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Abstract  

This case study provides evidence of an apparent disparity in the way that certain mathematics topics 

are taught compared to the way that they are used in professional practice. In particular, we focus on 

the topic of matrices by comparing sources from published research articles against typical 

undergraduate textbooks and lecture notes. Our results show that the most important operation when 

using matrices in research is that of matrix multiplication, with 33 of the 40 publications which we 

surveyed utilising this as the most prominent operation and the remainder of the publications instead 

opting not to use matrix multiplication at all rather than offering weighting to alternative operations. This 

is in contrast to the way in which matrices are taught, with very few of these teaching sources 

highlighting that matrix multiplication is the most important operation for mathematicians. We discuss 

the implications of this discrepancy and offer an insight as to why it can be beneficial to consider the 

professional uses of such topics when teaching mathematics to undergraduate students.  

Keywords: Matrices, higher education, research and teaching practice, educational material and 

media. 

1. Introduction 

We teach undergraduate mathematics and foundation-year mathematics, and for some time we felt 

vaguely uncomfortable about what seems to be an unnecessary gap between the maths used by 

academics and the maths taught by academics in some parts of undergraduate mathematics. Imagine 

a driving instructor in the UK who drives, obviously, on the left-hand side of the road. It would be 

preposterous to imagine that they will teach their pupils to drive on the right-hand side of the road, i.e., 

contrary to what they do themselves. However, our study presented below shows that this impossible 

example seems to illustrate what maths lecturers might sometimes do at universities; when they 

conduct research, they use mathematics efficiently and professionally, but simultaneously, they seem 

happy to teach mathematics in a way that instils a somewhat distorted view of professional 

mathematical practice in the students that they teach. 

As we aimed to quantify our imprecise discomfort expressed in the previous paragraph, we were 

successful at locating one specific small area of mathematics on which we could zoom in and explore 

in detail, as described below. 

2. Matrix operations 

Matrix operations feature in a typical first-year university curriculum and in the Further Mathematics 

A/AS level within the UK. In a typical curriculum, matrix operations include addition and multiplication, 

and sometimes subtraction and ‘scalar multiplication’ (that is, multiplying a matrix by a number) also 

explicitly feature. For instance, Further Maths includes a section “Add, subtract and multiply 

conformable matrices; multiply a matrix by a scalar” (Cresswell, 2006). This is the area of the 
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curriculum on which we concentrate. Of course, there are also other operations one can apply to 

matrices, most notably, inverting, but these operations are nearly always introduced in other sections, 

not together with the operations above, and so we do not consider them here. One half of our study 

consisted of inspecting 40 teaching publications (that is, 20 textbooks and 20 lecture notes) to see how 

matrix operations are introduced in them. 

Our professional experience as mathematicians has led us to believe that in applications of matrices, 

multiplication of matrices is used much more widely than addition. Let us present two examples from 

different ends of the spectrum. Firstly, in the Further Maths textbook by Cresswell (2006), there are 

two applications of multiplication (“successive transformations” and “solve three linear simultaneous 

equations in three variables by use of the inverse matrix”) but no applications of addition. Secondly, in 

the book on deep learning by Chollet (2017), the author states that “deep neural networks [consist] 

mostly of many small matrix multiplications”. We felt that a similar picture can be observed in 

mathematicians’ research outputs. As such, the second half of our study consisted of inspecting 40 

recent research publications to see what place matrix multiplication occupies in them. 

Thus, the questions we were asking were approximately as follows:  

1. Is it true that in teaching, defining addition of matrices and multiplication of matrices are treated 

as topics of an equal importance?  

 

2. Is it true that in applications of matrices (as demonstrated in research publications) multiplication 

of matrices is by far the most important matrix operation?  

 

3. If the discrepancy described in the previous two questions exists, is it justified? And if it is not jus-

tified, what can be done? 

