the ad- 

itional waiting times at the FIFO queues since the inter-arrival 

imes are not deterministic as assumed in the lower bound calcu- 

ations, which indicates that our method closely approximates the 

ptimal value. 

The optimal routing configuration for the current lab load 

outes jobs from highest to lowest incubation time and provides 

 2% decrease in mean TAT compared to the historic laboratory 

oute. As the load increases, the heuristic routing configuration 

igh to low continues to perform well, but above 140% load our 

ptimal routing configuration ( Table D.10 ) outperforms this heuris- 

ic. The possible improvement in mean TAT increases with the 

oad. When increasing the load to 160%, resulting in loads 0.38, 

.92, 0.76 and 0.20 at the four FIFO queues, our proposed route 

esults in a 5% reduction of the mean TAT. 

Our results support that routing jobs according to the heuristic 

hat routes jobs from high to low incubation times is optimal for 

he current load, as well as for increased load up to 140% of the 

urrent load. For a 60% load increase, our optimization approach 

ields roughly 5% reduction in mean TAT compared to this heuris- 

ic, which illustrates the quality of the heuristic, as well as the gain 

hat may be achieved by optimization. In light of the number of 

ests performed on a chemistry analyzer line (150 per hour at cur- 

ent peak load in Erasmus MC), optimization of the routing con- 
1112 
guration may result in a substantial improvement of laboratory 

erformance. 

. Discussion and conclusion 

Motivated by chemistry analyzer lines, we have considered op- 

imal design of queueing networks in which each node consists of 

 single-server FIFO queue and an infinite-server incubation queue. 

 job departing from a single-server queue forks to the incubation 

ueue and the next FIFO queue on its route. We have provided ex- 

ct results for the queue length distribution and TAT as well as a 

NA and SA optimization approach to determine the optimal rout- 

ng configuration for a central decision maker that aims to mini- 

ize the mean TAT for all jobs. 

Generalizations: Our results may be extended to incubation 

ueues of different types. This is clear in Lemma 1 , as we only re-

uire the maximum of the sojourn time at the incubation queue 

nd remaining part of the route. Theorem 5 requires the so- 

ourn time at the incubation queue to be exponentially distributed, 

hich is also the case if the incubation queue is a single-server 

IFO queue with exponential service requirement. Our exact re- 

ults may be extended to more general queues j1 , such as those 

odeled using the (φ, γ , δ) -protocol (Kelly, 1979, Section 3.1) . 

pproximation 11 that uses the QNA requires the queues j1 to be 

IFO queues, but allows for multi-server queues and general incu- 

ation queues as long as the mean sojourn time for these queues 

s known. Setting all incubation times to zero shows that our novel 

NA and SA approach may also be used for the optimal design of 

etworks of single-server FIFO queues. 

Our results may be extended to include several parallel incu- 

ation queues as this requires evaluation of the maximum sojourn 

ime over these queues. By setting the service times at the first 

IFO queue to zero, this shows that we may also approximate 

he TAT distribution of a fork-join queue with an arbitrary num- 

er of parallel queues. We assume that the nodes in the network 

re distinct and therefore the set of nodes visited by a job are 

niquely defined. An interesting extension is to allow for duplicate 

odes, where a job should visit one of these duplicate nodes. The 

NA also allows for approximation of the variance of the sojourn 

imes per node assuming independence of the sojourn times at the 

odes. Among our aims for further research is exploring how such 

esults may be used to approximate the variance of the TAT and 

he fraction of samples that completes TAT before the due date. 

Limitations and further research: Our QNA and SA approach 

hows good performance in terms of accuracy and computation 

ime for realistic size network design challenges. A possible di- 

ection for future research is to improve the QNA approximation 

 Caldentey, 2001; Harrison & Nguyen, 1990 ), and the SA algorithm 

sing approaches such as improvement of the cooling scheme, the 

topping value and the Markov chain length ( van Laarhoven & 

arts, 1987 ). 

In highly congested analyzer lines, blocking of jobs in between 

odules might occur, which is not included in our model. A pos- 

ible extension of our model is to further develop the approach of 

erbache & MacGregor Smith (20 0 0) to include incubation queues. 

