
Dartmouth College Dartmouth College 

Dartmouth Digital Commons Dartmouth Digital Commons 

Dartmouth College Ph.D Dissertations Theses and Dissertations 

Spring 5-16-2023 

Effective Non-Hermiticity and Topology in Markovian Quadratic Effective Non-Hermiticity and Topology in Markovian Quadratic 

Bosonic Dynamics Bosonic Dynamics 

Vincent Paul Flynn 
Dartmouth College, vincent.p.flynn.gr@dartmouth.edu 

Follow this and additional works at: https://digitalcommons.dartmouth.edu/dissertations 

 Part of the Atomic, Molecular and Optical Physics Commons, Condensed Matter Physics Commons, 

Dynamical Systems Commons, Geometry and Topology Commons, Optics Commons, Quantum Physics 

Commons, and the Statistical, Nonlinear, and Soft Matter Physics Commons 

Recommended Citation Recommended Citation 
Flynn, Vincent Paul, "Effective Non-Hermiticity and Topology in Markovian Quadratic Bosonic Dynamics" 
(2023). Dartmouth College Ph.D Dissertations. 142. 
https://digitalcommons.dartmouth.edu/dissertations/142 

This Thesis (Ph.D.) is brought to you for free and open access by the Theses and Dissertations at Dartmouth Digital 
Commons. It has been accepted for inclusion in Dartmouth College Ph.D Dissertations by an authorized 
administrator of Dartmouth Digital Commons. For more information, please contact 
dartmouthdigitalcommons@groups.dartmouth.edu. 

https://digitalcommons.dartmouth.edu/
https://digitalcommons.dartmouth.edu/dissertations
https://digitalcommons.dartmouth.edu/theses_dissertations
https://digitalcommons.dartmouth.edu/dissertations?utm_source=digitalcommons.dartmouth.edu%2Fdissertations%2F142&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/195?utm_source=digitalcommons.dartmouth.edu%2Fdissertations%2F142&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/197?utm_source=digitalcommons.dartmouth.edu%2Fdissertations%2F142&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/179?utm_source=digitalcommons.dartmouth.edu%2Fdissertations%2F142&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/180?utm_source=digitalcommons.dartmouth.edu%2Fdissertations%2F142&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/204?utm_source=digitalcommons.dartmouth.edu%2Fdissertations%2F142&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/206?utm_source=digitalcommons.dartmouth.edu%2Fdissertations%2F142&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/206?utm_source=digitalcommons.dartmouth.edu%2Fdissertations%2F142&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1266?utm_source=digitalcommons.dartmouth.edu%2Fdissertations%2F142&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.dartmouth.edu/dissertations/142?utm_source=digitalcommons.dartmouth.edu%2Fdissertations%2F142&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dartmouthdigitalcommons@groups.dartmouth.edu


EFFECTIVE NON-HERMITICITY AND TOPOLOGY IN

MARKOVIAN QUADRATIC BOSONIC DYNAMICS

A Thesis
Submitted to the Faculty

in partial fulfillment of the requirements for the
degree of

Doctor of Philosophy

in

Physics and Astronomy

by Vincent P. Flynn

Guarini School of Graduate and Advanced Studies
Dartmouth College

Hanover, New Hampshire

May 2023

Examining Committee:

(chair) Lorenza Viola

Chandrasekhar Ramanathan

James D. Whitfield

Steven M. Girvin

F. Jon Kull, Ph.D.

Dean of the Guarini School of Graduate and Advanced Studies





Abstract

Recently, there has been an explosion of interest in re-imagining many-body quan-

tum phenomena beyond equilibrium. One such effort has extended the symmetry-

protected topological (SPT) phase classification of non-interacting fermions to driven

and dissipative settings, uncovering novel topological phenomena that are not known

to exist in equilibrium which may have wide-ranging applications in quantum sci-

ence. Similar physics in non-interacting bosonic systems has remained elusive. Even

at equilibrium, an “effective non-Hermiticity” intrinsic to bosonic Hamiltonians poses

theoretical challenges. While this non-Hermiticity has been acknowledged, its impli-

cations have not been explored in-depth. Beyond this dynamical peculiarity, major

roadblocks have arisen in the search for SPT physics in non-interacting bosonic sys-

tems, calling for a much needed paradigm shift beyond equilibrium.

The research program undertaken in this thesis provides a systematic investigation

of effective non-Hermiticity in non-interacting bosonic Hamiltonians and establishes

the extent to which one must move beyond equilibrium to uncover SPT-like bosonic

physics. Beginning in the closed-system setting, whereby systems are modeled by

quadratic Hamiltonians, we classify the types of dynamical instabilities effective non-

Hermiticity engenders. While these flavors of instability are distinguished by the

algebraic behavior of normal modes, they can be unified under the umbrella of spon-

taneous generalized parity-time symmetry-breaking. By harnessing tools from Krein

stability theory, a numerical indicator of dynamical stability phase transitions is also
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introduced. Throughout, the role played by non-Hermiticity in dynamically stable

systems is scrutinized, resulting in the discovery of a Hermiticity-restoring duality

transformation.

Building on the preceding analysis, we take the necessary plunge into open bosonic

systems undergoing Markovian dissipation, modeled by quadratic (Gaussian) Lind-

blad master equations. The first finding is that of a uniquely-bosonic notion of dynam-

ical metastability, whereby asymptotically stable dynamics are preempted by a regime

of transient amplification. Incorporating non-trivial topological invariants leads to

the notion of topological metastability which, remarkably, features tight bosonic ana-

logues to the edge modes characteristic of fermionic SPT phases – which we deem

Majorana and Dirac bosons – along with a manifold of long-lived quasi-steady states.

Implications regarding the breakdown of Noether’s theorem are explored, and several

observable signatures based on two-time correlation functions and power spectra are

proposed.
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Preface

This thesis covers various aspects of effective non-Hermiticity and the role played by

topology in the physics of non-interacting bosonic systems. The results presented

throughout appeared originally in the following four publications.

• Vincent P. Flynn, Emilio Cobanera, and Lorenza Viola, “Topological zero

modes and edge symmetries of metastable Markovian bosonic systems”, Forth-

coming May 2023.

• Vincent P. Flynn, Emilio Cobanera, and Lorenza Viola, “Topology by Dis-

sipation: Majorana Bosons in Metastable Quadratic Markovian Dynamics”,

Physical Review Letters 127, 245701 (2021).

• Vincent P. Flynn, Emilio Cobanera, and Lorenza Viola, “Restoring particle

conservation in quadratic bosonic Hamiltonians with dualities”, Europhysics

Letters 131, 40006 (2020).

• Vincent P. Flynn, Emilio Cobanera, and Lorenza Viola, “Deconstructing ef-
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iv

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.127.245701
https://iopscience.iop.org/article/10.1209/0295-5075/131/40006/meta
https://iopscience.iop.org/article/10.1209/0295-5075/131/40006/meta
https://iopscience.iop.org/article/10.1088/1367-2630/ab9e87/meta
https://iopscience.iop.org/article/10.1088/1367-2630/ab9e87/meta
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.102.125127


Here, I will take the opportunity to summarize both the scientific and personal as-

pects of the journey that led me to this point. During the latter part of my undergrad-

uate studies at the University of Connecticut, I was privileged to aid in conducting

experiments on exotic materials under the guidance of Prof. Jason Hancock. This

experience sparked an initial fascination with condensed-matter physics, but more

significantly, it helped me realize that my inclinations were (much) more aligned with

theoretical pursuits. Specifically, I discovered that I derive greater satisfaction from

utilizing new or overlooked mathematical techniques to gain valuable insights about

concrete physical systems. More poignantly, I realized my physical presence in a lab-

oratory was more of a liability than a benefit. As a result, Prof. Lorenza Viola was

the clear choice for my Ph.D advisor when I arrived at Dartmouth in the Fall of 2017.

After a first year of courses, Lorenza was kind enough to let me sit in on several

intense research meetings usually featuring some combination of Abhijeet Alase -

Lorenza’s senior graduate student at the time and current postdoctoral fellow at the

Univeristy of Sydney, Emilio Cobanera - a former postdoc in the group and presently

assistant professor of physics at SUNY Polytechnic Institute, Gerardo Ortiz - professor

of physics at Indiana University, Bloomington, Qiao-Ru Xu - a Ph.D student of

Gerardo’s at the time, and, of course, Lorenza. The topics of discussion varied, but

mostly consisted of further extensions of their work on a generalization of Bloch’s

theorem for clean, translationally invariant, non-interacting systems of fermions with

arbitrary boundary conditions (BCs). Two immediate extensions they had in mind

were (1) to non-interacting bosons and (2) to genuinely non-Hermitian Hamiltonians.

In fact, they had several concrete models in mind that would offer valuable playground

for testing the viability of the extensions. One such bosonic model was the bosonic

Kitaev chain (BKC) that had just recently appeared in a preprint by McDonald et al.

Lorenza posed a concrete problem for me to work on during my first summer: “Can

you reproduce the analytical diagonalization of the BKC using our generalization of
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Bloch’s theorem?” This was precisely the type of problem I wanted to sink my teeth

into: applying novel mathematical tools to gain physical insight. Moreover, I could

stick to the world of Hermitian Hamiltonians that I was most familiar with. I excitedly

accepted the challenge and went to work dissecting and digesting all aspects of the

theorem. Abhijeet, who had recently become my office mate, helped me learn both

the practical aspects and deeper core idea of the techniques he had been developing

over the years.

With a firm grasp on the tools, I was ready to begin. However, I soon encountered

a peculiar obstacle that had been previously hinted at by the group, particularly by

Emilio. In order to diagonalize a non-interacting bosonic Hamiltonian, it is often

necessary to diagonalize a non-Hermitian matrix (or more generally, transform it into

a Jordan normal form) often called the “dynamical matrix”. Emilio had given me an

early warning by highlighting a strange non-diagonalizable matrix that appears when

the free particle Hamiltonian is cast into a bosonic operator basis. However, I had

not fully grasped how the diagonalization of a Hermitian Hamiltonian could involve

a non-Hermitian matrix until this moment. Nonetheless, a non-Hermitian matrix lay

at the heart of the BKC. Of course, this had been understood - I was simply late to

the party. There was no escaping non-Hermiticity, it seemed.

I was eventually able to reproduce the known features of the BKC and even

extend the exact diagonalization to a family of non-trivial BCs. Notably, tuning

these BCs resulted in a rich stability phase diagram. That is, certain configura-

tions yielded stable evolution of observables, while others did not. The potential

for dynamical instability in such quadratic bosonic Hamiltonians (QBHs) is intrinsi-

cally tied to non-Hermiticity: dynamically unstable Hamiltonians are precisely those

whose dynamical matrices are either non-diagonalizable or possess non-real eigenval-

ues. Rather shockingly, the stable BCs corresponded precisely with the BCs that

supported Majorana edge modes in Kitaev’s original fermionic chain. In fact, this is
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what motivated Lorenza to suggest I investigate these BCs in the first place. I wanted

to understand precisely why certain configurations provided stability while others did

not and, given the strange correspondence with Majorana edge modes in the fermionic

chain, if topology could be playing a role. Due to my new found interest in stability

phase diagrams, Lorenza recommended I seriously engage with the (rapidly grow-

ing) literature on non-Hermitian quantum systems - more specifically, PT-symmetric

quantum mechanics and a somewhat niche series of papers on a concept known as

‘phase rigidity’. She had suspected that the conditions for the onset of dynamical

instability should be equivalent to a symmetry-breaking condition, and that it may

have something to do with these concepts. Simultaneously, we had jointly realized

that these dynamical matrices were “pseudo-Hermitian” and, thanks to a series of

papers by Hermann Schulz-Baldes et al, it was brought to my attention that there

existed a mathematical theory of stability for these matrices. This stability theory,

known as Krein stability theory, proved absolutely essential for characterizing the

stability phase diagrams of these Hamiltonians. Bringing together all of these tools,

with no shortage of help from Lorenza and Emilio, my first two papers emerged. The

first presented an elaborate dissection (or “deconstruction”) of the stability phase

diagrams of QBHs, while the second focused on the role of pairing in dynamically

stable QBHs.

These papers were very exciting, but there was still an itch I didn’t quite scratch.

Where was the topology hiding in all of this? During this time, I had contributed to a

paper first-authored by Qiao-Ru that, in particular, seemed to show topology, or more

precisely, symmetry-protected topological (SPT) physics, was forbidden in “thermo-

dynamically stable” QBHs (i.e., those QBHs whose possess well-defined Gibbs ther-

mal states). This was strange to me: there was absolutely no shortage of papers

discussing the topological aspects of non-Hermitian systems, or even non-interacting

bosonic systems! What was going on here? After many discussions, I was forced
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to finally appreciate the subtle distinction between “topological physics” - physical

phenomena that can be convincingly associated to topological features of the system

- and “SPT phases” - quantum phases of many-body systems defined (loosely) by

global topological invariants. Emilio, in particular, had convinced me that much (in

fact, all) of the topological phenomena attributed to non-interacting bosonic systems

fell into the former category. In particular, strange “shadows” of Majorana fermions,

that we found by generalizing the BKC in such a way that allowed us to change topo-

logical invariants, could not be associated to SPT physics in any meaningful way. It

seemed there was no hope for SPT phases of non-interacting bosons.

Anyone who knows Lorenza will agree that she has a burning passion for open (or

as she would say, real) quantum systems. She had been pushing this more condensed-

matter-oriented side of the group towards the open world for years now (since Emilio

was her postdoc), but no one had fully taken the bait. She and Emilio shared several

papers regarding so-called “quadratic Lindbladians,” which seemed to be the simplest

extension of quadratic Hamiltonians into the dissipative realm. Furthermore, Lorenza

had shared a number of papers covering “dissipative phase transitions” which, loosely,

generalize the notion of a quantum phase transition to the open case. In short, the

many-body energy gap is typically replaced with the dissipative, or Lindblad gap,

and the many-body ground state would be replaced by the (usually, unique) steady-

state. My interest in open systems grew after attending a few of Lorenza’s lectures

on the subject at the end of her advanced quantum course. I couldn’t wait to get my

hands dirty with the topic. After a long and winding diversion into this open-systems

realm (with lots of growing pains!), we had all realized that there could be hope

for somehow replicating SPT phenomena with non-interacting bosons undergoing

Markovian dissipation described by quadratic bosonic Lindbladians (QBLs).

Using a dissipative variation of the BKC as my toy model, I discovered stable

bosonic analogs of Majorana zero modes. When I presented my findings to Lorenza
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and Emilio, Emilio posed a seemingly innocent question: “Where are the canonically

conjugate partners?” He had observed that these zero modes commuted under certain

conditions and therefore were not mutually conjugate like the well-known Majorana

edge modes of topological superconductors. After a bit of pondering, I managed to

find these partners. Interestingly, they were not zero modes as we had anticipated,

but rather symmetry generators. I was unaware at the time, but this actually reflected

the breakdown of Noether’s theorem in open quantum systems of which Lorenza and

Emilio had already been well-aware. These discussions and calculations led me to

two conclusions. Firstly, my derivation of these conjugate partners was quite general,

and I was able to eventually establish a general correspondence theorem for zero

modes and symmetry generators in these QBLs. Secondly, despite the existence of

zero modes, the Lindblad gap of the finite system remained non-zero. Zero was not

only absent from the spectrum, but far from it! After delving deeper into the non-

Hermitian literature, I learned that this was a manifestation of “pseudospectrum.”

This concept extends the notion of the spectrum to encompass approximate spectra.

Additionally, it became clear that the pseudospectrum differed significantly from

the spectrum for highly non-normal matrices. I realized that this accounted for the

simultaneous presence of these “Majorana bosons” (MBs) and a non-zero Lindblad

gap. Ultimately, these results expanded into two more papers where MBs, and their

number-symmetric partners, “Dirac bosons,” provided the first convincing indications

of SPT physics in a non-interacting bosonic framework. The key observation was

that these signatures can only manifest in the transient dynamics of the evolution,

rather than the steady state behavior. Along the way, we introduced the concepts of

dynamical metastability and topological metastability, that describe in a precise way

anomalous transient dynamics in these systems.

My scientific journey could not have developed in this way without the guidance

of Lorenza and Emilio. On multiple occasions, the (seemingly) innocent questions

ix



they posed to me have resulted in paradigm shifts in my research. Emilio is always

quick to ground my occasional drift into strange mathematics with real physics and

often manifests (out of thin air, it sometimes seemed!) concrete, non-trivial mod-

els for me to explore. His expertise in condensed-matter physics has saved me from

making (sometimes laughably!) unphysical claims and, as a result, had impacted

my path massively. Lorenza’s impact is almost impossible to capture with words.

First and foremost, she has built a research environment that rewards and promotes

intellectual freedom. She has consistently remained open to engaging with, in partic-

ular, obscure mathematical techniques that only a graduate student would be naive

enough to pursue. If not for this freedom, I would have never have found, and success-

fully applied, the various tools (PT symmetry, Krein stability theory, phase rigidity,

pseudo-Hermiticity, pseudospectrum, etc.) that make up the foundation of my thesis.

Beyond this, she has exposed me to, and perfectly embodied, the essence of Free-

man Dyson’s “frogs” and “birds”. Like a frog, Lorenza is unafraid to jump into the

mud and grapple with the minute details of a complicated calculation. Simultane-

ously, somehow, she is able to leverage her massively diverse body of experience to fly

high above the details (like a bird) and see important connections between a priori

disparate concepts and fields. More importantly, she knows where to reign in her

expertise and allow for her students to uncover the rest.

Beyond Emilio and Lorenza, a number of people at Dartmouth have influenced me

greatly during this time. Two of my committee members, Sekhar and James, taught

two of my favorite courses: microscopic theory of solids and quantum information,

respectively. Both assigned research projects that have had lasting impact on my work

far beyond coursework. Similarly, Roberto Onofrio’s course on phase transitions had

a similar impact. Not to mention the many lively discussions (both scientific and

otherwise!) over roasted potatoes and homemade pasta. Hours of conversations with

the other member’s of Lorenza’s group (Mariam, Francisco, and Joshuah, to name a
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few) have further influenced my work in many ways. I would also like to acknowledge

and thank Prof. Steve Girvin, whose scientific work has influenced aspects of my

future ambitions, for agreeing to be a part of my committee and for being exceedingly

patient with the various scheduling hiccups.

Above all else, there is no person more deserving of my thanks and recognition

than my wife, Andrea. Her unwavering support, companionship, and love over the

last 12 years has kept me focused and propelled me into the privileged position I

find myself in today. Without her, I would have never had the courage to pursue my

love for physics. Additionally, my brother Will, his wife Kate, and Andrea’s parents

Jim and Doreen, have supported and encouraged me nonstop through many of life’s

challenges. I would also like to thank my close friends Money, Drew, Hitchcock, and

DJ for keeping me sane throughout grad school. I must also acknowledge my two cats,

Schrödinger and Cleopatra, who have been a constant source of joy, entertainment,

and unconditional love throughout the years. Finally, I want to thank my mom.

Among everything else, she instilled in me a love for math and science at a young age

that blossomed into the passion I have today. For that, and for the indiscriminate

love and support that she provided me throughout her life, I am forever grateful.

xi



Contents

Abstract ii

Preface iv

1 Introduction 1

1.1 Context and motivation . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

I Effective Non-Hermiticity in Closed Bosonic Systems 19

2 Background: Quadratic bosonic Hamiltonians 20

2.1 Multimode bosonic Fock space and Gaussian transformations . . . . . 23

2.2 Lattice models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.3 Closed quadratic bosonic dynamics . . . . . . . . . . . . . . . . . . . 33

2.3.1 Effective non-Hermiticity . . . . . . . . . . . . . . . . . . . . . 33

2.3.2 Notions of stability and their criteria . . . . . . . . . . . . . . 38

2.3.3 The indefinite inner-product structure of Nambu space and re-

formulating dynamics . . . . . . . . . . . . . . . . . . . . . . . 41

2.4 Diagonalization of quadratic bosonic Hamiltonians . . . . . . . . . . . 46

2.5 Bulk-translationally invariant QBHs . . . . . . . . . . . . . . . . . . . 55

2.5.1 The translationally invariant case . . . . . . . . . . . . . . . . 55

2.5.2 Boundary conditions and the generalization of Bloch’s theorem 57

xii



3 Dynamical stability phase transitions 61

3.1 Spontaneous generalized PT symmetry-breaking . . . . . . . . . . . . 64

3.1.1 The equivalence between pseudo-Hermiticity and generalized

PT symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.1.2 Generalized PT symmetry in quadratic Hamiltonians . . . . . 68

3.2 Classification and detection of stability phase transitions . . . . . . . 69

3.2.1 Tools from Krein stability theory and their implications for QBHs 70

3.2.2 Krein phase rigidity . . . . . . . . . . . . . . . . . . . . . . . . 74

3.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.3.1 A single-mode model . . . . . . . . . . . . . . . . . . . . . . . 79

3.3.2 A two-mode cavity QED model . . . . . . . . . . . . . . . . . 82

3.3.3 A bosonic Kitaev chain . . . . . . . . . . . . . . . . . . . . . . 86

4 The role of pairing in dynamically stable QBHs 109

4.1 A number conservation-restoring duality transformation . . . . . . . . 112

4.1.1 Existence and construction of the duality . . . . . . . . . . . . 112

4.1.2 Physical interpretation of the duality . . . . . . . . . . . . . . 117

4.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

4.2.1 A gapped harmonic chain and general single-band pairing chains123

4.2.2 A squeezing duality for the bosonic Kitaev chain . . . . . . . . 127

5 Obstructions to SPT-like physics in QBHs 130

5.1 Topological invariants in the presence of effective non-Hermiticity . . 132

5.2 The search for SPT physics in QBHs . . . . . . . . . . . . . . . . . . 137

5.2.1 Primer: The fermionic Kitaev chain . . . . . . . . . . . . . . . 137

5.2.2 Thermodynamically stable systems . . . . . . . . . . . . . . . 142

5.2.3 Beyond thermodynamic stability: Bosonic shadows of Majo-

rana fermions . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

xiii



II Signs of genuine SPT Physics in Open Bosonic Sys-

tems 148

6 Background: Quadratic bosonic Lindbladians 149

6.1 The Lindblad formalism . . . . . . . . . . . . . . . . . . . . . . . . . 152

6.1.1 Spectral and convergence properties . . . . . . . . . . . . . . . 155

6.1.2 Symmetries and conserved quantities in Markovian systems . . 157

6.2 Quadratic bosonic Lindbladians . . . . . . . . . . . . . . . . . . . . . 159

6.2.1 Equations of motion . . . . . . . . . . . . . . . . . . . . . . . 160

6.2.2 Stability criteria and asymptotic relaxation . . . . . . . . . . . 164

6.2.3 An elementary example . . . . . . . . . . . . . . . . . . . . . . 166

6.2.4 Translationally invariant QBLs and arbitrary BCs . . . . . . . 167

7 Zero modes, Weyl symmetries, and QBL design 170

7.1 A partial restoration of Noether’s theorem . . . . . . . . . . . . . . . 172

7.1.1 The exact case . . . . . . . . . . . . . . . . . . . . . . . . . . 173

7.1.2 The approximate case . . . . . . . . . . . . . . . . . . . . . . 177

7.2 Two protocols for QBL design . . . . . . . . . . . . . . . . . . . . . . 181

7.2.1 Embedding fermionic Hamiltonians in bosonic dissipators . . . 181

7.2.2 Reservoir engineering pure steady states via dualities . . . . . 183

8 Signatures of SPT physics in 1D bulk-translationally invariant QBLs187

8.1 Beginning the search . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

8.1.1 The need for bulk instabilities and non-normality . . . . . . . 190

8.1.2 Primer: The pseudospectrum . . . . . . . . . . . . . . . . . . 194

8.1.2.1 Definition and dynamical implications . . . . . . . . 194

8.1.2.2 Pseudospectrum of block-Toeplitz operators and ma-

trices . . . . . . . . . . . . . . . . . . . . . . . . . . 196

8.2 Anomalous transient dynamics in QBLs . . . . . . . . . . . . . . . . 197

xiv



8.2.1 Anomalous relaxation and dynamical metastability . . . . . . 197

8.2.2 Divergence of the transient timescale in dynamically metastable

chains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

8.3 Topological metastability . . . . . . . . . . . . . . . . . . . . . . . . . 203

8.3.1 Majorana bosons and quasi-steady states . . . . . . . . . . . . 204

8.3.2 The impact of number symmetry: Dirac bosons . . . . . . . . 210

8.4 Relationships to existing work . . . . . . . . . . . . . . . . . . . . . . 213

9 The realm of possibilities 215

9.1 A purely dissipative topologically metastable chain . . . . . . . . . . 218

9.2 A dissipative BKC . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222

9.2.1 The parameter regime µ = 0 . . . . . . . . . . . . . . . . . . . 223

9.2.2 The parameter regime Γ = 0 . . . . . . . . . . . . . . . . . . . 225

9.3 A dissipative BKC with a pure steady state . . . . . . . . . . . . . . 228

9.3.1 Constructing the model . . . . . . . . . . . . . . . . . . . . . 228

9.3.2 Relaxation dynamics of the quasi-steady states . . . . . . . . . 231

9.3.3 Transient odd-parity behavior . . . . . . . . . . . . . . . . . . 234

9.4 Dirac bosons in a number-symmetric dissipative chain . . . . . . . . . 238

9.5 Observable signatures . . . . . . . . . . . . . . . . . . . . . . . . . . . 242

9.5.1 Two-time correlation functions and power spectra . . . . . . . 243

9.5.2 Signatures of topological dynamical metastability . . . . . . . 246

9.5.3 Distinguishing split and non-split Majorana bosons . . . . . . 249

9.5.4 Signatures of Dirac edge bosons . . . . . . . . . . . . . . . . . 251

10 Summary and outlook 254

10.1 Summary of key results . . . . . . . . . . . . . . . . . . . . . . . . . . 254

10.1.1 Effective non-Hermiticity in quadratic bosonic Hamiltonians . 254

10.1.2 Manifestations of SPT physics in quadratic bosonic Lindbladians257

xv



10.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261

A Spectra and pseudospectra of block-Toeplitz matrices and operators267

A.1 The non-block case (d = 1) . . . . . . . . . . . . . . . . . . . . . . . . 270

A.2 Block case (d > 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271

A.3 Jordan canonical form of corner-modified banded block-Toeplitz matrices272

B Miscellaneous technical calculations 280

B.1 Existence of a bosonic eigenbasis for dynamically stable QBHs . . . . 280

B.2 Eigendecomposition of the BKC under various BCs . . . . . . . . . . 281

B.2.1 Open BCs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282

B.2.2 Twisted BCs . . . . . . . . . . . . . . . . . . . . . . . . . . . 283

B.2.2.1 The parameter regime s = 1, ϕ = π/2, J 6= ∆ . . . . 283

B.2.2.2 Dynamical phase boundaries . . . . . . . . . . . . . 287

B.2.2.3 The parameter regime s = 1, ϕ ∈ (0, π), J = ∆. . . . 290

B.3 An isospectral mapping between the PDC and the DBKC . . . . . . . 293

B.4 Persistence of MBs in a disordered DBKC . . . . . . . . . . . . . . . 294

B.5 Exact time-evolution of bosonic parity of a dissipative harmonic oscil-

lator prepared in a cat state . . . . . . . . . . . . . . . . . . . . . . . 295

xvi



List of Tables

1 Table of acronyms used throughout the thesis. . . . . . . . . . . . . . xx

2.1 The correspondence between the four most commonly encountered BCs

and the structure of the dynamical matrix. . . . . . . . . . . . . . . . 58

3.1 The stability properties of eigenspaces corresponding to real eigenval-

ues of a pseudo-Hermitian matrix. . . . . . . . . . . . . . . . . . . . . 73

6.1 The relationships between the stability gap ∆S of a QBL, its dynamical

stability, and the nature of its steady state(s). . . . . . . . . . . . . . 166

xvii



List of Figures

3.1 Spectral flow in a QBH undergoing a stability phase transition. . . . 74

3.2 The KPR of the single-mode Hamiltonian Eq. (3.12). . . . . . . . . . 81

3.3 The stability phase diagram and behavior of the KPR in the cavity-

QED Hamiltonian Eq. (3.21). . . . . . . . . . . . . . . . . . . . . . . 85

3.4 A pictoral representation of the BKC with generalized BCs. . . . . . 87

3.5 Stability phase diagram and normal mode properties of the BKC under

various BCs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

3.6 Boundary stability phase diagrams and lines of zero modes in the BKC.100

3.7 Spectral flow of the BKC for various BCs. . . . . . . . . . . . . . . . 101

3.8 Behavior of the KPR in the BKC as a function of BCs. . . . . . . . . 105

3.9 Response of the KPR to system size in the BKC. . . . . . . . . . . . 106

3.10 Spectral flow and speed as a function of system size in the BKC. . . . 107

4.1 Hopping amplitudes and (truncated) band structure of the GHC’s dual

Hamiltonian. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

8.1 Finite and infinite-size rapidity spectra of the dissipative BKC. . . . . 193

8.2 Illustration of anamolous transient dynamics and long-lived quasi-steady

states in the dissipative BKC. . . . . . . . . . . . . . . . . . . . . . . 200

9.1 Topological phase diagrams of the FKC and the PDC. . . . . . . . . 218

9.2 Topological phase diagram, purity of steady state, and landscape of

MBs for the DBKC as a function of system parameters. . . . . . . . . 224

xviii



9.3 Relaxation behavior of the quasi-steady states in the dissipative BKC

with pure steady state. . . . . . . . . . . . . . . . . . . . . . . . . . . 234

9.4 Parity dynamics if the quasi-steady states in the dissipative BKC with

pure steady state. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237

9.5 Stability phase diagram for the DNS under OBCs. . . . . . . . . . . . 240

9.6 Behavior of the 2-norm of the DBKC’s susceptibility matrix in various

regimes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247

9.7 Power spectra of the DBKC in various regimes. . . . . . . . . . . . . 248

9.8 Distinguishing split v.s. non-split MBs using quantum correlation func-

tions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251

9.9 Distinguishing MBs and DBs using power spectra. . . . . . . . . . . . 253

xix



Table of acronyms

Term Acronym

Symmetry-protected topological SPT
Quadratic bosonic/fermionic Hamiltonian QB/FH
Quadratic bosonic/fermionic Lindbladian QB/FL

Bogoliubov-de Genne BdG
Gorini-Kossakowski-Sudarshan GKS

(Open/Periodic/Semi-infinite/Bi-infinite) Boundary condition (O/P/SI/BI)BC
Exceptional point EP

Krein collision KC
Zero mode ZM

Symmetry generator SG
(Generalized) Parity-time (G)PT

(Krein) Phase rigidity (K)PR
Quantum electrodynamics QED

Majorana boson MB
Dirac boson DB

Purely dissipative chain PDC
Fermionic/Bosonic Kitaev chain F/BKC
Dissipative bosonic Kitaev chain DBKC
Dissipative number-symmetric DNS

Table 1: Table of acronyms used throughout the thesis in no particular order.

xx



Chapter 1

Introduction

1.1 Context and motivation

A large portion of the field of quantum statistical mechanics rests upon the simple-to-

state indistinguishability principle: the microscopic constituents of a quantum many-

body system should be treated as fundamentally identical. Any two physical states

that differ only by a permutation of particles must be indistinguishable. Employing

this principle consistently demands that arbitrary physical observables must be left

invariant under arbitrary permutations of these identical constituents. It follows all

observables and the dynamics must leave invariant certain subspaces of the physical

Hilbert space on which the set (group) of all possible permutations acts irreducibly,

with no interference between states of different permutation symmetry being possible.

Moving one step further, the so-called symmetrization postulate asserts that precisely

two of these subspaces are physical: The symmetric subspace, which consists of those

state vectors left invariant under arbitrary perturbations, and the antisymmetric sub-

space, which consists of those state vectors which accumulate a negative sign upon

swapping two particles. Moreover, the former correspond to particles with integer

spin - so-called bosons - while the latter correspond to particles with half-integer
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spin - so-called fermions. Examples of bosons are photons, phonons, magnons, and

neutral atoms with an even odd number of neutrons, while examples of fermions

are electrons, protons, muons, and neutral atoms with an odd number of neutrons.

This difference in exchange statistics immediately elicits a major kinematical schism

between the two types of particles. Namely, a fixed single-particle state can only

be occupied by either 0, or 1, fermionic particles. This fact, known historically as

the Pauli exclusion principle, is a direct consequence of the symmetrization postulate.

For bosons, there is no such restriction on the occupation numbers. Thus, in a second

quantization framework, whereby an arbitrary number of particles may be present,

the landscape of potential many-body states differ dramatically. Beyond kinematics,

the exclusion principle (or lack-thereof) leads to dramatic implications at the level

of equilibrium physics. Consider, for example, a free gas whose constituents are ei-

ther bosons, or fermions. In the degenerate regime (characterized by high-density,

low-temperature, or some combination of the two), the free boson gas will neces-

sarily manifest a macroscopic population of the lowest energy single-particle state.

The resulting many-body state, called a Bose-Einstein condensate (BEC), was first

predicted by Bose and Einstein in the 1920s [1, 2], and confirmed experimentally in

1995 [3, 4]. In sharp contrast, a free gas of N fermions must fill the N lowest-energy

single-particle states up to the Fermi energy. This configuration, known as the Fermi

sea, plays an essential role in describing the equilibrium behavior of electric insulators

and conductors [5]. However, equilibrium differences between bosons and fermions

are just the tip of the iceberg.

The unbounded nature of bosonic occupation numbers provide fertile ground for

realizing unstable dynamics in bosonic systems. Consider, for example, parametric

amplification of a quantum optical mode. By means of parametric down-conversion

via a coherent pumping field and transforming to a rotating frame, one may achieve

a simple effective Hamiltonian for the optical mode [6]. This Hamiltonian (loosely)
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mediates a balanced injection and removal of pairs of photons and, importantly,

facilitates a dynamical instability : Regardless of the initial number of photons initially

present, the average occupation number will diverge exponentially. Such behavior is

forbidden in fermionic systems: a single-particle state (e.g., the optical mode) can

only support, at most, one fermionic excitation. This capacity for instabilities is the

main explanatory mechanism for, or in some cases, operating principle behind, a

diverse set of distinct physical phenomena – including signal amplification in cavity

and circuit quantum electrodynamics (QED) [7–15], squeezing used for continuous

variable quantum information processing [16–19], decay mechanisms for atoms in

optical lattices [20], and instabilities in BECs [21, 22]. Depending on the application,

methods for tapping into this latent potential vary. Remarkably, accessing these

high occupation numbers may be achieved in a coherent (i.e., unitary) and non-

interacting fashion via two-photon driving, in the context of quantum optics (as in

the example above), or bosonic pairing, in condensed-matter parlance. Methods for

implementing these processes have been both proposed, and experimentally realized,

in cavity- and circuit-QED platforms [11, 12, 23–32], microlasers and ring resonators

[33, 34], optomechanical systems [35, 36], and vibronic lattices [37]. From a theoretical

perspective, it has been understood that such behavior is attributable to intrinsic,

or effective, non-Hermiticity built-in to the Heisenberg equations of motion for the

elementary bosonic degrees of freedom [7, 38, 39] - a feature that is completely absent

in the fermionic setting.

Thanks to a number of theoretical and experimental advancements, non-Hermitian

physics, more generally, has received renewed attention in the last several years. On

its surface, the phrase “non-Hermitian physics” encompasses an extraordinarily di-

verse series of classical and quantum phenomena, whereby a non-Hermitian operator

plays a central role in the mathematical modeling [40]. Perhaps the most interesting

among these phenomena arises when a non-Hermitian operator is employed as the
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generator of quantum evolution. For example, there have been considerable develop-

ments extending the standard Hermitian (or, more precisely, self-adjoint) Hamiltonian

postulate for closed quantum dynamics to instead allow for PT-symmetric [41–43], or

pseudo-Hermitian [44] Hamiltonians, which both, under certain circumstances, retain

entirely real (and thus, physically meaningful) energy spectra. Importantly, in this

case the resulting dynamics remains unitary, possibly with respect to a modified inner

product. Beyond these more fundamental perspectives, non-Hermiticity can arise in

a natural way when one considers non-isolated, or open, quantum systems. For exam-

ple, modeling the dynamics of a system coupled to an external bath may result in a

dynamical law for the system that features a non-Hermitian generator, one example of

which being the Lindbladian, in the case where the dissipation is Markovian [45, 46].

Beyond this fully quantum treatment, one may further model dissipative quantum

dynamics in a semiclassical way by adding appropriate non-Hermitian terms to the

bare system Hamiltonian, in a way to phenomenologically encode loss and gain. Ad-

ditionally, quantum measurement can itself, in some cases, be modeled in terms of

non-Hermitian generators [9, 47].

Non-Hermitian - or more broadly, non-normal - operators have been long-known

to exhibit a rich array of spectral properties that manifest in striking ways depending

on the physical context in which they arise. One of the most notable of such features

is the ability for non-Hermitian operators to sustain exceptional points (EPs), i.e.,

points in parameter space where the operator loses diagonalizability - a possibility

that is completely forbidden by the spectral theorem in the Hermitian case. From a

mathematical perspective, EPs engender a degree of sensitivity to perturbations that

exceeds any similar response in Hermitian systems. This mathematical fact has gained

physical relevance as the operating principle behind EP-enhanced sensing protocols

[48, 49]. Another form of sensitivity arises when one considers many degrees of

freedom coupled together in a non-Hermitian manner. One incarnation of this comes
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in the form of the so-called non-Hermitian skin-effect (NHSE) [50], whereby imposing

boundary conditions (BCs) on the system causes the spectra to change dramatically

and a macroscopic number of eigenstates to localize at the boundary. This extreme

sensitivity to BCs, which has also been proposed for sensing applications [51], was

later more specifically attributed to extreme non-normality of the Hamiltonian, or

even Lindbladian [52, 53].

To better understand how such non-Hermitian phenomena may manifest in the

physics of closed, non-interacting bosonic systems, and to make clearer those connec-

tions that we believe are lacking between the two fields, let us describe more precisely

the origin of effective non-Hermiticity. The systems in question are modeled in terms

of Hamiltonians that are quadratic in the bosonic creation and annihilation operators

which define the physical degrees of freedom. These quadratic bosonic Hamiltonians

(QBHs) are perfectly Hermitian. Nonetheless, one finds that the Heisenberg equations

of motion for the creation and annihilation operators directly involve a non-Hermitian

matrix, i.e., the so-called dynamical matrix. The emergence of non-Hermiticity turns

out to be the consequence of a violation of number conservation by the Hamiltonian.

In fact, the violating terms are precisely the ones responsible for amplification in the

previously mentioned example. Notably, the fermionic analogue of this matrix re-

mains Hermitian even when fermionic pairing, which violates number conservation, is

present. This provides us with an opportunity to explore the dynamical consequences

of the rich spectral behavior of non-Hermitian operators. For example, how are the

many-body dynamics affected by the existence of a non-real eigenvalue, or the loss of

diagonalizability? In short, it turns out that, if either of these two situations arise,

the QBH will be dynamically unstable. That is, it will generate unbounded evolu-

tion of certain observables (recall the divergence of photon number in the parametric

amplifier). But these possibilities are a small part of a much richer family of spec-

tral behavior exhibited by non-Hermitian operators. For example, there exists entire
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bodies of mathematical literature on the stability theory of certain classes of non-

Hermitian matrices [54, 55]. How do these uniquely non-Hermitian stability theories

manifest in the bosonic setting?

Importantly, while number-non-conservation is essential for non-Hermiticity of the

bosonic dynamical matrix, it does not immediately imply dynamical instability. In

particular, the non-Hermitian dynamical matrix may still be diagonalizable and pos-

sess an entirely real spectrum. This fact about non-Hermitian operators has been ap-

preciated for decades in the context of PT-symmetric and pseudo-Hermitian quantum

mechanics. For example, it is known that such operators can be effectively “made”

Hermitian by suitably modifying the Hilbert space metric. The implications of these

results must then necessarily, if applicable, correspond to a physical statement about

number-non-conservation in bosonic systems. There has been no systematic investi-

gation of the implications of this in bosonic systems. Stated simply, to what extent

are number non-conserving terms even necessary for describing dynamically stable

QBHs? More generally, what, if any, connections can be made between the fields of

PT-symmetric or pseudo-Hermitian quantum mechanics and closed, non-interacting

bosonic systems? Let us synthesize the points we raised so far into the first central

question that we shall attempt to answer in this thesis:

(1) What are the most salient consequences of the effective non-Hermiticity

intrinsic to the equations of motion for closed, non-interacting bosonic

systems?

The emergence of effective non-Hermiticity in closed, non-interacting bosonic sys-

tems is a striking dynamical consequence of exchange statistics - especially when

compared to the fermionic counterpart. However, a more subtle, but equally potent

consequence can be uncovered by closely examining the role played by topology in

both cases. In the fermionic case, topology is a necessary ingredient for describing

and classifying the possible quantum phases of non-interacting fermionic matter. Fol-
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lowing the discovery of a peculiar class of phase transitions by Berezinskii, Kosterlitz,

and Thouless [56, 57], it became clear that the Ginzburg-Landau paradigm is insuf-

ficient for classifying all phases of matter. The systems they studied exhibited phase

transitions without spontaneous symmetry breaking and featured only global, not lo-

cal, order parameters of topological origin. These early works eventually lead to an

explosion of discoveries of so-called “topological insulators” [58–61].

Topological insulators, which represented a brand new state of fermionic matter,

are unified by two main features: (i) From the bulk properties of the system, one

can compute topological invariants that cannot be altered without either breaking

certain symmetries of the system, or crossing a quantum phase transition signaled

by closing of the many-body gap; and (ii) upon truncation of the system, edge, or

surface, states emerge and provide dissipation-free conduction channels, thus circum-

venting the insulating behavior of the bulk. Moreover, the bulk invariants have been

directly linked with the edge states and boundary invariants - a result now known as

the bulk-boundary correspondence (BBC) [62]. Beyond insulators, it was latter real-

ized that topology and, importantly, topologically-mandated edge states could also

appear in superconducting systems [63, 64]. In these systems, known as topological

superconductors, the insulating gap is replaced by the many-body superconducting

gap [65]. Notably, however, the edge states in topological superconductors obeyed a

different set of exchange statistics than the ones obeyed by standard Dirac fermions.

Namely, the edge states took on the form of Majorana fermions [66].

Topological insulators and superconductors were both eventually understood as

symmetry-protected topological (SPT) phases – which emphasizes, in particular, the

protecting role played by the symmetries of the system. This concept, in tandem

with topology, is essential for understanding the quantum phases of free-fermionic

matter, in particular. The reason is simple: generically, these phases are gapped,

lack a local order parameter, and maintain the same set of global symmetries on

7



each side of the transition. This sparked major efforts towards classifying all possible

SPT phases of free fermions [67], ultimately resulting in a complete classification.

Within this scheme, known as the tenfold way, insulators and superconductors are

classified by the presence of, or lack-thereof, a small set of protecting symmetries

[68]. In the wake of these foundational works, there were significant pushes to develop

both practical applications of SPT physics (most notably, Majorana-based quantum

computation [69]) and extensions into the realms of non-equilibrium and engineered

quantum matter. For example, the NHSE has been recently understood to have

a topological origin [70]. It is not, a priori, clear if this manifestation of topology

has any relationship with the topology of SPT phases of free fermions, however. To

this end, a classification of non-Hermitian topological phases that utilizes a suitably

generalized form of the free-fermionic tenfold way has been successful in describing

non-Hermitian SPT phases of both explicitly non-Hermitian fermionic Hamiltonians

[71] and open quantum systems of free fermions subject to Markovian dissipation

[72–76]. Further developments have even begun to push this classification beyond the

Markovian regime [77].

The discussion of topology has, thus far, been entirely grounded in fermionic

systems. Manifestations of topological physics in non-interacting bosonic settings

are numerous, but qualitatively different in significant ways. Topological photonics

[11, 78], magnonics [79, 80], phononics [37], and amplification [11, 13–15, 81, 82] are,

at this stage, well-established fields that feature a multitude of topological features in

systems comprised of bosonic degrees of freedom. These systems often possess band

structures with non-trivial topological invariants and, as a consequence of a suitable

generalized BBC, they manifest edge or surface states upon truncation. However,

claims that these phenomena result from an underlying bosonic SPT phase are not

compelling. After all, topological band structure, and even the BBC, is an extremely

general feature of wave equations [83] and, as such, need not correspond to any under-
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lying quantum phase. In sharp contrast to fermions, there exists no clear connection

between quantum phases of non-interacting bosons and topology.

It turns out that the search for any such connection is immediately met with

complications. In addition to dynamical instabilities, QBHs may also exhibit ther-

modynamical, or Landau instabilities. Consider a fixed QBH H. The quantum phase

of H is, by definition, linked to the properties of the ground state. However, can

we be sure H even has a ground state? Suppose H = ~ω(a†a − b†b), with a and

b bosonic annihilation operators and ω > 0. The energy eigenvalues of H are un-

bounded in both directions, and thus, unless external restrictions are present (e.g.,

fixing the total particle number), H lacks a ground state. Even more severely, the

thermal Gibbs state is ill-defined for any temperature. Once again, bosonic statistics

allows for instability – in this case, however, it is thermodynamical in nature. If we

cannot even guarantee the existence of a ground state, how can we consistently define

the notion of quantum, let alone SPT, phases for arbitrary QBHs?

One work-around may seem obvious. Suppose that we restrict to only those QBHs

that are thermodynamically stable, i.e., those that have well-defined ground states.

Topological physics can still manifest in the presence of this constraint. Specifically,

it is well-understood that thermodynamically stable systems can exhibit topologically

non-trivial high-energy bands (i.e., bands beyond those surrounding zero energy), and

thus, feature high-energy edge states [80]. However, the lower energy bands must al-

ways remain topologically trivial. So, can thermodynamically stable QBHs exhibit

SPT phases? In monumental contrast to their fermionic counterparts (which are

always thermodynamically stable, thanks to fermionic statistics), the answer, unam-

biguously, is “No”. This fact is captured by three no-go theorems that, in addition to

forbidding SPT phases, also eliminate the possibility for topologically mandated zero

modes and parity switches (which are characteristic of topological phase transitions

in fermionic systems) under the constraint of thermodynamical stability [84].

9



From here, one may simply forgo thermodynamical stability and thus, any con-

ventional notion of a quantum phase. Certain aspects of non-interacting fermionic

SPTs may survive. For example, many photonic incarnations of topological insulators

exhibit thermodynamical instabilities. Such systems can support topologically non-

trivial low-energy bands, and thus, topologically-mandated zero modes [80, 85, 86].

As it turns out, these modes are plagued by dynamical instabilities: Arbitrarily small

perturbations can cause these modes to become unstable. Thus, any dynamically-

oriented notion of robustness is absent. Nonetheless, the question “To what extent

do these edge modes resemble their fermionic counterparts?” remains open.

Dropping thermodynamic stability completely deflates any convincing connections

between topological bosonic physics and non-interacting fermionic SPTs. However,

there may be hope if we drop a different constraint. Namely, unitarity. If we con-

sider open bosonic systems, whose non-interacting nature must be maintained in a

consistent way, can we uncover tight bosonic analogues to non-interacting fermionic

SPT phases? First, we must specify the type of open, or dissipative, dynamics we

should consider. The simplest extension beyond unitary dynamics is to allow for

Markovian dissipation, in which case the dynamics are described in terms of a Lind-

blad master equation. Importantly, this allows us to maintain the non-interacting

nature of the system by demanding that the Lindblad generator is quadratic in cre-

ation and annihilation operators [87–92]. That is, we take our generator to be a

quadratic bosonic Lindbladian (QBL). From here, we will take inspiration from the

works that have uncovered SPT physics in open fermionic systems [72–75] or, even

more broadly, works that have solidified the concept of dissipative quantum phases

[93, 94]. A common theme in these works begins by making the conceptual substitu-

tion of the many-body ground state with a (usually unique) many-body steady state.

The notion of the many-body gap is then replaced by the dissipative, or Lindblad gap,

which physically defines the asymptotic relaxation rate of the dynamics. Altogether,
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a dissipative phase transition can be, for example, loosely described by the closing of

the dissipative, or Lindblad, gap and the emergence of critical behavior in the steady-

state. With the conceptual framework laid out, we may ask: What aspects, if any, of

non-interacting fermionic SPT physics can arise in a non-interacting system of bosons

subject to Markovian dissipation? Moreover, what are their dynamical consequences?

In the last few years, an additional point of contact between non-Hermitian topo-

logical physics and open (“driven-dissipative”) bosonic physics has emerged. This

burgeoning research area, known as topological amplification [11, 13–15, 81, 82], lever-

ages certain aspects of topological non-Hermitian physics to develop design protocols

for robust quantum amplifiers. Owing to its topological origin, the amplification

mechanism enjoys a degree of robustness to disorder and can be, at least mathemat-

ically, thought of as “protected” by certain transformations derived from fermionic

symmetries. While these points of contact are intriguing, they fail to address a more

fundamental question. Altogether, by synthesizing the various open questions we

have since called attention to, we arrive at the second core question of this thesis:

(2) To what extent can closed, or open, non-interacting bosons manifest

physics associated to SPT phases of non-interacting fermions?

The motivational structure for questions (1) and (2) is the same. In both cases,

there exists two, largely disconnected, bodies of research. For (1), we seek to establish

explicit links between the, mutually vast, fields of many-body non-interacting bosonic

systems, and non-Hermitian physics. For (2), we wish to connect the former instead

with the world of non-interacting SPT physics. Of course, these two questions are

not independent. Remarkably, in fact, we will see that our attempts to address (2)

will take us (by force!) into the world of topological non-Hermitian physics. In the

next section, we will summarize the key contents and results of each chapter. A more

detailed summary of each chapter’s contents, including their primary work of origin,

will be provided in their respective preambles.
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1.2 Outline

The presentation of our contributions is subdivided into two main parts. The results

in Part I largely address question (1) above, while Part II addresses question (2).

Part I presents a systematic deconstruction of the consequences of effective non-

Hermitian dynamics in closed systems of non-interacting bosons. In Chapter 2, we

lay down the foundational aspects of time-independent, quadratic bosonic systems.

Following a brief description of the multimode bosonic landscape we center ourselves

in, we will present the theoretical frameworks necessary for describing dynamics gen-

erated by a QBH. Of particular relevance is the intrinsic non-Hermiticity built into

the Heisenberg dynamics of those systems described by QBHs without total number

symmetry. Two distinct notions of stability emerge for QBHs: thermodynamical and

dynamical stability. We will explicitly define these notions and present equivalent

characterizations in terms of the relevant dynamical matrix. Following this, we will

develop a Bogoliubov-de Gennes (BdG) framework that, in particular, helps reveal the

underlying indefinite inner-product structure intrinsic to multimode bosonic Hilbert

spaces. This will be specialized to closed (and later in Ch. 6, open) dynamics. We con-

clude the chapter with a discussion of translation invariance, the key implications of

Bloch’s theorem in this setting, and the basics of its generalization for diagonalization

in the presence of arbitrary BCs.

In Chapter 3, we present an in-depth analysis of the dynamical stability phase di-

agrams of QBHs. The first key observation is that boundaries separating dynamically

stable and dynamically unstable phases are defined via two distinct flavors of spec-

tral degeneracies: EPs and Krein collisions (KCs). These two flavors of degeneracy

are distinguished by whether or not the relevant dynamical matrix is diagonalizable.

This difference of origin will entail tangible differences in the dynamical and algebraic

features of the normal modes at the transition point. Despite their differences, we are

able to unify them through the lens of spontaneous generalized PT-symmetry (GPT)
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breaking. We connect this unifying perspective to the long-established, and rapidly

growing, field of PT-symmetric quantum mechanics. Moreover, we prove equivalence

between GPT-symmetry and pseudo-Hermiticity, a property intrinsic to the dynami-

cal matrices of QBHs. Our dissection of dynamical stability phase boundaries utilizes

the mathematical techniques of Krein stability theory, which we describe along the

way as necessary. Putting these tools to use, we introduce a numerical indicator for

dynamical stability phase transition known as Krein phase rigidity (KPR). Our devel-

opment of this indicator, along with the understanding of its behavior, is inspired by

the previously established algebraic features of bosonic normal modes in the vicinity

of stability phase transition. Despite this boson-centric perspective, we find that it

is, in fact, an extension of phase rigidity (a quantity relevant to the study of EPs

in certain non-Hermitian systems) to the pseudo-Hermitian realm. Three example

Hamiltonians are studied in detail: a single-mode toy model, a two-mode cavity QED

model, and a bosonic Kitaev chain (BKC) under a family of BCs. In all cases, the sta-

bility phase diagrams are computed and boundaries analyzed. The GPT-symmetry

breaking and behavior of the KPR are studied in detail. Further general features

regarding phase-dependent transport in QBHs are elucidated by means of the BKC.

Chapter 4 is dedicated to a set of results specialized to dynamically stable QBHs.

In particular, we import mathematical techniques developed for pseudo-Hermitian

quantum systems in order to construct a duality transformation that restores number

symmetry in dynamically stable QBHs with pairing. As it turns out, the duality

transformation is intrinsically related to the covariance matrix of the quasi-particle

vacuum of the QBH. Implications for analogue simulation of non-Hermitian quantum

dynamics, as well as topological invariants and edge states are discussed. We specialize

our results to a general dynamically stable single-band models, exemplified by a

gapped harmonic chain, as well as the BKC considered previously.

To conclude Part I, in Chapter 5, we apply the results of the previous two chap-

13



ters to study certain topological aspects of QBHs. First, we leverage the duality of

Ch. 4 to establish a connection between bosonic Berry phases and the more standard

Berry phases encountered, for instance, in topological non-interacting fermionic sys-

tems. Following this, we recap the essential features of SPT phases in non-interacting

fermions by means of a simple analysis of the fermionic Kitaev chain. We proceed to

describe the practical and theoretical challenges towards realizing these features in

QBHs. First, we describe the no-go theorems forbidding SPT phases in thermody-

namically stable QBHs. Then, by forgoing the thermodynamic stability assumption,

we explore the intrinsic instability of any zero energy edge modes that may arise. We

illustrate these points by uncovering explicit bosonic “shadows” of Majorana fermions

in a dynamically, and thermodynamically, unstable generalization of the BKC.

In Part II, we extend our analysis to non-interacting bosonic systems subject to

Markovian dissipation and, ultimately, uncover convincing signatures of SPT physics

in a bosonic setting. To open, Chapter 6 provides an extension of Ch. 2 to the

Markovian setting. We first introduce the basic properties of quantum Markovian

dynamical semigroups and, in particular, cover the basic notions of conservation laws,

symmetries, and the breakdown of Noether’s theorem. Then, we introduce the specific

class of Markovian systems we are interested in, i.e., those systems whose Lindblad

generator is a QBL. Such generators are defined by a QBH, paired with Lindblad

dissipators that are linear in creation and annihilation operators. Our focus will be

to highlight the key differences with the Hamiltonian formalism used up until this

point. To this end, we emphasize the changes to the relevant equations of motion

for linear and quadratic observables, and discuss the appropriate extensions of the

stability notions in QBHs and their criteria. Of particular interest are the steady

states, which we will characterize in detail. The chapter concludes with a simple

single-mode example that exemplifies the key parts of the formalism, in addition to

an account of the implications of bulk-translation invariance for these systems.
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Chapter 7 contains the a set of new results related to general QBLs that will

later prove essential to our search for non-interacting bosonic SPT physics. The first

half of the chapter describes the breakdown of Noether’s theorem in QBLs within the

space of linear forms. For this, we define ZMs of QBLs. Additionally, we define Weyl

symmetry generators (SGs), which are generators of displacements in phase space that

leave the overall dynamics invariant. Despite no obvious connection between these

two operators in an open context, we prove a one-to-one canonical correspondence

between them: To each zero mode, there must exists a canonically conjugate Weyl

SG, and vice versa. We further generalize this result to accommodate approximate

zero modes and generators of approximate symmetries. The second half of the chapter

presents two design protocols for QBLs with certain desirable properties. The first

takes, as an input, a quadratic fermionic Hamiltonian (QFH) with edge-localized,

Hermitian, (possibly approximate) zero modes and provides, as an output, purely

dissipative QBL (i.e., a QBL whose system Hamiltonian vanishes) possessing bosonic

analogues of these (possibly approximate) zero modes. The second takes, as an input,

a dynamically stable QBH and utilizes the duality of Ch. 4 to engineer a QBL whose

unique steady state is given by the corresponding quasiparticle vacuum.

Chapter 8 contains the central results of Part II and ultimately culminates in

the discovery of SPT-like bosonic edge zero modes and symmetries that manifest,

and persist, in a transient dynamical regime whose duration increases with system

size. To arrive at this result, we begin by spelling out the necessary features any

system supporting such entities must possess: Non-trivial spectral topology, bulk-

instabilities, and highly non-normal dynamical matrices. These conclusions lead us

to move beyond spectral considerations, and instead, invoke the mathematical theory

of pseudospectra. Following a brief mathematical account of this theory, we proceed

to uncover conditions for anomalous transient dynamics in QBLs. Two relevant dy-

namical phases emerge: an anomalously relaxing phase, and a dynamically metastable
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phase. The anomalously relaxing phase is characterized by exponential relaxation of

generic observables in a two-step manner. The first step is characterized by a de-

cay rate set by the bulk (infinite-size) Lindblad gap, while the second rate is set by

the finite-size Lindblad gap which, remarkably, differs from its infinite-size counter-

part by a non-zero amount, independent of system-size. A dynamically metastable

system is one for which all finite open boundary truncations are dynamically sta-

ble, despite possessing an unstable infinite-size limit. Such systems possess bulk

instabilities that are suppressed by imposing hard-wall boundaries. The evolution

of dynamically metastable systems is characterized by a transient regime whereby

generic observables are amplified, followed by an asymptotic exponential relaxation

at a rate set by the finite-size Lindblad gap. Both the length of the transient, and

the degree of amplification increase with system size. We proceed to zoom in on

those dynamically stable QBLs that possess non-trivial bulk topological invariants,

and we deem topologically metastable. In the simplest one-dimensional cases (which

we always restrict to), these invariants are the winding numbers of the bulk bands.

The combined assumptions of dynamical metastability and non-trivial topology fa-

cilitate the emergence of pairs of operators consisting of one approximate zero mode

and one approximate SG. These modes are Hermitian, macroscopically separated, and

canonically conjugate. We call the members of these pairs Majorana bosons (MBs)

due to their tight similarities with Majorana fermions. One particular implication of

their existence is the emergence of a manifold of long-lived quasi-steady states. that

have a number of distinct features that explicitly require topological metastability to

exists in a QBL. We then explore the implications of a global number symmetry on

topologically metastable systems, resulting in the discovery of edge modes, which we

call Dirac bosons (DBs), reminiscent of the Dirac fermion edge modes in topological

insulators.

Chapter 9 is devoted to dissecting a series of four models that exemplify the gen-
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eral results of Ch. 8. The first model is a purely dissipative QBL derived by applying

the first recipe of Ch. 7 to the fermionic Kitaev chain (FKC) Hamiltonian. The result-

ing QBL is topologically metastable in certain parameter regimes that overlap with

the topological phase diagram of the FKC and, most importantly, sustains an MB pair

that derive from the Majorana edge modes of the FKC. Interestingly, these provide

an example of “non-split” MBs, i.e., MBs that are both ZMs and SGs. In this sense,

these are the tightest bosonic analogues of Majorana fermions. The second model is

a dissipative version of the BKC first explored in Ch. 3. By completely characterizing

the five-parameter topological phase diagram, we uncover three relevant dynamical

phases: an anomalously relaxing one, a non-topological dynamically metastable one,

and a topologically metastable one. We explore the dynamical features of each phase

in detail and, in particular, compute MBs that arise in the topologically metastable

phases. The third model once again adds dissipation to the BKC Hamiltonian. How-

ever, in this model, the dissipator is constructed following the second recipe of Ch. 7,

and thus, the resultant QBL possesses a unique, pure steady-state. Additionally, we

find that this QBL has a metastable regime. This allows us to explore the interplay

between MBs and pure steady states. In particular, we analytically compute the

quasi-steady states and uncover surprisingly non-trivial parity dynamics of certain

cat-state superpositions. The final model is a number-symmetric QBL that possesses

a topologically metastable phase. We explicitly construct the DBs predicted in Ch. 8.

We conclude the chapter with an analysis of certain multitime correlation functions

in QBLs. We find that, generically, topological metastability may be characterized

by the existence of long-live two-time quantum correlation functions between the

macroscopically separated MB partners, in addition to the emergence of divergent

zero-frequency power-spectral peaks. We further use two-time correlation functions

to distinguish the unique features of the models of interest.

Chapter 10 concludes the main body of the thesis with an in-depth recounting
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of the key implications of each result presented so far, along with remaining open

questions and future directions.

In addition to the main text, we include two Appendices. Appendix A covers the

mathematical tools used to compute the spectra and pseudospectra of block-Toeplitz

matrices and operators. In particular, we summarize the key aspects of a general-

ization of Bloch’s theorem used throughout the thesis to analytically diagonalize (or

more specifically, cast into Jordan normal form) various models featuring non-trivial

BCs. Appendix B contains a series of secondary technical results and proofs that are

separated from the main text in order to simplify the reading experience. Several of

these technical results involve the analytical diagonalization of explicit models.

Part I is based largely upon publications [95] and [96]. Part II is based upon

publications [97] and [98]. Several motivating results, specifically those found in

Ch. 5.2, originate in Ref. [84].

18



Part I

Effective Non-Hermiticity in

Closed Bosonic Systems
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Chapter 2

Background: Quadratic bosonic

Hamiltonians

In this chapter, we lay down the foundational framework used throughout this thesis

for studying QBHs1. As we have detailed in the introduction, the simplest examples

of unstable phenomena (e.g., an amplifying optical mode) arise naturally when con-

sidering bosonic degrees of freedom. What is not clear, however, is whether or not

unstable phenomena may arise in a coherent manner. That is, can a bosonic Hamil-

tonian be “unstable”, and if so, what exactly are the properties of these instabilities?

It turns out that, not only do instabilities arise in bosonic Hamiltonians, they can

arise in the simplest, quadratic, or “non-interacting”, case.

QBHs can be grossly classified according to two stability criteria: thermodynamic

stability and dynamical stability. Thermodynamically stable Hamiltonians are those

1The primary contents of this chapter, excluding Sec. 2.3.3, are background materials synthesized
from a number of key references on quadratic bosonic systems [21, 38, 39, 99–101]. Additionally, the
discussion of bulk-translation invariance in lattice models is adapted partially from the mathematical
methods developed in Ref. [102] used to prove a generalization of Bloch’s theorem for a class of
fermionic systems with arbitrary BCs [103, 104]. This extension into a bosonic context is discussed
in Appendix A.3 as well as Ref. [95]. Sec. 2.3.3 develops the mathematical formalism of Nambu
space that we have first introduced in Ref. [95] and further developed in Refs. [97, 98] (all three of
which were jointly co-authored with Emilio Cobanera & Lorenza Viola). Importantly, this formalism
rests, in part, on the explicit identification of an indefinite inner-product (or Krein) space structure
observed concretely, for instance, in Refs. [80, 105, 106].
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whose Hamiltonians are bounded from below (or above, in which case an overall mi-

nus sign can be used to obtain a bounded-from-below system). Dynamically stable

Hamiltonians are those that generate bounded evolution for arbitrary observables

when prepared in arbitrary initial states. The possibility that a bosonic Hamiltonian

can lack either of these two features is entirely thanks to Bose-Einstein statistics and

the associated lack of an exclusion principle. Simply stated, states may support an

indefinite number of bosonic excitations. As it turns out, dynamical instabilities, in

particular, exist as a consequence of an intrinsic effective non-Hermiticity present in

the Heisenberg equations of motions of the fundamental creation and annihilation

operators. Perhaps unsurprisingly, this effective non-Hermiticity is explicitly tied to

a loss of number conservation, and thus, the total number of bosonic excitations need

not be bounded. What is surprising, however, is that number-non-conserving Hamil-

tonians can remain stable, in both senses of the word. The stability criteria come in

the form of a spectral characterization of the so-called “dynamical matrix”, which is

a non-Hermitian matrix obeying a number of properties inherited from fundamental

physical constraints. One property, in particular, is known as pseudo-Hermiticity,

and arises as a consequence bosonic commutation relations. Ultimately, pseudo-

Hermiticity allows us to recast the dynamical characterization of QBHs in terms of

an linear time-invariant dynamical system defined on an indefinite inner-product (or

Krein) space. As one last surprise, it turns out that the normal mode analysis of this

non-Hermitian dynamical system is intrinsically tied to the problem of diagonalizing

the Hamiltonian by means of a Bogoliubov transformation.

Our ultimate goal is to study, and uncover exotic features of, the dynamical prop-

erties of many-body, or more precisely, many-mode bosonic systems. The simplest

instance of such a system is one that consists of infinitely-many modes coupled in

a translationally invariant manner. In this case, we may leverage Bloch’s theorem,

which still applies in the presence of effective non-Hermiticity, to completely solve the
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dynamics of the system. One may then immediately wonder: can BCs be imposed in

such a way that changes the stability properties of a given Hamiltonian? For example,

can hardwall boundaries be used to suppress an amplifying system? In order to grap-

ple with questions like these, we will discuss the applicability of the generalization of

Bloch’s theorem, originally developed for fermionic systems under arbitrary BCs, in

this bosonic context. The final result is a clear methodology for exactly solving the

relevant dynamics under a wide class of BCs.

