
Dartmouth College Dartmouth College

Dartmouth Digital Commons Dartmouth Digital Commons

Dartmouth College Master’s Theses Theses and Dissertations

Spring 6-1-2022

A bidirectional formulation for Walk on Spheres A bidirectional formulation for Walk on Spheres

Yang Qi
Yang.Qi.GR@Dartmouth.edu

Follow this and additional works at: https://digitalcommons.dartmouth.edu/masters_theses

 Part of the Graphics and Human Computer Interfaces Commons, Numerical Analysis and

Computation Commons, Numerical Analysis and Scientific Computing Commons, and the Partial

Differential Equations Commons

Recommended Citation Recommended Citation
Qi, Yang, "A bidirectional formulation for Walk on Spheres" (2022). Dartmouth College Master’s Theses.
65.
https://digitalcommons.dartmouth.edu/masters_theses/65

This Thesis (Master's) is brought to you for free and open access by the Theses and Dissertations at Dartmouth
Digital Commons. It has been accepted for inclusion in Dartmouth College Master’s Theses by an authorized
administrator of Dartmouth Digital Commons. For more information, please contact
dartmouthdigitalcommons@groups.dartmouth.edu.

https://digitalcommons.dartmouth.edu/
https://digitalcommons.dartmouth.edu/masters_theses
https://digitalcommons.dartmouth.edu/theses_dissertations
https://digitalcommons.dartmouth.edu/masters_theses?utm_source=digitalcommons.dartmouth.edu%2Fmasters_theses%2F65&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/146?utm_source=digitalcommons.dartmouth.edu%2Fmasters_theses%2F65&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/119?utm_source=digitalcommons.dartmouth.edu%2Fmasters_theses%2F65&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/119?utm_source=digitalcommons.dartmouth.edu%2Fmasters_theses%2F65&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/147?utm_source=digitalcommons.dartmouth.edu%2Fmasters_theses%2F65&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/120?utm_source=digitalcommons.dartmouth.edu%2Fmasters_theses%2F65&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/120?utm_source=digitalcommons.dartmouth.edu%2Fmasters_theses%2F65&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.dartmouth.edu/masters_theses/65?utm_source=digitalcommons.dartmouth.edu%2Fmasters_theses%2F65&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dartmouthdigitalcommons@groups.dartmouth.edu

A bidirectional formulation for Walk on Spheres

A Thesis

Submitted to the Faculty

in partial fulfillment of the requirements for the

degree of

Master of Science

in

Computer Science

by Yang Qi

Guarini School of Graduate and Advanced Studies

Dartmouth College

Hanover, New Hampshire

May 2022

Examining Committee:

Wojciech Jarosz

Bo Zhu

Peter Winkler

F. Jon Kull, Ph.D.

Dean of the Guarini School of Graduate and Advanced Studies

Abstract

Poisson’s equations and Laplace’s equations are important linear partial differential equations (PDEs)
widely used in many applications. Conventional methods for solving PDEs numerically often need to
discretize the space first, making them less efficient for complex shapes. The random walk on spheres
method (WoS) is a grid-free Monte-Carlo method for solving PDEs that does not need to discrete the
space. We draw analogies between WoS and classical rendering algorithms, and find that the WoS
algorithm is conceptually identical to forward path tracing.

We show that solving the Poisson’s equation is equivalent to solving the Green’s function for every
pair of points in the domain. Inspired by similar approaches in rendering, we propose a novel WoS
reformulation that operates in the reverse direction. Besides this, using the corrector function enables
us to use control variates to estimate the Green’s function. Implementations of this algorithm show
improvement over classical WoS in solving Poisson’s equation with sparse sources. Our approach
opens exciting avenues for future algorithms for PDE estimation which, analogous to light transport,
connect WoS walks starting from sensors and sources and combine different strategies for robust
solution algorithms in all cases.

ii

Acknowledgment

First and foremost, I would like to express my deepest appreciation to my research supervisor, professor
Wojciech Jarosz for guiding me in the research and teaching the wonderful course rendering algorithms.
His patience in answering everything and his knowledge have always been very helpful throughout
my research and learning experiences. I am grateful to learn from him and conduct reach under his
supervision.

I’m extremely grateful to Dario Seyb and Benedikt Bitterli for valuable suggestions and help during
the writing process. Chatting with them helped me a lot when I was stuck on research. The completion
of this thesis would not have been possible without their help.

Thanks also to Lorie Loeb and Bo Zhu for giving the lectures on all aspects of computer graphics. I also
would like to thank all my friends for giving me great times in New Hampshire. Lastly, I am grateful to
my parents and my girlfriend Yimeng Shang for their generous support all these years.

Chapter �, Chapter �, and Chapter � of this thesis are based on a paper submission to EGSR which I
have co-authored with Dario Seyb, Benedikt Bitterli and Wojciech Jarosz.

iii

Contents

Abstract ii

Acknowledgment iii

Contents iv

� Introduction �

�.� Related Work . �
�.� Thesis Overview . �

� Partial Differential Equations �

�.� Two Linear PDEs . �
�.� The Green’s Method . �
�.� Stochastic Differential Equation . �

� Rendering and Monte-Carlo Methods �

�.� Monte-Carlo Methods . �
�.�.� Importance Sampling . �

�.� Rendering . ��
�.�.� The Path Tracing Algorithm . ��
�.�.� The Three-Point Form of the Transport Equations ��
�.�.� The Path Integral Formulation . ��
�.�.� Multiple Importance Sampling . ��

