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ABSTRACT

Data science is the basis for various disciplines in the Big-Data
era. Due to the high volume, velocity, and variety of big data, data
owners often store their data in data servers. Past few years, many
computation techniques have emerged to protect the security and
privacy of such shared data while enabling analysis thereon. Hence,
access-control systems must provide a fine-grained, multi-layer
mechanism to protect data. However, the existing systems and
frameworks fail to satisfy all these requirements and resolve the
trust issue between data owners and analysts.

In this paper, we propose SEAL as a framework to protect the
security and privacy of shared data. SEAL enables computations on
shared data while they remain under the complete control of data
owners through pre-defined policies. Our framework employs the
capability-object model to define flexible access policies. SEAL’s
access-control system supports delegating and revoking access priv-
ileges and other access-control customizations. In addition, SEAL
can assign security labels to privacy-sensitive data and track them
to enable data owners to define where and when a data analyst can
access their data. We demonstrate the practicability of our approach
by presenting a prototype implementation of SEAL. Furthermore,
we display the flexibility of our framework by implementing multi-
ple data-analytic scenarios, which cover different applications.
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1 INTRODUCTION

Data science is the basis for various disciplines across academia and
industry, such as health-care, banking, insurance, social networks,
and e-commerce [23]. As data science becomes prevalent, academia
and industry have recognized several security and privacy issues
concerning sharing data between data owners and data analysts,
which limit the possibility of data sharing [30, 45, 55].

Data owners desire to cooperate with analysts to discover hidden
insights from their data. Due to the high volume, velocity, and variety
of big data, they often have to store their data in data servers and
let analysts access them [48]. However, security experts control
access at the edge of servers’ networks, enabling adversaries to
access sensitive data by penetrating servers’ networks [22, 59].

Despite analysts obtaining data legitimately, they may violate
data privacy or use them for another purpose than the allowed
one. For example, previous works [6, 51] demonstrated how at-
tackers could leverage shared genomic data to identify individuals
or perform facial recognition. One solution to the problem is to
bring computation to data instead of bringing data to computa-
tion [1, 7, 35]. Nevertheless, current frameworks need to be more
flexible. For instance, data owners must provide data and com-
putations [5, 7]. Furthermore, data owners cannot specify which
analysts can invoke which computation or when analysts can access
computed results.

Existing Solutions. Over the past many years, there have been a
plethora of approaches to address concerns associated with sharing
sensitive data, each with different pros and cons. These approaches
fall into four main categories: privacy-preserving access control [11],
data anonymization [33, 54], differential privacy (DP) [13, 14], and
homomorphic encryption [19, 38]. Differential privacy [14] is the
current de facto standard to protect privacy-sensitive data. This
technique provides provable guarantees which programming lan-
guages [17, 31, 34] as well as privacy-preserving [18, 37, 46], and
query-based [24, 39] frameworks have used to ensure data privacy.
For example, the programming platform PINQ [34] provides DP
primitives to perform privacy-preserving analyses. It trusts devel-
opers do not write malicious programs, and requires that program
developers rewrite existing applications to meet privacy require-
ments. Similarly, DPella [31] enables data analysts to reason about
the required privacy and accuracy trade-offs. Nevertheless, it only
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supports a few statistical analysis functions, such as counting. Fi-
nally, GUPT [37] is a DP-based framework that permits analysts to
run unmodified programs, and preserves data privacy using the the
sample-and-aggregate technique. However, it does not allow ana-
lysts to use the result of one computation as the input for another
computation.

Despite their usefulness, existing approaches fail to resolve the
trust issue between data owners and analysts and provide fine-
grained access control over computations by analysts. This defi-
ciency implies that data owners must balance the security and pri-
vacy risks of lending their data with the benefits of previously over-
looked insights. For example, PINQ [34] does not presume analysts
act as adversarial. Finally, data-publishing systems, e.g, [60], usu-
ally presume that analysts will use published data for pre-defined
purposes, which is inherently dangerous.

Our Approach. In this paper, we address these challenges by
introducing an access-control system for data-analytic computa-
tions. We present SEAL, a computation framework that serves as
a middle ground in data-analytic scenarios to resolve this issue.
SEAL enables data owners to control the computations that an
analyst can invoke, the precondition of an invoked computation,
the order of the invocations, and when data can be published to
the analyst (see §7). In addition, we designed SEAL to be a general
access-control framework for data-analytics scenarios. Therefore,
computing architecture can adopt and integrate our framework
into their designs.

Our approach ensures two main notions: first, we build a plat-
form that permits performing a sequence of computations on data
based on a stateful access-control scheme. Our access-control system
operates based on the capability concept [10, 16, 36], which allows
defining flexible policies to control analysts’ access to computa-
tions and (raw or processed) data. Furthermore, our access-control
system supports delegating and revocating user privileges. More-
over, to support data owners in defining and writing access-control
policies, we propose a flexible language by extending Rei policy
language [25]. Our extension introduces new constructs which
facilitate encoding security and privacy requirements in policies.

Second, we build our work upon the critical insight that data
sensitivity may evolve during computation steps. For example, the
ages of patients are sensitive data in a medical dataset. However,
an analyst can access a slated copy of such data (i.e, after applying
a sensitization mechanism). Therefore, we enable data owners to
define when and where a data analyst can access their data [47] based
on data sensitivity. In doing so, we introduce a labeling mechanism
to assign security labels to data.

Security labels are metadata that can be updated either according
to applied computations on data or based on directives. Data owners
provide directives as function contracts. Such directives are espe-
cially helpful in cases where it is unclear how a computation may
transform security labels, e.g., a machine learning algorithm. Then,
the decision to publish a computed result or to invoke a specific
sanitization mechanism depends on the data’s current security label
and analysts’ capabilities, which define their clearance levels. To
make this process tractable, we leverage the standard taint-tracking
technique [50, 52, 53], which tracks the sensitivity level of the data
throughout applied computations on the data.
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SEAL provides a generic access-control mechanism, which data
owners can employ in different data-analytic scenarios. For ex-
ample, data owners may employ the framework to enforce their
desired privacy requirements on their data. SEAL facilitates it by
allowing data owners to express their requirements as policies, e.g.,
they can specify under which circumstances SEAL can publish com-
puted results. We demonstrate the usefulness and flexibility of our
proposed framework for covering different applications by using it
to implement a few data-analyses scenarios(§6).

