
Dartmouth College Dartmouth College 

Dartmouth Digital Commons Dartmouth Digital Commons 

Computer Science Senior Theses Computer Science 

Spring 6-9-2022 

Determining American Sign Language Joint Trajectory Similarity Determining American Sign Language Joint Trajectory Similarity 

Using Dynamic Time Warping (DTW) Using Dynamic Time Warping (DTW) 

Rohith Mandavilli 
Dartmouth College, Rohith.Mandavilli.22@Dartmouth.edu 

Follow this and additional works at: https://digitalcommons.dartmouth.edu/cs_senior_theses 

 Part of the Game Design Commons, and the Software Engineering Commons 

Recommended Citation Recommended Citation 
Mandavilli, Rohith, "Determining American Sign Language Joint Trajectory Similarity Using Dynamic Time 
Warping (DTW)" (2022). Computer Science Senior Theses. 12. 
https://digitalcommons.dartmouth.edu/cs_senior_theses/12 

This Thesis (Undergraduate) is brought to you for free and open access by the Computer Science at Dartmouth 
Digital Commons. It has been accepted for inclusion in Computer Science Senior Theses by an authorized 
administrator of Dartmouth Digital Commons. For more information, please contact 
dartmouthdigitalcommons@groups.dartmouth.edu. 

https://digitalcommons.dartmouth.edu/
https://digitalcommons.dartmouth.edu/cs_senior_theses
https://digitalcommons.dartmouth.edu/cs
https://digitalcommons.dartmouth.edu/cs_senior_theses?utm_source=digitalcommons.dartmouth.edu%2Fcs_senior_theses%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1133?utm_source=digitalcommons.dartmouth.edu%2Fcs_senior_theses%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=digitalcommons.dartmouth.edu%2Fcs_senior_theses%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.dartmouth.edu/cs_senior_theses/12?utm_source=digitalcommons.dartmouth.edu%2Fcs_senior_theses%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dartmouthdigitalcommons@groups.dartmouth.edu


Determining American Sign Language Joint
Trajectory Similarity Using Dynamic Time

Warping (DTW)

An Honors Thesis Submitted to the Faculty in partial

fulfillment of the requirements for the degree of Bachelor of Arts

in Computer Science

Rohith Mandavilli

June 2, 2022

DARTMOUTH COLLEGE

Hanover, New Hampshire

Advised by Professor David Kraemer and Professor Devin Balckom

1



Abstract

As American Sign Language (ASL), the language used by Deaf/Hard
of Hearing (D/HH) Americans has grown in popularity in recent years, an
unprecedented number of schools and organizations now offer ASL classes.
Many hold misconceptions about ASL, assuming it is easily learned; how-
ever due to its rich, complex grammatical construction, it’s not mastered
easily beyond a basic level. Therefore, it becomes ever more important to
improve upon existing techniques to teach ASL. The Dartmouth Applied
Learning Initiative (DALI) at Dartmouth college in coordination with the
Robotics and Reality Lab developed an application on the Oculus Quest
that helps D/HH individuals improve their ASL literacy. Though the app
accurately predicts whether a user is signing letters correctly, it cannot
verify signed words effectively due to the complexity involved in tracking
motion and rotations. As a result this paper analyzes the effectiveness of
using Dynamic Time Warping (DTW), a popular motion similarity com-
parison technique, to compare user-signed joint trajectories. I compute
an 84% accuracy rate as a low bound for my algorithm due to factors
involved in this calculation. This is primarily driven by one of the signs
being imperfectly signed, and when we exclude that sign from analysis,
our accuracy rate jumps to 92%. Therefore, I’ve identified a successful
metric for validating the correctness of a signed word.
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1 Introduction

This section provides as an introduction to the motivation behind
building an application. Specifically, the teach-student communication
gap and difficulty of learning ASL motivate building an application that
can provide consistent and objective feedback for learning signed words.

1.1 Teacher-Student Communication Gap

The relationship between teacher and student can be understood as a
process of communication or a transfer of knowledge. This relationship
is the crux of pedagogy and guides the growth of students. Previous
research has argued that there exists an unrepresentable, transforma-
tive, communicative gap that cannot be closed nor controlled by either
partner in question. Therefore, educational relations are never direct
[2]. Ultimately, this implies that the student can never fully internalize
verbal feedback given by their teacher because information is sometimes
forgotten, applied incorrectly, or misunderstood.

