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1. Abstract

Autism is a multifaceted neurodevelopmental condition. Around 90% of individuals with

autism experience sensory sensitivities, particularly impacting visual perception. Despite this

high percentage, previous studies investigating visual perception in autism impose severe

limitations on our understanding. In many of these experiments, their stimuli and

experimental methods are un-naturalistic and produce unreproducible and conflicting results.

In this study, we investigate the nature of the real-world visual experience in autism with a

cutting-edge experimental approach. First, we use virtual reality headsets with eye-trackers to

measure gaze behavior while individuals freely explore real-world, everyday scenes. Then,

we compare their gaze behavior to the representations within convolutional neural networks

(CNNs), a class of computational models resemblant of the primate visual system. This

allows us to model the stages of the visual processing hierarchy that could account for

differences in visual processing between individuals with and without autism. To our

knowledge, this is the first fully unbiased, data-driven approach to studying naturalistic

visual behavior in autism. In brief, we found that convolutional neural networks, regardless

of the task upon which they were trained, are better able to predict gaze behavior in typically

developing controls than in individuals with autism. This suggests that differences in gaze

behavior between the two groups are not principally driven by the semantically-meaningful

features within a scene and emerge from differences earlier in visual processing.
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2. Introduction

2.1 Characteristics of autism spectrum conditions

Autism spectrum condition (henceforth ASC or autism) is a complex neurodevelopmental

condition affecting one out of fifty-nine individuals in the United States (CDC, 2019).

Despite autism’s prevalence, we know relatively little about its underlying neurobiology. The

current literature on the possible neural underpinnings of autism is rife with inconsistencies,

as well as the rates of diagnosis worldwide -- diagnosis rates range from 1 in 27 in Hong

Kong to 1 in 3,333 in Poland (Elsabbagh et al., 2012).

On average, individuals are diagnosed with autism at age four in the U.S., although signs of

autism are often visible by nine months. Sensory processing differences are particularly

notable early in development and predictive of later autism diagnosis (Baranek et al., 2013;

Estes et al., 2015), and thus may serve as promising early markers of the condition

(Robertson & Baron-Cohen, 2017). In adults, atypical sensory perception is reported to

impact over 90% of individuals with autism (Tavassoli et al., 2014), and as of 2014, sensory

reactivity is included in the DSM-5 criteria for ASC. This new diagnostic criterion

emphasizes the important role sensory perception and processing plays in ASC, and recent

studies focus on sensory atypicalities as characteristic features of autism’s neurobiology

(Robertson & Baron-Cohen, 2017). Such sensory atypicalities include visual, tactile, taste,

gustatory, and auditory sensitivities significantly different from control populations and

populations with other clinical conditions (fragile X syndrome and developmental disabilities

of mixed etiology) that appear before three years of age and persist through adulthood (Kern

et al., 2006; Rogers et al., 2003).

2.2 Visual perception in autism

A common characterization of perception in autism is as emphasizing local details at the

expense of the global percept, i.e. ‘Seeing the trees, but not the forest’ (Dakin & Frith, 2005).
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In other words, they are exceptionally attentive to visual details rather than global features,

which (in a subgroup of individuals with autism) is linked to savant-like drawing abilities

(Baron-Cohen et al., 2009; Mottron & Belleville, 1993). Numerous studies have shown that

individuals with autism are faster at detecting visual targets among distractors (‘a tree within

the forest’), and eye-tracker studies have shown this as an early behavioral marker of the

condition in toddlers (Gliga et al., 2015; Kaldy et al., 2011; Plaisted et al., 1998). Yet, little is

known about how such a detailed perceptual style manifests in real-world environments.

Moreover, visual processing in autism has rarely been explored using computational

approaches.

One previous study has attempted to use machine learning approaches to characterize visual

processing in autism in real-world scene images. Eye-tracking studies have shown that

individuals with ASC freely viewing complex, naturalistic scenes demonstrate more

pixel-level saliency than controls. They also demonstrate decreased saliency for

semantic-level features, as well as faces and locations considered socially-meaningful by

controls (Wang et al., 2015). For example, individuals with autism viewing naturalistic

scenes show preference to regions of scenes with high contrast and color instead of regions

with faces, text, or other semantically informative features (Robertson & Baron-Cohen,

2017). Comparatively low responsivity to social stimuli (and nonsocial to a lesser effect) is

predictive of later autism diagnosis risk for children at as young as 11 months (Baranek et al.,

2013), and decreased social attention is a hallmark of ASC behavior.

These behavioral results suggest that visual perception differences in ASC originate from

differences in early visual processing. Neuroimaging studies support the conclusion that

atypicalities in visual perception are linked to atypical responses in primary sensory cortices.

For instance, individuals with ASC have difficulty tracking the global motion of multiple

objects. This could result from atypical responses in early visual cortex (Robertson et al.,

2014) and primary motion area (MT) (Herrington et al., 2007; Peiker et al., 2015; Takarae et
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al., 2014), as shown in numerous functional magnetic resonance imaging (fMRI) studies of

motion processing. Studies have also linked motion perception abnormalities with superior

temporal sulcus (STS) (Dakin & Frith, 2005), a region also implicated in perceiving and

understanding social interactions (Isik et al., 2017).

2.3 Naturalistic perception

A standard measure of visual attention allocation, gaze behavior has been widely suggested

as a ‘behavioral marker’ of autism. A key feature of these studies, though, is how little they

resemble the real-world visual experience. Most of the key studies in autism vision research

utilize stimuli like Gabors, line drawings, basic block patterns, and moving dots (Simmons et

al., 2009; Spencer & O’Brien, 2006; among many others). One study (Wang et al., 2015)

presented real-world scenes as stimuli to measure gaze behavior, but such stimuli were also

presented as still images displayed on a computer screen. Most studies using naturalistic

stimuli have focused on social salience or interpreting social interaction in autism, again

treating autism as a condition of the social mind primarily and sensory processing

secondarily (Simmons et al., 2009).