To summarize, we make the following main contributions:

e We propose, to our knowledge, the first stateful access-control
mechanism based on capabilities for data-analytic scenarios.

e We design a policy language to define capability-based access-
control policies and requirements based on Rei.

e we implement our approach into SEAL, a multi-purpose
capability-based access-control framework for data owners.

e We evaluate the efficacy of SEAL in real-world scenarios,
showing how it protects the security and privacy of shared
datasets.

2 SEAL OVERVIEW

The main goal of SEAL is to enable data owners to define how ana-
lysts can process their data as a set of processing steps. In addition,
SEAL enables them to define when the result of a processing step
is publishable.

We refer to a processing step as an action. A set of consecutive
actions is then called a processing path. This approach permits data
owners to assign different access privileges to analysts based on the
actions and status of the data. SEAL provides a policy language to
enable data owners to express their desires as a policy set. Moreover,
the framework uses a capability-based access-control model to
enforce policies.

Figure 1 depicts the main components of SEAL and the connec-
tions between them. SEAL operates in two phases: (1) an initial-
ization phase, wherein the data owner initializes the framework
and provides the datasets (steps A-D); and (2) an execution phase,
wherein the framework receives requests from analysts and per-
forms the actual computations (steps 1-9).

2.1 Initialization Phase

In this phase, the data owner prepares the framework to perform
requested computations. This phase consists of four steps as follows.

Policy definition. The data owner defines the processing paths
as a policy set using our policy language (step (A)). The data owner
expresses the actions and states for each path, along with the states
where the framework can publish a computed result. The policy
manager loads the policy set and checks analysts’ requests against
it. In addition, it updates the status of data after executing an action.
§4.4 presents details of the policy definition.

Parameter setting. In this step, the data owner assigns initial
values to parameters, such as the dataset’s privacy level or the
privacy budget for analysts when DP is used (step (B)). The policy
manager uses these parameters while enforcing the policies.

Rights delegation. The data owner assigns rights to analysts to
determine their clearance level and the actions they can perform on
each path (step (C)). The capability manager encodes analyst rights
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Figure 1: SEAL Overview.

into capabilities and manages them according to our capability
model (see §4.2).

Data transfer. The data owner uploads the raw data to the
framework (step (D). The file manager stores the uploaded raw data
into the appropriate files. Furthermore, the file manager provides
input/output file handlers for every action. When the framework
invoke an action, the action reads the input data through the in-
put file handler(s) and writes back the result via the output file
handler(s).

2.2 Execution Phase

In this phase, analysts request their desired actions. SEAL receives
requests from analysts and returns the computed results through
a web interface. The web interface provides basic functionalities
such as a graphical user interface (GUI) and secure communication.
Additionally, it acts as a proxy between analysts and the rest of
the framework by relaying requests and displaying responses to
analysts. The access controller intercepts a request when the web
interface forwards it. Upon receiving the request, it verifies that
(1) the analyst has the appropriate access rights and (2) the execu-
tion of the requested action will not violate policies. The access
controller achieves these goals in three steps:

Validity check. First, the access controller asks for capability
checking from the capability manager (step (3) in Figure 1). If the
analyst owns the required capability, the access controller asks the
policy manager to check the request against the policy set (steps
@ and @) Then, the access controller obtains the name of the
requested computation, its parameters, and a list of metadata, such
as the taint of the input data, from the policy manager. In addition,
it requests the input and output file handlers from the file manager
(step @) The access controller passes all these parameters to the
execution manager, who performs the actual computation (step (7)).
If any of these checks fails, the access controller stops going further
and sends an error message to the web interface.

Computation. The execution manager performs the requested
computation in an isolated environment. In addition, it tracks meta-
data, such as data taints, and updates them according to the per-
formed computation (§4.3 presents the details of our taint-tracking
approach). SEAL handles communications with the outside world
through input/output file handlers. Communication through the
file handlers eliminates the possibility of leaking sensitive data.
When the computation terminates and writes the result to output
file(s), the computation manager notifies the access controller and
forwards the updated metadata to it (step (3)).

State transformation. The policy manager updates the ana-
lyst’s state as soon as it receives the notification from the access
controller (step (9)). Furthermore, if needed, the policy manager

updates the analyst’s capability-related parameters (step (10)). In the
next step, the access controller receives the current state of the ana-
lyst and the result of the computation (in the case that the requested
action is to publish the data) and sends them to the web interface
(steps (@) and (12). Finally, the analyst receives the response to the
request through the web interface (step (13).

3 PRELIMINARIES

In this section, we explain the requisite preliminaries to understand
the details of our proposed approach.

3.1 Capability-Object Models

SEAL leverages the capability-based access-control model to sup-
port fine-grained control over data-processing steps. The capability-
based access control provides a robust and flexible mechanism to
enforce the least-privilege principle [10, 16].

Miller et al. [36] introduced the capability-object model as a secu-
rity measure for controlling access to particular system parts. The
capability-object model models the system resources and subjects
as objects. A capability is an unforgeable token and contains a ref-
erence to specific objects. When an object possesses a capability, it
can communicate with the referenced objects inside the capability.
In addition, capabilities encode access rights to determine allowed
interactions between objects.

The capability-object model enables two objects that do not pos-
sess a direct connection to communicate with each other through
intermediate objects. Such mediated communication prevents ob-
jects from having direct access to each other and facilitates the
revocation operation. For example, suppose three objects exist: A,
B, and C, as depicted in Figure 2. Object A possesses a capability
that refers to C and desires to delegate the capability to B. To this
end, (1) object A creates two intermediate objects, namely R and F;
(2) It delegates the capability that refers to C to R; (3) It delegates
the capability that refers to R to F. This enables B to communicate
with C through these intermediate objects. A asks object R to stop
forwarding B’s messages to break this communication link. Miller
refers to R and F as revoking and forwarding facets, respectively.
We follow the Miller’s approach to design our capability-based
access-control system.