The outline for this chapter is as follows. In Sec. 2.1, we identify the multimode

bosonic Fock space upon which the dynamical systems we later study are defined,

Gaussian states, and Gaussian transformations. In Sec. 2.2, we define the physical lat-

tice spaces that our multimode systems exist within and present an in-depth account

of translation operators in these spaces. In Sec. 2.3., we identify the closed-system

dynamics we are interested in, i.e., those whose unitary propagators are generated by

purely QBHs. We identify the effective non-Hermiticity underlying the equations of

motion for any such Hamiltonian that breaks total number conservation, define and

characterize dynamical and thermodynamical stability in these systems, and formally

characterize the indefinite inner-product structure of the bosonic Nambu space via the

introduction of the so-called “hat map” for linear and quadratic forms. In Sec. 2.4,

we establish the mathematical link between the problems of diagonalizing a given

QBH via Bogoliubov transformation and conducting a normal mode analysis on the

Heisenberg equations of motion for the creation and annihilation operators. Finally,

we conclude with a characterization of those QBHs that possess discrete translation

symmetry, perhaps up to an arbitrary BC in Sec. 2.5.
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2.1 Multimode bosonic Fock space and Gaussian

transformations

The background Hilbert space on which the majority of our work rests upon is a multi-

mode bosonic Fock space . That is, we consider N (possibly infinitely-many) bosonic

modes that are distinguished by a mode index, j = 1, . . . , N . In the language of

second quantization, we work within a bosonic Fock space FN built upon N distinct

single-particle states labeled by j, i.e., FN ≡
⊕∞

n=0H
(S)
n , where H(S)

n is the sym-

metrized Hilbert space consisting of n particles distributed among the N = dimH1

single-particle states. We may equivalently characterize FN has a tensor product of

N infinite-dimensional single-mode bosonic Fock spaces, i.e., FN = ⊗Nj=1F
(j)
1 . To

each mode, we associate a canonical creation and annihilation pair (a†j, aj) satisfy-

ing the canonical commutation relations (CCRs), [aj, a
†
j] = 1F , with 1F being the

Fock space identity. The inter-mode algebraic relationships follow as [aj, ak] = 0

and [aj, a
†
k] = δjk1F . These operators can be conveniently packaged into the bosonic

Nambu array2 Φ ≡ [a1, a
†
1, . . . , aN , a

†
N ]T . The bosonic algebra is then recast as

[Φj,Φ
†
k] = (τ3)jk1F , Φ† = (τ1Φ)T , (2.1)

where we have introduced the matrices τj = 1N⊗ σj, with σj the usual Pauli matrices

and 1N the N×N identity matrix. Associated to each mode are a set of dimensionless

quadrature operators, xj = (aj + a†j)/
√

2 and pj = −i(aj − a†j)/
√

2, which satisfy the

Heisenberg-Weyl relations (HWRs), [xj, xk] = [pj, pk] = 0 and [xj, pk] = iδjk1F , with

~ = 1 henceforth. Defining the quadrature array R = [x1, p1, . . . , xN , pN ]T allows us

2Within the literature, there are multiple conventions for the ordering of this array. For example,
Φ′ = [a1, . . . , aN , a

†
1, . . . , a

†
N ]T is commonly encountered. The convention we have chosen in this

thesis, motivated by the work in [104], will later provide utility in analyzing bulk translation-invariant
systems.
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to identify

R = ΣΦ, Σ = 1N ⊗
1√
2

 1 1

−i i

 , (2.2)

from which a symplectic structure emerges

[Rj, Rk] = iJjk1F , J = 1N ⊗

 0 1

−1 0

 = iτ2. (2.3)

Unitarity of Σ allows us to think of moving to quadratures as a change of basis

within the Nambu space, i.e., the complex linear span of the creation and annihilation

operators. The symplectic form J then serves as the quadrature analogue of τ3.

Each mode contributes a vacuum state |0j〉 ∈ F (j)
1 , which consists of zero j-mode

bosons satisfying aj |0j〉 = 0. We may then characterize F (j)
1 as the complex span of

Fock states

|nj〉 =
(a†j)

nj√
nj!
|0j〉 , nj ∈ Z≥0, (2.4)

This leads naturally to multimode Fock states

|n1, . . . , nN〉 =
N⊗
j=1

|nj〉 =
(a†1)n1 · · · (a†N)nN√

n1! · · ·nN !
|0〉 , (2.5)

with |0〉 ≡ ⊗Nj=1 |0j〉. From this definition and the CCRs, we have the familiar prop-

24



erties

aj |n1, . . . , nj, . . . , nN〉 =
√
nj |n1, . . . , nj − 1, . . . , nN〉 , (2.6)

a†j |n1, . . . , nj, . . . , nN〉 =
√
nj + 1 |n1, . . . , nj + 1, . . . , nN〉 , (2.7)

a†jaj |n1, . . . , nj, . . . , nN〉 = nj |n1, . . . , nj, . . . , nN〉 , (2.8)

〈n1, . . . , nN |m1, . . . ,mN〉 = δn1,m1 . . . δnN ,mM . (2.9)

Another ubiquitous family of states are the multimode coherent states. These states

are defined as simultaneous eigenstates of the annihilation operators aj, i.e.,

aj |~α〉 = αj |~α〉 , ~α ∈ CN . (2.10)

which satisfy the overcompleteness and closure relationships:

〈~α|~β〉 = e−(~α†~α+~β†~β−2~α†~β)/2,

∫
|~α〉 〈~α|

N∏
j=1

dαj dα
∗
j

π
= 1F . (2.11)

These states can be constructed from the vacuum via the multimode displacement

operator (or Weyl displacement) D(~α) defined as

D(~α) ≡
N∏
j=1

eαja
†
j−α

∗
jaj , |~α〉 = D(~α) |0〉 . (2.12)

The displacement operator is also closely connected to the bosonic parity operator,

P ≡ eiπ
∑N
j=1 a

†
jaj [107]. In particular,

P =
1

2N

∫
D(~α)

N∏
j=1

dαj dα
∗
j

π
, (2.13)

which may be checked, for instance, by comparing coherent state matrix elements.

Unlike Fock states (excluding the vacuum), coherent states are examples of Gaus-
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sian states. While many equivalent definitions exist, multimode Gaussian states are

most compactly defined as those states ρ whose (Wigner) characteristic functions,

χρ(~β) ≡ tr[ρD(~β)], are Gaussian. For example,

χ|~α〉(~β) = e−
~β†~β/2e~α

†~β−~β†~α (2.14)

is Gaussian in the 2N variables βj and β∗j . Among many other properties, this implies

a Gaussian state ρ is uniquely defined by its mean vector ~mρ and covariance matrix 3

Cρ, defined via

~mρ ≡ tr[ρΦ], (Cρ)jk ≡
1

2
tr[ρ{Φj,Φ

†
k}]− tr[ρΦj]tr[ρΦ†k]. (2.15)

Importantly, the covariance matrix Cρ is positive-definite4. In the case of a coherent

state, m|~α〉 = [α1, α
∗
1, . . . , αN , α

∗
N ]T and C|~α〉 = 12N/2. Since Gaussian states are

uniquely defined by these two quantities, all other properties can be derived from

them. For example, the purity of a Gaussian state ρ is given by

tr[ρ2] =
1

2N
√

det[Cρ]
. (2.16)

Together with Gaussian states, Gaussian transformations (sometimes called “Gaus-

sian operations” or “Gaussian quantum channels”) are the canonical starting point

of continuous variable quantum information [108], and arise naturally in the study

of non-interacting (or mean-field), condensed-matter, quantum-optical, cavity- and

circuit-QED systems. Such transformations are defined as those that map Gaussian

states to Gaussian states. This state-centric description can be restated in terms of

3In other contexts such as continuous variable quantum information, the mean vector and co-
variance matrix may instead be defined by replacing Φ with R, i.e., in the quadrature basis. These
are related to the convention used in this thesis via the unitary transformation Σ.

4Consider the matrix Cρ + τ3. Given a vector ~α, we have ~α†(Cρ + τ3)~α = tr[ρAA†] ≥ 0, with
A =

∑
j α
∗
j (Φj − 〈Φ〉j). Thus, Cρ + τ3 ≥ 0. Using τ1C

T
ρ τ1 = Cρ additionally yields Cρ − τ3 ≥ 0.

Combining these implies Cρ ≥ 0.
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mappings on the bosonic operator algebra. Namely, a Gaussian transformation can

be thought of as a linear transformation of the creation and annihilation operators:

Φ 7→ Ψ = TΦ + ~z 1F , (2.17)

with T a 2N × 2N matrix and ~z ∈ C2N . One may, in addition, require that this

mapping is canonical, i.e., it preserves the CCRs. Consequently, T and ~z must then

satisfy

τ3T
†τ3 = T−1, τ1Tτ1 = T∗, ~z = τ1~z

∗. (2.18)

The implicit quadrature transformation takes the form

R 7→ V = SR + ~η 1F = ΣΨ, (2.19)

with S = ΣTΣ† a real symplectic matrix (i.e., S∗ = S and STJS = J) and ~η = Σ~z ∈

R2N .

Thus far, we have not yet directly characterized the actual operators on Fock

space that implements Eq. (2.17). Of particular relevance are those that are specified

by unitary or antiunitary transformations. That is, consider those transformations

in which Ψj = UΦjU
−1, with U : FN → FN either unitary or antiunitary. By con-

struction, they are canonical and, in many cases, represent physical symmetries of a

given multimode system, in the sense of Wigner’s theorem. In the unitary case, one

finds that Gaussianity guarantees U = eiQ, with Q a Hermitian operator that is at

most quadratic in Φ. When Q is strictly quadratic, U implements a homogeneous

transformation (~z = 0), that is well-known throughout physics as a Bogoliubov trans-

formation. One commonly encountered example is the isotropic phase rotation, or
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number-symmetry operator,

U(θ) = eiθ
∑N
j=1 a

†
jaj , θ ∈ R, (2.20)

which implements a mode-independent U(1) phase rotation aj 7→ eiθaj, or equiva-

lently, Φ 7→ exp (iθτ3) Φ. Another common unitary Gaussian transformation is that

of single-mode squeezing:

S(z) = e
1
2(z∗a2−za†2), z ∈ C, (2.21)

which implements a 7→ cosh(|z|)a− (z∗/|z|) sinh(|z|)a†. Phase rotation and squeezing

provide representative examples of two distinct flavors of Gaussian unitary trans-

formations. Specifically, number symmetry is an example of an operation that is

represented by a unitary matrix in Nambu space, while squeezing is not. The

representation of single-mode squeezing is explicitly given by Φ 7→ T(z)Φ, with

T(z) = exp[−(Re(z)σ1 + Im(z)σ2)] manifestly non-unitary. This suggests that a

unitary representation of the group of all Gaussian unitary transformations is im-

possible. In fact, this is the case, and can be heuristically explained by observing

that the space on which these transformations act is infinite-dimensional. This is in

sharp contrast to the case of fermions, whereby the finite dimensionality of the local

(single-mode) Hilbert space always ensures the existence of a unitary representation

of the Gaussian unitary group acting on any finite collection of fermionic modes. This

is the first hint of so-called “effective non-Hermiticity,” or in this instance, effective

non-unitarity, that is embedded deeply within bosonic physics. We further note that

every transformation of the form Eq. (2.17) satisfying Eqs. (2.18) can be lifted to a

unitary transformation U on the Fock space by virtue of the Stone-von Neumann

theorem [109].

A key focus of this thesis will be the study of continuous-time, autonomous, Marko-
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vian dynamical systems that implement Gaussian transformations on multimode Fock

spaces. In the unitary (closed-system) case, such dynamics are defined via a unitary

propagator U(t, t0) = e−i(t−t0)H , t ≥ t0, with H = H† a Hamiltonian that is at most

quadratic in creation and annihilation operators. As it turns out, continuous families

of Gaussian maps need not result only from unitary transformations on Fock space.

For example, continuous Gaussian maps may arise in the more general Markovian case

whereby states evolve according to a Markovian master equation ρ̇(t) = L(ρ(t)). Such

dynamics implement Gaussian maps as long as the Lindblad generator L (“Lindbla-

dian”) is quadratic, in a sense to be defined in Sec. 6.2.1. In both cases, Gaussianity

of the generators (enforced by the quadratic condition), ensures that Gaussianity of

the states is preserved in time.

2.2 Lattice models

We have so far not specified exactly what distinguishes individual bosonic modes.

Since we will explore the consequences of discrete translation invariance, we will

embed our bosonic modes onto a (possibly finite) lattice Λ inD dimensions. Generally,

we allow for dint internal degrees of freedom on each lattice site r ∈ Λ. Thus, our

mode index will be a tuple (m, r), with m = 1, . . . , dint the internal index and r ∈ Λ

the lattice index. It is then convenient to introduce a local Nambu array, φr =

[a1,r, a
†
1,r, . . . , adint,r, a

†
dint,r

]T , with the full CCRs given explicitly by

[am,r, a
†
m′,r′ ] = δmm′δrr′ , [am,r, am′,r′ ] = 0. (2.22)

The local Nambu array can be used to identify the full Nambu array

Φ =
∑
r∈Λ

~er ⊗ φr, (2.23)
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with ~er the canonical basis of a |Λ|-dimensional vector space.

The relevant setting in this thesis will be one-dimensional (D = 1) lattices with

one internal degree of freedom (dint = 1) per site. The lattice, in this case, will take

on one of three main configurations:

Finite 1D chain: Λ = Λ(1,N) = {1, 2, . . . , N}, (2.24)

Semi-infinite 1D chain: Λ = Λ(1,∞) = {1, 2, . . .}, (2.25)

Bi-infinite 1D chain: Λ = Λ(−∞,∞) = {. . . ,−1, 0, 1, . . .}, (2.26)

where we note that we have normalized the lattice spacing to 1. In the finite case,

the Nambu space is isomorphic, as a vector space, to CN ⊗C2 ' C2N . For the second

two cases, we define the Hilbert spaces of square-summable infinite and bi-infinite

sequences as `(N) and `(Z), respectively. Then, the Nambu spaces corresponding to

the two infinite lattices are isomorphic, as vector spaces, to `(N)⊗C2, and `(Z)⊗C2,

respectively. In all cases, the first factor indicates that there are two operators aj and

a†j per site, while the second encodes the lattice degree of freedom.

On each of the three lattices, we have a well-defined notions of left and right shift

operators. For finite lattices, there are two natural definitions. First, we may consider

the left and right shift operators that terminate at the boundaries, i.e.,

TN~ej =


~ej−1, 1 < j ≤ N,

0 j = 1,

T†N~ej =


~ej+1, 1 ≤ j < N,

0 j = N,

(2.27)

where we have made the implicit observation that the adjoint of the left-shift oper-

ator TN is the right shift operator. These operators are quintessential examples of

Toeplitz matrices, i.e., matrices that are constant along diagonals. In this case, TN

has 1’s along the first upper diagonal and 0’s everywhere else. Both matrices are

nondiagonalizable and, for finite N , possess only one eigenvector with eigenvalue 0.
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We may also consider the circulant shift operators

VN~ej =


~ej−1, 1 < j ≤ N,

~eN , j = 1,

V†N~ej =


~ej+1, 1 ≤ j < N,

~e1 j = N,

(2.28)

which may be interpreted as shift operators on a finite ring. Unlike the previous case,

the circulant shift operators are unitary, i.e., VNV†N = 1N and they are diagonalized

via Fourier transform, namely,

VN
~fk = eik ~fk, ~fk =

N∑
j=1

eijk~ej, k ∈ KN , (2.29)

where KN is the finite Brillouin zone defined by5

KN =


{0,±2π/N,±4π/N, . . . ,±π(1− 1/N)}, N odd,

{0,±2π/N,±4π/N, . . . ,±π(1− 2/N),−π}, N even.

(2.30)

As suggested by the name, these operators are quintessential examples of circulant

matrices, i.e, matrices whose (i, j)’th element depends only on (i− j) mod N .

The most useful translation operator in the semi-infinite case are the unilateral

left and right shift operators that terminate on the only edge, i.e.,

T~ej =


~ej−1, 1 < j ≤ N,

0 j = 1,

T†~ej = ~ej+1. (2.31)

These shift operators are Toeplitz operators, i.e., the natural infinite-dimensional gen-

eralization of Toeplitz matrices. Interestingly, T†N has no eigenvectors or eigenvalues.

Instead, the spectrum, i.e., the numbers λ for which T† − λ1 is not invertible, is the

5While a much simpler choice of k values would be 2mπ/N , with m = 0, . . . , N−1, we choose this
slightly more complicated convention to better conform with the usual k ∈ [−π, π] used throughout
physics.
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entire unit disk |λ| ≤ 1. The spectrum of T is the same, however each element of the

spectrum λ, with |λ| < 1 is actually an eigenvalue with eigenvector
∑∞

j=1 λ
j~ej.

Finally, the most useful shift operators for the bi-infinite case are the bilateral

shifts

V~ej = ~ej−1, V†~ej = ~ej+1. (2.32)

These bilateral shift operators are Laurent operators, i.e., the infinite-dimensional

generalization of circulant matrices. Just as in the finite case, these operators are

unitary on `2(Z) and have the entire unit circle as a spectrum. However, they have

no normalizable eigenvectors; instead, we have the formal identity

V ~fk = eik ~fk, ~fk =
∞∑

j=−∞

eijk~ej, k ∈ [−π, π], (2.33)

with the understanding that the plane-waves ~fk are not in `2(Z).

These various shift operators are used to construct physical translation operators.

For example, consider the unitary, discrete left-translation operator LN defined on a

finite ring

LNφjL
†
N =


φj−1, 1 < j ≤ N,

φN j = 1,

(2.34)

with φj = [a1,j, a
†
1,j, . . . , adint,j, a

†
dint

]T the local Nambu array on the ring. It follows

that

LNΦL†N = (VN ⊗ 12dint) Φ. (2.35)

The matrix VN⊗12dint serves as the representation of UN on Nambu space and may be
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readily checked to satisfy Eqs. (2.18) with the τ -matrices, in this context, taking the

form τj = 1N ⊗1dint ⊗σj. Replacing VN , with V generalizes to the unitary bilateral

translation operators on a bi-infinite chain. However, if one replaces VN , with T or

TN , unitarity of the many-body operation is lost. Ultimately, we will be interested in

either finite or infinite systems that either (i) possess discrete translational symmetry

or (ii) have discrete translational symmetry broken only by BCs.

2.3 Closed quadratic bosonic dynamics

2.3.1 Effective non-Hermiticity

As mentioned, the closed-system dynamics we concern ourselves with are continuous-

time and autonomous. Such dynamical systems are defined by a time-independent

Hamiltonian H = H† that is at most quadratic in bosonic creation and annihilation

operators. The general expression for such a Hamiltonian is

H =
1

2

N∑
i,j=1

(
a†iKijaj + aiK

∗
ija
†
j + a†i∆ija

†
j + ai∆

∗
ijaj

)
+

N∑
j=1

(zjaj + z∗ja
†
j), (2.36)

with K an arbitrary complex Hermitian N × N matrix, ∆ an arbitrary complex

symmetric N ×N matrix, and zj arbitrary complex numbers. This can be compactly

summarized using the Nambu array:

H =
1

2
Φ†HΦ + ~ζ†τ3Φ, (2.37)
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with

H =


h11 · · · h1N

...
. . .

...

hN1 · · · hNN

 , hij =

Kij ∆ij

∆∗ij K∗ij

 , ~ζ = [z∗1 ,−z1, . . . , z
∗
N ,−zN ]T .

(2.38)

The matrix H is Hermitian and satisfies τ1H
∗τ1 = H. Further, the vector ~ζ satisfies

τ1
~ζ∗ = −~ζ. Since it will play a major role throughout the thesis, we also introduce

the so-called dynamical matrix G = τ3H which has two notable properties:

τ3G
†τ3 = G, τ1G

∗τ1 = −G. (2.39)

While Eq. (2.36) specifies the most general dynamical generator fitting our stipu-

lations, we will further zoom in to the purely quadratic case, ~ζ = 0. The justification

of this is twofold. Firstly, in almost all cases, one may effectively remove the linear

term by making an appropriate shift to the Nambu array. Explicitly, if there exists a

vector ~ξ satisfying G~ξ = ~ζ, then one can verify that

H =
1

2
Φ†HΦ + ~ζ†τ3Φ =

1

2
Ψ†HΨ− 1

2
~ξ†τ3

~ζ, Ψ = Φ + ~ξ 1F . (2.40)

If this vector exists, then it satisfies τ1
~ξ∗ = ~ξ, implying that H is unitarily equivalent

to a purely quadratic Hamiltonian modulo a (real) constant shift. Such a vector is

guaranteed to exist in the generic case where G is invertible, or even more generically,

if ~ζ is not in the kernel of G. The second justification is to prioritize parity symmetry

[H,P ] = 0, thus setting the stage for direct comparison with the expansive fermionic

literature - a recurring theme in this thesis.

In fermionic physics, parity symmetry plays a fundamental role: the parity su-

perselection rule stipulates that all observables (including the Hamiltonian) must
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commute with the fermionic parity operator and that any physical state must be of

strictly even or odd parity. Without these constraints, phase factors accumulated by

particle exchanges would be detectable, ultimately violating causality [110]. Immedi-

ately, this forbids the existence of terms linear in fermionic creation and annihilation

operators in quadratic fermionic Hamiltonians. No such superselection rule applies

for bosons. At best, if the bosons are massive or charged, conservation laws may im-

pose parity, or other related superselection rules. Nonetheless, bosonic parity retains

physical relevance as a proxy for non-Gaussianity of states. Explicitly, if P is the

bosonic parity operator, then Eq. (2.13) yields

tr[ρP ] =
1

2N

∫
χρ(~α)

N∏
j=1

dαj dα
∗
j

π
= Wρ(0), (2.41)

with Wρ the Wigner function of the state ρ. The Wigner function, which may be

understood as a Fourier transform of the characteristic function, is a useful indicator

of non-Gaussianity and classicality. In particular, negativity of the Wigner function

indicates that a quantum state is both non-classical and non-Gaussian6. Thus, if a

state has a negative parity expectation value, we may automatically conclude that it is

non-Gaussian. Despite these important differences, any faithful comparison between

non-interacting bosonic and fermionic systems must require that they are placed on

equal ground. Hereafter, our focus will thus be on strictly quadratic bosonic Hamil-

tonians, which we will, with a slight abuse of terminology, almost always abbreviate

to simply QBHs.

Given a QBH, we construct the propagator U(t) = exp(−iHt) which implements

6Viewing χρ as a characteristic function in the probabilistic sense, Wρ can be formally understood
as the associated probability density function. However, Wρ can violate nonnegativity and thus the
state cannot be associated to any meaningful classical probability density. For this reason, Wρ is
called a quasi-probability distribution. Notably, however, negativity of Wρ (which is forbidden for
Gaussian states, in particular) is not required for a state to lack a classical interpretation. Non-
classicality may be identified by considering the nature of singularities in the related Sudarshan-
Glauber P distribution [111]. It follows that Gaussianity need not exclude non-classicality. Squeezed
states are an example of a non-classical Gaussian state.
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a continuous family of homogeneous Gaussian unitary transformations

Φ 7→ Φ(t) = U †(t)ΦU(t) = e−iGtΦ. (2.42)

This may be understood as the solution to the Schrödinger-like equation of motion

for the Nambu array derived in the Heisenberg picture as

d

dt
Φ(t) = i[H,Φ] = −iGΦ(t). (2.43)

We see that the dynamical matrix serves as the generator, or state matrix, of a linear

time-invariant (LTI) dynamical system in Nambu space. Remarkably, this generator

is generally non-Hermitian7. One may verify that G = G† if and only if ∆ = 0.

Equivalently, the dynamical matrix is Hermitian if and only if H has total number

symmetry, i.e., H commutes with the transformation Eq. (2.20). So, if we wish to

study pairing Hamiltonians (those Hamiltonians with ∆ 6= 0), as they are called in

fermionic literature, we must confront a non-Hermitian equation of motion. However,

once this equation is solved, we have effectively computed the Heisenberg dynamics of

any observable built up from products and sums of bosonic creation and annihilation

operator. Such is a feature of unitary dynamics, whereby we have the multiplicative

property (AB)(t) = U †(t)ABU(t) = U †(t)AU(t)U †(t)BU(t) = A(t)B(t), as well

as linearity. For example, the dynamics of a given number operator are computed

according to

(a†jaj)(t) = a†j(t)aj(t) =
(
e−iGtΦ

)
j+N

(
e−iGtΦ

)
j
. (2.44)

Our primary goal will thus be to diagonalize (or more precisely, cast into Jordan

normal form) G, and hence completely determine the dynamics of the system.

7In fact, G is generically non-normal. Consequences of this fact for open bosonic systems will
be explored in Sec. 8.1.1
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With the importance of the dynamical matrix clearly spelled out, we will examine

the implications of the intrinsic properties all such matrices possess, i.e., Eqs.(2.39).

The first property, τ3G
†τ3 = G, constitutes a generalization of Hermiticity called

pseudo-Hermiticity8 [44]. A matrix M is called pseudo-Hermitian if and only if there

exists a Hermitian, invertible matrix η such that η−1M†η = M. The terminology

originates from generalizations of inner-product spaces. Consider the space Cn paired

with the product (~v, ~w)η ≡ ~v†η ~w. One may verify that, like an inner-product, this

product is linear in the second argument and conjugate symmetric. However, this

product need not be positive-definite nor non-degenerate. Specifically, if η, which

we call the indefinite metric, is not positive-definite, then (~v,~v)η can be positive,

negative, or zero. Such a space is called an indefinite inner-product, or Krein, space

[55], and the pseudo-Hermitian matrices are precisely those that exhibit the property

(~v,M~w)η = (M~v, ~w)η for all ~v, ~w ∈ Cn. In the special case where η = 1n, the

inner-product is the usual one and pseudo-Hermiticity coincides with Hermiticity.

Like Hermitian matrices, these objects can be given a Lie algebra structure via the

usual commutator bracket. The associated Lie group consists of the pseudo-unitary

matrices T, which satisfy η−1T†η = T−1, or equivalently, (T~v,T~w)η = (~v, ~w)η, for

all ~v, ~w ∈ Cn.

Refocusing on bosonic systems, we observe that dynamical matrices G are always

pseudo-Hermitian with metric τ3. Furthermore, Gaussian canonical transformations

are built-up from τ3 pseudo-unitary matrices (see Eq. (2.18)). While identifying this

indefinite inner-product structure will prove valuable in later sections, we can already

conclude from this that, for each eigenvalue ω of G, we have that ω∗ is also an eigen-

value. This follows because pseudo-Hermiticity is a statement of similarity between a

matrix and its Hermitian conjugate. In addition to symmetry of the spectrum about

8Other terminologies such as “para-Hermiticity”, “quasi-Hermiticity”, and “η-Hermiticity” exist
within the literature. While these often coincide with pseudo-Hermiticity, there may be instances
where a slightly different definition is used.
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the real axis, there is also a symmetry about the imaginary axis. This follows from

the second equation of (2.39), which allows us to conclude that if ω is an eigenvalue

of G, then so is −ω∗. In fact, if ~ψ is an eigenvector, corresponding to ω, then τ1
~ψ∗

is also an eigenvector with eigenvalue −ω∗. Altogether, the spectrum of an arbitrary

dynamical matrix derived from a QBH enjoys a built-in fourfold symmetry, i.e., eigen-

values come in quadruplets {ω, ω∗,−ω∗,−ω}. Introducing the notation σ(X) for the

spectrum of a linear operator X, we can restate this symmetry property as

σ(G) = σ(G)∗ = −σ(G)∗ = −σ(G). (2.45)

This begs the question: what is the physical meaning of a non-real eigenvalue?

Moreover, what if G is not even diagonalizable in the first place? Such spectral

properties are tied to various notions of stability that will be explored in the next

section.

2.3.2 Notions of stability and their criteria

In the study of any dynamical system, various notions of stability naturally arise.

For QBHs, two distinct notions are relevant; thermodynamic stability, and dynamical

stability. A QBH is said to be thermodynamically stable if the Hamiltonian is either

bounded from above, or bounded from below 9. Thermodynamically unstable Hamil-

tonians are precisely those that lack well defined thermal (Gibbs) states ρth ∼ e−βH ,

even if one allows for negative temperatures. This is closely related to the concept of

a Landau instability [22], whereby a system with no lower bound can never minimize

its free energy, and thus, never reach thermal equilibrium. The simplest example of

9Thermodynamic stability is traditionally defined by requiring that the Hamiltonianis bounded
from below. Our slight generalization is to address the trivial fact that, if one has a Hamiltonian
H that is bounded from above, then −H is bounded from below. Thus, H is trivially associated
to a thermodynamically stable system with indistinguishable physical characteristics. In particular,
thermal states of −H can be thought of as negative temperature thermal states of H.
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a thermodynamically stable QBH is that of the harmonic oscillator H = ωa†a, with

ω ∈ R. In contrast, the two-mode Hamiltonian H = ω1a
†
1a1−ω2a

†
2a2, with ω1, ω2 > 0,

is thermodynamically unstable since the energies n1ω1 − n1ω1 with n1,m1 ∈ Z≥0 are

unbounded in both directions. In particular, thermodynamically unstable Hamil-

tonians lack absolute ground states10. Despite this physically unattractive property,

these Hamiltonians can arise as mean-field approximations of thermodynamically sta-

ble systems (see e.g., Sec. 3.3.2).

In contrast to thermodynamic stability, dynamical stability concerns itself with

dynamical features of the QBH rather than equilibrium ones. A dynamically stable

QBH is one in which the expectation value of any observable in any physical state

remains bounded for in time. The simplest example, again, is the harmonic oscillator

H = ωa†a, where all observables exhibit, at worst, quasi-periodic motion. If there is

even one observable-state pair where the expectation value diverges, we say the sys-

tem is dynamically unstable. In finite-dimensional systems (such as a finite collection

of fermionic modes), such instabilities are impossible since all observables necessarily

correspond to bounded operators. Even with a single bosonic mode, dynamical insta-

bilities can arise as exemplified by the inverted harmonic oscillator H = λ(p2−x2)/2,

with λ > 0. A quick calculation reveals 〈x(t)〉 = 〈x(0)〉 cosh(λt)+〈p(0)〉 sinh(t), which

diverges exponentially in time, save for special choices of the initial mean position

and momentum. Generally speaking, dynamical instabilities reveal themselves (both

classically and quantum mechanically) when using mean-field quadratic approxima-

tions to model unstable equilibria. Less obviously, polynomial instabilities may also

arise. The most elementary example is that of a free quantum particle, H = p2/2m,

whereby 〈x(t)〉 = (〈p(0)〉 /m)t + 〈x(0)〉 diverges linearly in t. As we will soon see,

10The qualifier “absolute” here is meant to explicitly address thermodynamically unstable Hamil-
tonians that conserve total boson number, like the example H = ω1a

†
1a1−ω2a

†
2a2. In a fixed number

sector, a ground state can exist (in particular, it is a BEC, where each bosonic particle occupies
the lowest energy state). However, this ground state is not absolute in the sense that adding an
additional boson will always lower the ground state energy. In particular, such Hamiltonians are not
bounded as the number of particles diverges (e.g., in the thermodynamic limit).
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polynomial instabilities like this originate from so-called exceptional points (EPs), or

points of degeneracy in the Hamiltonian parameter space where the dynamical matrix

forgoes diagonalizability.

All examples thus far have revealed that the two above notions of stability are

generally independent. That is, each of the four possible combinations of thermo-

dynamic stability and dynamical stability exist. The harmonic oscillator is stable in

both senses. The free particle is dynamically unstable but thermodynamically stable.

The two-mode Hamiltonian H = ω1a
†
1a1 − ω2a

†
2a2 is dynamically stable but thermo-

dynamically unstable. Finally, the inverted oscillator is unstable in both senses11

While these notions of stability are defined in a physically natural way, we do

not have, a priori, a natural way for assessing them. After all, it is unreasonable

to expect that one will always be able to check that all observables have bounded

expectation values in all states, or to verify that the expectations of H in arbitrary

states are bounded in one direction or the other. Since the QBH is uniquely defined

by its dynamical matrix G, it is natural to expect the two types of stability to

be directly diagnosable from it alone. Indeed, this is the case. Firstly, a QBH is

thermodynamically stable if and only if H = τ3G is positive-semidefinite or negative-

semidefinite, i.e., H ≥ 0 or H ≤ 0. The “if” direction follows from heavy restrictions

placed on the spectra and Jordan block structure of G when H ≥ 0 or H ≤ 0. We

will revisit these restrictions and their implications in the next section. The proof

of the “only-if” direction is considerably more difficult, but can be found, e.g., in

Ref. [99].

Dynamical stability is considerably easier to diagnose. A QBH is dynamically

stable if and only if the dynamical matrix G has an entirely real spectrum, and is

diagonalizable. For the if-direction, it is immediately apparent that these conditions

11Thermodynamic instability of the inverted oscillator can be verified by noting that the average
energy of a coherent state is 〈α|H|α〉 = Im(α)2 − Re(α)2, which is unbounded in both directions.

40



on G imply that the LTI system defined in Eq. (2.43) exhibits bounded evolution12.

Thus, the creation and annihilation operators, and all operators built from them,

exhibit bounded motion for all time. The only if-direction is best approached by

proving the contrapositive. If G does not satisfy the stated conditions, then it either

has a non-real eigenvalue, a non-trivial Jordan block, or both. In Sec. 2.4, we will

see how either one of these occurrences will imply the existence of an operator that

is (i) a linear combination of creation and annihilation operators, and (ii) exhibits

unbounded motion in generic states.

2.3.3 The indefinite inner-product structure of Nambu space

and reformulating dynamics

We have thus far seen that the LTI system Eq. (2.43) entirely characterizes the dy-

namics generated by a given QBH. In particular, the pseudo-Hermitian generator

G plays a crucial role. This intrinsic pseudo-Hermiticity suggests that there is an

indefinite inner-product structure embedded within bosonic systems. Making this

structure explicit is most easily accomplished by formalizing the structure of Nambu

space. Namely, consider the 2N -dimensional complex vector space consisting of all

complex linear combinations of the creation and annihilation operators Φj. We call

elements of this space linear forms. Finite-dimensionality of this space allows us to

put it in 1-to-1 correspondence with C2N . We do so in an antilinear fashion:

C2N 3 ~α 7→ ~̂α = ~α†τ3Φ =
N∑
j=1

(
α∗2j−1aj − α∗2ja

†
j

)
. (2.46)

12In the language of dynamical systems theory, this is equivalent to saying that the LTI sys-
tem Eq. (2.43), or more generally, the Heisenberg EOM for any operators, is “marginally” stable
- bounded expectation values remain bounded for all times. Note that this is stronger than the
more standard “asymptotic”, or “Hurwitz” stability, which requires that every eigenvalue of the
generator −iG have strictly negative real part. Such a requirement would mean 〈Φ〉 (t)→ 0 (in fact,
〈O〉 (t)→ 0 for any traceless operator O) as t→∞, regardless of the initial condition. However, the
fourfold symmetry of the spectrum of G means that the dynamical matrix of a QBH can never be
Hurwitz stable.
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We have essentially introduced an antilinear map ·̂ that takes 2N -dimensional com-

plex vectors ~α to elements of Nambu space. This mapping, while clearly 1-to-1, is

constructed in this antilinear way in conjunction with τ3 entirely for utility in later

calculations. We will call the association α ↔ ~α the Nambu representation of the

linear form α.

So far, the indefinite inner-product structure is not obvious. A hint comes from

the CCR, which explicitly include τ3 in Eq. (2.1). In particular, they imply that the

commutator of any two elements in Nambu space is always a constant multiple of the

identity. That is, we have a product (the commutator) that produces a scalar in a

well-defined way. Following this thread, we find for ~α, ~β ∈ C2N ,

[~̂α, ~̂β
†
] = ~α†τ3

~β 1F = (~α, ~β)τ3 1F . (2.47)

That is, the commutator of two Nambu operators naturally maps to the τ3 indefinite

inner-product of the associated vectors. The CCRs are naturally recovered by taking

~α and ~β to be canonical basis vectors of C2N . Ultimately, we have identified Nambu

space, paired with the commutator, to a 2N -dimensional complex vector space, paired

with an indefinite inner-product with metric τ3. We also note that the fermionic

realization of Nambu space (paired with the anticommutator) naturally maps to C2N ,

with the usual inner product.

We can now start importing concepts from one space to the other. For example,

indefinite inner-product spaces have a natural indefinite “norm”, i.e., (~α, ~α)η ≡ ~α†η~α.

In the case where η = τ3, this “norm” can be positive negative and zero. The sign

of this norm is called the Krein signature (with the sign of zero taken to be zero).

Examples of +1, −1, and 0 Krein-signature vectors are respectively ~e2j−1, ~e2j, and

~xj = (~e2j−1−~e2j)/
√

2, with ~en a canonical basis vector of C2N . Applying our mapping
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to these vectors reveals

~̂e2j−1 = aj, ~̂e2j = a†j, ~̂xj =
aj + a†j√

2
= xj. (2.48)

In other words, positive and negative Krein signature vectors can be interpretted as

annihilation and creation operators, respectively. Meanwhile, zero Krein signature

vectors are equal mixtures of the two. In fact, to remain consistent with Eq. (2.47),

all Hermitian linear forms correspond to zero Krein signature vectors. We can verify

this by considering the the vector corresponding to the adjoint of a given linear form:

~̂α
†

= ~̂β, ~β = −τ1~α
∗. (2.49)

Thus, Hermitian linear forms must satisfy ~α = −τ1~α
∗. More generally, if ~β = −τ1~α,

then

~β†τ3
~β = ~αTτ1τ3τ1~α

∗ = −~αTτ3~α
∗ = −~α†τ3~α. (2.50)

This reveals that, to each positive (negative) Krein signature vector ~α, we have an

associated negative (positive) Krein signature ~β = −τ1~α
∗. This associated vector

corresponds to the adjoint linear form, consistent with Eq. (2.47). Thus, when ~α = ~β,

the Krein signature is zero.

This mapping further provides utility in reformulating the Heisenberg equations

of motion (EOMs) of Eq. (2.43). Specifically, Eq. (2.43) implies that if α is a linear

form at time t0, then it will remain a linear form for all t ≥ t0. Thus, if α(t0) = ~̂α for

some vector ~α, then α(t) = ~̂α(t) for some vector ~α(t), with ~α(t0) = ~α. In this sense,

we have “contravariant” dynamics according to

~̂α(t) =
2N∑
j=1

α∗2j−1aj(t)− α∗2ja
†
j(t) ≡

2N∑
j=1

α∗2j−1(t)aj(0)− α∗2j(t)a
†
j(0) ≡ ~̂α(t), (2.51)
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where the final two equalities define the time-dependence of the vector ~α(t). In order

to be consistent with the Heisenberg EOMs, the contravariant EOM for ~α(t) is found

to be13

d

dt
~α(t) = iG~α(t), ~α(t) = eiGt~α. (2.52)

We have successfully mapped the Heisenberg EOM of the Nambu array to a pseudo-

Hermitian LTI system on an indefinite inner-product space. One may then naturally

ask what role the second property of G plays, i.e., τ1G
∗τ1 = −G. Recalling Eq. (2.49),

one can verify that the second property of G ensures that if ~β = −τ1~α
∗ at t = 0, then

~β(t) = −τ1~α
∗(t) for all t. This reflects the Hermitian conjugate-preserving nature of

the Heisenberg EOMs.

Having placed the indefinite inner-product space in 1-to-1 correspondence with the

Nambu space, one may ask further what linear transformations on this inner product

space naturally correspond to. Our first hint is via the Heisenberg commutator:

i[H, ~̂α] = îG~α. (2.53)

In this way, the commutator i[H, ·] implements the pseudo-Hermitian transformation

G. Thus we may identify H with the matrix G. In fact, for any 2N × 2N matrix

13This equation motivates the use of the term “contravariant”. The coefficients αj undergo a
(time-dependent) transformation that is the inverse of that of the basis vectors Φj , cf. Eq. (2.43).

That is, ~̂α(t) may be computed by evolving Φ(0) to Φ(t) = e−GtΦ(0) and projecting with τ3~α(0)
(i.e., the covariant approach, whereby the basis vectors Φj evolve in time), or by evolving ~α(0) to
~α(t) = eiGt~α(0) and then projecting onto τ3Φ(0) (i.e., the contravariant approach, whereby the
coefficients αj evolve in time).
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satisfying τ1A
∗τ1 = −A, we can unambiguously14 define a quadratic form15

Â =
1

2
Φ†τ3AΦ. (2.54)

We have effectively lifted our ·̂-map to quadratic forms and matrices on the indefinite

inner product space. From this definition, H = Ĝ in a natural way. Three nontrivial

properties follow:

(i) Â† = τ̂3Aτ3, (ii) i[Â, ~̂α] = îA~α, (iii) [Â, B̂] = [̂A,B]. (2.55)

The first says that QBHs are associated to pseudo-Hermitian transformations. The

second says that a commutator between a quadratic and a linear form implements

a linear transformation on the indefinite inner-product space. The final says that

the commutator of two quadratic forms maps directly to the commutator of the

corresponding transformations on the indefinite inner product space. It follows that

the set of quadratic forms form a Lie algebra that maps directly to the Lie algebra of

pseudo-Hermitian matrices.

As an immediate application of this formalism, we can formulate conditions for a

given QBH to have a homogeneous Gaussian symmetry. Specifically, consider a many-

body unitary or antiunitary operation S that effects the transformation Φ 7→ SΦ, with

S satisfying Eqs. (2.18). This operator is a symmetry of the QBH H = Ĝ if and only

if [H,S] = 0. A quick calculation reveals that this is equivalent to [G,S] = 0. In

other words, a QBH possesses a Gaussian symmetry if and only if the Nambu space

14Fixing the condition τ1A
∗τ1 = −A ensures that the corresponding quadratic form is expressed

with the creation and annihilation operators symmetrically ordered. Without this condition, the
corresponding quadratic form would be equal to the symmetrically ordered one modulo a constant
shift. Fixing this condition thus allows us to focus on the equivalence class of quadratic forms that
differ by a constant.

15Notational comment: when the coefficient vector of a given linear form is not particularly

relevant, we will drop the hat-vector notation. That is, we will write α for ~̂α. Similarly, we will stick
to notation like H for QBHs when the dynamical matrix G is understood, rather than using to the
hat-notation.
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representation of the QBH commutes with the Nambu space representation of the

symmetry.

We conclude this digression by introducing two operations defined on 2N × 2N

dimensional complex matrices that will provide utility in future sections. Given such

a matrix X, we define the fermionic and bosonic projectors F and B according to

F(X) ≡ 1

2

(
X− τ1X

Tτ1

)
, B(X) ≡ 1

2

(
X + τ1X

Tτ1

)
. (2.56)

These provide orthogonal projectors in the sense that F2 = F , B2 = B, F ◦ B =

B ◦ F = 0, and F + B = I, with I(X) = X. Thus, any matrix is uniquely defined

by its fermionic and bosonic projections. The nomenclature comes from the fact

that a purely quadratic fermionic (bosonic) Hamiltonian is defined uniquely modulo

constant shifts by a fermionic (bosonic) Hermitian matrix H, i.e., a Hermitian matrix

that satisfies F(H) = H (B(H) = H). If one changes to a Majorana or quadrature

basis (in the fermionic and bosonic cases, respectively), these projections transform

to the antisymmetric and symmetric projections, respectively.

2.4 Diagonalization of quadratic bosonic Hamilto-

nians

When faced with a mean-field Hamiltonian in the traditional condensed matter set-

ting, the first instinct is to diagonalize it via a Bogoliubov transformation. That

is, one maps the fundamental degrees of freedom (creation and annihilation opera-

tors) to a set of decoupled quasiparticles that excite modes with a fixed energy. The

eigenstates of the Hamiltonian are then the transformed Fock states, i.e., the occupa-

tion number states of these quasiparticle excitations. A related concept in dynamical

systems is that of normal mode analysis. Namely, to solve a (linearized) dynamical
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system, one will first compute the set of normal modes, which are defined by a simple

dynamical Ansatz (usually having all the time-dependence absorbed in an exponen-

tial prefactor). The full solution is then constructed out of these normal modes in a

linear fashion, subject to the set initial conditions. Remarkably, these two problems

are solved simultaneously for quadratic Hamiltonians (both fermionic and bosonic).

The aforementioned quasiparticles correspond in a natural way to the normal modes

of the LTI system Eq. (2.52) (and its fermionic counterpart16). The quasiparticle en-

ergies then map on to the normal mode frequencies. However, in the fermionic case,

the normal mode frequencies are always guaranteed to be real thanks to Hermiticity

of the corresponding generator. So, the interpretation of them as quasiparticle en-

ergies is straightforward. In what sense does a non-real normal-mode frequency in

a bosonic system correspond to a quasiparticle energy? The QBH must have real

eigenvalues, after all.

The first step to seeing the correspondence between the diagonalization problem of

a QBH and the normal mode analysis of Eq. (2.52) is to precisely state the diagonal-

ization problem. Given a QBH H = Ĝ, we seek a Bogoliubov transformation (unitary,

homogeneous, Gaussian transformation) UΦU † = Ψ = TΦ, such that H = 1
2
Ψ†DΨ,

with D diagonal. Explicitly, the quasiparticles Ψ = [ψ1, ψ
†
1, . . . , ψN , ψ

†
N ]T satisfy the

CCRs and

H =
1

2

N∑
n=1

ωn
(
ψ†nψn + ψnψ

†
n

)
=

N∑
n=1

ωn

(
ψ†nψn +

1

2

)
, (2.57)

with the quasiparticle energies ωn ∈ R. Once we have accomplished this, the eigen-

16To be concrete, a quadratic fermionic Hamiltonian is an operator of the form H =∑N
i,j=1

(
c†iKijcj − ciK∗ijc

†
j + c†i∆ijc

†
j + cj∆

∗
ijci

)
, with the cj (c†j) the fermionic annihilation (cre-

ation) operator satisfying the canonical anticommutation relations {ci, c†j} = δij1F , ci, cj = 0, K a
complex Hermitian matrix, and ∆ a complex anti-symmetric matrix. It follows that ∂tΨ = i[H,Ψ] =

−iHΨ, with Ψ = [c1, c
†
1, . . .]

T the fermionic Nambu array and H a Hermitian matrix whose elements
are defined by K and ∆. This matrix, known as the Bogoliubov-de Gennes Hamiltonian, is the
fermionic analogue of G.
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states are built up from the quasiparticle vacuum, i.e., the state |0̃〉 satisfying ψn |0̃〉 =

0 for all n, in the usual way (e.g., Eq. (2.4)). We can then conclude that, if such a

transformation is possible, the Hamiltonian will be thermodynamically stable if and

only if the ωn are either all non-negative (H bounded from below) or all non-positive

(H bounded from above). If this is the case then the quasiparticle vacuum is pre-

cisely the ground state (or highest energy state when H is bounded from above), with

ground state energy

H |0̃〉 = EGS |0̃〉 , EGS =
1

2

N∑
n=1

ωn. (2.58)

Regardless of the signs of the energies, a representation of the form Eq. (2.57) implies

dynamical stability. Namely, in the Heisenberg picture, the quasiparticles are normal

modes: ψn(t) = e−iωntψn(0). We can then invert the transformation T to find the dy-

namics of aj(t), which are linear combinations of ψn(t), and thus, dynamically stable.

Ultimately, if diagonalization via Bogoliubov transformation is possible, the system

must be dynamically stable. Further, thermodynamic stability can be assessed via

the sign distribution of the single particle energies. This reveals something surprising:

dynamically unstable Hamiltonians (such as the inverted harmonic oscillator or the

free particle) cannot be diagonalized via Bogoliubov transformation. In fact, the set

of all dynamically stable QBHs is precisely the set of QBHs that can be diagonalized

via a Bogoliubov transformation. Let us explore this fact in more detail.

Suppose we have a dynamically stable QBH. In Sec. 2.3.2, we explained how G

being diagonalizable with a real spectrum is sufficient for H = Ĝ to be dynamically

stable. With the tools of Sec. 2.3.3, we can prove necessity. We do so via the con-

trapositive: suppose G either has a non-real eigenvalue or is non-diagonalizable. In

the first case, let ~ξ be the corresponding eigenvector, i.e., G~ξ = ω~ξ, with ω = x− iy

and y > 0. Note that if y > 0, we can use symmetry of the spectrum to find an

48



eigenvector with eigenvalue ω = x + iy. One may immediately verify that ~̂ξ is a

normal mode of the system with ~̂ξ(t) = e−iω
∗t~̂ξ(0) = e−ixteyt~̂ξ(0) unbounded in time.

If G is non-diagonalizable, then there is a Jordan chain of length r > 1 at a particular

eigenvalue ω0. That is, we have the system of equations

(G− ω012N)~χ0,1 = 0, (G− ω012N)~χ0,k = ~χ0,k−1, 2 ≤ k ≤ r, (2.59)

for some vectors ~χ0,k. If ω0 is non-real, then the previous argument suffices to prove

dynamical instability. If ω0 is real, then we find that

~̂χ0,k(t) = e−iω0t

k−1∑
`=0

(−it)`

`!
~̂χ0,k−`(0), (2.60)

which generically exhibit polynomial divergence as t→∞. Since the vectors ~χ0,k are

called generalized eigenvectors of rank k, we henceforth refer to normal modes of the

form Eq. (2.60) as generalized normal modes of rank k. As it turns out, such gener-

alized normal modes are sharply constrained in thermodynamically stable systems.

Positive (or negative) semidefiniteness of H guarantee the longest Jordan chain is at

most length 2 and that it must occur at eigenvalue ω = 0 [55]. In this case, the ω = 0

normal mode and its associated generalized mode can be interpreted as free particle

terms in the Hamiltonian [39].

Now we are in a position to identify dynamically stable QBHs and those QBHs

whose dynamical matrices are diagonalizable with a real spectrum. What would it

mean for the system to be diagonalizable via a Bogoliubov transformation? If such a

transformation Ψ = TΦ were to exist, then we would have

H =
1

2
Φ†τ3GΦ =

1

2
Ψ†T−1†τ3GT−1Ψ =

1

2
Ψ†DΨ, (2.61)

with D diagonal. Since this transformation is canonical, the first equation in (2.18)
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yields

TGT−1 = D′,

with D′ = τ3D still diagonal. We further recognize D′ = diag(ω1,−ω1, . . . , ωN ,−ωN).

In short, the hunt for a Bogoliubov transformation is equivalent to the hunt for a

matrix T satisfying Eqs. (2.18) that diagonalizes G. Moreover, we immediately see

that, if such a transformation is found, the eigenvalues of G (i.e., the normal mode

frequencies) constitute the quasiparticle energies, as advertised earlier.

Let us denote the n’th column of T−1 by ~vn. Since T diagonalizes G, we have

G~v2n−1 = ωj~v2n and G~v2n = −ωj~v2n. Eqs. (2.18) provide two further requirements:

~vnτ3~vm = (τ3)nm, ~v2n = τ1~v
∗
2n−1. (2.62)

These requirements motivate a more refined notation, namely, let ~ψ+
n = ~v2n−1 and

~ψ−n = ~v2n. We can reformulate the problem once more: given a dynamically stable

QBH, can one find a basis of C2N consisting of eigenvectors of G denoted by {~ψ±n }Nn=1

satisfying

~ψsn
†τ3

~ψs
′

m = sδss′δnm, ~ψ−n = τ1
~ψ+
n
∗, G~ψsn = sωn ~ψ

s
n, s, s′ ∈ {+,−}? (2.63)

The answer is yes. In Appendix B.1, we prove this in the case where ωn are non-zero.

For a more comprehensive account, we refer the reader to Refs. [21, 38, 39, 99].

Equipped with an eigenbasis satisfying Eqs. (2.63), we obtain a useful resolution

of the identity, and consequentially, a sort-of τ3 spectral decomposition,

12N =
N∑
n=1

(
~ψ+
n
~ψ+
n
† − ~ψ−n

~ψ−n
†
)
τ3, G =

N∑
n=1

ωn

(
~ψ+
n
~ψ+
n
† + ~ψ−n

~ψ−n
†
)
τ3, (2.64)
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which can be verified, for example, by applying the above expressions to the eigenbasis

of G. Plugging this decomposition directly into H reveals

H =
1

2
Φ†τ3GΦ =

1

2

N∑
n=1

ωn
(
ψ†nψn + ψnψ

†
n

)
, (2.65)

where we have introduced the simplified notation ψn = ~̂ψ
+

n = − ~̂ψ
−

n
†. Ultimately,

we see that for dynamically stable QBHs, the positive Krein signature eigenvectors

~ψ+
n and their associated N eigenvalues define the quasiparticle annihilation operators

via ψn = ~̂ψ+
n = ~ψ+

n
†τ3Φ and their quasiparticle energies, respectively. While it may

seem that we have lost the negative Krein signature eigenvectors, we note that the

second relation in Eq. (2.63) implies ~̂ψ−n = − ~̂ψ+
n

†
, and moreover, the eigenvalues are

simply the negative of the eigenvalues of the positive Krein signature eigenvectors.

Importantly, we have not, and need not, specify the sign of the N eigenvalues ωn

associated to these positive Krein signature eigenvectors. We see that it is precisely

the sign distribution of these particular eigenvalues that define the thermodynamic

stability of the system. In order for a dynamically stable system to be thermodynam-

ically unstable all positive Krein signature eigenvectors must correspond to either all

nonnegative or nonpositive eigenvalues. This is guaranteed precisely when H = τ3G

is positive or negative semidefinite [55].

The identification between the Bogoliubov transformation diagonalizing the QBH

and the matrix that diagonalizes G provides one immediate application. Namely,

observe that we can write the corresponding matrix T as

T =
N∑

j,n=1

~ej~e
†
n ⊗

Xjn Y∗jn

Yjn X∗jn

 , (2.66)

where Xjn = (~ψ+
n )2j−1 and Yjn = (~ψ+

n )2j are matrices that, roughly speaking, encode

the weight of each quasiparticle on the annihilation operator and creation operator
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sectors, respectively. In terms of these matrices, we obtain a closed form expression

for the unitary U taking Φ to Ψ = UΦU †, i.e.,

U = det(X†X)−1/4 : exp

[
1

2

N∑
j,k=1

(
−X−1Y∗

)
jk
a†ja
†
k + (YX−1)jkajak +

(
X−1
jk − δjk

)
a†jak

]
: ,

(2.67)

where the normal ordering symbol : · : ensures all creation operators are to the left

of the annihilation operators. One may verify that this is well-defined, i.e., that X is

invertible, and that the associated quasiparticle vacuum is then

|0̃〉 = U |0〉 = det(X†X)−1/4 exp

[
1

2

N∑
j,k=1

(
−X−1Y∗

)
jk
a†ja
†
k

]
|0〉 . (2.68)

The quasiparticle vacuum is evidently Gaussian, with vanishing mean vector and

covariance matrix given by

C|0̃〉 =
1

2
τ3T

†Tτ3. (2.69)

Following this extensive account of the diagonalization procedure associated to

dynamically stable QBHs, we are led to ask to what extent a normal form along

the lines of Eq. (2.65) can be obtained in the absence of dynamical stability. For

simplicity, let us focus on the case where G is diagonalizable. The eigenvalues and

eigenvectors can then be partitioned into three sectors satisfying various properties

[21, 101]:

1. Let ±ωn, n = 1, . . . NR, denote the real eigenvalues. Just as in the dynamically

stable case, we may arrange for these eigenvalues and their eigenvectors to

satisfy

G~ψ±n = ±ωn ~ψ±n , ~ψ−n = τ1(~ψ+
n )∗, (2.70)
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in addition to the τ3-orthonormality conditions ~ψ±n
†τ3

~ψ±m = ±δnm and ~ψ±n
†τ3

~ψ∓m =

0. In Eq. (2.70), the relationship between ~ψ+ and ~ψ−n ensures that ~̂ψ+
n
† = − ~̂ψ−n .

2. Let ±iλn, n = 1, . . . , NI denote the purely imaginary eigenvalues with λn > 0.

For these, we denote the eigenvectors according to

G~z±n = ±iλn~z±n . (2.71)

Since these purely imaginary eigenspaces are invariant under the antilinear map

~z 7→ τ1~z
∗ (which takes iλn to −(iλn)∗ = iλn), we can always ensure τ1~z

±
n
∗ =

−~z±n . This consequentially guarantees ~̂z
±

are Hermitian. Furthermore, we can

arrange so that ~z±n
†τ3~z

∓
m = ±iδnm and ~z±n

†τ3~z
±
m = 0.

3. Let ±µn, ±µ∗n, n = 1, . . . , NC , denote the remaining complex eigenvalues with

µn in the upper right quadrant, i.e., Re(µn), Im(µn) > 0. We denote the eigen-

vectors according to

G~ξ+
n = µn~ξ

+
n , G~ξ+

n∗ = µ∗n
~ξ+
∗ , G~ξ−n = −µ∗n~ξ−n , G~ξ−n∗ = −µn~ξ−∗ , (2.72)

with ~ξ−n = τ1(~ξ+
n )∗ and ~ξ−n∗ = τ1(~ξ+

n∗)
∗. Finally, we can ensure ~ξ±n

†τ3
~ξ±m∗ = ±δnm

and that all other τ3−inner products vanish.

Note that we have the counting constraint 2NR + 2NI + 4NC = 2N . Further-

more, eigenvectors in distinct sectors are τ3-orthogonal thanks to pseudo-Hermiticity.

Altogether, we obtain a decomposition of the form

G =

NR∑
n=1

ωn

(
~ψ+
n
~ψ+
n
† + ~ψ−n

~ψ−n
†
)
τ3 −

NI∑
n=1

λn
(
~z+
n ~z
−
n
† + ~z−n ~z

+
n
†) τ3

+

NC∑
n=1

µn

(
~ξ+
n
~ξ+
n∗
† + ~ξ−n∗

~ξ−n
†
)
τ3 + µ∗n

(
~ξ+
n∗
~ξ+
n
† + ~ξ−n∗

~ξ−n
†
)
τ3.

(2.73)
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The resultant normal form of the Hamiltonian is then

H =
1

2

NR∑
n=1

ωn
(
ψ†nψn + ψnψ

†
n

)
− 1

2

NI∑
n=1

λn
(
z+
n z
−
n + z−n z

+
n

)
+

1

2

NC∑
n=1

[
µn
(
ξ†nξn∗ + φn∗ξ

†
n

)
+ µ∗n

(
ξ†n∗ξn + ξnξ

†
n∗
) ]
,

(2.74)

with the simplified notation ψn = ~̂ψ+
n , z±n = ~̂z±n , φn = ~̂ξn, and ξn∗ = ~̂ξn∗ implemented.

The first term is analogous to Eq. (2.65), that is, it represents the stable normal modes

ψn which satisfy the CCRs. The second term consists of operators z±n which satisfy

the HWRs [z+
n , z

−
n ] = iδnm1F . This is best understood by introducing the bosonic

degrees of freedom bn = (z+
n + iz−n )/

√
2, in which case

1

2

NI∑
n=1

λn
(
z+
n z
−
n + z−n z

+
n

)
=

1

2

NI∑
n=1

iλn
(
b2
n − b†n2

)
(2.75)

is a sum of degenerate parametric amplifiers (DPAs) (equivalently, single-mode squeez-

ing Hamiltonians). The final term consists of so-called pseudo-bosonic modes, i.e.,

pairs of modes (ξn, ξ
†
n∗) satisfying [ξn, ξ

†
m∗] = δnm1F . Since ξn∗ 6= ξn, these are not

canonical bosonic degrees of freedom.

The unstable modes in Eq. (2.74) present an obstruction to the usual construction

of the many-body eigenstates. In particular, the traditional quasiparticle picture, in

which one identifies a vacuum and builds up the eigenstates by exciting bosonic normal

modes, is lost. The most useful perspective is instead to stick to the dynamical point of

view and interpret z±n , ξn and ξn∗ as normal modes of the Heisenberg EOMs, with non-

real normal mode frequencies. Such an interpretation does not require any additional

algebraic specification. It also lends itself naturally to the non-diagonalizable case,

whereby algebraic relationships between normal modes and generalized normal modes

are far more ambiguous.
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2.5 Bulk-translationally invariant QBHs

2.5.1 The translationally invariant case

We will now characterize those QBHs on lattices that possess discrete translational

symmetry. In particular, we will explicitly focus on the 1D setting, and examine both

finite systems on a ring and infinite systems on a bi-infinite lattice.

Let us consider a QBH defined on a finite ring with dint degrees of freedom on

each of the N sites. Imposing discrete translation invariance engenders the general

form

H =
1

2

N∑
j=1

R∑
r=−R

φ†jhrφj+r, (2.76)

with hr the 2dint×2dint matrix of coupling constants, 0 ≤ R < N the coupling range,

and periodic BCs (PBCs) encoded via φN+` = φ` for any ` ≥ 1. Since the coupling

between sites j and j + r is only a function of r, discrete translation invariance is

evident. The coupling matrices are required to satisfy h†r = h−r and, without loss

of generality17, additionally obey τ1h
∗
rτ1 = hr. In this context, τj = 1dint ⊗ σj is

2dint × 2dint.

With the general structure specified, we identify the dynamical matrix as

GPBC
N = 1N ⊗ g0 +

R∑
r=1

(
Vr
N ⊗ gr + V†N

r ⊗ g−r

)
, (2.77)

with gr = τ3hr. The notational choices here indicate that there are a finite number of

sites N and PBCs. The conditions that GPBC
N must satisfy (see Eq. (2.39)) follow from

τ3g
†
rτ3 = g−r and τ1g

∗
rτr = gr. Furthermore, we observe that G

(P )
N is a block-circulant

matrix, i.e., a circulant matrix whose elements are matrices themselves.

It is immediate to see that the dynamical matrix Eq. (2.77) commutes with the

17This condition is equivalent to requiring that the matrix H is bosonic, i.e., B(H) = H.
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Nambu space representation of discrete translations Eq. (2.35). Thus, we can block

diagonalize GPBC
N utilizing the known basis of eigenvectors for VN . What we have just

described is precisely Bloch’s theorem: a translation-invariant system can be block-

diagonalized in terms of eigenstates of the translation operator. At the many-body

level, this block-diagonalization is accomplished by a discrete Fourier transform:

bm,k =
1√
N

N∑
j=1

e−ijkam,j, k ∈ KN , am,k =
1√
N

∑
k∈KN

eijkbm,k. (2.78)

Accordingly, the Fourier transform of the local Nambu array is

φ̃k =
1√
N

N∑
j=1

e−ijkφj = [b1,k, b
†
1,−k, . . . , bdint,k, b

†
dint,−k]

T . (2.79)

In k-space, the equation of motion Eq. (2.43) takes the form

d

dt
φ̃k(t) = −ig(k)φ̃k(t), g(k) =

R∑
r=−R

gre
ikr. (2.80)

The matrix-valued function g(k) constitutes the bosonic equivalent of the Bloch

Hamiltonian so often encountered in standard condensed matter settings. For this

reason, we refer to g(k) as the Bloch dynamical matrix. In fact, g(k) provides exactly

the blocks of G
(P )
N after performing the Fourier transform. Hence, the normal mode

frequencies are precisely the normal mode frequencies of each g(k), with k ∈ KN . We

call these eigenvalues ωn(k), n = 1, . . . 2dint, the frequency bands. In the case where

the system is dynamically stable, these are exactly the usual energy bands. However,

ωn(k) may become complex at one, or multiple k-values, yielding dynamical insta-

bilities. Similarly, g(k) may lose diagonalizability at any given k value, engendering

further instabilities.

The generalization of this discussion to a bi-infinite chain or, equivalently, bi-

infinite BCs (BIBCs), follows in a straightforward manner. Firstly, the finite sum
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over j in Eq. (2.76) is replaced with a sum over all integers. The dynamical matrix,

which we will denote as GBIBC, is then exactly as in Eq. (2.77), but with VN replaced

with V. Mathematically, GBIBC is called a block-Laurent operator. We must further

take the continuum limit of the Fourier transform

φ̃j =
∞∑

j=−∞

e−ijkφj, k ∈ [−π, π], φj =

∫ π

−π

dk

2π
eijkφ̃k. (2.81)

The key distinction from the finite case is that the Bloch dynamical matrix g(k)

is now considered for all values of k ∈ [−π, π], rather than just the discrete subset

KN ⊂ [−π, π]. The frequency bands thus provide a continuum of normal mode

frequencies.

2.5.2 Boundary conditions and the generalization of Bloch’s

theorem

We have thus far characterized QBHs that possess translation symmetry. It is often

the case that one is confronted with a system that is translationally invariant in

the bulk, but possesses non-trivial BCs. The simplest example is a finite chain with

isotropic couplings, up to hardwall boundaries. A more complicated example would be

one where the link between sites 1 and N on a finite ring interact with slightly different

couplings than the rest of the sites. In these cases we say that translational-symmetry

is broken by BCs and that the system is instead just bulk translation-invariant.

In 1D QBHs, bulk-translation invariance can be characterized in terms of the

dynamical matrix. One dimensional, bulk translation-invariant QBHs take the general

form

H =
1

2

R∑
r=1

N−r∑
j=0

φ†jhrφj+r +
∑
b,b′∈B

φ†bwbb′φb′ + H.c. (2.82)
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Boundary conditions Dynamical matrix type

Open Block-Toeplitz matrix
Periodic Block-circulant matrix

Semi-infinite Block-Toeplitz operator
Bi-infinite Block-Laurent operator

Table 2.1: The correspondence between the four most commonly encountered BCs
and the structure of the dynamical matrix.

where B = {1, . . . , R,N − R + 1, . . . , N} are the boundary lattice sites, hr are the

bulk coupling matrices as before, and wbb′ are 2dint × 2dint matrices specifying the

BCs. In order for the boundary to be well-defined, we must have R < N/2. However,

in practice, one often has R� N (e.g., R = 1 for nearest neighbor couplings).

The dynamical matrix of such a system is explicitly given by

G = GOBC
N + B, (2.83)

where GOBC
N is the dynamical matrix of the system subject to open BCs (OBCs)

wbb′ = 0 and B encodes the BCs.

Let us first consider the OBC case B = 0. Explicitly,

G = GOBC
N = 1N ⊗ g0 +

R∑
r=1

(
Tr
N ⊗ gr + T†N

r ⊗ g−r

)
, (2.84)

with gr again given by τ3hr. Mathematically, the OBC dynamical matrix is a block-

Toeplitz matrix. We note that by taking the semi-infinite limit (replacing TN with T),

one obtains a block-Toeplitz operator, which we will denote generally by GSIBC. We

summarize the dynamical matrix structure for the four most commonly encountered

BCs (OBCs, PBCs, SIBCs, and BIBCs) in Table 2.1.
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Allowing for non-trivial BCs, one finds that the contribution B is given by

B =



b
(l)
11 · · · b

(l)
1R 0 b11 · · · b1R

...
. . .

...
...

...
. . .

...

b
(l)
R1 · · · b

(l)
RR

... bR1 · · · bRR

0 · · · · · · 0 · · · · · · 0

b̃11 · · · b̃1R 0 b
(r)
11 · · · b

(r)
1R

...
. . .

...
...

...
. . .

...

b̃R1 · · · b̃RR 0 b
(r)
R1 · · · b

(r)
RR



, (2.85)

with b
(l)
bb′ = τ3wbb′ , b

(r)
bb′ = τ3wN−b+1,N−b′+1, bbb′ = τ3wb,N−b′+1, and b̃bb′ = τ3b

†
bb′τ3.

Such a matrix is called a corner modification and transforms the block-Toeplitz matrix

GOBC
N into the more general corner-modified block-Toeplitz matrix18.