Using naturalistic stimuli in psychological studies (neuroimaging and behavioral studies

alike) generates a large mass of noisy data that researchers need to sift through to draw

meaningful conclusions about cognition. Computational models are powerful tools for

making sense of such data. Modern artificial deep neural networks (DNNs) are

biologically-inspired models that can solve some of the cognitive tasks once thought unique

to humans. These models are built of layers of simple processing units (like neurons) that

work in parallel and communicate in feed-forward and feed-backward projections. They are

trained in order to complete a specific task, like predicting market fluctuations, natural

language processing, or image recognition. This training allows a model to learn a specific

set of connection weights so it can make useful predictions on unseen data (Cichy & Kaiser,

2019).
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Deep neural networks were initially built as engineering tools yet quickly infiltrated other

fields. A particular form of DNNs, convolutional neural networks (CNNs) have received

particular attention for their outstanding performance on computer vision tasks. Since

Krizhevsky et al. introduced their award-winning image recognition model in 2012, CNNs

have dominated the computer vision field (Krizhevsky et al., 2012). In the following eight

years, CNNs have surpassed all other computational models and even human performance at

visual recognition tasks (Kriegeskorte, 2015). Beyond the computer vision field, DNNs

perform remarkably in other domains, including speech recognition and translation (Sak et

al., 2014) and models of brain activity.

2.4 Deep neural networks and the brain

Perhaps naturally given their biological inspiration, deep neural networks have tremendously

benefitted neuroscience research. DNNs are able to predict both behavior and neural

responses, informing the link between the two. CNNs, known for their visual recognition

prowess, strongly resemble the brain responses in primate primary sensory cortices.

Khaligh-Razavi & Kriegeskorte (2014) showed that a CNN, among a pool of 37 models, best

predicted inferior temporal (IT) responses to visually-presented objects. Though several

models trained on low-level features could predict early visual cortex responses, later levels

of the CNN model (which are notably more representative of visuo-semantic features)

exceeded all other models in predictivity of higher-order visual areas (including FFA, PPA,

and LOC). Overall, when trained on large sets of labeled images, supervised CNNs best

explained IT data, and specifically the later layers of the network best predicted responses in

both monkey and human IT. The network’s final spatially-selective layer is the most highly

predictive of neural responses of all their investigated models, and each layer of the model’s

hierarchy increases roughly monotonically in its ability to predict IT responses

(Khaligh-Razavi & Kriegeskorte, 2014).
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Since 2014, many studies have supported the findings in Khaligh-Razavi and Kriegeskorte:

CNNs are highly predictive of visual cortex responses, with early layers better predicting

early visual cortex and later layers better predicting higher-level visual areas (Cichy &

Kaiser, 2019; Isik et al., 2014; Kriegeskorte, 2015). Units in early layers of CNN have small

receptive fields that are most responsive to features like edges, analogous single neurons in

the early visual cortex (Hubel & Wiesel, 1962). The activity within the early layers of a CNN

is more general and less task-specific, and representations increase in task-specificity in later

layers. Units further along the ventral pathway have larger receptive fields and are more

transformationally and translationally invariant and selective to particular shapes and

semantic categories (Güçlü & van Gerven, 2015; Hung et al., 2005; Yamins et al., 2014),

similar to IT cortex responses (Khaligh-Razavi & Kriegeskorte, 2014). This brain-model

analogy has proven a useful framework: CNNs are now an integral feature of models that can

predict visual stimuli from observed brain (BOLD) activity (Güçlü & van Gerven, 2015).

2.5 Convolutional neural networks, the brain, and gaze behavior

Unsurprisingly, CNNs are also highly predictive of visual behavioral responses. The MIT

saliency benchmark presents models that are most predictive of human gaze behavior on a

dataset of natural images with eye-tracking data. To date, the ten top models of the MIT

saliency benchmark are all CNNs (O’Connell & Chun, 2018; MIT Saliency Benchmark).

DeepGaze, a prominent saliency estimation model, utilizes prominent CNN architectures

trained on object recognition. Specifically, it uses the landmark VGG architecture that

revolutionized computer vision in 2015 (Simonyan & Zisserman, 2015). The newest edition,

DeepGazeII can predict 87% of patterns of fixation and outperforms all other models on the

saliency benchmark. Evidently, though the information represented in CNN activity is

dependent upon the task the network was trained to predict, the features that a CNN learns to

represent during training are transferable between tasks. This supports the notion that CNNs

learn flexible feature space for an array of objectives: one can use image recognition models
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to predict human gaze behavior (Kümmerer et al., 2016) and scene recognition models to

predict neural responses (O’Connell & Chun, 2018).

As shown, convolutional neural networks can predict both gaze behavior and neural

responses. Can they model the link between brain activity and behavior? In an elegant series

of experiments, O’Connell and Chun (2018) showed a novel three-way connection between

CNNs, neural responses, and gaze behavior. First, they used brain activity (BOLD responses)

to directly predict gaze behavior. Then, they translated these neural responses into CNN

activity patterns at specific layers of a VGG model trained to recognize scenes. These

activity patterns were used to build spatial priority, or saliency, maps, indicating the most

salient regions of a scene. Spatial priority maps were then used to reconstruct fixation maps

in novel scenes, and they found that these CNN-reconstructed fixation maps could predict

human fixation patterns. By extracting CNN's representations of scenes, they showed a

novel link between visual cortex activity, CNN activity, and gaze behavior (O’Connell &

Chun, 2018). Despite the exciting potential for CNNs to shed light on the real-world human

visual experience, to our knowledge they have not yet been applied to 360° gaze behavior.