3. Research outputs 

Here is how we produced our data. We selected two medium-sized university mathematics 

departments, University of Essex and University of East Anglia, that publish research papers in a wide 

range of areas of mathematics. We then used staff web pages of each department to select 

researchers who, according to their online biography, were likely to have completed research using 

matrices in some way. Then we performed a search in Google Scholar using the keywords: ‘<First 

name> <last name> matrix’ and chose results where ‘matrix’ was highlighted in the description of the 

search result. We scanned the paper by eye and recorded whether we agree with the statement “In 

this publication, among other matrix constructions, matrix multiplication plays the most prominent role”. 

We also made a note of the total number of pages in the paper (excluding bibliography) and the 

approximate number of pages where matrix multiplication is used. Admittedly, due to a very wide range 

of mathematical research which we scanned, with various generalisations and applications, we had to 

treat matrix multiplication somewhat broadly, as ‘an operation that resembled matrix multiplication 

appeared to be used’. 

We saw that in 33 publications out of 40, matrix multiplication was most prominent, and in only 7 it was 

not. In the latter, ‘multiplication-poor’ publications, multiplication was shunned not in favour of other 

matrix operations, but because no matrix operations were used.  

As to the number of pages on which matrix multiplication features in a research paper, the ratio is 

shown in Figure 1. The horizontal axis shows the proportion of the pages in the publication which uses 

matrix multiplication. The vertical axis shows the number of publications. As you can see, the histogram 

is heavily skewed, with most of the data towards the right-hand side of the distribution, and half of 

research publications using matrix multiplication on at least 80% of their pages. 
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Figure 1. Proportion of pages in research papers that uses matrix multiplication as a 

prominent operation. 

A preliminary conclusion from these observations is that among matrix constructions, matrix 

multiplication is of paramount importance in mathematical practice. In the next section we explore 

whether this fact is reflected in the way matrix operations are taught. 

(Out of interest, we reflected whether not using matrix operations in some publications is a feature of 

these publications in particular, or of the research areas which they explore. In the publications we 

considered, the topics of ‘multiplication-poor’ publications are category theory, complex analysis, 

Markov chains, molecule imaging, and social interaction of animals. We can easily imagine that some 

other publications in these research areas could usefully employ matrix multiplication. Thus, not using 

matrix operations is a feature of specific publications.) 

4. Textbooks and lecture notes 

Here is how we produced our data. We selected textbooks and lecture notes from a range of years 

that were available as PDF documents online. We then used the contents page to locate the section 

where matrix operations were introduced. We scanned the section by eye and recorded whether we 

agree with the statement “In the section on operations on matrices, most attention is paid to 

multiplication”. We made a note of the number of pages dedicated to matrix operations in total and to 

matrix multiplication in particular. In most cases, the textbook or lecture notes went on to explain 

applications of matrix operations, however we opted to remove these pages from our count and only 

include pages where matrix operations were first introduced to the reader.  

We saw that in 24 textbooks and lecture notes out of 40, matrix multiplication was most prominent, and 

in 16 it was not.  
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As to the number of pages on which matrix multiplication features in a section on matrix operations, 

the ratio is shown in Figure 2, using the same bins as in the histogram in Figure 1. The horizontal axis 

shows the proportion of the pages in the publication which uses matrix multiplication. The vertical axis 

shows the number of publications. The histogram in Figure 2 is symmetrical, with both the mean and 

the median just under 70%. 

 

Figure 2. Proportion of pages in teaching publications that are used when introducing 

matrix operations and which are devoted to matrix multiplication. 

In all sections on matrix operations matrix multiplication occupies more pages than other operations. 

If we pore over the text of these sections in more detail, the conclusions are mixed.  