� Random Walks on Spheres ��

�.� Integral Equation of Poisson’s Equations . ��
�.� WoS Algorithm . ��

� Bidirectional formula for Green’s Functions ��

�.� Integral Equations of Green’s functions . ��
�.� Source and sensor expansions. ��
�.� Analogies to light transport, path spaces, and MIS. ��

� Reverse WoS Algorithms ��

�.� Estimating the Green’s Function . ��
�.� Solving the Poisson’s Equation . ��

�.�.� Solving the Source Solution E . ��
�.�.� Solving the Boundary Solution F . ��

�.� A Two-Pass Algorithm . ��
�.� Bias Compensation . ��
�.� Combining Forward and Reverse Walks . ��

� Control variates ��

�.� The Corrector Function . ��

iv

�.� Solving the Poisson’s Equation . ��

� Implementation and Results ��

�.� Algorithm implementation . ��
�.� Comparison between forward and reverse WoS . ��

�.�.� Sparse boundary values . ��
�.�.� Sparse sources . ��

� Conclusion ��

�.� Limitations and Future Work. ��

A������� ��

A Pseudo-Code ��

Bibliography ��

v

Introduction �
Partial differential equations(PDEs) can describe many physical
phenomena and are used in many applications in the computer
science area. For example, in fluid simulation, researchers are solv-
ing the Naiver-Stokes equation. In geometry processing, we can
use Poisson’s equation to reconstruct surfaces from �D scanned
data [�]. [�]: Kazhdan et al. (����), ‘Poisson surface

reconstruction’
Unfortunately, almost all PDEs are not possible to solve analyt-
ically, this thesis will only focus on the theory and numerical
methods for linear PDEs. For some simple linear PDEs, a lot of
research has been done to let us write out the analytical solution
using Fourier transformation or Green’s functions [�]. However, [�]: Evans (����), Partial differential equa-

tionsthese theories only enable us to calculate the analytical form of
simple domains like a sphere or a plane.

In real-world problems, the domains we want to solve PDEs are
usually very complex. Thus mesh-based methods like the finite
element method have been introduced to solve PDEs numerically
for real-world use. These mesh-based PDEs solvers can handle
arbitrary domains by splitting the domain into small parts and
solving PDEs in those small parts. However mesh-based meth-
ods are inefficient to use when domains are extremely complex
because they need to discretize the space first.

Another type of equation is the integral equation, which describes
the relationship between a function and an integral. Some PDEs
and integral equations are interchangeable because we can per-
form an integral operation on both sides of a PDE or perform a
derivative operation to change between them. The rendering equa-
tion [�] is an integral equation which is the governing equation [�]: Kajiya (����), ‘The Rendering Equa-

tion’describing how the light interacts with the geometry or media in
the world. Methods for solving the rendering equation start from
mesh-based methods such as radiosity [�, �] while Monte-Carlo [�]: Cohen et al. (����), ‘An Efficient Ra-

diosity Approach for Realistic Image Syn-
thesis’
[�]: Cohen et al. (����), Radiosity and Re-

alistic Image Synthesis

methods were thought as too slow for solving the equation. How-
ever, in the past decade, the movie industry has shifted to use a
Monte-Carlo method called the path-tracing algorithm to solve
the equation [�, �]. Monte-Carlo method has been proved to be [�]: Christensen et al. (����), ‘The Path to

Path-Traced Movies’
[�]: Fascione et al. (����), ‘Path Tracing in
Production (Parts � and �)’

stable and efficient in complex scenes compared to mesh-based
methods.

The random walk on spheres (WoS) method [�], introduced to [�]: Muller (����), ‘Some Continuous
Monte Carlo Methods for the Dirichlet
Problem’

�

� Introduction

graphics by [�] recently is a Monte-Carlo method for solving [�]: Sawhney et al. (����), ‘Monte Carlo
Geometry Processing: A Grid-Free Ap-
proach to PDE-based Methods on Volu-
metric Domains’

linear PDEs. It uses the connection between parabolic PDEs and
stochastic processes (Feynmann-Kac’s theorem) and uses the local
analytical solution to solve PDEs. Both the WoS algorithm and the
path-tracing algorithm can be viewed as solving a linear recursive
integral equation. Since WoS is also a Monte-Carlo method, it
shares the same advantage as the path-tracing algorithm. WoS
does not need to discrete the space, making it suitable for handling
complex geometry domains. Comparisons between the WoS
method and mesh-based methods have been well-explored, we
refer to Sawhney and Crane [�] and Sawhney et al.[��]

[��]: Sawhney et al. (����), ‘Grid-Free
Monte Carlo for PDEs with Spatially
Varying Coefficients’

for a
thorough discussion.

[�]: Cohen et al. (����), ‘An Efficient Ra-
diosity Approach for Realistic Image Syn-
thesis’
[�]: Cohen et al. (����), Radiosity and Re-

alistic Image Synthesis

[��]: Reichert (����), ‘A Two-Pass Radios-
ity Method Driven by Lights and Viewer
Position’
[��]: Jensen (����), Realistic Image Synthe-