The main challenge of introducing arbitrary BCs is that there is no longer an

obvious diagonalization or block-diagonalization scheme like provided by the Fourier

transform in the translation-invariant case. In other words, Bloch’s theorem is no

longer valid. For finite systems, even the simplest case of block-Toeplitz matrices can

have wildly unpredictable spectra when compared to their circulant counterparts. To

this end, a procedure for diagonalizing corner-modified block-Toeplitz matrices has

been developed [102] and used to generalize Bloch’s theorem to arbitrary BCs in

free fermionic systems [104]. This procedure will ultimately allow us to study the

dependence of stability on BCs in later sections. We refer the reader to Appendix

A.3 for an account of the basic aspects of this procedure.

We conclude with a remark on the special case of SIBCs. As previously men-

tioned, the relevant matrices are block-Toeplitz operators. Unlike the block-Toeplitz

matrices, the spectra of these operators have been completely characterized [112, 113].

18More specifically, it is a corner-modified banded block-Toeplitz matrix. The “banded” here refers
to the fact that the constant diagonals are banded around the diagonal with thickness 2R < N . We
will drop ‘banded’ henceforth, since it is the only case that arises in this thesis.
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In fact, the SIBC spectra is determined entirely by the so-called symbol, namely, the

analytic extension of the Bloch dynamical matrix into the complex plane. While the

necessary tools will be introduced as necessary in later sections, we refer the reader

to Appendix A for a detailed summary.
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Chapter 3

Dynamical stability phase

transitions

In this chapter, we develop a theory of dynamical stability phase transitions (hence-

forth, stability phase transitions) in closed, non-interacting bosonic systems (i.e.,

QBHs) and provide an in-depth analysis of the roles played by symmetries, degen-

eracies, BCs, and system size1. The question that this chapter concerns itself with is

the following: “How does one characterize, both mathematically and physically, the

stability phase boundaries of a given QBH?”. To answer this question, we introduce

two key concepts. The first is the notion of generalized parity-time (PT) symmetry.

This notion is inspired by the vast literature on non-Hermitian, but PT-symmetric,

Hamiltonians that have been long-known to exhibit entirely real spectra [41, 42]. By

suitably generalizing what is meant by “PT”, we uncover that the dynamical ma-

trices of QBHs (in fact, all pseudo-Hermitian matrices) possess such a symmetry,

independently of the details of the system. Moreover, the spontaneous breaking of

this symmetry coincides precisely with stability phase transitions. This observation

1The vast majority of content in this chapter originates in Ref. [95]. The pseudospectral perspec-
tive on the BKC presented at the conclusion of the chapter stems from the later works [97] and [98].
Each of these works were jointly co-authored with Emilio Cobanera & Lorenza Viola.
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allows us to characterize stability phase transitions in a novel, symmetry-breaking-

oriented manner.

The second is the numerical indicator that we call Krein phase rigidity. This

indicator, which is inspired by the notions of phase rigidity used in non-Hermitian

quantum mechanics [114–116], is developed and introduced by bringing forth the

mathematical infrastructure of Krein stability theory, i.e., the stability theory of lin-

ear time-invariant dynamical systems with pseudo-Hermitian generators. These tools

provide us with a correspondence between stability phase boundaries and two types

of spectral degeneracies in bosonic dynamical matrices: exceptional points and Krein

collisions. With this correspondence in hand, we craft the Krein phase rigidity by

demanding physically motivated algebraic relationships (namely, canonical, or suit-

ability generalized, commutations relations) between the normal modes of our system

and studying the behavior of the associated Nambu space vectors. This culminates

in the demonstration that the Krein phase rigidity should always vanish at stability

phase transitions. We summarize the key components of this theory of stability phase

transitions as follows:

(i) All QBHs possess an underlying generalized PT symmetry;

(ii) Stability phase transitions are associated to the breaking of this symmetry; and

(iii) Stability phase transitions are detected by the vanishing of a new type of “phase

rigidity” that we call Krein phase rigidity.

We put this general theory to the test in three models. The first model consists of

a single mode exhibiting both harmonic and inverted oscillator stability phases. We

identify the generalized PT symmetry as time-reversal and proceed to compute the

Krein phase rigidity analytically throughout the 2-parameter phase diagram. The

second model is derived from the cavity QED Hamiltonian introduced in Ref. [117]

and consists of a single magnonic mode coupled to a photonic degree of freedom. We
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again identify the generalized PT symmetry as time-reversal and completely char-

acterize the stability phase boundaries. We confirm that the Krein phase rigidity

vanishes as expected. Finally, we conclude with an extensive analysis of the bosonic

Kitaev chain (introduced in Ref. [12]) generalized to allow for a two-parameter family

of non-trivial BCs. Following a detailed normal mode analysis (which constitutes

the first application of the generalization of Bloch’s theorem to a bosonic system),

we completely characterize both the bulk and boundary parameter stability phase

diagrams. One remarkable consequence of this analysis is the following: the BCs for

which the BKC is dynamically stable are precisely those that host Majorana fermion

edge modes in the fermionic Kitaev chain. Along the way, we will further uncover

a previously unknown connection between phase dependent transport, time-reversal

symmetry, squeezing invariance, and unstable equilibria. As with the previous mod-

els, we successfully demonstrate the utility of the Krein phase rigidity as an indicator

of stability phase transitions. We are lead to two conjectures regarding the generic

features of stability phase transitions in many-mode systems, including an intriguing

connection to the emergence of zero modes.

The outline of this chapter is as follows. In Sec. 3.1.1 we introduce the notion of

generalized PT symmetry, establish its equivalence with pseudo-Hermiticity, and dis-

cuss the physical implications of its presence and spontaneous breaking in QBHs. In

Sec. 3.2 we introduce the necessary mathematical tools of Krein stability theory and

leverage them, in addition to the concept of spontaneous generalized PT symmetry-

breaking, to classify the stability phase boundaries of QBHs in terms of spectral

degeneracies (namely, exceptional points and Krein collisions) in the dynamical ma-

trix. This leads to our introduction of Krein phase rigidity as a physically motivated

numerical indicator of stability phase transitions. Finally, we conclude the chapter

with a detailed analysis of a single-mode model, a two-mode model derived from a cav-

ity QED system, and a generalization of the many-mode bosonic Kitaev chain. The
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bosonic Kitaev chain analysis, in particular, contains several general results regarding

phase-dependent transport and the roles of time reversal symmetry and topology in

QBHs.

3.1 Spontaneous generalized PT symmetry-breaking

3.1.1 The equivalence between pseudo-Hermiticity and gen-

eralized PT symmetry

In recent decades there has been a considerable interest in reexamining the self-

adjointness constraint enforced on quantum Hamiltonians. One such reexamination

has considered replacing the self-adjointness assumption with one of parity-time (PT)

symmetry which originates from the observation that the non-Hermitian Hamiltonian

H = p2 + x2 + ix3 has an entirely real and positive spectrum [41]. This fact is at-

tributed to the presence of PT symmetry, i.e., invariance under the simultaneous

action of parity P taking (x, p) 7→ (−x,−p) and the antilinear time-reversal T taking

(zx, zp) 7→ (z∗x,−z∗p), with z ∈ C. In particular, it is simple to show that the eigen-

values of a non-Hermitian Hamiltonian that commutes with PT necessarily come in

complex-conjugate pairs. These observations sparked a multitude of investigations

into the role PT symmetry plays in ensuring an entirely real spectrum [42, 43]. Ulti-

mately, reality of the spectrum depends on whether PT symmetry is broken or unbro-

ken. A Hamiltonian has unbroken PT symmetry if there exists a basis of simultaneous

eigenstates of H and PT . PT symmetry is broken, otherwise. Immediately, we see

that unbroken PT symmetry implies that each eigenvalue is real, i.e., if Hψ = Eψ

and PT ψ = λψ, then 0 = [H,PT ]ψ = λ(E−E∗)ψ. Since invertibility of PT ensures

λ 6= 0, we conclude that E = E∗. Hence, a broken PT symmetry implies that either

(i) there exists a non-real eigenvalue of H; or (ii) there is no basis of eigenvectors to

begin with (i.e., H is not diagonalizable).
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In a similar vein, a comparable degree of interest in pseudo-Hermitian systems

began to emerge due to a similar spectral constraint. Eigenvalues of pseudo-Hermitian

operators come in complex conjugate pairs with entirely real spectra being a particular

instance of this. Naturally, a slew of connections between the two types of non-

Hermitian operators was established. In the following, PT symmetry is defined for

finite dimensional systems (i.e., matrices) in a natural way: an n×n complex matrix

M is said to be PT-symmetric if it commutes with an antilinear operator of the form

PT : Cn → Cn, with P a linear involution (P2 = 1n) and T complex conjugation

with respect to the canonical basis of Cn. Equivalently, PMP−1 = M∗. For example,

every real matrix is PT-symmetric with P = 1n.

• Every PT-symmetric matrix is pseudo-Hermitian [118].

• A diagonalizable operator is pseudo-Hermitian if and only if it commutes with an

antilinear invertible mapping [44]. If, in addition, the spectrum of the operator

is real and discrete, then there is a basis in which this anti-linear mapping

can be decomposed as a product of an involutory linear operator (i.e., a linear

operator that squares to the identity) and complex conjugation with respect to

this basis.

• An operator commutes with an involutory antilinear operator if and only if it is

weakly pseudo-Hermitian (a generalization of pseudo-Hermiticity that coincides

with standard pseudo-Hermiticity when the spectrum is discrete)[119, 120].

While this web of relations is appealing, it evades the simplicity of stating a

precise equivalence between PT-symmetric and pseudo-Hermitian systems. The key

to establishing such an equivalence is by expanding the basis-dependent definition

of PT-symmetric matrices to a more general notion of PT symmetry that applies to

linear operators.
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Definition 3.1.1 (GPT symmetry). A linear transformation M has a generalized PT

symmetry, or equivalently, is GPT-symmetric if there exists (i) an invertible antilinear

map Θ such that [M,Θ] = 0; and (ii) a basis relative to which Θ = PT , with P an

involutory linear map and T complex conjugation with respect to this basis.

Clearly, every PT-symmetric matrix is automatically GPT-symmetric with respect

to the canonical basis. The notion of broken and unbroken PT symmetry extend

naturally as well: a GPT-symmetric operator M has unbroken GPT symmetry Θ if

there is a simultaneous eigenbasis of M and Θ. As in the PT-symmetric case, those

GPT-symmetric operators with an unbroken GPT symmetry are precisely those that

are diagonalizable with entirely real spectra. Ultimately, this generalization allows

for the following proposition.

Proposition 3.1.2. Let M denote a linear transformation on a finite-dimensional

Hilbert space. Then M is pseudo-Hermitian if and only if M is GPT-symmetric.

Proof. One direction of the proof, namely that GPT symmetry implies pseudo-Hermiticity,

follows from the fact that any linear operator that commutes with an inveritible an-

tilinear operator is necissarily pseudo-Hermitian [120].

For the other direction, suppose that M is pseudo-Hermitian. We begin by con-

structing a basis of eigenvectors and generalized eigenvectors of M. We build up this

basis in the following way:

• For each real eigenvalue λj, with j = 1, . . . , α of M, we denote the general-

ized eigenvector of rank k by ~vjk, with k = 1, . . . , pj and pj the length of the

associated Jordan chain.

• For each non-real eigenvalue µj, with Im(µj) > 0 and j = 1, . . . , β of M, we

denote the generalized eigenvectors of rank k by ~wjk, with k = 1, . . . , rj and rj

the length of the associated Jordan chain.

66



• For each pair (µj, rj) in the above, there is an eigenvalue µ∗j with Jordan chain

of equal length rj (this follows from pseudo-Hermiticity, see e.g., Prop. 4.2.3

in [55]). We denote these generalized eigenvectors of rank k by ~w′jk, with k =

1, . . . , rj.

The set B = {~vjk, ~wjk, ~w′jk } is then a basis of Cn consisting of generalized eigenvectors

of M. As we will show, M is GPT-symmetric with respect to this basis.

First, define an operator P on B according to

P~vjk ≡ ~vjk, P~wjk ≡ ~w′jk, P~w′jk = ~wjk, (3.1)

which is evidently involutory. We then take Θ ≡ PT , with T complex-conjugation

with respect to B. Immediately, we have [M,Θ]~vjk = 0 for all j and k. Furthermore,

MΘ~wjk = M~w′jk = µ∗j ~w
′
jk + ~w′j(k−1) = ΘM~wjk, (3.2)

where we have used the Jordan chain identity (M−µ∗j)~w′jk = ~w′j(k−1), with ~w′j(k−1) = 0

for k = 1. A similar calculation additionally shows [M,Θ]~w′jk = 0. Altogether,

we have demonstrated that M and Θ commute on all of B, and thus commute as

operators.

Notably, in the second direction of the proof, we have presented a constructive

method for realizing a particular instance of a GPT symmetry given an arbitrary

pseudo-Hermitian operator. In light of this, three remarks are in order.

(i) The operator Θ explicitly constructed in the proof is generally dependent on

system parameters. This follows from the fact that the definition of P directly

depends on the basis of generalized eigenvectors B. Thus, if system parameters

change, Θ may change accordingly.
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(ii) This Θ need not be the only GPT symmetry of the system. That is, there

may exist multiple antilinear operators with the appropriate properties, that

commute with M. We will see an example of a (parameter-independent) GPT

symmetry that is distinct from the above constructed Θ in Sec. 3.3.2.

(iii) It is possible to prove this direction in a shorter, but non-constructive manner.

Theorem 3 in Ref. [120] asserts that every pseudo-Hermitian operator has an as-

sociated antilinear operator that commutes with it. Such an antilinear operator

can always be expressed as conjugation with respect to some basis [121]. This

conjugation (paired with P = 1n) then constitutes a GPT symmetry. While

this proof does not specify the basis, it does reveal that we may always find at

least one GPT symmetry with P = 1n. Again, the GPT symmetry in Sec. 3.3.2

will exemplify this point.

3.1.2 Generalized PT symmetry in quadratic Hamiltonians

We will now apply the preceding results to QBHs. Recalling that the dynamical ma-

trices of QBHs are always pseudo-Hermitian, i.e., τ3G
†τ3 = G, we have the following

theorem.

Theorem 3.1.3. The dynamical matrices of QBHs are always GPT-symmetric. Fur-

thermore, a given QBH is dynamically stable if and only if there is an unbroken GPT

symmetry.

These facts follow as straightforward consequences of the previous section. We

further remark that this theorem holds also for fermions. Each fermionic dynamical

matrix (which coincides with the Bogoliubov-de Gennes matrix) is pseudo-Hermitian

with metric η = 12N , i.e., they are simply Hermitian. The GPT symmetry is then just

conjugation with respect to the normal mode basis. In comparison, bosonic systems

offer a larger degree of complexity. Since both complex eigenvalues and nontrivial
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Jordan chains may arise, unbroken GPT symmetry is a possibility. Furthermore,

we see that all of the properties of dynamically stable systems (e.g., the existence

of a quasiparticle vacuum) are equivalent to the the presence of an unbroken GPT

symmetry.

3.2 Classification and detection of stability phase

transitions

The introduction of GPT symmetry allows us to draw close analogy between stability

phase transitions of QBHs and traditional phase transitions in statistical mechanics.

Namely, the transitions between two phases are marked by breaking of a certain sym-

metry. In the traditional statistical mechanics case, it is a physical symmetry of the

Hamiltonian (e.g., rotational symmetry breaking in ferromagnetic phase transitions),

while in our case, it is a symmetry of the dynamical matrix of a given QBH. Along

this line of thinking, it is natural to pursue indicators of GPT symmetry breaking

just as is typical in traditional phase transitions. To accomplish this, let us reflect on

exactly what happens when GPT symmetry is broken. GPT symmetry is broken by

either (i) the loss of diagonalizability (equivalently, the system is at an exceptional

point (EP) in phase space) or (ii) the presence of a non-real eigenvalue, regardless

of diagonalizability. Any indicator we propose must be sensitive to either of these

occurrences.

In the study of symmetric non-Hermitian matrices, i.e., those non-Hermitian ma-

trices that satisfy MT = M, an indicator known as phase rigidity (PR) has been

developed and extensively used for detecting EPs [114–116]. To understand phase

rigidity, we must introduce the concept of biorthogonal bases. Given an arbitrary

diagonalizable matrix M, one can always produce two bases {~vRj } and {~vLj }, where

~v
R(L)
j are right (left) eigenvectors of M with eigenvalues λj. Importantly, it is pos-
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sible to ensure biorthonormality, i.e., ~vLj
†~vRk = δjk. This allows for a decomposition

of the form M =
∑

j λj~v
R
j ~v

L
j . In the case of symmetric complex matrices, it al-

ways is possible to construct a biorthonormal basis with ~vLj = (~vRj )∗ by virtue of

(~vRj )TM = (M~vRj )T = λj~v
R
j
TM. With this, the PR of ~vRj is defined as

ρj =
(~vRj )T~vRj
~vRj
†~vRj

=
1

||~vRj ||2
, ρj ∈ [0, 1], (3.3)

where ||~v||2 = ~v†~v is the usual 2-norm. Importantly, this quantity vanishes smoothly

as M approaches an EP. We cannot immediately lift PR to bosonic matrices be-

cause they are generally not symmetric. Even if we had a dynamical matrix that

was symmetric, the PR need not detect those stability phase transitions that retain

diagonalizability throughout. In order to address these issues, we aim to extend PR

to the realm of dynamical matrices and assess its general utility in detecting stability

phase transitions. This will be accomplished by first studying more closely those LTI

systems whose generators are pseudo-Hermitian and, specifically, by dissecting the

precise mechanisms for GPT symmetry-breaking.

3.2.1 Tools from Krein stability theory and their implica-

tions for QBHs

The stability theory of LTI systems with pseudo-Hermitian generators is known as

Krein stability theory. Krein stability theory2 concerns itself, in particular, with

equations of the form

d

dt
~v(t) = iM~v(t), (3.4)

2Krein stability theory deals with more than just pseudo-Hermitian LTI systems. For example,
it can be applied even in the presence of time-periodic coefficients [54]. These advanced techniques
are beyond the scope of our needs.
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with M an n×n pseudo-Hermitian matrix with metric η. Of course, this is precisely

the type of equation describing the Nambu space dynamics generated by a given QBH,

see e.g., Eq. (2.52). Such systems are dynamically stable (in the sense of bounded

evolution) if and only if M is diagonalizable and has an entirely real spectrum. Krein

stability theory asks (and answers) the question “how far away is a given dynamically

stable system from becoming dynamically unstable?”. Equivalently, how small of a

perturbation is needed to destabilize the system. To answer, we must examine more

closely the Krein signature distribution of the eigensystem of M.

Recalling that the Krein signature of a vector ~v is given by sgn(~v†η~v) (with

sgn(0) = 0 by convention), we can classify the eigenspaces Eλ of M, λ ∈ σ(M),

as follows. If every vector ~v in a given eigenspace Eλ has a positive (negative) Krein

signature, then we say Eλ is η-definite. Otherwise, it is called η-indefinite. Firstly, it

is clear that Eλ can only be η-definite if λ ∈ R. To see this, note that if M~v = λ~v,

with Im(λ) 6= 0, then

λ~v†η~v = ~v†ηM~v = ~v†M†η~v = λ∗~v†τ3~v. (3.5)

Since λ 6= λ∗, we must have ~v†τ3~v = 0. This calculation also shows that nondegenerate

real eigenvalues engender η-definite eigenspaces.

Eigenspaces corresponding to real eigenvalues can still be η-indefinite, however.

For instance, if λ becomes degenerate with (at least) two eigenvectors consisting of

opposite Krein signatures. This motivates the following definition.

Definition 3.2.1 (Krein collision). Let Eλ denote an η-indefinite eigenspace of a

given pseudo-Hermitian matrix. We say there is a Krein collision (KC) at λ if there

exists both an eigenvector for λ with a Krein signature of +1 and an eigenvector for

λ with a Krein signature of −1.

Less obvious is the fact that EPs also lead to η-indefiniteness of the associated
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eigenspace. This follows as a particular case of the following cornerstone result in

Krein stability theory (adapted from Ch. III of Ref. [54]).

Theorem 3.2.2 (Krein-Gel’fand-Lidskii). Let M0 denote a pseudo-Hermitian matrix

with metric η and let λ0 denote a real eigenvalue of M0. Further, let ‖·‖ be any matrix

norm.

(a) If Eλ0is η-definite, then all Jordan chains associated to λ0 are of length one. In

addition, there exists ε, δ > 0 such that if M is pseudo-Hermitian with metric

η and ‖M−M0‖ < δ, then all the eigenvalues λ of M such that |λ − λ0| < ε

are real and correspond to Jordan chains of length one.

(b) If Eλ0 is η-indefinite and all the Jordan chains associated to λ0 are of length

one, then for every ε > 0 there exists a pseudo-Hermitian matrix M with metric

η possessing non-real eigenvalues in an open neighborhood of λ0 and such that

‖M−M0‖ < ε

These results reveal the fact that spectral degeneracies are necessary, but not

sufficient for a normal mode to become unstable. In particular, if the degeneracy

preserves η-definiteness of the eigenspace, (a) tells us that any sufficiently small per-

turbation will not destabilize the system. On the contrary, if η-definiteness is lost

either through a KC or an EP, then the associated normal modes can either be desta-

bilized by arbitrarily small perturbations (in the case of a KC) or they are already

unstable (in the case of an EP). These observations are recorded in Table 3.1.

Let us now return our focus to QBHs. The relevance of Theorem 3.2.2 had been

noticed in Refs. [80, 106] (see also Ref. [122] for earlier related, albeit less general,

results). For us, its major power is allowing us to completely characterize the stabil-

ity phase boundaries (equivalently, points of spontaneous GPT symmetry breaking).

Consider a QBH H(~p) with dynamical matrix G(~p) depending continuously on some

parameters ~p. Suppose we trace out a path in parameter space ~p(s), with 0 < s < 1
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Real eigenvalue Eigenspace Normal modes Stable to perturbations

Non-degenerate η-definite Stable Yes (sufficiently small)
Degenerate,

neither KC or EP
η-definite Stable Yes (sufficiently small)

Degenerate, KC η-indefinite Stable No
Degenerate, EP η-indefinite Unstable No

Table 3.1: The stability properties of eigenspaces corresponding to real eigenvalues
of a pseudo-Hermitian matrix in light of Theorem 3.2.2. The first column is the
type of degeneracy. The second column assesses the definiteness of the correspond-
ing eigenspace. The third column specifies the dynamics of the associated eigenvec-
tors, i.e., the normal modes associated to λ. The final column assesses the response
to perturbations. In particular, No means that arbitrarily small perturbations can
destabilize the normal modes.

that crosses a stability phase boundary. That is, there is an sc such that the system is

dynamically stable for s < sc and dynamically unstable for s > sc. The system is ei-

ther dynamically stable or unstable at ~p(sc) = ~pc. In the former case, it must be that

an arbitrarily small perturbation (namely sc 7→ sc + δs, with δs arbitrarily small) can

render our stable system unstable. Hence, ~pc must be a KC. A typical instance of this

phenomena is illustrated in Fig. 3.1. In the latter case, it must be that we are at a real

eigenvalue EP3. If this were not the case, and the system were still unstable at s = sc,

then there would an eigenvalue λ(s) that discontinuously develops a non-zero imagi-

nary part going from sc−δs to s = sc, i.e., limδs→0 |λ(sc)−λ(s−δs)| > |Im(λ(sc))| > 0.

This violates continuity. The culmination of this analysis is as follows.

Theorem 3.2.3. A QBH undergoes a stability phase transition only if, at the phase

boundary, the associated dynamical matrix hosts a KC or an EP at a real eigenvalue.

Equivalently, we have obtained the necessary spectral conditions for the sponta-

neous breaking of GPT symmetry. We can now leverage this to develop a proper

extention of PR that we will ultimately use to numerically detect stability phase

transitions in QBHs.

3Here, and henceforth, when we say that the eigenvalue itself is, or hosts, an EP, we mean that
the matrix is at an EP and this particular eigenvalue hosts a non-trivial Jordan chain.
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Figure 3.1: (a) An example stability phase transition in a QBH that depends on two
real parameters p1 and p2. (b) The spectral flow around a phase boundary that hosts
a KC. The red circle, blue triangle, and black diamond indicate eigenvectors of Krein
signature 1, −1, and 0 respectively.

3.2.2 Krein phase rigidity

With this concrete understanding of the nature of stability phase transitions in hand,

we introduce our proposed indicator as follows.

Definition 3.2.4. Consider a dynamical matrix G and let ~ψ denote an eigenvector

corresponding to an eigenvalue ω, such that ~ψ is not in the range of G − ω12N .

Then there exists an eigenvector ~ψ∗ corresponding to an eigenvalue ω∗, that may be

normalized to satisfy ~ψ†∗τ3
~ψ = 1. The KPR (KPR) of ~ψ is then the quantity

r ≡
~ψ†∗τ3

~ψ

‖ ~ψ∗‖ ‖~ψ‖
=

1

‖ ~ψ∗‖ ‖~ψ‖
, r ∈ [0, 1]. (3.6)

Firstly, we must establish that KPR is well-defined; namely, that such a vector ~ψ∗

always exists. The conditions set on ~ψ imply that one can construct a biorthogonal

basis4 containing ~ψ, with a biorthogonal partner ~φ satisfying G†~φ = ω∗~φ and ~φ† ~ψ = 1.

Pseudo-Hermiticity then implies that ~ψ∗ ≡ τ3
~φ satisfies all the required properties.

Finally, the fact that r ∈ [0, 1] follows immediately from the Cauchy-Schwarz inequal-

4While we have not specified diagonalizability of G, the condition that ~ψ lie outside of the range
of G− ω12N ensures that ω hosts only length one Jordan chains.
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ity.

Several remarks are then in order.

(i) If ψ ≡ ~̂ψ and ψ∗ ≡ ~̂ψ∗ are the associated normal modes of H, then the nor-

malization condition is equivalent to the algebraic requirement [ψ∗, ψ
†] = 1.

Depending on whether ω is real, purely imaginary, or fully complex, this con-

dition is akin to demanding a bosonic, Heisenberg-Weyl, or pseudo-bosonic

commutation relations, respectively (see Sec. 2.4). Specifically, if ω is real, we

have ~ψ∗ = κ~ψ, with κ the Krein signature of ~ψ. While this interpretation is

physically appealing, we note that r is, in fact, invariant under any scaling

transformation ~ψ 7→ z ~ψ, ~ψ∗ 7→ w~ψ∗. By taking |z|2 = ‖~ψ∗‖/‖~ψ‖ and w = 1/z∗,

we can compute r as r = 1/‖~ψ‖2, which is a formula identical to the standard

PR.

(ii) The definition of KPR can be immediately generalized to any pseudo-Hermitian

system by replacing τ3 with the general indefinite metric η. In fact, it may be

generalized to any non-Hermitian matrix by replacing τ3
~ψ∗ with the biorthogo-

nal partner of ~ψ. However, like in the case of the standard PR, the specialization

to a particular class of non-Hermitian matrices (for KPR, pseudo-Hermitian ma-

trices, and for PR, complex symmetric matrices) allows for a direct relationship

between ~ψ and its biorthogonal partner to be made (for KPR, ~φ = τ3
~ψ∗, and

for PR, ~φ = ~ψ∗).

(iii) If G happens to also be complex symmetric, the KPR generically reduces to the

PR. To see this, consider the simplest case of a non-degenerate, real eigenvalue

ω. For the KPR, we have that ~ψ∗ = κ~ψ, and so r = 1/‖~ψ‖2. We also see that

the symmetric condition along with pseudo-Hermiticity ensure that τ3
~ψ∗ is also
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an eigenvector corresponding to ω, and so ~ψ∗ = µτ3
~ψ. Now,

|µ|2κ = (~ψ∗)†τ3
~ψ∗ =

(
~ψ†τ3

~ψ
)∗

= κ, (3.7)

so that |µ| = 1. In conclusion, ~ψ satisfies both the KPR normalization condition

~ψ†∗τ3
~ψ = κ2 = 1 and the PR normalization condition (~ψ∗)† ~ψ = 1. Hence ρ = r.

The KPR, thus far, only supplies us with a particular numerical quantity to asso-

ciate to a given eigenvector of G. Its utility as a stability phase transition indicator

comes from the following claim.

Claim 3.2.5. Let G(~p) be a bosonic dynamical matrix depending smoothly on a set

of parameters ~p. If G(~p) undergoes a stability phase transition along a smooth path

~p(s), then there exists an eigenvector of G whose KPR vanishes. Equivalently, G(~p)

hosts eigenvectors of arbitrarily small KPR in any open neighborhood of ~pc.

Heuristic justification. Using the same notation as in the context of Fig. 3.1, let

~pc = ~p(sc) denote the stability transition point separating the stable phase s < sc

from the unstable phase s > sc. The results of Sec. 3.2.1 allow us to conclude that

G(~pc) hosts either a KC or an EP. For simplicitly, let us assume that the degeneracy

(algebraic multiplicity) of the KC or EP is 2. We will handle the case of a KC first.

For s < sc, there must be two real eigenvalues of G(~p(s)), denoted by ω1(s) and

ω2(s), that deform smoothly into the degenerate eigenvalue ωc = ωj(sc), j = 1, 2.

They then split smoothly into a complex conjugate pair ω1(s) = ω2(s)∗ for s > sc

(this spectral flow is depicted heuristically in Fig. 3.1(b)). Denoting the associated

eigenvectors by ~ψj(s), j = 1, 2, we have that κ1 = −κ2, with κj the Krein signature

of ~ψj(s) for s ≤ sc. Moreover, we can assume τ3-orthogonality, ~ψ†1(s)τ3
~ψ2(s) = 0 for
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s < sc. The KPR in the stable phase can then be written as

rj(s) =
~ψ†j(s)τ3

~ψj(s)

‖~ψj(s)‖2
= ψ̂†j(s)τ3ψ̂j(s), ψ̂j(s) ≡

1

‖~ψj(s)‖
~ψj(s), s < sc. (3.8)

In the above, we have introduced the conventionally normalized eigenvectors ψ̂j(s).

Recalling that eigenvectors corresponding to complex eigenvalues always have van-

ishing τ3-norms, smoothness ultimately dictates that ~ψj(s), and hence ψ̂j(s), evolve

into Krein signature 0 eigenvectors for s > sc. Thus we have

lim
s→s−c

rj(s) = 0. (3.9)

For s > sc, we have that ~ψ1(s) must be the biorthogonal partner to ~ψ2(s) for s > sc.

That is, ~ψ†1(s)τ3
~ψ2(s) may be normalized to 1 for s > sc. Thus,

r1(s) = r2(s) =
~ψ†1(s)τ3

~ψ2(s)

‖~ψ1(s)‖‖~ψ2(s)‖
= ψ̂†1(s)τ3ψ̂2(s), ψ̂j(s) ≡

1

‖~ψj(s)‖
~ψj(s), s > sc,

(3.10)

where we have again used the conventionally normalized eigenvectors. Since ~ψ1(s) and

~ψ2(s), and hence ψ̂1(s) and ψ̂2(s), evolve into mutually τ3-orthogonal eigenvectors,

we conclude

lim
s→s+c

rj(s) = 0. (3.11)

Altogether, the KPR will vanish at the KC.

The argument for the EP is similar, except now we have that ~ψj(s) converge

to (a multiple of) the same eigenvector, ~χ ∝ ~ψj(s) at s = sc, regardless of the

side of approach. By Theorem 3.2.2(a)5, this eigenvector must have vanishing Krein

5Specifically, since this phase boundary spawns a Jordan chain of length greater than 1, the
one-dimensional eigenspace must be τ3-indefinite by the Krein-Gel’fand-Lidskii theorem.
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signature. So, following nearly identical arguments as before, the KPR will again

vanish from both sides.

We conclude by remarking that we omit a formal proof of this claim in order to

avoid an unnecessarily over-technical discussion about the smoothness assumption

and its consequences on the parameter dependence of eigenvectors and eigenvalues.

It is known, for instance, that eigenvalues can depend nonanalytically on parameters

in the neighborhood of EPs (see, e.g., Ch. 2, Sec. 1.5 of Ref. [123]). Despite this,

we believe that the claim will hold generically even if one relaxes the assumption of

smoothness to one of differentiability. Further technical complications could arise by

considering higher order degeneracies. These technical aspects of a formal proof will

be left to future research.

3.3 Examples

We will now explore a series of examples that best exemplify the rich structure of

stability phase boundaries in QBHs. Among other things, we will demonstrate the

utility of KPR as an indicator of stability phase transitions and call pointed attention

to explicit examples of GPT symmetry-breaking. Beginning with the simplest possible

model exhibiting a nontrivial stability phase diagram, we will gradually ramp up the

complexity by increasing the number of modes, culminating in a flagship model with

an arbitrarily large number N →∞. This final example, known as the bosonic Kitaev

chain (BKC), will also serve as a playground for exploring the role bulk-translation

invariance and BCs play in determining the stability of QBHs.
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3.3.1 A single-mode model

Our first example is a single bosonic mode with Hamiltonian

H ≡ α + β

2

(
a†a+ aa†

)
− α− β

2

(
a†2 + a2

)
= αp2 + βx2, α, β ∈ R. (3.12)

The landscape of dynamical and thermodynamical stability can be assessed via the

dynamical matrix

G(α, β) =

α + β β − α

α− β −α− β

 . (3.13)

Reality of G immediately lends a useful GPT symmetry, namely, Θ = T , with T

complex conjugation on C2. Physically, this corresponds to time-reversal symmetry

(zx, zp) 7→ (z∗x,−z∗p), with z ∈ C. The spontaneous breaking of this symmetry, i.e.,

the stability phase boundaries, may be determined via the normal mode frequencies

±ω = ±2
√
αβ, while thermodynamic stability is assessed via the eigenvalues of H =

τ3G, which are σ(H) = {2α, 2β}. In total, there are four distinct parameter regimes:

(i) If α, β > 0 or α, β < 0, then H is simply a quantum harmonic oscillator

(QHO) of frequency ω with an overall negative sign in latter case. This is both

dynamically and thermodynamically stable. Note that H is bounded below for

α, β > 0 and from above for α, β < 0. Taking α, β > 0 without loss of generality,

there is one bosonic normal mode pair (ψ, ψ) satisfying

H =
ω

2
(ψ†ψ + ψψ†), ψ ≡ cosh θ a+ sinh θ a†, tanh θ ≡

√
β −
√
α√

β +
√
α
, (3.14)

with ψ(t) = e−iωtψ(0). An unbroken GPT symmetry manifests as invariance of

this mode under time-reversal symmetry, i.e., T ψT −1 = ψ.

(ii) If α > 0 > β or β > 0 > α, then H is an inverted harmonic oscillator (IHO),
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again with an overall negative sign in the latter case. This is both dynamically

and thermodynamically unstable. Taking α > 0 > β without loss of generality,

there is a pair of canonically conjugate quadrature normal modes z± satisfying

H = −|ω|(z+z− + z−z+), z± =
1√
|ω|

(√
|β|x∓

√
αp
)
, (3.15)

with z±(t) = e±λtz±(0). Broken GPT symmetry can be seen in T z±T −1 = z∓.

That is, the normal modes are no longer time-reversal invariant.

(iii) If only one of α or β vanishes, then H is either the free particle Hamiltonian αp2

or a “generalized” free particle Hamiltonian6 βx2. This model is dynamically

unstable, but thermodynamically stable. In the case where β = 0, p is a normal

mode with p(t) = p(0) and x(t) is a generalized normal mode with x(t) =

2αp(0)t+ x(0). The roles swap in the other case. Broken GPT symmetry now

manifests in the lack of a normal mode basis (or equivalently, in the need to

introduce generalized normal modes).

(iv) If α = β = 0 the Hamiltonian vanishes and is (trivially) dynamically stable

and thermodynamically stable. All linear forms are then normal modes with

no time-dependence. For example, one may choose (a, a†) as (time-reversal)

invariant normal modes.

In the (α, β) parameter space, cases (iii) and (iv) constitute stability phase bound-

aries. Predictably, G(α, β) is at an EP in case (iii) and a KC (albeit, trivial) in case

(iv). Notably, the locus of the two EP phase boundaries (α = 0 and β = 0) is the

6The canonical transform (x, p) 7→ (−p, x) takes H = βx2 to H = βp2 and so the former is
mathematically indistinguishable from a free particle.
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Figure 3.2: (a) The KPR of the single-mode Hamiltonian Eq. (3.12) plotted through-
out the stability phase diagram. Note that it vanishes along the boundaries separating
the stable QHO phase and the unstable IHO phase. (b) The KPR evaluated over the
diagonalizable contours β = αn, with n = 1, . . . , 6 and −1 < α < 1. Note that the
KPR vanishes at the KC in all cases other than n = 1.

KC. We analytically obtain the KPR7

r(α, β) =
2
√
|α||β|

|α|+ |β|
. (3.16)

The KPR is plotted throughout the stability phase diagram shown in Fig. 3.2(a).

Evidently, r(α, β) vanishes consistently at EPs (case (iii) above). More ambiguously,

however, is the situation at the origin. Note that lim(α,β)→(0,0) r(α, β) is ill-defined,

or more precisely, the limiting value is contour-dependent. In Fig. 3.2(b), the KPR

is evaluated over 6 contours β = αn that pass through the origin. In all cases, other

than n = 1, the KPR vanishes. The case n = 1 is not in contradiction to our

heuristic argument, however. In particular, there is no stability transition along this

contour. The same holds for any odd n but, in these cases, the contours flatten out

along the EP boundary β = 0 (whereby the KPR vanishes unambiguously). Let

us consider the more general case where the contour is defined by β = f(α), with

7While KPR is a quantity tied to a particular eigenvector, the 2 × 2 nature of G(α, β) makes
the choice irrelevant. That is, the KPR is the same for both eigenvectors.
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f(α) = c1α + c2α
2 + · · · analytic and f(0) = 0. For |α| � 1 we have

r(α, f(α)) '
2
√
|c1|

1 + |c1|
. (3.17)

It may be surprising that r doesn’t vanish at α = 0 generally. However, this is to be

expected. Contours that behave linearly near the origin (i.e., c1 6= 0) do not undergo a

stability phase transition as they pass through the origin. More importantly, the KPR

vanishes along every analytic8 contour for which a transition occurs at the origin.

The contour dependence of the KPR around the KC is easy to understand if one

looks at the eigenvector of G(α, f(α)) explicitly. Near the origin, the conventionally

normalized eigenvectors are

~ψ± '
1√

2(1 + c1)

1±√c1

1∓√c1

 , c1 ≥ 0. (3.18)

Different choices of c1 yield different limiting values of the eigenvectors as α→ 0. The

only reason this is possible is because G(0, 0) = 0 has a diagonalizable degeneracy.

3.3.2 A two-mode cavity QED model

It is straightforward to check that if a single-mode model has KC, then it must be at a

point in parameter space where the Hamiltonian vanishes. By increasing the number

of modes, we are able to find more exotic KCs. The example we will consider for

this is a two-mode model descendent from the cavity QED Hamiltonian of Ref. [117].

The full Hamiltonian describes N identical neutral spin-1/2 atoms interacting with a

8While real analytic functions are a subset of smooth functions, it is reasonable to expect the
same conclusion holds if f is smooth non-analytic.

82



single-cavity mode:

H = ωca
†a+ ωsSz + g(a† + a)(S+ + S−), (3.19)

with a† (a) the creation (annihilation) operator associated with the optical cavity

mode, Sz the collective z-direction spin operator of the atoms, and S+ (S−) the collec-

tive spin raising (lowering) operator. The frequencies ωc, ωs > 0 correspond to the res-

onant frequency of the cavity and the transition frequency of the atoms, respectively,

whereas the atom-cavity coupling strength is given by g ∈ R. As in Ref. [117], we ob-

tain a two-mode bosonic Hamiltonian by employing a large-spin (Holstein-Primakoff)

approximation

Sz =
N

2
− b†b, S+ '

√
Nb, S− '

√
Nb†, (3.20)

with b† (b) denoting a canonical bosonic mode that creates (annihilates) a magnonic

excitation, i.e., one lowering (raising) the collective spin by 1/2. In this approximation

we obtain the desired Hamiltonian

H ' H0 ≡ ωca
†a− ωsb†b+ χ(a† + a)(b† + b), χ = g

√
N. (3.21)

For any choice of parameters, H0 is not thermodynamically stable. This can be seen

by considering the Fock states |na, nb〉, with na, nb ∈ Z≥0, which represent a state of

na photons and nb magnons. The mean energy of these states is 〈na, nb|H0|na, nb〉 =

naωc − nbωs, which is not bounded in either direction. This thermodynamical in-

stability is not surprising, however. The large-spin approximation is only valid in

the limit where there are a few magnonic excitations - in particular, if nb (or the

expectation value of b†b, more generally) exceeds N , the state |na, nb〉 does not rep-

resent any physical state of the full system. Introducing the two-mode Nambu array
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Φ = [a, a†, b, b†]T allows us to identify

H0 =
1

2
Φ†τ3G0Φ− δ

2
1F , G0 ≡



ωc 0 χ χ

0 −ωc −χ −χ

χ χ −ωs 0

−χ −χ 0 ωs


, (3.22)

where we have introduced the detuning parameter δ ≡ ωc − ωs. Immediately we see

that G0 is a real matrix. As in the single-mode model, complex conjugation is then

a valid GPT symmetry of the system with time-reversal being the physical realiza-

tion. In Ref. [117] it was noted that spontaneous time-reversal symmetry breaking is

responsible for the stability phase transitions in the model. This is entirely consistent

with our more general analysis of GPT symmetry.

Spontaneous GPT symmetry breaking, which we may now consider to be the losing

of time-reversal symmetric normal modes, occurs when the normal mode frequencies

become complex or when diagonalizability is lost. Introducing the dimensionless

parameters x ≡ δ/ωs ∈ (−1,∞) and y ≡ χ/ωs ∈ (−∞,∞) and letting f(x, y) ≡

x2(x+ 2)2 − 16y2(x+ 1) allows us to write these frequencies as

Ω1,± = ± ωs√
2

√
x2 + 2x+ 2 +

√
f(x, y), Ω2,± = ± ωs√

2

√
x2 + 2x+ 2−

√
f(x, y).

(3.23)

Dynamical instability occurs precisely when f(x, y) < 0 which defines the dynamical

phase boundaries, y = y±(x) = ±(x2 + 2x)/(4
√
x+ 1)). The stability phase diagram

is shown in Fig. 3.3(a).

Similar to the single-mode example, the phase diagram hosts two EP-dominated

boundaries that coalesce at a KC. In sharp contrast to the single-mode model, how-

ever, the KC does not correspond to the zero Hamiltonian. Instead, it occurs at the
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Figure 3.3: (a) The stability phase diagram of the two-mode cavity QED Hamiltonian
Eq. (3.21). The phase diagram is constructed by plotting the largest imaginary part
of the normal mode spectrum. Recall that if any eigenvalue develops a nonzero
imaginary part, then fourfold symmetry of the normal mode spectrum (Eq. (2.45))

ensures dynamical stability is lost. (b) The KPR of a representative eigenvector ~ψ
computed throughout the stability phase diagram. As expected from Claim 3.2.5, it
vanishes at phase boundaries. (c) The phase rigidity computed over a KC-crossing
contour C (defined by y = 5x2− x/2, x = δ/ωs, and y = χ/ωs) depicted in (b). Note
that, by construction, diagonalizability is retained along C .

resonant (δ = 0) decoupled (χ = 0) limit:

H0

∣∣
δ=χ=0

= ωc(a
†a− b†b). (3.24)

The fact that an infinitesimal coupling (χ 6= 0) can destabilize this (otherwise dy-

namically stable) limit is consistent with the Krein-Gelf’and-Lidskii theorem which,

in particular, asserts that KCs are dynamically stable points that sit at the cusp of in-

stability. If the KC is avoided via even the slightest detuning δ 6= 0, a window of stable

couplings χ ∈ (−|χ0|, |χ0|) with χ0 ≡ δ(δ + 2ωs)/4
√
ωs(δ + ωs) = (ω2

s − ω2
c )/4
√
ωcωs

develops.

For further verification of Claim 3.2.5, we numerically compute the KPR of a rep-

resentative eigenvector in Fig. 3.3(b). As expected, the KPR vanishes at the EP phase

boundaries while its behavior around the KC is more subtle. The KPR again behaves

in a contour dependent fashion in the vicinity of the KC. However, in Fig. 3.3(c) we

verify that it vanishes along the smooth contour C depicted in Fig. 3.3(b).
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3.3.3 A bosonic Kitaev chain

The preceding two models have offered simple arenas for testing the core features of

our theory of stability phase transitions in QBHs. Namely, that (i) stability phase

transitions are dictated by the spontaneous breaking of GPT symmetries and (ii) the

KPR provides a useful numerical indicator for stability phase boundaries. We will

now explore the utility of this theory in a much richer model, namely, a BKC. This

model is a generalization of the BKC introduced in Ref. [12], which was originally

proposed as bosonic analogue to the well-known fermionic Kitaev chain (FKC) [63].

The connection to the original FKC was motivated by the potential for uncovering

SPT-like (or more specifically, Majorana-like) physics in a bosonic setting. While

our primary goal is to explore the interplay between system size, BCs, topology, and

stability phases, our generalization will ultimately serve to further elucidate the deep

connections between the BKC and its fermionic progenitor. More dramatically, it

will play an instrumental part in eventually revealing that closed quadratic bosonic

dynamics provide an insufficient platform for realizing tight bosonic analogues to

fermionic SPT physics (see Ch. 5).

• The model, its symmetries, and phase-dependent transport

Our generalization of the BKC (which we will henceforth refer to as ‘the BKC’) can

be written as H(s, ϕ) = HOBC + sW (ϕ), with s ∈ [0, 1] and

HOBC ≡ 1

2

N−1∑
j=1

(
iJa†j+1aj + i∆a†j+1a

†
j + H.c.

)
, J,∆ > 0,

W (ϕ) ≡ 1

2

(
iJeiϕa†1aN + i∆eiϕa†1a

†
N + H.c.

)
, ϕ ∈ [0, π].

(3.25)

The first term HOBC is the BKC of Ref. [12] subject to OBCs while the second term

sW (ϕ) encodes the BCs. Physically, J and ∆ encode the hopping and non-degenerate

parametric amplification (NDPA) amplitudes, respectively. We will more commonly
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Figure 3.4: A pictoral representation of the BKC (Eqs. (3.25)) along with the relevant
parameters for (a) a finite lattice of N sites and (b) an infinite lattice.

call ∆ the pairing amplitude in direct analogy to the fermionic counterpart. The two

boundary parameters s and ϕ determine the coupling strength between ends of the

chain and the joint hopping-pairing twisting angle, respectively. In particular, taking

s from 0 to 1, with ϕ = 0 smoothly interpolates between open and periodic BCs. The

dynamical matrix of H(s, ϕ) is G(s, ϕ) ≡ GOBC + B(s, ϕ) with

GOBC ≡ T⊗ g1 + T† ⊗ g−1, B(s, ϕ) = ~eN~e
†
1 ⊗ b1(s, ϕ) + ~e1~e

†
N ⊗ b−1(s, ϕ),

(3.26)

with the internal matrices given by

g1 ≡ −
i

2

 J −∆

−∆ J

 , b1(s, ϕ) ≡ −is
2

 Je−iϕ −∆eiϕ

−∆e−iϕ Jeiϕ

 , (3.27)

and g−1 = σ3g
†
1σ3, b−1(s, ϕ) = σ3b

†
1(s, ϕ)σ3.

The BKC enjoys a number of notable transformation properties with respect to
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physical symmetries. The first, and most relevant for our purposes, is the explicit

breaking of number symmetry ushered in by the pairing terms. Non-Hermiticity of

the dynamical matrix is thus inevitable. The second notable feature is the behavior

under time-reversal. Explicitly,

T (HOBC + sW (ϕ))T −1 = −(HOBC + sW (−ϕ)). (3.28)

In the special cases ϕ = 0, π, we observe that the Hamiltonian is odd under time-

reversal. One immediate consequence is thermodynamic instability. If |E〉 is an

eigenstate of the Hamiltonian with energy E, then T |E〉 is an eigenstate with energy

−E, i.e., the spectrum has a “chiral”9 ± symmetry. Since the spectrum of a (non-

zero) QBH is always unbounded in at least one direction, it is unbounded in both.

Using analytic diagonalization methods, we will see that thermodynamic instability

persists, in particular, for ϕ = π/2.

Digression on oddness under time-reversal.— Oddness under a time-reversal is not a

symmetry in the formal sense. However, in QBHs, it is equivalent to the existence of

a particular unitary symmetry. Consider an arbitrary QBH with dynamical matrix

G. Then

T HT −1 =
1

2
Φ†τ3G

∗Φ, T HT −1 = −H ⇐⇒ G = −G∗. (3.29)

Combining this with the fundamental property G = −τ1G
∗τ1 reveals that oddness

under time-reversal is equivalent to [G, τ1] = 0. We may identify this as invariance

under an isotropic local squeezing transformation10 U(χ), χ ∈ R, implementing aj 7→
9The term “chiral” is invoked to draw analogy with the consequences of chiral symmetry in

non-interacting fermionic systems. In that context, a chiral symmetry manifests as an antiunitary
operator that anticommutes with the single-particle or BdG Hamiltonian. As a consequence, the
single-, or quasi-particle energies become symmetric about 0. However, it is important to note that
the fermionic notion of a chiral symmetry is not perfectly transplanted into the bosonic context [84].
Our use of this term is simply to call attention to this ± quasi-particle energy symmetry.

10The U(χ) here is a special case of Eq. (2.21), with Re(z) = χ and Im(z) = 0.
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cosh(χ)aj − sinh(χ)a†j. This can be seen by noting U(χ)ΦU(χ)† = eχτ1Φ and thus

[H,U(χ)] = 0 for all χ ∈ R if and only if [G, τ1] = 0. Altogether, we are free to identify

oddness under time-reversal with this particular squeezing symmetry. This symmetry

manifests as a rather concrete feature of the quadrature dynamics. Computing the

EOM for the quadrature array R (eq. (2.2)), we have

i
dR

dt
= i

d

dt
ΣΦ = Σ

(
i
d

dt
Φ

)
= ΣGΦ = ΣGΣ†R, (3.30)

or more explicitly,

d

dt

xj
pj

 =
N∑
k=1

 Ckjxk + Mjkpk

−Ujkxk −Cjkpk

 , (3.31)

C ≡ Im(∆−K), U ≡ Re(K + ∆), M ≡ Re(K−∆), (3.32)

in terms of the matrices in Eq. (2.38). Oddness under time-reversal ensures that

G∗ = −G, or Re(K) = Re(∆) = 0. Ultimately, this means that the dynamics of

the x (p) quadratures depend only on the other x (p) quadratures. This feature is

known as “phase-dependent transport” and was identified in the OBC and PBC BKC

in Ref. [12]. The terminology originates from the fact that the real and imaginary

components of any coherent state will propagate independently from one-another in

such a system. In fact, the phase-dependent transport of the BKC is actually chiral :

x and p quadratures propagate in opposite directions. This is a consequence of the

non-symmetric nature of the coefficients Cjk, as also noted in Ref. [12].

Let us summarize the results of the preceding analysis and further elucidate its

dynamical consequences.

Theorem 3.3.1. Let H be a QBH. Then the following statements are equivalent.

(i) H is odd under time-reversal symmetry, i.e., T HT −1 = −H.
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(ii) H has a local squeezing symmetry of the form U(χ)ΦU(χ)† = eχτ1Φ, with χ ∈ R.

(iii) H supports phase-dependent transport.

Furthermore, any H satisfying (i)-(iii) is thermodynamically unstable, and either

dynamically unstable, or at the cusp of dynamical instability (specifically, every real

normal mode frequency ω supports a KC).

Proof. Equivalence of (i)-(iii) has already been established in the preceding analysis.

We have also already seen that such systems are thermodynamically unstable. All

that is left to show is that systems satisfying (i)-(iii) are either dynamically stable,

or at the cusp of instability.

If the system is dynamically unstable, we are done. If not, then consider a real

eigenvalue ω ∈ σ(G) and the corresponding eigenvector ~ψ+ which we will assume,

without loss of generality, to have Krein signature +1. Properties (i)-(iv) imply

[G, τ1] = 0, from which we conclude that ~ψ− ≡ τ1
~ψ+ is also an eigenvector of G with

eigenvalue ω. The Krein signature of this eigenvector is

~ψ−†τ3
~ψ− = ~ψ+†τ1τ3τ1

~ψ+ = −~ψ+†τ3
~ψ+ = −1. (3.33)

This allows us to conclude that ~ψ− 6∝ ~ψ+ and hence ω supports a KC. Since the

choice of ω was irrelevant, each eigenvalue necessarily hosts a KC.

Applying this result to the BKC allows us to make several predictions before

engaging in detailed analysis. For BCs with ϕ = 0, π, the BKC will support phase-

dependent transport and either be unstable, or at best, at the cusp of instability for

all values of J,∆, and s. We will now confirm this via exact diagonalization under

several BCs of interest.
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Figure 3.5: Boundary dependence of the normal modes (eigenvectors of G(s, ϕ)) and
their frequencies (eigenvalues of G(s, ϕ)) in the BKC with J = 1, ∆ = 0.75 and
N = 25. (a) The normal mode frequencies for various choices of BCs. (b) The largest
imaginary part for the normal mode frequencies numerically calculated on a grid of
spacing ∆s = ∆ϕ/π = 0.002. Points A-F correspond to values of s and ϕ from which
the eigenvalues and eigenvectors are sourced in (a) and (c), respectively. Points A-D
correspond to points in parameter space where exact analytical solutions are found
in the main text. (c) The (suitably normalized) coefficients of aj for representative
normal modes of the chain at various choices of s and ϕ. These normal modes are
represenative in the sense that their gross localization properties are independent of
the particular eigenvector chosen.
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• Exact normal mode decomposition

Here we report the key results of the exact diagonalization undertaken in Appendix

B.2. In particular, using the eigendecomposition of G(s, ϕ), we cast the BKC Hamil-

tonian into the normal form Eq. (2.74) when applicable. Various features of the normal

modes and their frequencies are pictorially summarized in Fig. 3.5. We also note that

exact diagonalization for OBCs and PBCs was accomplished in Ref. [12]. However, in

these cases, we extend the analysis and derive new conclusions specifically oriented

around the many-body features.

Open boundary conditions.— For OBCs (s = 0), the normal mode frequencies are

doubly degenerate and given by ωn =
√
J2 −∆2 cos(nπ/(N+1)), with m = 1, . . . , N .

The analysis then splits into three cases: J < ∆, J = ∆, and J > ∆.

When J < ∆, the normal mode spectrum is purely imaginary and hence the

system is dynamically unstable. To each ωn = iλn, there are two localized Hermitian

normal modes

z+
n ≡

√
2

N + 1

N∑
j=1

e−jr sin

(
nπj

N + 1

)
xj, z−n ≡

√
2

N + 1

N∑
j=1

ejr sin

(
nπj

N + 1

)
pj,

(3.34)

with 2r ≡ ln[(J + ∆)/|J − ∆|]. These modes satisfy the HWRs [z+
n , z

−
m] = iδnm1F ,

[z±n , z
±
m] = 0, and diagonalize the BKC according to

HOBC =
1

2

N∑
n=1

λm
(
z+
n z
−
n + z−n z

+
n

)
. (3.35)

The time-dependence follows as z±n (t) = e±λmtz±n (0).

The point J = ∆ is an EP for the dynamical matrix. In this case, there is one

normal mode frequency ω = 0 that hosts two Jordan chains of length N . A particular
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choice of (perfectly localized) generalized normal modes may be constructed as

χ1k ≡ (−iJ)−kpN+1−k, χ2k ≡ (iJ)−kxk, k = 1, . . . , N, (3.36)

which evolve in t according to Eq. (2.60) with ω0 = 0.

Finally, if J > ∆, we find that the system is dynamically stable with quasiparticle

energies ωn. To each n there is an exponentially localized bosonic normal mode (e.g.,

quasiparticle)

ψn =

√
2

N + 1

N∑
j=1

i−j sin

(
nπj

N + 1

)(
cosh(jr)aj − sinh(jr)a†j

)
, (3.37)

with r defined exactly as before, and satisfying the CCRs [ψn, ψ
†
m] = δnm1F , [ψn, ψm] =

0. In terms of these,

HOBC =
1

2

N∑
n=1

ωn
(
ψ†nψn + ψnψ

†
n

)
=

bN/2c∑
n=1

ωn

(
ψ†nψn − ψ

†
n̄ψn̄

)
, (3.38)

where, in the second equality, we have introduced the notation n̄ = N + 1 − n to

highlight the chiral symmetry of the quasiparticle energy spectrum ωn̄ = −ωn. Note

further that, in the case of N odd, there is an additional bosonic zero mode (ZM) ψn,

with n = (N + 1)/2. With this, we can explicitly construct the quasiparticle vacuum

using Eq. (2.68). It is given by

|0̃〉 =M exp

[
1

2

M∑
j=1

tanh(jr)(a†j)
2

]
|0〉 , (3.39)

with M a normalization constant. The chiral nature of the quasiparticle spectrum

reveals a, previously unnoticed, symmetry of the problem. Namely, consider the
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Bogoliubov transformation

ψn 7→ ψn(sn) ≡ cosh(sn)ψn + sinh(sn)ψ†n̄,

ψn̄ 7→ ψn̄(sn) ≡ cosh(sn)ψn̄ + sinh(sn)ψ†n,

(3.40)

where sn, n = 1, . . . , bN/2c, are arbitrary real constants. Thanks to chiral symmetry,

HOBC is left invariant under this transformation. This follows directly from

ψ†n(sn)ψn(sn)− ψ†n̄(sn)ψn̄(sn) = ψ†nψn − ψ
†
n̄ψn̄. (3.41)

These new quasiparticles are given by

ψn(sn) =

√
2

N + 1

N∑
j=1

i−j sin

(
nπj

N + 1

)(
cosh(sn + jr)aj + sinh(sn + jr)a†j

)
.

(3.42)

Unlike the isotropic squeezing symmetry of the physical bosonic modes aj discussed

earlier, this transformation induces independent degrees of squeezing on each of the

normal modes. Hence, sn are free parameters that can be used to tune the localization

properties of each normal mode. For the particular (isotropic) choice sn = −j0r for

all n, we recover the parametric freedom identified in Ref. [12].

We conclude the OBC analysis by calling direct attention to the fact that, in each

of the three cases, the normal modes of the system were spatially localized. As noted

in Ref. [12], this is reminiscent of the so-called non-Hermitian skin effect (NHSE)

[50], whereby a macroscopic number of eigenvectors of a matrix defined on a lattice

localize around one of the edges. In fact, as will become immensely relevant in Part

II, this is a manifestation of the NHSE that is descendant from topological features

of the PBC spectrum.

Periodic and anti-periodic boundary conditions.— In terms of boundary parameters,

94



PBCs and anti-PBCs are characterized by (s, ϕ) = (1, 0) and (1, π) respectively.

Dealing with PBCs first, we follow the procedure laid out in Sec. 2.5. Specifically,

we perform a Fourier transform bk = N−1/2
∑N

j=1 e
−ijkaj, with k ∈ KN the discrete

Brillouin zone. With this, we may block diagonalize H(1, 0) =
∑

k∈KN Hk, with

Hk =
1

2
φ̃†kσ3g(k)φ̃k =

J

2
sin(k)(b†kbk − b−kb

†
−k) +

i∆

2
cos(k)(b†kb

†
−k − b−kbk), (3.43)

where φ̃k = [bk, b
†
−k]

T is the Fourier Nambu array and

g(k) = eikg1 + e−ikg−1 =

 J sin(k) i∆ cos(k)

i∆ cos(k) J sin(k)

 = J sin(k)12 + ∆ cos(k)σ1.

(3.44)

is the Bloch dynamical matrix. The two normal mode frequency bands follow as

the eigenvalues of g(k), which are explicitly given by ω±(k) = J sin(k) ± i∆ cos(k).

Immediately we see that the system is dynamically unstable with the frequency bands

forming counter-oriented ellipses in the complex plane. The eigenvectors of g(k) are

given by [1,±1]/
√

2, which allow us to construct (generally) pseudobosonic normal

modes ξ±(k) = ξ∓∗(k) = (bk ∓ b†−k)/
√

2 such that

Hk =
1

2

(
ω+(k)ξ†+ξ− + ω−(k)ξ†−ξ+

)
. (3.45)

In the case where k is 0 or −π, ξ+(k) = ipk, and ξ−(k) = xk, with pk and xk

the Fourier transforms of the quadrature pj and xj, respectively. Similarly, when

k = ±π/2 (which occurs if N is a multiple of 4, we actually have that H±π/2 =

J(b†±π/2b±π/2 − b∓π/2b
†
∓π/2)/2 is already diagonalized in terms of the bosonic normal

modes b±π/2.

The case of anti-PBCs can be accommodated without much modification to the
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preceding analysis. The first step is to observe that the dynamical matrix takes on a

almost identical to Eq. (2.77), but with the translation operator VN replaced with the

anti-periodic translation operator V′N = VN−2~eN~e
†
1 = TN−~eN~e†1. As in the periodic

case, this matrix is straightforwardly diagonalized with plane waves, however, with

the discrete Brillouin zone slightly modified. Ultimately, the PBC analysis carries

over except KN is replaced with

K′N =


{0,±π/N,±3π/N, . . . ,±π(1− 1/N)}, N odd,

{0,±π/N,±3π/N, . . . ,±π(1− 1/N), π}, N even.

(3.46)

The normal mode spectrum is then that of PBCs (i.e., ω±(k), k ∈ KN), translated

by ∆k = π/N . Importantly, dynamical instability is retained.

Twisted boundary conditions: ϕ = π/2.— The emergence of Majorana edge modes

in the FKC with twisted BCs is a well-studied phenomena [124]. Like in the case of

the OBCs, the presence of a π/2 relative phase rotation between bulk and boundary

hopping and pairing amplitudes is known to host such modes. For comparison, we

obtain an exact diagonalization in the BKC. The normal mode spectrum is given by

±ωn = ±
√
J2 −∆2 sin(kn), with kn = (4n − 1)π/2N and n = 1, . . . , N . As in the

OBC case, we have three distinct cases J < ∆, J = ∆, and J > ∆.

If J < ∆, the system is dynamically unstable with purely imaginary normal mode

frequencies ωn = iλn. To each n, there are two localized Hermitian normal modes

z+
n ≡

1√
N

N∑
j=1

(
e−(j−(N+2)/2)r cos(jkn)xj + e(j−(N+2)/2)r sin(jkn)pj

)
,

z−n ≡
1√
N

N∑
j=1

(
e(j−(N+2)/2)r cos(jkn)pj − e−(j−(N+2)/2)r sin(jkn)xj

)
,

(3.47)

with 2r ≡ ln[(J + ∆)/|J −∆|] as in the OBC case. These modes satisfy the HWRs
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[z+
n , z

−
m] = iδnm1F , [z±n , z

±
m] = 0, and diagonalize the Hamiltonian according to

H(1, π/2) =
1

2

N∑
n=1

λm
(
z+
n z
−
n + z−n z

+
n

)
. (3.48)

The time-dependence follows as z±n (t) = e±λmtz±n (0).

For J = ∆, the dynamical matrix again hosts an EP. The only normal mode

frequency is 0. For N even there are two Jordan chains of length N , while for N odd,

there is a chain of length N − 1 and one of length N + 1. The generalized normal

modes have a rather complex form which can be derived from Eqs. (B.16)-(B.19). We

omit them here for simplicity.

For J > ∆ the system is dynamically stable with quasiparticle energies ωn. The

associated bosonic normal modes (quasiparticles) are

ψn =
1√
N

N∑
j=1

e−ijkn
(

cosh

[(
j − N + 2

2

)
r

]
aj − sinh

[(
j − N + 2

2

)
r

]
a†j

)
,

(3.49)

satisfying the CCRs [ψn, ψ
†
m] = δnm1F , [ψn, ψm] = 0. The Hamiltonian is then diago-

nalized as

H(1, π/2) =
1

2

N∑
n=1

ωn
(
ψ†nψn + ψnψ

†
n

)
. (3.50)

We immediately see that the system is still thermodynamically unstable (specifically,

ωn < 0 for n > bN/2c). Unlike the case of OBCs, chiral symmetry of the quasiparticle

spectrum that results from KCs throughout the spectrum is not always present. For

N odd, there are no KCs while, if N is even, then ωN−n = −ωn signals a KC at every

normal mode frequency.

Notably, in all three cases the NHSE is retained despite the explicit lack of a hard-

wall boundary. Instead, the modes localized around the boundary link with minimal
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amplitude near the center of the chain (see panel B of Fig. 3.5(c), for instance).

Twisted boundary conditions: J = ∆ and ϕ ∈ (0, π).— Under both open and π/2-

twisted BCs, we have seen high order EPs when J = ∆. On the contrary, periodic

and anti-periodic BCs have yielded no such singularities. If we take s = 1 and twist

ϕ from 0 to π , we can explore the way in which the EP emerges at ϕ = π/2. To this

end, we diagonalize G(1, ϕ) and find the normal mode spectrum

ωn = iJ(cos(ϕ))1/N)


e−2inπ/N , N even,

e−πin/N , N odd,

n = 1, . . . , 2N. (3.51)

where we choose the branch of the N ’th root whereby (cos(ϕ))1/N = | cos(ϕ)|1/Neiπ/N

for ϕ ∈ (π/2, π]. With this, we see that twisting scales the PBC (anti-PBC) spectrum

by | cos(ϕ)|1/N for ϕ < π/2 (ϕ > π/2). The N ’th root behavior is characteristic

of N ’th order EPs [123]. Beyond the spectrum, we can also explicitly study the

parametric dependence of the normal modes on the twisting angles. Focusing on the

case of N odd for simplicity11 The pseudobosonic normal modes are found to be

φn = Nn


∑N

j=1 z
j−1
n pj − tan(ϕ)x1, n even,∑N

j=1(−zn)−jxj, n odd,

zn ≡
−iJ
ωn

∗
, (3.52)

where Nn(ϕ) is a normalization constant that ensures [φn, φ
†
m∗] = δnm1F , with φn∗ =

φ` and ` such that ω` = ω∗n. We verify that as ϕ → 0, the pseudo-bosonic normal

modes approach x1 which is one of the two zero-frequency modes spawning Jordan

chains.