3.2 Capsicum

To enforce the least-privilege principle for computations running on
behalf of data analysts, we use Capsicum [58], an OS-level capability
and sandboxing framework. Capsicum adds new primitives to the
UNIX API to support the compartmentalization of user-space appli-
cations. It constrains the available namespaces an application can
access and heavily restricts its permissions. A Capsicum capability
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Figure 2: The Capability-Object Model.
Legend: F: Forwarding Facet; R: Revoking Facet.

provides a wrapper around a file descriptor. User programs can not
change these capabilities because file descriptors are unforgeable
and read-only tokens.

Note that Capsicum capabilities differ from the capabilities we
introduce in our framework. A Capsicum capability restricts the
access of a process to specific namespaces and system calls. In
contrast, the framework’s capability defines an analyst’s clearance
level and the list of actions the analyst can invoke.

3.3 Differential privacy

Differential privacy is a powerful tool for quantifying and solving
practical problems related to data privacy. It is a technique which
is designed for the setting where there is a trusted data curator,
which gathers data from individual users, processes the data in a
way that satisfies DP, and then publishes the results. Intuitively, the
DP notion requires that any single element in a dataset has only a
limited impact on the output.

Definition 3.1 ((e, §)-Differential Privacy). An algorithm satisfies
(e, 6)-differential privacy ((e, §)-DP), where ¢ > 0,5 > 0, if and
only if for any two neighboring datasets D and D’, we have:

for all T CRange() : Pr(D) € T <e€ Pr(D’) € T+,
where Range() denotes the set of all possible outputs of .

Two datasets D and D’ are neighbors, denoted as D ~ D', if and
only if either D = D’ +r or D’ = D +r, in where D + r denotes the
generated dataset from adding the record r to the dataset D.

3.4 Thread Model

We assume analysts act as adversaries and try to breach the secu-
rity of our framework and data privacy. We trust the framework’s
hosting machine, and assume the connections between the frame-
work and analysts are secured using existing mechanisms, such
as TLS. We assume the machine’s OS prevents network-based at-
tacks. Furthermore, We trust Capsicum [58] and assume adversaries
cannot bypass its sandboxing mechanism. We assume adversaries
cannot physically access the framework’s hosting machine. More-
over, adversaries cannot alter or forge new capabilities; they can
only request permitted computations in their capabilities. However,
adversaries can upload malicious programs into the framework
when they possess proper capabilities.

Adversaries can attack data privacy by requesting trained mod-
els or feeding their datasets during computations. We follow Nasr
et al. [40] approach and divide adversaries into three categories
regarding data privacy, including weak, medium, and strong adver-
saries. Weak adversaries can only train models and employ models
to evaluate their data. Medium adversaries have the capabilities
of weak adversaries and request models. Strong adversaries have
the above capabilities and can apply their datasets during training
models.
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4 SEAL DESIGN

In this section, we present details of our framework design. In
particular, §4.1 describes how we model data-processing steps as
a finite state machine. §4.2 elaborates on our capability model,
and §4.3 presents the details of our taint tracking. Finally, §4.4
presents the notion of security policies.

4.1 Stateful System Model

We employ standard structures from automaton theory to model
our system. In addition, we apply this technique in a way that in-
corporates capabilities. In order to treat a wide variety of scenarios,
we define an abstract notion of the system. We provide a set of
theoretic models as a generalized automaton. We refer to the set as
the capability system. In addition, the capability system includes a
capability machine, which keeps track of analysts permissions.

Let Val and Var denote the set of values and variables, respec-
tively. We define a state of our system s € S as a tuple (o,I, E, pc) €
S, where o : ValU Var — Val is a set of local stores that maps locals
to values. A local store represents a snapshot of data in a specific
state. I' is a security-relevant variable, and it refers to the taint
context I' : Val U Var — T of data being processed, with T being
the set of security labels. It tracks security types associated with
locals. = denotes the system stack, containing a frame (fr) for each
function call. A frame (pc, o) is a pair of callers’ next step program
counter and its saved stores. Finally, pc represents the program
counter.

We model the transition as a function §(s;, a, p), wherein s; is the
initial state, a represents an action, and p denotes a security param-
eter determining when the framework can execute the operation.
Function & yields the reachable state s; or halts if the operation is
not allowed. For example, the capability system can enforce restric-
tions by consulting a user’s capabilities and the current taint of the
data. We will get back to this in §4.4. An analyst’s request triggers
transitions req = (a € X, ¢ € C, parameters), which expresses their
desired action and capability, and the parameters for this action.

We model our system as a deterministic finite-state machine by
adding an initial state. More formally, we model our system as a
tuple of (S, 2, C, 8, so, F). S and ¥ are finite set of states and action
symbols, respectively. C is a non-empty set of capabilities, and
0 : SXX <>, SU{L} is the transition relation with <, denoting a
transition restricted by policy checking. Finally, sy € S is the initial
state, and F C S is a set of possible final states.

Policies are restrictions over possible transitions in the system,
and the system can enforce them through the transition func-
tion §. The primary purpose of policies in our system is to define
permitted information flows or sequences of actions. Our transi-
tion function consults such policies (denoted by p) for each re-
quest. The policy-checking function maps security-relevant pa-
rameters, e.g., analyst capabilities and security label of data, to a
boolean value determining if the requested operation is allowed,
ie, p: CxT — {true, false}.

4.2 Capability Model

We build SEAL’s capability model based the capability-object model
presented in §3.1. It comprises two capability types: system capa-
bility and user capability, as depicted in Figure 3a. The system and
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(c) The User-Capability Structure.
Figure 3: The Capability Model

user capabilities are revoking and forwarding facets in our model,
respectively. The capability manager is responsible for creating all
the system capabilities and their corresponding user capabilities.
While the capability manager keeps system capabilities inside the
framework, it hands over user capabilities to analysts.

4.2.1 System Capability. The capability manager creates a system
capability (Figure 3b) when a data owner assigns a set of rights to
an analyst. It comprises several fields, such as rights, permissions,
the corresponding user-capability digest, and parameters.