Moreover, they have never been used to characterize visual processing in autism.

2.6 A novel approach: CNNs to understand visual processing in autism

In this study, we use convolutional neural networks to investigate gaze behavior of

individuals with autism in naturalistic scenes. To do this, we designed a novel experimental

approach. First, we used in-headset eye-tracking in immersive virtual reality headsets to

measure spatial attention allocation in real-world, complex scenes. This affords objective

insight into the day-to-day visual experiences of individuals with autism, which we compare

with typically-developing controls. Second, we used CNNs to model where along the visual

hierarchy scene perception and processing diverges between groups, and whether this relates

to the model’s training. Specifically, we utilized the hierarchical representations of scenes

and objects within convolutional neural networks to directly model spatial attention

12

https://www.zotero.org/google-docs/?G0AHy0


allocation across low-level visual features (e.g. color, pixel-saliency, or contrast) and

high-level ones (e.g. socially or non-socially meaningful features).

Through modeling gaze behavior with CNNs, we asked a series of questions about how

individuals experience the visual world. Does visual attention allocation in natural scenes

vary between ASC and typically-developing controls? Are between-group differences in

visual behavior predicted by different layers along the CNN hierarchy, since such layers

represent increasing semanticity? Are CNN models trained for different visual recognition

tasks predictive of group differences? If our models indicate group-level differences, it could

inform how visual perception characterizes autism. Furthermore, this could afford

researchers better insight into where along the visual hierarchy differences in visual

information representations originate.

In brief, we found that CNNs overall predicted gaze behavior better for controls than for

individuals with ASC. This group difference was not affected by location along the network

hierarchy-- for all individuals, the later layers of the network better predicted gaze behavior

than the earlier ones, and all layers better predicted controls than individuals with autism. We

also found that a model pretrained on object recognition significantly predicted gaze behavior

better than scene recognition in both individuals with and without autism, and it better

predicted control gaze behavior than ASC. This suggests that differences in gaze behavior

between the two groups are not tied to high-level representation of objects or places and

begin early in visual processing.

13
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3. Materials and Methods

3.1 Behavioral data

Behavioral data was collected from participants according to the following specifications. We

will refer to this as ‘gaze data’ throughout the course of this thesis.

3.1.1 Participants.

Forty-one adults participated in this experiment (20 ASC). All participants were recruited

from the local Upper Valley (NH/VT) community. Control participants (12 female; mean age

22.38 +/- 4.84 STD years) were included based upon 1) having normal or corrected vision

and no colorblindness, 2) having no neurological or psychiatric conditions, and 3) having no

history of epilepsy.

Twenty participants (8 female, 1 gender unspecified; mean age 23.4 +/- 7.19 STD years) had

documented autism spectrum condition (ASC) diagnoses, confirmed with the Autism

Diagnostic Observation Schedule Second Edition (ADOS-2) Module 4 assessment

administered by a research-reliable administrator (Hus & Lord, 2014). ASC participants all

had normal or corrected vision and no colorblindness. Fifty percent of ASC participants

self-reported co-occurring conditions, including anxiety, depression,

attention-deficit/hyperactivity disorder, and dyslexia. These co-occurrences were not

controlled for or matched in the control group. An additional four participants with ASC

attempted the experiment but were later excluded from analyses due to one of three reasons:

task comprehension difficulty, insufficient diagnostic confirmation, or contributing fewer

than 30 valid scenes.

All participants completed the Kaufman Brief Intelligence Test (Kaufman & Kaufman, 2014)

and the Autism Spectrum Quotient (Baron-Cohen et al., 2001). Control participants were

matched for age with participants with ASC. An additional eight individuals participated in a
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pilot experiment to identify stimuli balanced for social/nonsocial salience (for more

information, see section 3.1.2). Written consent was obtained from all participants in

accordance with a protocol approved by the Dartmouth College Institutional Review Board.

3.1.2 Stimulus and head-mounted display.

Stimuli consisted of 360-degree “photospheres” of real-world scenes sourced from open

online databases such as Flickr (flickr.com) or Youtube (youtube.com). Photospheres

depicted a diverse set of indoor and outdoor settings and contained 1-3 people and non-social

yet interesting objects. Pilot participant data identified a set of 60 photospheres balanced for

both salient social and non-social content. Such balanced scenes were defined as ones where

the top 50% of pilot participants’ gaze heat is distributed across both socially meaningful

features (i.e. faces or bodies) and nonsocial yet identifiable and interesting features (i.e.

televisions or trees). Each photosphere was then applied to a virtual environment built in

Unity version 2018.3.11f1 (unity3d.com) then integrated with a head-mounted display

(Oculus Rift Development Kit 2, oculus.com, low persistence OLED screen, 2K resolution

per eye, ~90 degree field of view, 75 Hz refresh).

3.1.3 Eye tracking specifications.

Two in-headset binocular eye-trackers monitored participants’ gaze continuously during

scene viewing (Pupil Labs version 1.9.7, 120 Hz sampling frequency, 0.6 visual degrees

accuracy, 0.08 visual degrees precision, 5.7ms camera latency, 3ms processing latency).

Custom scripts written in C# for Unity were used to record eye movements.