11The case of N even is discussed in detail in Ref. [95].
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• Dynamical stability analysis

Dependence of stability on BCs.— With a number of exact solutions found, we now

undertake a detailed analysis of the BKC’s stability phase diagram. As the general

theory purports, stability phase transitions are mediated by one of two spontaneous

GPT-symmetry breaking phenomena: (i) the emergence of EPs or (ii) the emergence

of KCs. As we have seen for open and π/2 twisted BCs, a transition of type (i)

occurs at J = ∆, whereby two long Jordan chains appear. For these transitions,

there is a somewhat simple physical interpretation, namely, the NDPA amplitude ∆

overcomes the lattice hopping J and, thus, amplification dominates. More surprising,

however, is the fact that a stability phase transition can occur simply as a function

of boundary parameters. The most notable instance of this is the loss of dynamical

stability when one passes from OBCs to PBCs. Instability under PBCs suggests,

correctly, that the bulk dynamics of the BKC are amplifying (a feature first noted in

Ref. [12]). Introducing boundaries may, or may not, stabilize this bulk amplification.

Let us get a better hold on which choices of boundary parameters stabilize the bulk.

Along with Fig. 3.5, Fig. 3.6(a)-(d) show numerically determined dynamical sta-

bility phase diagrams over the boundary parameter (s, ϕ)-space, for various choices

of N . An immediate observation is that there is a finite region of stability around

the line ϕ = π/2. More precisely, there is a width δϕN(s) such that the system is

dynamically stable for ϕ ∈ IϕN (s) ≡ (π/2− δϕN(s)/2, π/2 + δϕN(s)/2). The length

of this interval is minimized around s = 1, whereby we have the minimal width of

stability, δϕmin
N ≡ δϕN(1). Similarly, for a fixed N and ϕ, we define δsN(ϕ) to be

the quantity such that the system is dynamically stable for s ∈ IsN (ϕ) = [0, δsN(ϕ)).

This is minimized at ϕ = 0 whereby we define the minimum height of stability,

δsmin
N ≡ δsN(0). The numerics in Fig. 3.6(a)-(d) suggest that both δϕmin

N and δsmin
N

go to zero as N → ∞, while our analytical solutions demonstrate OBCs (s = 0)
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Figure 3.6: (a)-(d): Numerical assessment of dynamical stability as a function of
BCs, with J = 1 and ∆ = 0.25, and the boundary parameters sampled on a grid
of spacing ∆s = ∆ϕ/π = 0.002. The systems size is (a) N = 5, (b) N = 10, (c)
N = 15, and (d) N = 20. Phase boundaries are indicated by white, dashed lines (see
Eq. (3.53)). The s 6= 0 phase boundaries host N (1) length-2 Jordan chains for N odd
(even), while the s = 0 boundary hosts N Krein collisions. In (a) the stability width
δϕN(s = 0.6) is shown, while in (b), the stability height δsN(ϕ = π/5) is shown. (e)-
(h): Minimum-modulus eigenvalue of G(s, ϕ) sampled on the same grid as (a)-(d).
The parameter values for (e), (f), (g), and (h) match those of (a), (b), (c), and (d),
respectively. Here, Ω is the largest value of min |ωm/∆| over the whole sample grid.
The lines of ZMs (along with their mirror-symmetric partners in (f) and (h)) appear
to define the dynamical phase boundaries.
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Figure 3.7: The spectral flow of the BKC as boundary parameters are varied with J =
1, ∆ = 0.25. The Krein signatures for the corresponding eigenvectors are indicated
by red circles (+1), blue triangles (−1), and black diamonds (0), respectively. (a)
N = 15. Going down the left column (a1), we show how the eigenvalues evolve within
the stable phase, as s goes from 0 to 1 at ϕ = π/2. Recall that, for N odd, ϕ = π/2,
and s = 1, each eigenvalue except the extremal ones are twofold degenerate. Stability
is seen to be preserved along this flow. Going down the right column (a2), we show
how that eigenvalues evolves around the transition between π/2-twisted and periodic,
as ϕ goes from π/2 to 1.03 · (π/2) at s = 1. Note how eigenvalues are each split as
ϕ increases, and eventually move symmetrically off the real axis. (b) N = 10. The
spectral flow around the transition between open and periodic, as s goes from 0 to
0.1, with ϕ = 0. In this case, stability is retained for sufficiently small strength of the
boundary perturbation due to non-zero s.

and π/2-twisted BCs12 (ϕ = π/2) are stable for all N . It then appears that these

become isolated, measure zero regions of stability as N → ∞. We can make this

more concrete by studying the nature of the stability phase boundaries.

The stability phase boundaries can best be understood by studying the spectral

flow of the dynamical matrix (see Fig. 3.7). Further numerical analysis suggests that

zero eigenvalue plays a significant role in said transitions (see Fig. 3.6(e)-(h)). Our

investigation culminates in four main observations.

(i) Figs. 3.6(a)-(d) and 3.7(a1) show that, despite the macroscopic number of KCs

12The preceding analysis revealed that H(1, π/2) is dynamically stable for J > ∆. In Sec. 4.2.2 we
will establish a duality transformation which further reveals that H(s, π/2) is, in fact, dynamically
stable for all s ∈ [0, 1].
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in the OBC spectrum, arbitrarily small boundary perturbations need not desta-

bilize the system. For N even, we explicitly have δsmin
N 6= 0. For N odd, whether

or not arbitrarily small nonzero s can destabilize the system depends on ϕ. In

particular, H(s, ϕ) is unstable for all s > 0 when ϕ 6∈ IϕN (1).

(ii) For N odd, Fig. 3.7(a2) demonstrates that the transition between π/2-twisted

BCs and PBCs is mediated by non-degenerate eigenvalues of opposite Krein

signature coming arbitrarily close together.

(iii) For N even, Fig. 3.7(b) shows that the OBC to PBC transition occurs when

pairs of Krein collided eigenvalues themselves collide.

(iv) The left (ϕ < π/2) phase boundary is defined by the emergence of a zero

frequency mode for arbitrary N . If N is odd, zero frequency also defines the

right (ϕ > 0) boundary. Furthermore, the phase diagram is symmetric about

ϕ = π/2.

In the context of Theorem 3.2.2, observation (i) demonstrates that, while the coa-

lescence of eigenvalues of opposite Krein signatures is sufficient for stability phase

transitions, it is not necessary. In other words, systems with KCs are not destabilized

by arbitrary perturbations (in this case, for example, the weak linking of boundary

sites preserves stability of OBCs for N even). Observations (ii) and (iii) quantify

some of the notable even-odd effects evident in Fig. 3.6. Observation (iv) provides an

analytical path for determining the phase boundaries. Specifically, if we determine

those BCs which support ZMs, we have effectively determined the phase boundaries.

Calculations detailed in Appendix B.2 reveal that that phase boundaries are param-

eterized by

cos(ϕ) = ±1

2


(s+ s−1)sech(Nr), N even,

2sech(Nr), N odd,

(3.53)
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which are plotted in Fig. 3.6(a)-(d) as white dashed lines. With this, we can more

explicitly study the distribution of EPs and KCs along the boundaries. In Appendix

B.2, we show that the ZMs host one or two Jordan chains of length two for N odd

and even, respectively. Beyond zero frequency, we can numerically assess whether a

particular eigenvalues hosts an EP or KC by computing the distance between coa-

lescing eigenvectors (and correcting for arbitrary phases). For odd N between 5 and

55, and for various choices of ∆/J ∈ (0, 1), we find that two eigenvectors coalesce

at degenerate eigenvalues along the phase boundaries. Thus, each eigenvalue hosts

a Jordan chain of length 2. For N even, degeneracies in the spectrum make things

more complicated. However, we conjecture that a similar behavior will hold in the

case N odd. Altogether, the phase boundaries for s 6= 0 are EPs while the s = 0 (N

odd) phase boundary hosts KCs.

Eq. (3.53) further allows us to determine the minimal height13 and width of the

stability regions:

δsmin
N =


e−Nr, N odd,

0, N even,

sin

(
δϕmin

N

2

)
= sech(Nr). (3.54)

The exponential decrease of these two quantities as N →∞ indicates that the stable

region of boundary phase space quickly approaches a set of measure zero, i.e., the left

and right boundaries rapidly coalesce. Thus, in the case of N even, the right boundary

hosts arbitrarily small frequency modes. This motivates the following conjecture:

Conjecture 3.3.2. Generically, ZMs indicate stability phase transitions in QBHs.

While we will examine the physical and mathematical validity of the conjecture

more closely in Sec. 5.2.3, both the single-mode example and the current analysis of

13We note that in Ref. [125] an analogous quantity to δsmin
N was computed for the Hatano-Nelson

chain. As shown in Ref. [12], the dynamical matrix of the BKC (under OBCs and PBCs) is unitarily
equivalent to two-copies of the Hatano-Nelson chain. However, generic values of s and ϕ explicitly
break this correspondence.
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the BKC provide two pieces of immediate supporting evidence.

An additional point of contact between the BKC with J > ∆ and the single-

mode model is the interplay between EP and KC boundaries. For the BKC, the only

KC-dominated phase boundary is s = 0 (for N odd) which, physically, represents

one BC: OBCs. Thus, s = 0 can be safely interpreted as one point in parameters

space. Similarly, the KC in the single-mode model occurs at one point in parameter

space, namely α = β = 0. Meanwhile, in both models, the EP phase boundaries are

one-dimensional lines in the two-dimensional phase space. Thus, we present a second

conjecture:

Conjecture 3.3.3. Generically, the (d−1)-dimensional phase boundaries of d-dimensional

stability phase diagram of a QBH are characterized by EPs, whereas the (d − 2)-

dimensional boundaries are characterized by KCs.

Krein phase rigidity and sensitivity to system size.— The rich structure of the BKC

stability phase diagram offers a non-trivial venue for assessing the utility of the KPR

in detecting stability phase transitions. Explicitly, we assess the validity of Claim 3.2.5

by computing the KPR of a representative eigenvector of the BKC throughout the

boundary phase space, see Fig. 3.8. We confirm that the KPR vanishes unambigu-

ously at the EP phase boundaries (s > 0). As in the single- and two-mode examples,

the behavior around the KCs at s = 0 (N odd) is more subtle. However, we expect,

and find, that the KPR should vanish on smooth paths through the KC boundary.

Explicitly, Fig. 3.8(c) shows that the KPR vanishes as we pass from the stable re-

gion ϕ ∈ IϕN (s) to the unstable ϕ ∈ IϕN (s) through the point s = 0. As before,

diagonalizability is retained over the contour.

We have thus far seen that the stability phase diagram responds to changes in

system size in a rather dramatic way. Specifically, the regions of stability shrink

exponentially fast in system size. We can refine this analysis by looking at the response

of both the normal modes and their associated frequencies to system size. For the
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Figure 3.8: The KPR evaluated numerically as a function of boundary parameters
s, ϕ, on a grid of spacing ∆s = ∆Φ/π = 0.002, for J = 1 and ∆ = 0.25. (a) N = 5
(b) N = 15 (we restrict to N odd to avoid difficulties in maintaining continuous
eigenvector-tracking in the presence of the doubly degenerate spectrum for N even).
(c) The KPR evaluated along the contour C in (a), defined by s(ϕ) ≡ (ϕ− ϕ−)2, for
ϕ < π/2, and (ϕ − (π − ϕ−))2 otherwise, with ϕ− being the angle defining the left
dynamical phase boundary.

normal modes, the KPR is a useful tool to this end. Consider the KPR rn(ϕ) of

a representative eigenvector ~ψn(ϕ), with s = 1 and ϕ arbitrary. With reference

to Fig. 3.9, we see that as N increases, the KPR converges to a continuous curve

that sharply vanishes at ϕ = π/2, akin to a ‘stability order parameter’. We can

contextualize the numerical results for J = 1, ∆ = 0.5 (Fig. 3.9(a)) by computing the

KPR analytically for J = ∆ using eigenvectors Eqs. (B.16)-(B.19). With N odd, we

have

rn(ϕ) =
1

‖~ψ(ϕ)n‖2
=

N | cos(ϕ)|
| cosϕ|2 − 1

(
| cosϕ|2/N − 1

)
, J = ∆, ϕ ∈ [0, π], (3.55)

which is plotted for varies N in Fig. 3.9(b). In the limit N →∞, we have

lim
N→∞

rn(ϕ) =
| cosϕ| ln(| cosϕ|)
| cosϕ|2 − 1

. (3.56)

Ultimately, we see that the normal modes, which are understood through the non-

singular behavior KPR of the associated eigenvectors, respond in a rather tame fash-

ion.
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Figure 3.9: The response of the KPR to system size (a) around the phase boundary
near ϕ = π/2 for J = 1, ∆ = 0.5 and (b) around the EP near ϕ = π/2 for J = ∆ = 1.
In (a), the blue line follows from Eq. (3.56).

The normal mode spectrum, on the other hand, behaves in a much more dramatic

way as N →∞. In Fig. 3.10(a), we show the normal mode frequencies as a function

of N , with s = 1 and ϕ = 0.99 · (π/2). The choice of s and ϕ places the system

extremely close to the stability phase transition near ϕ = π/2. As N increases, we

see that the spectrum clings closer and closer to the PBC ellipse. The spectra must

then must collapse down at an increasingly high speed, which we may quantify in

terms of the spectral speed d|ωn|/dϕ. We conjecture that as N → ∞, the spectral

speed behaves in a singular fashion according to d|ωn|/dϕ→ δ(ϕ−π/2). The spectral

speed is plotted for J = 1 and ∆ = 0.5 in Fig. 3.10(b). As before with the KPR, we

may leverage the analytical solutions (Eq. (3.51)) at J = ∆ to test our conjecture in

this particular case. We find

d|ωn|
dϕ

=
1

N
| cosϕ|1/N−1, (3.57)

which, as conjectured more generally, is proportional to δ(ϕ− π/2) as N →∞.

Altogether, the system-size dependence of the normal modes and their frequen-

cies are drastically different. The normal modes evolve in a tame manner while the

spectrum exhibits an extreme non-analyticity in its flow. Interestingly, a similar dis-
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Figure 3.10: (a) The spectrum with J = 1, ∆ = 0.5, s = 1, and ϕ = 0.99 · (π/2) for
system sizes, N = 10, 20, and 100, from inner to outer. The solid outermost ellipse
traces out the periodic spectrum for N → ∞. (b) The spectral speed d|ωn|/dϕ for
same J and ∆ for various N , averaged over all eigenvalues.

crepancy between the behavior of eigenvectors and eigenvalues in a non-Hermitian

system was found in Ref. [126].

• Further aspects of the BKC

We have demonstrated that the BKC responds dramatically to the presence of a

family of non-trivial BCs. This extends the observations regarding the sharp change

in stability phase between OBCs and PBCs made in Ref. [12], and in particular, has

allowed us to put our theory of stability phase boundaries of QBHs to the test. As

pointed out in Ref. [12], one physical implication of this sensitivity comes in the form

of signal amplification. For concreteness, let us consider the BKC under OBCs14

and suppose we have a state initialized in such a way that 〈xj〉 (0) = δj,j0 with j0

somewhere near the center of the chain. As the state evolves, locality demands that

the signal, i.e., the distribution of quadrature expectation values, remains ‘unaware’

of the presence of the boundaries for some time tN . Here, tN should be upper bounded

by dN/vLR where d is the minimum distance from j0 to the closest boundary and vLR

is the Lieb-Robinson velocity of the chain. For times t < tN , the signal should evolve

14This argument is equally valid for any stabilizing BC, i.e., π/2-twisted BCs.
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as though there were no boundaries at all. Since the boundaries are the stabilizing

feature of the BKC, the signal should amplify.

This phenomenon of “transient amplification” will play a major role in the second

half of this thesis. In particular, we will see that this behavior (in the more general

open-system context) is a consequence of the dynamical matrix possessing non-trivial

“pseudospectra” of the dynamical matrix. While we defer the detailed discussion to

Sec. 8.1.2, we may intuitively describe pseudospectra as the set of approximate normal

mode frequencies. Concretely, consider the bulk (PBC) normal mode ξ+(k) whose

complex normal mode frequency is ω+(k). While this is not a normal mode under

OBCs, we do have the peculiar identity

[HOBC, ξ+(k)] = −ω∗+(k)ξ+(k) +
1√
N

(
ei(N+1)k (J −∆)

2
pN −

(J + ∆)

2
p1

)
(3.58)

If we were to ignore the boundary term (which vanishes like N−1/2 as N → ∞),

then we would conclude that ξ+(k) is a normal mode under OBCs with frequency

ω+(k). In this sense, ξ+(k) is an approximate unstable normal mode: it behaves

more and more like a normal mode as N grows. Thus, if the initial wavepacket is a

simple linear combination of these approximate unstable modes, it too will behave

initially unstable. We will later recognize ξ+(k) and ω+(k) as a pseudonormal mode,

pseudoeigenvalue pair.

Finally, we briefly mention that an experimental proposal for realizing the BKC

is given in Ref. [12]. We discuss further experimental capabilities that may be useful

for additional modifications to the original Hamiltonian in Ch. 10.
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Chapter 4

The role of pairing in dynamically

stable QBHs

In this chapter, we uncover the existence of a duality between number-non-conserving,

but dynamically stable, QBHs and number-conserving ones1. Ultimately, we charac-

terize the role of pairing in dynamically stable QBHs. Thus far, we have seen that

bosonic pairing, or equivalently, parametric amplification, terms in QBHs play a key

role in inducing dynamical instabilities. From a dynamical perspective, nonzero pair-

ing terms are necessary and sufficient for non-Hermiticity of the dynamical matrix.

From the many-body perspective, pairing terms explicitly break total bosonic number

conservation, and thus, are ubiquitous for Hamiltonians describing massless particles

such as phonons and photons. Beyond this, just as they do in fermionic systems

(e.g., superconductors), pairing may arise for massive bosons in a mean-field context.

There is an intuitive link between these two observations: namely, the loss of number

conservation allows for the indefinite (coherent, as it is mediated by the Hamilto-

nian) pumping of particles into the system, and hence, instabilities in the form of

1With the exception of the connection between the duality and the covariance matrix of the vac-
uum state, The vast majority of content in this chapter originates in Ref. [96]. The aforementioned
connection is instead established in Ref. [98]. Both of these works were jointly co-authored with
Emilio Cobanera & Lorenza Viola.
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unbounded particle number become relevant. We have argued that the crucial in-

gredient for this phenomenon is the infinite-dimensional nature of the single-mode

Hilbert space. Loosely speaking, there is ‘room’ for infinitely many bosons. Fermions

stand in sharp contrast whereby the finite-dimensional single-mode space prevents

any mechanism, including pairing, from driving these types of instabilities. While

this intuitive link is pleasing, we know from previous examples that bosonic pairing

need not elicit instabilities. Rather, there is typically a competition between the

stabilizing (e.g., hopping, on-site potentials) and these destabilizing mechanisms. So

then, what is the precise role of pairing in dynamically stable systems?

The key observation for answering this question is the following: a dynamically sta-

ble QBH is entirely characterized by a dynamical matrix that is (i) pseudo-Hermitian,

(ii) diagonalizable, and (ii) possesses an entirely real spectrum. Leveraging known

mathematical results on the properties of pseudo-Hermitian matrices, we are are able

to uncover a canonical mapping from this pseudo-Hermitian matrix, which acts on

an indefinite inner-product space, to a Hermitian matrix that acts on a true Hilbert

space. We ultimately show that this new matrix uniquely defines a number-conserving

QBH and that the mapping itself lifts to a unitary one on the many-body Fock space.

In fact, this mapping can be thought of as a duality transformation. In contrast to

general unitary mappings, dualities are typically constrained to transform the micro-

scopic degrees of freedom in such a way that preserves certain desirable features of

the original Hamiltonian (e.g., locality, spectrum), while reducing the ‘complexity’ of

the system in some predefined way [127–129]. For example, there a famous duality

that connects the high- and low-temperature physics of the Ising model defined on a

square lattice allows one to analytically determine the Curie temperature [130]. In

our case, the duality transformation will remove the number-non-conserving terms

in a natural way so that the dynamical stability of the system becomes evident. We

also discuss a promising application of our dualities to the problem of simulating
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(in an analog fashion) both number non-conserving QBHs, as well as genuinely non-

Hermitian PT-symmetric Hamiltonians. In particular, our duality provides us, under

suitable conditions, a method for simulating such systems without the need for any

destabilizing mechanisms such as pairing or incoherent driving.

Generally speaking, dualities can drastically transform symmetries of the Hamil-

tonian (e.g., a broken number symmetry of one system being mapped to the broken

translational symmetry of the other [131, 132]). This feature, known as symmetry

transmutation, can be useful for identifying and understanding symmetries via the

dual system. In our case, the preimage of the total number symmetry turns out

to be the total quasiparticle number symmetry - something that any dynamically

stable QBH must posses (recall Sec. 2.4). Spatial symmetries are more subtle, how-

ever. While translational symmetry survives the duality, the locality structure of the

couplings may change. However, by establishing a direct link between the duality

transformation and the covariance matrix of the original vacuum state, we can infer

locality properties of the dual system by means of vacuum correlations.

We explicitly construct the duality transformation in two models of interest: (i) A

gapped harmonic chain; and (ii) the bosonic Kitaev chain under open and π/2-twisted

BCs. In (i), we show that the number-conserving dual is a hopping model with real

hopping amplitudes that decay exponentially with distance. In this sense, the dual

Hamiltonian is still “short-range” - a hypothesis we put to the test by explicitly com-

paring the band structure of the original QBH and the dual with couplings truncated

at a fixed, finite range. We further conclude that the analysis of the gapped harmonic

chain extends naturally to any translationally invariant single-band model. In (ii),

we show that the BKC may be mapped, by means of a perfectly local duality, to a

number conserving chain with nearest neighbor imaginary hopping. This mapping

allows us to nontrivially extend the analytical stability analysis of Sec. 3.3.3.

The outline for this chapter is as follows. In Sec. 4.1, we establish the existence
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of the duality and provide an explicit construction for arbitrary, dynamically stable

QBHs. We further discuss various physical features of the duality including symmetry

transmutation properties and its connection to the vacuum covariance matrix. In

Sec. 4.2, we present the two example models: a gapped Harmonic chain, and the

BKC. In both cases, we explicitly construct the duality and discuss important locality

properties.

4.1 A number conservation-restoring duality trans-

formation

4.1.1 Existence and construction of the duality

The Hamiltonians of interest are now those QBHs that are dynamically stable. We

place no restrictions on thermodynamic instability. However, being a unitary map,

our duality transformation will preserve the boundedness properties of the Hamilto-

nian, and hence, the thermodynamic features. From Sec. 2.4, we know such Hamil-

tonians can be characterized in terms of their dynamical matrices. Specifically,

H = Φ†τ3GΦ/2 is dynamically stable if and only if the dynamical matrix G is

diagonalizable and possesses an entirely real spectrum.

Non-Hermitian matrices and operators possessing entirely real spectra are well-

studied for, among other reasons, their potential for serving as appropriate general-

izations of Hamiltonians modeling physical systems [41–44] (see also, Sec. 3.1.1). The

most important result for this chapter is the following (adapted and specialized from

Refs. [44, 133]).

Lemma 4.1.1. Let M be an n× n complex matrix and let (~v, ~w) = ~v† ~w, with ~v, ~w ∈

Cn, denote the standard inner-product on Cn. Then the following are equivalent.

(i) M is diagonalizable and possesses an entirely real spectrum;
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(ii) M is pseudo-Hermitian with respect to a positive-definite metric S;

(iii) There exists a positive-definite metric S such that M is a self-adjoint operator

when viewed as acting on the Hilbert space Cn paired with the inner-product

(~v,S~w) = ~v†S~w, where ~v, ~w ∈ Cn.

We remark that, in (iii), the positive-definite nature of S ensures that (·,S·) is

a proper inner-product (rather than just an indefinite inner-product). We have an

immediate corollary for dynamically stable QBHs.

Corollary 4.1.2. Let H be a dynamically stable N-mode QBH with dynamical matrix

G. Then there exists a positive-definite metric S with respect to which G is pseudo-

Hermitian.

A priori, it may seem that we haven not gained much information. We already

know that G is pseudo-Hermitian. However, general QBHs are pseudo-Hermitian

with respect to τ3, which is not a positive-definite metric. Thus, when dynamical

stability is present, at least one such S exists, is distinct from τ3. In fact, it is

possible to explicitly construct such a metric.

Proposition 4.1.3. Let G be the dynamical matrix of an N-mode dynamically sta-

ble QBH. If {~ψ±n }Nn=1 is a basis of C2N consisting of eigenvectors of G satisfying

Eqs. (2.63), then

S ≡
N∑
n=1

τ3

(
~ψ+
n
~ψ+
n
† + ~ψ−n

~ψ−n
†
)
τ3 (4.1)

is positive-definite and satisfies (i) S−1G†S = G, (ii) τ3Sτ3 = S−1, and (iii) τ1Sτ1 =

S∗.

Proof. Positive definiteness of S follows from the fact that it is a sum of rank-one

(unnormalized) projectors τ3
~ψsn
~ψsn
†τ3 = ~vsn~v

s
n
†, with ~vsn = τ3

~ψsn and s ∈ {+,−}.
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To prove (i), we first note that it is equivalent to G†S = SG. By direct compu-

tation,

G†S =
N∑
n=1

G†τ3

(
~ψ+
n
~ψ+
n
† + ~ψ−n

~ψ−n
†
)
τ3 =

N∑
n=1

τ3G
(
~ψ+
n
~ψ+
n
† + ~ψ−n

~ψ−n
†
)
τ3

=
N∑
n=1

τ3

(
ωn ~ψ

+
n
~ψ+
n
† − ωn ~ψ−n ~ψ−n †

)
τ3 =

N∑
n=1

τ3

(
~ψ+
n
~ψ+
n
† − ~ψ−n

~ψ−n
†
)

G†τ3

=
N∑
n=1

τ3

(
~ψ+
n
~ψ+
n
† − ~ψ−n

~ψ−n
†
)
τ3G = SG,

as desired. Meanwhile, (ii) is equivalent to τ3Sτ3S = 12N . We can establish this

by leveraging the mutual τ3 inner-products of the basis elements in addition to the

resolution of the identity in Eq. (2.64). Explicitly,

τ3Sτ3S =
N∑

n,m=1

(
~ψ+
n
~ψ+
n
† + ~ψ−n

~ψ−n
†
)
τ3

(
~ψ+
m
~ψ+
m
† + ~ψ−m

~ψ−m
†
)
τ3

=
N∑

n,m=1

(
δnm ~ψ

+
n
~ψ+
m
† − δnm ~ψ−n ~ψ−m†

)
τ3 = 12N .

Finally, (iii) can be shown by making use of the identity ~ψ∓n = τ1(~ψ±n )∗. With this,

τ1Sτ1 =
N∑
n=1

τ1τ3

(
~ψ+
n
~ψ+
n
† + ~ψ−n

~ψ−n
†
)
τ3τ1 = (−1)2

N∑
n=1

τ3τ1

(
~ψ+
n
~ψ+
n
† + ~ψ−n

~ψ−n
†
)
τ1τ3

=
N∑
n=1

τ3

(
τ1
~ψ+
n
~ψ+
n
†τ1 + τ1

~ψ−n
~ψ−n
†τ1

)
τ3 =

N∑
n=1

τ3

(
(~ψ−n

~ψ−n
†)∗ + (~ψ+

n
~ψ+
n
†)∗
)
τ3 = S∗.

In light of the third conclusion of Lemma 4.1.1, there is a sense in which the effec-

tive non-Hermiticity inherent to dynamically stable QBHs is artificial: G corresponds

to a self-adjoint operator in a suitably modified Hilbert space. In particular, G pos-

sesses a S-orthonormal basis of eigenvectors (which, if S is the one we have explicitly

constructed above, is the basis {ψ±n }Nn=1, as one may verify). As a self-adjoint opera-
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tor, any matrix representation of G in a S-orthonormal basis must be Hermitian. For

example, the matrix representation of G in the basis {ψ±n }Nn=1 is real and diagonal, and

thus, Hermitian. Another choice of basis that need not require explicit diagonalization

of G is {~rj ≡ R−1~ej}2N
j=1, with R the unique positive-definite square root, i.e., R2 = S

and R > 0. By construction, (~rj,S~rk) = ~r†jS~rk = ~ejR
−1R2R−1~ek = ~e†j~ek = δjk. The

matrix representation of G in this basis is then given by

(GD)jk = (~rj,SGrk) = ~e†jRGR−1~ek ⇒ GD ≡ RGR−1. (4.2)

Hermiticity then follows straightforwardly from S pseudo-Hermiticity:

G†D = R−1G†R = R−1SGS−1R = RGR−1 = GD. (4.3)

At this stage, however, it is not clear that GD has any physical significance. For

example, there is no guarantee that it can even be interpreted as a dynamical matrix

of some QBH. If it can be, there need not be any relation between said QBH and the

original one.

To proceed, we take S to be the specific choice of metric constructed in Eq. (4.1).

With this, and by virtue of the uniqueness of the positive-definite square root, it

follows that R (and R−1) satisfies properties (ii) and (iii) in Prop. 4.1.3. Remarkably,

these properties are equivalent to the statement that the map Φ 7→ R−1Φ is a Gaus-

sian canonical transformation (recall Eqs. (2.18)). Thus, by the Stone-von Neumann

theorem, there exists a (Gaussian) unitary operator UD such that UDΦU †D = R−1Φ.

With this unitary in hand, we define the dual QBH:

HD = UDHU
†
D =

1

2
Φ†τ3GDΦ. (4.4)

It follows that GD is a proper dynamical matrix that also happens to be Hermi-
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tian. Recalling that Hermiticity guarantees zero pairing, it follows that HD has total

number conservation: [H,
∑N

j=1 a
†
jaj] = 0. Several remarks are in order.

(i) Number conserving QBHs are, generically2, fixed points of the transformation

constructed thus far. Since the dynamical matrix of a number-conserving QBH

is Hermitian, we may take {ψ±n }Nn=1 to be orthonormal (in addition to satisfying

Eqs. (2.63)). Thus, from Eq. (4.1), S = τ312Nτ3 = 12N . It follows that R = 12N

and so UD = 1F .

(ii) The fact that a dynamically stable QBH is unitarily equivalent to one with total

number conservation may seem trivial, in hindsight. Taking U to be the unitary

that takes the normal modes ψn (see Eq. (2.65)) to an, i.e., take U to be that of

Eq. (2.67). In this case

UHU † =
1

2

N∑
n=1

ωn
(
a†nan + ana

†
n

)
, (4.5)

which is manifestly number-conserving. However, to construct U , one must nec-

essarily diagonalize the system. As we will see in examples, the transformation

from H to HD can often be identified without the need for full diagonalization.

Moreover, in light of (i), number-conserving QBHs are not fixed points of this

trivial ‘duality’ - diagonal Hamiltonians are. As such, our duality is optimal in

the sense that it restores number conservation in this ‘minimally invasive’ way.

2The use of the word ‘generically’ here is to take into account the non-uniqueness of an eigenbasis,
specifically in the presence of spectral degeneracies. For example, if there are degenerate eigenvalues,
there may exist a basis of G = G† that satisfies Eqs. (2.63) but is not orthonormal. However, this
is non-generic in the sense that spectral degeneracies are non-generic.
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4.1.2 Physical interpretation of the duality

• Symmetry transmutation

Let us now explore the physical features of the number-symmetric dual Hamiltonian.

The first notable feature is that the duality has brought forth a symmetry that did

not previously exist in the system: number symmetry (equivalently, number conser-

vation). Since our map is unitary, this symmetry must result from another symmetry

intrinsic to dynamically stable QBHs. That is, if U(θ) is the number symmetry

operator (Eq. (2.20)), then

[HD, U(θ)] = 0 ⇐⇒ [H,U ′(θ)] = 0, U ′(θ) ≡ U †DU(θ)UD. (4.6)

Thus, the continuous family of symmetries U ′(θ) transmutes into number symmetry

of the dual Hamiltonian. But what is U ′(θ)? To answer this, we write

U(θ) = eiθ
∑N
j=1 a

†
jaj = eiθ(Φ

†Φ−N)/2. (4.7)

Using U †DΦUD = RΦ, we then obtain

U ′(θ) = U †De
iθ(Φ†Φ−N)/2UD = eiθ(U

†
DΦ†ΦUD−N)/2 = eiθ(Φ

†R2Φ−N)/2 (4.8)

Now,

Φ†R2Φ = Φ†SΦ =
N∑
n=1

Φ†τ3

(
~ψ+
n
~ψ+
n
† + ~ψ−n

~ψ−n
†
)
τ3Φ =

N∑
n=1

(
ψ†nψn + ψnψ

†
n

)
, (4.9)
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where we have recalled the definition of the normal modes ψn = ~̂ψ+
n = ~ψ+

n
†τ3Φ =

(−~ψ−n †τ3Φ)†. Since the normal modes satisfy the CCRs, we have

U ′(θ) = eiθ
∑N
n=1 ψ

†
nψn , (4.10)

which may be interpreted as the total quasiparticle number symmetry operator. Triv-

ially, any dynamically stable QBH possesses this symmetry (as dynamical stability

guarantees a normal mode basis in which H is diagonal). It so happens that this

symmetry is mapped to the standard number symmetry under our duality.

Another example of symmetry transmutation is how translational symmetry trans-

forms. For concreteness, let us consider periodic discrete translation symmetry3, i.e.,

[H,V ′N ] = 0, with V ′NΦVN
′† ≡ VNΦ the many-body discrete translation operator.

This symmetry is mapped to VN ≡ UDV
′
NU

†
D. This is best understood by its action

on the Nambu array:

VNΦV †N = UDV
′
NU

†
DΦUDV

′
NU

†
D = UDRV ′NΦVN

′†U †D = RVNUDΦU †D = RVNR−1Φ.

(4.11)

Now, since [H,V ′N ] = 0, we also have [G,VN ] = 0 (recall Eq. (2.77)). Therefore, the

basis used to construct S (Eq. (4.1)), and thus R, can be taken to be Bloch eigenstates.

That is, ~ψ±n = ~ψ±n,k, with VN
~ψ±n,k = eik ~ψ±n,k, and k in the discrete Brillouin zone KN .

Consequently, both S and R commute with VN , and so, VN = V ′N . Thus, our duality

preserves discrete translational symmetry.

• Locality and connections to the vacuum covariance matrix

Suppose our original Hamiltonian is of range R, i.e., the hopping and pairing ampli-

tudes Kij and ∆ij (recall Eq. (2.38))vanish for |i − j| > R. What then is the range

3We use the prime to be consistent with the number symmetry example, whereby the prime
indicated the symmetry of the original Hamiltonian H.
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of the dual Hamiltonian HD? This is a rather subtle question, for which we can offer

partial answers.

If one demands ‘locality’, i.e., that HD be of range RD < R, then an Ansatz for S

may be developed. For example, consider a system with dint degrees of freedom per

lattice site and let us specify that S be site-local. That is, S =
∑N

j=1 ~ej~e
†
j ⊗ Sj, with

Sj a 2dint × 2dint. These local matrices Sj are heavily constrained by the properties

detailed in Prop. 4.1.3. For example, if dint = 1, we have that4

Sj = cosh(ξj)12 + sinh(ξj)[cos(φj)σ1 + sin(φj)σ2], (4.12)

with ξj and φj real constants to be determined from the constraint S−1G†S = G.

This procedure will find success in the BKC, as we will see. If less-strict locality

requirements are implemented, this can be generalized to allow for S to be quasi-local

(e.g., two-site local). Constraints on parameters can be found and used to solve for a

valid S.

For broader insight, a more concrete understanding of the matrices S is in or-

der. First, let T−1 denote that matrix whose columns are eigenvectors of G, i.e.,

Eqs. (2.62). Explicitly,

T−1 =
N∑
j=1

(
~ψ+
n ~e
†
2j−1 + ~ψ−n ~e

†
2j

)
. (4.13)

It immediately follows that S = τ3T
−1T−1†τ3 = T†T. From here, we have a remark-

able connection to the quasiparticle vacuum covariance matrix (Eq. (2.69)):

S−1 = τ3Sτ3 = τ3T
†Tτ3 = 2C|0̃〉, C|0̃〉 =

1

2
S−1. (4.14)

4To see this, note that the most general single-mode Bogoliubov transformation is aj 7→
cosh(ξj)aj + eiφj sinh(ξj)a

†
j modulo an overall phase. The matrix representation of this transforma-

tion is precisely Sj . Validity of this as an Ansatz follows from positive-definitiness (Sj is clearly
Hermitian with eigenvalues e±ξ.
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In words, the positive-definite metric in which G is self-adjoint with respect to is half

the inverse of the quasiparticle covariance matrix of H. Thus, the locality proper-

ties of the duality are intrinsically tied to the locality properties of the quasiparticle

vacuum correlations5, (2C|0̃〉)ij = 〈0̃|{Φi,Φ
†
j}|0̃〉. In the thermodynamically stable

case, these are precisely the ground state correlations, which are particularly relevant

to statistical mechanics-oriented investigations. In fact, the spatial decay of ground

state correlations in harmonic lattices (thermodynamically stable QBHs of a partic-

ular form) has been a subject of much analysis [134, 135]. In particular, gapped

systems are known to have ground states with exponentially decaying correlations.

• Breakdown of the duality at stability phase transitions

Throughout this analysis, we have emphasized the necessity of dynamical stability. It

is then of interest to understand how the duality transformation evolves as a dynam-

ically stable QBH approaches a stability phase transition. For this, it is instructive

to study tr(S), which may be computed as

tr[S] = tr[τ3Sτ3] =
2N∑
i=1

N∑
n=1

(
|~e†i ~ψ+

n |2 + |~e†i ~ψ−n |2
)

=
N∑
n=1

(
(r+
n )−1 + (r−n )−1

)
, (4.15)

where we have inserted the identity 1N = τ 2
3 and employed cyclicity of the trace in

the first equality, and reintroduced the KPR r±n = ‖~ψ±n ‖−2 (recall Eq. (3.6)) in the

third equality.

Suppose we adjust the system parameters so that H smoothly approaches a sta-

bility phase transition. Leveraging Claim 3.2.5, we know that at least one r±n must

go to zero. Since r±n ≥ 0, it follows that tr[S] (and, accordingly, some eigenvalue of

S), diverges. In other words, S becomes unbounded, and hence ill-defined, as the

transition is approached. Moreover, since tr[S] = tr[τ3Sτ3] = tr[S−1], we also have

5Note that the mean vector of the quasiparticle vacuum is always zero.
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that S develops a zero eigenvalue. Thus, S loses invertibility at the transition point.

Each conclusion we have made about S carries over to R, and thus to the transfor-

mation Φ 7→ UDΦU †D = R−1Φ. Physically, this means that the duality transformation

requires more and more squeezing as the transition is approached. From the preced-

ing section, we can further conclude that the quasiparticle correlations also become

unbounded in the same limit. In this sense, our duality informs the behavior of the

system in the vicinity of stability phase transitions.

• Implications for analog quantum simulation

The primary goal of analog (as opposed to gate-based) quantum simulation is to

indirectly implement a given target Hamiltonian with an alternative (usually, more

accessible) system [136]. Our duality is well-poised for such an application. Specif-

ically, suppose we wish to realize a set of N , parametrically driven (i.e., paired)

bosonic modes, described by a target QBH. While there exist techniques for realizing

such terms [12, 24–26, 35, 137–140], amplification necessarily introduces (undesired)

complexities in the physical implementation. As long as the target Hamiltonian is

dynamically stable, our duality transformation eliminates this issue by providing a

unitarily equivalent Hamiltonian - without the need for driving. With sufficient knowl-

edge of the duality transformation, one can map physical quantities of interest from

one system to the other, allowing for indirect measurement of the target system. The

implicit assumption here is that the transformation is sufficiently local. Explicitly,

locality ensures that local quantities can be measured locally in the dual system. If

the transformation is not local, we still expect that, in a large number of cases, the

dual Hamiltonian will have couplings that drop off exponentially in distance. The

reasoning comes from the connection between the duality transformation and the

quasiparticle vacuum covariance matrix (Eq. (4.14)) and the fact that vacuum cor-

relations are known to decay exponentially in a large class of QBHs [134, 135]. In
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these cases, the dual Hamiltonian should faithfully implement the original system

when truncated to finite-range. This hypothesis will be explored in our first example

below.

This proposal can be extended naturally to utilizing number-conserving QBHs for

simulating truly non-Hermitian, PT-symmetric Hamiltonians. The implementations

of such systems, which have been investigated across photonic, optomechanical, and

cavity QED settings [117, 141], typically require precisely tuned (dissipative) loss and

gain. Such mechanisms inevitably entail unwanted noise. Motivated by this challenge,

a related question was addressed in Ref. [142]: under which conditions can a target

PT-symmetric Hamiltonian be faithfully realized in a closed system of non-interacting

bosons. In that work, it was found that there exists a class of PT-symmetric non-

Hermitian Hamiltonians that can be unitarily mapped to the dynamical matrix of

a QBH with pairing. Our duality can further simplify the implementation of said

systems conditional upon dynamical stability. That is, if the given PT-symmetric

Hamiltonian is in the PT-unbroken phase (recall Sec. 3.1.1), then its realization in a

QBH will be dynamically stable. Applying our duality will then produce a unitarily

equivalent QBH without the need for pairing. Not only does this dramatically reduce

the complexity of implementation, but it also eliminates the extreme sensitivity to

parameter variation characteristic of parametric amplification.
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4.2 Examples

4.2.1 A gapped harmonic chain and general single-band pair-

ing chains

Our first example is a gapped harmonic chain (GHC) under PBCs:

H ≡
N∑
j=1

(
p2
j

2m
+
Co

2
x2
j +

Cnn

2
(xj+1 − xj)2

)
, (4.16)

where xj (pj) is the position (momentum) operator of the oscillator at site j, m > 0

is the uniform mass, and Co, Cnn ≥ 0 are onsite and nearest-neighbor (NN) stiffness

constants, respectively. Physically, this Hamiltonian models independent oscillators

of characteristic frequency
√
Co/m coupled harmonically to their NN with coupling

constant Cnn. In particular, the limit Co = 0 describes the well-known phonon chain

which models vibrational excitations in a harmonically coupled lattice6. One such

feature of this limit is the conservation of total momentum,

[H|Co=0, ptot] = 0, ptot ≡
N∑
j=1

pj. (4.17)

Thus, the center-of-mass, xCM ≡ N−1
∑N

j=1 xj, is unstable in the sense that 〈xCM〉 (t) =

〈ptot〉 t/M+〈xCM〉 (0), with M = Nm the total mass, diverges linearly in t in any state

with non-zero total momentum. Recalling the dynamical behavior originating from

Jordan chains in the normal-mode spectrum (Eq. (2.60)), this signals that Co = 0

is an EP of the dynamical matrix. Clearly, being a sum of positive operators, H is

thermodynamically stable.

By introducing the renormalized frequency Ω ≡
√

(2Cnn + Co)/m, the coupling

constant J ≡ Cnn/mΩ, and the bosonic operators aj =
√
mΩ/2(xj + ipj/mΩ) de-

6We remark that the continuum limit of this model is the well-studied free real scalar field. The
gap parameter Co determines the mass parameter of the field theory.

123



scribing phononic excitations, we can write the QBH as

H =
1

2

N∑
j=1

Ω
(
a†jaj + aja

†
j

)
− J

(
a†j+1aj + a†j+1a

†
j + H.c.

)
. (4.18)

In terms of the phonons, we have an on-site potential of frequency Ω with NN hopping

and pairing, each of amplitude J . The pairing explicitly violates phonon number

conservation. Moreover, the previously discussed EP corresponds to the limit J =

Ω/2. We further note that constraints on Co and Cnn ensure that J ≤ Ω/2.

Leveraging translation invariance, we move to the Fourier basis, bk = N−1/2
∑N

j=1 e
−ijkaj,

with k ∈ KN . It follows that H =
∑

k∈KN Hk, with

Hk =
Ω− J cos(k)

2

(
b†kbk + b−kb

†
−k

)
− J cos(k)

2

(
b†kb
†
−k + b−kbk

)
, k ∈ KN , (4.19)

with the associated Bloch dynamical matrix given by g(k) = (Ω − J cos(k))σ3 −

iJ cos(k)σ2. Away from the EP (J < Ω/2), diagonalization reveals

Hk ≡
ωk
2

(ψ†kψk + β−kβ
†
−k), ωk ≡

√
Ω2 − 2JΩ cos(k),

ψk ≡ Nk
[
(Ω− J cos(k) + ωk)bk + J cos(k)b†−k

]
,

(4.20)

with Nk a normalization constant ensuring [ψk, β
†
q ] = δkq1F . We observe that the sys-

tem is gapped (in the thermodynamic limit N →∞), with energy ∆E = ω0

√
Co/m

separating the ground state |0̃〉 from the first excited state β†0 |0̃〉. In particular, the

dynamically unstable limit Co → 0 represents a many-body gap closing.

To construct the dual of H, we will first construct the dual of the individual Hk’s.

Equivalently, we seek a (k-local) transformation Rk that removes the off-diagonal

pairing term −iJ cos(k)σ2 from g(k), i.e., Rkg(k)R−1
k is diagonal. Since g(k) is

2 × 2, this boils down to diagonalizing g(k). Of course, we have already done this

by computing ωk and ψk. It follows that the duality is the map UD defined by
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UDψkU
†
D = bk so that

HD
k = UHkU

†
D =

ωk
2

(
b†kbk + b−kb

†
−k

)
. (4.21)

The full dual Hamiltonian in real space is then

HD =
∑
k∈KN

HD
k =

1

2

N−1∑
r=0

N−r∑
j=1

(
KD
r (a†j+raj + aja

†
j+r) + H.c.

)
, KD

r ≡
1

N

∑
k∈KN

ωke
ikr.

(4.22)

The quantities KD
r , which are the Fourier amplitudes of the normal mode frequen-

cies ωk, constitute the renormalized hopping amplitudes of the dual Hamiltonian.

Remarkably, the quasiparticle gap is retained (by construction), despite vanishing

pairing amplitudes.

While a closed-form expression for KD
r is not obtained, we are able to evaluate

it numerically for various values of system parameters, as shown in Fig. 4.1(a). The

most notable feature is the apparent exponential decay of the amplitudes as a func-

tion of r. Since it is known that the ground state of a gapped harmonic lattice always

exhibits exponentially decaying correlations [134], this is consistent with previously

identified connection between our duality transformation and the ground state covari-

ance matrix (see Eq. (4.14)). Also plotted in Fig. 4.1(a) is an analytical expression for

KD
r taken in the thermodynamic limit N →∞, with Co = 0. Explicitly,

KTL,0
r ≡ 1

2π

∫ π

−π
(ωk|Co=0) eikr dk =

2

π

Ωnn

1− 4r2
, Ωnn ≡ 2

√
Cnn

m
. (4.23)

While it is true that the duality is not valid here (since Co = 0 is manifestly dy-

namically unstable), the algebraic decay further reflects the connection between the

duality and the ground state correlations. Specifically, the ground state of a gapless

harmonic lattice is known to exhibit algebraically decaying correlations [134].
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Figure 4.1: (a) Log-plot of the rescaled hopping amplitude |KD
r |/Ωnn for varying

onsite stiffness Co evaluated numerically with N = 30. The exact expression for the
thermodynamical limit (TL, Eq. (4.23)) with Co = 0 is plotted as a black dashed
line. An exponential fit for the case Co = 1.75 is plotted as a purple dashed line.
(b) The band structure ωk for the GHC for the same values of Co in (a). The black
dashed line, again, corresponds to the TL with Co = 0. (c) The band structure of the
Hamiltonian HD(R) with the real-space coupling truncated at ranges R = 0, 1, 2, 3.
The exact band structure ωk is shown in black. In (a)-(c), we take m = 1 and Cnn = 2.

With the exponential decay of KD
r observed numerically, and heuristically ex-

plained via the connection to ground state correlations, we expect that truncating

the hopping of the dual Hamiltonian should produce a faithful finite-range approx-

imation. Specifically, let HD(R) be HD, with KD
r taken to be zero for r > R. If

ωRk is the associated band structure, how well does ωRk approximate the exact band

structure ωk (shown in Fig. 4.1(b))? This question is answered in Fig. 4.1(c), wherein

we find excellent agreement between ωRk and ωk for R & 1. Theqrefore, even though

the exact dual is not finite-range, we have an approximate finite-range dual in the

sense that UDHU
†
D = HD ' HD(R).

To conclude our analysis of the GHC, we remark that the procedure for com-

puting HD is a generically applicable one. Specifically, if H is a dynamically stable,

translation invariant system with one degree of freedom per-site, the above procedure

can be adapted by simply replacing ψk and ωk with the appropriate quasiparticles
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and band structure, respectively, for the model of interest. Furthermore, based on

the arguments we have given above, we conjecture that if H is gapped, then the dual

Hamiltonian HD will have hopping amplitudes KD
r that decay (at worst) exponen-

tially in r.

4.2.2 A squeezing duality for the bosonic Kitaev chain

In Sec. 3.3.3, it was found that the BKC under generalized BCs exhibits regions of

dynamical stability as a function of boundary parameters (recall Fig. 3.6(a)-(d)). It

follows that, within these regions, there exists a number-conserving dual. That is, to

each value of s and ϕ where H(s, ϕ) is dynamically stable, there is a unitarily equiva-

lent Hamiltonian HD(s, ϕ) with vanishing pairing. There are two main approaches we

can take to construct HD(s, ϕ). The first is to use the exact eigenvectors of G(s, ϕ)

found in Appendix B.2 to construct S directly according to Eq. (4.1). The second

is demand locality of the transformation and utilize the Ansatz in Eq. (4.12). This

approach is mainly motivated by the observation in Ref. [12] that the pairing of the

BKC under OBCs (s = 0), can be removed by a suitable squeezing transformation

aj 7→ cosh(ξj)aj + sinh(ξj)a
†
j, with ξj ∈ R. For this reason, it is natural to expect

a local duality transformation at certain stable BCs. This second approach benefits

from potentially revealing a duality beyond BCs that we have exactly solved.

For concreteness, we will focus on π/2-twisted BCs and combine the analytical

solutions found for J > ∆ and Eq. (4.1). In this case, we find

S(r) ≡
N∑
j=1

~ej~e
†
j ⊗ Sj(r), Sj(r) ≡

 cosh[2(j − j0)r] − sinh[2(j − j0)r]

− sinh[2(j − j0)r] cosh[2(j − j0)r]

 , (4.24)

with j0 = (N+2)/2 and 2r = ln[(J+∆)/(J−∆)]. A priori, this should only provide a

valid positive-definite metric for s = 1. Remarkably, we find that its validity extends

to arbitrary s ∈ [0, 1]. Specifically, the transformation Φ 7→ UDΦU †D = R−1(r)Φ, with
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R−1(r) ≡ S−1/2(r) = S(−r/2), yields

HD(s, π/2) = UDH(s, π/2)U †D =
iJ̃

2

N−1∑
j=1

(
a†j+1aj − a

†
jaj+1

)
− sJ̃

2

(
a†1aN − a

†
Na1

)
.

(4.25)

In the above, J̃ ≡
√
J2 −∆2 is the renormalized hopping amplitude of the dual

Hamiltonian. A number of remarks are in order.

(i) The fact that this duality removes pairing for arbitrary s at ϕ = π/2 constitutes

analytical confirmation that the line ϕ = π/2 in boundary parameter space is

always dynamically stable. That is, we have non-trivially extended the ana-

lytical stability analysis of Sec. 3.3.3 beyond BCs where exact solutions were

obtained.

(ii) Locality of the duality ensures that the bulk (boundary) of H(s, π/2) is mapped

to the bulk (boundary) of HD(s, π/2). As previously mentioned, HOBC
D ≡

HD(0, π/2) was obtained in Ref. [12] by leveraging insights from the physics of

squeezing. In that case, however, the transformation coincides with ours only if

one takes j0 = 0. As it turns out, we find that our duality maps HOBC = H(0, ϕ)

to HOBC
D regardless of the choice of j0, and, in fact, the choice j0 = (N + 2)/2

is only necessary to removing the boundary pairing for s 6= 0. This parametric

freedom (which can even be generalized to allow for j0 to vary spatially) in the

OBC-only duality can be understood as a consequence of the chiral symmetry

in the quasiparticle energy spectrum (recall Eq. (3.40)).

(iii) The duality exhibits rather dramatic behavior as the stability phase transition

J = ∆ is approached. Specifically, the degree of squeezing (quantified by r)

needed to remove the pairing diverges. Such dramatic behavior is consistent

with the discussion of Sec. 4.1.2, whereby it was noted that the duality diverges
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near such points. As J approaches ∆, the strength of the hopping J̃ in the dual

Hamiltonian decays algebraically, until ultimately HD(s, π/2) = 0 at J = ∆.

Since HD(s, π/2) is not zero at J = ∆, this further confirms the invalidity of

the duality at this point.

We conclude our duality-focused analysis of the BKC with a remark regarding the

potential use of the BKC for generating multipartite entanglement. It was noted in

Ref. [12] that the identity HOBC = U †DH
OBC
D UD can be interpreted as follows: first,

U † implements a site-local squeezing transformation; second, HOBC
D acts as a beam-

splitter network (i.e., a photon-number-conserving QBH); and third, UD undoes the

local squeezing of the first step. Since UD is perfectly local, it was observed that the

entanglement properties generated via the beam-splitter step would be left untouched.

This proposal can be greatly generalized through the lens of our more general du-

ality framework. Firstly, such a proposal is valid whenever the associated duality is

site-local (e.g., is of the form Eq. (4.12)). Second, whenever the associated duality

is quasi-local, wherein the transformation couples (either exactly, or approximately)

a finite number of subsystems, one can view the original Hamiltonian as generating

multipartite entangled states with respect to a suitably generalized notion of entan-

glement. Specifically, by considering entanglement relative to a coarse-grained (e.g.,

two-site local) lattice partition to accommodate the locality structure of the dual-

ity transformation [143, 144], one can, in principle, generate multipartite generalized

entangled states using dynamically stable QBHs with pairing.
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Chapter 5

Obstructions to SPT-like physics

in QBHs

In this chapter, we dissect the role of topology in QBHs1 SPT phases of quantum

many-body systems present a paradigm shift from the celebrated Landau-Ginzburg

approach to phase transitions. In the latter, inequivalent phases are characterized

by local order parameters while the transitions between these phases are associated

to spontaneous symmetry-breaking. In sharp contrast, SPT phases are defined via

non-local order parameters, in addition to bulk topological invariants, and do not

exhibit the breaking of symmetries across transitions. Free, or mean-field, fermionic

matter provides one of the simplest, yet non-trivial, venues for exploring the nature

of SPT phases whereby all such phases have been classified in the so-called “tenfold

way”[68]. One of the key features, or signatures, of SPT physics in free fermions are

the emergence of robust edge, or surface, states with various exotic properties. With

1Sec. 5.1 is a result adapted from Ref. [96], which was co-authored with Emilio Cobanera &
Lorenza Viola. The review of the FKC in Sec. 5.2.1 is a readaptation of Kitaev’s original work
in Ref. [63]. Sec. 5.2.2 covers three no-go theorems first proved in Ref. [84], which was jointly co-
authored with Qiao-Ru Xu, Abhijeet Alase, Emilio Cobanera, Lorenza Viola, & Gerardo Ortiz. Fi-
nally, Sec. 5.2.3 contains the bosonic “shadows” first found in Ref. [95] in addition to perspectives
on many-body (non-interacting) bosonic topology later developed in Refs. [97] and [98] - all three of
which were jointly co-authored with Emilio Cobanera & Lorenza Viola.
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this comprehensive understanding of SPT phases of free fermions, one must naturally

ask: what about free bosons? More precisely, to what extent can non-trivial topology

(i) exist within, and (ii) influence the many-body physics of, QBHs.

In order to pursue bosonic analogues of non-interacting SPT phases, we must be

careful to specify the Hamiltonians of interest. A priori, one should simply study the

topological aspects of arbitrary QBHs. However, as we have seen, QBHs may exhibit

instabilities (both thermodynamical and dynamical) that immediately invalidate the

interpretation of them as describing “matter”. After all, we expect bosonic matter

to, at least, have a well-defined ground state. So let us then first focus on thermody-

namically stable QBHs. Furthermore, we must enforce the many-body gap condition

that is so central to non-interacting fermionic SPT physics. Remarkably, these sim-

ple restrictions, which allow for such a rich landscape of fermionic phases, completely

obstruct the possibility for SPT phases in QBHs. This fundamental result manifests

in the form of three no-go theorems which we will summarize in this chapter.

These no-go theorems may come as a surprise to those familiar with the fields

of topological photonics, magnonics, and phononics. Within these fields, topological

band structures analogous to those found in topological insulators and supercon-

ductors have been synthesized (theoretically, and experimentally) in non-interacting

systems of these bosonic excitations [37, 78, 79]. However, all of these examples lack

the many-body features of such phases in one or more phases. Either these systems

are thermodynamically unstable (and thus lack any notion of a ground state or many-

body gap) or feature topological bands away from zero energy (and thus, high energy

surface states when subjected to hardwall boundaries) which, as it turns out, do not

elicit the characteristic ground state degeneracy central to fermionic SPTs. These

systems reveal, however, that topology certainly can play a role in non-interacting

bosonic physics. Beyond the high energy surface states, it is well-known that, if one is

willing to forgo thermodynamic stability and the many-body interpretation, topolog-
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ically mandated surface states at zero energy can emerge. However, these modes are

plagued by an intrinsic dynamical instability that cannot be avoided: they are either

at the cusp of instability, or unstable to begin with. This fact, which we will formalize

more clearly within this chapter, eliminates any potential robustness properties that

one may expect from bosonic analogues to fermionic surface states. Ultimately, QBHs

seem to be staunchly averse to anything resembling the free-fermionic SPT phases.

For these reasons, we will argue that it is necessary to move beyond this, evidently,

overly restrictive, closed-system paradigm, and instead advance one step further in

dynamical complexity by instead considering genuinely open Markovian systems.

The outline of this chapter is as follows. In Sec. 5.1, we leverage the duality of

Ch. 4 to establish a connection between the pseudo-Hermitian generalization of the

Berry phase relevant to bosonic systems, to the standard Hermitian Berry phase

encountered commonly in free fermionic systems. In Sec. 5.2 we assess the degree to

which ‘SPT physics’, understood from the perspective of free fermions, can arise in

free bosons modeled via QBHs. Specifically, after introducing the basic features of

SPTs as exemplified by the fermionic Kitaev chain, we systematically address the

failure of various classes of QBHs to exhibit any true analogous behavior. Along the

way, we uncover bosonic “shadows” of Majorana edge modes present in a suitably

generalized, unstable BKC. We conclude by emphasizing the need to forgo unitarity

if we are to have any hope for realizing SPTs, or at a minimum, SPT-like physics in

a quadratic bosonic setting.

5.1 Topological invariants in the presence of effec-

tive non-Hermiticity

The most commonly encountered topological invariants in translation invariant sys-

tems are derived from a Berry phase accumulated over closed paths in the Brillouin
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zone. These are well-known as the Zak phase in 1D, the Chern number in 2D, and so

on [68]. A great deal of computational power is gained by focusing on non-interacting

systems, whereby the many-body Berry phase can be computed in the single-particle,

or more general, Nambu space. In fermionic systems, the adiabatic transport of a

single-quasiparticle state around the Brillouin zone can be computed in terms of

the Berry phase accumulated by a Bloch state. As it turns out, the effective non-

Hermiticity, or more precisely, pseudo-Hermiticity, intrinsic to QBHs introduces a

non-trivial modification of the standard fermionic paradigm.

Consider a QBH H that is translation invariant and defined on a D-dimensional

infinite lattice. If H is dynamically stable, we may apply Bloch’s theorem and diago-

nalize H, so that H =
∑

k∈K ωn(k)ψ†n,kψn,k +E0, with K the D-dimensional Brillouin

zone (torus), ωn(k) the n’th band, ψn,k the (fermionic or bosonic) quasiparticle anni-

hilation operator associated to band n and crystal momentum k, and E0 the vacuum

energy. If |0̃〉 denotes the quasiparticle vacuum, ψn,k |0̃〉 = 0 for all n and k, then we

may define the single-quasiparticle state |1̃n,k〉 = ψ†n,k |0̃〉. Thinking of the momentum

k as a vector of parameters that we can vary, the Berry phase accumulated over a

loop C ⊂ K is given by

γn(C) ≡ i

∮
C
An(k) · dk, An(k) ≡ 〈1̃n,k|∇k|1̃n,k〉 = 〈0̃|ψn,k∇kψ

†
n,k|0̃〉 , (5.1)

where we have introduced the many-body Berry connection An(k). First, note that

ψn,k∇kψ
†
n,k = [ψn,k,∇kψ

†
n,k] + (∇kψ

†
n,k)ψn,k. (5.2)

Being the commutator of two linear forms, we know that the first term will be a

constant multiple of the identity. Furthermore, since ψn,k |0̃〉 = 0, it follows that

An(k) = 〈0̃|[ψn,k,∇kψ
†
n,k]|0̃〉 . (5.3)
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We can simplify this greatly by making use of the hat notation. Recall that ψn,k =

~̂ψn,k ≡ ~ψ†n,kτ3φk, where ~ψn,k is the eigenvector of the Bloch dynamical matrix g(k)

corresponding to the eigenvalue ωn(k), and φk is the k’th Fourier mode of the bosonic

Nambu array, i.e., φk = (2π)−D
∫
eik·rφr dr in terms of the real space-local Nambu

array φr ≡ [a1,r, a
†
1,r, · · · ]T . It follows that

∇kψ
†
n,k = ∇k

(
φk
†τ3

~ψn,k

)
=
(
∇kφk

†) τ3
~ψn,k + φk

†τ3

(
∇k

~ψn,k

)
= (−ik)φk

†τ3
~ψn,k + φ†k∇k

~ψn,k

= (−ik) ~̂ψn,k
†

+ ∇̂k
~ψn,k

†
.

Recalling that [~̂α, ~̂β
†
] = (~α†τ3

~β)1F , we may compute

[ψn,k,∇kψ
†
n,k] = (−ik)[ ~̂ψn,k, ~̂ψn,k

†
] + [ ~̂ψn,k, ∇̂k

~ψ
†

n,k] =
(
−ik + ~ψ†n,kτ3∇k

~ψn,k

)
1F .

(5.4)

Since
∮

k · dk = 0 over any closed contour, we obtain the final result in the form

γn(C) =

∮
C
AKB
n (k) · dk, AKB(k) ≡ ~ψ†n,kτ3∇k

~ψn,k. (5.5)

Here, we have introduced the Krein-Berry connection AKB
n (k). This connection is the

same one that would emerge if one were to consider parallel transport of a vector in

an indefinite inner-product space with metric τ3, i.e., AKB
n (k) = (~ψn,k,∇k

~ψn,k)τ3 in

terms of the τ3 inner-product (~v, ~w)τ3 ≡ ~v†τ3 ~w. Equivalently, γn(C) is precisely the

geometric phase accumulated by ~ψn,k, a solution to the “Schrödinger-like” equation

g(k)~ψn,k = ωn(k)~ψn,k, when adiabatically transported around the Brillouin zone.

A natural question immediately arises: to what extent does the presence of the

indefinite inner-product in Eq. (5.5), or more broadly, effective non-Hermiticity, lead

to nontrivial behavior of the many-body Berry phase. Dynamical stability affords
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us a method for answering this question. Building on the duality transformation

discussed in Ch. 4, we can attempt to compute this Berry phase in terms of that

of the unitarily equivalent number-conserving dual. Since the dynamical matrix

of a number-conserving QBH is Hermitian, the Berry phase will be computed in

a way analgous to fermionic systems. To be more specific, consider the number-

conserving dual Hamiltonian HD = UDHU
†
D and its associated Bloch dynamical ma-

trix gD(k) = R(k)G(k)R(k)−1, with R(k) the unique positive-definite square root of

the metric S(k) defining the duality transformation. It follows that ~ψDn,k ≡ R(k)ψn,k

is an eigenvector of g(k) corresponding to eigenvalue ωn(k). Hermiticity of the full

dynamical matrix ensures that [g(k), τ3] = 0, so that we can simultaneously diagonal-

ize g(k) and τ3. We can then take, without loss of generality, ~ψDn,k to be an eigenstate

of τ3. Moreover, τ3
~ψn,k = +~ψn,k since (i) the duality preserves Krein signatures2,

and (ii) the association of the annihilation operator ψn,k with ~ψn,k implies ~ψn,k has

positive Krein signature. Ultimately, the Berry phase in the dual system is

γn,D(C) = i

∮
C

~ψDn,k
†τ3∇k

~ψDn,k · dk = i

∮
C

~ψDn,k
†∇k

~ψDn,k · dk = i

∮
C
ABn,D(k), (5.6)

where we have introduced the standard Berry connection of the dual eigenvector

ABn,D(k) ≡ ~ψDn,k
†∇k

~ψDn,k. This connection is precisely what we would encounter when

considering parallel transport in a standard Hilbert space (e.g., in the fermionic case).

So then, how do γn,D(C) and γn(C) differ? To answer this, we analyze the connections.

First,

ABn,D(k) = ~ψDn,k
†∇k

~ψDn,k = ~ψn,k
†R(k)∇k[R(k)~ψn,k]

= ~ψn,k
†S(k)[∇k

~ψn,k] + ~ψn,k
†R(k)[∇kR(k)]~ψn,k.

Referring to the construction of S(k) (see Eq. (4.1)), it follows that τ3S(k)~ψn,k = ~ψn,k.

2Explicitly, if ~v†τ3~v = κ, then ~v′†τ3~v
′ = κ, with ~v′ ≡ R~v follows directly from R†τ3R = 1.
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Rearranging this identity and applying it to the first term in the above, we obtain

ABn,D(k) = ~ψn,k
†τ3[∇k

~ψn,k] + ~ψn,k
†R(k)[∇kR(k)]~ψn,k

= AKBn (k) + ~ψn,k
†R(k)[∇kR(k)]~ψn,k,

or more succinctly,

ABn,D(k)−AKBn (k) = ~ψn,k
†R(k)[∇kR(k)]~ψn,k. (5.7)

In a sense, we have isolated precisely the influence of the indefinite metric, and thus

the effective non-Hermiticity, on the connection. The duality transformation R(k)

defines the degree to which the Krein-Berry connection of the original system differs

from the usual Berry connection of the dual system. With an eye towards topological

physics, this can have concrete physical consequences. For example, suppose one has

a QBH whereby the right hand-side of Eq. (5.7) not only does not vanish, but cannot

be expressed as a total derivative of some function of k. Thus the Berry phase,

which may correspond to a topological invariant like the Zak phase or Chern number,

between the original system and its dual will differ. Employing the bulk-boundary

correspondence (which is valid in this effective non-Hermitian context [80]) means

that, generically, the number of boundary modes that emerge on the edge of the

two systems will differ. Necessarily, imposing the BCs must violate the duality since

unitary equivalence would require that the same number of boundary modes. This

could suggest, for instance, that these additional boundary modes may be associated

to insabilities [85, 86], ultimately preventing the existence of a number conservation-

restoring duality.