sis Using Photon Mapping

[��]: Jensen (����), ‘Global Illumination
Using Photon Maps’
[��]: Dachsbacher et al. (����), ‘Scalable
Realistic Rendering with Many-Light
Methods’
[��]: Keller (����), ‘Instant Radiosity’
[��]: Walter et al. (����), ‘Lightcuts: A
Scalable Approach to Illumination’
[��]: Walter et al. (����), ‘Multidimen-
sional Lightcuts’
[��]: Walter et al. (����), ‘Bidirectional
Lightcuts’
[��]: Hašan et al. (����), ‘Matrix Row-
Column Sampling for the Many-Light
Problem’
[��]: Jensen et al. (����), ‘Efficient Simu-
lation of Light Transport in Scenes with
Participating Media Using Photon Maps’
[��]: Jarosz et al. (����), ‘The Beam Ra-
diance Estimate for Volumetric Photon
Mapping’
[��]: Jarosz et al. (����), ‘A Comprehen-
sive Theory of Volumetric Radiance Esti-
mation Using Photon Points and Beams’
[��]: Jarosz et al. (����), ‘Progressive Pho-
ton Beams’
[��]: Bitterli et al. (����), ‘Beyond Points
and Beams’
[��]: Deng et al. (����), ‘Photon Surfaces
for Robust, Unbiased Volumetric Density
Estimation’
[��]: Novák et al. (����), ‘Virtual Ray
Lights for Rendering Scenes with Partici-
pating Media’
[��]: Novák et al. (����), ‘Progressive Vir-
tual Beam Lights’

The similarity in theory and the algorithm
between WoS and path-tracing inspired us to generalize some
techniques from rendering to WoS. In this thesis, we will develop
new methods based on the WoS framework.

�.� Related Work

A major development in rendering is the invention of “Two-Pass”
methods, Initially developed for radiosity [�, �, ��] this idea has
been proved to be successful in Monte-Carlo methods in the form
of photon-mapping [��, ��] and VPLs/many-light rendering [��–
��] and more recently, the methods [��–��] for rending volumetric
media. These “Two-Pass” methods will first perform a “backward”
pass to simulate light transport from light sources and store the
information for retrieving illumination in some data structures.
After that, they use a “forward” pass to gather the illumination
for sensor points. These methods can connect paths from sensor
points to source points more easily compared to a purely “forward”
path-tracing algorithm, thus, making the estimator more robust
in general.

Our main contribution is a new set of WoS algorithms that can
start random walks from source points and distribute energy into
the domain along the walk. We can directly rasterize these walks
or look up into these walks after in a second “forward” sensor
path, mimicking a form of “final gather” [��] to reduce structured
sampling artifacts. Besides this, we purpose another way to use
the WoS algorithm to solve the PDEs using the control variates.
For now, although our algorithm can only use some heuristics to
choose from how many forward steps we want to take. Eventually,
we hope we can combine all strategies using multiple importance

�

� Introduction

sampling [��] and can make the algorithm fully bidirectional [��, [��]: Veach et al. (����), ‘Optimally Com-
bining Sampling Techniques for Monte
Carlo Rendering’

��], making the Monte-Carlo PDEs solver robust enough for use

[��]: Georgiev et al. (����), ‘Light Trans-
port Simulation with Vertex Connection
and Merging’
[��]: Hachisuka et al. (����), ‘A Path
Space Extension for Robust Light Trans-
port Simulation’

in different areas.

�.� Thesis Overview

This thesis consists of nine chapters. In Chapter � we will discuss
the background knowledge of partial differential equations, which
will go over the content from the traditional viewpoint and the
probabilistic viewpoint. In Chapter � we will discuss the Monte-
Carlo method and how it is used to solve the problem in rendering.
After that, we will describe the classical WoS method in Chapter �.
Next, in Chapter � and Chapter � we will derive the integral
equation for Green’s functions and how to use this equation
to solve PDEs. Chapter � will introduce another method for
solving PDEs using the WoS algorithm. We show the results and
comparison between our methods and the classical WoS method
in Chapter �

�

Partial Differential Equations �
A partial differential equation(PDE) is an equation describing the
property of the partial derivatives of a multi-variable function
D(G). In this thesis, we will use * 2 R= to denote the domain of
the function we are solving and %* to denote the boundary of the
* . In this chapter we will first discuss the Laplace’s equation and
the Poisson’s equation, then describe two approaches for solving
them, one is using the Green’s function and another is using the
probabilistic meaning of PDEs.

�.� Two Linear PDEs

The Laplace’s Operator

First we will introduce the Laplace’s operator:�. In =-dimensional
Euclidean space E= with the natural Cartesian coordinates {G8 :
8 = 1, 2, · · · , =}, then the Laplace’s operator can be written as
the sum of all the unmixed second order partial derivatives,
� =

P
=

8=1
%2

%G82
. If we apply the Laplace’s operator to a function D,

the result � D is called the Laplacian of D. Using the definition of
the Laplace’s operator under the natural Cartesian coordinates,
the Laplacian of D at G is � D(G) = P

=

8=1
%2

D(G)
%G82

.

An important property of the Laplace operator is that it is linear,
which means given two functions E ,F and two real numbers 0 , 1
we have:

�(E +F) = �E +�F (�.�)

Having defined the Laplace’s operator, we can now introduce
two partial differential equations we will mainly focus on, the
Laplace’s equation and the Poisson’s equation.

The Laplace’s Equation

Given a Dirichlet boundary condition 6, which is a function
defined on %* , describing the value of D on the boundary. The

�

� Partial Differential Equations

Laplace’s equation of D on * can be written as:

�D(G) = 0 if G 2 *
D(G) = 6(G) if G 2 %* .

(�.�)

The Laplace’s equation can be viewed as describing the heat
diffusion in the steady state. �D(G) = 0 states that there are no
additional heat sources or sinks in the system. In this case, the heat
at position D(G) is entirely defined by the heat on the boundary
6(G).