Our results consider optimal design of a laboratory via static 

oute allocation. Dynamic routes are of interest to avoid conges- 

ion in an operational setting. Extension of the results for networks 

f FIFO queues with exponential service times and concave utility 

unctions ( Shaler, 2009 ) to include incubation queues is of consid- 

rable interest for daily operation of laboratories. 

Conclusion: We have illustrated the intricate relation between 

AT, service and incubation times. A heuristic routing configuration 

upported by our theoretical results routes jobs along the nodes in 

ecreasing order of the incubation times. Our numerical results re- 

eal that this heuristic is close to optimum for realistic network 
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arameters, which make the results amenable for inclusion in the 

ab ICT system that routes samples in analyzer lines. The accuracy 

f our approach supports its use in design of clinical chemistry lab- 

ratories. 

ppendix A. Queueing Network Analyzer 

The Queueing Network Analyzer (QNA) is developed in Whitt 

1983b) to approximate the mean sojourn times at the queues of 

 network of multi-server FIFO queues with multiple job types 

nd general inter-arrival and service time distributions. Below, we 

resent the QNA for a network of single-server FIFO queues and 

he expressions for the mean sojourn times in the FIFO queues 

n our network used in Section 4.2 . The mean sojourn times at 

he FIFO queues in our network are not affected by the incubation 

ueues, so that the QNA yields an approximation of the sojourn 

imes in the FIFO queues in the network with incubation queues, 

ecall Remark 2 . 

The QNA uses as input the mean and the variance of the inter- 

rrival and service times of each job type. The arrival rate of type 

 i jobs is λ0 (c i ) = p(c i ) λ0 (c) . The squared coefficient of variation

SCV) of the arrival process of job type c i is ( Whitt, 1983b ): 

cv (c i ) = p(c i ) σ
2 
0 (c) λ2 

0 (c) + 1 −p(c i ) , i = 1 , . . . , I(c) , c = 1 , . . . , C. 

he service requirements of a job at queue jk on its route depend 

n its class and therefore μ jk (c i ) = μ jk (c) . The SCV of the service

ime of job type c i at queue jk on its route is 

cv s jk (c i ) = σ 2 
jk (c) μ jk (c) 2 , 

i = 1 , . . . , I(c) , c = 1 , . . . , j = 1 , . . . , J, k = 1 , 2 . 

The aggregated external arrival rate to queue j1 is: 

0 j1 = 

C ∑ 

c=1 

I(c) ∑ 

i =1 

λ0 (c i ) 1 { n (c i , 1) = j} . 

he aggregated internal flow rate from queue j1 to queue j ′ 1 : 

j 1 j ′ 1 = 

C ∑ 

c=1 

I(c) ∑ 

i =1 

| R (c) |−1 ∑ 

� =1 

λ0 (c i ) 1 { n (c i , � ) = j, n (c i , � + 1) = j ′ } 

he departure rate from queue j1 out of the network is: 

j10 = 

C ∑ 

c=1 

I(c) ∑ 

i =1 

λ0 (c i ) 1 { n (c i , | R (c) | ) = j} . 

he total aggregated arrival flow rate to queue j1 is: 

j1 = 

J ∑ 

j ′ =0 

λ j ′ 1 j1 . 

he routing matrix Q has elements q j 1 j ′ 1 equal to the proportion 

f jobs that go from queue j1 to queue j ′ 1 . The element q j j ′ can

e seen as the probability that a job exiting queue j1 will then go

o queue j ′ 1 : 

 j 1 j ′ 1 = 

λ j 1 j ′ 1 ∑ J 
� =0 

λ j1 � 1 

, with 

J ∑ 

j ′ =1 

q j 1 j ′ 1 = 1 . 

ervice time parameters are obtained by averaging the service 

imes of jobs that visit queue j1 : 

j1 = 

∑ C 
c=1 

∑ I(c) 
i =1 

∑ | R (c) | 
� =1 

λ0 (c i ) E 

[
B n (c i ,� )1 (c) 

]
1 { n (c i , � ) = j} ∑ C 

c=1 

∑ I(c) 
i =1 

∑ | R (c) | 
� =1 

λ0 (c i ) 1 { n (c i , � ) = j} . 

he SCV of the service time at queue j1 is calculated as follows: 
1113 
cv s j1 

= 

∑ C 
c=1 

∑ I(c) 
i =1 

∑ | R (c) | 
� =1 

λ0 (c i ) E 
[
B n (c i ,� )1 (c) 