As a final remark, the two connections can be shown to coincide whenever we

have [R(k),∇kR(k)] = 0. Under this (rather opaque) assumption, it follows that
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R(k)∇kR(k) = ∇kS(k)/2. Furthermore,

~ψn,k
†[∇kS(k)]~ψn,k = ∇k

[
~ψn,k

†S(k)~ψn,k

]
− 2Re

[
~ψn,k

†S(k)∇k
~ψn,k

]
(5.8)

Recalling that the eigenbasis of the dynamical matrix is orthonormal in the S(k)

inner-product, the first term vanishes. Again using τ3S(k)~ψn,k = ~ψn,k, the second

term can simplified to the real part of ~ψn,k
†τ3∇k

~ψn,k. However, this is manifestly

purely imaginary. To see this, note that since ~ψn,k
†τ3

~ψn,k = 1, we have

0 = ∇k

[
~ψn,k

†τ3
~ψn,k

]
= ~ψn,k

†τ3∇k
~ψn,k + [∇k

~ψn,k]†τ3
~ψn,k = Re

[
~ψn,k

†S(k)∇k
~ψn,k

]
.

(5.9)

5.2 The search for SPT physics in QBHs

5.2.1 Primer: The fermionic Kitaev chain

The results of the previous section indicate that effective non-Hermiticity can man-

ifest in concrete differences between topological features of (quadratic) bosonic and

fermionic systems at the level of edge physics. However, the distinctions are much

more significant. To appreciate this further, let us identify some of the key features

of non-interacting fermionic SPT phases present in a quintessential topological super-

conductor: the fermionic Kitaev chain [63]. In terms of Dirac fermionic creation and

annihilation operators c†j and cj, the Hamiltonian is given by

HFKC ≡ −
N∑
j=1

µc†jcj −
N∑
j=1

(
Jc†jcj+1 −∆c†jc

†
j+1 + H.c.

)
, (5.10)

with µ, J,∆ ∈ R the chemical potential, hopping amplitude, and pairing amplitudes

respectively, and OBCs (PBCs) imposed by taking cN+1 = 0 (c1). The associated
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Bloch Hamiltonian is

hFKC(k) ≡ −2∆ sin(k)σ2 − (µ+ 2J cos(k))σ3 = ~d(k) · ~σ, (5.11)

where we have defined the row vectors ~d(k) = [0,−2∆ sin(k),−(µ + 2J cos(k))] and

~σ = [σ1,σ2,σ3]. In terms of the real vector ~d(k), the topological phase of the

FKC can be most concisely characterized as the values of µ, J , and ∆, such that

~d(k) winds around the x-axis. This condition is equivalent to |µ/2J | < 1 when

∆ 6= 0. Consequentially, the quasiparticle energy gap (which can be computed as

the minimum difference between the two eigenvalues of hFKC(k)) closes at |µ| = 2|J |,

signaling a quantum phase transition.

The implications of this phase transition can be seen most dramatically in the

OBC system. Let us restrict to the special case ∆ = J and change to a Majorana

basis. That is, we define the Majorana fermions γ` via cj = (γ2j−1 + iγ2j)/2. The

OBC Hamiltonian follows as

HFKC = −iµ
2

i∑
j=1

γ2j−1γ2j +
iJ

2

N−1∑
j=1

iγ2jγ2j+1 + const. (5.12)

Right away, the signifance of the point |µ| = 2|J | is made clear - it signals the point

in which the two terms in Eq. (5.12) are of “equal magnitude”. When |µ| < 2|J | (in

the topological phase), one may verify that the operators

γL ≡M(N)
N∑
j=1

δj−1γ2j−1, γR ≡M(N)
N∑
j=1

δN−jγ2j,

M(N) ≡
√

1− δ2

1− δ2(N−1)
, δ ≡ µ

2J
, |δ| < 1,

(5.13)
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satisfy

i[HFKC, γL] = 2M(N)δNJγ2N , i[HFKC, γR] = 2M(N)δNJγ1, (5.14)

along with

{γL, γR} = 0, γ2
L = γ2

R = 1F , (5.15)

with 1F now denoting the fermionic Fock space identity. Let us interpret each equa-

tion separately. Specifying that the system is in the topological phase means that

Eq. (5.13) define two Hermitian operators that are localized on opposite sides of the

chain, each with localization length [ln(|δ|)]−1. Their commutator with the Hamilto-

nian in Eq. (5.14) imply, in particular, that they are exact ZMs of the system in the

infinite-size limit, N →∞. For this reason, we call γL and γR Majorana zero modes.

Finally, Eq. (5.15) states that these operators satisfy the Majorana algebra or, equiv-

alently, c ≡ γL + iγR is a proper Dirac fermion operator. To adopt bosonic language,

we say that these are then canonically conjugate modes. Remarkably then, the oper-

ator c† creates an (approximately, for finite N) zero-energy fermionic (quasi)particle

that is split between the two macroscopically separated ends of the chain. Finally,

it may be shown that no such operators arise in the trivial phase |δ| > 1. Let us

summarize the key properties of these Majorana ZMs.

(i) They are a pair of Hermitian operators that (approximately, for finite N) com-

mute with the Hamiltonian.

(ii) They are normalized to satisfy the Majorana algebra.

(iii) One member of the pair is exponentially localized on the left half of the chain

while the other is exponentially localized on the right half. Both have a charac-

teristic localization length that diverges near the topological phase boundary.

139



(iv) Combining (i)-(iii) allows us to construct a spatially split (Dirac) fermionic

degree of freedom γL + iγR whose real and imaginary components are these

Majorana fermions. This “split” fermion corresponds to a (approximate, for

finite N) zero energy quasiparticle.

Thus far, the Majorana ZMs can be understood as the boundary manifestation of

bulk topology, i.e., a consequence of the bulk-boundary correspondence (BBC). What,

then, are the many-body implications of their existence? Focusing entirely on the

thermodynamic limitN →∞ (which corresponds physically to SIBCs, recall Sec. 2.2),

let us consider the ground state of HFKC at two extremes: (i) µ < 0, J = ∆ = 0

(trivial), and (ii) µ = 0, J = ∆ 6= 0 (non-trivial). In case (i) HFKC = −µ
∑

j c
†
jcj, the

ground state is |0〉, the zero-particle fermionic Fock state. In case (ii), it is useful to

define new fermionic operators dj ≡ γ2j−1 + iγ2(j+1), for j = 1, . . . , N − 1. It follows

that

HFKC = J
N−1∑
j=1

(
2d†jdj − 1

)
(5.16)

and, more importantly, γL = γ1 and γR = γ2N now commute with the Hamiltonian

(see Eq. (5.14) with µ = 0). This commutation implies we have two orthogonal ground

states: the state with zero d-fermions, which we denote by |0̃〉, and

|1̃N〉 = d†N |0̃〉 , dN ≡ γL + iγR = γ1 + iγ2N . (5.17)

A key physical difference between these two states is that they have opposite fermionic

parity. Specifically, |0̃〉 has even parity and |1̃N〉 has odd parity. This ground state

distinction between the trivial and non-trivial phase is surprising because it is not

reflected in the bulk physics. The bi-infinite (or periodic) system has a unique ground

state with even parity on each side of the quantum phase transition. The only dis-

tinction is that of the topological winding number. In this sense, we say that bulk
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ground state has a non-trivial topological invariant in the non-trivial phase. This

analysis extends to general values of µ, J , and ∆.

Let us highlight the broad many-body features of the FKC:

(1) The Hamiltonian is bulk-translation invariant and gapped in the bi-infinite limit

on each side of a phase transition.

(2) There is a topological invariant that distinguishes the bulk ground states on

each side of the phase transition.

(3) When boundaries are imposed, the system has a unique even parity ground state

on one side of the transition, and two orthogonal ground states with opposite

parity on the other side.

In addition to these, we add two points that we have not yet mentioned:

(4) The system enjoys certain many-body symmetries (in this case, particle-hole

cj 7→ c†j).

(5) The bulk topological invariant cannot be changed without either (i) break-

ing some of the above many-body symmetries or (ii) undergoing a quantum

phase transition. Consequently, the Majorana edge modes are robust against

symmetry-preserving perturbations.

These final two points capture the concept of a symmetry-protected topological (SPT)

phase. Features (1)-(5) are generic in non-interacting fermionic SPT phases, and in

fact, all such phases have been classified in the so-called tenfold way [68]. Retrospec-

tively, we identify the emergence of the edge modes with the properties (i)-(iv) above

as a signature of SPT physics in the model. With the lessons of the FKC under our

belt, let us begin our search for SPT physics in QBHs.
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5.2.2 Thermodynamically stable systems

Central to the preceding discussion was the emphasis on ground-state physics. Unlike

fermions, bosonic Hamiltonians need not afford us a ground state to begin with. If

we first demand a comprehensive bosonic analogue to free-fermionic SPT phases, we

naturally must consider only those systems that are thermodynamically stable. The

next two ingredients to add are the conditions laid out in (1) of the preceding section:

bulk-translation invariance and a many-body gap condition. Specifically, we consider

those QBHs whose quasiparticle energy bands ωn(k) are strictly positive (or strictly

negative).

With all of these constraints laid out, we are faced with three no-go theorems

(see Ref. [84] for precise technical statements and proofs). Let H be one such QBH.

Then,

• H can be adiabatically deformed into any other QBH belonging to the same

class without breaking any many-body symmetries or closing the many-body

energy gap.

• ZMs and their higher-dimensional analogues (e.g, surface bands) cannot emerge

upon terminating the system along any hyperplane. Equivalently, the lowest

energy band is always topologically trivial.

• The ground state of any such QBH is always of even bosonic parity, even upon

termination3.

In short: there are no SPT phases in thermodynamically stable, gapped, bulk-

translation invariant QBHs. Does this mean topology plays no role in such systems?

Absolutely not - in fact, higher energy bands can be topologically non-trivial (hence

our foray into the Krein-Berry phase in Sec. 5.1) and, as such, they interesting edge

3More generally, any thermodynamically stable QBH with strictly positive quasiparticle energies
will always have an even parity ground state (see also Eq. (2.68)).
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physics [37, 78–80]. These non-trivial bands, and their associated surface modes,

necessarily cannot impact the ground state physics, however. Furthermore, one may

consider the possibility of zero energy modes emerging as a result of other, non-trivial

BCs (beyond OBCs and its higher-dimensional analagoues). Such modes have been

found to emerge as a result of a nontrivial kernel-preserving map between fermionic

BdG Hamiltonians and bosonic dynamical matrices. However, as we will see in a more

general context below, bosonic ZMs are intrinsically unstable. So even if non-trivial

BCs may host them (e.g., atop boundary impurities), they lack dynamical robustness

to perturbations. Such instability necessarily carries over to the degenerate ground

states formed by exciting these modes on top of the quasiparticle vacuum. Thus, it is

inappropriate to compare them to their fermionic counterparts which, via symmetry-

protection, are intrinsically robust to (symmetry-preserving) perturbations.

5.2.3 Beyond thermodynamic stability: Bosonic shadows of

Majorana fermions

The ground state features of SPT phases are impossible to realize in thermodynami-

cally stable QBHs. If we liberate ourselves from this constraint, can we at least find

bosonic signatures of SPT physics? For example, can we find bosonic analogues of the

Majorana fermions satisfying properties similar to (i)-(iv) from the FKC? In terms of

the other ingredients, bulk-translation invariance can straightforwardly be retained,

whereas the many-body gap condition clearly departs alongside thermodynamic sta-

bility. In fact, things are more dire. The combination of thermodynamic stability and

the many-body gap condition implicitly lead to a dynamically stable system (recall

that only zero energy can support dynamical instabilities in the form of free parti-

cles while demanding thermodynamic stability). Our search thus bifurcates based on

whether we allow for dynamical instabilities or not.

In order to not wander too far from the fermionic paradigm, let us begin by
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demanding dynamical stability. The first step is to generalize the many-body gap

condition to a quasiparticle energy gap condition. That is, we will demand that the

(now positive and negative) energy bands ωn(k) do not cross zero. We justify this

generalization by noting that the existence of a quasiparticle energy gap is equivalent

to the existence of a many-body gap in thermodynamically stable systems. With this

generalization, it turns out that the energy bands around zero energy can become

topologically non-trivial. Consequently, ZMs emerge upon termination of the sys-

tem and are well-known, e.g., in photonic systems [11, 85]. Do these modes escape

the intrinsic instabilities of those found in thermodynamically stable systems under

generalized BCs? No. More specifically, we have the following corollary of Theorem

3.2.2.

Corollary 5.2.1 (Adapted partially from Ref. [80]). Let H be a dynamically stable

QBH that hosts ZMs. Then there are arbitrarily small perturbations that split the

frequencies of these modes into the complex plane, rendering the system dynamically

unstable.

Proof. Let G be the associated dynamical matrix. The assumptions imply that G

is diagonalizable and it has a non-trivial kernel ker G ≡ { ~ψ : G~ψ = 0 }. In fact,

diagonalizability, in addition to the four-fold symmetry of the spectrum, together

imply that the kernel is even-dimensional. Let ~ψ ∈ ker G. If ~ψ has Krein signature

±1, then τ1
~ψ∗ has Krein signature −1 and is also in the kernel. Thus, the zero

eigenvalue hosts a Krein collision and we are done. If ~ψ has zero Krein signature,

then ker G is a τ3-indefinite eigenspace, and we are done 4.

We conclude that, even if such modes are found, they do not constitute valid

bosonic analogues of the fermionic ZMs. They are not robust in any analogous way.

4One may additionally prove that if an indefinite eigenspace does not host Jordan chains, then
it hosts a Krein collision. This is unnecessary for our applications, however.
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As a last stand, we may liberate ourselves from the constraints of both thermody-

namical and dynamical stability. This freedom allows us to welcome the intrinsically

unstable modes as loose analogues to their fermionic cousins. In fact, we can find

“shadows” of the FKC’s Majorana fermions in a modified version of the generalized

BKC of Eq. (3.25). To accomplish this, it helps to recall origin of the FKC’s topo-

logical invariant: it is the winding number of the vector ~d(k), which we will denote

by ~df (k) henceforth. What is the analogous vector for the BKC? Well, the Bloch

dynamical matrix Eq. (3.44) can be written as

g(k) = ~db(k) · ~σ′, (5.18)

with ~db(k) ≡ [J sin(k),∆ cos(k), 0] and ~σ ≡ i[12,σ1,σ2]T . While there are clearly

differences, the vectors ~db(k) and ~df (k) bear resemblance. In fact, if we add a term to

the Hamiltonian, such that ~db(k) = [J sin(k), µ+ ∆ cos(k), 0]T , we can strengthen the

analogy. The term that implements this is a uniform degenerate (onsite) parametric

amplification (DPA) term:

HDPA =
iµ

2

N∑
j=1

(
a†j

2 − a2
j

)
, (5.19)

where µ ∈ R. The full Hamiltonian becomes (under OBCs, for concreteness)

HOBC ≡ HOBC
BKC +HDPA =

1

2

N−1∑
j=1

(
iJa†j+1aj + i∆a†j+1a

†
j + H.c.

)
+
iµ

2

N∑
j=1

(
a†j

2 − a2
j

)
.

(5.20)

It follows that the dynamical matrix is shifted by iµτ1. Recalling that this matrix

commutes with τ1, this implies the normal mode frequencies are split into the complex

plane ωn 7→ ωn ± iµ. Ultimately, the chain is unstable for µ 6= 0. Taking J = ∆ for

simplicity, we find that ~db(k) winds around the z-axis whenever |µ| < |J |. Modulo
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factors of 2, we see that the DPA term plays exactly the same role as the chemical

potential in the FKC. Consequentially, we uncover two Hermitian modes

γL ≡M(N)
N∑
j=1

δj−1xj, γR ≡M(N)
N∑
j=1

δN−jpj,

M(N) ≡
√

1

NδN−1
, δ ≡ − µ

2J
, |δ| < 1

(5.21)

which satisfy

i[HOBC, γL] = −M(N)δNJxN , i[HOBC, γR] = −M(N)δNJp1, (5.22)

along with

[γL, γR] = i1F . (5.23)

These equations constitute direct bosonic analogues to Eqs. (5.13)-(5.15), with two

accommodations made. First, the odd and even Majoranas fermions γ2j−1 and γ2j

are replaced with the real and imaginary quadratures xj and pj. Second, the normal-

ization constant is modified in order to accommodate Heisenberg-Weyl commutation

relations, i.e., the bosonic analogues of the Majorana fermion algebra. With these,

we obtain bosonic “shadows” of Majorana fermions in a generalized bosonic Kitaev

chain. Retrospectively, however, we have abandoned almost all other connections to

free-fermionic SPT physics.

To what extent can we restore these connections? Is there any sense in which a

quadratic bosonic system can display signatures of SPT physics and at least some of

the properties (1)-(5) detailed before? The answer is Yes, but requires we forgoe a

more subtle assumption made so far: unitarity. In the next part of this thesis, we will

consider open bosonic quadratic systems. By establishing a conceptual correspon-

dence between the ground state and the steady state, and the many-body gap with
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a suitably defined Lindblad gap, we will ultimately uncover tight bosonic analogues

of fermionic edge modes while maintaining a compelling many-body picture.
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Part II

Signs of genuine SPT Physics in

Open Bosonic Systems
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Chapter 6

Background: Quadratic bosonic

Lindbladians

This chapter constitutes the open (Markovian) counterpart to Ch. 2.1 Leading up to

this point, we have ultimately concluded that tight bosonic analogues of free-fermionic

SPT physics cannot exist in any satisfactory way in a strictly closed-system, or unitary

setting. While one-parameter unitary families can describe continuous-time quantum

dynamics, they are not the most general model. Instead, one may consider a one-

parameter of completely positive trace-preserving maps, which in turn, are the most

general maps that preserve the interpretation of a density operator as a quantum state.

While characterizations of such families exist (e.g., via a Kraus representation), they

are generically difficult to describe without additional restrictions. A mathematically

natural requirement, which is also physically motivated for a large class of dynamical

systems, is that our family obey a forward composition, or Markov, law. Such a law

engenders a “memoryless” nature to the dynamics, i.e., the future configuration of a

1This chapter contains an elementary introduction to quantum Markovian systems that can be
found in standard texts on open quantum systems, e.g., Ref. [45]. The discussion of conserved
quantities and symmetries summarizes key results and observations from Refs. [145–149]. While
our approach to quadratic Lindbladians more closely follows works like Ref. [90], there exists an
alternative approach, known as third quantization, first developed in Refs. [87, 88] for fermions, and
Ref. [89] for bosons. Notably, our use of the word rapidities is specifically derived from these works.
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quantum state is determined exclusively by its present configuration. These families,

also called quantum dynamical semigroups (as they obey the mathematical axioms

of a semigroup), are in turn characterized by an infinitesimal generator known as

the Lindbladian. Specifically, the quantum state obeys a master equation, called the

Lindblad master equation, defined by this generator. Notably, such master equations

arise naturally when evaluating the reduced system dynamics of a system coupled

to a bath, specifically when various physically motivated approximations (e.g., Born,

Markov, secular) are made.

One immediate consequence of forgoing unitarity is the loss of a simple character-

ization of the relationship between conserved quantities and symmetries. For unitary

systems, a conserved quantity always generates a one-parameter (unitary) symmetry

group, while to each continuous symmetry group, there exists a family of conserved

generators. This latter statement is essentially a non-relativistic quantum incarnation

of Noether’s theorem. In Markovian systems, conserved quantities are described as

those operators whose expectation values are time-independent in arbitrary states.

Symmetries, on the other hand, bifurcate into “weak” and “strong” symmetries [145–

147]. Both incarnations are represented by unitary or antiunitary operators (via

Wigner’s theorem) that leave the dynamics invariant. However, unlike strong sym-

metries, weak symmetries do not separately leave the “coherent” and “incoherent”

components of the dynamics invariant. As a consequence, continuous families of weak

symmetries need not be generated by conserved quantities, while families of strong

symmetries are. Surprisingly, however, this does not mean that every conserved quan-

tity generates a family of strong symmetries, or any family of symmetries, for that

matter. The lacking of any clear correspondence between conserved quantities and

SGs, in this sense, represent a sort-of “breakdown” of Noether’s theorem in Marko-

vian systems. To this end, various attempts have been made to characterize this

breakdown and explore to what extent it may be restored [148].
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Refocusing on bosonic systems, Markovian dynamics on our multimode bosonic

Fock spaces should be modeled by a Lindblad generator that is defined in terms of

the relevant creation and annihilation operators. If we are to maintain the “non-

interacting” essence of QBHs, it is natural to consider those Lindbladians that gen-

erate Gaussian transformations on the Fock space. Such Lindladians generate Gaus-

sian quantum Markov semigroups [92, 150] which are especially relevant for modeling

dissipation in quantum optical systems [9], noise processes in continuous variable

quantum information [18], and the dynamical behavior bosonic matter coupled to

thermal baths [151], among other things. Techniques for studying such systems vary

greatly. One of the more popular approaches is known as third quantization which

begins by defining superoperator analogues of the creation and annihilation operators,

and then diagonalizing the Lindbladian in terms of these third quantized “quasipar-

ticles” [89]. The notion of quasiparticle energies generalizes to what are known as

rapidities, which constitute the fundamental building blocks of the Lindbladian spec-

trum. While this formalism is extremely useful, we will instead focus explicitly on the

Heisenberg equations of motion for the creation and annihilation operators (and their

quadratic counterparts), and thus, remain in a “second quantized framework”. Such

a perspective will ultimately prove sufficient for uncovering non-trivial topological

physics in these systems. Thankfully, these equations of motion are well-studied [90]

and are known to contain all of the relevant information (for our purpose) about the

dynamics.

The outline of this chapter is as follows. In Sec. 6.1 we cover the basic features

of Markovian open quantum systems, including spectral and convergence properties

in addition to the essential aspects of their conserved quantities and symmetries.

In Sec. 6.2, we identify the Markovian open-system dynamics we are interested in,

i.e., those whose dynamical maps are defined by Lindbladians that are quadratic in

creation and annihilation operators. Working primarily in the Heisenberg picture, we
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write down the equations of motion for linear and quadratic forms (with applications

of the “hat map” of Sec. 2.3.3 specifically emphasized), discuss stability and relaxation

criteria, and present a simple single-mode example to demonstrate the key aspects

of the formalism. Finally, we briefly describe the roles of translational symmetry

and BCs in these Lindbladians and thus generalize Sec. 2.5 to the genuinely open

Markovian setting.

6.1 The Lindblad formalism

The dynamics of Markovian (“memoryless”) open quantum systems are described

by quantum dynamical semigroups (QDSs). Such semigroups are built from a one-

parameter family completely positive trace-preserving (CPTP) maps {Et}t≥t0 that

constitute a semigroup, namely, in the simplest time-homogeneous case, they obey

a forward (Markov) composition law, Et ◦ Es = Et+s, with Et0 = I. Underlying this

notion are technical assumptions on continuity and boundedness that we will not

state, nor dwell on. Notably, unitary dynamics provide QDSs, but a given QDS need

not, and typically does not, take the form Et(ρ) = U(t)ρU †(t) with U(t) unitary.

Moreover, one may arrive at this class of dynamics in two distinct ways: (i) as a

description for the reduced system dynamics starting from a microscopic system-bath

Hamiltonian and making a series of approximations (Born, Markov, secular), or (ii)

as a phenomenological description of a given open quantum system. The class of

bosonic models we will consider arise most commonly following approach (ii).

Henceforth, we will take t0 = 0 for convenience, so that the initial state ρ(0) = ρ.

Given a QDS, the time-dependence of ρ is given by ρ(t) = Et(ρ) ≡ etL(ρ), with

the Markovian generator L (or “Lindbladian”) obeying the Lindblad master equation
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(LME)

d

dt
ρ(t) = L(ρ(t)), t ≥ 0, L(ρ) = −i[H, ρ] +

d∑
n=1

(
LnρL

†
n −

1

2
{L†nLn, ρ}

)
. (6.1)

Here, H is self-adjoint and the {Ln}dn=1 is a set of d (typically not self-adjoint) op-

erators called Lindblad, or noise operators. Physically, the operators Ln encode the

dissipative effect of the coupling to the environment. It is often convenient to separate

the “unitary” contribution, i.e., the Hamiltonian commutator, and the “non-unitary”,

or dissipative, portion, which we will denote by D(ρ).

While specifying H and {Ln}dn=1 yields a particular Lindbladian, such a represen-

tation need not be unique. Two well-known invariance properties are that of unitary

rotation of the Lindblad operators Ln 7→ L′n =
∑d

m=1 UnmLm, with U a d×d unitary

matrix, and the more complicated inhomogeneous transformation

H 7→ H ′ = H +
1

2i

d∑
n=1

(
znLn − z∗nL†n

)
+ a1S, Ln 7→ L′n = Ln + z∗n1S, (6.2)

with zn ∈ C, a ∈ R, and 1S the system identity operator. However, it is often

convenient to work within a fixed representation.

Just as for closed-system dynamics, we can define an equivalent Heisenberg picture

of the dynamics. We define the time-dependence of an arbitrary observable B = B† 7→

B(t) implicitly by stipulating that the expectation value tr[B(t)ρ] must be equal to

tr[Bρ(t)] for any initial state ρ(0) = ρ. Defining the Hilbert-Schmidt inner-product

〈X, Y 〉HS ≡ tr[X†Y ], we see2 that B(t) = E?t (B), with ? denoting the Hilbert-Schmidt

adjoint, satisfies the stated requirement of a Heisenberg picture. One may verify that

{E?t }t≥0 is a unital (E?t (1S) = 1S) semigroup that may be written as E?t = etL
?
. The

2To be more specific, expectation values of observables B = B† may be written as 〈B〉 (t) =
〈B, ρ(t)〉HS = 〈B, Et(ρ)〉HS = 〈E?t (B), ρ〉HS, by definition of the adjoint of an operator in an inner-
product space.
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Heisenberg EOM follows naturally as

d

dt
B(t) = L?(B(t)), t ≥ 0, (6.3)

with the Hilbert-Schmidt adjoint of the Lindbladian taking the form

L?(B) = i[H,B] +
d∑

n=1

(
L†nBLn −

1

2
{L†nLn, B}

)
, (6.4)

which consequently satisfies L?(1S) = 0 and L?(B†) = [L?(B)]†. These two properties

are Heisenberg-picture restatements of trace preservation and adjoint preservation,

respectively.

Before moving to specific features of Lindbladian dynamics, let us consider an

alternative form for Lindbladians. Namely, suppose we have a set of system operators

{Aj}d
′
j=1, that have particular physical relevance to the problem at hand (for example,

the system Hamiltonian3 may be a simple function of these operators). Suppose

further than we can express the Lindblad operators Ln in terms of these operators4,

i.e., Ln =
∑d′

j=1 `jnAj, with `jn ∈ C. With this, we obtain the Gorini-Kossakowski-

Sudarshan (GKS) representation of the Lindbladian

L(ρ) = −i[H, ρ] +
d′∑

j,k=1

Mjk

(
AkρA

†
j −

1

2
{A†jAk, ρ}

)
, Mjk =

d∑
n=1

`∗jn`kn. (6.5)

Here, the GKS matrix M is a d′ × d′ positive-semidefinite matrix. Equivalently, M

3We will often refer to H as the “system Hamiltonian”. This should be understood simply as
shorthand, and not as a statement that H is the system contribution to the hypothetical full system-
bath Hamiltonian. Typically, due to the so-called “Lamb shift” correction, microscopic descriptions
of LME’s produce representations where H differs from the bare system Hamiltonian.

4In a finite-dimensional setting (say, with dimension D), it is common practice to choose the
Aj to be an orthonormal (with respect to the Hilbert-Schmidt inner-product) basis for the (D2 −
1)-dimensional operator space. It follows that the Hamiltonian and the Lindblad operators are
expressible as linear combinations of these operators.
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is defined implicitly via the equation

d∑
n=1

L†nLn =
d′∑

j,k=1

MjkA
†
jAk, (6.6)

where the object on the left hand-side is sometimes known as the parent Hamiltonian

of the dissipator [72]. In the Heisenberg picture,

L?(B) = i[H,B] +
d′∑

j,k=1

Mjk

(
A†jBAk −

1

2
{A†jAk, B}

)
. (6.7)

Here it is convenient to introduce more notation, namely, D[A,B](ρ) = AρB −

{BA, ρ}/2 and D[A] = D[A,A†]. Now, unlike the unitary case, Markovian dynamics

generically do not factor. That is, if B and C are fixed operators, then, generically,

(BC)(t) 6= B(t)C(t). An important consequence is the following: if {Bj} is a set

of operators that generate the observable algebra of interest (i.e., every observable

of interest is a linear combination of arbitrary degree products of the Bj operators),

then the dynamics of all observables need not follow immediately from the dynamics

of the generators Bj(t).

6.1.1 Spectral and convergence properties

If the system Hilbert space is finite dimensional, say of dimension D, then the LME

describes an LTI equation of motion whose generator L may be thought of as non-

Hermitian linear operator acting on a D2-dimensional space. As such, we always

can find a discrete set of distinct eigenvalues λ1, . . . , λM , with M ≤ D2, of L. It

is well-known that (i) zero is always one of these eigenvalues, (ii) Re[λm] ≤ 0 for

all m = 1, . . . , N , and (iii) for each eigenvalue λm, there is another eigenvalue λ∗m.

The first property implies that there exists at least one steady state ρss satisfying

L(ρss) = 0. The second property ensures that any initial condition ρ(0) = ρ will
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asymptotically relax to a particular manifold built from those (possibly generalized)

eigenvectors with purely imaginary eigenvalues. If the only eigenvalue of L, with

Re[λm] = 0 is zero, then property (ii) guarantees all initial states will relax to the

steady state manifold, i.e., the kernel of L. To this end, it is useful to define the

Lindblad, spectral, or dissipative gap,

∆L = | sup Re[σ(L) \ {0}]| ≥ 0, (6.8)

i.e., the closest distance between the imaginary axis and the set of nonzero eigenvalues

of L. Physically, ∆L sets the asymptotic decay rate through the inequality

dmix(t) = sup
ρ(0)

inf
σ
{‖Et(ρ(0))− σ‖tr : L(σ) = 0} ≤ Ke−∆Lt. (6.9)

That is, the worst case distance (here, the trace distance ‖A‖tr = tr[
√
A†A]) from

the steady state manifold is bounded above by an unspecified constant K times a

factor decaying exponentially when ∆L > 0. In short, the asymptotic convergence

to the steady state manifold is exponential when the gap is nonzero. From here it is

standard to define the mixing time5 tmix(ε) which is defined as the time it takes for

the worst-case distance dmix(t) to fall below a prescribed accuracy ε. Such a quantity

is a crude, but useful tool for characterizing the transient (pre-asymptotic) dynamics.

A crucial assumption made so far is that of finite dimensionality. At each stage of

the QDS discussion, major results breakdown once the possibility for infinite dimen-

sionality is opened up. At the fundamental level, it is not even necessarily the case

that there exists a generator of the form in Eq. (6.1) if certain boundedness assump-

tions on the QDS are not obeyed [152]. Even when one stipulates a generator of that

form, infinite-dimensionality allows for major differences in the spectral properties.

5The mixing time is a rather general concept in dynamical (both continuous and discrete) dynam-
ical system theory. Here, we only discuss its specific definition for (quantum) Markovian semigroups.
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Firstly, the spectrum may develop a continuum component (something that is not-so

surprising from the Hamiltonian perspective). Secondly, of the three stated proper-

ties (i-iii) of the Lindblad spectrum, only (iii) carries over, in general. As we will see

with bosonic systems, an unbounded Lindbladian acting on an infinite-dimensional

space can lack any steady state and its adjoint can possess spectra in the right half

plane. These possibilities, while seemingly “bugs” in the approach, have actually

turned out to be extremely useful features for modeling common systems of interest.

For example, these more “exotic” LMEs are often employed to model a wide class

of amplification phenomena arising in quantum optical systems due to both coherent

and incoherent gain mechanisms (e.g., two- and one- photon driving, respectively).

Since our primary focus is bosonic physics, we will be forced to grapple with these ex-

otic features and explore to what extent infinite-dimensionality may break commonly

held intuitions about Markovian dynamics.

6.1.2 Symmetries and conserved quantities in Markovian sys-

tems

The definitions of symmetries and conserved quantities in closed systems is straight-

forward textbook material. By Wigner’s theorem, a symmetry of a physical system

is represented by a unitary or antiunitary operator that commutes with the Hamilto-

nian. Similarly, a conserved quantity is an observable (a self-adjoint operator) that

commutes with the Hamiltonian. There are even correspondences between the two

concepts. The first is that, to each continuous family of (necessarily) unitary sym-

metries, there is an associated conserved quantity. That is to say, such a family can

be written as U(θ) = eiθQ, with θ ∈ R and Q a conserved quantity. This constitutes

a realization of Noether’s theorem in non-relativistic quantum mechanics. More or

less surprising is the converse: to each conserved quantity Q, there is a continuous

family of symmetries U(θ) = eiθQ. Proofs of both directions are trivial in standard
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Hamiltonian quantum mechanics.

The landscape of symmetries and conserved quantities becomes much richer for

open quantum systems, even in the simplest case of Markovian dissipation [147, 149].

Immediately, one is met with two distinct notions of symmetry: weak and strong.

A weak symmetry is a unitary or antiunitary operator S that leaves the dynamics

invariant, i.e.,

Et(SρS−1) = SEt(ρ)S−1. (6.10)

Equivalently, the superoperator S(ρ) ≡ SρS−1 commutes with Et for all t. Continuity

of Et allows us to restate this in terms of the generator L, namely [S,L] = 0. When

further specification is not particularly relevant, we simply refer to weak symmetries

as symmetries. Suppose we have a continuous family of (necessarily) unitary operators

U(θ) = eiθG, with G = G†. Each U(θ) is a weak symmetry if and only if

L([G, ρ]) = [G,L(ρ)], ∀ρ. (6.11)

That is, G generates a family of weak symmetries if and only if the adjoint action of

G, i.e., [G, ·], commutes with L. The equivalent condition in the Heisenberg picture

is

L?([G,A]) = [G,L?(A)], ∀A, (6.12)

where A is an arbitrary system operator.

Given a Lindbladian with a representation in terms of H and {Ln}dn=1, we further

define a strong symmetry as a unitary or antiuntary operator S that satisfies

[H,S] = 0, [Ln, S] = 0, n = 1, . . . , d. (6.13)

158



One can immediately verify that every strong symmetry is a weak symmetry. Further-

more, if H ′ and {L′n}d
′
n=1 is a representation obtained via the invariance transformation

mentioned in the previous section, then [S,H ′] = [S, L′n] = 0. A continuous family of

(necessarily) unitary operators U(θ) = eiθG provide a family of strong symmetries if

and only [G,H] = [G,Ln] = 0 for all n.

Finally, a conserved quantity is a self-adjoint operator Q that satisfies

L?(Q) = 0 (6.14)

The immediate implication is that 〈Q〉 (t) = 〈Q〉 (0) in any state. In stark contrast to

Hamiltonian systems, this does not imply all moments 〈Qn〉 (t) are time-independent.

Conservation of all moments instead requires that both Q and Q2 are conserved [148].

The connection between conserved quantities and symmetries is not nearly as

straightforward as it is in the Hamiltonian case. Firstly, there is no direct correspon-

dence between generators of weak symmetries and conserved quantities, as evidenced

by the differences in conditions Eq. (6.11) and Eq. (6.14). We refer to this lack of cor-

respondence as a breakdown of Noether’s theorem (and its converse) in Markovian

systems. However, there is a one-to-one correspondence between generators of strong

symmetries and conserved quantities Q with all moments conserved.

6.2 Quadratic bosonic Lindbladians

The open system dynamics we concern ourselves with are generated by purely quadratic

bosonic Lindbladians. Such Lindbladians may be represented by a purely QBH H and

Lindblad operators Ln that are linear in creation and annihilation operators. The re-

striction that the Ln are linear ensures that the Lindbladian itself, which is bilinear in

the Ln’s, will be quadratic. We further comment that specifying that the Lindbladian

be purely quadratic, rather than at-most quadratic (e.g., by including linear terms
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in the Hamiltonian or constant shifts in the Lindblad operators), follows from the

same motivation as in the Hamiltonian case: (i) the inhomogeneous transformation

Eq. (6.2), combined with the methods detailed in Sec. 2.3 for removing linear terms

in quadratic Hamiltonians, can typically be combined to remove linear terms and

(ii) restricting to purely quadratic systems ensures parity is a (weak) symmetry, thus

ensuring we are on level ground for direct comparison to fermionic systems. Such

purely quadratic Lindbladians will be henceforth referred to as quadratic bosonic

Lindbladians (QBLs).

6.2.1 Equations of motion

To be more concrete, our Lindbladians are defined by a QBH H = 1
2
Φ†τ3G0Φ, with

G0 the Hamiltonian dynamical matrix and Lindblad operators Ln =
∑N

j=1 `jnΦj, with

`jn ∈ C and d the number of Lindblad operators. The 2N × 2N GKS representation

of L is then

L(ρ) = −i[H, ρ] +D(ρ) = −i[H, ρ] +
2N∑
j,k=1

Mjk

(
ΦkρΦ†j −

1

2
{Φ†jΦk, ρ}

)
, (6.15)

with the 2N × 2N GKS matrix defined according to the previous section, i.e., Mjk =∑
n `
∗
jn`kn. The Heisenberg picture Lindbladian follows as in Eq. (6.7).

The formulation of Markovian bosonic dynamics is more efficiently captured in

the Heisenberg picture. In particular, the dynamics of the Nambu array Φ are given

by

d

dt
Φ(t) = L?(Φ(t)) = −iGΦ(t), G = G0 − iτ3F(M). (6.16)

In terms of similarities with the Hamiltonian case (Eq. (2.43)), we have an LTI sys-

tem with a non-Hermitian generator G, for which we will retain the name dynamical
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matrix. Furthermore we retain the property τ1G
∗τ1 = −G and hence the associ-

ated spectral symmetry σ(G) = −σ(G)∗. One important difference reveals itself

in the generic lack of pseudo-Hermiticity (and hence the lack of conjugate spectral

symmetry). Specifically, the dissipator contributes an anti-pseudo-Hermitian term

−iτ3F(M), i.e.,

τ3G
†τ3 = G0 + iτ3F(M). (6.17)

In the case where this term vanishes (i.e., the fermionic projection of M vanishes),

pseudo-Hermiticity is retained. In this case one may verify that L(1F) = 0, i.e., the

dynamics is unital. However, infinite-dimensionality prevents the interpretation of

1F as a quantum state, as it is not trace-class. At the opposite end of the spectrum,

if G0 = 0 (or equivalently H = 0), the dynamical matrix is purely anti-pseudo-

Hermitian. The mathematical development of pseudo-Hermitian matrices can then

be brought over without issue.

The bosonic and fermionic projections of M play distinct roles in the dissipator.

Specifically, if we write M = B(M) +F(M), and leverage the CCRs, one may verify

that

D?(B) =
1

2

2N∑
i,j=1

B(M)ij

([
[Φ†i , B],Φj

]
+
[
Φ†i , [A,Φj]

])
(6.18)

+F(M)ij

({
[Φ†i , B],Φj

}
+
{

Φ†i , [A,Φj]
})

. (6.19)

If B is a monomial in Φj of degree d, i.e., B is a product of d creation and anni-

hilation operators, then the CCRs imply that the first term reduces the degree by

2 while the second preserves the degree. This follows from the algebraic fact that

(anti)commuting a degree d operator with a creation or annihilation operator will

output a degree d − 1 (d + 1) operator. Thus, the bosonic projection of M is re-
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sponsible for connecting the degree d and degree d− 2 sectors of the operator algebra

while the fermionic projections leave the degree d sector invariant. While this under-

standing is consistent with the in-built (weak) parity symmetry, there is a notable

exclusion of coupling between degree d and d+2 operators6. Consequentially, the dy-

namics of linear forms can only contain contributions from F(M), as we have seen in

Eq. (6.16). The equations of motion for quadratic operators have no such restriction.

Let Qij = ΦiΦ
†
j be the array of all products of creation and annihilation operators.

Observe that the CCRs yield F(Q) = (τ3/2)1F . Thus expectation values of Q are

uniquely determined by those of B(Q)ij = {Φi,Φ
†
j}/2. The equations of motion for

these operators are

d

dt
B(Q(t)) = L?(B(Q(t))) = −i

(
GB(Q(t))− B(Q(t))G†

)
+ τ3B(M)τ3 1F . (6.20)

As expected from Eq. (6.18), F(M) (present in G) connects the degree 2 operators

B(Qij) to other degree 2 operators and B(M) connects B(Q) to the degree 2− 2 = 0

operator 1F .

Equations (6.16) and (6.20) can be leveraged to find the time-dependence of the

mean vector and covariance matrix of a given state ρ. Following from Eq. (6.16), the

mean vector at time t is given by ~mρ(t) = e−iGt ~mρ(0). The covariance matrix is a

bit less straightforward. Firstly, note that Cρ(t) = tr[ρ(t)B(Q)] − ~mρ(t)~mρ(t)
† from

which it follows that

d

dt
Cρ(t) = −i

(
GCρ(t)−Cρ(t)G

†)+ τ3B(M)τ3. (6.21)

The solution to this equation is

Cρ(t) = e−iGtCρ(0)eiG
†t +

∫ t

0

e−iGsτ3B(M)τ3e
iG†s ds. (6.22)

6Such an exclusion is not present in quadratic fermionic Lindbladians.
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In particular, if ρ(0) = ρ is a Gaussian state with mean vector ~mρ(0) and covari-

ance matrix Cρ(0), then ρ(t) will be a Gaussian state with mean vector ~mρ(t) and

covariance matrix Cρ(t). Gaussianity preservation follows from the quadratic nature

of the generator. That is to say, the semigroups generated by QBLs are examples of

Gaussian quantum Markov semigroups [92, 150].

We conclude by exploring the interplay between the mappings of Sec. 2.3.3 and

the Lindbladian. Given a vector ~α and the associated linear form ~̂α, we have

L?(~̂α) = îG̃~α, G̃ = τ3G
†τ3, (6.23)

in terms of the associated dynamical matrix G̃. In other words, the (contravariant)

dynamics of ~̂α are determined by the equation of motion

d

dt
~α(t) = iG̃~α(t). (6.24)

Here we see that the pseudo-Hermitian conjugate of G, i.e., G̃ = τ3G
†τ3 plays

an explicit role in determining the dynamics of generic linear forms. Only when

F(M) = 0 (e.g., in the dissipation-free case) is the EOM of ~α generated by the same

matrix as that of Φ. The dynamical matrix itself instead appears in a more subtle

identity:

L([~̂α, ρ])− [~̂α,L(ρ)] = [îG~α, ρ] or L?([~̂α, A])− [~̂α,L?(A)] = −[îG~α,A], (6.25)

where ρ (A) is an arbitrary state (system operator). This identity serves as the

starting point for assessing the invariance of the dynamics under certain Weyl dis-

placements (see Sec. 7.1).
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6.2.2 Stability criteria and asymptotic relaxation

The rich stability landscape of QBHs is modified in a non-trivial way due to the

presence of Markovian dissipation. While, there is no clear generalization of thermo-

dynamic stability for QBLs, the definition of dynamical stability formally carries over

without issue. We say a QBL is dynamically stable if the expectation values of arbi-

trary observables in an arbitrary state remain bounded for all time. What changes,

in comparison to the Hamiltonian case, is the approach to diagnosing dynamical

stability.

At this stage it is convenient to introduce the notion of a rapidity. The rapidities,

or rapidity spectrum, of a QBL are defined to be the eigenvalues of 7 −iG. The ra-

pidities serve as a useful generalization of the normal mode frequencies in QBHs. In

fact, they occupy a role similar to that of quasiparticle energies in quadratic Hamil-

tonians. Techniques such as “third quantization” [89, 91] reveal that, if a QBL has a

steady state, then the spectrum of the Lindblad operator itself is given by

σ(L) =
{∑

j

njλj : nj ∈ Z≥0, λj ∈ σ(−iG)
}
. (6.26)

Just as quasiparticle energies are the building blocks of the many-body energies, i.e.,

the Hamiltonian spectrum, the rapidities are the building blocks of the Lindblad

spectrum. In the Hamiltonian case, the mapping between quasiparticle energies and

many-body energies relied heavily on dynamical stability. Here, it appears that the

condition “there exists a steady state” serves an analogous purpose. As it turns out,

the existence of a steady state implies dynamical stability for QBLs[91]. Equivalently,

dynamically unstable QBLs always lack a steady state. This is actually rather sur-

prising. One may expect that a system can support both states that amplify and

7The factor of −i distinguishing rapidities from the normal mode frequencies of QBHs follows
from the natural notion that the Lindbladian, in the closed-system limit, involves −iH rather than
H itself. This factor also implies that the symmetry σ(G) = −σ(G)∗ leads to a conjugate symmetry
in the rapidity spectrum.
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states that relax, but this is not the case.

In an effort to be more quantitative in our assessment, we define the stability gap,

∆S ≡ max Re(σ(−iG)). (6.27)

From Eq. (6.16), we see that if ∆S > 0, then the system is dynamically unstable

and, consequentially, lacks a steady state. Beyond this case, we must assess what

is required of a hypothetical steady state ρss. Such a state must have a stationary

mean vector ~mss = ~mρss and a stationary covariance matrix Css = Cρss . If such a pair

exists, then the Gaussian state uniquely defined by ~mss and Css is automatically a

steady state. The explicit stationarity conditions are

−iG~mss = 0, −i(GCss −CssG
†) + τ3B(M)τ3 = 0. (6.28)

The first condition just says that ~mss is either a zero eigenvector of G, or simply ~mss =

0. The second condition is an example of a Lyapunov equation, AX + XA†+ Q = 0,

with A = −iG and Q = τ3B(M)τ3 ≥ 0. A given Lyapunov equation, which may

be understood as a linear system of equations for the matrix elements of X, has

either (i) a unique positive-semidefinite solution, (ii) infinitely many solutions, or (iii)

zero solutions. Case (i) explicitly requires that the coefficient matrix A is Hurwitz,

i.e., its spectrum lies strictly in the left half-complex plane (each eigenvalue has a

strictly negative real part). For QBLs, this means that if ∆S < 0 then there is a

unique positive-semidefinite solution Css. Furthermore, if ∆S < 0, then ~mss = 0.

Consequently the unique steady state is the Gaussian state with vanishing mean

vector and covariance matrix given by the unique solution to the Lyapunov equation.

If ∆S = 0, then −iG is not Hurwitz and we have either case (ii) or (iii). In any case

where a steady state exists, Eq. (6.26) reveals that ∆L = |∆S|, so that the stability

gap sets the asymptotic relaxation rate. Thus, there are either infinitely many steady
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Stability gap Dynamical stability Steady state(s)

∆S < 0 Stable One
∆S = 0 Stable or unstable Infinitely many or none
∆S > 0 Unstable None

Table 6.1: The relationships between the stability gap ∆S of a QBL, its dynamical
stability, and the nature of its steady state(s).

states (and hence the system is stable) or no steady states. The results of this analysis

are summarized in Table 6.1.

6.2.3 An elementary example

To ground the discussion of QBLs, let us take a moment to emphasize the key concepts

in a simple single-mode setting. First, consider the QBL defined by a harmonic

oscillator Hamiltonian H = ω(a†a+ aa†)/2, with ω ≥ 0, and two Lindblad operators

L− ≡
√

2κ−a and L+ ≡
√

2κ+a
†, with κ± ≥ 0. Physically, L− (L+) encodes single-

photon loss (gain) at a rate κ− (κ+). The dynamical and GKS matrices follow as

G =

ω − iκ 0

0 −ω − iκ

 , M =

2κ− 0

0 2κ+

 , (6.29)

where we have defined the net loss rate κ ≡ κ− − κ+. Notably, G only depends on

the net loss rate and not the individual rates themselves. The rapidities follow as

λ± = −κ± iω and so the stability gap is ∆S = −κ. The system is then dynamically

stable for κ− > κ+ and unstable for κ− < κ+. The case κ− = κ+ is more subtle and

requires we assess the existence of a steady state.

Consider first the case where κ− > κ+ (so that ∆S < 0). It follows that the

Lindblad spectrum is given by σ(L) = {n+λ+ + n−λ−}n±∈Z≥0
. Furthermore, the

steady state is unique and is Gaussian with mean vector ~mss = [0, 0]T and covariance
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matrix given by,

Css =
κ− + κ+

2(κ− − κ+)
12, (6.30)

which one may verify satisfies Eq. (6.28). In particular, the total boson number con-

verges to 〈a†a〉ss = (Css)11 − 1/2 = κ+/(κ− − κ+).

The case where κ− = κ+ (i.e., κ = 0) is more subtle. If it happens that κ− = κ+ =

0, then we are left with only coherent dynamics of the oscillator. Formally speaking,

there are then infinitely many steady (or perhaps more properly in this context,

stationary) states. For example, L(|n〉 〈n|) = 0 for all Fock states |n〉. However, if

κ± 6= 0, then the system is dynamically unstable, and thus, lacks a steady state.

Instability may be verified explicitly by solving Eq. (6.21) when κ+ = κ− 6= 0. Doing

so, we find that, for example, the total number is given by

〈a†a〉 (t) = 2κ+t+ 〈a†a〉 (0), κ+ = κ−, (6.31)

which diverges as long as κ− 6= 0, independently of the initial condition. One may

loosely say that the “steady state” is one of infinitely many excitiations.

We note that, in this special case κ = 0, we have that 〈a(t)〉 = e−iωt 〈a〉 (0). Thus,

any linear form will remain bounded, even if the overall system is dynamically un-

stable. This demonstrates how, if ∆S = 0, dynamical instabilities can occur without

any instability in the LTI system Eq. (6.16). This should be contrasted with QBHs,

whereby dynamical instability is completely determined by stability of Eq. (2.43).

6.2.4 Translationally invariant QBLs and arbitrary BCs

We now consider QBLs possessing discrete translational symmetry. The nature of

open dynamics immediately forces us to answer the question: should we impose weak

or strong translational symmetry? A quintessential example of a QBL with weak
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translational symmetry, but not strong, is one in which we have zero Hamiltonian

and one Lindblad operator per site Lj =
√

2κaj, j = 1, . . . , N . The isotropic na-

ture of the dissipation rate κ ensure weak translational invariance. However, the

Lj’s clearly do not individually commute with the discrete translation operators.

Instead, consider the QBL with zero Hamiltonian and just one Lindblad operator

L =
√

2κ
∑

j aj. In this case, L commutes with discrete translations and thus we

have a strong translational symmetry. With the distinction in mind, we will require

only weak translation-symmetry so that we may consider the largest possible class of

QBLs.

As in the Hamiltonian case, we first consider a system on a finite ring under

PBCs. In the end, weak translational symmetry demands that the Hamiltonian H be

translation invariant (i.e., it must be of the form Eq. (2.76)) and that the dissipator

takes the form

D?(A) =
N∑
j=1

R∑
r=−R

(
φ†jAmrφj+r −

1

2
{φ†jmrφj+r, A}

)
, (6.32)

with mr the 2dint × 2dint incoherent coupling matrix encoding dissipation, pumping,

in incoherent pairing between sites j and j + r. These stipulations ensure that the

dynamical matrix and the GKS matrix are both block-circulant matrices

GPBC
N = 1N ⊗ g0 +

R∑
r=1

(
Vr
N ⊗ gr + V†N

r ⊗ g−r

)
, (6.33)

MPBC
N = 1N ⊗m0 +

R∑
r=1

(
Vr
N ⊗mr + V†N

r ⊗m−r

)
, (6.34)

where now gr = τ3hr− iτ3 (mr − τ1m
∗
rτ1) /2. Block diagonalization of the dynamical

matrix via Fourier transform proceeds exactly as in the Hamiltonian case. Ultimately,

we obtain the Bloch dynamical matrix g(k) (defined exactly as in Eq. (2.80)) which

determines the dynamics of the Fourier modes φ̃k. Since we are in an open setting, we
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consider the eigenvalues of −ig(k) rather than g(k) itself. We call these eigenvalues,

which we label λn(k), n = 1, . . . , 2dint, rapidity bands. The full rapidity spectrum is

then {λn(k) : n = 1, . . . , 2dint, k ∈ KN}. The bi-infinite case then follows by once

again adjusting the Fourier transform appropriately and taking k ∈ [−π, π] to obtain

a continuum of rapidities.

Finally, BCs can be imposed in a way analogous to the Hamiltonian case in

Sec. 2.5.2. The only modification is that, in addition to the Hamiltonian, the dis-

sipator must also respect the BCs. Focusing on OBCs for concreteness, this is done

by removing dissipative couplings, encoded by mr, r = 1, . . . , R, between the internal

degrees of freedom at site N − R + 1, . . . , N and those at site 1, 2, . . . , R. Thus, the

resulting GKS matrix will be block-Toeplitz. In fact, the correspondence between

BCs and the QBH dynamical matrix structure shown in Table. 2.1 exactly extend to

the QBL case. Under the BC in the first column, both the QBL dynamical matrix8

and the GKS matrix fall into the corresponding class in the second column. The

generalized Bloch theorem discussed in Sec. 2.5.2, and covered in detail in Appendix

A.3, can then be applied to one, or both, of the dynamical matrix and GKS matrix.

8While it is clear that the Hamiltonian contribution to the QBL dynamical matrix will be of the
appropriate type to encode BCs, it may not be obvious that the addition of dissipation (via the term
−iτ3F(M)) will leave this property invariant. However, since we have argued that the GKS matrix
will be of the appropriate type, it follows that τ3F(M) will be as well. This is because τ3 and τ1
(which arises in the fermionic projection) act trivially on the lattice, i.e., τj = 1lattce ⊗ 12dint ⊗ σj .
Thus, the matrix and operator classes (Toeplitz, circulant, Laurent, etc), which are determined by
lattice symmetries, are left invariant.

169



Chapter 7

Zero modes, Weyl symmetries, and

QBL design

In this chapter, we prove a general correspondence between ZMs and generators of

Weyl displacement symmetries in QBLs and, in addition, provide two QBL design

protocols for engineering (i) Hermitian edge modes descendent from topological free-

fermionic Hamiltonians and (ii) convergence to pure steady states of interest1. If

we are to uncover SPT phases in QBLs, the first natural thing to investigate is the

potential for topologically-mandated zero “energy”, or more properly, rapidity edge

modes. To this end, we must define precisely what we are looking for. While the

precise definitions will be given later, we will think of ZMs as conserved quantities that

are linear in creation and annihilation operators. This, of course, naturally generalizes

the standard fermionic notion of ZMs. We will see, however, that these modes capture

only “half of the picture”. After all, Hamiltonian ZMs may alternatively interpreted

as the generators of one-parameter symmetry groups. In light of Sec. 6.1.2, we should

not expect that our QBL ZMs possess any such property. Thus, we are lead to define

1All results from this section can be found in Ref. [98]. Additionally, early incarnations of The-
orems 7.1.3 and 7.1.4 can be found in the supplementary material of Ref. [97]. Both of these works
were co-authored with Emilio Cobanera & Lorenza Viola.
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Weyl SGs as operators that are (i) linear in creation and annihilation operators and

(ii) generate a one-parameter family of weak symmetries. The nomenclature here

refers to the fact that the corresponding symmetries take precisely the form of a

displacement operator in phase space. These two families of operators together make

up what we call Noether operators and, a priori, have no interdependence. While

there are situations (e.g., in the purely dissipative limit) where one operator can play

both roles (in which case, we say the are “non-split” Noether modes), these are highly

non-generic. Remarkably, however, we will prove that, not only are these objects in

one-to-one correspondence, they are actually in canonical correspondence. That is, to

each ZM, there exists a canonically conjugate Weyl SG, and vice-versa. In this sense,

there is a partial “restoration” of Noether’s theorem for QBLs within the Nambu

space. Furthermore, we are able to generalize this result to approximate ZMs and

SGs, which are defined in a fairly natural way.

To further aid in our search for signatures of SPT physics in QBLs, we develop two

design protocols. The first consists of a recipe for “embedding” arbitrary quadratic

fermionic Hamiltonians into the dissipator of a QBLs. This procedure builds off two

key observations: (i) If H = 0, the dynamical matrix of the QBL is defined uniquely

by a fermionic matrix (specifically, the fermionic projection of the GKS matrix); and

(ii) to each (possibly approximate) ZM in the original fermionic Hamiltonian, there

is a corresponding (possibly, approximate) ZM-SG pair in the associated QBL. This

allows us to import the Majorana edge states of topologically non-trivial fermionic

Hamiltonians directly into a QBL setting. The second design protocol takes as an

input a dynamically stable QBH and provides, as an output, a QBL that asymptoti-

cally relaxes any initial condition to the quasiparticle vacuum of said QBH. The QBL

is defined by the QBH, in addition to a dissipator whose GKS matrix is defined by

the duality transformation of Ch. 4 associated to the QBH.

The outline of this chapter is as follows. In Sec. 7.1, we state the precise definitions
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of ZMs and Weyl SGs and introduce the unifying concept of a Noether mode. We

then prove that there is a one-to-one canonical correspondence between these objects.

Following this, we generalize these concepts to allow for approximate ZMs and SGs

and, again, prove a canonical correspondence. In Sec. 7.2, we present the two QBL

design protocols. The first details how one may embed a fermionic Hamiltonian

into the dissipator of QBL, while the second leverages the duality of Ch. 4 to design

Lindbladians that converge to the quasiparticle vacuum of a given dynamically stable

Hamilton of interest.

7.1 A partial restoration of Noether’s theorem

Signatures of SPT phases in QFHs come in many forms. However, as a consequence

of the BBC, the most ubiquitous signature is the emergence of robust, symmetry pro-

tected, edge-localized ZMs. For example, consider the Majorana fermions γL and γR

of the FKC (recall Sec. 5.2.1). The “ZM ” property is precisely that (i) these are nor-

mal modes of the Hamiltonian and (ii) they correspond to zero energy (equivalently,

the normal mode frequency is zero). This is summarized concisely in the equations

[H, γR] = [H, γL] = 0. Beyond the ZM property, these equations, plus Hermiticity

of γL,R, engender a secondary meaning: the Majorana fermions generate symmetries

of the Hamiltonian. Specifically, UL,R(θ) = eiγL,Rθ, with θ ∈ R provide two continu-

ous families of unitaries that commute with the Hamiltonian. Such is a property of

Hamiltonian systems: if Q = Q† is a conserved quantity, then eiQθ commutes with

the Hamiltonian for all θ ∈ R. After all, the conservation condition and the SG

condition are identical: [H,Q] = 0. Interpreting Majorana ZMs as SGs is essentially

non-existent in literature, however. The reason is simple: the corresponding symme-

triehs UL,R violate fermionic parity superselection (recall the discussion of Sec. 2.3)2.

2Despite the non-physical nature of these symmetries, they are useful for describing the ground
state degeneracy. Specifically, if |0̃〉 is the even-parity ground state, then |1̃N 〉 = [UR(π/2) −
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Again, no such restriction applies to closed bosonic systems. If one had a Hermitian

linear form that commuted with the Hamiltonian, it may be safely interpreted as a

ZM and as the generator of a one-parameter symmetry. The latter interpretation

would mean that the Hamiltonian is invariant under a certain displacement in phase

space (to be explained momentarily).

7.1.1 The exact case

We have learned in Sec. 6.1.2 that there is no direct correspondence between con-

served quantities and (weak) SGs in genuinely open Markovian systems. We then ask

ourselves, if we are able to find signatures of SPT physics in QBLs, which role will,

or should, they occupy: the role of a ZM, or the role of SG? To answer this, let us

explore in more detail the ZM and SG conditions. A linear form γz is a ZM of a QBL

if L?(γz) = 0. Using the Nambu representation γ = ~̂γz and Eq. (6.23), we see that

L?(γz) = 0 ⇐⇒ G̃~γz = 0, (γz = ~̂γz), (7.1)

in terms of the associated dynamical matrix G̃. Following from the general Lindbla-

dian property L?(A†) = [L?(A)]†, which is manifests at the level of linear forms as

τ1G̃
∗τ1 = −G̃, we see that we are free to take γ = γ† or, equivalently ~γz = −τ1~γ

z∗.

In words, the ZMs of a QBL are defined by kernel vectors of G̃ satisfying the Her-

miticity condition ~γz = −τ1~γ
z∗. We may formalize this by introducing the real vector

space of ZMs:

Z ≡ {Hermitian linear forms γz : L?(γz) = 0 } . (7.2)

iUL(π/2)] |0̃〉 is the degenerate, odd-parity ground state.
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Now, consider ker G̃. The property τ1G̃
∗τ1 = −G̃ implies that ker G̃ is invariant

under the antilinear operation ~v 7→ τ1~v
∗. It follows that the real vector space3

ker− G̃ ≡ {~γz ∈ ker G̃ : ~γz = −τ1~γ
z∗ } , (7.3)

as the same dimension (as a real vector space) as ker G̃ (as a complex vector space).

We summarize these arguments in a Lemma.

Lemma 7.1.1. Given a QBL with associated dynamical matrix G̃, we have that Z

and ker− G̃ are isomorphic as real vector spaces.

Moving on to SGs, a linear form γs = γs† generates a (weak) symmetry of a QBL

if L([γs, ρ]) − [γs,L(ρ)] = 0 for all ρ. We will call such operators Weyl SGs and the

corresponding symmetries eiθγ
s

Weyl symmetries. This nomenclature is motivated by

the fact that these operators generate displacements in phase space. Specifically, if

γs = ~̂γs is Hermitian, then we can write ~γs = i[α1, α
∗
1, . . . , αN , α

∗
N ]T in terms of some

vector ~α ∈ CN . With this, the one-parameter family of symmetries can be written as

eiθγ = D(θ~α) in terms of the displacement operator Eq. (2.12). The statement that

these displacements provide (weak) symmetries of the QBL is then

Et(D(θ~α)ρD(θ~α)†) = D(θ~α)Et(ρ)D(θ~α)†, (Et(ρ) = etL(ρ)), (7.4)

for all θ and ρ. Leveraging Eq. (6.25), we can express the Weyl SG condition in terms

of the Nambu representation γs = ~̂γs, i.e.,

L([γs, ρ])− [γs,L(ρ)] = 0, ∀ρ ⇐⇒ G~γs = 0, (γs = ~̂γs). (7.5)

3More specifically, the invariance under this antilinear involution imposes what is sometimes
known as a real structure on the kernel. Given a complex vector space V with a real structure defined
by an antilinear involution Θ with ΘV = V, it follows that V ' V+ ⊕ V−, with V± ≡ {~v±Θ~v : ~v ∈ V}
One may further verify that the complex dimension of V is equal to the real dimension of each of
the V±.

174



We note that any operator satisfying the condition on the left hand-side may be

taken to be Hermitian. As in the ZM case, this follows from the dagger-preservation

of the Lindbladian. Of course, we automatically assume a SG is Hermitian in order

to ensure unitarity of the symmetry. Following the ZM analysis, we can formalize

this by introducing the real vector space of Weyl SGs,

W ≡ {Hermitian linear forms γs : L([γs, ρ])− [γs,L(ρ)] = 0, ∀ρ } , (7.6)

as well as the modified kernel

ker−G ≡ {~γs ∈ ker G : ~γz = −τ1~γ
s∗ } . (7.7)

The following lemma follows immediately

Lemma 7.1.2. Given a QBL with associated dynamical matrix G, we have that W

and ker−G are isomorphic as real vector spaces.

In this way, we have characterized the sets of ZMs and Weyl SGs, which we will

jointly refer to as Noether modes, of a given QBL in terms of the kernels of two, gener-

ically distinct, matrices G̃ and G, respectively. Thus, any correspondence between

ZMs and Weyl SGs must be encoded in a correspondence between these two kernels.

Let’s explore the simplest case where G̃ = G. From the definition G̃ = τ3G
†τ3, it

follows that G is pseudo-Hermitian in this case. In terms of the QBL, this is equiva-

lent to F(M) = 0. One notable example where this is the case is when M = 0, i.e.,

the closed-system limit. The recovers the well-known correspondence in Hamiltonian

systems (one direction of which is a non-relativistic, quantum mechanical statement

of Noether’s theorem). However, F(M) = 0 does not imply M, and hence the dissi-

pator D = 0. Thus it is possible to find instances where these matrices coincide while

retaining non-trivial dissipation. See, for example, the κ+ = κ− 6= 0 case discussed
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in Sec. 6.2.3. Beyond equality of the two matrices, we may ensure that Z and W

coincide by ensuring the two kernels are equal. Another simple example where this

is the case is when G̃ = −G, which corresponds to the case where the Hamiltonian

contribution G0 = 0, and hence H = 0. This Hamiltonian-free (purely dissipative)

case will be particularly relevant in upcoming sections. Generally speaking, if it turns

out that a particular Noether mode is both a ZM and a SG, we say that it is non-split.

Beyond these special cases, we may establish a more general correspondence be-

tween Z and W . The following theorem establishes not only a one-to-one correspon-

dence but, in fact, a canonical one.

Theorem 7.1.3. For a given QBL, the space of ZMs Z and the space of Weyl SGsW

are isomorphic as real vector spaces. Moreover, if the zero rapidity hosts only length

on Jordan chains, then for each ZM, there is a canonically conjugate Weyl SG.

Proof. To establish an isomorphism, we first note that, in terms of complex dimension,

we have that dim ker G̃ = dim ker G† follows from G̃ = τ3G
†τ3 and the invertibility

of τ3. From basic linear algebra, the kernel of a matrix and its Hermitian conjugate

are of equal dimension. Thus we may conclude dim ker G̃ = dim ker G† = dim ker G.

Since the real dimensions of ker− G̃ and ker−G are equal to the complex dimensions

of ker G̃ and ker G, respectively, we ultimately conclude dimZ = dimW and so

Z ' W . This proof can be summarized in the chain of equalities

dimZ = dim ker− G̃ = dim ker G̃ = dim ker G† = dim ker G = dim ker−G = dimW .