The Poisson’s equation

The Poisson’s equation is a generalization of the Laplace’s equation
where additional heat sources or sinks are allowed. This means
the Laplacian of D(G) is not 0 everywhere but equals to a source
term 5 (G) defined in * . The Poisson’s equation can be written as:

�D(G) = 5 (G) if G 2 *
D(G) = 6(G) if G 2 %* .

(�.�)

Both Laplace’s equation and Poisson’s equation are linear PDEs,
which means the unknown function D and it derivatives are all
linear.

�.� The Green’s Method

The Green’s function

A general way to solve a linear PDE is called Green’s method
[�]. To apply this approach, let’s first consider a special Poisson’s [�]: Evans (����), Partial differential equa-

tionsequation where it’s source term is a delta function ⇣H and the
boundary value is 0:

� D(G) = ⇣H(G) if G 2 *
D(G) = 0 if G 2 %* .

(�.�)

We will denote the solution of this Poisson’s equation by G*

H
(G).

A common nice property for linear PDEs is that solution is
symmetric, (G*

H
(G) = G*

G
(H)), to show this symmetric property

we will rewrite it as G(G $ H) and omit the superscript when it
is the entire domain * . Also, we want to expand the definition of

�

� Partial Differential Equations

the Green’s function’s definition to R= , so we define the Green’s
function to be 0 if G or H are not in * . The expansion still follows
the symmetric property and is still the solution to Equation �.�.

Then let us consider a Poisson’s equation with an arbitrary source
function 5 and boundary value 0.

�D(G) = 5 (G) if G 2 *
D(G) = 0 if G 2 %*

(�.�)

Intuitively, the Green’s function can be thought of as the amount of
energy transported from H to G inside* . Then, if we add up all the
sources inside the domain, it should be the solution to Equation �.�.
This is true because of the linear property of the operator, if we fix
the point G and convolve the Green’s function G(G $ ⇤) with the
source term 5 (⇤) over the domain E(G) =

Ø
*

5 (H)G(G $ H) dH
will give us a solution to Equation �.� [�]. [�]: Evans (����), Partial differential equa-

tions

D(G) =
π
*

5 (H)G(G $ H) dH. (�.�)

Poisson’s Kernel.

We have discussed how to solve the Poisson’s equations only
have source term Equation �.�, the boundary value are handled
through the Poisson’s kernel P(G ! I) = P(I G). Where G 2 *
and I 2 %* and the arrow will always points to the point on the
boundary. P(G ! I) is defined to be the normal derivative of the
Green’s function. Let =(I) be the local normal of %* at I, we have:

P(G ! I) = P(I G) B %G(G $ I)
%=(I) , (�.�)

We will follow a similar notation as for Green’s functions. P(G !
I) will denote the Poisson’s kernel for * , and P(G ! I) will
denote the Poisson’s kernel of a subdomain.

Representation Formula.

Given the Green’s function and its Poisson kernel, the solution
for general Poisson equations can be expressed using the repre-
sentation formula [�] [�]: Evans (����), Partial differential equa-

tions

D(G) =
π
*

5 (H)G(G $ H) dH +
π
%*

6(I)P(G ! I) dI , (�.�)

�

� Partial Differential Equations

�.� Stochastic Differential Equation

In this section, we will discuss Poisson’s equation in a probabilistic
way. The Poisson’s equation can be viewed as describing heat
diffusion in steady state. Heat can be thought of as the energy
on the particles and if the particle is dense in the domain, the
path they move will be a Brownian-walk. This suggests that
the Poisson’s equation have a close relationship with Brownian
motion. In the rest of this section, we will introduce some basic
definitions of the stochastic process and introduce Feynman-
Kac’s theorem, which is the fundamental equation that shows the
relationship between stochastic processes and PDEs.

Brownian Walk

Given a point G, the Brownian walk, or the Wiener process -

starts at G is a stochastic process that maps time C to a random
variable -(C), which has the following properties:

I Starting point: -(0) = G

I Independent increments: for every C, -(C + D) � -(C) are
independent of the past values -(B), B < C

I Gaussian increments: -(C + D) � -(C) follows the normal
distributionN(0, D)

I Continuity: -(C) is continuous in C

Stopping Time

Suppose we have a Brownian walk - starting at G, we define the
stopping time of - on * ,)* to be the first time - hits %* :

)
* = inf{C : -(C) 2 %*}. (�.�)

-()*) is a random variable, because a the Brownian walk can hit
any point I on %* with some probability density function.

�

� Partial Differential Equations

Feynman-Kac’s Theorem

Feynman-Kac’s theorem [��] shows a close relationship between [��]: Øksendal (����), Stochastic Differen-

tial Equationsstochastic processes and PDEs. It suggests that the solution of the
Laplace’s equation (�.�) can be expressed as:

D(G) = E

6(-()*))

�
. (�.��)

This means that the solution of the Laplace’s equation at a point
G is equal to the expectation of the boundary value at where the
Brownian walk - hits the boundary. If there are source terms
inside the scene, the Feynman-Kac’s theorem says besides the
boundary value, we also need to take into account all the sources
along the Brownian walk path, the solution to (�.�) can be written
as:

D(G) = E

6(-()*)) +

π
)
*

0
5 (-(C)) dC

�
. (�.��)

One important property of Poisson’s kernel can be found by
comparing the integral of the boundary term in the representation
formula (�.�) and Feynman-Kac’s formula with no source (�.��).
Since they are handling the same boundary term, the probability
density of -()*) should be equal to the Poisson kernel of * ,
?
%* (I) = P*(G , I). Thus, the Poisson kernel must satisfy the

property of being a probability density function, which is the
integral of the Poisson kernel is 1 over the boundary.