Permissions. Permissions are possible operations on a capabil-
ity, such as delegation and revocation. The delegation permission
allows the capability owner to delegate a subset of their rights to an-
other analyst. The revocation permission indicates that the owner
can revoke a delegated capability. By revoking a capability, the
capability manager revokes all its re-delegation too. Furthermore,
SEAL can control the number of re-delegation of a capability

Rights. This list defines the rights that an analyst can request.
When creating a capability, the capability manager initializes the
list with the provided rights by the data owner for the analyst.

Parameters. This field carries analyst-specific data and helps
the policy manager to enforce policies and make decisions. For
example, it can specify the maximum number of times the analyst
can use the capability.

4.2.2  User Capability. A user capability (Figure 3c) comprises a
user identifier, a pointer to the corresponding system capability,
and a hash field. The user identifier field binds a capability to a
specific analyst. Hence,an analyst cannot obtain and use other
analysts’ capabilities on their behalf. SEAL can quickly locate the
corresponding system capability and perform the required checks
because the pointer points to a unique system capability.

The capability manager stores the hash value of the first two
fields in the hash field. Afterward, it generates the hash of the whole
user capability and stores it inside the hash field of the system
capability. The hash guarantees that an analyst cannot maliciously
alter a capability. The capability manager stores the latter hash
value before releasing the capability to the analyst.

4.3 Security Labels Tracking

Our framework supports more fine-grained access policies in addi-
tion to providing capabilities. SEAL provides security labeling of
data and tracking these labels throughout requested computations.
We leverage these security labels to better control where and when
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a computation result is publishable, or the framework can use it as
the input for the next operation.

SEAL updates security labels (i.e., downgraded or upgraded)
either automatically according to applied computations on the data
or based on directives stated as function contracts, e.g., by the data
owner. Such directives are especially helpful when it is unclear how
the applied computations will transform security labels.

SEAL tracks both direct and indirect propagation of data taints.
Our tainting rules are standard [50], in which assignments and con-
ditional branches propagate taints to the involved variables. Araujo
and Hamlen [2] introduced flow-sensitive taint tracking for LLVM
intermediate representation with memory pointers. Compared to
their approach, our tainting approach is also context-sensitive, mean-
ing that we incorporate taint of the current context (i.e., taint due
to control flow) into the taint tracking rules.

Figure 4 presents tainting rules for variable assignment, condi-
tional branch, memory store (e.g., array assignment), function call,
and return statements. The statement store (e, e2) stores the ex-
pression ey into the memory location pointed by the expression e,
and the others statements have a standard meaning. An expression
is either a constant n € Val, a variable r € Var, or a standard bi-
nary operation ranged over by bop (i.e., e; bop ez). We keep track
of the security type associated with locals by the taint context
T : Val U Var — {L,H}, where L, H are the security label of low
and high privacy-sensitive data, respectively. Each local is assigned
a security type ¢ € {L,H}, where ({L,H}, U, C) is a lattice of se-
curity levels and L £ H. Moreover, the program counter (pc) taint
fpc = T'(pc) indicates the current security context. Furthermore,
[e > €’] is applied to indicate the update of state components. We
use e ¢ 51y (1 ¢) to indicate the evaluation of the expression e
under the given locals and taint states. The evaluation function
represents a large-step transition and yields a pair of values n and
taint ¢ for the expression e.

Tainting rules for assignment, branching, and storing instruc-
tions are straightforward. We compute the taints of the input expres-
sions for a function call with a formal list of parameters paramsy,
such as call f (e, ..., ey) and update the taints accordingly. In ad-
dition, we store the current context in the stack. When the invoked
function terminates (rule ret e), we compute the taint of returned
value by incorporating the security label of the current context (i.e.,
pc taint) and return to the callee site by restoring the saved context
from the stack.

4.4 Security Policies

SEAL processes requests and transforms system states when an
action takes place based on policies. In addition, policies specify
when SEAL can grant (or revoke) analysts’ access. Therefore, the
framework requires a simple policy language that is expressive
enough to define system states and their relations, required pre-
conditions to invoke actions, and the effects of each action on
the system. Moreover, the language should enable data owners to
define possible rights of analysts and conditions under which the
framework can grant them. To this end, we choose the Rei policy
language [25] and adapt it to meet our needs.

Rei is a policy language based on deontic logic [57] with con-
structs for policy objects, including rights, prohibitions, obligations,



SACMAT °23, June 7-9, 2023, Trento, Italy

el (n¢) o =colrn] T =T[re Uf]

Hamed Rasifard, Rahul Gopinath, Michael Backes, & Hamed Nemati

elior (n €) T’ =T[pc bpeUl] ez bor) (0, €)

(r:=e)
(0, T, B, pc)y = (o, T, E, pc+1)

el (n, 6)  exlliory (n2, &) o' =[n1 ny]

(if e then e; else ey)
(o, T, 5 pcy = (o, T, E, n')

I"=T[n; = & Ub UL
(store(ey, €2))

(0, T, B, pcy = (¢/, T, E, pc+1)

er...emlory(ni...nm, b ... ty) T =T[paramsg ... 6y

o' =o[paramsg > ni...npy]

fr=(pc+1, 0)

(call f(ey, ..., em))

(0,1, E, pc) — (o, T, fr=E, pCf)

elior) (n, 0)  fr=(pc’, o)

0" =0 [Irer = n]

I =T[rree > €U lpe ]

(ret e)

(o, T, fr =&, pc) = (", ", E, pc’)

Figure 4: Dynamic taint-tracking rules. In these rules, params; denotes the formal parameters of the function definition.

and dispensations. We extend the language by introducing new
constructs: Action and StateObject. An action definition com-
prises the action’s name, the corresponding computation’s name,
its parameters, and action’s requirements. The action construct
enables data owners to define new computations. Furthermore, the
StateObject construct enables data owners to define the states of
their systems.