3.1.4 Experimental procedures.

During each experimental trial, participants were presented with a photosphere via the

head-mounted display for twenty seconds. Each participant had the opportunity to view all 60

photospheres. The number of trials each participant actually completed varied according to

participant time restraints or fatigue. On average, control participants completed 59 trials (+/-
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1.8 STD trials) whereas ASC participants completed 59 trials (+/- 3.9 STD trials).

Experimental trials with insufficient or low-confidence data were excluded according to the

preprocessing steps (see section 3.1.6 for pre-processing details).

During viewing, participants were told to “look around each place just like you would look

around a new place in real life. Pretend like you’ll have to describe that place later to

someone who didn’t see it.” Participants were given a break after every ten scenes, at which

point the eye-tracker was recalibrated. Participants stood while wearing the head-mounted

display and actively explored the photosphere via self-directed eye-movements and head

turns. This provided an opportunity to explore the naturalistic environment from an

egocentric perspective (Figure 1).

3.1.5 Practice trials and calibration routine.

The experiment had three phases: practice, calibration, and experimental trials. During the

practice phase, each participant saw two scenes that were not included in analysis. They were

reminded to move their heads and explore the whole scene. Practice phases ensured that

participants had acclimated to virtual reality environments before beginning the experiment.

Then, participants performed a 21-point calibration routine (approximately one minute) to

validate eye-tracking accuracy. This calibration routine was repeated after every 10

experimental trials.

After each trial of the experimental phase, participants returned to a virtual home screen

where they took a five-second break before the next trial. After leaving the home screen,

participants saw a pre-trial fixation screen with a visual target at center screen. If significant

gaze drift (>5 degrees visual angle) was detected at this time, the calibration routine was

repeated. Re-calibration also occurred after every time a participant removed the headset.

17



3.1.6 Data preprocessing.

Gaze data was filtered and excluded from analysis for one of three reasons. First, we filtered

for eye tracker confidence. If, for any time point in the trial, eye tracker confidence fell

below 50%, we exclude that data. If we excluded more than 75% of the time points for a

trial, we exclude the entire trial. Next, we filtered for adequate scene exploration. For their

trial to be included in our analysis, the participant must have explored at least 60% of the

scene’s yaw with confident eye tracking. This ensures that the participant understood the task

and actively explored the scene. Finally, we thresholded for pretrial calibration check

failures. Before exploring a scene, participants fixated on a target at the scene’s center and we

calculated the eye tracker’s drift away from their gaze so we can correct for this drift at other

time points in the trial. If drift exceeded 10 degrees visual angle, we excluded that trial from

analyses.

To determine fixations, we calculated the orthodromic distance and velocity between

consecutive gaze points. We calculated the mean absolute deviation (MAD) in gaze position

using a seven-sample sliding window of ~80ms (Voloh et al., 2019). Windows with a MAD

less than 50°/s were defined as potential fixations (Peterson et al., 2016). If two group

centroids were displaced by under 1° and two potential fixations occured within 150 ms, the

potential fixations were concatenated. We excluded fixations that were shorter than 100ms

(Peterson et al., 2016; Wass et al., 2013). This fixation routine was previously defined in

Haskins et al. (in preparation).
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Figure 1: Experimental design.

Participants wore immersive virtual reality headsets equipped with binocular eye trackers. On
each experimental trial, participants freely explored immersive, naturalistic environments
with self-generated movements (saccades and head turns).

3.2 CNN model data.

3.2.1 CNN architecture.

To model spatial attention allocation, we used VGG16, a convolutional neural network

(CNN) with a deep, feed-forward architecture (Simonyan & Zisserman, 2015). This

architecture consists of 18 spatially selective layers broken into five blocks of convolution

operations followed by non-linear max-pooling operations. Convolution layers are made of

64 to 512, 3 by 3 filters, which slide across the activation volumes in a block with a stride of

1. The max-pooling operations use a 2 by 2 filter with a stride of two. By downsampling less

relevant features and propagating forward more salient ones, the network can reduce the

spatial size of its representation by half and build translational invariance in its representation

(Figure 2C).
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3.2.2 CNN training.

Along this processing hierarchy, the network moves from detection of low-level features (e.g.

edges and contrast) to high-level, semantically meaningful concepts. A network’s ‘concept’

is relative to the task it was trained to complete. Thus, the later layers of a network trained on

scene recognition might represent concepts like roads or churches, whereas a network trained

on object recognition might represent concepts like dogs or toasters.

In order to investigate the differences in task performed by participants upon exploring a

novel scene, we modeled their gaze behavior in experimental trials using convolutional

neural networks pretrained on two different tasks: scene recognition (Places365, (Zhou et al.,

2016)) and object recognition(ImageNet, (Deng et al., 2009)). Theoretically, if individuals

perform a task more similar to scene recognition in one of our experimental trials, attending

to more global features of a scene, their gaze maps will resemble the top pooling-layer

activation of a CNN model trained to recognize scenes. If they perform a task more focused

on local details (such as the objects embedded within a scene), their gaze maps will resemble

the top pooling-layer CNN map of a model trained to recognize objects. In this study, we

compare models trained on two different tasks (object recognition and scene recognition) to

test the local versus global attention used by individuals with and without autism when

exploring novel scenes.

Both models utilize the architecture of VGG16 models with hidden layer weights optimized

to categorize scenes into one of 365 categories (e.g. ice field, forest, office, ice cream shop).

The network gradually builds up a representation of the input image as it attempts to

categorize it utilizing relevant features it has ‘learned’ from training. Thus, each layer

‘attends’ to different identifying features of the scene, and the activations in the final layer of

the network show the features most useful for classifying the scene.