π
%*

P(G ! I) dI = 1 (�.��)

�

Rendering and Monte-Carlo

Methods �
In this chapter, we review the Monte-Carlo method for estimat-
ing an integral and how it is used for solving the rendering
equations.

�.� Monte-Carlo Methods

The underlying concept of Monte-Carlo methods is to use ran-
domness to solve a deterministic problem. A typical example is
using Monte-Carlo to calculate an integration numerically. Let ⌦
be the domain of a positive function 5 , suppose we want to solve
the following integral:

� =
π
⌦
5 (G) dG. (�.�)

If we sample G 2 ⌦ according to the probability distribution ?(G).
Then we can estimate the integral (Equation �.�) by:

h�i = 5 (G)
?(G) . (�.�)

This is because the expectation of the right hand side of Equa-
tion �.� is:

E

5 (G)
?(G)

�
=
π
⌦

5 (G)
?(G) ?(G) dG =

π
⌦
5 (G) dG. (�.�)

If we take multiple samples G1 , G2 , · · · , G= , the law of large number
ensures us the average of these estimates will converge to the real
integral value:

lim
=!inf

=X
8=1

5 (G)
?(G) = � . (�.�)

�.�.� Importance Sampling

Different choices of probability density ?(G) used in sampling
will lead to different variances for the estimation of the integral
value. A good choice of ?(G) is to let ?(G) be proportional to the
function 5 . This sampling method is called importance sampling, it
optimizes the variance when estimating the integral. However, in
most cases, it is hard to sample G proportional to the function we

�

� Rendering and Monte-Carlo Methods

are integrating. For example, if we want to calculate the integral
of the product of two arbitrary functions 5 and 6:

� =
π
⌦
5 (G) 6(G) dG. (�.�)

In this case, an efficient way to sample G is sampling G proportional
to 5 or 6 [��]. [��]: Veach et al. (����), ‘Bidirectional

Estimators for Light Transport’

�.� Rendering

Physically-based rendering aims to simulate light transport as in
the real world. The governing integral equation that describes
the light transport is the rendering equation [�]. Suppose we [�]: Kajiya (����), ‘The Rendering Equa-

tion’want to calculate !>(? , $>), which is the radiance along output
direction $> at location ? it will equals to the emission along $> ,
!4(? , $>) at ? plus the indirect light, which equals to the integral
of the bidirectional scattering distribution function(BSDF) 5 times
the incoming light !8 over the upper hemisphere. The rendering
equation is written as:

!>(? , $>) = !4(? , $>) +
π
(

2
5 (? , $> , $8)!8(? , $8)| cos8 | d$8

(�.�)

!8(? , $) = !>(C(? , $),�$), (�.�)

where C(? , $) is the ray-casting function that gives the first inter-
section point of the ray staring at ? in the direction $.

�.�.� The Path Tracing Algorithm

The rendering equation is an integral equation, thus we can use
Monte-Carlo method to solve it. Suppose we want to calculate the
radiance !>(? , $>), we first evaluate the emission light !4(? , $>)
at the current location. Then, we randomly sample a new direction
$8 according to a probability density function ?($8) and use a
single-sample Monte-Carlo estimator to estimate the integral term.

h!>(? , $>)i = !4(? , $>) +
5 (? , $> , $8)!8(? , $8)

?($8)
. (�.�)

��

� Rendering and Monte-Carlo Methods

Then we can use the second equation !8(? , $) = !>(C(? , $),�$)
to replace !8(? , $8) on the right hand side, which will give us:

h!>(? , $>)i = !4(? , $>) +
5 (? , $> , $8)!>(C(? , $8) � $8)

?($8)
. (�.�)

To evaluate the !>(C(? , $8),�$8), we can do the same step again.
The iteration process can be terminated by the Russian roulette
method. The path tracing algorithm follows these steps we just
discussed to solve the rendering equation, which generates the ray
path in one direction. There is also plenty of “backward” methods
such as light tracing, photon mapping [��], and virtual point [��]: Jensen et al. (����), ‘Photon Maps in

Bidirectional Monte Carlo Ray Tracing of
Complex Objects’

lights (VPLs) [��] and bidirectional path tracing [��] that generate

[��]: Keller (����), ‘Instant Radiosity’
[��]: Veach et al. (����), ‘Bidirectional
Estimators for Light Transport’

paths in both directional and combine them.

�.�.� The Three-Point Form of the Transport

Equations

The ray-casting function C(? , $) and the recursive !8 on the right
hand side in Equation �.� makes this equation very complex.
In the following of this chapter, we will rewrite the rendering
equation into the form of ! =

Ø
⌦ 59(G) d⇠. First, we will use a

geometry term function to change the light transport equation
into the surface area form. Let+(G $ G

0) be the visibility function:

+(G $ G
0) = 0 if G0 and G are mutually visible

+(G $ G
0) = 1 else.

(�.��)

Then we define the geometry term function ⌧(G $ G
0):

⌧(G $ G
0) = +(G $ G

0) | cos() cos(0)|
kG � G

0k2 . (�.��)

⌧ can be viewed as the change of measure between a point
measure 3G to the surface area measure 3�(G). Then we also want
to remove the directional variables $8 , $> . Thus, we define

!>(G ! G
0) = !(G , $), (�.��)

where $ = G
0�G
kG0�Gk is the unit-length direction pointing from G to

G
0. Next, we can also write the BSDF as:

5 (? , $> , $8) = 5 (G ! G
0 ! G

00), (�.��)

��

� Rendering and Monte-Carlo Methods

where$8 = G�G0
kG�G0k and$> = G

00�G0
kG00�G0k are two unit-length directions.