To illustrate this problem, consider a swimmer and their coach.
During practice, the coach times the swimmer and then provides feed-
back on how to lower the time, thus improving the run. From the per-
spective of the swimmer, receiving verbal feedback is obviously helpful,
but hard to implement in practice. The coach may describe a few things
for the swimmer to improve, like starting their turn earlier, increasing the
length of their stroke, or diving deeper off the podium. Over many runs,
there may be multiple pieces of feedback the swimmer has to remember,
which can become cumbersome and tedious, potentially even frustrating.

This example obviously extends itself towards learning languages.
To learn a new language, students must at least memorize words, learn
pronunciation tendencies, and internalize a new grammatical system.
Teachers generally agree that critical language awareness, interpretive
skills, and historical consciousness are also required to truly understand
a language [3]. Though ASL is not spoken, similar challenges such as
overcoming cultural inhibitions and learning to interact with D/HH peo-
ple are obstacles towards fluency [4].
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In the context of a classroom setting, this gap has implications for
ASL literacy. You can imagine a teacher asking a student to change the
position of their hand as well as the rotation of a few of their joints simul-
taneously. They could also ask the user to mimic their facial expression
or increase the speed at which they sign. The purpose of this application
is to partially bridge this gap by providing a virtual environment where
users can sign words and receive consistently correct feedback while min-
imizing effort required by an instructor.

1.2 Difficulty of Learning ASL

Hearing learners of ASL are forced to operate in a visual-gestural
modality rather than the familiar aural/oral modality. There is no un-
derstood schema for how to interpret linguistic information visually. This
can easily make the process of learning ASL mentally demanding. Some
research has found that the translucency of a sign, the perceived rela-
tionship between a sign and its referent, and rated concreteness of the
sign referent are significant predictors of individuals learning that specific
sign [5]. Studying the meaning of a sign simultaneously with handshape
and articulation has a significant impact on students remembering that
sign.

Learners are also forced to become comfortable with explicitly us-
ing their body as forms of expression and communication. Interestingly,
earlier work has found that students with theatrical talent are likely bet-
ter prepared for non-oral communication [4]. These types of students
are less likely to be afraid of making mistakes, so they don’t experience
pressure in the process of learning.

Both students and teachers generally perceive student ASL syntax
and grammar to be their biggest weaknesses [4], immediately followed
by insufficient repetition and practice in class. Though the scope of this
app is therefore limited as it cannot teach grammar, the literacy gains
made from practicing with it will smooth the transition to learning gram-
mar as students need not focus on correctly signing words. Additionally,
students report difficulty with perceiving and articulating hand signs ac-
curately in terms of handshape and movement [4]. As discussed earlier,
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the gap inherent to the teacher-student relationship makes correcting
those errors arduous.

Informal language learning can occur outside classrooms through
social interactions with native speakers or exposure to culture [7]. In-
deed, students often study abroad in attempts to inculcate themselves
with a specific language. However, research suggests that when ASL
learners interact with members of the D/HH community, they are often
not confident or reluctant [4].

As a result of these challenges, teachers of ASL traditionally main-
tain low expectations for their students. When new material is intro-
duced, classroom pace slows and prior material is referenced to provide
context [6]. This hampers students’ learning ability and slows down the
process of fluency. Therefore, it remains important to explore new tech-
niques to teach sign language resilient to these obstacles.

1.3 ASL and Technology

The intention of this paper is to create a technological solution that
can effectively teach individuals words in ASL, aiding student literacy.
Eventually, I want to build this software into an application that can
teach ASL in its entirety, including grammar. I will start with describ-
ing design principles related to successful software applications, then end
with a discussion of the game mode I created.

1.3.1 The Effectiveness of Using Technology to Teach ASL

To start, Computer Assisted Instruction (CAI) has the potential to
assist with early foreign language instruction [8]. In a study comparing
the effectiveness of using technology in place of social interaction as an
informal language learning setting, groups exposed to audiovisual mass
media performed better on a curated speaking test than groups exposed
to social interaction indicating exposure to technology promotes speak-
ing proficiency [7].