The hidden layer weights learned by VGG16-Places365 are available from the Places365

GitHub (CSAILVision/places365, 2016/2020) as a Caffe model. We converted this Caffe
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model to a Torch model (Collobert et al., 2011) using the LoadCaffe module (Zagoruyko,

2014/2020) and from Torch to Pytorch using the convert_torch_to_pytorch module (Carwin,

2017/2020). After conversions, we interfaced with the model using Pytorch (Paszke et al.,

2019). The hidden layer weights learned by VGG16-ImageNet are available as a pretrained

model in Pytorch (Paszke et al., 2019).

Our first model, VGG16-Places365, was trained on a scene recognition task. Our second

model, VGG16-ImageNet, was trained on an object recognition task. Though they utilize the

same architecture, they are trained to attend to different visual features. VGG16-Places365

attends more to global features of a scene, such as affordances and terrain. VGG16-ImageNet

attends more to local features embedded within a scene, such as specific items or beings.

Because these two networks are trained to perform different tasks, we can use them to

quantitatively model local versus global attention during scene exploration.

Within each of our models (VGG16-Places365 and VGG16-Places365), the layers along the

hierarchy can be regarded as a feature map highlighting the most salient features within a

scene for that layer. We can compare feature maps from the same layer (say, pool-5

VGG16-Places365 to pool-5 VGG16-Places365) because the models share identical

architectures. Visualizing the activations of these feature maps as the CNN processes an

image illustrates the network building its conceptual representation of an image, from

low-level to high-level features. In later analyses, we capitalize upon this gradual

representation construction to investigate group differences in representation of scene

features between ASC and typically-developing individuals.

3.2.3 Panoramic image feature map extraction.

A unique feature of our study is the gaze data collected from individuals freely exploring

novel photospheres of real-world scenes in virtual reality. Because our scenes are spherical,

though, we need to break them down into square ‘viewport’ images in order to a) account for
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the equirectangular distortion of projecting a spherical scene into Cartesian space, and b) feed

the network an image of its preferred input size without losing spatial resolution.

We developed a novel pipeline for extracting CNN activity maps in response to a

photosphere and comparing that activation to behavioral gaze data. First, we sample 500

(x,y) points on a sphere such that points are sampled with greatest density around the equator

and with decreasing density as moving away from the equator. Individual gaze behavior has

been shown to be strongly biased toward the equator of images, with decreasing fixations at

increasing latitudes above and below the equator (Judd et al., 2009; Sitzmann et al., 2016).

Sampling accounts for equatorial bias by upsampling and downsampling our photospheres

accordingly (Figure 2A&2B).

We converted these points (in radians) to Cartesian coordinates and used the Equirec2Perspec

module (Fu-En.Wang, 2017/2020) to build a square viewport centered on each point. Each

viewport is a 224 by 224-pixel view of the photosphere, which accounts for 90 degrees of

visual angle, approximately equivalent to that of the Oculus Rift used in our experimental

trials. These are large enough to capture a meaningful portion of the image contained in one

field of view while avoiding equirectangular distortion (Figure 2A). The VGG16 architecture

requires input volumes of size 224 by 224 x 3 (pixels x pixels x channels), but by sampling

our sphere rather than simply resizing our flattened photosphere (a panoramic image of 1000

by 2000 pixels), we can feed the model an image comparable to what one participant views

in one fixation within an experimental trial, without distortion. With 500 samples of 224 by

224 pixels, viewports overlapped with one another heavily (moreso around the equator,

where we sample most densely). This let us average the network’s activations at a given pixel

when considered in numerous contexts so we could infer how the network responds to each

pixel in relation to the entire photosphere.

After sampling the photosphere into viewports and propagating viewport volumes forward

through the VGG16-Places365 and Object-CNN models, we extract each model’s pooling
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layer activations (Figure 2C) and project the viewport’s activation back outward into

equirectangular space using Perspec2Equirec (Fu-En.Wang, 2017/2020). We repeat this

process for all 500 viewports until we have generated one CNN activity heatmap

representing the activation of each desired layer in response to the whole photosphere. For

the pixels in which our viewport samples overlap, within each model we average over all

aggregated activation values at that pixel in order to obtain an average activation value for

each pixel.

For our task-differentiation analysis (local/global), this process only involved extracting layer

activations for the last pooling layer of the VGG16-Places365 and Object-CNN (directly

before the softmax). For our layer analysis, the process involved extracting layer activations

at each of the five pooling layers along the VGG16-Places365 hierarchy.

3.3 Comparing behavioral and model data

3.3.1 Hierarchical layer analysis

To determine which layers of a CNN trained to recognize scenes are most predictive of an

individual’s gaze behavior, we extracted activations from each pooling layer of

VGG16-Places365 (VGG16-Places365) in response to each of our scenes. We followed our

panoramic image feature map extraction pipeline (see 3.2.3) in order to build a CNN map for

each of the VGG16-Places365’s five pooling layers. For each of our 60 photospheres

explored by participants, this yielded 5 feature maps (CNN Layer Maps), which we then

smoothed using a variable-width Gaussian kernel (base filter width of 12 pixels) and z-scored

across all values.

Each of our layer maps was normalized to a common scale using histogram matching

(Henderson & Hayes, 2018). We averaged the five CNN Layer Maps to create a reference

heatmap for each individual layer. Then, each of these maps was histogram matched to the
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average reference heatmap using the MATLAB Image Processing Toolbox function

imhistmatch (MATLAB imhistmatch.; MATLAB 2019b).