Then Equation �.� can be written in the three-point form:

!>(G0 ! G
00) = !4(G0 ! G

00)+
π
"

5 (G ! G
0 ! G

00)!8(G ! G
0)⌧(G $ G

0) d�(G)
(�.��)

�.�.� The Path Integral Formulation

We want to write the rendering equation in the form of doing an
integral of a single space and removing the recursion part. To do
this, we need to define the path space and the measure of the
path space. Let ⌦: denote all possible paths of length :.

⌦: = {Ḡ : Ḡ = G0G1 · · · G:}. (�.��)

Then, to write out an integral over ⌦: , let’s define a new measure
⇠: over ⌦: which is equal to the product measure of �(G8). Let
⇡ 2 ⌦: be a set of paths of length :, ⇠(⇡) is given by:

⇠(⇡) =
π
⇡

d�(G0)�(G1) · · ·�(G:). (�.��)

Now let us generalize this measure to the path space ⌦, which is
the set of all possible paths:

⌦ = [1
:=1⌦: . (�.��)

Let ⇡ 2 ⌦, the natural generalization of measure ⇠: is the sum
of the measures of the paths of each length:

⇠(⇡) =
1X
:=1

⇠:(⇡ \⌦:). (�.��)

After defining the measure over the path space, we can recursively
expand Equation �.�� to rewrite it into an integral over the path
space:

!>(G0 ! G1) =
1X
:=1

π
"

:+1
!4(G0 ! G1)⌧(G0 $ G1)

:�1Y
8=1

5 (G8�1 ! G8 ! G8+1)⌧(G8 $ G8+1) d�(G0)�(G1) · · ·�(G:).
(�.��)

The integrand can be viewed as a function 59 of a path Ḡ, we can
simplify the equation to be:

!>(G0 ! G1) =
π
⌦
59(Ḡ) d⇠(Ḡ). (�.��)

��

� Rendering and Monte-Carlo Methods

�.�.� Multiple Importance Sampling

Writing the rendering equation in the path integral way makes it
possible to perform multiple importance sampling on it. Suppose
we want to estimate ! =

Ø
⌦ 5 (G) d⇠. If we have two strategies of

sampling G with probability density ?1(G) and ?2(G). Given two
samples G , H sampled from these two strategies respectively, we
can combine two strategies to estimate the integral:

h!i = 1
?1(G) + ?2(G)

5 (G) + 1
?1(H) + ?2(H)

5 (H). (�.��)

In practice, when using multiple importance sampling for render-
ing, we have two strategies for sampling a path i.e. simulating the
path from the sensor points or simulating the path from the light
sources. Using multiple importance sampling, we can combine
these two strategies and produce a robust Monte-Carlo estimator
[��]. [��]: Veach (����), ‘Robust Monte Carlo

Methods for Light Transport Simulation’

��

Random Walks on Spheres �
In this chapter, we will discuss the random walk on spheres(WoS)
method. The WoS algorithm is a Monte-Carlo method for solving
Poisson’s equations numerically. Unlike traditional methods, WoS
does not need to discretize the space before solving PDEs, which
makes it efficient for handling PDEs in complex geometry. Similar
to rendering, the WoS method can be viewed as solving an iterative
integral equation.

�.� Integral Equation of Poisson’s

Equations

This section will discuss the integral equation of Poisson’s equa-
tions we are solving. Suppose D is the solution to the Poisson’s
equation Equation �.� and let ⌫G be ball centered at G. The repre-
sentation theorem Equation �.� can be generalized to works on
⌫G , making it to be an integral equation for the solution:

D(G) =
π
⌫G

5 (H)G(G ! H) dH

volume term

+
π
%⌫G

=6(I) when I2%*

D(I) P(G ! I) dI

boundary term

. (�.�)

This equation holds for any shape, meaning we can change ⌫G to
be any shape (that contains G. In this thesis, we always use ball
to be the shape where we do the calculation because the Green’s
function of a ball has an elegant analytical form. Also, ⌫G will
always be the largest ball contained in * which is not necessary
but can reduce the iteration steps, making the algorithm more
efficient.

�.� WoS Algorithm

Figure �.�: A WoS path with single
source point sample H8 at each vertex.

After writing the solution D in the form an integral equation.
We can use Monte-Carlo methods to solve it in a recursive way.
At the point G8 , we sample a H ⇠ ?⌫G

8

(H) inside ball ⌫G8
, sample

��

� Random Walks on Spheres

G8+1 ⇠ ?%⌫G
8

(G8+1) on the boundary of the ball, and evaluate

hD(G8)i =
5 (H)G(G8 ! H)

?⌫G
8

(H) + hD(G8+1)i P(G8 ! G8+1)
?%⌫G

8

(G8+1)
. (�.�)

This is a single-sample estimator of solution D for both the re-
cursive part and the local part, which we denote hDi. Notably,
hD(G8+1)i appears on the right-hand side, requiring a recursive
evaluation of Equation �.�: For each sample G8+1, we select a new
ball ⌫G8+1 centered on G8+1 and recurse. When the point G8+1 we
sampled is on the boundary, we can use the boundary value of the
Poisson’s equation 6(G8+1) to estimate the solution D(G8+1). How-
ever, the probability of sampling a point exactly on the boundary
is very small. In practice, this recursion process continues until we
generate a sample G8+1 sufficiently close to the boundary %* of the
domain (when the distance to the boundary at that point is less
than &), at which point we evaluate 6(G8+1) instead of recursing.
Fig. �.� shows an example WoS path with one source sample H8

inside each ball ⌫G .