ACTION (action-name, computation-name,
Paramset(paramset-name,
params(param(param-name, param-type),...)),

Require(action-requirements)

e Action and computation names. The action-name speci-
fies a unique identifier for the action. The computation-name
denotes the specific computation implementation which
SEAL executes when an analysts requests the associated
action.

e Parameters. An action takes a set of parameters provided
by an analyst as the input. Each parameter has a name and a
type, where the type (param-type) includes: String, Integer,
Double, Listkv_String, Listkv_Integer, Listkv_Double, and
File. Type Listkv_VType defines a list of (key, value), where
the VType specifies the values type. For example, the type
Listkv_Integer defines a list of (key, integer) pairs with in-
teger as the value’s type.

e Requirements. The action-requirements refers to a list of
requirements for an action. A requirement illustrates what
action needs from the framework during its execution. For
example, an action may request SEAL to provide dynamic
taint tracking during its execution.

The RIGHT construct can define a right as follows:

RIGHT((right-name, action-name,
StateObject(Src_State),
StateObject(Dst_State),
Obligation(right-conditions))

¢ Right and action names. The right-name defines a unique
identifier for the right. The action-name specifies the corre-
sponding action that the right owner can request.

e Obligation. The action-conditions refers to a list of condi-
tions the data owner asks SEAL to check before executing
an action. The data owner can define the list based on the
properties of the data or metadata.

SEAL provides two particular actions: Go_To and Publish_Data.
The Go_To action changes the current state of an analyst with-
out any requirement. The Publish_Data action releases the data
to an analyst. Additionally, we provide a few predicates that data
owners can employ to define conditions and obligations. For exam-
ple, they can check if a metadata contains a specific value using
metadata(k, v), wherein k represents the metadata’s name, and
v defines the value. Predicates are logical expressions and may
connect to other predicates with logical connectives, including
Conjunction (AND), Disjunction (OR), and Negation (NOT).

5 SEAL IMPLEMENTATION

We implemented SEAL as a hosted platform, i.e. a web server, using
Flask [41] toolkit and Python programming language. Analysts may
connect to the SEAL as clients and request their desired computa-
tions while providing input parameters. Upon receiving a request,
the web server sends the request along with the corresponding
parameters and the user’s capability to the access controller. Fur-
thermore, analysts can upload their capabilities and view their
current states in the finite state machine.

The access controller orchestrates a sequence of operations to
produce the response: (1) The access controller asks the capability
manager to check the analyst’s capability. (2) It asks the policy
manager to check the request against the policy set. (3) The access
controller receives the file handlers for the requested data from
the file manager. (4) It passes the action name, parameters, and file
handlers to the execution manager. (5) The access controller asks
the policy manager to update the analyst’s state. In the following,
we explain the implementation details of each component.

Capability Manager: The capability manager handles all capability-
related operations, such as creating a new capability. Figure 3b illus-
trates the structure of a system’s capability. The capability manager
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uses a tree structure to store system capabilities. The tree com-
prises a root capability which includes all rights and permissions
in the policy set and several delegated capabilities. This capabil-
ity belongs to the data owner. The capability manager creates a
delegated capability for each data analyst, in which the actions
and permissions are a subset of the actions and permissions of the
delegated capability’s parent.

The capability manager handles delegating or revoking capabil-
ities. It stores the delegated capabilities of a system capability in
a doubly linked list as the children of the capability. The parent
capability provides access to the head and tail of the list through
two pointers. The capability manager delegates a capability by
adding a child node at the end of this list. It revokes a capability by
removing it from the list. It is worth noting that the tree’s height
can be greater than one, i.e., analysts can re-delegate their dele-
gated capabilities by possessing the permission. Finally, we leverage
berypt [43] to generate the user- and system-capability digests and
use these digest for security reasons.

To check a capability, the capability manager first verifies the
integrity of the capability by regenerating the hash values and com-
paring them with the hash-value field inside the system capabilities
(Figure 3b). Then, it verifies the analyst’s rights by searching for
the requested right inside the rights field (Figure 3b). Finally, the
capability manager informs the access controller about the result
of these checks.

Policy Manager: The manager reads the specified policies from
a description file during the initialization phase. It then loads the
policies as a state machine into an internal data structure compris-
ing state objects. A state object contains its unique name and several
action objects. Each action object contains information related to
an action, such as the name of the action and its requirement.

The policy manager stores analysts’ information, such as their
current state, in a database using the LiteSQL library. When the
policy manager receives an analyst’s request for a right, it retrieves
the action and source state of the right (presented in §4.4) and the
current state of the analyst. Then, the policy manager checks for
this request: (1) equality of the states; (2) existence of the action
inside the right and action in the current state; (3) fulfillment of
the action’s requirements; and (4) the current privacy budget of the
analyst from the system capability (Figure 3b). Finally, the policy
manager informs the access controller about the result of these
checks.

Execution Manager. The execution manager provides an inter-
face for receiving information about requested computations. The
access controller delegates executing requested computations to
the execution manager through the interface. During the execu-
tion, a computation must only access to provided data. Therefore,
the framework executes the requested computation inside a Cap-
sicum [58] sandbox.

The execution manager provides a taint-tracking tool to instru-
ment the code of the computation function if the policy requires
it. The transformed code handles both implicit and explicit taint
tracking during an execution. The execution manager informs the
access controller about the computation’s success and its output’s
taint when it terminates. In the following, we explain how the
taint-tracking tool accomplishes its task.
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5.1 Taint Tracking

There are two main problems in the implementing taint-tracking
mechanism for used libraries in data-analytic scenarios: (1) data-
analytic libraries mix code snippets from different languages like
python, C, and assembly for performance reasons; (2) they usually
have huge code bases.

To resolve the first challenge, we employ Numba [27] to transfer a
Python library into the LLVM [28] intermediate representation (IR).
The transferring allows us to use off-the-shelf taint trackers, e.g.,
PhASAR [49], for static taint tracking. Furthermore, we combine
static and dynamic taint tracking to increase the performance for
large code bases. In particular, we use static taint tracking to analyze
the code of the used function from data-analytic libraries (e.g.,
NumPy [56] and Scikit-learn [42]) while collecting data for dynamic
taint tracking of the code used by an analyst for computation.