Once all CNN Layer Maps were normalized to this common scale, we used partial

correlations to compare our behavioral gaze data and our model data. For each participant

and each experimental trial, we z-scored and sampled their gaze map within a photosphere

and the CNN Layer Maps in that scene at 500 sampling coordinates (to control for

equirectangular distortion; see Figure 2B). We then correlated the gaze map with each of the

five normalized CNN Layer Maps, controlling for the the scene’s equator. Individual viewing

behavior tends to demonstrate a strong bias toward the equator of images with decreasing

fixations at latitudes above and below the equator (Judd et al., 2009; Sitzmann et al., 2017),

so by partitioning the variance attributed to this equatorial bias, we controlled for individual

behavioral adaptation to our task to instead focus exclusively on individual scene exploration

(Groen et al., 2018) . This resulted in five correlation values for each experimental trial.

For each participant, we averaged over each experimental trial’s layer correlation value to

obtain an average correlation of that participant’s gaze behavior with each pooling layer of

the VGG16-Places365. This score indicates how predictive a given layer is of that

individual’s gaze behavior across scenes. After repeating this process for each participant, we

averaged over all participants within each group (based on ASC diagnosis). This resulted in

two sets of five correlation values: one set for how predictive each layer is of average gaze

behavior for individuals with an ASC diagnosis and one set for those without an ASC

diagnosis.

3.3.2 Local versus global attention analysis

To determine whether individuals use more local or global attention when exploring a novel

scene, we compared gaze maps with CNNs trained to perform object recognition

(VGG16-ImageNet; Object CNN) versus scene recognition (VGG16-Places365; Scene

CNN). We compared individual gaze maps from each experimental trial to the top-pooling
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layer activation generated by the Object CNN and the Scene CNN in response to that trial’s

scene. To do this, we extracted just the final max-pooling layer activation, resulting in one

CNN map per model (Object-CNN Map and VGG16-Places365 Map) for each of our

photospheres.

Each CNN map was normalized to a common scale using histogram matching. We averaged

the Object-CNN Map and the VGG16-Places365 map to create a reference heatmap, and

each of our target CNN maps was histogram matched to this average reference heatmap

using the MATLAB Image Processing Toolbox function imhistmatch (MATLAB imhistmatch,

n.d.; MATLAB 2019b, n.d.; Henderson & Hayes, 2018). By averaging the heat from the two

models, we bring the two model maps into a common, middle-ground heat distribution for

comparison.

After normalizing a scene’s Object-CNN Map and VGG16-Places365 Map to an average

heat scale, we used partial correlations to compare each model’s CNN Map with participant’s

gaze map. Within the partial correlation, we controlled for the contribution of the opposite

model’s heat and for equator bias (for explanation of equator bias, see section 3.2.3). For

example, when correlating an Object-CNN Map and a gaze map, we would sample both

maps at each sample coordinate and then vectorize them. We would correlate these two

vectors (using Pearson’s correlation) while controlling for the equator and the

VGG16-Places365 Map (also vectorized and sampled at the same sample coordinates) and

vice-versa for the VGG16-Places365 Map.

We repeated this process for each participant and each experimental trial, then averaged the

correlations over all of a participant’s trials. This gave us two average scores per participant:

the participant’s average correlation of gaze behavior with the VGG16-Places365 and the

Object-CNN. We then averaged these scores across participants within diagnosis group (ASC

versus typically developing) to obtain four scores: the average correlation of gaze behavior in
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individuals with ASC and without ASC with the top-level activation of the

VGG16-Places365 and Object-CNN.

Figure 2. Photosphere-CNN processing pipeline.

A. Each scene is presented to participants as a 360-degree photosphere projected onto a
virtual-reality environment in Unity. The sphere is sampled in 500 points densely around the
equator and sparsely at the poles to account for the distortion of converting the photosphere
into a panoramic image in Cartesian space (adapted from Haskins et al., 2020).
B. Sampling shown in equirectangular (Cartesian) space.
C. The viewport image centered around one sample point is fed as input into the CNN model
(VGG16). At each max-pooling layer, we extract the network’s activation in response to that
viewport (adapted from O’Connell & Chun, 2018). This is repeated for all 500 viewports.
These viewports are then projected back out into a panorama and aggregated in
equirectangular space. Each pixel is then averaged over the number of times it was sampled.
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4. Results

4.1 How well do the layers of a scene-trained CNN predict gaze behavior?

In this first analysis, we addressed whether different layers of a CNN processing scenes

accounted for the differences in gaze behavior between individuals with and without autism.

Behavioral and neuroimaging studies suggest that atypical early cortex activity could

underlie the visual perceptual differences hallmark of ASC. In recent years, many

computational neuroscientists have deep neural networks (particularly CNNs) as models of

the primate visual hierarchy. We hypothesized that earlier CNN layers would be more

predictive of gaze behavior in autism, reflecting more attention to low-level features like

pixel saliency or contrast, whereas later layers (which represent more semantic information)

would be more predictive of typical gaze behavior.

We used partial correlations (Groen et al., 2018) to investigate how predictive each layer of

the model was of gaze behavior. This resulted in five values for each trial, for each

participant, per model. VGG16-Places365 differentiated between ASC and controls

significantly at pool-2, -3, -4, and -5. At each level of the VGG16-Places365, controls were

consistently better predicted than individuals with autism. This pattern was consistent across

the layers of VGG16-ImageNet as well, with an additional significant difference in

predictivity at pool-1.

We tested the main effects of autism diagnosis (group), layer number, and model (network)

with a 3 by 2 ANOVA. For both models and groups, we always find a main effect of layer,

with correlations always increasing at higher layers (F-value = 46.034; p < 0.0001). We also

always find a main effect of group, as individuals with autism are less predicted by both

models at all layers (F-value = 16.26; p < 0.0001). We had hypothesized there would be a

group by layer interaction, which was not indicated in our ANOVA (Figure 3).
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To confirm that these results were not driven by a few outlier participants or scenes, we

modeled individual by layer by experimental trial interactions as random effects in a linear

mixed effects model. We included the same fixed effects of diagnosis and model pretraining,

but added random effects of participants and trial. We found consistent patterns in our results:

main effects of group and layer with no group by layer interaction (Supplemental Table S1).