��

Bidirectional formula for

Green’s Functions �
The WoS algorithm needs to choose the next step randomly on a
sphere, thus it has no little control of where random walks hit the
boundary. Although we can perform importance sampling on the
local source terms and the local Poisson’s kernel in Equation �.�,
it is still a local optimize decision depending on the ball we used.
Suppose the scene only has sparse (or even delta) sources or
boundary values, the WoS algorithm cannot adjust its sampling
strategy according to it.

A similar issue also appears in rendering, where it might be hard
for a forward path tracing hit the light source. Using some “reverse”
methods like photon mapping can solve this issue. In the following,
we propose a “reverse” random walk on spheres algorithm, which
starts WoS path from source points and boundary, thus it can
perform importance sampling of the source term globally. We
will follow the same idea behind Sec. �.�, i.e. by considering the
method for computing the Green’s function first and then using
it as the base for computing the solution to Equation �.�. As
we can see from Equation �.�, if we have a way to estimate the
Green’s function for any two given points G , H, we can perform
importance sampling on the source term and the boundary term.
This sampling strategy will give a better global sampling choice
in some scenes.

In this chapter, we will discuss the integral equation of the Green’s
function, which will be the cornerstone of the algorithm in the
next chapter.

�.� Integral Equations of Green’s functions

Like in the WoS algorithm, to compute the Green’s function of
the domain we first want to have an integral equation for Green’s
function. There are many ways to derive the integral equation of
Green’s functions, we will use Feynman-Kac’s theorem to derive it.
First, we apply Feynman-Kac’s theorem(Equation �.��) to the PDE
(Equation �.�) to derive a probabilistic definition of the Green’s
function. Recall the Green’s function G(G $ H) is defined to be
the solution to (Equation �.�). The source term of this Poisson’s
equation is the Dirac delta function at H, ⇣H(-(C)) and there are

��

� Bidirectional formula for Green’s Functions

no boundary values. Applying the Feynman-Kac’s theorem gives
us:

G(G $ H) = E

π
)
*

0
⇣H(-(C)) dC

�
. (�.�)

′

Figure �.�: The Brownian walk - can be
splitted into two parts.

As showed in Fig. �.�, let’s put a ball ⌫G centered at G such that ⌫G

is contained in * and let)* be the stopping time of a Brownian
walk - on * . Because of the continuity of the Brownian walk, the
Brownian walk must touch the ball ⌫G first before it continues the
walk and hit the %* . Let)⌫G be the stopping time of - on ⌫G , then
we can split the integral in Equation �.� into two parts.The first
one is the time that the walk is inside ⌫G , [0,)⌫G]. The second part
is the time after the walk hits %⌫G , and until it hits the boundary
of the domain [)⌫G

,)
*]:

G(G $ H) = E

π
)
⌫G

0
⇣H(-(C)) dC +

π
)
*

)
⌫G

⇣H(-(C)) dC
�

= E

π
)
⌫G

0
⇣H(-(C)) dC

�
+ E

π
)
*

)
⌫G

⇣H(-(C)) dC
�
.

(�.�)
Notice that the first expectation above is the same as in Equation �.�
by changing the domain to ⌫G , so it is equal to the Green’s function
on ⌫G . Because Brownian motion has independent increments,
the integral in the second expectation can be viewed as doing a
new Brownian walk starting at G0 = -()⌫G). Since the probability
density of -()⌫G) is equal to the Poisson kernel of the ball P(G !
⇤), let -0(C) = -(C +)

⌫G) denotes the part of the Brownian walk
after)⌫G , we can rewrite the second expectation as:

E

π
)
*

)
⌫G

⇣H(-(C)) dC
�

=
π
%⌫G

Pr[-()⌫G) = G
0]E

π
)
*�)⌫G

0
⇣H(-0(C)) dC

�
dH

=
π
%⌫G

P(G ! G
0)G(G0 $ H) dG0.

(�.�)

Combining Equation �.� and Equation �.�, we derived the mean
value theorem of the Green’s function:

G(G $ H) = G(G ! H) +
π
%⌫G

P(G ! G
0)G(G0$ H) dG0. (�.�)

��

� Bidirectional formula for Green’s Functions

Thanks to the symmetry of the Green’s function, if we swap the
G , H and do the same step on H over ball ⌫H we can get the mean
value theorem for H:

G(G $ H) = G(G H) +
π
%⌫H

G(G $ H
0)P(H0 H) dH0. (�.�)

�.� Source and sensor expansions.

The two mean value theorems for G , H enables us to choose which
direction to expand the recursive integral. We can either expand
it in the “forward” direction (by changing G using Equation �.�)
or in the “reverse” direction (by changing H using Equation �.�).
We can expand the recursive integral in the forward direction two
times and we will have:

G(G0 $ H0) = G(G0 ! H0)
� “bounce” transport

(�.�)

+
π

%⌫G0

P(G0 ! G1)G(G1 ! H0) dG1

� “bounce” transport

+
∫

%⌫G0⇥%⌫G1

P(G0 ! G1)P(G1 ! G2)G(G2 $ H0) dG2G1

�+ “bounce” transport

.

2 sensor segments, 0 source segments 1 sensor segment, 1 source segment 0 sensor segments, 2 source segments

2 camera segments, 0 light segments 1 camera segment, 1 light segment 0 camera segments, 2 light segments

pa
th

 tr
ac

in
g

w
al

k
on

 sp
he

re
s

Figure �.�: Top row: We show the different ways our new formalism lets us construct WoS paths, corresponding to Equation �.�,
Equation �.� and Equation �.� (left to right respectively). Bottom row: These methods correspond closely to forward path tracing,
bidirectional path tracing and light tracing (left to right respectively).