To be clear, ASL should be postulated as a form of discourse far
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more than varying degrees of knowledge of ASL. However, we can con-
ceive of creating technology to assist with sign language literacy which
would ultimately supplement classroom instruction [11]. Researchers in
Brazil succeeded in creating a virtual environment allowing real-time
communication via an online chat room. The experience improved the
teaching and learning process and was readily accepted by learners [12].

1.3.2 Software Design Considerations

To be successful, in the early, stages software developers must target
a specific lesson structure with pedagogical validity [9]. Furthermore,
the ability of software to contribute pedagogical value is related to four
central questions [10]:

1. Is increased technological sophistication related to increased effec-
tiveness?

2. What attributes of the new technology can be profitably exploited
for pedagogical purposes?

3. How can new technologies be successfully integrated into the cur-
riculum?

4. Do new technologies provide for an efficient use of human and ma-
terial resources?

I have found evidence that technology can positively impact the
learning process of ASL, and have isolated specific questions that we
need to address to ensure the effectiveness of the technology. The next
section will detail the created game mode we’ve worked on to teach peo-
ple ASL words.

1.3.3 Sign Language Virtual Reality Word Signing

Between the glossary mode teaching users letters and the fingerspelling
game inviting users to sign each individual letter in a word to complete
the word, I have developed a mode asking users to sign a given word
displayed on a blackboard. The words are read in from a .txt file and the
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user is given 4 seconds to sign the word. After the time ends, the avatar
signs the motion the user just performed back to them, and then signs
the given word correctly if the user was wrong. That way, the user can
see what they did and immediately examine the differences between that
and the correct sign. We believe that this somewhat models in person
instruction. In a classroom, students will watch a teacher sign a word
and attempt to copy them. After receiving feedback, hopefully they
improve and eventually sign it correctly. Our application immediately
provides an unbiased assessment of the quality of a hand sign and its
mistakes, arguably more effective than a teacher who may have to help
many students. However, as we have previously learned, translucency
(understanding the meaning of a sign) is a major predictor of students
being able to learn sign language. One consideration for the future would
be some sort of implementation that conveys the meaning of a given word
while asking the user to sign it.

I argue that this application resolves many of the difficulties in-
volved in learning ASL. One issue that learners must face is adapting
to the visual-gestural modality including being comfortable with using
their body as expression. This application provides a break from real-
ity where users are not worried about the perceived social pressure of
signing because with the Oculus headset on, they will not be able to
see anything besides the virtual environment. Additionally, since it has
been agreed that increased repetition and practice would greatly benefit
learners, the application already has demonstrated need. Because the
feedback is provided by an algorithm, students could use the app outside
of class without the need for a teacher. This saves time in the classroom
and allows students to control their practice since they can choose to
stop whenever they feel comfortable. Lastly, I believe it provides stu-
dents with an avenue to get over nerves interacting with people from the
D/HH community. Since learners hone their skills in a pressure-free en-
vironment, it will hopefully simultaneously build the confidence required
to actually use sign language in the real world.

The application also fulfills the software design considerations laid
out in the earlier subsection. Technological sophistication with the ap-
plication can take the form of a multitude of things. Firstly, increased
algorithmic performance smooths the movements and transitions of the
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avatar, reducing lag. Smoothing makes avatar signs seamless and fluid,
truly mimicking how D/HH people use ASL. Additionally, implementa-
tion of machine learning techniques could allow us to identify minute
sections of a user sign that are wildly incorrect, allowing the application
to give specific and pointed feedback to the user. Training data will be
gathered from users over time, slowly building a model that can replace
the feedback of a teacher.

There are a few attributes of the project that can be profitably
exploited for classroom benefit. The most obvious example is supple-
menting the effort of the teacher with software. Over time, this will save
money on behalf of schools and organizations by giving 1 on 1 instruc-
tions to students outside of class. Additionally, the data collected from
the application will be useful in the future to find which specific signs
students have trouble with and create a model that can ASL explain
grammar and syntax.