Figure 3: CNN layer analysis results.
Top: We averaged each individual’s correlation with feature maps from each layer of the
CNN to obtain an average correction score per individual, per layer. These scores are
represented by open circles. We averaged across all individuals’ average correlation scores
within a group at each layer to obtain one group average correlation score per layer. These
are represented by the colored bars. Significance indicated as:

* : p < 0.05, ** : p < 0.01, *** : p < 0.001
A. Average individual & group gaze correlations with feature maps from VGG16-Places365.
B. Average individual & group gaze correlations with feature maps from VGG16-ImageNet.
C. ANOVA table testing main effects of group, network (VGG16-Places365 versus
ImageNet), and pooling layer, as well as their interactions.
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4.2 Is gaze behavior in a novel scene more like an object-recognition task or a
scene recognition task?

To test whether individuals exploring a novel scene allocate attention more toward local

features or global features within the scene, we compared gaze maps with CNN maps of the

top pooling layers across the two models: VGG16-Places365 and VGG16-ImageNet. These

models have identical architectures but hidden weights optimized for scene classification and

object classification respectively. By comparing a human’s gaze behavior with the final

pooling layer activity of CNNs completing object recognition tasks and scene recognition

tasks within the same photosphere, we can identify which task is more comparable to the

participant’s active exploration of a scene.

We hypothesized that gaze behavior of individuals with ASC would be more similar to a

high-level feature map of a network completing an object recognition task

(VGG16-ImageNet) than one completing a scene recognition task (VGG16-Places365). We

hypothesized that control behavior would reflect the reverse: their gaze behavior would be

driven more by globally-informative features than locally-focused ones.

On average, individual gaze maps from ASC participants were significantly more correlated

with the final VGG16-ImageNet map than with the final VGG16-Places365 map (t-statistic =

2.46; p = 0.024). However, the final VGG16-ImageNet map was also more predictive of

control gaze behavior than the final VGG16-Places365 map (t-statistic = 6.12; p < 0.0001). It

was also more predictive of control gaze behavior than it was of ASC gaze behavior

(t-statistic = -4.21; p = 0.0001) (Figure 4A).

We modeled the effect of CNN pretraining and autism diagnosis with a two-factor ANOVA.

This revealed a significant main effect of autism diagnosis (F = 4.424; p < 0.05) as well as

the CNN pretraining (F = 41.63; p < 0.0001). Furthermore, we found a significant interaction

of CNN pretraining and autism diagnosis (F = 4.86; p < 0.05) (Figure 4B).
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To confirm that the group by network interaction was not driven by a subset of individual

participants, we also built and tested a linear mixed effects model with the same fixed effects

of group (ASC / typically developing) and network (VGG16-Places365/VGG16-ImageNet)

and modeled individual participants and individual scenes as random effects. This revealed

the same pattern of results (see Supplemental Table S2).

Figure 4: Local/global analysis results.
Top: We averaged each individual’s experimental trial correlations with pool-5 feature maps
from the two models (indicated as VGG16 pretraining) to obtain an average correlation score
per individual (black points). Lines connect one individual’s correlation score with both
models. Bars indicate the average correlation score within a group, obtained by averaging
across all of the individuals’ average correlation scores within diagnostic group..
Bottom: ANOVA table modeling main effects of autism diagnosis group, VGG16 network
pretraining, and significant interaction of group and network.
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5. Discussion

5.1 Hierarchical layer analysis results

The first analysis in this study revealed that 360-gaze behavior in typically developing

individuals is better predicted than in ASC at every level of the CNN. In both groups, higher

levels better predict gaze behavior than lower levels, but within each level, controls are better

predicted than individuals with autism. This effect is not driven by the high-level task

performed by the model (object recognition or scene recognition) -- both groups are better

predicted by VGG16-ImageNet than by VGG16-Places365, and both models are more

predictive of control gaze than ASC.

We had expected that later layers would diverge in their ability to predict groups rather than

earlier ones, as the model reaches its prediction at its highest layer and shows the most heat

around name-abe objects or scene features. Instead, we found that feature maps from even

the earliest layers of the CNN are more predictive of controls than of individuals with autism.

This suggests that even early visual processing differs in autism, regardless of high-level

task.

5.2 Local versus global attention analysis results

The second analysis found that gaze behavior of individuals with autism is better predicted

by an object-recognition model than a scene-recognition model. We had expected this

finding, as a hallmark of autistic visual perception is detail-orientation. However, we had also

expected that gaze behavior of controls would be better predicted by a scene-recognition

model than an object-recognition one, the reverse of our ASC prediction. We predicted this

would be representative of how typically developing individuals represent a ‘global percept’

when exploring a novel 360-degree space. Instead, we found that control individuals were

better predicted by an object-recognition model than a scene-recognition one, and they were

even better predicted by this model than individuals with autism were.
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This could indicate that the visual attention of individuals with autism is less driven by

semantically-salient objects in a scene than that of controls. The top pooling layer of a CNN

shows heat on what the model deems most significant for the task it is trying to complete. For

our models, the top pooling layer is most concerned with name-able objects or scenes, which

are semantically-meaningful. Perhaps ASC gaze behavior is characterized by comparatively

less attention to semantically-salient features -- both social and non-social ones -- which

would be supported by Wang et al. (2015)

Nevertheless, perhaps these findings are surprising to us because of how we conceptualized

the models rather than how we conceptualized autistic gaze behavior. The local attention bias

noted in the autism literature is supported by embedded figure tasks, such as the Navon task

(Navon, 1977), which indicates that individuals with autism are more attentive to details than

the big-picture figure, whereas controls indicate the reverse. We had predicted that in

360-degree scenes, this would translate to attention to objects within a scene, rather than

attention to the global features of a scene, and the reverse for controls. Instead, we found that

regardless of group, visual attention was more driven by objects within a scene than the scene

itself, which suggests that these distinct models do not really target a ‘local versus global

attention’ dichotomy in terms of the overall human visual experience.