5.2 Dynamic Taint Tracking

Implementing a full-fledged taint-tracking module is out of the
scope of this paper. However, the current implementation of SEAL
can handle both direct and indirect information flow, memory op-
erations and arrays, and function calls.

We support taint tracking without modifying the Python’s inter-
preter. For this reason, we implement our dynamic taint tracking
in two parts. The first part relies on object proxies for direct taint
propagation through the data flow. The second part statically instru-
ments the source code to keep track of indirect taint propagation
due to control flow. Now, we describe these two parts.

5.2.1 Direct taint tracking through object proxies. For propagating
taints based on direct data flow, we employ the described technique
by Conti et al. [8]. This technique leverages wrapper objects for
any input through the taint sources. Each wrapper object acts as
a proxy for the object it wraps. Furthermore, the source marks a
wrapper object with a taint.

The wrapper object employs the original (wrapped) object to
obtain the result of an invocation of its methods. Afterward, it
wraps the result in a new wrapper object. This technique computes
the taint of the new wrapper based on the original wrapper’s taint,
the arguments’ taints, and the context taint (discussed next). Hence,
the wrapper object propagates the taint along the result. A key
reason for choosing this technique is its ability to propagate direct
taints without modifying the interpreter.

5.2.2 Indirect taint tracking through instrumentation. We leverage
source instrumentation to incorporate indirect taint propagation
due to control flow. We implement the indirect taint propagation
during the control flow as a context-taint variable in the resulting
branches of the control flow.

In Python, each control flow has a conditional expression that
specifies which branch to take. We first evaluate the conditional
expression. If the evaluation produces a tainted wrapper object, the
context taint variable is set to the generated taint.

Contrary, the context-taint variable is set to no taint if the evalua-
tion does not produce a tainted wrapper. The framework passes the
context-taint variable to any operation that involves a tainted wrap-
per object. We implement this procedure by rewriting the program’s
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abstract syntax tree (AST) under taint tracking to incorporate the
context variable.

6 CASE STUDY

SEAL’s design suits various data analysis scenarios. Data owners
can adapt the framework according to their applications. Concretely,
a scenario may involve private data. Data owners can employ dif-
ferent privacy-preserving techniques, such as differential privacy,
to ensure the framework will publish sanitized data to analysts.

Differential privacy guarantees that an adversary should not
be able to distinguish between outputs of computation over two
datasets that differ only in an individual record. Dwork [14] defines
the e-differential privacy as follows: For any two datasets S, S’ €
D™ differing only in one data record, computation C preserves
e-differential privacy if for any R C Range(C)

Pr[C(S) € R] < € X Pr[C(S) € R]

Where € is the privacy budget. A lower privacy budget indicates
that computation C preserves privacy at a higher level. In compar-
ison, a higher privacy budget means the computation preserves
privacy at a lower level but produces more accurate results. Due to
space constraints, we select four typical data-analytic scenarios that
demonstrate the capabilities of SEAL. These scenarios leverage the
differential-privacy technique to preserve data privacy and cover
the cases in which data owners and analysts provide the input data.

Figure 5 illustrates our four analysis scenarios. We logically
divide these scenarios into two phases: the selection phase and the
computation phase. In the selection phase, analysts can only select
a subset of data without seeing it. Afterward, analysts can leverage
SEAL to analyze the selected data in the computation phase. After
defining the policies, the data owner specifies a privacy level by
setting a privacy budget for the whole dataset. In addition, the data
owner defines analysts’ rights and their maximum privacy budgets.

6.1 Scenario One: Statistical Analysis

The first scenario (dash-dotted lines in Figure 5) investigates how
analysts can select a subset of data records and count them. Count-
ing the selected data can provide analysts insight into the data or
help them to select the subsequent adequate request. This scenario
demonstrates how SEAL can provide statistical queries/operations.

As Figure 5 illustrates, analysts can invoke the Count action to
count the selected data. However, they can observe the result if
they first invoke the Add_Noise action. Action Add_Noise applies
an appropriate DP technique to preserve data privacy. Concretely,
it adds a Laplacian noise to the counted value with a sensitivity set
to 1 [29].

6.2 Scenario Two: Model Training

The second scenario (bold lines in Figure 5) trains a machine-
learning model. The data owner applies the following constraints
in this scenario:

e Analysts can train their models using these datasets, with
the restriction of maintaining the privacy level of the data.

o analysts can select the data from different sources, including
their data.
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e analysts can either have access to the trained model for
querying new data or get the trained model itself.

The data owner first defines the Linear_Regression action
to realize the machine-learning scenario. This action takes the
assigned privacy budget and the hyperparameter of the model
and then employs the diffprivlib library [21] to train a differential
private linear-regression model. An analyst can publish the trained
model using the Publish_Model action or test it using their data
by invoking the Test_with_Analyst_Data action. Furthermore,
analysts can combine the selected data with their data before model
training by performing the Get_Analyst_Data action.

The data owner has multiple options for preserving privacy in
this scenario. For instance, the data owner can provide the theo-
retical guarantees of DP for the whole pipeline by defining a strict
privacy budget which the framework will reduce from the privacy
budget of an analyst after invoking each action. However, there
is a less restricted option in which data privacy can depend on
empirical guarantees.

Recent work [40] empirically shows that achievable privacy
highly depends on what an adversary can perform, i.e., how strong
the adversary is. The data owner can define privacy budgets based
on adversaries’ types and strengths. For example, the data owner
can define the following adversaries, ranked from the weakest to
the strongest.

(1) The weakest adversary can only train the model and evaluate
their data on it.

(2) The medium adversary can request the model itself, in addi-
tion to the ability of the weakest adversary.

(3) The strongest adversary can do all of the above and apply
their data in the model’s training.

SEAL supports these scenarios by enabling data owners to define
appropriate rights and the maximum privacy budget for each type
of adversary.

6.3 Scenario Three: Analyst Functions

The third scenario (dashed lines in Figure 5) demonstrates how data
owners let analysts process data with their programs. Data analysts
sometimes develop private functions and desire to evaluate data
using them. However, data owners intend to provide this facility
for only some analysts. For example, they may only want a subset
of internal analysts to process data with their programs.