]2 (
scv sn (c i ,� )1 (c i ) + 1 

)
1 { n ( c i , � ) = j} 

τ 2 
j1 

∑ C 
c=1 

∑ I(c) 
i =1 

∑ | R (c) | 
� =1 

λ0 (c i ) 1 { n (c i , � ) = j} −1 .

he utilization of queue j1 is given by: 

j1 = λ j1 τ j1 . 

he proportion of arrivals to j ′ 1 that came from j1 is equal to: 

p j 1 j ′ 1 = 

λ j 1 j ′ 1 
λ j1 

, with: 

J ∑ 

j=1 

p j 1 j ′ 1 = 1 . 

he SCV of the external arrival process to queue j1 is: 

cv 0 j1 = (1 − u j1 ) 

+ u j1 

[ 

C ∑ 

c=1 

I(c) ∑ 

i =1 

scv (c i ) 

( 

λ0 (c i ) 1 { n (c i , 1) = j} ∑ C 
c=1 

∑ I(c) 
i =1 

λ0 ( c i ) 1 { n ( c i , 1) = j} 

) ] 

, 

here 

 j1 = u j1 (ρ j1 , v j1 ) = 

1 

1 + 4(1 − ρ j1 ) 2 (v j1 − 1) 

nd 

 j1 = 

[ 

C ∑ 

c=1 

I(c) ∑ 

i =1 

(
λ0 (c i ) 1 { n (c i , 1) = j} ∑ C 

c=1 

∑ I(c) 
i =1 

λ0 (c i ) 1 { n (c i , 1) = j} 
)2 
] −1 

. 

he approximation of the SCV of the arrival process at each queue 

s calculated as follows: 

cv a j1 = a j1 + 

J ∑ 

j ′ =1 

scv a j1 b j ′ 1 j1 ⇔ scv a = (I − B 

T ) −1 a. 

he a j1 and b j 1 j ′ 1 are constants depending on the input data: 

 j1 = 1 + u j1 

( 

p 0 j1 scv 0 j1 − 1 + 

N ∑ 

j ′ =1 

p j ′ 1 j1 
((

1 − q j ′ 1 j1 
)

+ q j ′ 1 j1 ρ
2 
j ′ 1 x j ′ 1 

)) 

nd 

 j 1 j ′ 1 = u j1 p j 1 j ′ 1 q j 1 j ′ 1 (1 − ρ2 
j1 ) , 

ith 

 j1 = 1 + m 

−0 . 5 
j1 

( max { scv s j1 , 0 . 2 } − 1) , 

 j1 = 

1 

1 + 4(1 − ρ j1 ) 2 (v j1 − 1) 
and v j1 = 

[ 

J ∑ 

j ′ =0 

p 2 j ′ 1 j1 

] −1 

. 

Given τ j1 , ρ j1 , scv a j1 and scv s j1 , we can calculate the approxi- 

ate mean waiting times, and thus the approximate mean sojourn 

imes at the FIFO queues using (27) and (28) . 

ppendix B. Example non-convexity of the QNA objective 

unction 

This section gives an example of a small network for which the 

bjective function of the QNA is non-convex. We will follow the 

teps of the QNA as outlined in Appendix A . 

Consider a network of two nodes with one job class and 2 

ossible job types. Type 1 1 visits the queues in order 12, while 

ype 1 2 visits them in order 21. We consider zero incubation times 

nd the service discipline at the FIFO queues only depends on the 

ueues μ j1 (c i ) = μ j1 , j = 1 , 2 . The arrival rate of type 1 i jobs is

0 (1 i ) = p(1 i ) λ0 , i = 1 , 2 , p(1 1 ) + p(1 2 ) = 1 . The SCV of the arrival

rocess of job type 1 i is scv (1 i ) = p(1 i ) σ
2 λ2 + 1 − p(1 i ) , i = 1 , 2 .