Indeed, the feature maps produced by VGG16-Places365 show broad swaths of heat across

the boundaries and terrain of a scene, whereas VGG16-ImageNet shows concentrated

pockets of heat around specific features (such as a table or a book). Eye-tracking data in

virtual reality does not indicate that individuals explore novel scenes in broad sweeps of the

scenes’ boundaries -- instead, their fixations jump between salient affordances and items

(Sitzmann et al., 2017) producing pockets of heat rather than broad strokes (see

supplementary figure S1). Regardless of where people are fixating, it seems there is an

inherent bias in our analysis for gaze heat to correlate more with an object-recognition model
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than with a scene-recognition one, given their heat distributions. We will address possible

remedies for this in the next section.
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5.3 Conclusions

This study is the first to unite eye-tracking in virtual reality and deep learning models to

study the everyday visual experience of individuals with autism. Past explorations of visual

processing in ASC have been driven by theory, whereas this investigation is driven by data,

which affords us unbiased insight into the sensory experience. CNN feature maps are more

predictive of gaze behavior in control participants than ASC participants at every location

along the processing hierarchy, regardless of the type of visual recognition task the CNN is

trained to perform. These models suggest that there are differences in visual processing

between individuals with and without autism, beginning early in the visual hierarchy and

progressing through levels that represent high-level features.

This investigation paves the way for more computational, data-driven approaches to studying

the sensory experiences of individuals with autism in real-world settings. Given that sensory

sensitivities impact around 90% of individuals with autism, it is essential that research focus

on developing reliable, empirical methods to understand these sensitivities. Our approach

also opens the door to understanding the perception of nonverbal individuals with autism,

whose experiences we cannot understand from verbal reports but we can from eye-tracking

data. In this report, we have only scratched the surface of what computational investigations

of visual perception can teach us about autism. In the following section, we outline future

extensions upon our work.
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6. Future directions

Given the novelty of this study and the short time-frame in which this investigation was

conducted, we propose a number of future avenues of investigation. We aim to address many

of these in the coming months.

First, we would like to understand what drives the consistently lower correlation of ASC

gaze behavior and CNN feature maps that is persistent across layers and networks. In our

partial correlations, we attempt to control for the equatorial bias inherent in free viewing of

images and scenes (Judd et al., 2009; Sitzmann et al., 2016). However, we would now like to

investigate if individuals with autism tend to scan the equator of our scenes more than

controls. If they do, by partialling out the equator, we are essentially handicapping our

models to explain this group’s gaze behavior, because we give the models less data. We also

would like to understand if individuals with autism generally explore scenes less than our

controls do, thus generating less gaze data for us to compare with the CNN models. In this

case, the results we have found could be artifacts of our data that we could better control for

in our regression models.

We would also like to understand the coherence of gaze behavior within and across

diagnostic groups. Do the gaze maps of individuals with autism show less inter-subject

correlation than controls do? Is one group more prone to noisy data than the other? Are there

subgroups within these groups that generate more noisy data than others?

Another direction modification would be to our CNN map preprocessing pipeline. As shown

in Supplementary Figure 1, feature maps from early pooling layers show sharp pixel contrast,

whereas later feature maps are smoother. This has to do with the effective receptive field size

considered in the model’s layers, which increases by layer. However, this increasing

smoothness gives a layer like pool-5 an inherent advantage in predicting gaze behavior. We

propose smoothing our feature maps with a kernel that varies by layer in order to bring all
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layers into equal smoothness as pool-5. Our expectation is that this would bring all layers

into equal smoothness while maintaining the specific features important to that layer.

Our final proposed direction of investigation would be to use the heat from the

ImageNet-generated feature maps to segment our scenes according to social and nonsocial

salience. We would then like to investigate whether either group demonstrates a bias toward

these different types of saliency
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8. Supplemental figures

Table S1. Linear mixed effects model of CNN layer results.

We modeled the partial correlations of gaze behavior and activity at each layer of the CNN as
a linear mixed effects model, whereby we treated the group, network, and layer as fixed
effects but modeled the individual participants and individual scenes as random effects. This
showed the same pattern of results as our traditional 3*2 ANOVA model: significant main
effects of group, network, and layer with no significant interactions.

Table S2. Linear mixed effects model of local / global attention results.

We modeled the partial correlations of gaze behavior and CNN activity as a linear mixed
effects model, treating the group and network as fixed effects and modeling individual
participants and individual scenes as random effects. Again, this reveals a main effect of both
group and network and a significant interaction of the two, whereby the ImageNet network
better predicts controls than ASC than does Places365.
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Figure S1. Example ImHistMatch of CNN layer maps to an average heat
template.
Left Top: A sample stimulus.
Right Top: An example participant’s gaze map for this scene.
Left column: VGG16-Places365 layer activity at each pooling layer, before preprocessing.
Right column: Layer activity after histogram normalization to a common template, which
was modeled as the average of all the pooling layers in the left column.
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