Data owners define such policy as follows: First, SEAL receives

the functions from these users; Then, it uses the sample-and-aggregation

technique [37] to execute the functions while preserving the data
privacy. In this case, analysts can neither include their data nor use
the results as inputs to further steps.

6.4 Scenario Four: Model Training with Taint
Tracking

Finally, the fourth scenario (bold dashed-lines in Figure 5) describes
how data owners can leverage the provided taint-tracking mecha-
nism. This scenario is an extreme example in which SEAL tracks
every bit of data during a computation to demonstrate the capabili-
ties of our framework.
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Figure 5: Data-analytic Scenarios.

In this scenario, data owners allow a subset of analysts to select
any subset of the data and perform linear-regression model training
over it. Afterward, based on the taint of the data, the data owner
can decide when to publish the results.

When an analyst selects a subset of data, the execution manager
activates the taint-tracking mechanism. When an analyst requests
SEAL to publish the model, the policy manager checks the request
against the policy set and the taint values. It only publishes the
model if this check passes.

Use-case policy. The following policy demonstrates this sce-
nario using our policy language. The data owner provides three
actions and their corresponding function name in this scenario.
These actions include selecting a subset of the data, executing the
linear-regression model training with differential privacy, and ex-
ecuting the linear-regression model training without differential
privacy. For example, the data owner defines the action for selecting
a subset of data as follows:

ACTION(Query_Data, query_data_function,
Paramset(query_data_parameters,
params(param(any-of-these, Listkv_String),

param(all-of-these, Listkv_String))),
Require(taint-tracking)

where the taint-tracking mechanism is enabled for the action.
The data owner defines analysts’ rights based on actions and the
data’s taint. For example, an analyst can only train a model without
applying differential privacy when the data taint is Low as follows:

RIGHT(LR_Learning_wo_DP, Linear_Regression_wo_DP,
StateObject(Queried_Data),
StateObject(Trained_LR_Model_WO_DP)
Obligation(data — tain = Low))

6.5 Security and Privacy Analysis

SEAL is a hosted platform that interacts with untrusted and poten-
tially malicious users. In doing so, it is essential to restrict analysts’
privileges and ensure that they cannot directly access datasets and
resources beyond their access rights.

SEAL performs access control at two levels: analyst level and
computation level. To control analysts’ access, SEAL employs the
object-capability model. The object-capability model allows data
owners to define fine-grained privileges per analyst. Moreover,
our framework prohibits an analyst from misusing the capabilities
of other analysts. For this reason, the capability manager binds a
capability to an analyst, thus preventing unauthorized use of the
capability. In addition, the capability manager supports capability
revocation through system capabilities.

The framework employs Capsicum to isolate invoked computa-
tions by analysts. Such isolation enforces the least-privilege princi-
ple and protects datasets and system resources. Capsicum allows
computations only access to a minimal set of system calls and pro-
hibits the rest. For example, It forbids computations to access the
network sockets. Thus, if an adversary provides a malicious code,
Capsicum restricts it from accessing the rest of the framework and
leaking data via network or file system inside a sandbox. In §7, we
evaluate the overhead of Capsicum.

Data owners can preserve data privacy by applying appropriate
sanitization techniques before publishing them. In addition, the
framework enables data owners to define various restrictions based
on use cases or how strong an adversary is. For example, consider
the above machine learning scenarios. The data owner assigns a
privacy budget to a dataset during the initialization phase, which
the framework keeps inside the root capability. Furthermore, The
data owner assigns the maximum privacy budget that an analyst
can spend, which the framework keeps inside the system capability
of the analyst. When a request arrives, Seal first checks the dataset’s
privacy budget and the analyst’s budget. If the remaining budget
of the dataset or the budget of the analyst does not suffice, SEAL
will reject the action. Otherwise, SEAL will execute the action and
decrease the action’s budget from the budgets of the dataset and
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the analyst. Due to the sequential composability of differential
privacy, the final privacy budget of any dataset will never exceed
the assigned one.

7 EVALUATION

SEAL adds runtime overhead when it processes a request. The
framework introduces this overhead due to checking the analyst’s
capability, checking the request against the policy set, and running
the computation inside the Capsicum’s sandbox. Hence, we evaluate
the performance of our framework by comparing its execution time
for each scenario with the execution time of the same scenario in the
native form. By native form, we refer to executing actions by calling
them through the Python interpreter. We employ cProfiler, a Python
profiler, to measure the performance, which gathers statistics about
a function call, such as its execution time. To provide accurate
results, we execute each measurement five times and average their
runtimes as the final result of the measurement.

We first selected three datasets from UCI Machine-Learning
Repository [12]: the Adult dataset, the Incident-Report dataset, and
the Household-Power-Consumption (HPC) dataset. The datasets con-
tain 32,561, 141,713, and 2, 075, 258 data entries, respectively. We
repeat all the measurements for these three datasets.

We measure the execution time of the four scenarios (Table 1)
to evaluate our framework’s overhead. The execution time of a
scenario starts when the framework receives the first request from
an analyst and ends when the framework publishes the result to
the analyst. Furthermore, we measure the overhead of Capsicum’s
sandboxing for in our framework. Hence, we disable the sandbox-
ing and repeat the measurement for each scenario. Figure 6a and
Figure 6b illustrate the framework’s and Capsicum’s overheads,
respectively.

In the first scenario, the analyst selects all data entries, asks
the framework to count them, and observes the result. Figure 6a
illustrates the overhead of the framework for all three datasets. The
framework’s overhead for the Adult dataset is 41.27%, the Incident-
Report dataset is14.98%, and the Household-Power-Consumption
dataset is 5.95%. These overheads demonstrates that in this scenario,
an overhead decreases as the number of data entries increases.

In the second scenario, the analyst selects all the data entries in a
dataset. Then, the analyst provides the parameters and starts train-
ing the model. Finally, the analyst asks the framework to publish the
model. The framework’s overhead for the Adult dataset is 22.43%,
the Incident-Report dataset is 7.09%, and the Household-Power-
Consumption dataset is 5.73%, as Figure 6a depicts. Moreover, the
framework’s overhead decreases when data entries increase.