For the third question, we can easily imagine the application to
amplify in person curriculum through outside of class practice assuming
students have or are provided with the resources to obtain an Oculus
quest. Lastly, we can be sure that the software is an efficient use of
resources because it’s developed by college students learning about soft-
ware engineering. The only consideration here is the upfront cost of
implementing this technique in schools, but if the application were to
have pedagogical value agreed upon by ASL experts and teachers, then
schools will be incentivized to implement the application wherever nec-
essary.

2 Development

This section will provide a description of relevant aspects of the developed
application.

2.1 The Environment

The avatar is a robot present in the environment meant to interact
with the user to aide their learning of ASL. The avatar has a head with
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Figure 1: Avatar

expressions on a facial screen and symbols on a body screen (which is
equipped with shapes and buttons to trigger certain game events). The
environment is constructed as the interior of a spaceship with the avatar
positioned at the front in front of a bay of windows. The user selects
game through ”control panels” on either side of the space. The new
space allows for creativity and buttons are incorporated into the pan-
els for an interactive and immersive game experience. The games are
adapted to git the scenery and the environment takes advantage of the
VR setting.

We decided to create a friendly-looking pastel-colored robot avatar
designed by the DALI team with direction from their partners in order
to ensure users of all ages would feel comfortable interacting with it and
that it would be easy on the eyes for extended periods of time. We settled
on a simple rounded design with no arms or legs with a detatched head.
Eventually as we wanted to sign more complex signs, we added arms,
hands and fingers, which are all supported by humanoid rigs in Unity.
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However, the application currently cannot support facial expressions for
ASL, which is a core aspect of understanding the language. This is an
area of growth for future designers and developers. The avatar rig’s arm,
hand and finger joints have been appropriately configured and mapped
to the model provided in Unity to allow for easy access to manipulate
and read positions and rotations of those joints. This will allow us to
record data beneficial in the future.
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Figure 2: Word Signing Panels

2.2 Word Signing Game Mode

In order to enter the word signing game, users pan to the right on
the Oculus and click the second button on the control panel. When your
finger hovers over the button, information about the game mode pops up
on the white screen above the panel. To click, users pinch their thumb
and pointer finger, prompting 3 more panels to show up in front of the
avatar (so the user pans back left). Currently there are multiple different
game modes that involve signing words such as fingerspelling, but the
game mode involving movement starts when the user clicks on the mid-
dle panel. Immediately, the panels disappear, a scoreboard is displayed
to the left of the game, and a word is written on the blackboard above
the avatar. The user is given 4 seconds (subject to change) to sign the
given word. After the allotted time is over, the avatar replays the word
back to the user, and then signs the correct version of the word if the
user displayed an incorrect sign.
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Figure 3: Different Game Modes

Figure 4: Word Signing Game

Unfortunately, I didn’t have enough time to set up the game mode
such that the avatar correctly both plays back the user animation as
well as shows the correct animation. The code structure is there, but
animating the avatar using the correct coordinate space and quaternions
was quite difficult, so I left that for future work in order to finish this
thesis. Ideally, an implementation would perfectly mimic the avatar so
the user can visualize what their motion looks like, but since obviously
different people have different hand shapes from each other and from the
avatar itself, some calculations will likely be required to create smooth
transitions and animations.
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2.3 Models and External Software

2.3.1 Word Model

I’ve created a class to represent a word in ASL with a few intrinsic
properties mapping to characteristics of a sign. rotationData is a list
of dictionaries mapping either a user’s left or right hand to a dictionary
of finger bones to floats representing quaternions. positionData is sim-
ilarly constructed but points to a float representing vectors indicating
the bone’s position in the coordinate space relative to the bone’s parent.
The position data of user fingers is unused in this project. Then we have
wristPositionData which is a list of dictionaries mapping a user’s left or
right hand to a vector float representing the user’s wrist position in the
world coordinate space relative to the face of a user. wristRotationData
is similarly constructed but points to a float representing a quaternion in
word space. Each one of these data structures is firstly contained within
a list. This list represents the position or rotation of the relevant variable
at a snapshot in time. The length of these data structures is the number
of frames captured by the application. frameSplitBreakdowns is a list of
floats representing the second that each of the frames was taken. This is
used in the future to normalize time signatures between different word
trajectories.