0 0 
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he mean service time at queue j1 is τ j1 = 

1 
μ j1 

. The SCV of the ser-

ice time of job type 1 i at queue j1 on its route is scv s j1 = σ 2 
j1 
μ2 

j1 
,

 = 1 , 2 , j = 1 , 2 . The total aggregated arrival flow rate to queue j1

s λ j1 = λ0 . The routing matrix Q is 

 = 

[ 

0 p(1 1 ) p(1 2 ) 
p(1 2 ) 0 p(1 1 ) 
p(1 1 ) p(1 2 ) 0 

] 

he utilization of queue j1 is ρ j1 = λ0 τ j1 . The proportion of ar- 

ivals to j ′ 1 that came from j1 is captured in the following matrix:

 = 

[ 

0 p(1 1 ) p(1 2 ) 
p(1 2 ) 0 p(1 1 ) 
p(1 1 ) p(1 2 ) 0 

] 

he SCV of the external arrival process to queue j1 is scv 0 j1 = 

p(1 j ) σ
2 
0 
λ2 

0 
+ 1 − p(1 j ) , j = 1 , 2 . The approximation of the SCV of

he arrival process at each queue is: 

cv a = (I − B 

T ) −1 a, 

ith 

a = 

⎡ ⎢ ⎢ ⎣ 

1 + u 11 

(
p(1 1 )[ p(1 1 ) σ

2 
0 λ

2 
0 + 1 − p(1 1 )] − 1 

+ p(1 2 )(1 − p(1 2 ) + p(1 2 ) ρ
2 
21 x 21 ) 

)
1 + u 21 

(
p(1 2 )[ p(1 2 ) σ 2 

0 λ
2 
0 + 1 − p(1 2 )] − 1 

+ p(1 1 )(1 − p(1 1 ) + p(1 1 ) ρ
2 
11 x 11 ) 

)
⎤ ⎥ ⎥ ⎦ 

, 
Table C1 

Objective function values for a selection of routing configurations under loads B and D. 

Scenario 1 2 3 

Route O H D O H D O H D 

λ0 (c) B

p(1 1 ) 0 1 
6 

0 1 1 
6 

1 1 1 1 

p(1 2 ) 0 1 
6 

0 0 1 
6 

0 0 0 0 

p(1 3 ) 1 1 
6 

1 0 1 
6 

0 0 0 0 

p(1 4 ) 0 1 
6 

0 0 1 
6 

0 0 0 0 

p(1 5 ) 0 1 
6 

0 0 1 
6 

0 0 0 0 

p(1 6 ) 0 1 
6 

0 0 1 
6 

0 0 0 0 

p(2 1 ) 0 1 
6 

0 0 1 
6 

0 0 0 0 

p(2 2 ) 0 1 
6 

0 0 1 
6 

0 0 0 0 

p(2 3 ) 1 1 
6 

1 0.06 1 
6 

0 0 0 0 

p(2 4 ) 0 1 
6 

0 0.20 1 
6 

0 0 0 0 

p(2 5 ) 0 1 
6 

0 0.61 1 
6 

1 0 0 0 

p(2 6 ) 0 1 
6 

0 0.13 1 
6 

0 1 1 1 

f TAT ( p ) 7.26 7.51 7.26 7.29 7.50 7.34 10.50 10.50 10.50

QNA 

f TAT ( p ) 7.10 7.46 7.10 6.84 7.07 6.81 11.40 11.40 11.40

DES ±0.07 ±0.14 ±0.07 ±0.06 ±0.05 ±0.05 ±0.07 ±0.07 ±0.07

λ0 (c) D

p(1 1 ) 1 1 
6 

1 1 1 
6 

1 1 1 1 

p(1 2 ) 0 1 
6 

0 0 1 
6 

0 0 0 0 

p(1 3 ) 0 1 
6 

0 0 1 
6 

0 0 0 0 

p(1 4 ) 0 1 
6 

0 0 1 
6 

0 0 0 0 

p(1 5 ) 0 1 
6 

0 0 1 
6 

0 0 0 0 

p(1 6 ) 0 1 
6 

0 0 1 
6 

0 0 0 0 

p(2 1 ) 1 1 
6 

1 0.19 1 
6 

0 0 0 0 

p(2 2 ) 0 1 
6 

0 0.14 1 
6 

0 0 0 0 

p(2 3 ) 0 1 
6 

0 0.15 1 
6 

0 0 0 0 

p(2 4 ) 0 1 
6 

0 0.14 1 
6 

0 0 0 0 

p(2 5 ) 0 1 
6 

0 0.22 1 
6 

1 0 0 0 

p(2 6 ) 0 1 
6 

0 0.16 1 
6 

0 1 1 1 

f TAT ( p ) 26.39 30.15 26.39 27.99 30.00 29.62 31.00 31.00 31.00

QNA 

f TAT ( p ) 27.92 30.37 27.92 28.60 29.39 28.59 31.44 31.44 31.44

DES ±0.79 ±0.91 ±0.79 ±0.41 ±0.79 ±0.62 ±0.17 ±0.17 ±0.17
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B = 