For the canonical correspondence, we use the tool of a biorthogonal basis. Let

{~γzj , ~ηj} be one such basis for ker G̃. Specifically, ~γzj span ker G̃ and ~ηj span ker G̃†,

while ~η†j~γ
z
k = δjk. The existence of such a basis follows from the Jordan chain

assumption4 . The invariance of each of these spaces under the antilinear invo-

4Proof: Extend {~γzj } to a basis for C2N and consider the associated dual basis. This dual basis
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lution ~v 7→ τ1~v
∗ allows us to further impose the restrictions ~γzj = −τ1~γ

z
j
∗ and

~ηj = −τ1~η
∗
j . Now let ~γsj = −iτ3~ηj. It follows that G~γsj = 0. Thus, we have

constructed ZMs γzj ≡ ~̂γzj and SGs γsj ≡ ~̂γsj . Further, they satisfy the HWRs:

[~̂γsj , ~̂γ
z
k ] = ~γsj

†τ3~γ
z
k 1F = i~η†j~γ

z
k 1F = iδjk.

In the sense of this theorem, we say that we have established a partial restoration

of Noether’s theorem - a general correspondence between ZMs and SGs - within

the space of linear forms. The algebraic relationship between the two spaces is an

additional (rather remarkable!) “cherry on top”.

7.1.2 The approximate case

An extremely useful extension of the above result is to instead consider approximate

ZMs and Weyl SGs. At the operator level, these may be loosely defined by first pre-

scribing an accuracy ε > 0. Then we say, for example, γz provides an approximate

ZM if L(γz) = Kα, for some constant K satisfying |K| < ε and α a linear form with

appropriately bounded (in norm) Nambu representation ~α. Similarly, an approximate

Weyl SG γs is defined by the identity L([γs, ρ])− [γs,L(ρ)] = [Kα, ρ] for all ρ, with

the same restrictions placed on K and α. The kernel conditions of the preceding

discussion are replaced with approximate kernel conditions. To be more concrete, we

will generally define an approximate ZM (Weyl SG) as having a Nambu represen-

tation ~γz (~γs) satisfying the approximate kernel condition ‖G̃~γz‖ < ε (‖G~γs‖ < ε)

for some to-be-specified norm ‖·‖ and the Hermiticity condition being ~γz = −τ1~γ
z∗

(~γz = −τ1~γ
z∗). We will call an upper bound on K the accuracy of the approxima-

tion. It turns out that, in this approximate setting, Theorem 7.1.3 has a natural

generalization. Henceforth, we will only consider the 2-norm.

contains the functionals φj which satisfy φj(~γ
z
k) = δjk. From the Riesz representation theorem, we

associate to each φj a vector ~ηj such that φj(~v) = ~η†j~v. We claim that φj(G̃~v) = ~η†jG̃~v = 0 for all

~v ∈ C2N , or equivalently, G̃†~ηj = 0. Note that φj(G̃~v) 6= 0 if and only if G̃~v ∝ ~γzj . But then ~γzj and
~v constitute a length two Jordan chain at zero, contradicting our assumption.
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Theorem 7.1.4. Let G be a dynamical matrix of a QBL and γs be an approximate

SG of accuracy ε > 0 (in the sense that its Nambu representation ~γs satisfies G~γs = ~α

for some vector ~α, with ‖~α‖ < ε), Then, if the matrix G′ ≡ G−~α~γs†/ ‖~γz‖ hosts only

Jordan chains of length one at 0, there exists a canonically conjugate approximate ZM

γz of accuracy ε′ = ε‖~γz‖2. The converse holds as well.

Proof. Let ~α be as stated in the theorem. Note that Hermiticity of γs implies that the

Nambu representation satisfies ~γs = −τ1~γ
s∗. Using this, and the fact that τ1G

∗τ1 =

−G, we have

τ1~α
∗ = τ1G

∗~γs∗ −Gτ1~γ
s∗ = G~γs = ~α. (7.8)

Now, consider the matrix G′ defined in the theorem statement. We claim that G′

may be interpreted as a dynamical matrix of some other QBL and that G′~γs = 0. The

first claim follows because G′ obeys the only constraint set on dynamical matrices:

τ1G
′∗τ1 = τ1G

∗τ1 − τ1~α
∗~γsTτ1 = −G− (τ1~α)∗(τ1~γ

s∗)† = −G + ~α~γs† = −G′,

(7.9)

where we have used Eq. (7.8) in the third equality. The second claim is verified

directly:

G′~γs = G~γz − ~α~γ
s†~γs

‖~γs‖2
= ~α− ~α = 0. (7.10)

Now, any QBL with dynamical matrix G′ will have γs as an exact SG. Since we

assume G′ is diagonalizable, we may then directly apply Theorem 7.1.3 to find a

canonically conjugate exact ZM γz. In Nambu space, this means there is a vector
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~γz = −τ1~γ
z∗, such that G̃′~γz = 0, with

G̃′ = τ3G
′†τ3 = G̃− τ3~γ

s~α†τ3, (7.11)

and ~γs†τ3~γ
z = i so that [γs, γz] = i. It follows that

‖G̃~γz‖ = ‖G̃′~γz +
τ3~γ

s~α†τ3

‖~γs‖2
~γz‖ =

1

‖~γs‖2
‖τ3~γ

s~α†τ3~γ
z‖ =

|~α†τ3~γ
z|

‖~γs‖
. (7.12)

Using the Cauchy-Schwarz inequality, we may bound the numerator of the right hand-

side from above by ‖~α‖‖~γz‖ < ε‖~γz‖. Thus,

‖G̃~γz‖ < ε
‖~γz‖
‖~γs‖

. (7.13)

An additional application of the Cauchy-Schwarz inequality to the identity ~γs†τ3~γ
z =

i yields 1/‖~γs‖ < ‖~γz‖ so that

‖G̃~γz‖ < ε‖~γz‖2, (7.14)

as claimed. The converse holds by simply replacing G with G̃ and ~γs with ~γz.

We remark that canonically conjugate modes can always be rescaled in a natural

way to make the accuracies ε and ε′ equal. Generally, if [γs, γz] = i, then [γs′, γz ′] = i,

with γs′ = Mγs and γz ′ = γz/M, for any M > 0. Taking M = ‖~γz‖ provides

approximate SGs and ZMs of accuracy Mε. The most interesting examples will be

those in which ε� 1/M.

Let us give a heuristic recipe for constructing approximate ZMs and SGs Ap-

proximate ZMs can be built from eigenvectors of the (positive-semidefinite) matrix

Ã ≡ G̃†G̃. That is, if Ã~γz = s2~γz for some s > 0, then ‖G~γz‖ = s ‖~γz‖, which can

be chosen to be less than a desired ε if there exists a sufficiently small s. We may
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equivalently understand s as a singular value of G̃. Hermiticity can be guaranteed

by noting that τ1Ãτ1 = Ã∗ implies that the eigenspaces of Ã are invariant under the

antilinear involution ~v 7→ τ1~v
∗. Ultimately, we construct a linearly independent set of

approximate ZMs by taking a linear independent set of eigenvectors {~γzj } satisfying

Ã~γzj = s2
j~γ

z
j , with s2

j < ε and ~γzj = −τ1~γ
z
j
∗.

Approximate SGs are similarly constructed out of eigenvectors of A = G†G. Now,

note that Ã = G̃†G̃ = τ3GG†τ3. Furthermore, it can be shown (for instance, by

performing a singular value decomposition on G) that G†G = VGG†V†, for some

unitary V. Given the approximate ZM vector {~γzj }, we propose a corresponding SG

vectors ~γsj ≡ τ3V~γ
z
j . It follows that ‖~γs‖ = ‖~γz‖ and

A~γsj = VGG†V†~γsj = Vτ3Ãτ3V
†~γsj = Vτ3Ã~γ

z
j = s2

jVτ3~γ
z
j = s2

j~γ
s
j . (7.15)

In other words, ~γsj are, by construction, approximate kernel vectors for G. It follows

that γs ≡ ~̂γs is an approximate SG.

Ultimately, we have established that there is a one-to-one correspondence between

approximate ZMs and SGs. To ensure canonical commutations, we consider the

matrix

Fjk ≡ ~γsjτ3~γ
z
k = ~γzjV

†~γzk . (7.16)

If Fjk = iδjk we are done. If F is diagonalizable, we can rearrange the approximate

kernel vectors so that canonical commutations are met. While we do not have a

generic condition for diagonalizability of F, we conjecture it is rather generic. Ulti-

mately, this procedure succeeds in every example considered later in this thesis.

Importantly, it turns out that remark that the approximate kernel conditions are

effectively captured by the mathematical concept of pseudospectra. While we defer

the more expansive discussion on the utility of pseudospectra for describing dynamical
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features of QBLs to Sec. 8.1.2 , we simply acknowledge here that the Nambu vectors

associated to approximate ZMs and Weyl SGs correspond to pseudoeigenvectors at

zero pseudoeigenvalue for the matrices G̃ and G, respectively.

7.2 Two protocols for QBL design

To aid in our search for signatures of SPT phases, it will be convenient to investigate

QBLs with certain desirable properties. One such property is that the QBL possesses

either exact, or approximate, Noether modes. We will accomplish this by essentially

“importing” the edge modes of QFHs into the bosonic arena. A second desirable

property will be that the QBL possesses a unique, pure steady state (tr[ρ2
ss] = 1).

Then, if we can (and we will) find a QBL with a pure steady state that also possesses

Noether modes, we can think of the steady state as a closer analogue to the fermionic

ground state than the non-pure case. Engineering such QBLs will be possible using

the duality transformation of Ch. 4.

7.2.1 Embedding fermionic Hamiltonians in bosonic dissipa-

tors

Our procedure for embedding QFHs into the dissipator of a QBL hinges upon a

single observation: the dynamical matrix of a purely dissipative (H = 0) QBL is

uniquely defined by a fermionic matrix HF = F(HF ). Let’s dissect this. Firstly, a

QBL may be uniquely associated to a dynamical matrix G and a GKS matrix M.

Referring to Eq. (6.16), the dynamical matrix of a purely dissipative QBL is given by

G = −iτ3F(M). The aforementioned fermionic matrix is then HF = F(M).

Now, consider a QFH H = Ψ†HFΨ/2 defined in terms of the fermionic Nambu

array Ψ = [c1, c
†
1, . . . , cN , c

†
N ]T and a Hermitian matrix HF . From the canonical

anticommutation relations (CARs) {ci, c†j} = δij1F (with 1F the fermionic Fock space
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identity, in this context) and {ci, cj} = 0, it follows that

H =
1

2
Ψ†HFΨ =

1

2
Ψ†F(HF )Ψ +

1

2
tr[B(HF )] 1F . (7.17)

Since we are generally uninterested in constant shifts to the Hamiltonian, we can

take, without loss of generality, B(HF ) = 0. Thus, the complementary nature of the

bosonic and fermionic projectors allow us to conclude that a QFH is defined uniquely

(modulo constant shifts) by a fermionic matrix HF = F(HF ).

Combining these two observations leads to the following constructive procedure.

Given a QFH of interest, defined by a fermionic matrix HF , let us consider the QBL

defined by the zero Hamiltonian and the GKS matrix M ≡ B + HF , with B = B(B)

a Hermitian bosonic matrix chosen so that M ≥ 0. It follows that F(M) = HF

and that the dynamical matrix is G = −iτ3HF . Which QFH input would lead to

the desired Noether modes in the QBL output? For concreteness, let us consider an

N -mode QFH under OBCs with (perhaps topological in origin) ZMs. The generic

feature of such a Hamiltonian is the existence of a uni-norm eigenvector ~ψ satisfying

HF
~ψ+ = εN ~ψ+, with εN ∼ O(e−N) positive, but decreasing exponentially in system

size. If εN lies in-between the bulk bands, then ~ψ will be localized on the edges. The

fermionic nature of HF implies that ~ψ− ≡ τ1
~ψ∗+ satisfies HF

~ψ− = −εN ~ψ−.

Let us now move to the QBL. Consider the bosonic linear form γ = ~̂γ = ~γ†τ3Φ,

in terms of the vector ~γ ≡ (~ψ+ − ~ψ−)/
√

2. We claim that this operator is both an

approximate SG and an approximate ZM of the QBL. The first follows from

‖G~γ‖ = ‖−iτ3HF~γ‖ = ‖HF~γ‖ =
1√
2
‖HF (~ψ+ − ~ψ−)‖ =

εN√
2
‖~ψ+ + ~ψ−‖ = εN ∼ O(e−N).

In addition, γ = γ† follows from ~γ = −τ3~γ
∗ which, in turn, immediately follows from

the relationship between ~ψ+ and ~ψ−. The ZM claim follows immediately from the

fact that Noether modes in purely dissipative QBLs are non-split, as explained in
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Sec. 7.1. To summarize, this procedure yields a QBL with a non-split Noether mode

descendent from a ZM of the initial QFH. Furthermore, the localization properties

of ~ψ± descend to those of γ in a clear way. We remark that this procedure need not

yield a dynamically stable QBL.

7.2.2 Reservoir engineering pure steady states via dualities

Consider a dynamically stable QBH H with dynamical matrix G0. Dynamically

stability ensures that there exists a set of bosonic quasiparticles that diagonalize the

Hamiltonian. In particular, this set of quasiparticles defines the quasiparticle vacuum

|0̃〉 (see Eq. (2.68)). Moreover, when H breaks total number symmetry, we have seen

that there exists a duality transformation mapping H to a number-conserving dual

HD (recall Ch. 4). This transformation is given by Φ 7→ R−1Φ, with R = S1/2 defined

in terms of the metric S in Eq. (4.1). This metric is closely tied to the quasiparticle

vacuum. As we have seen, the covariance matrix of the vacuum is given by S−1/2

(recall Eq. (4.14)).

Is it possible to extend H to a QBL, by introducing dissipation, such that |0̃〉 is

the steady state? Indeed, this is possible, and may be accomplished by utilizing the

aforementioned duality. We claim that the QBL defined by the Hamiltonian H and

the GKS matrix M ≡ κ(S+τ3), with κ > 0, does the job. Specifically, we must check

that (i) the QBL is well-defined; (ii) it is dynamically stable; and (iii) it possesses a

unique steady state given by ρss = |0̃〉 〈0̃|. Let us prove these claims one by one.

First, the QBL is well-defined as long as M is positive-semidefinite. To see this,

recall the resolution of the identity Eq. (2.63) in terms of the eigenvectors ~ψ±n of G0.

Then,

τ3 = τ312N =
N∑
n=1

τ3

(
~ψ+
n
~ψ+
n
† − ~ψ−n

~ψ−n
†
)
τ3 (7.18)
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Given this, and Eq. (4.1), we have

M = κ(S + τ3) = 2κ
N∑
n=1

τ3
~ψ+
n
~ψ+
n
†τ3, (7.19)

which is evidently positive-semidefinite.

Secondly, we may diagnose dynamical stability from the dynamical matrix G =

G0 − iτ3F(M). Now, S is Hermitian and satisfies S∗ = τ1Sτ1 (recall Prop. 4.1.3).

Combining these yields S = τ1S
Tτ1 or, equivalently, S = B(S). It immediately follows

that F(M) = κτ3, from which we conclude

G = G0 − iτ3F(M) = G0 − iκ12N . (7.20)

From here we can compute the rapidities. Let ωn be the (necessarily real, by the

dynamical stability assumption on H) eigenvalues of G0. Then the rapidities are

λn = −i(ωn − iκ) = −κ − iωn. Thus the stability gap is ∆S = −κ < 0, and so our

QBL is dynamically stable.

Finally, we note that the strict negativity of the stability gap implies there is a

steady state and that it is unique (recall Table 6.1). From the general properties of

QBLs, we know it is Gaussian with mean vector ~mss = 0 and covariance matrix Css

satisfying the Lyapunov equation (recall Eq. (6.28))

−i(GCss −CssG
†) + κS−1 = 0, (7.21)

where we have used τ3B(M)τ3 = κτ3Sτ3 = κS−1. Since −iG is Hurwitz, we obtain

the solution by taking t→∞ in Eq. (6.22), yielding

Css = κ

∫ ∞
0

e−iGtS−1eiG
†t dt. (7.22)
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Since G = G0 − iκ12N , we may simplify this as

Css = κ

∫ ∞
0

e−2κte−iG0tS−1eiG
†
0t dt. (7.23)

Recalling that G0 = S−1G†S (Prop. 4.1.3), it follows that

e−iG0tS−1eiG
†
0t = e−iG0teiS

−1G†0StS−1 = e−iG0teiG0tS−1 = S−1. (7.24)

Altogether,

Css = κ

∫ ∞
0

e−2κtS−1 dt =
1

2
S−1 = C|0̃〉. (7.25)

Since both states are Gaussian, and since both the mean vectors and covariance

matrices coincide, we conclude that ρss = |0̃〉 〈0̃|, as claimed.

This fact can actually be seen in a more straightforward manner. From Eq. (7.19),

D(ρ) =
N∑
j=1

Mjk

(
ΦkρΦ†j −

1

2
{Φ†jΦk, ρ}

)

= 2κ
N∑
n=1

(
ψnρψ

†
n −

1

2
{ψ†nψn, ρ}

)
= 2κ

N∑
n=1

D[ψn](ρ),

(7.26)

where, per usual, ψn = ~̂ψ+
n are the quasiparticle annihilation operators of the Hamilto-

nian. The final equality says that the dissipator is diagonal in the quasiparticle basis,

and more over, induces uniform loss of rate κ on each quasiparticle mode. From this

perspective, it is easy to see that the vacuum state |0̂〉 is the steady state. More-

over, the dynamics of the quasiparticle modes follow in a straightforward fashion:

ψn(t) = e−iωte−κtψn(0).

We conclude this section with a comment regarding symmetries. Suppose H has

a Gaussian unitary symmetry. It follows that G0 commutes with the pseudo-unitary
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representation U of this symmetry operator. Since the dynamical matrix G of the

QBL is equal to G0 plus a constant shift, this commutation property is retained.

However, we cannot then conclude that the QBL has the same symmetry. After all,

the GKS matrix need not commute with U. In this sense, the QBL has a sort-of

“partial symmetry” at the level of the dynamical matrix. We will see an explicit

example of this in Sec. 9.3, whereby the dynamical matrix possesses a translational

symmetry that the overall QBL lacks.
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Chapter 8

Signatures of SPT physics in 1D

bulk-translationally invariant QBLs

In this chapter 1, we turn our focus to 1D bulk-translationally invariant QBLs and

uncover tight bosonic analogues of the signatures of free-fermionic SPT phases that

we deem Majorana bosons in the number-non-symmetric case and Dirac bosons in

the number-symmetric case. Referring back to the story of QBHs, any attempt to

uncover non-trivial zero-energy edge physics was met with one or more challenges

associated to thermodynamical and dynamical instabilities. Ultimately, to uncover

them, one must completely abandon a straightforward many-body picture (e.g., a

ground state separated by bulk states by a many-body gap). Can we uncover them

in a QBL setting while maintaining this picture? To answer this, we must define

precisely what the QBL analogues of the hypothetical signatures and the many-body

picture are. First, we propose that the signatures must be edge-localized modes

that are either approximately (i) conserved (ZMs), or generate symmetries (Weyl

SGs). The reasoning for considering both possibilities follows from the breakdown

of Noether’s theorem explained previously. By virtue of Sec. 7.1, we further expect

1All results from this section can be found in Refs. [97] and [98] which were both co-authored
with Emilio Cobanera & Lorenza Viola.
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(i) and (ii) to emerge in canonically conjugate pairs. Edge-localization leads us to

consider open, or semi-infinite BCs. As for the many-body picture, we will replace

the ground state with the steady state and substitute the many-body gap with the

Lindblad gap. In particular, the existence of a steady state demands that we focus on

dynamically stable systems. With the ‘target’ set, we can begin to determine which

QBLs support such physics.

As we will see, we are able to determine a bulk criteria for the emergence of

edge modes. Namely, we show that, if the bulk rapidity bands wind around the

origin, then edge modes will emerge upon truncating the system. This introduces a

complication: a rapidity band can only wind about the origin if it is allowed to enter

the right-half complex plane. In this sense, the system must have a bulk instability.

While this will lead to instabilities in the semi-infinite system, we argue that the

finite-size OBC configuration can still retain stability, and, that one mechanism for

ensuring this is to demand extreme non-normality of the dynamical matrix. When

these conditions are met, one may fear that truncating to the finite size has eliminated

the edge-modes altogether - thankfully, this is not true. We are lead to investigate

the pseudospectra - essentially, the approximate spectra - of the dynamical matrix.

Our key observation is that the (unstable) infinite-size spectra imprints itself into

the pseudospectra of the finite-size system. Thus, any normal mode of the infinite-

size system, when truncated, will behave as an approximate normal mode of the

finite system. In particular, truncating unstable modes produces modes that appear

unstable for a transient (whose duration we will argue increases with system size).

Before assessing the fate of the infinite-size edge modes upon truncation, this ob-

servation leads us to define two novel dynamical phases of QBLs. The first, which we

call the anomalously relaxing phase, is characterized by a discontinuous decrease of

the Lindblad gap in the infinite-size limit. This occurs when the finite-size rapidity

spectra remains gapped away from the bulk rapidity bands and leads to a distinc-
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tive two-step relaxation. The transient relaxation (as inferred by the evolution of

generic observable expectation values) is governed by the smaller infinite-size gap,

while the asymptotic relaxation rate is governed by the larger finite-size gap. The

second dynamical phase is called dynamical metastability and is characterized by the

discontinuous change of stability phase in the infinite-size limit. That is, dynamically

metastable systems are dynamically stable for all finite sizes, but unstable strictly in

the infinite-size limit. We will see that such systems exhibit transient amplification

for an increasingly long transient.

With these more general considerations behind us, we will ultimately conclude

that our systems of interest must be (i) dynamically metastable and (ii) have non-

trivial band winding about zero. These two ingredients together make up what we call

topologically metastability. Topologically metastable systems, by design, fit each of the

desired criteria for tight bosonic analogues of fermionic SPT physics. In particular,

the edge mode pairs, which we deem Majorana bosons (or Dirac bosons, in the case

where the system possesses a weak number symmetry), are Hermitian, canonically

conjugate, and edge-localized. However, there are some extremely striking differences.

Generically, one element of the pair is a SG while the other is a ZM - that is, they are

split, in the sense of Sec. 7.1. Moreover, they are not exact ZMs and SGs, instead they

are approximate (ultimately stemming from their pseudospectral origin). As such, the

ZM is stationary only during the transient associated to the topologically metastable

phase. Similarly, the approximate symmetry only leaves the dynamics invariant for

the same time-scale. However, since this transient increases with system size, we

may take it to last longer than any meaningful timescale set by the system by simply

increasing system size. We will see that one consequence of this is the emergence of

a manifold of quasi-steady states. These states, which constitute the QBL-analogue

of the degenerate ground states in non-interacting fermionic SPTs, exhibit diverging

lifetimes and may be combined in non-trivial ways to generate long-lived (classically)
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non-Gaussian states.

The outline of this chapter is as follows. In Sec. 8.1, we initiate the search for SPT

signatures in QBLs by spelling out exactly what behavior we attempt to uncover

and exploring the consequences of these constraints. We argue that non-normality of

the dynamical matrix is one such constraint and, as such, are forced to grapple with

pseudospectra - a mathematical concept we introduce in detail in Sec. 8.1.2. Returning

back to QBLs, we define anomalously relaxing and dynamically metastable systems

in Sec. 8.2.1. We finally define topological metastability, Majorana bosons, Dirac

bosons, and the aforementioned quasi-steady states in Sec. 8.3. Several results about

the transient dynamics of topologically metastable systems follow.

8.1 Beginning the search

8.1.1 The need for bulk instabilities and non-normality

The signatures of SPT physics in QFHs emerge as zero energy modes localized on

boundaries separating regions of topologically inequivalent systems. In the simplest

case, hard wall boundaries (OBCs) imposed on a topologically non-trivial translation-

invariant system act as a separator between the topologically non-trivial bulk and

the (necessarily) topologically trivial region outside of the system. In one-dimension,

such modes manifest as edge-localized eigenstates of the OBC BdG Hamiltonian at

exponentially small energies. As the system size increases, thus approaching the

semi-infinite limit, these energies converge exactly zero.

With the fermionic story in mind, let us begin our search by looking for the

simplest case in which a QBL possesses a zero rapidity mode in the semi-infinite

limit. Mathematically, as long as bulk-translation symmetry is in place, the dynamical

matrix of such a system will be a block-Toeplitz operator. Thankfully, the spectra

of these operators have been completely characterized. Sticking to the language of
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QBLs, let us summarize the key features (see Appendix A for a more mathematical

summary and Ref. [113] for a self-contained collection of results and proofs on this

topic). Referring back to Sec. 6.2.4, the QBL in question will have 2d bulk rapidity

bands {λn(k), λ∗n(k)}, which are computed as eigenvalues of −ig(k), with g(k) the

Bloch dynamical matrix. In the simplest case where the bands are independent from

one-another, the SIBC spectrum is characterized in terms of the winding numbers of

the bands. The winding number of the band λn(k) about a point λ ∈ C not contained

in any of the bands is defined as

νn(λ) ≡ 1

2πi

∫ π

−π

d

dk
ln(λm(k)− λ) dk. (8.1)

The SIBC spectrum can then be characterized as containing (i) each of the bulk

rapidity bands λn(k) and (ii) every complex number λ, with νm(λ) 6= 0 for at least

one band index m. In the language of non-Hermitian physics, spectra of type (ii)

are known as point-gapped spectra [40, 71]. The point-gapped modes are localized on

the left (right) edge when the associated winding number is positive (negative). The

signatures we are in search of must then be associated to a point-gapped zero rapidity

in the semi-infinite limit. But, if a band winds around zero, it must necessarily enter

the right-half complex plane. We conclude that any system hosting such a mode must

be unstable under bi-infinite and semi-infinite BCs. In otherwords, bulk instability is

unavoidable2.

It seems QBLs have the same issue as QBHs: ZMs necessitate dynamical insta-

bility. Does our journey end here? Remarkably, the answer is no, and the reason

is two-fold. First of all, while mathematically useful, the infinite-size limits we have

2We remark that the general characterization of block-Toeplitz spectra involves the more sophis-
ticated techniques of symbols, partial indices, Wiener-Hopf factorizations, and Fredholm invariants.
In particular, partial indices may be thought of as a generalization of winding numbers for more
complicated multiband systems. As such, the SIBC spectrum is precisely the BIBC bands joined
with all complex numbers for which there are non-trivial partial indices. While we will not address
this more complicated case in this thesis (and instead refer to an upcoming work [153]), we conjecture
that the need for bulk-instabilities persists.
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considered are only idealizations of the true physical system. Any actual implemen-

tation of such a QBL will necessarily be finite, and thus we should be analyzing our

system under OBCs. Secondly, unlike the fermionic case, the spectral properties of

the finite size - even in the limit as N → ∞ - may be drastically different than the

infinite-size limit. In fact, we have seen a concrete example of this phenomena in the

BKC Hamiltonian of Sec. 3.3.3. The frequency bands of the BKC are ellipses in the

complex plane. Consequently, the SIBC spectra consist of these ellipses and their in-

teriors. However, the finite OBC spectra lies on the real axis and, even in the limit as

N →∞, only fills a 1-dimensional line segment connecting the two foci of the ellipse.

See also Fig. 8.1 for an example of this for a dissipative generalization of the BKC to

be considered in Sec. 9.2. The key ingredient for this phenomena is non-normality of

the dynamical matrix. Non-normality, i.e., failure of an operator to commute with its

adjoint, is a stronger requirement than non-Hermiticity and is known to be responsi-

ble for a number of anomalous spectral behaviors in certain classes of matrices and

operators [112, 113]. In particular, highly non-normal Toeplitz matrices are known

to exhibit spectral discontinuities in the semi-infinite limit3.

The goal at this stage is to characterize those QBLs whose semi-infinite limits

contain zero rapidity modes and whose finite OBC truncations are dynamically stable

for all N . But then, what are the fate of the semi-infinite zero rapidity modes once

these truncations are taken? As we have just discussed, non-normality generically

means the semi-infinite spectra differ drastically from the finite spectra. Thus, a zero

rapidity need not survive the truncation. Moreover, if it does survive, it will follows

that the stability gap of the finite system will be zero. Referring back to Table 6.1,

3The degree of non-normality of a matrix can be measured in many different ways. Since normal
matrices are precisely those that possess an orthonormal basis of eigenvectors, most measures concern
themselves with the degree to which the eigenvectors fail to be orthonormal. One common measure
is the condition number of the associated modal matrix. That is, if X is a diagonalizable matrix,
one may infer the degree of non-normality from the quantity κ = ‖P‖

∥∥P−1∥∥ ≥ 1, where P is the
matrix whose columns are eigenvectors of X and ‖·‖ is any unitarily-invariant, submultiplicative
matrix norm. In words, κ is the condition number of P. If X is normal, P is unitary and so κ = 1.
Highly non-normal matrices are then those with κ� 1 [112].
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Figure 8.1: Example of the disagreement between finite and semi-infinite spectra in
the dissipative BKC of Sec. 9.2. Specifically, plotted are the rapidites for the chain
under various BCs and system parameters along with the relevant stability gaps ∆OBC

S,N

and ∆SIBC
S . (a) The doubly-degenerate rapidities when µ = Γ = 0. The filled (open)

markers represent the topologically metastable (anomalously relaxing) regime, with
κ/∆ = 0.6 (1.4). The solid ellipses give the bulk spectrum, whereas the points on the
ellipse are the rapidities for PBCs. The points on the vertical lines are the rapidities
for OBCs. The shaded region denotes the semi-infinite spectrum. (b) The doubly-
degenerate rapidity spectrum when Γ = 0.12 so that the winding around λ = 0 is
zero. This is representative of non-topological dynamical metastability. In all cases,
J = 2, ∆ = 0.5, and µ = 0.
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such a situation can lead to dynamical instabilities. Once again, however, we are

saved. While the semi-infinite spectra and finite spectra are generally unrelated, the

corresponding pseudospectra are not. Pseudospectra, which generalizes the notion

of spectra by considering approximate eigenvalues and eigenvectors, behave far more

predictably in the presence of extreme non-normality. Since non-normality is an

unavoidable reality of our methodology, we are thus lead to consider this more general

notion.

8.1.2 Primer: The pseudospectrum

8.1.2.1 Definition and dynamical implications

We will cover the most important results related to the pseudospectra in this section

and refer the interested reader to Appendix A for more details regarding the pseu-

dospectra (and spectra) of block-Toeplitz matrices, and Ref. [112] for a comprehensive

account of pseudospectra and its applications.

Consider a linear operator X acting on a complex vector space. In almost all

instances, we will consider n × n matrices acting on Cn. The spectrum σ(X) of X

is defined as the set of complex numbers λ such that X − λ1 is not invertible. In

the finite dimensional case, these are precisely the eigenvalues of X. With respect to

a fixed operator norm ‖·‖, these correspond to singularities of the function f(z) ≡

‖(X− z1)−1‖, that is, the norm of the resolvent operator R(z) ≡ (X− z1)−1. Again

in the simplest case of finite dimension, the choice of norm is irrelevant since they are

all equivalent (i.e., generate the same topology): if f(z) diverges in one norm, then

it diverges in all of them. Pseudospectra generalize this in the following way: Given

an ε > 0, the (ε, ‖·‖)-pseudospectrum of X with respect to the norm ‖·‖ is

σε,‖·‖(X) ≡ {λ ∈ C : f(λ) = ‖(X− λ1)−1‖ > 1/ε } , (8.2)
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with the understanding that f(λ) =∞ for any λ ∈ σ(X) so that spectrum is always

contained in the (ε, ‖·‖)-pseudospectrum. If one or both of ε and ‖·‖ are understood,

we will drop the prefix. We will also simply write σε,‖·‖(X) = σε(X) when the norm

is understood or of no particular importance. Elements of the pseudospectrum are

called pseudoeigenvalues.

When the norm is induced by a vector norm, i.e., ‖X‖ ≡ sup~v ‖X~v‖ / ‖~v‖, we have

an equivalent (and more useful for our applications) definition, namely,

σε,‖·‖(X) = {λ ∈ C : ∃~v ∈ Cn, ‖~v‖ = 1, ‖(X− λ1)~v‖ < ε } . (8.3)

The normalized vectors ~v, with ‖(X− λ)~v‖ < ε are called the (ε, ‖·‖)-pseudoeigenvectors

associated to the (ε, ‖·‖)-eigenvalue λ.

The pseudospectrum becomes increasingly relevant as the operator X becomes

highly nonnormal. One reason is the way it relates to perturbations. It follows from

the definition that if λ ∈ σε,‖·‖(X), then there exists a perturbation E of size ‖E‖ < ε

such that λ ∈ σ(X + E) [112]. Hence

σε,‖·‖(X) =
⋃

E: ‖E‖<ε

σ(X + E) (8.4)

Another reason can be seen simply by considering the case where the operator norm

is induced by the usual vector 2-norm ‖~v‖ = (~v†~v)1/2. From Eq. (8.4), a perturbation

of size ε can only shift the spectrum of a normal matrix by at-most ε. However, if X

is nonnormal, small perturbations can dramatically modify the spectrum (one incar-

nation of this being the non-Hermitian skin-effect [50]). In sharp contrast, Eq. (8.4)

illuminates the inherent robustness of pseudospectra. That is, consider perturbing a

matrix X by a perturbation E of size δ > 0. It follows from Eq. (8.4) that

σε(X + E) ⊆ σε+δ(X). (8.5)

195



In words, a perturbation of size δ can only shift the pseudospectra by at most δ.

Exact spectra enjoys no such robustness property in the absence of normality4.

If X is a highly non-normal matrix, the pseudospectra can dramatically influence

the transient dynamics of a dynamical system generated by X, e.g., ~̇v = X~v. In

particular, the pseudospectra bounds the maximal dilation of norm in the sense of

sup
t≥0

∥∥etX∥∥ ≥ αε(X)

ε
, αε(X) ≡ sup Reσε(X). (8.6)

The quantity αε is called the pseudospectral abcissa and measures the extent to which

the ε-pseudospectrum of X extends towards, or into, the right-half complex plane.

The bound of Eq. (8.6) is particularly relevant for Hurwitz matrices. If αε(X) is pos-

itive and large compared to ε,
∥∥etX∥∥ will experience transient growth before asymp-

totically decaying to zero. That is, highly non-normal, but asymptotically stable,

dynamical systems can appear unstable during a transient period. In fact, given a

particular ε-pseudoeigenvector with ε-pseudoeigenvector λ, we have

‖etX~v − eλt~v‖ ≤ ‖(X− λ)~v‖ t+O(t2) < εt+O(t2), (8.7)

so that ~v evolves like a normal mode with eigenfrequency λ for sufficiently small (set

by ε) timescales, i.e., ~v(t) ' eλt~v(0). We call such modes pseudonormal modes. In

the context of QBLs, we will also call the pseudoeigenvalues of the dynamical matrix

pseudorapidities.

8.1.2.2 Pseudospectrum of block-Toeplitz operators and matrices

We have seen how the spectrum of a block-Toeplitz operator and the finite block-

Toeplitz matrix truncations can differ drastically, even when the truncations are ar-

4In the presence of normality, spectra enjoy this same robustness property. This fact is central
to the standard theory of perturbation theory of self-adjoint operators, for example [123].
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bitrarily large. Let us characterize this mathematically in the non-block case. Let XN

denote an N ×N Toeplitz matrix and X∞ ≡ limN→∞XN denote the corresponding

Toeplitz operator. Then, generically, we have

lim
N→∞

σ(XN) 6= σ(X∞) = σ( lim
N→∞

XN). (8.8)

Again, this is illustrated in Fig. 8.1 for a particular example to be introduced later.

However, this spectral discontinuity does not plague the pseudospectrum. In fact,

lim
N→∞

σε(XN) = σε(X∞)⇒ lim
ε→0

lim
N→∞

σε(XN) = σ(X∞). (8.9)

The left hand-side says that the pseudospectra of the finite truncations converges

to the pseudospectra of the Toeplitz operator - it is much better behaved than the

spectrum. It follows that, for every element λ of the infinite-size spectra, there is a

pair (ε,N) such that λ ∈ σε(XN). In this sense, the infinite-size spectra imprints itself

in the pseudospectrum of the finite size Toeplitz matrices. These results generalize

straightforwardly to block-Toeplitz matrices, see Appendix A.

8.2 Anomalous transient dynamics in QBLs

8.2.1 Anomalous relaxation and dynamical metastability

Refocusing back to the discussion of Sec. 8.1.1, the types of QBLs we are attempting

to characterize must exhibit two key properties: (i) the infinite-size limit are unstable,

while all finite sizes are stable under OBCs; and (ii) the semi-infinite chain possesses

a zero rapidity. The first property is rather peculiar from the dynamical perspec-

tive. These systems must change stability phase discontinuously in the infinite-size

limit. Thinking to the observation that the semi-infinite spectra imprints itself in

the pseudospectra of the finite chain (Eq. (8.9)), and that pseudospectra plays a key

197



role in determining the transient behavior of dynamical systems with extremely non-

normal generators (Eq. (8.7)), we expect that property (i) will engender dramatic

consequences for the transient dynamics of the finite systems. Specifically, consider

a normal mode associated to SIBC rapidity in the right-half complex plane - i.e., a

dynamically unstable mode. If we truncate this mode to fit on a finite OBC chain, it

can no longer be unstable (as we are assuming OBCs are stable). However, this trun-

cated mode provides a pseudonormal mode with pseudorapidity in the right-half plane.

Thus, the early dynamics will appear unstable according to Eq. (8.7). Physically, the

truncated mode behaves in an unstable manner until it evolves long enough to detect

the stabilizing presence of the two boundaries. See the concluding discussion of the

BKC analysis in Sec. 3.3.3 and, more specifically, Eq. (3.58) for an example of this

phenomenon.

To be more concrete, consider a fixed bulk-translation invariant QBL under finite

N OBCs as well as SIBCs. Let ∆OBC
S,N and ∆SIBC

S denote the corresponding stability

gaps. Note that ∆SIBC
S is also the bulk stability gap in the sense that ∆SIBC

S = ∆BIBC
S .

In general, we will always have

∆OBC
S,∞ ≡ lim

N→∞
∆OBC
S,N ≤ ∆SIBC

S . (8.10)

Now, suppose the dynamical matrices of interest are extremely non-normal so that a

strict inequality ∆OBC
S,∞ < ∆SIBC

S is possible. When this happens, there are two notable

cases.

(i) All gaps ∆OBC
S,N , ∆OBC

S,∞ , and ∆SIBC
S are negative. It follows that all relevant con-

figurations are dynamically stable, but the asymptotic relaxation rate (which

is set by the Lindblad gap) exhibits a discontinuity when N is taken to in-

finity. We then say that the OBC chain is in an anomalously relaxing phase.

Such a phase is characterized by an increasingly long (with system size) tran-
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sient time whereby the system possesses pseudonormal modes decaying at rates

much slower than the rate set by the finite-size stability gap, i.e., the asymptotic

decay rate. The transient is followed by asymptotic decay whose rate is indeed

set by the finite-size stability gap. We conjecture that this mechanism is respon-

sible for the anomalously long relaxation dynamics found in dissipative systems

exhibiting the Liouvillian skin effect [52, 53]. This phenomena also bears close

resemblence to the spectral separation-induced metastability of Ref. [154]. In

our case, however, the spectral separation is between the finite- and infinite-size

stability gaps, rather than between eigenvalues of a fixed Lindbladian.

(ii) The finite size gaps ∆OBC
S,N and their limit ∆OBC

S,∞ are negative, while the semi-

infinite gap ∆SIBC
S is positive. This case corresponds to the aforementioned dis-

continuous change of the stability phase in the infinite-size limit. We then call

the OBC chain dynamically metastable, or just metastable for short. This phase

is characterized by an increasingly long transient time whereby the pseudonor-

mal modes whose pseudoeigenvalues are in the right half plane amplify exponen-

tially. Once this transient concludes, all modes decay asymptotically with rate

set by the finite-size stability gap. The terminology “dynamical metastability”

refers to the metastable amplifying transient dynamical phase that eventually

gives way to the necessarily stable asymptotic dynamics. Note that this is, at

the current stage of understanding, a distinct notion of metastability from that

known to arise in Markovian open quantum systems with large intra-spectral

gaps [154–156]. However, both situations exhibit delayed relaxation to the true

steady state.

In Sec. 9.2, we will uncover examples of both of these phenomena in a dissipative

BKC (DBKC). Referring back to Fig. 8.1(a), the transparent rapidities correspond to

the system being in an anomalously relaxing phase while the solid rapidities corre-

spond to a dynamically metastable phase. Generally speaking, both phenomena are
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Figure 8.2: (a) Illustration of anomalously relaxing vs. dynamically metastable dy-
namics. The solid lines are the trajectory of | 〈xN〉 (t)| in the DBKC (Sec. 9.2), av-
eraged over 250 initial conditions. The filled regions are ± one standard deviation
from the mean. The black dashed lines are the dynamics predicted from the SIBC
stability ∆SIBC

S gap while the gray dashed lines are the dynamics expected from the
finite size stability games, ∆OBC

S,∞ = limN→∞∆OBC
S,N . In both cases, µ = Γ = 0, and

N = 25. The dynamically metastable (anomalously relaxing) curve corresponds to
κ/∆ = 0.6 (1.4). (b) Thin gray curves: Expectation values of 250 randomly sampled
linear observables in the quasi-steady state ρθ(t) generated by the left-localized MB
γs
L (Eq. (9.17)) with ‖θ~γs‖ = 1, in the DBKC, with κ/∆ = 0.6, N = 25, ‖~α‖ = 1.

Thick purple curves: The upper bound in Eq. (8.34) for N = 15 (dashed) and N = 25
(solid). (c) The time t(δ) it takes for the aforementioned upper bound to exceed
accuracy δ as a function of N . In all plots, J = 2 and ∆ = 0.5.

characterized by a distinct separation of transient and asymptotic dynamics. In this

sense, the dynamics have a two-step nature as depicted in Fig. 8.2(a). In that figure,

the mean trajectory of the expectation value | 〈xN〉 (t)|, averaged over 250 random

initial conditions, is plotted for the DBKC in both an anomalously relaxing phase

and a dynamically metastable phase. While the distinct two-step behavior is appar-

ent in both cases, the dynamically metastable phase shows a much sharper separation

between transient and asymptotic dynamics. In fact, the early time behavior shows

a distinctive amplification. Such transient amplification is characteristic of dynami-

cally metastable systems and is associated with the imprinting of the unstable SIBC

rapidities into the pseudorapidities of the finite system. Finally, we refer to these

behaviors as anomalous because they cannot be predicted from the exact spectral

properties.
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8.2.2 Divergence of the transient timescale in dynamically

metastable chains

Let us zoom in on dynamically metastable systems. In this case, we assert that the

timescale of transient amplification actually diverges in system size. This can be seen

by means of the linear mixing time tlin(δ), which we define as the shortest time it

takes for the quantity

dlin(t) ≡ sup
ρ

‖~mρ(t)− ~mss‖
‖~mρ(0)− ~mss‖

, t ≥ 0, (8.11)

defined in terms of the mean vectors ~mρ(t) = tr[Φ(t)ρ] and ~mss = tr[Φ(t)ρss] =

tr[Φ(0)ρss], to fall, and remain, below a prescribed accuracy δ > 0. Physically, dlin(t)

measures the worst-case relative distance between the mean vector and the steady

state at time t as compared to the initial separation at time 0. By design, dlin(0) = 1

and limt→∞ dlin(t) = 0. However, dlin(t) can rise above 1 during the transient. In

fact, it becomes arbitrarily large at intermediate times as N increases. Ultimately,

we propose tlin(δ) as a proxy for the mixing time of the QBL, cf. Eq. (6.9). Let us

concretely cement our claims in the form of a theorem.

Theorem 8.2.1. Consider a dynamically metastable, bulk-translation invariant QBL.

Then both (i) the maximum value of dlin(t) and (ii) the linear mixing time tlin(δ), with

δ sufficiently small, diverge in system size.

Proof. The quantity dlin(t), which we will denote by dlin(t, N) for a finite (N site)

system under OBCs, may be calculated in terms of the OBC dynamical matrix,

which we will denote by GOBC
N . Firstly, observe that

~mρ(t) = tr[Φ(t)ρ] = tr[e−iG
OBC
N tΦ(0)ρ] = e−iG

OBC
N ttr[Φ(0)ρ] = e−iG

OBC
N t ~mρ(0). (8.12)

Since we assume the system is dynamically stable (and more specifically, that the
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stability gap is strictly negative), we have ~mss = 0 (see Eq. (6.28)). From these two

observations, we have

dlin(t, N) ≡ sup
ρ

‖~mρ(t)‖
‖~mρ(0)‖

= sup
~m(0)

‖e−iGOBC
N t ~mρ(0)‖
‖~mρ(0)‖

= ‖e−iGOBC
N t‖, (8.13)

where the norm on the right hand-side is the operator norm induced by the vector

2-norm.

Eq. (8.6) allows us to lower bound the maximum value of dlin(t) in terms of the

pseudospectral abscissa:

dmax
lin (N) ≡ sup

t≥0
dlin(t, N) = sup

t≥0
‖e−iGOBC

N t‖ ≥ αε(−GOBC
N )

ε
. (8.14)

The pseudospectral abscissa of −iGOBC
N may be understood physically as the pseu-

dospectral stability gap, i.e., the largest real part of the ε-pseudorapidities. For this

reason, let us denote it by ∆OBC
S,N,ε ≡ αε(−GOBC

N ). We similarly define ∆SIBC
S,ε as the

SIBC pseudospectral stability gap. In this notation,

dmax
lin (N) ≥

∆OBC
S,N,ε

ε
. (8.15)

Referring to Eq. (8.9) (and its block-Toeplitz generalization, Eq. (A.6)), the fi-

nite size OBC pseudospectra converges to the infinite-size SIBC pseudospectra. In

particular,

lim
N→∞

∆OBC
S,N,ε = ∆SIBC

S,ε > 0, (8.16)

where the inequality follows from the assumption of dynamical metastability. Thus,

lim
N→∞

dmax
lin (N) ≥

∆SIBC
S,ε

ε
.
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Taking ε → 0 leaves the left hand-side invariant, while the fact that limε→0 ∆SIBC
S,ε =

∆SIBC
S > 0 implies that the right hand-side diverges since. Thus, limN→∞ d

max
lin (N) >

0, establishing the first claim.

The second claim follows by leveraging Eq. (A.3), which asserts dlin(t, N) < eΩt

for some system size-independent constant Ω. Now, let tmax(N) ≡ arg max dlin(t, N),

i.e., dlin(tmax(N), N) = dmax
lin (N). Thus, dmax

lin (N) < eΩtmax(N) from which it follows

that

tmax(N) >
ln dmax

lin (N)

Ω
. (8.17)

Divergence of the right hand-side ensures tmax(N) diverges. Thus, if δ < dmax
lin (N) (if

it is not, then tlin(δ) = 0 trivially), we have tlin(δ) ≥ tmax(N) → ∞, completing the

proof.

8.3 Topological metastability

With the tools of the last section in hand, we can finally pin down precisely those

QBLs that are candidates for bosonic SPT physics. They are those QBLs that are

(i) dynamically metastable; and (ii) have a point-gapped zero rapidity about which

at least one rapidity band winds. We refer to this class of QBLs as topologically

dynamically metastable, or topologically metastable, for short.

We propose that these QBLs are candidates for tight bosonic analogues of fermionic

SPT phases for several reasons. First, dynamical metastability ensures that the finite

chain always possesses a steady state that can serve as the open system-generalization

of the ground state. Second, we retain two distinct gap conditions, each of which con-

stitutes a dissipative analogue to the many-body gap condition of fermionic SPTs: (1)

the zero-rapidity is point-gapped in the infinite-size limit; and (2) the finite system

has a Lindblad gap bounded away from zero as N →∞. This second feature, in par-
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ticular, guarantees uniqueness of the steady state. Thirdly, the bulk has a non-trivial

invariant in the form of the band winding number. Finally, we claim that topolog-

ically metastable systems host non-trivial edge modes analogous to those found in

topologically non-trivial free fermionic systems. Let us now substantiate this final

claim.

8.3.1 Majorana bosons and quasi-steady states

Fix a topologically metastable QBL and denote the finite-size OBC dynamical ma-

trix by GOBC
N . From the definition of topological metastability, we may immediately

conclude that GOBC
N and G̃OBC

N each possess at least one εN -pseudoeigenvector with

zero εN -pseudoeigenvalue, and εN → 0 as N →∞. Let us call these two pseudoeigen-

vectors ~vsN and ~vzN , respectively. Per usual, the property G∗ = −τ1G
∗τ1 allows us to

ensure ~vsN = −τ1~v
s
N
∗ and similarly for ~vzN Generically, we will have ~vzN

†τ3~v
s
N = ihN

for some5 hN ∈ R \ {0}. From here we define ~γs ≡ As(N)~vsN and ~γz ≡ Az(N)~vzN ,

where As(N) and Az(N) are any two real (possibly N -dependent) constants satis-

fying Az(N)As(N) = 1/hN , so that ~γzN
†τ3~γ

s
N = i. Finally, note that the associated

linear forms γsN ≡ ~̂γsN and γzN ≡ ~̂γzN are Hermitian, and have commutator equal to i

(which is possible thanks to Theorem 7.1.4). We deem the pair (γzN , γ
s
N) Majorana

bosons (MBs). Henceforth, we will drop the N subscript on the MBs and their Nambu

representations.

MBs enjoy a number of remarkable properties derived from their pseudospectral

and topological origins.

(i) An MB pair consists of at least one approximate ZM γz and one generator of

an approximate Weyl symmetry γs. Both are necessarily Hermitian. That is

5Following a similar proof to Theorem 7.1.4, one can find such a pair with hN 6= 0 as long as
the matrix GOBC

N − ~α~vsN †, where ~α ≡ GOBC
N ~vsN (equivalently, G̃OBC

N − ~β~vzN
†, where ~β ≡ G̃OBC

N ~vzN )
hosts Jordan chains of length at most one at the zero eigenvalue. ‘Generically’ here then refers to
the fact that matrices are generically diagonalizable, and thus all Jordan chains are generically of
length one.
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MBs are a particular instance of Noether modes.

(ii) The pair can generically be normalized to satisfy canonical commutation rela-

tions while maintaining their roles as approximate ZMs and SGs.

(iii) One member of the pair must be exponentially localized on the left half of the

chain, while the other is localized on the right. This follows because, due to the

adjoint relationship between G̃ and G, the winding numbers that manifest γz

and γs necessarily have opposite sign. This engenders the stated localization

properties (see Theorem A.1.3)6.

(iv) Combining (i)-(iii) allows us to construct a spatially split bosonic degree of

freedom γz + iγs whose quadrature components are the MBs. In the case where

the MBs are non-split (in the sense of Sec. 7.1), this creates a long-lived bosonic

excitation in the system.

(v) The pair (γz, γs) is robust against a large class of perturbations. Specifically,

suppose the pair arises from the ε-pseudospectrum of the dynamical matrix. If

the system is perturbed in such a way that the dynamical matrix is perturbed

by a matrix of size δ > 0, then there will be a pair of MBs arising from the ε+ δ

pseudospectrum of the perturbed dynamical matrix.

Let us explore points (i) and (ii) in a simple, but rather typical , instance of MBs:

γz =Mz(N)
N∑
j=1

δj−1xj, γs =Ms(N)
N∑
j=1

δN−jpj, (8.18)

with Mz,s normalization constants7 to be determined and δ real with |δ| < 1. The

6The implicit assumption is that these MBs arise from winding of the rapidity bands. It is
possible that more exotic MBs could arise without explicit band winding (see the discussion of
Sec. A.2), thus rendering the localization properties more difficult to describe.

7In the notation used at the beginning of this section, Ms(N) = As(N)fN (δ) and Mz(N) =
Az(N)|δ|fN (δ), with fN (x) =

√
(1− x2)/(1− x2N ), which converges to

√
1− x2 as N → ∞ for

|x| < 1.
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approximate ZM and SG conditions then typically take on a form similar to

L?(γz) =Mz(N)δNχ, (8.19)

L?([γs, A])− [γs,L?(A)] =Ms(N)δN [ξ, A], (8.20)

while the MBs are algebraically related according to

[γz, γs] = iMz(N)Ms(N)NδN−1. (8.21)

Here, χ and ξ represent (typically localized) Hermitian linear forms whose coefficients

in the Nambu basis are system-size independent. The goal of the normalization is

to choose Mz(N) and Ms(N) such that (i) the right hand-sides of Eqs. (8.19) and

(8.20) go to zero as N → ∞ and (ii) the right hand-side of Eq.(8.21) is i. That is,

we want canonically conjugate modes that provide asymptotically exact ZMs and SGs.

Mathematically, these conditions are

(i) lim
N→∞

Mz(N)δN = lim
N→∞

Ms(N)δN = 0, (ii) Mz(N)Ms(N)NδN−1 = 1. (8.22)

Remarkably, a scheme satisfying both (i) and (ii) always exists. The simplest, and

most natural choice is

Mz(N) =Ms(N) =
δ−(N−1)/2

√
N

. (8.23)

With this, condition (ii) is clearly satisfied. As for (i),

lim
N→∞

Mz(N)δN = lim
N→∞

δ(N+1)/2

√
N

= 0, (8.24)

and similarly for Ms(N). This scheme, which we call symmetric normalization, will

be employed throughout the upcoming examples. Clearly, this choice is non-unique,
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and another may be adopted if certain features are desired over others. For example,

if we wish for γz to have bounded coefficients in the xj basis, then we may take

Mz(N) = 1 and Ms(N) = δ−(N−1)/N . Importantly, the exponential profile of the

MBs is independent of the choice of normalization.

With the symmetric normalization scheme adopted, we find ourselves with canon-

ically conjugate operators (γz, γs) that become a pair consisting of an exact ZM and

an exact SG, respectively, in the infinite-size limit. To what extent, however, do their

roles as approximate ZMs and SGs manifest in the finite system? Starting with γz,

from Eqs. (8.19) and (6.23), it follows that the Nambu representation ~γz satisfies

‖G̃OBC
N ~γz‖ =Mz(N)δN ‖~χ‖ , (8.25)

where ~χ is the Nambu representation of the operator χ on the right hand-side of

Eq. (8.19), i.e., χ = ~̂χ. Since the coefficients of χ are assumed to be independent of

N , we will set ‖~χ‖ = 1 for simplicity. It follows that γz is an approximate ZM with

accuracy ε > 0, where ε is any quantity satisfying

ε > εN ≡ ‖G̃OBC
N ~γz‖ =Mz(N)δN =

δ(N+1)/2

√
N

. (8.26)

The lifetime of γz can then be estimated via the quantity

‖~γz(t)− ~γz(0)‖ = ‖
∫ t

0

d

dt
~γz(t) dt‖, (8.27)

with ~γz(0) = ~γz. Using Eq. (6.24), we have

‖~γz(t)− ~γz(0)‖ = ‖
∫ t

0

iG̃OBC
N ~γz(t) dt‖ = ‖

∫ t

0

eiG̃
OBC
N tG̃OBC

N ~γz(0) dt‖ (8.28)
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We can then upper bound this by

‖~γz(t)− ~γz(0)‖ ≤
∫ t

0

‖eiG̃OBC
N t‖‖G̃OBC

N ~γz‖ dt = εN

∫ t

0

‖eiG̃OBC
N t‖ dt ≤ εN t sup

τ∈[0,t]

‖eiG̃OBC
N t‖.

(8.29)

Once again employing Eq. (A.3), the supremum on the right hand-side is bounded

above by eΩt for some N -independent constant Ω. We ultimately arrive at the bound

‖~γz(t)− ~γz(0)‖ ≤ εN te
Ωt =

δ(N+1)/2

√
N

teΩt, (8.30)

which vanishes as N →∞. That is, the lifetime of γz diverges as N increases.

As for γs, we can illuminate one particular implication of its existence by lever-

aging the uniqueness of the state-state under OBCs. Denoting said steady state by

ρss, we introduce the family of Weyl-displaced Gaussian states,

ρθ ≡ eiθγ
s

ρsse
−iθγs , θ ∈ R. (8.31)

Because γs generates an approximate symmetry, the states ρ(θ) are quasi-steady, in

the sense that ρ̇θ(0) ∼ 0 +O(θεN), with εN the same as in Eq. (8.26). Unlike steady

states of a QBL, these quasi-steady states can possess nonzero mean vectors:

~mθ(0) = tr[Φρθ(0)] = iθ~γs. (8.32)

Since ~γs is edge-localized and a pseudonormal mode of the dynamical matrix, the

quasi-steady mean vectors are exponentially localized on one edge of the chain and

are long lived. In fact, leveraging an almost identical procedure to the one used to
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demonstrate the diverging lifetime of γz, we obtain the bound

‖~mθ(t)− ~mθ(0)‖
‖~mθ(0)‖

≤ εteΩt, (8.33)

where ε is such that the normalized vector ~vs ≡ ~γs/ ‖~γs‖ is an ε-pseudoeigenvector

of G, with ε-pseudoeigenvalue 0. It follows that ε→ 0 as N →∞ so that the mean-

vector is long-lived. This long-livedness implies quasi-stationary evolution in certain

observable expectation vlaues. Explicitly, if α = ~̂α is an arbitrary linear form, then

| 〈α(t)〉 − 〈α(0)〉 |
‖~α‖ ‖~mθ(0)‖

=
|~α†τ3 (~mθ(t)− ~m(0)|) |

‖~α‖ ‖~mθ(0)‖
≤ ‖~mθ(t)− ~mθ(0)‖

‖~mθ(0)‖
≤ εteΩt, (8.34)

where we have used the Cauchy-Schwarz inequality to bound the numerator by the

quantity in Eq. (8.33). Long-livedness of the quasi-steady state mean vector and

randomly sampled observable expectation values in a to-be-considered example are

shown in Fig. 8.2(b-d).

On the other hand, being only Weyl-displaced from the steady state, it follows

that ρθ shares a covariance matrix (and hence all even moments) with ρss. Interest-

ingly, these states can be used to construct long-lived classical non-Gaussian states.

Namely, any convex linear combination of the ρθ’s will be long-lived and possess a

non-Gaussian, but still nonnegative, Wigner function. In Sec. 9.3, we will also explore

the possibility of constructing non-classical states utilizing these quasi-steady states.

Remarkably, the existence of any state whose mean vector is long-lived (in the

above sense) implies that the system is topologically metastable. This can be seen by

contradiction. Let GO
N be the dynamical matrix for a bulk-translationally invariant

system of size N under OBCs. The absence of topological metastability implies there

exists a system-size-independent constant V such that,

∥∥GO
N~vN

∥∥ > V ‖~vN‖ , ∀~vN ∈ C2N \ {0}, ∀N.
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That is, 0 6∈ σε(G
OBC
N ) for all ε < V and for all N . In fact, we can take V to

be the N → ∞ limit of the minimal singular-value of GOBC
N . Consider an initial

state ρ(0), with mean vector ~mρ(t) ≡ tr[Φρ(t)], satisfying ~mρ(0) 6= 0. Since ~mρ(t) =

e−iG
O
N t ~mρ(0), we have, for sufficiently short t,

D(t) ≡ ‖~mρ(t)− ~mρ(0)‖
‖~mρ(0)‖

'
∥∥GOBC

N ~mρ(0)
∥∥

‖~mρ(0)‖
t > V t.

The quantity D(t), which measures the separation of ~mρ(t) from its initial value,

immediately evolves away from zero with a nonzero “velocity” bounded below by V ,

for all N .

8.3.2 The impact of number symmetry: Dirac bosons

Being Hermitian, the topological modes in the above analysis bear closest resemblance

to the Majorana fermions of topological superconductivity. Thus, one may suspect

this same analysis fails to produce modes analogous of the topological edge-modes

in topological insulators. In order to see why this is false, we will consider those

QBLs with number symmetry to constitute the natural dissipative-bosonic analogues

of insulators.

Number-symmetric QBLs are those QBLs that possess a weak U(1) symmetry,

aj → eiφaj, generated by the total number operator
∑

j a
†
jaj. The corresponding

Bogoliubov transformation is Φ 7→ eiτ3θΦ. From this characterization, number sym-

metry implies, in particular, that [G, τ3] = 0 . Hence, the dynamical matrix may be

written as

G = K⊗

1 0

0 0

+ (−K∗)⊗

0 0

0 1

 , (8.35)

with K an arbitrary N×N complex matrix. Just as the spectrum of G is determined
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by that of K, so is the pseudospectrum. In particular, if the system is topologically

metastable, both G and K possess approximate kernel vectors.

To be more concrete, let us suppose the system is topologically metastable. This

affords us at least one MB pair (γz1 , γ
s
1). Expanding in the bosonic basis yields

γz1 =
N∑
j=1

u∗jaj + uja
†, γs1 =

N∑
j=1

v∗jaj + vja
†
j

where uj and vj are related to the Nambu vectors via ~γz1 = [u1,−u∗1, . . . , uN ,−u∗N ]T

and ~γz1 = [v1,−v∗1, . . . , vN ,−v∗N ]T . The HWRs imply Im
∑N

j=1 u
∗
jvj = 1/2 since

i = [γz1 , γ
s
1] =

N∑
j=1

u∗jvj − v∗juj = 2i Im
N∑
j=1

u∗jvj. (8.36)

Number symmetry implies that an approximate (or exact) ZM or SG remains so

after a phase rotation aj 7→ eiφaj. In particular, we may rotate each of our MBs to

construct a second linearly independent MB pair. Specifically, if we fix φ = π/2, then

we immediately find another linearly independent MB pair, namely,

γz2 = i
N∑
j=1

u∗jaj − uja†, γs2 = i
N∑
j=1

v∗jaj − vja
†
j.

We have not yet encountered anything resembling the edge modes of topological

insulators. For that, we need to utilize both MB pairs. Explicitly, consider the

operators

α ≡ 1

2
√
Cz

(γz1 − iγz2) =
1√
Cz

N∑
j=1

u∗jaj, β ≡ 1

2
√
Cs

(γs1 − iγs2) =
1√
Cs

N∑
j=1

v∗jaj,

(8.37)

where Cz =
∑

j |uj|2 and Cs =
∑

j |vj|2 are positive real numbers chosen to ensure α

and β satisfy the following properties:
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• They are bosonic: [α, α†] = [β, β†] = 1F ;

• They are algebraically related via [α, β] = 0;

• They are edge localized according to the localization of the constituent MBs;

• The bosonic mode α is approximately conserved while the real and imaginary

quadratures of β generate two (non-commuting) approximate symmetries.

Algebraically speaking, we have constructed edge modes on which the number sym-

metry acts trivially. The necessary and sufficient ingredients for this construction

are topological metastability and number symmetry, and so this construction applies

broadly.

The normalization of these operators is far more straightforward than it is in

the number-non-symmetric case. To see this, consider a left-localized, approximately

conserved, bosonic operator α, i.e., uj ∝ δj−1, with |δ| < 1 so that

α =M(N)
N∑
j=1

δj−1aj, (8.38)

where M(N) is the normalization constant. Taking δ positive and real without loss

of generality, the normalization constant is

M(N) =

√
1− δ2

1− δ2N

which, unlike in the case of the MBs, converges to a finite value as N →∞. Namely,

limN→∞M(N) =
√

(1− δ2). With this, the exact ZM in the N →∞ limit is

α =
√

1− δ2

∞∑
j=1

δj−1aj. (8.39)

While, in the generic case, the exact expression for α will be more complicated than

Eq. (8.38), this argument demonstrates the unambiguous normalizability of the modes
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in the infinite-size limit.

We conclude the general analysis by considering the possibility of a purely dissipa-

tive, number-symmetric chain that exhibits dynamical metastability (e.g., a number

symmetric analogue to the PDC to be discussed in Sec. 9.1). The number symme-

try property [G, τ3] = 0 manifests in the purely dissipative case G = −iτ3F(M) as

[F(M), τ3] = 0. Thus, G† = (−iτ3F(M))† = iτ3F(M) = −G. That is, a purely

dissipative number symmetric chain must have an anti-Hermitian (thus, normal) dy-

namical matrix G. It follows that no such model can exhibit dynamical metastability.

8.4 Relationships to existing work

Before moving to explicit examples, it is important to place our contributions in the

context of existing work. Firstly, concepts of metastability motivated by classical

statistical physics have been extended to Markovian systems, and studied in great

detail [154, 156]. In essence, this form of metastability is characterized by multi-step

relaxation, mandated by the presence of large gaps in the Lindblad spectrum. While

our dynamically metastable systems possess no such spectral gaps, it turns out they

do exhibit pseudospectral gaps. That is, the nontrivial pseudospectra (determined by

the spectra under semi-infinite BCs) remains gapped away from the exact spectrum

in such a way to mandate anomalous transient dynamics (see Fig. 8.2(a)). In fact,

pseudospectra has been conjectured [157] to also play a role in the recent discoveries

of anomalous relaxation dynamics in Markovian systems exhibiting a non-Hermitian

skin-effect [52, 53]. They have further been successfully applied to study anoma-

lous dynamics in random quantum circuits [158–160] and explicitly non-Hermitian

Hamiltonians [157, 161].

As hinted to in Ch. 1, a related branch of research known as topological amplifica-

tion [13–15, 51, 81, 82], while not motivated by the many-body physics of topological
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free fermions, shares notable points of contact with our analysis. The standard ap-

proach to topological amplifiers employs input-output theory. Central to the input-

output treatment is the susceptibility matrix, or Green’s function, say, χ(ω), which

connects incoming fields at frequency ω to outgoing fields at frequency ω. For pho-

tonic systems on N modes, whose coherent and incoherent dynamics can be cast in

the form of a Lindblad master equation, this susceptibility matrix takes the form

χ(ω) = i(ω12N −G)−1, where G is (in essence) the dynamical matrix we have stud-

ied extensively. It is then known that topological amplification can only take place

if χ−1(ω) “winds” around the origin, in a suitable sense. In our language this is, in

the simplest case, equivalent to nontrivial winding of the rapidity bands about the

point iω. According to our pseudospectral approach, this implies that there exist

pseudonormal modes with pseudoeigenvalues iω+λ, with λ > 0. Such pseudonormal

modes must necessarily amplify in the transient, and hence contribute to gain in the

output signal. Moreover, we see that when, these systems amplify zero-frequency

(ω = 0) signals, they must possess MBs and all of the associated non-trivial transient

dynamics they entail. To summarize, in our framework, general topological ampli-

fiers are classified as dynamically metastable, while those that amplify zero-frequency

input signals are classified as topologically metastable. We further observe that the

introduction and application of the “doubled matrix” approach in Refs. [13, 14] can

be connected naturally to pseudospectral theory (see Ref. [157], for instance).
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Chapter 9

The realm of possibilities

In this chapter 1, we introduce four models that best exemplify the novel aspects of

dynamical (both non-topological and topological) metastability and anomalous relax-

ation dynamics and, in addition, present an in-depth analysis of multitime correlation

functions in them. Let us summarize the key physical ingredients for each model, and

most important takeaways from each model.