2.3.2 Trajectory Model

A Trajectory is a representation of a Word with reformatted data
used for analysis. leftHandFingerBoneRotationData and rigthHandFin-
gerBoneRotationData are created through Word.rotationData and are
each a list of dictionaries mapping finger bone to quaternion. leftHand-
WristRotationData and rightHandWristRotationData are both taken from
Word.wristRotationData and are both lists of quaternions representing
the rotation of each wrist in the world coordinate space. leftHandLoca-
tionWithRespectToFace and rightHandLocationWithRespectToFace are
created from wristPositionData are both lists of vectors representing
floats representing the position of each wrist in world space relative to
the user’s face. rightHandUnitVelocityVector and leftHandUnitVeloc-
ityVector are a list of floats representing the change in direction and
magnitude of motion from each frame to the next. This variable is cre-
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ated from the Trajectory.leftHandLocationWithRespectToFace and Tra-
jectory.rightHandLocationWithRespectToFace variables. rightHandPo-
sitionWithRespectToleftHand is a list of vectors representing the right
hand’s position in relation to the left hand and is created from subtract-
ing each hand’s position from each other at the same frame. rigtHand-
WRTLeftHandUnityVelocityVector is a list of vectors representing the
direction of motion at each frame for the right hand’s position with
respect to the left hand. framePointsForComparison is a list of num-
bers representing a frame within the allotted 4 seconds. This vari-
able is used for trajectory normalization which will be discussed fur-
ther in detail later in the paper. frameSplitsBreakdown is identical to
Word.frameSplitsBreakdown.

2.3.3 Database Manager

The application is connected to a MongoDB instance with various col-
lections. After the time period for the user to sign is up, the application
collects the relevant data, transforms it in to the necessary coordinate
spaces, then uploads it to the database. The script that determines the
similarity between trajectories is written in python and separate from
the application. Eventually, this logic should be ported over to the ap-
plication to allow real time trajectory comparison, but I left that up for
future work.

3 Similarity Comparison

This section is devoted towards explaining the implementation of the
trajectory similarity comparison technique used in this project.

3.1 Existing Techniques

As you may be able to imagine, trajectory similarity is a problem
that has been studied for decades. As the technology for tracking mov-
ing objects becomes faster, cheaper and more accurate, we have seen
increased volumes of well-obtained data mapping moving objects [13].
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Additionally, tracking the similarities of trajectories has been studied to
detect collision detection, analyze maritime traffic management, varia-
tion of temperature over time and more. Recently, these techniques have
been applied to classifying and comparing hand signs, whether in ASL
or other visual languages.

3.1.1 Fréchet Metric

The Fréchet metric (or distance) is one of the most popular similarity
trajectory measures [14]. The metric was first created by M. Fréchet [15]
and can be applied to either continuous or discrete curves. The classic
example provided depicts a person walking a dog on the leash. Both
the person and the dog are able to vary their speeds, stop, but cannot
go backwards. The metric is the minimum leash length required for the
person and the dog to complete their trajectories. The algorithm used
to determine the values of the distances can be adopted for each specific
use case, but a common one used is Euclidean distance. The points are
not matched together, meaning it will correctly work for varying sam-
pling rates and trajectory lengths. The worst case time complexity of
this metric is O((m2k + k2)logmk). Where m and k are the lengths of
the trajectories [17].

3.1.2 Dynamic Time Warping (DTW)

Dynamic Time Warping (DTW) is a similarity measure the matches
points within the two trajectories. The trajectories are ”warped” in a
non-linear way to measure similarity while varying sample rates [16].

For trajectories TA and TB with lengths m and k, a m X k matrix
can be created where each point (i, j) represents the distance between
points TAi

and TBj
[18]. A warping pathW is created by starting at point

(1,1) and incrementing i or j by 1 until you reach (m, k). Therefore we
can conceive of the warping path W as a sequence of grid points. Expo-
nentially many path can be created to satisfy that constraint [19]. Then
we calculate distances between each of those points in the trajectory us-
ing whatever algorithm appropriate for the use case [18]. In this paper,
we use euclidean distances between vectors and quaternions. These costs
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are summed to get a DTW distance for warping path W . The DTW
similarity value is the minimum of all possible DTW distances for all
possible warping paths [19]. We can therefore map a single point in a
trajectory to multiple points on the other trajectory, allowing us to deal
with different lengths and varying sampling rates. The time complexity
of finding the DTW cost for a path W is O(mk) [18].