On the one hand, in some of the ‘multiplication-heavy’ sections, multiplication was given more attention 

not because it is presented as more important, but because its definition is perceived as being more 

complicated than those of other matrix operations. Some books explicitly suggest that out of the two 

operations, addition and multiplication, multiplication is the ‘uglier’ one. For example, in the textbook 

by Olver and Shakiban (2006), the definition of multiplication of matrices is immediately followed by 

saying “Now, the bad news. Matrix multiplication is not commutative”. In the textbook by Lang (2012), 

addition and scalar multiplication are parts of the definition of matrices, whereas multiplication is less 

so; indeed, the author defines not matrices, but “the space of matrices”. Similarly, for Bourbaki (1958), 

addition is more natural because addition of matrices can be defined for matrices over any additive 

group, whereas multiplication of matrices can be usefully defined only for matrices over an associative 

ring. 

On the other hand, some textbooks and lecture notes skew the section on matrix operations towards 

multiplication in what seems a clear recognition of the more important role of multiplication. Out of the 

40 textbooks and lecture notes, only 7 have 90% or more of the pages in the section on matrix 

operations dedicated to multiplication.  
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Hardly any textbooks or lecture notes explicitly state that matrix multiplication is more important. 

However, one example of a balanced solution is found in Birkhoff and MacLane (2017); first addition 

and scalar multiplication are introduced as “vector operations on matrices”, and then matrix 

multiplication is introduced as “the most important combination” of matrices. 

5. Discussion and conclusions 

Does the comparison presented in the previous two sections matter? Let us explain why we undertook 

this study. We agree with Harari (2018) saying,  

the last thing a teacher needs to give her pupils is more information. They already have far too much of 

it. Instead, people need the ability to make sense of information, to tell the difference between what is 

important and what is unimportant, and above all to combine many bits of information into a broad picture 

of the world.  

Not all undergraduate students will proceed to reading research papers and seeing which matrix 

operations are used or not used there. Millions of people might scan the lists of topics in A level subjects 

but never attempt these A levels. If we do not immediately present mathematical definitions and facts 

in the way in which they really are used in the practice of professional mathematicians, there might be 

no other opportunity. For many people, after they have read ‘add, subtract and multiply matrices’ in a 

mathematical curriculum, it will stay with them for life and slightly distort their mental image of 

mathematics. Somewhat exaggerating, to read ‘add, subtract and multiply matrices’ in a mathematical 

curriculum is like to read ‘Chertsey, Upminster and London’ in a geography curriculum; Chertsey and 

Upminster might be fine places, but they are less important than London and are not likely to feature 

in the same list with London and precede it.  

When we teach matrices, we the authors grasp an opportunity to immediately show our own students 

that a clever definition of matrix multiplication makes this operation versatile and usable in many 

applications, and that this definition alone makes matrices usable in many applications. Reflecting on 

our observations presented in the previous sections, we eventually migrated towards a practice when 

we introduce matrix multiplication as an important construction, and in the meantime define matrices 

as notation which is convenient to use when one performs matrix multiplication. An example of one of 

activities that we use is given below: 

A chelsea bun contains 45 grams of flour, 5 grams of sugar, 15 grams of milk and 1/10 of an egg. A 

brioche bun contains 45 grams of flour, 2 grams of sugar, 2 grams of milk and 2/10 of an egg. In 100 

grams of flour there are 16 grams of protein, 86 grams of carbohydrate and 3 grams of fat. In 100 

grams of sugar there are 100 grams of carbohydrate. In 100 grams of milk there are 3 grams of protein, 

5 grams of carbohydrate and 1 gram of fat. In one egg there are 7 grams of protein and 5 grams of fat. 

I ate one brioche bun and two chelsea buns.  

Express all the data from the previous paragraph as matrices. Multiply these matrices to calculate how 

much protein, carbohydrate and fat I consumed. 

In addition to the example given above, you can see the first author, Alex Partner, introducing an-
other activity with a toy food-based example in his video lecture (Partner, 2020). Our approach is 
similar to that of Dunn and Parberry (2002), where multiplication is described as the only interesting 
operation to be performed, particularly from the perspective of linear transformations. Eddie Woo 
uses a similar approach in one of his videos, also employing a toy food-based example (Woo, 2014). 
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