[
0 u 11 p(1 1 ) 

2 (1 − λ2 
0 τ

2 
11 ) 

u 21 p(1 2 ) 
2 (1 − λ2 

0 τ
2 
21 ) 0 

]
, 

 j1 = 

1 

1 + 4(1 − λ0 τ j1 ) 2 ( [ p(1 1 ) 2 + p(1 2 ) 2 ] 
−1 − 1) 

, j = 1 , 2 , 

x j1 = 1 + ( max { scv s j1 , 0 . 2 } − 1) , j = 1 , 2 . 

athematica (version 12.3) was used to find scv a j1 , j = 1 , 2 , and to

etermine whether these functions are convex or not. We find: 

cv a 11 = 

p(1 2 ) ( λ2 
0 p(1 2 ) τ

2 
21 x 21 −p(1 2 )+1 ) + p(1 1 ) ( λ2 

0 p(1 1 ) σ
2 
0 −p(1 1 )+1 ) −1 

4(1 −λ0 τ11 ) 2 ( v −1 ) +1 
+ 1 

1 − p(1 1 ) 2 p(1 2 ) 2 ( 1 −λ2 
0 
τ 2 

11 ) ( 1 −λ2 
0 
τ 2 

21 ) 
( 4(1 −λ0 τ11 ) 2 ( v −1 ) +1 ) ( 4(1 −λ0 τ21 ) 2 ( v −1 ) +1 ) 

+ 

p(1 2 ) 
2 
(
1 − λ2 

0 τ
2 
21 

)( p(1 1 ) ( λ2 
0 p(1 1 ) τ

2 
11 x 11 −p(1 1 )+1 ) + p(1 2 ) ( λ2 

0 p(1 2 ) σ
2 
0 −p(1 2 )+1 ) −1 

4(1 −λ0 τ21 ) 2 ( v −1 ) +1 
+ 1 

)
(
4(1 − λ0 τ21 ) 2 ( v − 1 ) + 1 

)(
1 − p(1 1 ) 2 p(1 2 ) 2 ( 1 −λ2 

0 
τ 2 

11 ) ( 1 −λ2 
0 
τ 2 

21 ) 
( 4(1 −λ0 τ11 ) 2 ( v −1 ) +1 ) ( 4(1 −λ0 τ21 ) 2 ( v −1 ) +1 ) 

) , 

cv a 21 = 

1 + 

−1+ p(1 2 )(1 −p(1 2 )+ λ2 
0 p(1 2 ) σ

2 
0 )+ p(1 1 )(1 −p(1 1 )+ λ2 

0 p(1 1 ) τ
2 
11 x 11 ) 

1+4(−1+ v )(1 −λ0 τ21 ) 2 

1 − p(1 1 ) 2 p(1 2 ) 2 (1 −λ2 
0 
τ 2 

11 
)(1 −λ2 

0 
τ 2 

21 
) 

(1+4(−1+ v )(1 −λ0 τ11 ) 2 )(1+4(−1+ v )(1 −λ0 τ21 ) 2 ) 

+ 

p(1 1 ) 
2 (1 − λ2 

0 τ
2 
11 ) 
(

1 + 

−1+ p(1 1 )(1 −p(1 1 )+ λ2 
0 p(1 1 ) σ

2 
0 )+ p(1 2 )(1 −p(1 2 )+ λ2 

0 p(1 2 ) τ
2 
21 x 21 ) 

1+4(−1+ v )(1 −λ0 τ11 ) 2 

)
(1 + 4(−1 + v )(1 − λ0 τ11 ) 2 ) 

(
1 − p(1 1 ) 2 p(1 2 ) 2 (1 −λ2 

0 
τ 2 

11 
)(1 −λ2 

0 
τ 2 

21 
) 