3.1.3 Longest Common Subsequence (LCSS)

Longest Common Subsequence is a similarity technique where some
points are able to remain unmatched. The output value represents a
count of the maximum number of points between trajectories that can
be considered identical. The trajectories are traversed from start to end
[20]. The measure generally functions well with different sampling rates;
however, widely varying rates may cause issues when many points are
left unmatched. Using dynamic programming, the time complexity of
this algorithm is O((m + k)δ where δ is a constant [21].

3.1.4 Edit Distance

At its core, this algorithm counts the minimum number of edits re-
quired to make two trajectories identical. The method doesn’t require
equivalent length trajectories, but this will inflate the actual edit dis-
tance since points would either need to be removed or added to match
lengths. The time complexity of this algorithm is O(mk) [22].

3.1.5 Our Use Case

Previous literature has been published where academics classify and
recognize hand gestures using Dynamic Time Warping (DTW) [23, 24,
25, 26]. We use these papers as a guide towards evaluating the trajecto-
ries created by the Oculus Quest. DTW requires no training, making it
perfect for our small sample set. However, this is an area for future work.
With more time, we could conduct a comparison of trajectory similarity
techniques and use the best one for the application.
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3.2 Data Manipulation

3.2.1 Data Gathering

C-sharp and Unity provides us with many useful APIs for retriev-
ing and manipulating bone data. We can find finger bone rotations and
positions and hand rotations and positions which are essential towards
modeling ASL. Additionally, we can retrieve the time the data was found,
giving us the ability to calculate velocity, allowing us to account for speed.
I record all relevant data through the application, upload it to a database,
then retrieve it using a python script and finally normalize the data.

3.2.2 Definitions

The following are attributes of a Trajectory represented by the model
described above where i represents the ith frame for each frame:

1. leftHandFingerBoneRotationData := LFiR(i)

2. leftHandUnitVelocityVector := LUV (i)

3. rightHandFingerBoneRotationData := RFiR(i)

4. rightHandUnitVelocityVector := RUV (i)

5. leftHandWristRotationData := LWR(i)

6. rightHandWristRotationData := RWR(i)

7. leftHandLocationWithRespectToFace := LFaP (i)

8. rightHandLocationWithRespectToFace := RFaP (i)

9. rightHandPositionWithRespectToLeftHand := RLP (i)

10. rightHandWRTLeftHandUnitVelocityVector := RLV (i)

11. framePointsForComparison := a[i]

12. frameSplitsBreakdown := b[i]
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Due to normalization, the length of all these variables besides b will
be length n. As discussed in the next section, we use b to interpo-
late new lists for each variable. We can establish a feature set F :=
{LFiR(i), LUV (i), RFiR(i), ..., RFaP (i), RLP (i), RLV (i)} that defines and
characterize a trajectory T .

3.2.3 Time Normalization

framePointsForComparison, as mentioned earlier is an array a with
varying length n with a[i] - a[i−1] is equal to 4/n because 4 is the amount
of seconds given to a user to sign. This array is used to normalize all
the trajectories since they are bound to be less than 4 seconds. For each
Trajectory T that has n frames over 4 seconds, I create a new quaternion
or vector for each of the variables in the trajectory model that represents
that variable’s value at frame/second a[i]. For example, if n was 50, |a|
= 50 and it looks like the following: [0.08, 0.16, 0.24, .....].

I use frameSplitsBreakdown (array represented as b) to find out for
each variable in each trajectory what index j is where b[j] < a[i]. We
can use linear interpolation between b[j] and b[j + 1] to find percentage
completed p with the formula

pi =
a[i]− b[j]

b[j + 1]− b[j]

Then, we create a new vector or quaternion using pi. For example, as-
suming we have vectors vj and vj+1, we create a new vector vi:

vi = (vj.x+pi∗(vj+1.x−vj.x), vj.y+pi∗(vj+1.y−vj.y), vj.z+pi∗(vj+1.z−vj.z))

We do the same construction for quaternions, which is the same with the
inclusion of a w dimension. After calculations, I add the created variable
to a temporary version of each trajectory feature which will eventually
replace the feature itself after normalization is complete. After this al-
gorithm, all variables will be lists of length n, providing us an easy way
to compare trajectories.