The first model, which we will call the purely dissipative topologically metastable

chain, or simply the purely dissipative chain (PDC), will provide us with, in a sense,

the tightest bosonic analogues of Majorana edge fermions. As the name suggest, the

chain is purely dissipative (H = 0) and, in fact, is built according to the procedure

detailed in Sec. 7.2.1 with the fermionic Kitaev chain Hamiltonian used as the input.

The model exhibits topological metastability for parameters that correspond to half

of the topological region of the FKC Hamiltonian. The other half of the topological

region maps to a dynamically unstable QBL (see also Fig. 9.1). The Majorana bosons

emerging in the topological metastable regime are direct descendants of the Majorana

fermions in the original fermionic Hamiltonian. Since the overall model is purely

dissipating, each Majorana boson plays the role of an approximate ZM as well as an

1All results from this section can be found in Refs.[97] and [98] which were both co-authored with
Emilio Cobanera & Lorenza Viola.
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approximate SG - they are non-split, in the language of Sec. 7.1.

The second model, which we will call the dissipative BKC (DBKC), consists of the

BKC Hamiltonian with the uniform DPA term (Eq. (5.20)) paired with both uniform

on-site, and next-nearest neighbor (NNN), loss. The full model, which depends on five

parameters, exhibits each of the three dynamical phases of interest: an anomalously

relaxing phase, a non-topological dynamically metastable phase, and a topologically

metastable phase. We will explore the transient dynamics in each of these three

phases, and explicitly construct two Majorana pairs in the topologically metastable

regime. In sense, these Majorana boson pairs are the most generic, as they are split.

Thus, we can explore the consequences of the breakdown of Noether’s theorem via

these edge modes. We further are able to adjust the winding numbers of the two

rapidity bands of the model in such a way to vary the total number of MB pairs.

The third model, which we will call the DBKC with a pure steady state, consists

of the BKC Hamiltonian with a dissipator derived from the procedure detailed in

Sec. 7.2.2. Physically, the dissipator consists of uniform on-site loss, but in a squeezed

basis. We find that the dynamical matrix of this QBL coincides with that of the

DBKC in a certain parameter regime. As such, we are able to explore the interplay

between a pure steady state and topological metastability. We determine the form of

the (pure) quasi-steady states and determine that they are squeezed coherent states.

Thanks to their simple form, we are able to analytical study their relaxation dynamics

and find an sharp distinction between the relaxation times depending on which edge

symmetry displacement they are built from. Finally, we combine these states into

“cat”-states and analytically determine their parity dynamics. Again, depending

on which edge symmetry is used, the parity undergoes either relatively tame, or

extremely dramatic, evolution.

The final model, which we will call the dissipative number-symmetric chain (DNS),

consists of a tight-binding Hamiltonian subject to both on-site gain and loss. We find
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that this model, which has a weak total number symmetry, exhibits a topologically

metastable phase. Within this phase, we are able to analytically construct the DBs

that we predicted must arise in topologically metastable systems with total number

symmetry.

Following the detailed analysis of each model, we propose a class of observable

signatures of (topological and non-topological) dynamical metastability. Namely,

two-time correlation functions and their associated power spectra. By focusing on

correlations between linear forms, we uncover a state-independent notion of quantum

correlations. These correlations, and their power spectra, are then shown to behave

in distinctive ways depending on the dynamical phase of the QBL. In particular,

we show that topologically metastable systems will exhibit long-lived quantum cor-

relations between the macroscopically separated, edge-localized MBs, in addition to

divergent zero frequency power spectral peaks. In contrast, non-topological dynami-

cally metastable systmes are shown to have divergent peaks away from zero-frequency,

while non-metastable systems lack any such divergent peaks. We further develop the

theory of two-time quantum correlations in QBLs to distinguish split and non-split

MBs, as well as MBs from DBs. All predictions are confirmed within the previously

studied four models.

The outline for this chapter is as follows. In Secs. 9.1, 9.2, 9.3, and 9.4, we intro-

duce, and analyze, the PDC, the DBKC, the pure steady state DBKC, and the DNS

chain. In Sec. 9.5, we discuss aspects of two-time correlations and specifically apply

them to distinguish various incarnations of dynamical and topological metastability

in QBLs.
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Figure 9.1: Top: the topological phase diagram of the FKC Hamiltonian. Bottom:
the topological stability diagram of the PDC for the same parameters.

9.1 A purely dissipative topologically metastable

chain

To construct our first model, we will apply the procedure of Sec. 7.2.1 to the fermionic

Kitaev chain Hamiltonian (Eq. (5.10)). The first step is to identify the FKC BdG

Hamiltonian. Under OBCs, it is determined to be

HFKC = 1N ⊗ h0 + T⊗ h1 + T† ⊗ h†1, (9.1)

h0 ≡

−µ 0

0 µ

 , h1 ≡

−J ∆

−∆ J

 . (9.2)

The construction of Sec. 7.2.1 produces a purely dissipative QBL defined (solely) by

its GKS matrix, M = HFKC + B, with B any bosonic matrix ensuring M ≥ 0.

We define the purely dissipative topologically metastable chain, or simply the purely

dissipative chain (PDC), by taking B = α12N , with α any real quantity satisfying

α ≥ |minσ(HFKC)|. All of the features we will focus on are independent of the

specific chosen value of α. The physical dissipator contains five different contributions:
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DPDC ≡ D−,0 +D+,0 +D−,1 +D+,1 +Dp,1 with

D−,0 ≡ (α− µ)
N∑
j=1

D[aj, a
†
j], D+,0 ≡ (α + µ)

N∑
j=1

D[a†j, aj],

D−,1 ≡ −J
N∑
j=1

D[aj, a
†
j+1] +D[aj+1, a

†
j], D+,1 ≡ J

N∑
j=1

D[a†j, aj+1] +D[a†j+1, aj],

Dp,1 ≡ ∆
N∑
j=1

D[aj, aj+1]−D[aj+1, aj]− (a↔ a†).

The first and second term correspond to onsite damping and pumping of strengths

α−µ and α+µ, respectively. The third and fourth encode nearest- neighbor damping

and pumping (“dissipative hopping”), each of strength |J |. The final term encodes

the nearest-neighbor dissipative pairing of strength ∆. Importantly, this final term

breaks the U(1) number symmetry and allows for topological metastability to arise

(recall the final remark of Sec. 8.3.2).

Before embarking on a detailed analysis of the model, we ask: does the dissipator

“detect” the topological phase transition of the underlying FKC? The answer is “Yes”

and can be understood by diagonalizing the GKS matrix MPDC. Since MPDC differs

from the BdG Hamiltonian of the FKC HFKC by only a constant shift, its eigenvectors

are the same as those of the FKC while the eigenvalues are those of HFKC shifted by

α. It follows that

MPDC =
2N∑
n=1

(εn + α)~ψn ~ψ
†
n, HFKC

~ψn = εn ~ψn, ~ψ†n
~ψm = δnm. (9.3)

This allows us to diagonalize the dissipator according to

DPDC =
2N∑
n=1

D[Ln], Ln ≡ ~ψ†nΦ =
2N∑
j=1

(
~ψn

)∗
j

Φj. (9.4)

These diagonal Lindblad operators Ln are defined by the eigenvectors of HFKC. The
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FKC topological phase transition is then detected as follows. In the trivial phase,

|µ/2J | > 1, the eigenvectors ~ψn are “in the bulk”, that is, they are delocalized

standing waves spread uniformly throughout the chain. It follows that the Ln have

the same spatial distribution. In the non-trivial phase |µ/2J | < 1, two edge-localized

eigenvectors emerge, say ~ψ1 and ~ψ2. It follows that the Lindblad operators L1 and L2

are edge-localized. The topological phase transition of the FKC mandates a dramatic

change in the spatial distribution of the Lindblad operators. We then ask, how does

this dramatic change reflect in the actual dissipative dynamics of the bosonic system?

The dynamical matrix of this model is given by GPDC = −iτ3F(MPDC) =

−iτ3HFKC. Consequently, the Bloch dynamical matrix may be computed from the

Bloch Hamiltonian of the FKC (Eq. (5.11)), i.e.,

g(k) = −iσ3hFKC(k) = i(µ+ 2J cos(k))12 + 2∆ sin(k)σ1 (9.5)

The two rapidity bands are

λ±(k) = µ+ 2J cos(k)± 2i∆ sin(k), (9.6)

and bulk stability gap is ∆BIBC
S = ∆SIBC

S = µ + 2|J |. The bulk is (un)stable if

µ+2|J | < 0 (> 0). Bulk stability is then excluded if the underlying FKC Hamiltonian

is topological. In fact, one may verify that the rapidity bands wind about the origin

if and only if |µ/2J | < 1. Thus, if topological metastability is to emerge, it must be

in the same parameter regime as the non-trivial phase of the FKC.

To diagnose topological metastability, we require the OBC rapidity spectrum. It

turns out that this may be determined analytically (see Appendix B.3) and is given
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by

λn = µ+ 2i
√

∆2 − J2 cos

(
nπ

N + 1

)
, n = 0, . . . , 2N − 1. (9.7)

Henceforth, we will take ∆ ≥ J > 0 so that the OBC stability gap is ∆OBC
S,N = µ.

In particular, ∆OBC
S,N → µ for N → ∞. We conclude that the chain is topologically

metastable whenever µ < 0 and |µ/2J | < 1. This corresponds to “half” of the topolog-

ical phase diagram of the FKC. For µ < 0 and |µ/2J | > 1, the system is anomalously

relaxing, since |∆OBC
S,N −∆SIBC

S | = 2|J | 6= 0. See Fig. 9.1 for a superimposition of the

FKC topological phase diagram and the PDC’s stability phase diagram.

While we may generically compute MBs numerically, it is possible to determine

analytical expressions for the special case J = ∆. The unnormalized MB pair reads

γL =
N∑
j=1

δj−1xj, γR ≡
N∑
j=1

δN−jpj, δ ≡ −µ
2J

. (9.8)

Immediately, we see that these modes have the exact same spatial distribution as the

Majorana fermions in the FKC, Eqs. (5.13). This is to be expected by the general ar-

guments of Sec. 7.2.1 which, in particular, guarantee that localized approximate ZMs

of the fermionic Hamiltonian manifest as localized approximate ZMs of the corre-

sponding QBL. General arguments about purely dissipative, topologically metastable

systems further imply that if γL or γR is an approximate ZM, then it is also an

approximate SG. We verify this explicitly:

L?(γL) = −2JδNxN , L?([γL, A])− [γL,L?(A)] = −2iJδN [xN , A], ∀A,

L?(γR) = −2JδNp1, L?([γR, A])− [γR,L?(A)] = −2iJδN [p1, A], ∀A.

The two equations on the left verify that each member of the pair is an approximate

ZM, while the two on the right verify that each is also an approximate SG: they are
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non-split. Finally, the unnormalized MB algebra is [γL, γR] = iNδN−1. Referring

back to Sec. 8.3.1, we see that the PDC hosts exactly the non-split incarnations of

the “typical” MBs previously analyzed. In particular, we may normalize them ,

γL,R 7→ M(N)γL,R, withM(N) = δ−(N−1)/2/
√
N , so that (γL, γR) satisfy all of these

desired criteria. In particular, the robustness property can be analytically verified

(see Appendix B.4.

9.2 A dissipative BKC

The previous model represents the simplest bosonic extension of Majorana fermions.

However, the chain itself is atypical in the sense that a vanishing system Hamiltonian

is rather non-generic. More generally, one may expect both coherent and incoherent

processes encoded by a non-zero Hamiltonian and a non-zero dissipator, respectively.

If such a system is topologically metastable, the MBs will be generically non-split.

That is, the breakdown of Noether’s theorem (in the sense of Sec. 6.1.2), and its

partial restoration (in the sense of Sec. 7.1), are to be expected.

For an example of such a system, we will take the system Hamiltonian to be

the BKC Hamiltonian with hopping and pairing plus uniform degenerate parametric

amplification, i.e., Eq. (5.20). We will focus on the case where the hopping J and

pairing ∆ are related via J ≥ ∆ > 0. Appended to this system will be two damping

mechanisms, via the dissipator

DDBKC ≡
N∑
j=1

(
κ− (2Γ)2

κ

)
D[aj] + κD[aj +

2Γ

κ
aj+2], (9.9)

where κ ≥ 0 is a uniform onsite damping rate and Γ ≥ 0 is a next-nearest neighbor

(NNN) damping rate. BCs are enforced by taking aj+N = 0 (aj) for OBCs (PBCs).

One may verify that the GKS matrix is guaranteed to be positive-semidefinite if

κ ≥ 2Γ. We will refer to the overall five parameter model simply as a dissipative
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bosonic Kitaev chain (DBKC).

The Bloch dynamical matrix for this system is determined to be

gDBKC(k) ≡ −i(κ− iJ sin(k) + 2Γ cos(2k))12 + i(µ+ ∆ cos(k))σ1, (9.10)

from which the rapidity bands follow

λ±(k) ≡ −(κ± µ)∓∆ cos(k)− iJ sin(k)− 2Γ cos(2k). (9.11)

For convenience, we will explore the properties of this system in two specific parameter

regimes: (i) µ = 0 and (ii) Γ = 0.

9.2.1 The parameter regime µ = 0

When µ = 0, Eq. (9.11) reveals that the two bands are degenerate. For this degenerate

case, we refer to Fig. 8.1 for example rapidity bands and finite-system rapidities.

With respect to the elliptical bands of the BKC Hamiltonian, the onsite damping

introduces an overall shift (we will formalize this in the next section) while the NNN

damping introduces more complex curvature. Computing maxk Re[λ±(k)] yields the

bulk stability gap

∆BIBC
S = ∆SIBC

S =


−κ+ ∆− 2Γ, Γ/∆ < 1/8

−κ+ ∆2/16Γ + 2Γ Γ/∆ > 1/8

(9.12)

Interestingly, the region where ∆BIBC
S > 0 is divided into two distinct sectors: one

in which the two bands wind around the origin and one where neither do. This is

illustrated in Fig. 9.2(a). This means that, depending on the sign of the OBC sta-

bility gap ∆OBC
S,N , this parameter regime can potentially correspond to a topologically

metastable phase and a non-topological metastable phase. Unfortunately, however,
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Figure 9.2: (a) The topological phase diagram of the DBKC with J ≥ ∆ > 0 and
µ = 0. The “Non-zero winding” region indicates the parameter regime where the
rapidity bands wind around the origin. The “Zero winding” region indicates the
parameter regime where neither band winds around the origin. If the OBC chain is
dynamically stable in either of these two regions, then it is dynamically metastable,
additionally being topologically metastable in the former case. The “Dynamically
stable bulk” region is where the rapidity bands lie in the left-half plane. If the OBC
chain is dynamically stable here, then it is anomalously relaxing. The “Ill-defined”
region is where M is no longer positive-semidefinite. The black dots indicate the
position of two representative parameter choices used in later figures. (b) For later
reference, the steady state purity under OBCs in the same phase space as (a) with
J = 2, ∆ = 0.5, and N = 25. (c) The topological stability phase diagram of the
DBKC under OBCs with Γ = 0. The inset figures show representative rapidity band
structure in each region. The number of bands winding around the origin determines
the number of MB pairs.

analytical determination of ∆OBC
S,N is difficult due to the presence of the NNN term.

Numerical determination of the OBC rapidity spectrum (shown for one choice of

parameters in Fig. 8.1) reveals that, generally, ∆OBC
S,N is negative bounded away from

the bulk stability gap as N →∞. In the case where the bulk stability gap is negative,

this means the system is in an anomalously relaxing phase. When the bulk stability

gap is positive, there are particular choices of parameters where both topological

and non-topological dynamical metastability are present. Since the case Γ = 0,

which we will consider in the next section, offers the cleanest platform for studying

the topological case, we will focus on the non-topological dynamical metastability

when Γ > 0. One example of such a parameter regime is the one used to generate

Fig. 8.1(b), which, corresponds to the rightmost point of Fig. 9.2(a), i.e., Γ/∆ = 0.12
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and κ/∆ = 0.6.

9.2.2 The parameter regime Γ = 0

When Γ = 0, the system is simply the BKC with uniform DPA of strength µ subjected

to uniform on-site loss of rate κ. From Eq. (9.11), the rapidity bands consist of two

ellipses in the complex plane. The major and minor axes are J and ∆, respectively.

The center of the ellipse λ± is at the point −κ∓µ and the corresponding bulk stability

gap follows as

∆BIBC
S = ∆SIBC

S = −κ+ ∆ + |µ|. (9.13)

Thus, bulk stability requires κ ≥ ∆ + |µ|, i.e., sufficiently strong loss to overcome the

coherent amplification mechanisms. The band λ± winds about the origin whenever

−κ ∓ µ < 0 < ∆ ∓ µ + ∆. For the simple case µ = 0, this corresponds to κ/∆ < 1.

If µ 6= 0, then the winding numbers of the bands are generally independent. In

particular, an appropriate choice of µ can ensure one band winds around the origin

while the other does not. Notably, the chiralities of the band are opposite: λ+ winds

counterclockwise while λ− winds clockwise. Thus, if both bands wind about the

origin, then the corresponding winding numbers are of opposite sign.

To diagnose topological metastability, we require the OBC rapidities. Thankfully,

uniform onsite damping corresponds to a very simple GKS matrix:

M = κ

N⊕
j=1

1 0

0 0

 , F(M) = κτ3 (9.14)

Thus, the dynamical matrix is generally given by the BKC (with the uniform DPA

term) Hamiltonian dynamical matrix, plus −iτ3F(M) = −iκ12N . Consequently, the

rapidities (under any BCs) are given by λn = −κ + iωn, with ωn the normal mode
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frequencies of the Hamiltonian. For our model,

λ±n = −κ∓ µ+ i
√
J2 −∆2 cos

(
nπ

N + 1

)
, n = 1, . . . , N. (9.15)

The OBC stability gap is then ∆OBC
S,N = −κ+ |µ|, which differs from the bulk stability

gap by a system-size independent constant ∆. With this, and the band winding

conditions, we determine the Γ = 0 DBKC to be topologically metastable whenever

−κ+ |µ| < 0 and at least one of |(κ±µ)/∆| < 1. The second condition corresponds to

the band λ± having nonzero winding. Otherwise, the system is anomalously relaxing.

Per the general arguments of Sec. 8.3.1, each non-trivial band will contribute a

pair of MBs. Analogously to the previous model, we can compute them exactly in

the special case J = ∆. The two unnormalized MB pairs are now given by (γzL, γ
s
R)

and (γsL, γ
z
R) where,

γzL ≡
N∑
j=1

δj−1
− xj, γsR ≡

N∑
j=1

δN−j− pj (9.16)

γsL ≡
N∑
j=1

δj−1
+ xj, γzR ≡

N∑
j=1

δN−j+ pj (9.17)

with δ± = −(µ ± κ)/J . The relevant non-vanishing commutators are [γzL, γ
s
R] =

iNδN−1
− and [γsL, γ

z
R] = iNδN−1

+ . The MB’s roles as approximate ZMs and SGs (indi-

cated by z and s superscripts, respectively) follow from

L?(γzL) = −JδN−xN , L?([γsR, A])− [γsR,L?(A)] = JδN− [p1, A], ∀A.

L?(γzR) = JδN+ p1, L?([γsL, A])− [γsL,L?(A)] = −JδN+ [xN , A], ∀A.

Whenever δ+ or δ− has modulus less than one, the corresponding z/s mode is an

approximate ZM / SG. This modulus condition, which also ensures exponential edge-

localization, is precisely tied to the band winding condition: |δ±| < 1 if and only if
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λ±(k) winds around the origin. In particular, the number of MB pairs can be 0, 1,

or 2. The difference in band chirality is reflected in which member of the ZM-SG

pair is localized on which side. The Γ = 0 topological phase diagram is shown in

Fig. 9.2(c). Finally, we remark that the fact that there are regimes where the total

winding number is non-vanishing (specifically, when only one of the δ± has modulus

less than 1) explicitly requires dissipation and is interesting from the perspective of

Fredholm operator theory [153].

In Sec. 8.3.1, we made several predictions regarding the dynamical behavior of the

quasi-steady states in topologically metastable systems. Since the DBKC offers us

a rather generic instance of such a behavior, let’s test these predictions. Consider

specifically the quasi-steady states generated by the left approximate SG, i.e., ρLθ ≡

eiθγ
s
Lρsse

−iθγsL . Eqs. (8.33) and (8.34) assert that both the mean vector, as well as

the expectation values of arbitrary linear observables, will remain within an ever-

decreasing distance of their initial value for an ever-increasing amount of time as the

system size is increased. This behavior is directly verified in Figs. 8.2(b) and (c).

Fig. 8.2(b) specifically shows both the left hand-side of Eq. (8.33) as well as the left

hand-side of Eq. (8.34) for randomly sampled choices of the operator α. Clearly, the

increasing of system size leads to a larger suppression of ~mθ(t)− ~m(0) for longer times.

Consequently, the expectation values of observables follow suit. Fig. 8.2(c) further

bolsters this point, by demonstrating the dependence of t(δ), the time it takes for

the left hand-side of Eq. (8.33) to exceed a prescribed accuracy δ > 0, on system size.

Asymptotically, t(δ) appears to increase linearly with N , regardless of δ. This linear

behavior suggests that the topologically metastable transient time may be closely

related to the time it takes for the state to ‘detect’ the presence of both boundaries.

Specifically, the left-localized quasi-steady state needs to evolve long enough for the

boundary on the right side to be detected. A standard Lieb-Robinson-type argument

then leads to the expectation that this time should scale linearly with system size. In
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particular, as N → ∞, the time it takes to detect the right boundary diverges and

the quasi-steady state becomes truly steady. This is consistent with the undersanding

that the semi-infinite rapidity spectrum, which contains zero, imprints itself into the

pseudospectra of the finite system.

9.3 A dissipative BKC with a pure steady state

9.3.1 Constructing the model

The concluding analysis of the previous model shed light on the behavior of the

quasi-steady states in a generic instance of a topologically metastable system. How-

ever, unlike the ground states of topological QFHs, steady states of Lindbladians

are generally mixed states. For QBLs, the purity can be directly computed using

the covariance matrix according to Eq. (2.16). It turns out that the steady states

of all models considered thus far are non-pure (e.g., see Fig. 9.2(b) for the DBKC

steady state purity under OBCs). This has prevented us from exploring the interplay

between topological metastability and pure steady states (so-called “dark states” in

quantum optics). The more general procedure detailed in Sec. 7.2.2 allows us, given a

dynamically stable Hamiltonian with quasiparticle vacuum |0̃〉, to engineer a dissipa-

tor that relaxes any initial condition to the state |0̃〉. Such a stabilization procedure

is especially interesting when the vacuum state possesses certain nontrivial properties

such as non-zero squeezing, as is the case with the BKC. Can topological metastability

arise in such a system? The answer is Yes, as we will now show.

Consider the Lindbladian defined via the BKC Hamiltonian (with µ = 0 for

simplicity) and the site-local dissipator

D = 2κ
N∑
j=1

D[βj(r)], (9.18)
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where κ ≥ 0 and we have introduced squeezed bosonic degrees of freedom

βj(r) ≡ cosh(jr)aj − sinh(jr)a†j. (9.19)

The squeezing parameter r is the same as defined in Sec. 3.3.3, i.e., e2r = (J+∆)/(J−

∆). This represents a local dissipative process of the squeezed degrees of freedom with

constant loss rate 2κ. A number of remarks are in order.

(1) We claim that the dissipator in Eq. (9.18) is precisely the output of the pro-

cedure detailed in Sec. 7.2.2 when applied to the BKC Hamiltonian. To see this, we

will utilize Eq. (6.6) to implicitly determine the GKS matrix via the “parent Hamilto-

nian”
∑N

j=1 L
†
jLj (in the langauge of Ref. [72]) with the choice of Lindblad operators

Lj ≡
√

2κβj(r). We proceed by noting that βj(r) = (R(r)Φ)j in terms of the duality

transformation R(r) of Sec. 4.2.2. The parent Hamiltonian is then

N∑
j=1

L†jLj = 2κ
N∑
j=1

α†j(r)βj(r) = 2κ
N∑
j=1

2N∑
k,`=1

R(r)∗jkRj`(r)Φ
†
kΦ` (9.20)

The sum over j can be simplified by utilizing a number of facts. First, we will leverage

three properties of R(r) (recall Ch. 4): (i) Hermiticity, (ii) R2(r) = S(r), and (iii)

R(r)τ3R(r) = τ3. Second, note that a sum from j = 1 to N can be extended to a

sum from j = 1 to 2N by inserting a coefficient (12N + τ3)jj/2, which is 1 for j ≤ N

and 0 for j > N . Bringing these together reveals

N∑
j=1

R(r)∗jkRj`(r) =
N∑
j=1

R(r)kjRj`(r) =
1

2

2N∑
j=1

R(r)kj(12N + τ3)jjRj`(r)

=
1

2

2N∑
j=1

R(r)kjR(r)j` + R(r)kj(τ3)jjRj`(r)

=
1

2
(S(r) + τ3)k` .
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The “parent Hamiltonian” is then

N∑
j=1

L†jLj = κ

2N∑
k,`=1

(S(r) + τ3)k` Φ†kΦ`, (9.21)

from which we infer M = κ (S(r) + τ3), i.e., the GKS matrix output from the recipe

of Sec. 7.2.2. Following Eq. (7.26) the dissipator has a particularly simple representa-

tion in terms of the quasiparticles of the BKC Hamiltonian under OBCs, Eq. (3.37).

Explicitly, these quasi-particles are ‘standing-waves’ in the squeezed basis βj(r),

ψn =

√
2

N + 1

N∑
j=1

i−j sin

(
nπj

N + 1

)
βj(r). (9.22)

From here, the dissipator is given by

D = 2κ
N∑
n=1

D[ψn]. (9.23)

As expected, the chain is a set of N decoupled dissipative harmonic oscillators with

mode-varying frequencies ωn and uniform damping κ in the quasiparticle basis 2.

Equivalently, we have an alternative choice of Lindblad operators Ln =
√

2κψn.

Ultimately, the steady state is ρss = |0̃〉 〈0̃| in terms of the BKC quasiparticle vacuum

|0̃〉 of Eq. (3.39). We further note that dissipators diagonal in the normal mode basis

of the system Hamiltonian often arise in microscopic derivations of quadratic master

equations [151].

(2) The dissipator is not bulk-translationally invariant. Explicitly, the squeezing

of the mode βj(r) increases with j. Remarkably, however, the dynamical matrix

G = G
∣∣
κ=0
− iκ12N is translationally invariant, up to BCs. This is one particular

2The fact that the dissipator more than one diagonal representation, Eqs. (9.18) and (9.23),
results from a large degeneracy in the GKS matrix spectrum. In particular, M has an N -fold
degenerate 0 eigenvalue. Different diagonal representation of D are derived from different choices of
bases for the 0 eigenvalue eigenspace.

230



incarnation of the “restricted symmetry” phenomena detailed in Sec. 7.2.2. We then

say this model has a restricted translational symmetry. Furthermore, the dynamical

matrix of this model is precisely equivalent to that of the DBKC with Γ = µ = 0

considered previously. This allows for a straightforward computation of rapidities and

pseudospectra. In particular, the chain is topologically metastable for |κ/∆| < 1 and

is anomalously relaxing for |κ/∆| > 1. There are two MB pairs in the topologically

metastable regime.

Since the steady state is the quasi-particle vacuum of HBKC, it is necessarily a

function of the Hamiltonian parameters J and ∆ only (in addition to system size N).

In particular, it is insensitive to κ, and hence to the topology of the rapidity bands.

This reveals a remarkable fact about topological metastability: its consequences need

not be reflected in the structure of the steady state at all. Topological metastability

is truly a transient phenomena.

9.3.2 Relaxation dynamics of the quasi-steady states

Quasi-steady states of topoloigcally metastable chains are characterized as Weyl dis-

placements, in the direction of the edge-SG, of the steady state. Let us explore

the properties of these states given that our steady state is pure. Let γs be one of

two edge-symmetries γsL or γsR of the DBKC. Following Sec. 8.3.1, we construct the

quasi-steady states ρθ ≡ eiθγ
s |0̃〉 〈0̃| e−iθγs , which are also pure. In fact, the states

|~α(θ), {ψµ}〉 ≡ eiθγ
s |0̃〉, which are generically squeezed coherent states with respect

to the physical degrees of freedom {aj}, can be interpreted as coherent states with

respect to the squeezed bosonic normal modes {ψµ}. Explicitly,

ψµ |~α(θ), {ψµ}〉 = αµ(θ) |~α(θ), {ψµ}〉 . (9.24)
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The complex numbers αµ(θ) encode the extent to which the normal modes commute

with the SG, i.e., [ψµ, γ
s] = iθ ~ψ†µτ3~γ

s 1F = αµ(θ)1F where ~ψµ and ~γs are the Nambu

representations of ψµ and γs, respectively. As in the general case, the mean vector

~m(t) = 〈0̃|Φ(t)|0̃〉 = iθ~γs(t) is long-lived in the sense of Fig. 8.2(b). Due to the

correspondence between dynamical matrices, this is precisely the same mean vector

that the mixed quasi-steady states of the DBKC give rise to.

Identifying the quasi-steady states as coherent states evolving under decoupled

dissipative harmonic dynamics (in the normal-mode basis) affords us the ability

to compute their dynamics exactly [162, 163]. In particular, we can analyze their

relaxation dynamics analytically. As they evolve, the states remain coherent, i.e.,

ρθ(t) = |~α(θ, t), {ψµ}〉 〈~α(θ, t), {ψµ}|, with amplitudes

αµ(θ, t) = αµ(θ)e−(κ+iωµ)t = 〈ψµ〉 (t). (9.25)

Almost paradoxically, the amplitudes relax to equilibrium exponentially fast. This

paradox is resolved by noting that these amplitudes correspond to the expectation

values of ψµ, which, due to squeezing, have exponentially large coefficients when

expressed in the basis of the physical relevant degrees of freedom {aj}. This explains

why the normal-mode amplitudes decay exponentially, while the mean vector has an

increasingly long lifetime. Although this property remains consistent regardless of

whether the left-localized or right-localized SG is chosen, the specific way in which

the relaxation dynamics occur, at the level of the many-body states, may differ.

Consider the trace distance between two quantum states T (ρ, σ) = (1/2) ‖ρ− σ‖1,

which provides a measure of distinguishability between ρ and σ. Thanks to our

knowledge of the exact dynamics, we can study the relaxation time of the quasi-
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steady states via the distance from equilibrium

T (ρθ(t), ρss) =

√
1− | 〈~α(θ, t), {ψµ}|0̃〉 |2 =

√
1− exp

(
−‖~α(θ, 0)‖2 e−2κt

)
,

where ~α(θ, t) is either ~αL(θ, 0) or ~αR(θ, 0) depending which SG γsL or γsR is used to

generate the quasi-steady states. We then define the relaxation time to be the time

trel(δ) such that the relative distance from equilibrium T (ρθ(t), ρss)/T (ρ(0), ρss) falls

(and remains) below a prescribed accuracy δ > 0. A straightforward calculation

yields

κtrel(δ) =
1

2
ln

 ‖~α(θ, 0)‖2

ln

[(
1− δ(1− e−‖ ~α(θ,0)‖2)

)−1
]
 . (9.26)

The system-size scaling of trel(δ) is thus explicitly tied to the system-size scaling of the

norm of the initial amplitude vectors ~α(θ, 0). Remarkably, the two manifolds of quasi-

steady states display dramatically different relaxation dynamics, as inferred from their

relaxation times. We find, numerically, that ‖~αL(θ, 0)‖ increases exponentially with

N , while ‖~αR(θ, 0)‖ decreases exponentially. The consequences of this observation

are clearly displayed in Fig. 9.3: The left-localized quasi-steady state displays a in-

creasingly long relaxation time, while the right-localized shows just the opposite. The

asymmetry in the dynamics may be understood by noting that, while the dynami-

cal matrix is translationally invariant (up to boundaries), the full generator is not.

Specifically, the Lindblad operators Lj =
√

2κβj(r) are right localized.

The boundedness of the relaxation times for the right-localized state does not

contradict our claim of long-livedness. Per the general theory, the lifetime of the

physically accessible degrees of freedom ~mR
θ (t) remain indistinguishable from their

initial value ~mR
θ (0) (again, in the sense of Fig. 8.2(b)). On the other hand, the quasi-

steady state and the true steady state have overlap exponentially close to one as N
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Figure 9.3: (a) The relaxation dynamics of the left-localized quasi-steady state as N
increases. (b) The same as in (a), but for the right-localized quasi-steady state. (c)
The relaxation times trel(δ) for the left (red) and right (blue) localized quasi-steady
states for accuracies δ = 0.75 (solid) and δ = 0.90 (dashed). (d) The scaling of
the amplitude vector norms for the left (red) and right(blue) localized quasi-steady
states. In all cases, we take θ = 1, symmetrically normalize the MBs, and set J = 2,
∆ = 0.5, and κ = 0.3.

increases. The resolution comes by noting that the macroscopic expectation values

~mR
θ (t) are obtained from the exponentially small normal mode amplitudes ~αR(θ, t) via

the squeezing transformation taking aj to ψn. This transformation dilates the expo-

nentially small amplitudes into the physical amplitudes. In the same vein, the same

transformation squeezes the exponentially large normal mode amplitudes ~αL(θ, t) into

the physical amplitudes ~mL
θ (θ, t).

9.3.3 Transient odd-parity behavior

To conclude our analysis of this model, we pose the question: Do the pure quasi-

steady states span a subspace of long-lived states? That is, do linear combinations

of these pure states provide long-lived states themselves? This question is interesting
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from two perspectives. Firstly, from the perspective of continuous variable quantum

information, linear combinations of coherent states provide the simplest realization of

bosonic cat-codes [18, 164]. Thus, the ability to potentially dissipatively prepare and

sustain such states is a powerful one. Secondly, from the perspectives of condensed-

matter physics and quantum optics, bosonic ground states and steady states are

intrinsically averse to odd parity. Specifically, if a QBH (QBL) has a unique ground

(steady) state, then it must have even bosonic parity (see Secs. 2.3 and 6.2.1). As

we have seen in Sec. 5.2.2, this eliminates the possibility for the parity switching

behavior characteristic of topological superconductor, in QBHs. Moreover, negative

expectation values of parity signify quantum non-Gaussianity (recall Eq. (2.41)).

In general, the question is difficult to answer. However, we can make interesting

statements about particularly relevant linear combinations. Concretely, let’s focus

our attention to the “cat states”

|Cφ(~α)〉 = Nφ(~α)(|~α(θ), {ψµ}〉+ eiφ |−~α(θ), {ψµ}〉), (9.27)

where Nφ(~α) is a normalization constant. Being generally non-Gaussian, these states

are not simply characterized by their first and second moments. Moreover, computa-

tion of overlaps becomes drastically more difficult than the previous case. Instead of

a direct analysis of relaxation times, let us focus explicitly on parity dynamics,

〈P 〉φ,~α (t) = 〈Cφ(~α)|P (t)|Cφ(~α)〉 , (9.28)

with P the bosonic parity operator, Eq. (2.13). Once again, our simple characteriza-

tion of the dynamics affords us an exact analytical result:

〈P 〉φ,~α (t) =
e−2‖~α‖2 + cos(φ)e−2‖~α‖2(1−e−2κt)

1 + cos(φ)e−2‖~α‖2
. (9.29)
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We explain how to derive this formula in the Appendix B.5. Here we will focus

on its physical implications. Again, which quasi-steady state manifold is chosen

dramatically affects the displayed behavior. If ~α = ~αL(θ, 0), the parity shows a

dramatic dependence on both N and φ, as seen in Fig. 9.4. Unless φ = ±π/2, the

parity drops extremely fast to zero, remains zero for a transient time that scales

linearly with system size, and then eventually increases to its asymptotic value of 1.

The extremely fast initial drop to zero corresponds to a singularity in the derivative,

〈Ṗ 〉φ,~α (0) = −4 ‖~αL(θ, 0)‖2

(
e−2‖~α‖2 − cos(φ)

1 + e−2‖~α‖2 cos(φ)

)
, (9.30)

as N (and hence ‖~α‖) goes to infinity. The transient state of zero parity that follows

is interesting, as it represents a long-lived period where the measurement statistics of

parity are split evenly between the +1 and −1 outcomes. While the system does not

sustain a state of odd parity deterministically, it does, in fact, sustain a state equally

distributed between even and odd parity sectors.

In sharp contrast, if ~α = ~αR(θ, 0), the parity dynamics are much more well-

behaved. The exponentially small norms of ~αR(θ, 0) ensure that, for sufficiently large,

N ,

lim
N→∞

〈P 〉φ,~αR (t) =


1, φ 6= π,

1− 2e−2κt, φ = π.

(9.31)

Unless φ = π, the parity approaches 1 for all t as N increases. Moreover, when φ = π,

the parity is indistinguishable from 1 − e−2κt for sufficiently large N . Regardless,

unlike their left-localized partners, these right-localized cat states fail to support any

semblance of an odd-parity state for any meaningful amount of time.
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Figure 9.4: (a) The parity of the odd-parity cat state formed from the left-localized
quasi-steady states for increasing N . Inset: the very short time dynamics of the
parity. (b) The parity of the cat state formed from the left-localized quasi-steady
states for fixed N = 25 and varying φ. (c) The parity of the odd-parity cat state
formed from the right-localized quasi-steady states for increasing N . The dashed line
indicates the N → ∞ limit. (d) The parity of the cat state formed from the right-
localized quasi-steady states for fixed N = 25 and varying φ. In all cases, we take
θ = 1, symmetrically normalize the MBs, and set J = 2, ∆ = 0.5, and κ = 0.3.
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9.4 Dirac bosons in a number-symmetric dissipa-

tive chain

Let us explore the interplay between number symmetry and topological metastability

in a concrete example. The dynamical matrix of a number symmetric QBL has the

general form Eq. (8.35), where K is an arbitrary N × N complex matrix. Topolog-

ical metastability can then be engineered through an appropriate choice of K. For

concreteness, we consider the example

K = −iκ1N + JLS + JRS†, (9.32)

with κ ≥ 0, JL, JR ∈ R, and S the usual BC-dependent shift operator. We identify

this matrix as that of the Hatano-Nelson asymmetric hopping model [165], with an

identity shift that will ultimately serve to stabilize the QBL. For convenience, we

define J± = (JL ± JR)/2. The Hamiltonian can be unambiguously determined from

G and is given by

HNS =
J+

2

N∑
j=1

(
a†jaj+1 + a†j+1aj

)
. (9.33)

Per usual, the QBL is not fully determined until we specify B(M). Moreover, the

second necessary condition for the U(1) symmetry is that τ3B(M) commutes with

τ3. Together, [G, τ3] = 0 and [τ3B(M), τ3] = 0 are necessary and sufficient for

the U(1) symmetry. We specify B(M) implicitly by defining the dissipator DNS =
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D−,0 +D+,0 +D−,1 with

D−,0 = 2κ−

N∑
j=1

D[aj], D+,0 = 2κ+

N∑
j=1

D[a†j], (9.34)

D−,1 = 2iJ−

N∑
j=1

D[aj, a
†
j+1]−D[aj+1, a

†
j]. (9.35)

Here, 2κ− ≥ 0 and 2κ+ ≥ 0 are the onsite loss and gain rates, respectively, while 2J−

takes the role of the nearest-neighbor loss rate. The GKS matrix will be positive-

semidefinite for OBCs and PBCs, and for all N , if κ− ≥ 2|J−|. This QBL has a

dynamical matrix specified by Eq. 9.32 if we further identify κ ≡ κ− − κ+. We refer

to this model as the dissipative number-symmetric (DNS) chain. The steady state

behavior of a related model has been considered in Ref. [166].

The rapidities can be obtained straightforwardly from the well-known Hatano-

Nelson spectrum and closely resemble that of the DBKC. For BIBCs, the bands are

given by {λ(k), λ(k)∗}, with

λ(k) = −κ+ 2J− sin(k) + i2J+ cos(k). (9.36)

The bands trace out an ellipse centered at −κ in the complex plane. Winding about

the origin requires 2|J−| > κ. For OBCs, the eigenvalues are given by λm, m =

0, . . . , 2N − 1, where

λm = −κ+ 2i
√
J2

+ − J2
− cos

(
mπ

N + 1

)
. (9.37)

To simplify the discussion (and fix the OBC Lindblad gap ∆L = κ, for all N), we

focus on the case |J+| ≥ |J−|. Combining the GKS matrix positivity condition and

the rapidity band winding condition, we identify a topologically metastable regime

whenever κ−/|J−| ≥ 2 and 0 ≤ κ/2|J−| ≤ a1. The OBC stability phase diagram is
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Figure 9.5: The stability phase diagram for the DNS under OBCs with |J+| > |J−|.
The “Ill-defined” region corresponds to the parameter regime where M is no-longer
positive-semidefinite.

shown in Fig. 9.5.

In the special case JR = 0, the pseudoeigenvectors of K (and K†) with zero

pseudoeigenvalue may be computed analytically. Such pseudoeigenvectors can be

used to build approximate kernel vectors of G and G̃ = G†, which correspond to

approximate SGs and ZMs, respectively. Specifically, consider the bosonic modes

α ≡M(N)
N∑
j=1

(iδ)N−jaj, β ≡M(N)
N∑
j=1

(−iδ)j−1aj, (9.38)

where δ ≡ −κ/2J− and M(N) ≡
√

(1− δ2)/(1− δ2N). First and foremost, we have

[α, α†] = [β, β†] = 1F and [α, β] = 0. Second, these operators satisfy

L?(α) = −κM(N) (−iδ)N−1a1, (9.39)

L?([β,A])− [β,L?(A)] = −κM(N) (iδ)N−1[aN , A], ∀A. (9.40)

Utilizing L?(A†) = [L?(A)]† yields similar expressions for α† and β†. For |δ| < 1, the
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right hand-side of each equation goes to zero as N →∞. Physically, this means α is

a bosonic approximate ZM, while the real and imaginary quadratures of β generate

approximate symmetries. That is, α and β are the Dirac bosons of Sec. 8.3.2.

We may trace these two bosonic modes back to two pairs of MBs using Eqs. (8.37).

Specifically, we have

γz1 =Mz(N)
N∑
j=1

(
(iδ)N−jaj + (−iδ)N−ja†j

)
, γs1 =Ms(N)

N∑
j=1

(
(−iδ)j−1aj + (iδ)j−1a†j

)
,

(9.41)

γz2 = iMz(N)
N∑
j=1

(
(iδ)N−jaj − (−iδ)N−ja†j

)
, γs2 = iMs(N)

N∑
j=1

(
(−iδ)j−1aj − (iδ)j−1a†j

)
,

(9.42)

for some normalization constantsMz(N) andMs(N) chosen to ensure [γzj , γ
s
j ] = i1F

for j = 1, 2. The relevant equations of motion follow from Eqs. (9.39)-(9.40), that is

L?(γz1) = −κMz(N)
(

(−iδ)N−1a1 + (iδ)N−1a†1

)
, (9.43)

L?(γz2) = −iκMz(N)
(

(−iδ)N−1a1 − (iδ)N−1a†1

)
, (9.44)

L?([γs1, A])− [γs1,L?(A)] = −κMs(N)[(iδ)N−1aN + (−iδ)N−1a†N , A], (9.45)

L?([γs2, A])− [γs2,L?(A)] = −iκMs(N)[(iδ)N−1aN − (−iδ)N−1a†N , A]. (9.46)

Following the discussion of Sec. 8.3.1, there exists normalization schemes that ensure

the right hand-sides of these four equations vanish as N → ∞, while keeping each

pair canonically conjugate (e.g., the symmetric normalization scheme).

We remark that these pairs of MBs are not simply the real and imaginary quadra-

tures of α and β, i.e., the operators xα ≡ (α + α†)/
√

2, pα ≡ i(α − α†)/
√

2,

and similarly for β. Instead, the MBs are proportional to these quadratures (e.g.,

γz1 =
√

2Mz(N)xα and γz2 =
√

2Ms(N)pα). The proportionality constants ensure
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that the macroscopically separated pairs (γz1 , γ
s
1) and (γz2 , γ

s
2) are canonically conju-

gate. We further remark that each edge supports two of the same type Noether mode:

the left edge supports two SGs, while the right edge supports two ZMs. This is to be

contrasted with the previous models, which all featured at most one of each type on

each edge.

9.5 Observable signatures

In a traditional equilibrium statistical mechanics setting, quantum phase transitions

are accompanied by critical behavior, i.e., the presence of long range (typically alge-

braically decaying) correlation functions. More specifically, these correlation functions

are evaluated at equal times and are of the form C(j, r, t) = 〈Aj(t)Aj+r(t)〉 taken with

respect to some equilibrium state (e.g., the ground state). The equilibrium assump-

tions allows one to take C(j, r, t) = C(j, r, 0), so that time-dependence is removed.

On the one hand, it is natural to expect that correlation functions can detect the

dynamical phases present in our QBLs. On the other hand, haphazardly transplant-

ing this concept into our setting would be inappropriate. For our systems, the only

‘equilibrium state’ (in the sense of having trivial dynamics) is the steady state. How-

ever, dynamical (both topological and non-topological) metastability is a transient

phenomenon and thus need not have any impact on the steady state. In fact, the

pure steady state of the model in Sec. 9.3 completely lacked any dependence on the

dissipative parameter κ, and thus, was completely decoupled from the topological

phase diagram. For these reasons, we will instead investigate multitime correlation

functions. This will allow us to probe the dynamical features of correlations in our

system which, nominally, should be privy to the metastable phases of interest.

Beyond their general interest for characterizing Markovian systems [155, 167, 168],

specific instances of multitime correlations arise frequently in the quantum optical
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settings in the form of coherence functions. For example, first order coherence func-

tions g
(1)
ij (τ) are proportional to the two-time correlation function between creation

and annihilation operators, i.e., 〈a†i (t)aj(t+ τ)〉. Such quantities are experimentally

accessible via photon counting and interference experiments [7, 8]. Thus, it is con-

ceivable that the specific correlations we will consider could be probed in certain

experimental settings.

9.5.1 Two-time correlation functions and power spectra

Under the assumptions of the quantum regression theorem [167], the two-time corre-

lation functions for operators A and B in a state ρ is given by

C+
A,B(t, τ) = 〈A(t+ τ)B(t)〉 = tr[A(τ)B(0)ρ(t)], t, τ ≥ 0, (9.47)

where A(τ) = eL
?τ (A) and ρ(t) = eLt(ρ). Such quantities are related to statistical

correlations between measurements of two different observables at two different time

t and t + τ [167]. If instead the measurement of B comes first, one should instead

consider

C−A,B(t, τ) = 〈A(t)B(t+ τ)〉 = tr[A(0)B(τ)ρ(t)] = (C+
B,A(t, τ))∗, t, τ ≥ 0. (9.48)

In the case of a unique steady state ρss, we consider the steady state two-time

correlation functions limt→∞C
±
A,B(t, τ), which we can express compactly as

Css
A,B(τ) =


tr[A(τ)B(0)ρss], τ ≥ 0,

tr[A(0)B(|τ |)ρss], τ < 0.

(9.49)

As it may be more practically significant in certain situations, we additionally define
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the (two-sided3) steady state power spectrum

Sss
A,B(ω) ≡

∫ ∞
−∞

eiωτCA,B(τ) dτ. (9.50)

Long-lived correlations are then revealed through large power-spectral peaks at zero

frequency. To more appropriately captures the relative decay of correlations, we define

the normalized correlation functions and power spectrum as

C̃ss
A,B(τ) =

Css
A,B(τ)

Css
A,B(0)

, S̃ss
A,B(ω) =

Sss
A,B(ω)

Css
A,B(0)

. (9.51)

For QBLs, we will focus entirely on the case where A and B are linear forms,

i.e., A = α = ~̂α and B = β = ~̂β
†
, with ~α, ~β ∈ C2N . In this case, the unnormalized

correlation function and power spectra take on a simple closed form

Css
α,β†(τ) =


~α†τ3e

−iGτQssτ3
~β, τ ≥ 0.

~α†τ3Qsse
iG†ττ3

~β, τ < 0.

(9.52)

Sss
α,β†(ω) = ~ατ3[χ(ω)Qss + Qssχ

†(ω)]τ3
~β, (9.53)

where χ(ω) ≡ i(ω12N −G)−1 is the susceptibility matrix. Mathematically, χ(ω) is

resolvent of −iG evaluated at −iω.

The restriction to linear forms further yields a state-independent notion of quan-

tum correlation functions. Note that

α(τ)β†(0) =
1

2
{α(τ), β†(0)}+

1

2
[α(τ), β†(0)] =

1

2
{α(τ), β†(0)}+

1

2
~α†e−iG̃

†ττ3
~β 1F .

3Instead, one may consider the one-sided power spectrum, i.e., the one-sided (τ ≥ 0) Fourier
transform of the steady state correlation function. The distinction is irrelevant for our applications.
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Since quantum states have unit trace, we have

C+
α,β†

(t, τ) = C+,cl
α,β†

(t, τ) +
1

2
~α†e−iG̃

†ττ3
~β, (9.54)

where C+,cl
α,β†

(t, τ) = 1
2
tr[{α(τ), β†(0)}ρ(t)] is the classical (symmetrized) correlation

function. The nomenclature indicates the fact that, for classical degrees of freedom,

the commutator term would vanish, leaving only the classical correlations. The quan-

tum correlations between linear forms are then given by

C+,qu
α,β†

(τ) =
1

2
~α†e−iG̃

†ττ3
~β, (9.55)

whose state- and t-independence follows from the state-independent nature of 〈[α(τ), β†(0)]〉

when α and β are linear forms. We define C−,cl
α,β†

(t, τ) and C−,qu
α,β†

(τ) analogously. In

the case where α and β are observables (Hermitian), we have

ImC±α,β(t, τ) = −iC±,qu
α,β (τ), (9.56)

that is, the quantum correlation function is the (negative of the) imaginary part of

the full two-time correlation function.

We can drop the ± notation by defining

Cqu
α,β†

(τ) =


C+,qu
α,β†

(τ) τ ≥ 0,

C−,qu
α,β†

(|τ |) τ < 0,

(9.57)

Finally, we may define the quantum power spectrum as

Squ
α,β†

(ω) =

∫ ∞
−∞

eiωτCqu
α,β†

(τ) dτ = ~α†
(
τ3χ(ω) + χ†(ω)τ3

)
~β, (9.58)

which is again, a state-independent quantity thanks to our restriction to quantum
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correlation functions between linear forms.

9.5.2 Signatures of topological dynamical metastability

As we saw, dynamically metastable systems can be either topologically trivial or non-

trivial. Starting from the susceptibility matrix, one can predict certain properties of

the steady state power spectrum that can distinguish the two regimes. We will fo-

cus on the normalized power spectrum in order to capture the relative dynamics of

correlations. This eliminates the influence of exponentially large steady state sec-

ond moments Qss (e.g., occupation numbers), that may arise in systems displaying

transient amplification.

Let χN(ω) denote the susceptibility matrix/resolvent of the dynamical matrix

−iGN for an open chain of length N . On one hand, if the chain is anmalously relaxing,

then necessarily χN(ω) is bounded (in norm) for all ω. The reason is that the rapidity

bands of anomalously relaxing systems are bound to the left-half of the complex plane

and so −iω is not in the SIBC spectrum. Thus, we have a system-size independent

upper bound on ‖χN(ω)‖. On the other hand, if the chain is dynamically metastable,

then there is necessarily a subset of the imaginary axis contained within the SIBC

rapidity spectrum. Equivalently, there are intervals on the imaginary axis about

which the rapidity bands wind. Ultimately, the restriction of χN(ω) to these intervals

will necessarily grow without bound as N → ∞. Since topological metastability is

characterized by the presence of zero in these non-trivial intervals, we conjecture

that it generically elicits a peak of the power spectrum at zero frequency that grows

without bound with system size. In contrast, there should be no such peak in a

dynamically metastable system that is topologically trivial.

The distinctive behavior of χN(ω) in these regimes is exemplified in Fig. 9.6. In

(a), the 2-norm of the susceptibility matrix converges for all values of ω considered. In

(b) and (c) we see a divergence of the norm at frequencies ω such that iω is contained
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Figure 9.6: (a-d) The 2-norm of the DBKC’s OBC susceptibility matrix in the anoma-
lously relaxing, topologically metastable, and non-topological dynamically metastable
phases, respectively. (a) and (b) correspond to the regimes whose rapidities are the
open and filled markers in Fig. 8.1(a), respectively. (c) corresponds to the regime
whose rapidities are shown in Fig. 8.1(b). (d) shows the zero-frequency susceptibility
norm in the three aforementioned regimes. The dashed line is a linear fit.
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Figure 9.7: (a) Modulus of the normalized power spectra (Eq. (9.51)) of the operators
α = β = xN for the DBKC in the topologically metastable phase (light red disks
κ/∆ = 0.6), non-topologically metastable phase (gray diamonds κ/∆ = 0.6, with
Γ = 0.12), and the anomalously relaxing phase (dark red squares κ/∆ = 1.4 with
Γ = 0 and black triangles κ/∆ = 1.4 with Γ = 0.12). In all cases J = 2, ∆ = 0.5,
N = 25. (b) Modulus of the zero-frequency component for the same parameters in
(a) as a function of N .

in the non-trivial interior of the rapidity bands. The zero frequency behavior of

‖χN(ω)‖2 is shown in (d). In particular, the topological regime is distinguished

from both the non-topological dynamically metastable regime and the anomalously

relaxing regime by an exponential divergence in system size. We will see that this

manifests directly in certain quantum power spectra, see Fig. 9.9.

Two-time steady state correlations may also detect various dynamical regimes

of interest. This is exemplified in Fig. 9.7 whereby the xN -xN (normalized) power

spectrum is shown for the DBKC in the topologically metastable, non-topologically

metastable, and anomalously relaxing phases. The crucial difference between the

steady-state correlations and the behavior of the susceptibility matrix can be seen in

the behavior of the zero-frequency peaks of the power spectrum. In Fig. 9.7(b), we

find that the steady state power spectral peak at zero frequency diverges algebraically,

rather than exponentially, with system size in the topologically metastable phase,

while the behavior in the other two regimes is unambiguously bounded (in fact, it is

strongly suppressed in the non-toplogically metastable case).
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9.5.3 Distinguishing split and non-split Majorana bosons

Within the class of topologically metastable, number-non-conserving QBLs, models

may be distinguished based on whether their MBs are split or non-split. Let (γz, γs)

denote a split MB pair which satisfy [γz, γs] = i, and are localized on opposite sides of

a chain. During the transient timescale (t < tN for some tN increasing with system size

N) we have γz(t) ' γz(0). However, because the MBs are split, γs(t) deviates mean-

ingfully from γs(0) over the same timescale. Now, consider the associated correlation

function Css
γz ,γs(τ). Firstly, we note that canonical commutation implies the existence

of a non-zero quantum correlation function at τ = 0. Explicitly, Cqu
γz ,γs(0) = i/2.

Remarkably, this persists in spite of the macroscopic spatial separation of the two

modes. However, non-split MBs satisfy the same identity. To distinguish them, we

must go beyond τ = 0. For 0 < τ < tN , we have

Css
γz ,γs(τ) = tr[γz(τ)γs(0)ρss] ' tr[γz(0)γs(0)ρss] = Css

γz ,γs(0). (9.59)

On the other hand, for τ < 0

Css
γz ,γs(τ) = tr[γz(0)γs(|τ |)ρss] 6' Css

γz ,γs(0). (9.60)

If instead the MBs were non-split, we would additionally have that the SG γs is

approximately conserved, i.e., γs(t) ' γs(0) for t < tN . It would then follow that

Css
γz ,γs(τ) ' Css

γz ,γs(0). Theqrefore, split and non-split MBs may be distinguished by

asymmetries in the associated correlation function around τ = 0. Split MBs are

approximately stationary for 0 < τ < tN while non-split MBs are approximately

stationary for −tN < τ < tN . Two remarks are in order. (i) While we have treated

the full steady state correlation function explicitly, the same conclusions hold for

both the classical and the (state-independent) quantum contributions. (ii) Due to
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the properties of MBs, the stationarity of the correlation functions in each case will

become more pronounced as system size is increased.

To exemplify these distinctions, we focus on DBKC (with µ = Γ = 0) and the PDC

as representative examples of these two classes. Comparing the rapidity bands of the

DBKC (Eq. (9.11)) with µ = Γ = 0 and the rapidity bands of the PDC (Eq. (9.6)),

we observe that there is an isomorphism between the two topological phase diagrams.

First, to distinguish the two models, we will relabel the quantities J , ∆, and µ of the

PDC as JF , ∆F , and µF , respectively4. If we then make the identification JF = ∆/2,

∆F = J/2, µF = −κ, we find that the rapidity bands of each model are coincident

- in particular, the topological phase diagrams coincide5. Let (γzzL , γ
s
R) and (γsL, γ

z
R)

denote the (split) MB pairs of the DBKC and (γL, γR) denote the (non-split) MB pair

of the PDC. The parameter identification yields

γL = γzL, γR = γsR, (9.61)

which may be directly verified in the case J = ∆. In particular, the second MB pair

of the DBKC (γsL, γ
z
R) are not approximate ZMs, nor Weyl SGs, in the PDC. This

has several implications for certain two-time correlation functions. Since the steady

states of these two models may differ in meaningful ways, we can directly compare

the state-independent quantum correlation function of the MBs. Our general analysis

above predicts that the DBKC correlation function Cqu
γzL,γ

s
R

(τ) will be asymmetric

about zero and increasingly stationary in the positive τ direction as N increases.

On the contrary, the FKC correlation function Cqu
γc,γR

(τ) should be symmetric and

increasingly stationary in both the positive and negative τ direction as N increases.

These predictions are verified in Figs. 9.8(a) and (b).

A further distinction between these two models can be seen by focusing on the

4The subscript F is to remind the reader that the PDC arises from the FKC.
5Note that this identification is not the same mapping as the isospectral mapping in Appendix

B.3.
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Figure 9.8: (a) An MB correlation function for the DBKC. (b) An MB correlation
function for the PDC. (c) A different MB correlation function for the BKC. (d) A
correlation function for the same operators in (c) but for the FKC. In all cases, the
modes are normalized so that canonical commutation relations hold at τ = 0. Note
that γzL = γL, γsR = γR, γzR = χR, and γsL = χL at τ = 0 when the parameter mapping
discussed in the main text is applied.

second pair of MBs in the DBKC. As previously noted, the operators γsL and γzR, when

mapped to the PDC, are neither approximate ZMs nor Weyl SGs. To distinguish

which model we are working in, let γsL 7→ χL and γzR 7→ χR denote the image of the

DBKC’s second MB pair in the PDC under the parameter identification. As argued

above, the correlation function CγzR,γsL(τ) will become more and more stationary for

τ ≥ 0 as N →∞. On the contrary, no such argument applies to CχR,χL(τ) and so we

generally expect exponentially decaying correlations. This is verified in Figs. 9.8(c)

and (d).

9.5.4 Signatures of Dirac edge bosons

We have thus far focused on observable signatures of MBs. How, if at all, do these

quantum correlations behave in the presence of number symmetry? That is, can we

detect the Dirac bosons of Sec. 8.3.2? To begin, consider the elementary steady state
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correlator

Css
i,j(τ) ≡ Css

Φi,Φ
†
j

(τ). (9.62)

This correlator is elementary in the sense that any correlation function of linear

observables can be written as a linear combination of the above:

Css
α,β† =

∑
i,j

ci,j
α,β†

Css
i,j(τ), (9.63)

with ci,j
α,β†

determined by the coefficients of Φi and Φ†j in the definitions of α and β†.

Explicitly, ci,j
α,β†

= αiβ
∗
j , with αi and βj elements of ~α and ~β.

Number symmetry, combined with uniqueness of the steady state, immediately

yields [ρss,
∑

j a
†
jaj] = 0. This guarantees that the “off-diagonal” elementary cor-

relators, i.e., correlators of the form 〈a†i (τ)a†j(0)〉
ss

and their Hermitian conjugate

counterparts, vanish. In fact, the off-diagonal, state-independent quantum correla-

tion functions always vanish. This follows because number symmetry guarantees

ai(τ) =
N∑
j=1

dij(τ)aj(0),

for some time-dependent coefficients dij. This observation combined with canonical

commutation relations ensures that [ai(τ), aj(0)] = 0 for all τ . We remark that the

equivalent statement in the quadrature basis is Cqu
xj ,pi

(τ) = Cqu
xi,pj

(−τ).

With this, we can characterize topologically metastable, number-symmetric chains

by vanishing off-diagonal correlators and long-lived correlations / divergent-zero fre-

quency power-spectral peaks. This behavior is reflected in Fig. 9.9. The quantum

power spectra Sa†1,aN
(ω) displays exponential divergence at zero frequency in both

the DNS chain and the DBKC. However, the off-diagonal spectra Sa†1,a
†
N

(0) is exactly

zero for the DNS chain and diverging exponentially for the DBKC.
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Figure 9.9: Various quantum power spectra for the DNS chain and the DBKC in their
respective topologically metastable regimes. The DNS shows exponential divergence
of the zero frequency peak Squ

a†1,aN
(0) (green circles) and the vanishing of the off-

diagonal spectra Squ

a†1,a
†
N

(black squares). To contrast, the DBKC exhibits exponential

growth of the off-diagonal spectra (black diamonds). The parameters for the DNS
are J+ = 1, J− = 0.25, and κ = 0.3, while the parameters for the DBKC are J = 2,
∆ = 0.5, µ = 0, κ = 0.3, and Γ = 0. These choices ensure an isospectral relationship
between the two models. An exponential fit is shown as a green dashed line while 0
is emphasized with a black dashed line.
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Chapter 10

Summary and outlook

10.1 Summary of key results

Let us reflect back on the two questions that broadly motivated the work in this

thesis:

(1) What are the most salient consequences of the effective non-Hermiticity

intrinsic to the equations of motion for closed, non-interacting bosonic

systems?

(2) To what extent can closed, or open, non-interacting bosons manifest

physics associated to SPT phases of non-interacting fermions?

To what extent have we addressed these questions? We will approach this in parts.

10.1.1 Effective non-Hermiticity in quadratic bosonic Hamil-

tonians

We have seen that, unlike in the fermionic case, non-Hermiticity lies deeply within

the equations of motion for non-interacting bosonic systems, even if the full many-

body dynamics are explicitly Hermitian. While this may seem unintuitive on the

254



surface, it ultimately engenders the physics of amplification and, more broadly, it

provides a rich arena to explore the physics of instabilities. Notably, this provides

us with the notion of a stability phase diagram for QBHs, that is, a separation of

parameter phase space into dynamically stable and dynamically unstable regimes. To

understand these phase diagrams more precisely, it is useful to make use of further

structural features of dynamical matrices associated to QBHs. In particular, the

intrinsic pseudo-Hermiticity of these matrices makes applicable the tools of Krein

stability theory to classify the transitions to instability. These transitions are signaled

by the emergence of two distinct types of spectral degeneracies in the dynamical

matrix spectrum: exceptional points and Krein collisions. Merging these notions

with tools from non-Hermitian quantum mechanics, we arrive at our first three major

contributions:

(i) Intrinsic to every QBH is an underlying generalized PT-symmetry.

(ii) Stability phase transitions in QBHs are directly attributable to the spontaneous

breaking of this GPT symmetry.

(iii) Stability phase transitions are identifiable via the vanishing of a newly intro-

duced type of phase rigidity, called the Krein phase rigidity.

Most importantly, these concepts (GPT symmetry and KPR, specifically) are not

simply arrived at by transplanting concepts from non-Hermitian quantum mechanics

into a bosonic setting. As we have argued, they arise naturally by considering the

behavior of normal modes in the presence of stability phase transitions.

We exemplified the consequences of these results in three models: an elementary

single-mode system, a two-mode cavity QED system, and the flagship bosonic Kitaev

chain. Our analysis of the BKC, in particular, revealed several non-trivial aspects of

both general QBHs, as well as the response of the BKC to changes in system size and

BCs. Lessons from the BKC may be summarized as follows:
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(iv) Any QBH exhibiting phase-dependent transport must necessarily be (a) odd

under time-reversal symmetry; (b) invariant under certain squeezing transfor-

mations; (c) sitting at the cusp on instability, as signaled by a macroscopic

number of Krein collisions in the normal mode spectrum.

(v) The BKC is dynamically stable under the same BCs that manifest Majorana

fermion edge modes in the FKC. Increasing system-size, causes these these re-

gions of stability to shrink, and thus, dramatically enhance dynamical sensitivity

of the system to perturbations.

(vi) Bosonic “shadows” of Majorana fermions emerge in the BKC when subjected

to uniform degenerate parametric amplification. These shadows are explicitly

tied to topological properties of the bulk.

Up until this point, it was understood that number-non-conservation is necessary,

but not sufficient for dynamical instabilities. We have been able to fill this conceptual

gap by gaining a deeper understanding of the role played by number-non-conserving

terms in dynamically stable QBHs. Specifically:

(vii) By leveraging results in the field of pseudo-Hermitian quantum mechanics, we

have formulated an explicit number-conservation-restoring duality transforma-

tion for dynamically stable QBHs. Moreover, we have characterized the result-

ing transmutation of translation and quasiparticle-number symmetry.

(viii) This duality, which has a natural geometric interpretation as a metric in Nambu

space, can be interpreted physically in terms of the vacuum covariance matrix.

(ix) This duality points to the possibility of realizing analog quantum simulations

of genuinely non-Hermitian PT-symmetric Hamiltonians, without the need for

loss, gain, or coherent driving.
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As with with GPT-symmetry and KPR, we put the duality transformation to the test

in two paradigmatic examples of interest: the gapped harmonic chain and the BKC. In

the former, we provided a recipe for explicitly constructing the duality that generalizes

to arbitrary single-band systems with pairing, explored the exponentially decaying

nature of the dual hopping amplitudes and established a connection to the decay of

ground-state correlations, and explored the viability of truncating the dual system in

such a way to faithfully reproduce the band structure while explicitly restoring quasi-

locality. In the case of the BKC, we found that the duality transformation comes in

the form of a local squeezing transformation that ultimately allowed us to extend the

analytically-known region of dynamical stability in the boundary parameter phase

space. We also explored the behavior of both of these duality transformations in the

vicinity of stability phase boundaries. The duality transformation proved useful for

two further applications, the first of which being the following:

(x) The discrepancy between pseudo-Hermitian Berry phases, which lie at the core

of defining topological invariants for bosonic systems, and the standard Hermi-

tian Berry phase used, e.g., to define fermionic topological invariants, may be

explicitly computed in terms of the duality transformation.