(1+4(−1+ v )(1 −λ0 τ11 ) 2 )(1+4(−1+ v )(1 −λ0 τ21 ) 2 ) 

) , 

ith 

 = 

1 

p(1 ) 2 + p(1 ) 2 
. 
1 2 

4 5 6 

O H D O H D O H D 

: 0.3 

1 1 1 1 1 1 0 0 0 

0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 1 0.5 1 

0 0 0 0 0 0 0 0.5 0 

0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 1 0.5 1 

0 0 0 0 0 0 0 0.5 0 

0 0 0 0 0 0 0 0 0 

1 1 1 1 1 1 0 0 0 

 10.50 10.50 10.50 10.48 10.48 10.48 10.50 10.50 10.50 

 11.52 11.52 11.52 10.91 10.91 10.91 11.23 11.31 11.23 

 ±0.05 ±0.05 ±0.05 ±0.05 ±0.05 ±0.05 ±0.05 ±0.03 ±0.05 

: 0.45 

1 1 1 1 1 1 0 0 0 

0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 1 0.5 1 

0 0 0 0 0 0 0 0.5 0 

0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 

0 0 0 0.07 0 0 0 0 0 

0 0 0 0 0 0 1 0.5 1 

0 0 0 0.38 0 0 0 0.5 0 

0.85 0 1 0.14 0 0 0 0 0 

0.15 1 0 0.41 1 1 0 0 0 

 30.34 31.19 30.37 29.76 30.92 30.92 26.94 30.18 26.94 

 32.01 32.17 32.08 30.91 30.90 30.90 29.40 30.90 29.40 

 ±1.67 ±0.77 ±0.60 ±0.32 ±1.10 ±1.10 ±0.81 ±0.76 ±0.81 
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oth scv a 11 and scv a 21 are neither convex nor concave in p(1 1 ) and 

p(2 1 ) . Recall (27) : 

 j1 = 

τ j1 ρ j1 ( scv a j1 + scv s j1 ) g j1 
2(1 − ρ j1 ) 

, 

g j1 = 

{
exp 

[
− 2(1 −ρ j1 ) 

3 ρ j1 

(1 −scv a j1 ) 

scv a j1 + scv s j1 

]
, scv a j1 < 1 , 

1 , scv a j1 ≥ 1 . 
(B.1) 

bserve that scv s j1 does not depend on p(1 i ) . For scv a j1 ≥ 1 we 

ave g j1 = 1 , and W j1 is linear in scv s j1 and scv a j1 , and therefore 

ot convex in p(1 1 ) and p(2 1 ) . For scv a j1 < 1 , g j1 is not convex in

p(1 1 ) and p(2 1 ) . The objective function is a linear combination of

AT (c i ) , which in turn consists of summing and maximizing over a 

on-convex part ( W j1 ) and a constant ( E [ B j1 ] or E [ S j2 ] ). Therefore,

he objective function for this small example is non-convex. 

ppendix C. Objective values for selected loads and accuracy of 

pproximations 
Table C2 

Objective function values for a selection of routing configurations under loads B and D, in

ing routing configuration. For each routing configuration the value of f TAT ( p ) is then det

rows, i.e., in the row (22) the value 13.75 indicates the value of f TAT ( p ) for the listed op

QNA. 

Scenario 4 

Route O O exp O UB 

λ0 (c) 

p(1 1 ) 1 1 0 

p(1 2 ) 0 0 0 

p(1 3 ) 0 0 1 

p(1 4 ) 0 0 0 

p(1 5 ) 0 0 0 

p(1 6 ) 0 0 0 

p(2 1 ) 0 0 0 

p(2 2 ) 0 0 0 

p(2 3 ) 0 0 1 

p(2 4 ) 0 0 0 

p(2 5 ) 0 0 0 

p(2 6 ) 1 1 0 

f TAT ( p ) (22) 10.50 10.50 13.75 

(25) 14.63 14.63 15.47 

(23) 20.51 20.51 20.26 

DES 11.52 11.52 13.94 

±0.05 ±0.05 ±0.06 

λ0 (c) 