3.2.4 Velocity Attribute Creation

RLP (i) is created by looping through all frames within LFaP (i) and
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RFaP (i) and getting the difference. Formally, for i...n:

RLP (i) = LFaP (i)−RFaP (i)

LUV (i), RUV (i), RLV (i) are each created from LFaP (i), RFaP (i),
RLP (i) respectively. For simplicity sake, we will represent the velocity
vector attributes as UV and the attributes they were created from as A.
Following this, we can define UV [24]:

UVi =
A[i+ 1]− A[i− 1]

||A[i+ 1]− A[i− 1]||

Remember that after normalization all attributes will have length n. I
add a vector representing 0 velocity to the beginning and end of each unit
velocity attribute to force the size of the list to n. ||A[i+ 1]− A[i− 1]||
denotes the euclidean magnitude of A[i + 1]− A[i− 1], which assuming
we are evaluating a new vector v, is calculated as follows:

e =
√
v.x2 + v.y2 + v.z2

Quaternion euclidean distances are similarly constructed with the inclu-
sion the w dimension. This concludes any data manipulation required to
move forward with DTW.

3.3 DTW Algorithm

Assuming we are evaluating the similarity between a trajectory Q
and trajectory X, the following is psuedocode for the implementation of
DTW:
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Algorithm 1 Calculate DTW cost
Require: |Q| = |X|
c← 0
for i in X or Q.a do
for A in F do
c = c + euclideanDistance(Q.LFaP (i) − X.LFaP (i))
+ euclideanDistance(Q.LFiR(i) − X.LFiRP (i))
+ euclideanDistance(Q.LUV (i) − X.LUV (i))
+ euclideanDistance(Q.RFiR(i) − Q.RFiR(i))
+ euclideanDistance(Q.RUV (i) − X.RUV (i))
+ euclideanDistance(Q.LWR(i) − X.LWR(i))
+ euclideanDistance(Q.RWR(i) − X.RWR(i))
+ euclideanDistance(Q.RFaP (i) − X.RFaP (i))
+ euclideanDistance(Q.RLP (i) − X.RLP (i)) +
euclideanDistance(Q.RLV (i)−X.RLV (i))

end for
end for
return c

Euclidean distance calculations are the same as described in earlier
sections.

4 Testing

This section provides a description of how I tested DTW and an anal-
ysis of its effectiveness.

4.1 Sign Gathering

I chose 5 pairs of signs that are similarly signed [27] and signed each of
them twice for a 20 independent trajectories. I chose not to discriminate
between 1-handed and 2-handed signs. The following is a list of the pairs
of signs used:

1. ASK and QUESTION

2. ATTENTION and FOCUS
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3. GLASSES and GALLAUDET

4. SAD and FRIENDLY

5. SENATE and COMMITTEE

4.2 Conceptual Framework

In order to evaluate the effectiveness of DTW, I ran trajectory compar-
isons between each sign including the pair of signs with duplicate words.
I didn’t run trajectories against themselves because they are identical,
and the algorithm returns a cost of 0.

I believe this framework of comparison allows us to examine multiple
cases of interest in evaluating the DTW cost:

1. When signing duplicate words with each other, we expect the lowest
cost cdup of signing that word with any other word.

2. When signing words that are similarly signed (as defined by the
pairs), we would expect a cost csimilar > cdup.

3. When signing words that are not similarly signed and that are not
duplicates, we expect a cost cunrelated > csimilar

Therefore we create an expectation of cunrelated > csimilar > cdup where
c is the DTW cost between words.

4.3 Results

At varying time normalization levels, n = {10, 25, 50, 100} we present
DTW distances as describes in the above subsections. The following
figures describe my results:
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cdup, csimilar and cunrelated are represented by orange, yellow and light
blue cells respectively. Additionally, these numbers are averages of all

possible trajectory comparisons for the given words in the table.