In the third scenario, the analyst selects all the data entries in a
dataset, provides a computation function, and asks the framework to
apply the function over the selected data. For the sake of simplicity,
the user-provided function just computes the average of the data
in a specific column for each dataset. As Figure 6a illustrates, the
same pattern repeats similar to two previous scenarios. However,
the produced overhead by this scenario is higher than the produced
overheads for two previous scenarios. This higher overhead is due
to the sample-and-aggregate technique. The framework divides a
dataset to several smaller datasets based on this techniques. Then,
the framework creates a child process for each smaller dataset, runs
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Figure 6: Computation Overhead.

the computations inside the created processes, and aggregates the
results. Hence, the creation of child processes and aggregating of
their results produces a higher overhead compared to the overheads
of two previous scenarios.

In the forth scenario, we divide the dataset into three sub-datasets.
One sub-dataset includes data tagged with High taints, and the other
two include data with Low taints. First, the analyst selects all data
from three sub-datasets. In the next step, since the selected datasets
include data with High taints, the analyst can only request the
linear-regression model training with differential privacy.

The framework’s overhead varies between 7 to 10 times the na-
tive execution times in the fourth scenario because SEAL tracks
every bit of data during the computation. An execution time is
related to the number of function calls during its execution. The
number of function calls depends on the number of times a com-
putation retrieves an object from a container data structure. Every
time a computation retrieves an object from a container, the taint-
tracking mechanism creates a tainted type of object, then initiates
the new object with the value of the retrieved object and the taint of
the container. Furthermore, whenever the computation combines
several objects, the taint-tracking mechanism merges them into a
container and updates its taint based on the objects’ taints. There
are a few optimizations to reduce the number of function calls, such
as minimizing the number of object retrievals from a container.

8 RELATED WORK

We identified four main categories of work related to our approach

in this paper and reviewed selected works in each category.
Programming languages and frameworks. PINQ [34] pro-

vides DP building blocks for programmers to write privacy-preserving
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Adult Dataset

Incident Report Household Power Consumption

SEAL SEAL SEAL
native with Campsicum  without Capsicum native with Campsicum  without Capsicum native  with Campsicum  without Capsicum
® S1: Statistiacal Analysis 1.284 1.814 1.757 6.067 6.976 6.915 88.077 93.324 92.87
S2: Model Training 10.151 12.428 12.241 80.916 86.654 85.779 496.548 525.01 519.45
® S3: Analyst Functions 1.299 2.789 2.706 7.372 10.96 10.624 108.189 126.74 124.89
® S4: Model Training with TaintTracking 10.151 84.1 81.375 81.051 721.973 688.286 497.381 5012.714 4729.055

Table 1: Execution Time (Second)

programs. Fuzz [20] and DFuzz [17] provide programming lan-
guages that ensure the return value of a query includes noise.
HOARe? [4] introduces a programming language and uses program
verification to provide differential privacy. DPella [31] proposes a
programming framework with compositional reasoning about the
accuracy of data. These frameworks do not address the trust issue
between data owners and analysts. However, our framework does
not trust analysts and programmers. Hence, it provides a mecha-
nism to resolve the trust issue between them.

Privacy-preserving frameworks. Airavat [46] preserves data
privacy and only executes unmodified Map-Reduce programs. GUPT
[37] provides a framework that allows analysts to run unmodi-
fied programs. The GUPT framework employs the sample-and-
aggregate technique to preserve data privacy. Privacy-preserving
frameworks do not enable data owners to define compound compu-
tations. However, our framework enables data owners to express
such compound computations in various orders for analysts.

Query-based frameworks. Djoin [39] defines a few join op-
erations for distributed databases and applies differential privacy
to their results. Flex [24] applies elastic sensitivity to provide data
privacy in the results of SQL queries. Apex [18] proposes a frame-
work that considers data accuracy and privacy. Although existing
query-based frameworks and data-publishing systems preserve data
privacy when publishing data, an analyst can use the published
data for a different purpose rather than the proposed one. However,
our framework brings computations to data. Hence, analysts can
only receive data in the defined states by data owners.

Privacy-preserving data publishing. Rappor [15] introduces a
mechanism to collect distributed end-user data and provide privacy-
preserved statistical results using differential privacy. These frame-
works preserve data privacy but do not provide any mechanism
to control how analysts will use them. However, our framework
enables data owners to define how their data should be processed
and when a data should be published.

Policy Languages. Platform for privacy preference (P3P) [44],
P3P preference exchange language (APPEL) [9] , and enterprise pri-
vacy authorization language (EPAL) [3] provide standards and tools
for expressing privacy policies. However, they do not specify how
the policies should be enforced. Lou et al. [32] introduced a frame-
work for preserving privacy in distributed data-analytic scenarios.
On the contrary, our framework can be employed to control access
to computations that work with various kinds of data.

9 CONCLUSION AND FUTURE WORK

Summary and conclusions. In this paper, we proposed a capability-
based access-control system for data-analytic scenarios. Our stateful
system lets data owners control how analysts analyze their data by
defining fine-grained data control policies.

Our approach enables complex computations on shared data
while keeping them under the complete control of the data own-
ers through access-control policies. We further suggest labeling
privacy-sensitive data and tracking their transformation based on
performed computations, which enable data owners to make more
informed decisions on when, where, and who can access a result.

To facilitate defining policies, we extend the Rei policy language
with the constructs which allow encoding security and privacy re-
quirements. We implemented our approach into a prototype frame-
work, that we called SEAL. To evaluating our scheme’s efficacy and
analysing its security and privacy guarantees, we tested SEAL on
three real-world data-analytic scenarios, and measured its perfor-
mance overhead in each scenario. Our results showed that SEAL
can enhance the security and privacy of shared datasets.

Future work. In this work, we implemented a proof-of-concept
system for our approach on a single server. However, we designed
our approach with flexibility in mind, making it possible to adapt
to other architectures. For example, disaggregated-memory archi-
tectures, such as Memory-Driven Computing [26], can expedite the
data-processing speed and efficiency, and we plan to adapt SEAL’s
implementation to support these architectures in the future.
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