p(1 1 ) 1 1 0 

p(1 2 ) 0 0 0 

p(1 3 ) 0 0 1 

p(1 4 ) 0 0 0 

p(1 5 ) 0 0 0 

p(1 6 ) 0 0 0 

p(2 1 ) 0 0.76 0 

p(2 2 ) 0 0 0 

p(2 3 ) 0 0 1 

p(2 4 ) 0 0 0 

p(2 5 ) 0.85 0.24 0 

p(2 6 ) 0.15 0 0 

f TAT ( p ) (22) 30.34 30.60 31.44 

(25) 33.15 32.62 33.63 

(23) 41.06 39.58 39.94 

DES 32.01 32.14 33.82 

±1.67 ±1.46 ±0.74 

1115 
ppendix D. Input parameters and routing configurations for 

ase study 

Table D.9 gives the input parameters for the arrival and service 

imes of the job classes for the case study in Section 5.4 . There

s no incubation queue at node 1, i.e., B 12 (c) = 0 , c = 1 , . . . , C. The

ncubation time at node 3 is deterministic and equal to 10 minutes, 

.e., B 32 (c) = 600 s, scv s 32 = 0 , c = 1 , . . . , C. 

Table D.10 provides the details of the routing configuration and 

ob types in Section 5.4 . 
cluding three objective function approximations. The columns give the correspond- 

ermined for each approximation (22), (25), (23) and via DES in the corresponding 

timal routing configuration under O UB evaluated using approximation (22) in the 

5 

H O O exp O UB H 

0.3 

1 1 1 1 1 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0.06 0 

0 0 0 0.19 0 

0 0 0.11 0.61 0 

1 1 0.89 0.14 1 

10.50 10.48 10.50 11.03 10.48 

14.63 14.58 14.57 14.76 14.58 

20.51 20.47 20.41 20.29 20.47 

11.52 10.91 10.95 11.47 10.91 

±0.05 ±0.05 ±0.03 ±0.04 ±0.05 

0.45 

1 1 1 0 1 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 1 0 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0.22 0 

0 0.07 0.09 0.16 0 

0 0 0 0.14 0 

0 0.38 0.26 0.19 0 

0 0.14 0.26 0.14 0 

1 0.41 0.39 0.15 1 

31.19 29.76 29.83 34.20 30.92 

34.51 33.13 33.07 35.63 34.16 

43.19 41.44 41.3 40.99 42.92 

32.17 30.91 31.40 35.30 30.90 

±0.77 ±0.32 ±0.15 ±0.69 ±1.1 
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Table D1 

Arrival and service time input parameters for the laboratory case study. The time unit is seconds. 

1 2 3 4 

c λ0 (c) × 10 3 scv (c) E [ B 11 (c)] scv s 11 E [ B 21 (c)] scv s 21 E [ B 22 (c)] / 60 scv s 22 E [ B 31 (c)] scv s 31 E [ B 41 (c)] scv s 41 E [ B 42 (c)] / 60 scv s 42 

1 1.957 1.58 26.32 0.74 9.80 0.01 

2 0.759 1.87 47.06 0.28 

3 0.457 2.49 26.70 0.36 16.89 0.05 

4 0.395 0.94 21.21 0.59 

5 0.451 1.06 23.51 0.33 7.03 0.25 28.01 0.46 20.72 0.09 

6 0.975 1.40 36.30 0.47 10.00 0.00 50.78 0.22 

7 1.062 1.54 19.78 0.21 32.16 0.24 9.72 0.02 

8 4.228 1.94 27.77 0.25 59.56 0.32 10.00 0.00 50.82 0.16 

9 0.142 3.39 26.40 1.19 43.63 0.22 

10 2.537 1.71 29.34 0.21 62.87 0.26 10.00 0.00 57.81 0.28 30.92 0.30 18.41 0.09 

11 0.056 1.37 25.03 0.27 40.63 0.41 18 0.13 

12 0.321 0.90 41.39 0.28 9.87 0.01 47.75 0.32 26.22 0.20 20.00 0.08 

13 0.327 1.01 23.62 0.19 55.65 1.17 9.74 0.02 32.21 0.22 16.56 0.14 

14 0.056 2.01 65.39 0.43 28.63 0.12 18.14 0.07 

15 0.056 2.22 30.37 0.26 61.61 0.30 33.67 0.22 15.56 0.22 

Table D2 

Routing configurations discussed in Section 5.4 . 

n (c i , 1) n (c i , 2) n (c i , 3) n (c i , 4) 