The second implication is best left to the following section, as it appears in the context

of open bosonic systems.

10.1.2 Manifestations of SPT physics in quadratic bosonic

Lindbladians

The first step we took toward addressing question (2) was to examine the possibility

for SPT physics in the closed-system setting. Here, we were met with two insur-

mountable hurdles: (i) there are no SPT phases of free bosonic matter (modeled

using thermodynamically stable QBHs); and (ii) any instance of bosonic analogues
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to fermionic zero-energy edges states are intrinsically unstable, in a dynamical sense.

These facts have forced us to forgo at least one of the assumptions we had made

up until this point. We concluded that, if we are to retain the non-interacting and

time-independent nature of our systems, we are forced to move beyond the closed-

system settings. Unlike in the fermionic case, this move to open systems is absolutely

necessary if we wish to uncover anything resembling SPT phases of free bosons. To

retain the simplest possible dynamical description, we allowed our non-interacting

bosonic systems to undergo a simple (quadratic) form of Markovian dissipation, and

have modeled our open-system dynamics using quadratic bosonic Lindbladians.

To establish a convincing bosonic analogue to fermionic SPT physics, it is crucial

to identify the characteristics of bosonic incarnations of the topologically-mandated

ZMs central to topological free-fermions. To this end, we defined bosonic ZMs of

QBLs and, due to the breakdown in Noether’s theorem, the closely related Weyl

SGs. These modes, which we unify under the umbrella of Noether modes, are gener-

ically independent from one-another. However, our first concrete result about QBLs

establishes a fundamental correspondence:

(i) Under certain assumptions placed on the associated dynamical matrix, for each

(approximate) ZM of a QBL, there exists a canonically conjugate (approximate)

Weyl SG, and vice-versa.

In the context of open quantum systems, whereby there exists no simple relationship

between conserved quantities (e.g., ZMs) and SGs, this result comes as a surprise. It

offers, in a sense, a partial restoration of Noether’s theorem for QBLs, at least within

the Nambu space. We proceeded to present two recipes that would later provide

essential for uncovering signatures of SPT systems. These may be summarized as:

(ii) Given a QFH with (approximate) ZMs, it is always possible to engineer a QBL

possessing non-split (approximate) Noether modes whose spatial distribution is

identical to that of the fermionic modes.
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(iii) Given a dynamically stable QBH, it is possible,by leveraging our duality trans-

formation, to engineer a purely dissipative Markovian generator that relaxes

the system uniquely to the quasiparticle vacuum of the Hamiltonian.

With these fundamental results and recipes behind us, we were ready to identify

a class of 1D QBLs capable of supporting bosonic signatures of SPT physics. Ex-

plicitly, we require that any such system must be dynamically stable (in order to

retain an appropriate notion of robustness) and exhibit topologically mandated edge

ZMs and SGs. Leveraging the known spectral properties of block-Toeplitz matrices

and operators, we came to three conclusions. Systems satisfying our requirements

must possess non-trivial bulk topology (in the form of rapidity band winding), bulk

instabilities, and a highly non-normal dynamical matrix. This third requirement, in

particular, forced us to move beyond the techniques of spectral analysis, and instead

bring forth the tools of pseudospectral theory. With pseudospectra centered at the

heart of our analysis, an important result about the relationship between finite- and

infinite-size QBLs revealed itself, namely:

(iv) The rapidity spectrum of a bulk-translation invariant, semi-infinite QBL im-

prints itself into the rapidity pseudospectrum of its finite-size truncation.

One physical implication of this result is that normal modes of the semi-infinite system

behave as approximate normal modes of the finite system for a timescale that scales

(roughly) linearly with system size. That is, the transient lasts as long as it takes

for the mode to “detect” the presence of both boundaries. While this may seem

to be a rather innocuous fact, it becomes extremely relevant in the case where the

semi-infinite rapidity spectrum (in particular, the stability gap) differs dramatically

from that of the finite-size truncations - a possibility granted to us by non-normality.

Along this line, we identified two novel dynamical phases for finite-size, 1D, bulk-

translationally invariant QBLs. These are:
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(v) An anomalously relaxing phase characterized by two-step relaxation dynamics.

The dominant relaxation rate in the first (transient) step is set by the infinite-

size Lindblad gap, while the dominant relaxation rate in the second (asymptotic)

step corresponds to that of the finite-size system.

(vi) A dynamically metastable phase characterized by an transient amplification at

a rate set by the positive infinite-size stability gap, followed by asymptotic

relaxation at a rate set by the finite-size Lindblad gap.

Refocusing back to our search, we concluded that a system with all of our desired

properties must be dynamically metastable. Combining this with the requirement

of a non-trivial bulk-topology allowed us to finally pin down the precise systems of

interest: topologically metastable QBLs. These systems support a number of key

features, namely:

(vii) A unique steady state and a finite spectral gap are maintained for all finite

system sizes. In particular, dynamical stability is present for all finite system

sizes.

(viii) Tight bosonic analogues of Majorana fermions, which we deemed Majorana

bosons, emerge localized on opposite ends of the chain. They consist of an

approximate ZM and the generator of an approximate (Weyl) symmetry, and are

canonically conjugate, despite macroscopic spatial separation. If, additionally,

number symmetry is present, then the MBs can be arranged into bosonic degrees

of freedom, which we deemed Dirac bosons.

(ix) A manifold of degenerate quasi-steady states manifest in the finite-size chains.

Physically, such states are phase-space displacements of the unique steady state.

(x) The Majorana and Dirac bosons, as well as the quasi-steady states, persist in

a transient dynamical regime whose duration diverges (at least linearly) with
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system size. Crucially, their existence elicits divergent zero-frequency peaks in

certain power spectra and increasingly stationary behavior of quantum correla-

tion functions.

These general features were explicitly demonstrated in four flagship models, the purely

dissipative topologically metastable chain (derived using recipe (ii) above), a dissi-

pative BKC, a dissipative BKC with a pure steady state (derived using recipe (iii)

above), and the dissipative number-symmetric chain. Several additional lessons were

learned from these examples. Two particularly notable ones were the following:

(xi) Non-split MBs, which may be thought of as the tightest analogues of Majorana

fermions, and topological metastability more broadly, can be supported in a

purely dissipative setting (H = 0).

(xii) The quasi-steady states of topologically metastable systems with pure steady

states can be thought of as coherent states with respect to a particular basis and,

when arranged into cat-state superpositions, can support long-lived regimes of

indefinite bosonic parity.

10.2 Outlook

The research program we have presented here provides a vast array of potential next

steps. Let us describe a small number of them. In terms of “fundamental” open

questions, there is one that towers above the rest.

(1) Is topological metastability a true SPT phase of non-interacting

bosonic systems?

At this stage, we have presented several pieces of evidence in the affirmative. How-

ever, there still remains major theoretical hurdles in the way of a concrete answer.

Unlike for fermions, there is no agreed-upon set of classifying symmetries for bosonic
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systems. This is to be expected - up until this point, there has been no evidence

for non-interacting bosonic SPTs, and thus, no reason to attempt classifying them.

Moreover, this is not as simple as importing the fermionic classification scheme, or

its extension to the (semiclassical) non-Hermitian and (fully quantum) open settings.

As pointed out in Ref. [84], two of the three main classifying symmetries (specifically,

particle-hole and chiral) symmetry lack any bosonic analogue. Simply put, these

transformations cannot be implemented unitarily, or anti-unitarily, for bosonic parti-

cles. So, the first main challenge would be to identify a set of classifying symmetries

that is appropriate in the bosonic context. A second, perhaps less severe, challenge

involves properly defining the concept of a SPT phase for Markovian systems. After

all, symmetries can be either weak, or strong, and need not correspond to conserved

quantities in the continuous case. Luckily, however, there have been considerable

efforts in this direction, albeit in a fermionic context [76, 77]. One final hurdle specif-

ically applies to bulk considerations. When a finite-system undergoes a transition to

a topologically metastable phase, it is unavoidable that the bulk becomes unstable.

In particular, there is no bulk steady state1. Thus, it is not clear to what extent this

can be thought of as dissipative phase transition in the bulk.

There are numerous other questions falling under this “fundamental” category.

For closed-systems, it would be interesting to explore the deformation of stability

phase diagrams as a consequence of periodic (Floquet) driving. Inspired by the clas-

sical Kapitza’s pendulum phenomenon, whereby an inverted oscillator is stabilized

by means of periodically shifting the pivot point, it is conceivable to assume that

periodically driving coupling constants in an unstable QBH could result in an over-

all stable dynamical evolution. In fact, the conceptual hurdles that ultimately lead

us to consider open bosonic systems could have just as easily lead us to the realm

1The system may not even have a steady state prior to the transition. For example, consider
the DBKC with Γ 6= 0 so that the finite-system is dynamically, but not topologically, metastable.
In this configuration, the bulk lacks a steady state. Taking Γ→ 0 so that the finite-system becomes
topologically metastable induces a bulk transition in which there is no steady state on either side.
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of driven bosonic systems. The no-go theorems and ZM instability results of Ch. 5

explicitly assume time-independence. Thus, can they be circumvented by means of

driving? This line of research would require making connections with the now boom-

ing field of Floquet topological matter. Perhaps not coincidentally, Floquet phases

are also metastable, since driving is eventually tied to heating and trivial (infinite-

temperature) steady states [169]. Interestingly, however, Floquet bosonic systems

would include the extra twist of non-Hermiticity at the level of the relevant dynamical

matrices. One concrete goal would be to stabilize the bosonic “shadows” of Majorana

fermions found in the BKC by means of periodically driving certain Hamiltonian pa-

rameters, and thus, synthesize a periodically driven analogue of MBs. Additionally,

the effects of non-periodic time-dependence (e.g., quenching a boundary) would be

interesting to explore in a more systematic fashion. One existing result to this end

involves the selective population of bosonic edge states via quenching [86].

Another avenue involves expanding the theory of metastability to include fermionic

(or even spin) systems. Although the topological aspects of these systems are well-

understood, it is conceivable that our framework of metastability can be useful in

explaining anomalous relaxation phenomena [52, 53] and cutoff effects [74]. While

dynamically metastable phases are not possible in fermionic systems (since the bulk

is always dynamically stable [87, 88, 91]), anomalously relaxing phases are. Further-

more, exploring the potential splitting of ZMs and SGs in fermionic systems is also

intriguing. As for bosonic systems, one natural extension of our framework is to higher

dimensions. For instance, what is the dissipative bosonic equivalent of surface bands

in two-dimensional topological insulators and superconductors, such as quantum Hall

systems or the p+ ip superconductor?

As for “practical” open questions, most fall under the umbrella of the following:

(2) What are the experimentally accessible consequences and applica-

tions our results?
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There exists a variety of different experimental platforms and proposals for realiz-

ing many coupled bosonic degrees of freedom. Some of the most promising are cavity-

and circuit-QED platforms [11, 12, 23–32, 94, 137], microlasers and ring resonators

[33, 34], optomechanical systems [35, 36], and vibronic lattices [37]. Arguably, the

more exotic ingredients appearing in our topologically metastable models are the dis-

sipative hopping and the (coherent and dissipative) bosonic pairing. Notably, Ref. [13]

proposes a method for realizing dissipative hopping, while realizations of both coher-

ent and dissipative pairing have been proposed by means of three-wave mixing with

suitably tuned couplings to auxiliary modes [138–140, 170]. With these platforms

becoming available, various lines of investigation open up.

For closed systems, we conjecture there are applications of QBHs for quantum

sensing. Concretely, we believe the answer to “Can the dynamical consequences of

Krein collisions be leveraged to develop high-precision quantum sensors?” is in the

affirmative. This conjecture is motivated by several factors. Firstly, like EPs, KCs

populate the stability phase boundaries of QBHs. In particular, based on the many

models we have studied, it appears that KCs typically arise at the locus of two EP-

dominated phase boundaries. It is then reasonable to expect that systems with KCs

respond dramatically to small perturbations. In fact, there is mathematical precedent

for this: the splitting of a Krein-collided eigenvalue in response to a perturbation of

strength ε � 1 can scale like ε1/n ≥ ε for some integer n (see Ch.9 of Ref [55], for

instance). Moreover, we conjecture that KCs, or something closely related related to

KCs, are the main source of enhanced sensing recently discovered in non-Hermitian

topological models. First, in Ref. [51], a non-Hermitian quantum system featuring

(i) the NHSE, (ii) non-EP spectral degeneracies, and (iii) exponentially small overlap

between left and right eigenvectors, was demonstrated to have exponentially enhanced

(in system size) sensitivity to certain perturbations. While property (ii) is clearly

reminiscent to KCs (in that the degeneracies are ‘diagonalizable’), property (iii) is
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actually equivalent to the near-vanishing of the KPR, at least in the case where the

system is pseudo-Hermitian. Similarly, in Ref. [171], a non-Hermitian generalization of

the BKC was shown to provide a similar degree of enhanced sensitivity (inferred from

signal-to-noise ratio enhancements) to certain perturbations without explicit need

for EPs. The essential requirement was that these perturbations break an intrinsic

Z2-symmetry that, we believe, is precisely the symmetry ensuring the macroscopic

number of KCs in the BKC. However, bridge between these phenomena and the realm

of Krein stability theory and KPR has not yet been established. We believe these

connections are a promising avenue for future research.

Moving to open systems, experimental detection of Majorana (or Dirac) bosons,

or more broadly, topological metastability seems promising. Once the appropriate

coherent and incoherent mechanisms are engineered, the unique properties of two-

time correlation functions, and their power-spectra, discussed in Sec. 9.5, should offer

a path towards detection. To this end, it would be particularly useful to establish

further connections between these correlation functions and first-order coherence func-

tions. Since coherence functions are experimentally accessible, at least in quantum-

optical platforms, such a connection would provide specific experimental techniques

for detection.

Beyond their detection, one potential application of MBs may be in the field of con-

tinuous variable quantum information processing. Drawing analogy with Majorana-

based quantum computing proposals, we expect that MBs could find utility in the

context of continuous-variable schemes based on Gottesman-Kitaev-Preskill (GKP)

codes. Central to GKP-based computation (first proposed in Ref. [16] and realized

experimentally in trapped ion [172] and a circuit-QED [173] platforms nearly two

decades later) is a pair of canonically conjugate quadratures. From here, the GKP

code is built from fixed displacement operators within the associated phase space

and the logical states are built from the (ideally) infinitely squeezed eigenstates of
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these operators. In our topological metastability paradigm, we are provided with two

canonically conjugate quadratures that have an additional non-trivial property: they

are macroscopically separated in space. This fact, which arises due to their topological

origin, provides us with a degree of robustness that may provide utility for such ap-

plications. Notably, in the non-split case, the MBs generate (orthogonal) phase-space

displacements that leaves the overall dynamics invariant to an arbitrarily high degree

of precision (as set by the system size).

It is our hope to continue to investigate and address a large fraction of these

fundamental and practical questions in the future.

266



Appendix A

Spectra and pseudospectra of

block-Toeplitz matrices and

operators

The focus on 1D lattice models throughout this thesis required us to study the spec-

tral and pseudospectral properties of certain classes of matrices and operators. The

four most commonly encountered classes are block-Toeplitz matrices, block-circulant

matrices, block-Toeplitz operators, and block-Laurent operators. Each of these corre-

spond to various configurations of BCs, see Table 2.1. In addition, we have considered

corner-modified block-Toeplitz matrices which arise when one considers lattice mod-

els subject to arbitrary BCs. In this appendix, we collect the essential mathematical

properties of these objects which may be useful for interested readers to gain a deeper,

self-contained understanding. We will also provide a summary of the techniques de-

veloped in Ref. [102] for casting corner-modified block-Toeplitz matrices into Jordan

canonical form and apply these techniques to the BKC Hamiltonian subject to gen-

eralized BCs, i.e., Eq. (3.25).
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The general form of a dN × dN block-Toeplitz matrix is1.

XN =



x0 x−1 · · · x1−N

x1 x0
...

. . . . . . . . .

... x0 x−1

xN−1 · · · x1 x0


, xj ∈ Cd×d.

If, in addition, xj = xN−j for 1 ≤ j ≤ N − 1, then the matrix is called circulant.

In physical language, circulant matrices correspond to PBCs for lattice models. The

symbol associated to XN is the matrix-valued function

x(z) =
N−1∑
j=1−N

xjz
j, z ∈ C.

One can regard XN as the result of truncating an infinite matrix. There are two

natural possibilities for the infinite matrices themselves. They are

X(T) =


x0 x−1 · · ·

x1 x0
. . .

...
. . . . . .

 , X(L) =



. . . . . . . . .

. . . x0 x−1
. . .

. . . x1 x0
. . .

. . . . . . . . .


.

Provided that suitable convergence conditions are met, the first (second) matrix de-

fines a block-Toeplitz (block-Laurent) operator. The symbols of these two operators

are defined naturally and coincide. From this point of view, {XN} is a finite section

of either X(T),(L). Both of these operators are uniquely determined by the bi-infinite

series of d× d matrices (· · · ,x−1,x0,x1, · · · ).

Generally, the symbol contains a plethora of information about the matrices and

1Note that, in the context of bosonic systems, we adopt the convention gj = x−j . This choice
stems from conventions established in previous works [102, 104]
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operators of interest. For example, we have the bound (see Ch. 6.1 of Ref. [113], for

instance)

‖X(T)‖ = sup
k∈[−π,π]

‖x(eik)‖. (A.1)

In particular, we have ‖XN‖ ≤ supk∈[−π,π]‖x(eik)‖. This follows from the bound

‖XN‖ ≤ ‖X(T)‖ which, in turn, can be seen by noting that XN may be computed

as a projection of X(T) onto the first N lattice sites. This bound has important

consequences for matrix exponentials of block-Toeplitz matrices. Specifically, let YN

denote an arbitrary block-Toeplitz matrix and consider the exponential etYN . Then,

we always have the bound

∥∥etYN
∥∥ ≤ eΩN t, ∀t ∈ R, (A.2)

where ΩN ≡ α(XN) is the spectral abscissa of the the Hermitian matrix XN ≡

(YN +Y†N)/2. The quantity ΩN is known as the numerical abscissa of YN . Since XN

is Hermitian, it follows that |ΩN | ≤ ‖XN‖ since the 2-norm of a Hermitian matrix

is simply the largest (in absolute value) eigenvalue. Moreover, since XN is also a

block-Toeplitz matrix, Eq. (A.1) provides us with a system-size independent bound

|ΩN | ≤ Ω ≡ supk∈[−π,π]‖x(eik)‖, with x(z) the symbol associated to XN . The final

result is that the matrix exponential is always bounded by a system size-independent

quantity:

∥∥etYN
∥∥ ≤ eΩt, ∀t ∈ R. (A.3)

We remark that this bound is trivial in the case where ΩN < 0 so that
∥∥etYN

∥∥ ≤ 1.

Thus, it is only useful if ΩN > 0 (which allows room for ‖etYN‖ to grow beyond 1).

For more specific spectral characterizations, it is useful to consider separately the
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non-block and block cases.,

A.1 The non-block case (d = 1)

In the non-block case, the symbol is simply a complex-valued function x(z). The fol-

lowing theorem characterizes the spectrum of the circulant matrix, Laurent operator,

and Toeplitz operator associated to the symbol, in terms of the symbol itself.

Theorem A.1.1 (Thm. 7.1 in Ref. [112]). Let X be either a circulant matrix, a

Laurent operator, or a Toeplitz operator with continuous symbol x. Then

(i) If X = XN is circulant, then σ(X) = {x(ei2mπ/N) : m = 1, . . . , N } .

(ii) If X = X(L) is a Laurent operator, then σ(X(L)) =
⋃
k∈(−π,π] x(eik).

(iii) If X = X(T) is a Toeplitz operator, then σ(X(T)) = σ(X(L))∪ {λ : ν(λ, x) 6= 0},

where

ν(λ, x) ≡ 1

2πi

∫ π

−π

d

dk
ln(x(eik)− λ) dk (A.4)

is the winding number of the symbol about λ.

The case when XN is a Toeplitz matrix (which, physically, corresponds to OBCs

in lattice models) is far more complicated. At a bare minimum, if XN is banded

(meaning that xj = 0 for all |j| > R with R sufficiently large), then σ(XN) clusters

along curves in C as N →∞. In particular, the spectrum of XN does not, in general,

converge to that of X(L). By contrast, there exists a complete characterization of the

pseudospectrum:

Theorem A.1.2 (Thm. 7.2 of Ref. [112]). Let {XN} be a family of banded or

semibanded Toeplitz matrices and let λ be any complex number with ν(λ, x) 6= 0.

Then for some M > 1 and all sufficiently large N , we have ‖(λ1N −XN)−1‖ ≥MN ,
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and there exist normalized (pseudoeigen)vectors ~v(N) satisfying
∥∥(XN − λ1N)~v (N)

∥∥ ≤
M−N , such that

|v(N)
j |

maxj |v(N)
j |
≤


M−j, ν(λ, x) < 0,

M j−N , ν(λ, x) > 0,

, 1 ≤ j ≤ N.

The constant M can be taken to be any number for which x(z) 6= λ in the annulus

1 ≤ |z| ≤M (if ν(x, λ) < 0) or M−1 ≤ |z| ≤ 1 (if ν(λ, x) > 0).

Stated plainly, the winding number of the symbol defined both the ε-pseudospectrum

(with ε exponentially small in system size) and the localization profiles of the associ-

ated pseudoeigenvectors. Finally, the large N limit of the pseudospectrum enjoys a

full characterization via the following theorem:

Theorem A.1.3 (Thm. 7.3 in Ref. [112]). Let X(T) be a Toeplitz operator with

continuous symbol x and let {XN} be the associated family of Toeplitz matrices. Then

for any ε > 0,

lim
N→∞

σε(XN) = σε(X
(T)), and thus lim

ε→0
lim
N→∞

σε(XN) = σ(X(T)). (A.5)

Accordingly, the two limits in the above equation do not commute in general.

They do commute if the Toeplitz matrices and operator are normal (in particular,

Hermitian).

A.2 Block case (d > 1)

Things become considerably more complex in the block case. For the spectrum, points

(i) and (ii) in Theorem A.1.1 still hold under the replacement x(eik) 7→ σ(x(eik))

since x(z) is now matrix-valued. One may predict that (iii) also still persists but

with the replacement x(eik) 7→ det x(eik) in Eq. (A.4), but that is incorrect. Instead,
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the spectrum of the block-Toeplitz operator is given by that of the corresponding

Laurent operator plus all λ ∈ C where the matrix x(z) − λ1d has at least one non-

vanishing partial index. Partial indices are defined in the context of the Wiener-Hopf

factorization and may be thought of as a generalization of the winding number. As it

turns out, the aforementioned generalization of the winding number involving det x(z)

is equal to the sum of the partial indices. Thus, there may be spectral points about

which det x(eik) does not wind. Conversely, every point with nonzero winding must

be in the spectrum.

Unfortunately, the characterization of the pseudospectra is similarly difficult. In

particular, it necessitates defining the associated symbol, x̃(z) ≡ x(z−1). The asso-

ciated block-Toeplitz operator X̃(T) is defined analogously. With this, we have the

following.

Theorem A.2.1 (Adapted from Cor. 6.16 in Ref. [113]). Let X(T) and be a block-

Toeplitz operator with continuous symbol x with corresponding family of block-Toeplitz

matrices {XN} and X̃(T) be the associated block-Toeplitz operator. Then for any ε > 0,

lim
N→∞

σε(XN) = σε(X
(T)) ∪ σε(X̃(T)), and thus lim

ε→0
lim
N→∞

σε(XN) = σ(X(T)) ∪ σ(X̃(T)).

(A.6)

This result Eq. (A.6) is the natural generalization of Eq. (A.5) to the block case.

A.3 Jordan canonical form of corner-modified banded

block-Toeplitz matrices

The above results have provided us a characterization of the pseudospectra of block-

Toeplitz matrices. However, we have not yet described their spectra. To this end, let

us now describe the methodology developed in Ref. [102] for casting corner-modified
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block-Toeplitz matrices (of which block-Toeplitz matrices are a special case) into Jor-

dan canonical form. Since our sole application of this methodology was to QBHs, we

will present the key concepts in the language of bosonic dynamical matrices. Specif-

ically, we will focus on matrices of the form Eq. (2.83). To simplify the discussion,

and to remain consistent with the notation of the previous sections, let us relabel the

main matrices and operators of interest:

GN ≡ GOBC
N , G(L) ≡ GBIBC, G(T) ≡ GSIBC (A.7)

As in Eq. (2.83), G = GN + B, with B the boundary modification. We also define

the symbol

g(z) ≡
R∑

j=−R

gjz
j, z ∈ C, (A.8)

whose restriction to the unit circle |z| = 1 we recognize as the Bloch dynamical matrix

in Eq. (2.80). Notations for the various shift operators will remain as they were in

the main text (e.g., as in Sec. 2.2). Finally, we will assume there is only one internal

degree of freedom per lattice site.

The key to diagonalizing these matrices is to identify the so-called bulk-boundary

separation. We define the bulk and boundary projectors as PB ≡
∑N−R

j=R+1 ~ej~e
†
j⊗12 and

P∂ = 12N−PB, respectively. The goal is to solve the eigenvalue equation GN
~ψ = ω~ψ.

Since PB + P∂ = 12N and PBB = 0, the eigenproblem is equivalent to the following

“bulk-boundary system of equations” [103]:

PBGN
~ψ = ωPB

~ψ, (A.9)

P∂(GN + B)~ψ = ωP∂
~ψ. (A.10)

The diagonalization proceeds by first solving the bulk equation, Eq. (A.9), parametri-
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cally in ω, and then employing the resulting solutions as an Ansatz for the boundary

equation, Eq. (A.10). One can show that, generically, such a strategy yields all of

the eigenvectors of G and can also be applied for computing generalized eigenvectors

[102].

For fixed ω ∈ C, the complete set of solutions to the bulk equation (A.9) breaks

up into three different types of solutions (which we will derive momentarily). Solu-

tions of the first type are obtained by restricting to the finite-lattice solutions of the

translation-invariant equation (G(L) − ω)n ~ψ = 0, for some suitable n, and thus arise

from eigenvectors and generalized eigenvectors of G(L). Specifically, these solutions

take the form

~ψ`s =

s∑̀
ν=1

~ζν(z`)⊗ |u`sv〉 ,

where the z` are the roots of the equation det(g(z)−ω) = 0 with algebraic multiplicity

s`, and the vectors ~ζν(z`) are as follows: for ν = 1, ~ζ1(z`) =
∑N

j=1 z
j
`~ej represents a

generalized Bloch wave, with possibly complex momentum k` = −i log(z`); for ν > 1

the ~ζν(z`) are proportional to ∂ν−1
z

~ζν(z`), and hence contain amplitudes with a power-

law pre-factor to the exponential weight zj. The other two types of solutions that

can arise are localized on the boundary of the system and are no longer controlled

by G(L) and the corresponding (non-unitary) translation symmetry. Rather, they

emerge entirely due to the truncation from the bi-infinite lattice to a finite one. We

will denote these left (−) and right (+) localized emergent solutions by ~ψ±` , with

` = 1, . . . , s0 ≡ 2R − 1
2

∑n
`=1 s`. Here, s0 is the multiplicity of z = 0 as a root of

det(g(z) − ω) = 0. Finally, we remark that there may exist exceptional, isolated

values of ω, which physically correspond to dispersion-less “flat bands” and whose

associated eigenvectors are not included among the previous three types of solutions.

While we refer to [102] for more discussion, flat bands will not be encountered in the
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models under consideration in this paper.

The complete set of solutions to the bulk equation may thus be parameterized as

follows:

~ψ~α =
n∑
`=1

s∑̀
s=1

α`s ~ψ`s +

s0∑
`=1

α−`
~ψ−` +

s0∑
`=1

α+
`
~ψ+
` , (A.11)

where ~α ≡ [α11, . . . , αnsn , α
−
1 , . . . , α

−
s0
, α+

1 , . . . , α
+
s0

]T ∈ C4R. Using ~ψ~α as an Ansatz

for the boundary equation, Eq. (A.10), leads to the identity

P∂(G− ω12N)~ψ~α =
∑
b

~eb(B(ω)~α)b, b ∈ {1, . . . , R,N −R + 1, . . . , N}. (A.12)

Here, the boundary matrix 2 B(ω) has elements Bbs(ω) that consist of 2 × 1 blocks

and are given by Bbs(ω) = ~eb
† (G− ω12N) ~Ψ, with

~Ψ ≡ [~ψ11, . . . , ~ψnsn , ~ψ
−
1 , . . . ,

~ψ−s0 ,
~ψ+

1 , . . . ,
~ψ+
s0

]T . (A.13)

Eq. (A.12) tells us that if B(ω)~α = 0, then ~ψ~α solves both the bulk and boundary

equations and hence is an eigenvector of GN with eigenvalue ω, as desired.

For diagonalizable matrices, the above procedure yields a Bloch-like diagonal basis.

However, G may fail to be diagonalizable, in which case the generalized eigenvectors

of G are needed in addition to the eigenvectors to complete a basis. One can calculate

some generalized eigenvectors in Bloch-like form by repeating the above procedure

to determine ker (G− ω12N)p for various powers p and each eigenvalue ω. However,

there is a constraint p < (N − 1)/R ≡ pmax on how large p can be because, for

p ≥ pmax, (G − ω12N)p need not be a corner-modified block-Toeplitz matrix. If

there are any, generalized eigenvectors of rank greater than pmax − 1 may have to be

determined by means other than the above bulk-boundary separation. As it turns

2Note that, despite being a matrix, we forgoe the bold notation for the boundary matrix as to
avoid conflation with the boundary modification B.
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out, the BKC, when considered in certain parameter regimes, offers examples of this

peculiar phenomenon.

Let us now derive the three types of solutions that make up the Ansatz Eq˙ (A.11).

Consider the bi-infinite matrix (Laurent operator) G(L). Then if G(L) ~ψ = ω~ψ, it

follows that ~ψN ≡ P1,N
~ψ, with P1,N =

∑N
j=1 ~ej~e

†
j ⊗ 12, is a solution of the bulk

equation. In the generic case where det g±R 6= 0, this method yields the complete set

of solutions to the bulk equations, i.e., ker PB(GN − ω12N) = P1,N ker(G(L) − ω1).

For the time being, we restrict ourselves to this case.

If we were interested in diagonalizing G(L) on its own, we would restrict to only

the eigenvectors that are normalizable on the corresponding Hilbert space. Crucially,

this does not capture the full kernel of G(L) − ω1, however: since we only consider

the finite-lattice projections, the non-normalizable elements of ker(G(L) − ω1) also

provide solutions to the bulk equation. Furthermore, in the space of all bi-infinite

sequences, the left and right translation operators V and V−1 are no-longer unitary

and so these operators need not have spectra restricted to the unit circle.

The translation invariance of G(L) manifests as the vanishing commutators [G(L),V] =

[G(L),V−1] = 0. Hence, it is possible to construct simultaneous eigenvectors of

G(L), V, and V−1. The simultaneous eigenvectors of V and V−1 are given by

~f1(z) ≡
∑

j∈Z z
j~ej, where z is an arbitrary, non-zero complex number. Explicitly,

V ~f1(z) = z ~f1(z) and V−1 ~f1(z) = z−1 ~f1(z), which immediately lead to the identity

G(L) ~f1(z)⊗ ~u = ~f1(z)⊗ g(z)~u, (A.14)

where ~u ∈ C2 is arbitrary. We see that for any z 6= 0 such that g(z)~u = ω~u, ~f1(z)⊗~u

is an eigenvector of G(L) with eigenvalue ω.

To continue, we define the complex characteristic polynomial P (ω, z) ≡ z4R det(g(z)−

ω12). We call an eigenvalue ω regular if P (ω, z) is not the zero polynomial. Otherwise,
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we say ω is singular. For the applications in this paper, it suffices to restrict to the

eigenvalues ω that are regular. For a fixed ω, let {z`}n`=1 denote the n distinct roots of

P (ω, z) and {s`}n`=1 denote their corresponding multiplicities. Generically, g(z`) will

have s` eigenvectors {~u`s}s`s=1 satisfying g(z`)~u`s = ω~u`s, in which case, the vectors

~ζ1(z`)⊗ ~u`s ≡
N∑
j=1

zj`~ej ⊗ ~u`s = P1,N
~f1(z`)⊗ ~u`s, (A.15)

are solutions to the bulk equation, and akin to Bloch waves with complex momentum.

When the symbol g(z`) has less than s` eigenvectors, the remaining solutions

are constructed from the generalized eigenvectors of the left and right translation

operators. The sequences

~fn(z) ≡ 1

(n− 1)!
∂n−1
z

~f1(z)

span the kernel of (V − z)s for ν = 1, . . . , s. Furthermore,

G(L) ~fn(z)⊗ ~u =
1

(n− 1)!
∂n−1
z

~f1(z)⊗ g(z)~u.

One can then show that the sequence ~ψ ≡
∑ν

n=1
~fn(z)~un satisfy

G(L) ~ψ =
ν∑

n=1

ν∑
m′=1

~fm(z)⊗ [gν(z)]mm′~um′ ,

where gν(z) is an upper-triangular block-Toeplitz matrix with non-zero blocks

[gν(z)]mm′ =
1

(m′ −m)!
∂m
′−m

z g(z), 1 ≤ m ≤ m′ ≤ ν. (A.16)

It can then be shown that the eigenspace of G(L) corresponding to eigenvalue ω is a
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direct sum of n vector spaces spanned by generalized eigenvectors of V±1 of the form

Ψ`s =

s∑̀
ν=1

Φz`,ν~u`sν ,

where the linearly independent vectors {~u`sν} are chosen in such a way that gs`(z`)~u`s =

ω~u`s, with ~u`s = [~u`s1, . . . , ~u`ss` ]
T . With these, we obtain

∑n
`=1 s` solutions to the bulk

equation given by

~ψ`s =

s∑̀
ν=1

~ζν(z`)~u`sν , ~ζν(z`) = P1,N
~fν(z`)

If g±R are not invertible, then there exists 2s0 ≡ 4R−
∑n

`=1 s` additional boundary

localized solutions to the bulk equation, where s0 is the multiplicity of z = 0 as a

root of the characteristic polynomial P (ω, z) for a given regular eigenvalue ω. We

will now demonstrate how to construct the left (j = 1) localized solutions. Since

these solutions emerge due to the truncation of the bi-infinite lattice to a finite one,

we consider the semi-infinite dynamical matrix G(T) and the and unilateral shift

operators T and T† (Eq. (2.31)). The corresponding half-infinite bulk projector is

P−B ≡
∞∑

j=R+1

~ej~e
†
j ⊗ 12 = T†RTR ⊗ 12.

Now, suppose there is a vector ~Υ−, that solves the half-infinite bulk equation

P−B
(
G(T) − ω1−

)
~Υ− = 0.

Then one can verify that ~ψ = P1,N
~Υ− is a solution to the bulk equation. The emergent

solutions are precisely those derived from the half-infinite bulk equation and not the

bi-infinite eigenvalue problem. Since TT† = 1−, we may write P−B
(
G(T) − ω1−

)
=

T†RK−(ω,T), where K−(ω, z) is the matrix polynomial K−(ω, z) ≡ zR (g(z)− ω12) .
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Thus, the s0 left-localized emergent solutions to the bulk equation are determined by

the kernel of the matrix K−s0(ω, z0 = 0) ≡ K−(ω), with K−ν (ω, z) constructed exactly

as in Eq. (A.16). Given a basis {~u−s }
s0
s=1 for ker K−(ω), with ~u−s = [~u−s1, ~u

−
s2, . . . , ~u

−
ss0

]T ,

we can construct s0 left localized solutions to the bulk equation given by

~ψ−s =

s0∑
j=1

~ej ⊗ ~u−sj.

The remaining s0 right-localized solutions, with support on j = N , can be found

in an analogous way. Explicitly, they can be constructed using the kernel vectors

{~u+
s }

s0
s=1 of the matrix K+(ω) = τ3[K−(ω)]†τ3. That is, if ~u+

s = [~u+
s1, ~u

+
s2, . . . , ~u

+
ss0

]T ,

then the vectors

~ψ+
s =

s0∑
j=1

~eN−s0+j ⊗ ~u+
sj, s = 1, . . . , s0,

provide right-localized solutions to the bulk equation.
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Appendix B

Miscellaneous technical

calculations

B.1 Existence of a bosonic eigenbasis for dynami-

cally stable QBHs

Let G be the dynamical matrix of a dynamically stable QBH. In this appendix, we

will prove that there exists a bosonic eigenbasis for G, i.e., an eigenbasis satisfying

Eqs. (2.63), in the case where there are no ZMs.

Suppose we have the set of eigenvalues ωn ∈ R of G with eigenvectors ~vn. If

ωn 6= ωm, then pseudo-Hermiticity provides

~v†nτ3G~vm = ~v†nG
†τ3~vm ⇒ (ωn − ωm)~v†nτ3~v

†
m = 0, (B.1)

so that ~v†nτ3~vm = 0. Now, if ωn is a (possibly degenerate) non-zero eigenvalue with

dn eigenvectors ~vn,j, j = 1, . . . , dn, then

(Mn)jk = ω−1
n ~v†n,jτ3G~vn,k = ω−1

n ~v†n,jH~vm,k (B.2)
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is a dn × dn matrix. From the final equality, we observe that Mn is (i) Hermitian,

thanks to Hermiticity of H, and (ii) invertible, since we assume G, and hence H,

lacks zero frequency eigenvectors. Let ~α` and r` 6= 0, ` = 1, . . . , dn, orthonormal

eigenvectors and eigenvalues of M, respectively. We then define the dn vectors

~ψs`n,` ≡
1√
|r`|

dn∑
j=1

(~α`)j~vn,j, ` = 1, . . . , dn, s` ≡ sgn(r`). (B.3)

It is easy to see that these are eigenvectors of G corresponding to eigenvalue ωn.

Furthermore,

~ψs`n,`
†τ3

~ψ
s`′
n,`′ =

1√
|r`||r`′ |

dn∑
j,k=1

(~α`)
∗
j(~α`′)k~v

†
n,jτ3~vn,k (B.4)

=
1√
|r`||r`′ |

dn∑
j,k=1

(~α`)
∗
j(~α`′)k(Mn)jk (B.5)

=
1√
|r`||r`′ |

~α†`Mn~α`′ (B.6)

=
1√
|r`||r`′ |

r`δ``′ = s`δ``′ . (B.7)

We then form the bosonic basis by taking ~ψ+
n to be the (necessarily N) eigenvectors

~ψs`n,`, with s` = 1. Here, n is understood to now be a multi-index (n, `). We complete

the basis with the remaining N eigenvectors ~ψ−n = τ1(~ψs`n )∗ which correspond to

frequencies −ωn.

B.2 Eigendecomposition of the BKC under vari-

ous BCs

The goal of this appendix will be to diagonalize (or cast in to Jordan normal form, in

the non-diagonalizable cases) the dynamical matrix (Eq. (3.26)) of the BKC Hamilto-

nian (Eq. (3.25)) under various BCs. To accomplish this, we will utilize the techniques
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of Appendix A.3.

B.2.1 Open BCs

First, note that the the internal matrices g±1 commute. A basis of simultaneous

eigenvectors is thus given by ~v± ≡ (1/
√

2)[1,±1]T . This allows us to write

−iGOBC =
1

2

(
γ+T† − γ−T

)
⊗ ~v+~v

†
+ +

1

2

(
γ−T† − γ+T

)
⊗ ~v−~v†−, γ± ≡ J ±∆

When J = ∆ (γ− = 0), we see that the generalized eigenvectors are constructed from

those of T and T†. Specifically, ~χ1k = (−iγ+)−k+1~ek⊗~v− and ~χ2k = (iγ+)−k+1~eN+k−1⊗

~v+, with k = 1, . . . , N in both cases, provide two length-N Jordan chains at eigenvalue

ω = 0.

Henceforth, we restrict to the case J 6= ∆. Thus, the problem reduces to diagonal-

izing an N ×N Toeplitz matrix of the form X =
(
aT + bT†

)
/2, with a, b ∈ R \ {0}.

The symbol x(z) = (az + bz−1)/2 and the corresponding characteristic polynomial

P (z, ω) = z (x(z)− ω) = (az2 +b)/2−ωz. The roots are z± = (1/a)
(
ω ±
√
ω2 − ab

)
,

which satisfy z− = c/z+ in terms of c ≡ b/a. These roots only coalesce when

ω = ω± ≡ ±
√
ab.

For the case ω 6= ω±, the two bulk eigenstates are ~ζ1(z±) which yields the boundary

matrix

B(ω) =
1

2

 −b −b

zN−1
+ (b− 2ωz+) (c/z+)N−1(b− 2ωz−1

+ )

 , c ≡ b/a.

It can be quickly checked that B(−ω) is similar to B(ω) and so the spectrum is

necessarily symmetric about ω = 0. The condition for a nontrivial kernel (detB(ω) =
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0) reduces to the equation

z2N−2
+ (b− 2ωz+) = cN

(
a− 2ωz−1

+

)
.

The 2N roots (of which only N are distinct) are given by z+ = ±
√
ceimπ/(N+1), with

m = 1, . . . N . The correspondingN distinct eigenvalues are ωm = sgn(a)
√
ab cos(mπ/(N+

1)). Note that ωm 6= ω± and so we need not address the case of two coalescing roots.

Taking the roots z+ =
√
ceimπ/(N+1) yields the kernel vector ~α = [1,−1]. The (unnor-

malized) eigenvectors are then

~ψm = ~ζ1(zm)− ~ζ1(c/zm) =
N∑
j=1

cj/2 sin

(
mπj

N + 1

)
~ej, (X− ωm1N) |ψm〉 = 0.

With these solutions, we define

~φ±m ≡
N∑
j=1

(−σ)j/2 e±jr sin

(
mπj

N + 1

)
~ej ⊗ ~v±, ωm ≡

√
t2 −∆2 cos

(
mπ

N + 1

)
,

where r = 1/2 ln(γ+/|γ−|). These satisfy

GOBC~φ±m =


ωm~φ

±
m, sgn(J −∆) = 1,

±ωm~φ±m, sgn(J −∆) = −1.

These eigenvectors can then be combined to form the eigenvectors used to construct

the normal modes described in Sec. 3.3.3.

B.2.2 Twisted BCs

B.2.2.1 The parameter regime s = 1, ϕ = π/2, J 6= ∆

Instead of diagonalizing GT ≡ G(1, π/2) directly, we will first perform a unitary

rotation GT
′ ≡ ΣGTΣ† = GOBC′ + B′ in terms of the the matrix Σ defined in
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Eq. (2.2). The rotated dynamical matrix has a very simple structure in this basis;

GOBC′ = T⊗ g′1 + T† ⊗ g−1, B′ = ~eN~e
†
1 ⊗ b′1 + ~e1~e

†
N ⊗ b′−1, (B.8)

g′1 = − i
2

γ− 0

0 γ+

 = σ2g
′†
−1σ2, b′1 = − i

2

 0 γ−

−γ+ 0

 = σ2b
′†
−1σ2 = b′−1,

(B.9)

where again γ+ = J + ∆ and γ− = J −∆. The relevant symbol is

g′(z, z−1) = g′1z + g−1z
−1 = − i

2

γ−z − γ+z
−1 0

0 γ+z − γ−z−1

 . (B.10)

The characteristic polynomial P (ω, z) ≡ z2 det(g′(z, z−1)− ω12) has four roots

z1 =
1

γ−

(
iω −

√
γ+γ− − ω2

)
, z2 =

1

γ+

(
iω −

√
γ+γ− − ω2

)
, (B.11)

z3 =
1

γ−

(
iω +

√
γ+γ− − ω2

)
, z4 =

1

γ+

(
iω +

√
γ+γ− − ω2

)
, (B.12)

which are all distinct as long as ω 6∈ S ≡ {±√γ+γ−,±(γ+ + γ−)/2}. We will first

assume that ω 6∈ S. With this, we can easily find the bulk solutions

~ψ1 = ~ζ1(z1)⊗

1

0

 , ~ψ2 = ~ζ1(z2)⊗

0

1

 , ~ψ3 = ~ζ1(z3)⊗

1

0

 , ~ψ4 = ~ζ1(z4)⊗

0

1

 ,
(B.13)
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from which we can construct the boundary matrix B(ω) given by

B(ω) =
i

2



−γ+ −γ−zN1 e−2Nr′ −γ+ −γ−(−z1)−N

γ+z
N
1 −γ− γ+e

2Nr′(−z1)−N −γ−

zN1 R −γ−z1e
−2r′ e2Nr′(−z1)−NS γ−z

−1
1

γ+z1 zN1 e
−2Nr′R −γ+e

2r′z−1
1 (−z1)−NS


,

S ≡ 2iω − γ−z1, R ≡ γ+z
−1
1 + 2iω,

where r′ = r for J > ∆ and r′ = r − iπ/2 for ∆ > J . The condition for ω to

be an eigenvalue is detB(ω) = 0. From the expression for z1, we can see that

ω = i(γ−z1−γ+z
−1
1 ). Inserting this into B(ω) and taking the determinant introduces

4 fictitious roots of detB(ω) = 0, which we will identify after finding all of the roots

(
z2N

1 + e2Nr′
)2 (

γ+ + γ−z
2
1

)2
= 0.

If z1 = ±i
√
γ+/γ−, then ω = ±σ√γ+γ− ∈ S, with σ = sgn(γ−), which must be

considered separately. The remaining roots are z1 = ±zm ≡ ±er
′
eikm , where km =

(m + 1/2)π/N and m = 0, . . . , 2N − 1. This gives the 2N potential eigenvalues

ωm ≡ σ
√
γ+γ− sin(km) =

√
t2 −∆2 sin(km), with m = 0, . . . , 2N − 1.

Now, we must split into separate cases: if N is even, ωm 6= ±
√
γ+γ− for all m

and so we have all 2N eigenvalues of GT
′, and hence for GT . If N is odd, then

when m = (N − 1)/2, ωm = σ
√
γ+γ− and when m = (3N − 1)/2, ωm = −σ√γ+γ−.

Since these are in S, we must handle these separately. We do this after finding the

eigenvectors for the remaining eigenvalues. The kernel vectors of B(ωm) are

~αm = [e−(N+2)r′ , i(−1)m, 0, 0]T , ~βm = [0, 0, e−(N+2)r′ , i(−1)N−1−m]T ,

with degeneracy arising due to the fact that each ωm 6= ±
√
γ+γ− is doubly degenerate.
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The degenerate eigenvectors of GT
′ corresponding to eigenvalue ωm are ~αTm~Ψ and ~βTm~Ψ,

with ~Ψ ≡ [~ψ1, ~ψ2, ~ψ3, ~ψ4]T . Rotating back via the unitary transformation Σ gives the

eigenvectors of GT corresponding to eigenvalue σωm as

~ψm,σ =
1√
N

N∑
j=1

eijkm~ej ⊗ ~ξm(j), ~ξm(j) = σm
1

sinh
[(
j − N+2

2

)
r′
]

cosh
[(
j − N+2

2

)
r′
]
 . (B.14)

For N even, the above procedure exhausts all possibilities. For N odd, we consider

the case ω = σ
√
γ+γ− explicitly and note that the case ω = −σ√γ+γ− can be handled

in an analogous way. In this case, the characteristic polynomial has two distinct roots

z1 = ier
′

and z2 = −1/z1. The corresponding eigenvectors of g(zj) are ~u1 = [1, 0]T

and ~u2 = [0, 1]T giving two bulk solutions

~ψ1,1 = ~ζ1(z1)⊗

1

0

 , ~ψ2,1 = ~ζ1(z2)⊗

0

1

 .
The remaining two bulk solutions arise from the eigenvectors of g′1(zj) where

g′1(z) =

g′(z) ∂zg
′(z)

0 g′(z)

 .
These yield two more bulk solutions

~ψ1,2 = ~ζ2(z1)⊗

1

0

 , ~ψ2,2 = ~ζ2(z2)⊗

0

1

 .
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The boundary matrix at ω = σ
√
γ+γ− is then

B(σ
√
γ+γ−) =

i

2



−γ+ −γ−(−z1)−N 0 −Nγ−(−z)1−N

γ+z
N
1 −γ− Nγ+z

N−1
1 0

−γ+z
N−1
1 −σγ−/z1 (N + 1)γ−z

N
1 −γ−

γ+z1 −γ−(−z1)1−N γ+ σ(N + 1)γ+(−z1)−N


.

Then detB(σ
√
γ+γ−) ∝ 1 + (−1)N = 0 for N odd. The kernel is one dimensional

and is spanned by

~α = [e−(N+2)r′ , i(−1)(N−1)/2, 0, 0]T .

Hence, the eigenvector corresponding to σ
√
γ+γ− is ~ψ(N−1)/2,σ where ~ψm,σ is exactly

as in Eq. (B.14). Similarly, the eigenvector corresponding to −σ√γ+γ− is ~ψ(3N−1)/2,σ.

B.2.2.2 Dynamical phase boundaries

In this section, we determine analytically the dynamical phase boundaries in boundary

parameter space. An important assumption of this derivation is that certain phase

boundaries are characterized by the emergence of ZMs and that the phase diagram

is symmetric about ϕ = π/2. Thus, we will uncover the conditions on s and ϕ for

G(s, ϕ) to possesses zero as an eigenvalue.

As in the preceding Appendix, we will rotate via the unitary Σ and study the

unitarily equivalent matrix G′(s, ϕ). In contrast to the preceding section, however,

we keep ϕ arbitrary and restrict to the non-open case s ∈ (0, 1]. Since the bulk

(GOBC′) is unchanged, and the roots of the characteristic polynomial P (ω = 0, z)

are distinct, we have the same four bulk solutions ~ψj, j = 1, 2, 3, 4, given in Eqns.
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(B.8)-(B.13). On the other hand, the boundary modification is now given by

B′(s, ϕ) = ~eN~e
†
1 ⊗ b′1(s, ϕ) + ~e1~e

†
N ⊗ b′−1(s, ϕ),

b′1 = −is
2

 γ− cos(ϕ) γ− sin(ϕ)

−γ+ sin(ϕ) γ+ cos(ϕ)

 = σ2b
′†
−1σ2.

Since the BC is different, the boundary matrix becomes

B(ω = 0) =
i

2

[
~c1(z1) ~c2(z−1

1 ) ~c1(−z1) ~c2(−z−1
1 )

]
,

where

~c1(z) ≡ [−γ+

(
1− szN cos(ϕ)

)
, sγ+z

N sin(ϕ), fz
(
zN − s cos(ϕ)

)
, γ+zs sin(ϕ)]T ,

~c2(z) ≡ [−sfzN sin(ϕ),−f
(
1− szN cos(ϕ)

)
,−sfz sin(ϕ), γ+z

(
zN − s cos(ϕ)

)
]T .

Demanding that the determinant vanishes, we obtain the conditions

cos(ϕ±) =
1

2


(s+ s−1)sech(Nr), N even,

±2 sech(Nr), N odd.

(B.15)

For N even, this specifies one angle ϕ+ = ϕ− in the interval [0, π], in fact, smaller

than π/2. On the other hand, for N odd, there are two distinct angles ϕ± symmetric

about each side of π/2. Thus, both phase boundaries host ZMs for N odd and just

the left boundary for N even.

When Eq. (B.15) is satisfied, the kernel of B(0) can be determined analytically.

The cases s 6= 1 and s = 1 must be handled separately. We begin by taking s 6= 1.
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For N even, kerB(0) is two-dimensional and spanned by the vectors

~α =
1

s− s−1

[(
4− (s+ s−1)2sech2(Nr)

)1/2
e−(N+2)r, (s+ s−1) tanh(Nr), 0, s− s−1

]
,

~β =
1

s− s−1

[
(s+ s−1) tanh(Nr),

(
4− (s+ s−1)2sech2(Nr)

)1/2
e(N+2)r, s−1 − s, 0

]T
.

For N odd and ϕ = ϕ±, kerB(0) is one-dimensional and spanned by

α± =

[(
s∓ 1

s± 1

)
e−(N+2)r,

s∓ 1

s± 1
, e−(N+2)r, 1

]T
.

For s = 1, the analogous kernel vectors for N even are

~α =
[
e−(N+2)r, 1, 0, 0

]T
, ~β =

[
0, 0, e−(N+2)r, 1

]T
,

whereas for N odd are

~α+ =
[
0, 0, e−(N+2)r, 1

]T
, ~α− =

[
e−(N+2)r,−1, 0, 0

]T
.

The important thing to note is that these calculations reveal that the dimension of

the zero-mode subspace is one (two) for N odd (even). The four-fold symmetry of the

spectra of bosonic dynamical matrices implies that the algebraic multiplicity of the

zero eigenvalue must always be even. This confirms that for N odd, there must be a

Jordan chain of length two at zero, along the phase boundaries (s > 0). An additional

symmetry of the even chain implies that all non-zero eigenvalues of G(s, ϕ) are at

least doubly degenerate, implying that the zero eigenvalue has algebraic multiplicity

four. Thus, the even chain possesses two length-two Jordan chains at zero, along

the left phase boundary. Alternatively, this can be concluded by checking that the

dimension of kernel of the boundary matrix of G2 at zero frequency is four.
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B.2.2.3 The parameter regime s = 1, ϕ ∈ (0, π), J = ∆.

At ϕ = π/2, GT is non-diagonalizable when J = ∆. The Jordan chains can be

constructed by inspection and are given by

~χ1k =

(
i

t

)k
~ek ⊗ ~v−, k = 1, . . . , N, (B.16)

~χ2k =

(
i

t

)k
i~ek+1 ⊗ ~v− + (−1)k+1~eN+1−k ⊗ ~v+, 1 ≤ k < N,

−~e1 ⊗ ~v+, k = N,

(B.17)

for N even, and

~χ1k =

(
i

t

)k
2~e1 ⊗ ~v−, k = 1,

~ek ⊗ ~v− + i(−1)k |N + 2− k〉 ⊗ ~v+, 2 ≤ k ≤ N + 1,

(B.18)

~χ2k =

(
i

t

)k (
i~ek+1 ⊗ ~v− + (−1)k+1~eN−k+1 ⊗ ~v+

)
, k = 1, . . . , N − 1,(B.19)

for N odd. Specifically, these satisfy GT ~χjk = GT ~χj(k−1), with k 6= 1 and GT ~χj1 = 0

for j = 1, 2. It is interesting to note that for N even there are two length-N Jordan

chains, whereas for N odd there is a Jordan chain of length N + 1 and one of length

N − 1.

For ϕ 6= π/2 we define GT (ϕ) ≡ G(1, ϕ). Again, we simplify the problem by

first diagonalizing GT
′(ϕ) ≡ ΣGT (ϕ)Σ†. In this case, γ− = 0 and γ+ = 2J , and the

corner modification takes the form

B′(ϕ) = ΣV (1, ϕ)Σ† = ~eN~e
†
1 ⊗ b′1(ϕ) + ~e1~e

†
N ⊗ b′−1(ϕ),

b′1(ϕ) ≡ iJ

 0 0

sin(ϕ) − cos(ϕ)

 , b′−1(ϕ) ≡ iJ

cos(ϕ) 0

sin(ϕ) 0

 .
In particular, we note that det g′1 = det g′−1 = 0 and so we expect emergent solutions
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to the bulk equation. When J = ∆, the symbol is

g(z) = iJ

z−1 0

0 −z

 .
The roots of the characteristic polynomial are z1 = it/ω and z2 = −1/z1 wish coalesce

only for ω = ±t. The eigenvectors are ~u1 = [1, 0]T and ~u2 = [0, 1]T which provide two

bulk solutions

~ψ1 = ~ζ1(z1)⊗

1

0

 , ~ψ2 = ~ζ1(z2)⊗

0

1

 .
The remaining two bulk solutions come from the kernels of the matrices

K−(ω) =



g′−1 −ω12 g′1 0

0 g′−1 −ω12 g′1

0 0 g′−1 −ω12

0 0 0 g′−1


, K+(ω) ≡



g′1 0 0 0

−ω12 g′1 0 0

g′−1 −ω12 g′1 0

0 g′−1 −ω12 g′1


,

which are spanned by ~u− = [0, 1, 0, 0, 0, 0, 0, 0]T and ~u+ = [0, 0, 0, 0, 0, 0, 1, 0]T respec-

tively. With these, the two additional bulk solutions

~ψ− = ~e1 ⊗

0

1

 , ~ψ+ = ~eN ⊗

1

0

 .
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The corresponding boundary matrix is

B(ω) = it



zN1 cos(ϕ)− 1 0 0 cos(ϕ)

zN1 sin(ϕ) 0 z2 sin(ϕ)

0 0 0 z2

z1 sin(ϕ) z2(zN2 − cos(ϕ)) − cos(ϕ) 0


,

where we have used ω = it/z1. The condition for a vanishing determinant is

(zN1 cos(ϕ)− 1)(zN2 − cos(ϕ)) = 0.

ForN even, the roots are doubly degenerate and given by z1 = zm (cos(ϕ))−1/N e2mπi/N ,

with m = 1, . . . , N . For N odd, the roots are zm = (cos(ϕ))−1/Neimπ/N , with m =

1, . . . 2N . In both cases we let (cos(ϕ))−1/N ≡ e−iπ/N | cos(ϕ)|−1/N , for ϕ ∈ (π/2, π).

The eigenvalues are then given by ωm = it/zm. Equivalently, the spectrum σ(GT (ϕ))

is related to the periodic and anti-periodic cases as

σ(GT (ϕ)) = | cos(ϕ)|1/N


σ(G(1, 0)), ϕ ∈ (0, π/2],

σ(G(1, π)), ϕ ∈ (π/2, π),

with G(1, 0) (G(1, π)) the dynamical matrix of the chain under periodic (anti-periodic)

BCs with J = ∆. Note that |ωm| < t for all m and ϕ ∈ (0, π) and so we need not

address the case ωm = ±t.

Now, for N even the kernel of B(ω) is 2 dimensional and spanned by

~αm = [e2mπi/N(cos(ϕ))1/N , 0, tan(ϕ), 0]T , ~β = [0, 1, 0, 0]T .

After rotating back to the (a, a†) basis, the (doubly degenerate) eigenvectors of GT (ϕ)
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for N even, corresponding the eigenvalue ωm, are

|ψm,1〉 = Nm,1
(
z−1
m
~ζ1(zm)~v+ + i tan(ϕ)~e1 ⊗ ~v−

)
,

|ψm,2〉 = Nm,2~ζ1(−z−1
m )⊗ ~v−,

with Nm,`, ` = 1, 2 normalization constants. For N even the kernel of B is one-

dimensional and is spanned by ~αm/2, for m even, and ~β, for m odd. Hence, the

eigenvector of GT (ϕ) for N odd corresponding to the eigenvalue ωm is given, up to a

normalization constant, by

~ψm = Nm


z−1
m
~ζ1(zm)⊗ ~v+ + i tan(ϕ)~e1 ⊗ ~v−, m even,

~ζ1(−z−1
m )⊗ ~v−, m odd.

B.3 An isospectral mapping between the PDC and

the DBKC

In this appendix, we will establish an isospectral mapping between the PDC and the

DBKC. Let GDBKC(κ, J,∆) and GPDC(µF , JF ,∆F ) denote the dynamical matrices of

the DBKC (with µ = Γ = 0) and the PDC under OBCs, respectively. Note that we

have distinguished the FKC hopping, pairing, and onsite potential with a subscript

F . Define the momentum-space translation operator

Λ(δk) ≡ diag(e−iδk, . . . , e−iNδk)⊗ 12. (B.20)

With this, one may verify

Λ
(π

2

)
GPDC

(
0,−J

2
,−∆

2

)
Λ−1

(π
2

)
= iGDBKC(0, J,∆) (B.21)
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That is, the dynamical matrices are unitarily equivalent up to a phase when µF = κ =

0. In particular, the µF = 0 OBC rapidity spectrum for the PDC is equal to i times

that of the DBKC with the identifications κ = 0, JF ↔ −J/2, and ∆F ↔ −∆/2.

This allows us to establish Eq. 9.7 from the known spectral properties of the BKC.

B.4 Persistence of MBs in a disordered DBKC

Owing to the robustness of ε-pseudospectra, MBs are robust to weak perturbations

(recall property (v) in Sec. 8.3.1). As a concrete example, we consider the DBKC

with weak disorder. Explicitly, we take Γ = 0 and allow the model parameters to

have spatial dependence (J,∆, µ, κ) 7→ (Jj,∆j, µj, κj). For closed-form solutions, we

focus on the case ∆j = Jj for all j. With this, two approximate ZMs are given by

γzL = x1 +
N∑
j=2

( j−1∏
`=1

δ
(`)
−

)
xj, γzR =

N−1∑
j=1

JN
Jj

( N∏
`=j+1

δ
(`)
+

)
pj + pN , δ

(`)
± ≡ −

κ` ± µ`
J`

,

(B.22)

which satisfy

L?(γzL) = −JN
( N∏

`=1

δ
(`)
−

)
xN , L?(γzR) = JN

( N∏
`=1

δ
(`)
+

)
p1. (B.23)

As in the disorder-free case (i.e., when ∆ and J site-independent), the corresponding

approximate SGs γsL and γsR are obtained by taking κj 7→ −κj. The pair (γzL(R), γ
s
L(R))

are proper MBs (i.e., they are exponentially localized and are either approximately

conserved or generate an approximate symmetry) when the disorder is weak enough,

say, max` |δ(`)
± | < 1.
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B.5 Exact time-evolution of bosonic parity of a

dissipative harmonic oscillator prepared in a

cat state

In this appendix, we present the explicit calculation of the cat-state parity dynam-

ics in the pure steady-state DBKC. As we have seen, this model can be seen as a

set of independent damped quantum harmonic oscillators in the normal-mode basis.

This decoupling allows us to reduce the problem to that of computing the parity dy-

namics of a single-mode cat-state under damped harmonic motion. The multimode

generalization then follows naturally.

Let |α〉, with α ∈ C denote a single-mode coherent state and define the single-

mode cat state |Cφ(α)〉 = Nφ(α)
(
|α〉+ eiφ |−α〉

)
. Here, Nφ(α) is a normalization

constant. The dynamical problem at hand is to compute the expectation value of

parity P = eiπa
†a in the state ρα,φ(t), with ρ(0) = |Cφ(α)〉 〈Cφ(α)| evolved in time via

the Lindbladian

L(ρ) = −i[ωa†a, ρ] + 2κ

(
aρa† − 1

2
{a†a, ρ}

)
(B.24)

Here ω is the oscillator frequency and κ is the damping rate. We may compute ρα,φ(t)

exactly utilizing the results of Ref. [162, 163]. Firstly,

ρα,φ(t) = etL (ρα,φ(0)) = Nφ(α)2
(
σα(t) + σ−α(t) + eiφχα(t) + e−iφχ−α(t)

)
where

σα(t) ≡ etL(|α〉 〈α|), χα(t) ≡ etL(|α〉 〈−α|)
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The terms σ±α(t) can be quoted directly as

σ±α(t) = |±α(t)〉 〈±α(t)| α(t) = e−(κ+iω)tα (B.25)

On the other hand, χ±α(t) are slightly more complicated,

χα(t) = D(t)

(
∞∑
k=0

(2e−κt sinh(κt))k

k!
akχα(0)a†k

)
D(t)†

with D(t) = e−(κ+iω)ta†a. Now,

akχα(0)a†k = αkχα(0)(−α∗)k = (−|α|2)kχα(0)

which leads us to

χα(t) = exp
(
−2κ|α|2e−κt sinh(κt)

)
D(t)χα(0)D(t)†

The remaining time-dependence may be computed as

D(t)χα(0)D(t)† = exp
(
−2|α|2e−κt sinh(κt)

)
|α(t〉 〈−α(t)| .

Finally,

χα(t) = exp
(
−4|α|2e−κt sinh(κt)

)
|α(t)〉 〈−α(t)| ,

with χ−α(t) following accordingly.

With the exact time dependence of ρ(t) computed, we can now evaluate the ex-

pectation value of parity. A particularly useful identity is P |α〉 = |−α〉. Using this,
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we will compute Pα
1 (t) = tr[Pσα(t)] and Pα

2 (t) = tr[Pχα(t)] to obtain

〈P 〉 (t) = Nφ(α)2(Pα
1 (t) + P−α1 (t) + eiφPα

2 (t) + e−iφP−α2 (t))

Proceeding,

Pα
1 (t) = tr[P |α(t)〉 〈α(t)|] = 〈α(t)| − α(t)〉 = exp

(
−2|α|2e−2κt

)
.

Letting fα(t) = exp (−4|α|2e−κt sinh(κt)), we also have

Pα
2 (t) = f(t)tr[P |α(t)〉 〈−α(t)|] = fα(t) 〈−α(t)| − α(t)〉 = fα(t).

Putting this all together,

〈P 〉 (t) =
e−2|α|2 + cos(φ)e−2|α|2(1−e−2κt)

1 + cos(φ)e−2|α|2 . (B.26)

297



Bibliography

[1] S. N. Bose, “Plancks gesetz und lichtquantenhypothese,” Zeit. Phys. A 26, 178

(1924).

[2] A. Einstein, “Quantentheorie des einatomigen idealen Gases,” Sitzungsber.

Preuß. Akad. Wiss. Phys. Math. Kl., 261 (1924); ibid. 3 (1925).

[3] M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A.

Cornell, “Observation of Bose-Einstein condensation in a dilute atomic vapor,”

Science 269, 198 (1995).

[4] K. B. Davis, M.-O. Mewes, M. R. Andrews, N. J. van Druten, D. S. Durfee,

D. M. Kurn, and W. Ketterle, “Bose-Einstein condensation in a gas of sodium

atoms,” Phys. Rev. Lett. 75, 3969 (1995).

[5] N. W. Ashcroft and N. D. Mermin, Solid State Physics (Cengage Learning,

2022).

[6] P. D. Drummond and M. Hillery, The Quantum Theory of Nonlinear Optics

(Cambridge University Press, 2014).

[7] D. F. Walls and G. J. Milburn, Quantum Optics (Springer Science & Business

Media, 2007).

[8] M. O. Scully and M. S. Zubairy, Quantum Optics (American Association of

Physics Teachers, 1999).

298

https://doi.org/10.1007/BF01327326
https://doi.org/10.1007/BF01327326
https://doi.org/10.1126/science.269.5221.198
https://doi.org/10.1103/PhysRevLett.75.3969


[9] Howard Carmichael, An Open Systems Approach to Quantum Optics: Lectures
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