Figure 5: DTW Distances at n = 10

Figure 6: DTW Distances at n = 25

Figure 7: DTW Distances at n = 50
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4.3.1 Time Normalization Analysis

Looking at the figures, we can identify patterns within our results and
investigate whether they conform to our expectations. However, we can
conclude that since the patterns are functionally identical between differ-
ent levels of n, the time normalization does not affect the relationships
within the data. As long as developers use consistent levels of n, we can
compare costs between each other.

4.3.2 ASK1 vs ASK2

For each time normalization length for the word ask, the cdup >
csimilar > cunrelated is always true. There are a number of possible ex-
planations. Simply, assuming our methodology is correct, that would
indicate that one or either both of the hand signs for ASK were signed
incorrectly. When inspecting the data closer (at n = 50) we see four
different scores reported for the ASK vs. ATTENTION trajectory com-
parison: 840.2, 858.16, 2031.58, 2092.52. Due to the placement in the
output and the structure of the word array we loop through, we can sep-
arate the costs into two clusters. As we can see, one of the clusters has
costs describing the similarity of ASK1 to QUESTION to be much closer
than ASK2 to QUESTION. The following is a table of DTW distances
excluding ASK signs:

26



Figure 8: n=50, without ASK

The reported accuracy rate for this test is 91.67%, which is signifi-
cantly better and likely evidence of my incorrect signing of the first ASK
word.

If we inspect csimilar values across time normalization levels, we find
an identical pattern. Therefore, we can reason that one of the signs for
ASK was either signed incorrectly or the data was not collected accu-
rately. Another explanation is based on occlusion regarding ASK. The
following image is a representation of how to sign ASK:
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Figure 9: How to Sign ASK

From examining the image, you can see from the perspective of the
face, the end finger joint positions and rotations for the pointer finger
are occluded by the hand since they are in between the joints and the
face. This can lead to improper measurement and inaccurate vectors or
quaternions in world space, artificially inflating DTW cost.

4.3.3 cdup

Besides ASK, cdup > csimilar and cdup > cunrelated remain true. Though
csimilar > cunrelated is not always true, it is true in most circumstances.
Regardless, we are mostly interested in cdup being the minimum DTW
cost for all trajectory comparisons.

4.3.4 Accuracy Rates

We define an error rate to be the number of times the expectations
are satisfied divided by the total number of comparisons to process. To
clarify, we expect orange cells to be the lowest value for their row and
column, and yellow cells to be the lowest value excluding orange cells at
their row and column. At all time normalization levels, the accuracy rate
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is 83.85%, and the same cells are incorrect.

5 Conclusion

This section concludes the paper, describes the implications of our
findings, and guides direction for future work on this application.

5.1 Implications

Even if our analysis of the cdup value for ASK1 vs. ASK2 is incor-
rect, the accuracy rate of our implementation is 84%. Alternatively, if I
simply incorrectly had signed one of the ASK words, then we can expect
the accuracy rate to improve. Furthermore, we can glean the pedagogical
value of the application if in even a small dataset we are able to determine
that one of the words was signed incorrectly. Additionally, the reported
accuracy rate includes comparisons between csimilar and cunrelated which
is not as important as the expectation the cdup is the minimum value.
Given that we fulfill that expectation 100% of the time excluding ASK1

vs. ASK2, we’ve successfully been able to validate signs using DTW.

5.2 Future Work

The following is a list of future work that would move this paper and
application along:

1. Finish animating the avatar to mimic user signs and show validated
signs after user prompt ends.

2. Implement and compare the effectiveness of different trajectory
similarity measures.

3. Delineate signs by them being 1-handed or 2-handed and com-
pare signs within and across those classes to identify whether that
makes a difference. Other papers have implemented DTW using
this methodology [24].
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4. Implement machine learning techniques to evaluate signed sen-
tences.

5. Deal with the occlusion of specific joints.
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[15] M. M. Fréchet. Sur quelques points du calcul fonctionnel. Rendi-
conti del Circolo Matematico di Palermo, 22(1):1–72, 1906.

[16] Yuan, Yu. Image-based gesture recognition with support vector
machines. University of Delaware, 2008.

[17] H. Alt and M. Godau. Computing the Fréchet distance between
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