Routing configuration 

Historic Optimal route High to Low to 

lab route lab load (100%) 120% load 140% load 160% load low B j2 high B j2 

1 1 1 1 1 1 1 1 

2 1 1 1 1 1 1 1 

3 1 1 1 1 1 1 1 

4 1 1 1 1 1 1 1 

1 2 0.90 0 0 0.16 0.72 0 1 

2 1 0.10 1 1 0.84 0.28 1 0 

1 3 0.74 0 0 0.29 0.20 0 1 

3 1 0.26 1 1 0.71 0.80 1 0 

1 4 0.11 0 0 0.78 0.82 0 1 

4 1 0.89 1 1 0.22 0.18 1 0 

2 3 0.68 0.5 0.5 0.05 0.01 0.5 0.5 

3 2 0.32 0.5 0.5 0.95 0.99 0.5 0.5 

2 4 0.08 0 0 0.01 0 0 1 

4 2 0.92 1 1 0.99 1 1 0 

3 4 0.44 0 0 0.24 0.28 0 1 

4 3 0.56 1 1 0.76 0.72 1 0 

1 2 3 0.50 0 0 0 0 0 0.5 

1 3 2 0.32 0 0 0.02 0.74 0 0.5 

2 1 3 0.08 0 0 0.02 0 0 0 

2 3 1 0.01 0.5 0.5 0.33 0 0.5 0 

3 1 2 0.08 0 0 0 0 0 0 

3 2 1 0.01 0.5 0.5 0.62 0.26 0.5 0 

1 2 4 0 0 0 0 0.01 0 1 

1 4 2 0.25 0 0 0.01 0.35 0 0 

2 1 4 0 0 0 0 0 0 0 

2 4 1 0 0 0 0.01 0 0 0 

4 1 2 0.70 0 0 0.47 0.29 0 0 

4 2 1 0.06 1 1 0.51 0.36 1 0 

1 3 4 0.11 0 0 0.28 0.11 0 1 

1 4 3 0.44 0 0 0.46 0.05 0 0 

3 1 4 0 0 0 0.01 0.06 0 0 

3 4 1 0 0 0 0.10 0.18 0 0 

4 1 3 0.44 0 0 0.05 0.30 0 0 

4 3 1 0 1 1 0.11 0.30 1 0 

2 3 4 0.02 0 0 0 0.03 0 0.5 

2 4 3 0.06 0 0 0.02 0 0 0 

3 2 4 0 0 0 0 0 0 0.5 

3 4 2 0.06 0 0 0.34 0.01 0 0 

4 2 3 0.58 0.5 0.5 0.51 0.19 0.5 0 

4 3 2 0.29 0.5 0.5 0.14 0.77 0.5 0 

1 2 3 4 0.01 0 0 0 0 0 0.5 

1 2 4 3 0.03 0 0 0 0 0 0 

1 3 4 2 0.02 0 0 0 0 0 0 

1 3 2 4 0 0 0 0 0 0 0.5 

1 4 2 3 0.11 0 0 0 0 0 0 

1 4 3 2 0.05 0 0 0 0.32 0 0 

2 1 3 4 0 0 0 0 0 0 0 

2 1 4 3 0.02 0 0 0 0 0 0 

2 3 4 1 0 0 0 0 0 0 0 

2 3 1 4 0 0 0 0 0 0 0 

2 4 1 3 0.01 0 0 0 0 0 0 

2 4 3 1 0 0 0 0 0 0 0 

3 1 2 4 0 0 0 0 0 0 0 

3 1 4 2 0.01 0 0 0 0 0 0 

3 2 1 4 0 0 0 0 0 0 0 

3 2 4 1 0 0 0 0 0 0 0 

3 4 1 2 0.02 0 0 0 0 0 0 

3 4 2 1 0 0 0 0 0 0 0 

4 1 2 3 0.38 0 0 0.16 0 0 0 

4 1 3 2 0.20 0 0 0.49 0.21 0 0 

4 2 1 3 0.06 0 0 0.03 0 0 0 

4 2 3 1 0.01 0.5 0.5 0.01 0 0.5 0 

4 3 1 2 0.05 0 0 0.10 0 0 0 

4 3 2 1 0 0.5 0.5 0.21 0.46 0.5 0 

1116 
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