��

� Bidirectional formula for Green’s Functions

Alternatively, if we change the direction we expand, by doing two
“reverse” expansion from H0, we can have:

G(G0 $ H0) = G(G0 H0)
� “bounce” transport

(�.�)

+
π

%⌫H0

G(G0 H1)P(H1 H0) dH1

� “bounce” transport

+
∫

%⌫H0⇥%⌫H1

G(G0 $ H2)P(H2 H1)P(H1 H0) dH2H1

�+ “bounce” transport

.

Finally, because we can freely choose from Equation �.� or Equa-
tion �.� in each step. Thus we can expand the integral equation
from both direction once to get a “bidirectiona” expansion, here
we show a “bidirectional” expansion by expanding first with
Equation �.� followed by Equation �.�:

G(G0 $ H0) = G(G0 ! H0)
� “bounce” transport

(�.�)

+
π

%⌫G0

P(G0 ! G1)G(G1 H0) dG1

� “bounce” transport

+
∫

%⌫G0⇥%⌫H0

P(G0 ! G1)G(G1 $ H1)P(H1 H0) dH1G1

�+ “bounce” transport

.

These expansion choice now gives us different ways to estimate
the Green’s function G(G0 $ H0).

�.� Analogies to light transport, path

spaces, and MIS.

We illustrate the three example expansions from Equations �.�–
�.� in Fig. �.� (bottom). Since both the Green’s function and the
rendering equation are recursive Fredholm integrals, there is a
natural analogy between these equations and different strategies
of bidirectional light transport Fig. �.� (top). In fact, repeatedly
expanding the recursion in the three-point form of the rendering

��

� Bidirectional formula for Green’s Functions

equation is the typical process to obtain Veach’s path integral
formulation [��], which provides methods like bidirectional path [��]: Veach (����), ‘Robust Monte Carlo

Methods for Light Transport Simulation’tracing [��, ��] with a powerful way to combine all these strategies
[��]: Veach et al. (����), ‘Bidirectional Es-
timators for Light Transport’
[��]: Lafortune et al. (����), ‘Bi-
Directional Path Tracing’

into one algorithm using MIS [��].

[��]: Veach et al. (����), ‘Optimally Com-
bining Sampling Techniques for Monte
Carlo Rendering’

Unfortunately, the analogies depicted in Fig. �.� are imperfect.
Although the Green’s function itself is symmetric, the subdomain
we used to perform the expansion in Equations �.� and �.� are
different (a sphere %⌫G or %⌫H). This means that each distinct
sequence of expansion directions results in a different shape of
the integral domain making the path space different. This is easy
to confirm by observing that the domains of integration for �+
“bounce” transport in Equations �.�–�.� are all distinct. This is in
contrast to the rendering equation, where all “bounces” happens
on the geometry in the space, and using surface area measure
ensures that expansion from either direction produces the exact
same path space.

This means that while MIS can still be performed within a single
path space choice, it is not immediately clear how to MIS across

these different path space choices. Doing so would be akin to
using MIS to combine VPLs, photon mapping, and bidirectional
path tracing within a unified path space [��, ��]. Nevertheless, [��]: Georgiev et al. (����), ‘Light Trans-

port Simulation with Vertex Connection
and Merging’
[��]: Hachisuka et al. (����), ‘A Path
Space Extension for Robust Light Trans-
port Simulation’

even before being cast into a unified path space, photon mapping
and VPL methods proved highly successful using hand-crafted
criteria for determining how many steps to take along a camera
subpath before connecting to a light subpath. In the next sections
we explore several such possible bidirectional combinations, and
leave the exciting prospect of a unified path space for future
work.

��

Reverse WoS Algorithms �
In the previous discussion, we have shown two integral equations
of the Green’s function and the expansion of the integral equations
by choosing different direction to expand in each steps. In this
chapter, we will discuss how to use these formulas to solve the
Poisson equation numerically.

�.� Estimating the Green’s Function

y00x

1x 2x
3x

4x

Figure �.�: Following the forward walk
{G8}, we can estimate:
hG(G0 $ H0)i = G(G2 ! H0)

x
y0

0

y1

y
2

y3

Figure �.�: Following the reverse walk
{H8} we can estimate:
hG(G0 $ H0)i = G(G0 H2)

We will first focus on how to estimate the Green’s function using
Monte-Carlo methods through the integral equations we dis-
cussed in the previous chapter. Through Equations �.� and �.�,
a one-sample Monte Carlo estimation of these will give us the
forward and backward estimators of the Green’s function, which
can be written as:

hG(G $ H)i = G(G ! H) + P(G ! G
0)hG(G0 $ H)i

?
%⌫G (G0)

hG(G $ H)i = 0 if G 2 %* or H 2 %* ,

(�.�)

hG(G $ H)i = G(G H) + P(H ! H
0)hG(G $ H

0)i
?
%⌫H (H0)

hG(G $ H)i = 0 if G 2 %* or H 2 %* ,

(�.�)

where G
0 and H

0 are points sampled on the boundary of the ball
⌫G and ⌫H , with densities ?

%⌫G (G0) and ?
%⌫H (H0). Equation �.�

and Equation �.� show estimator of the Green’s function in
recursive form. At each recursive step, we can choose freely
from Equation �.� or Equation �.� to generate next vertex G

0 or
H
0 respectively. The recursion is stopped when the next vertex

sampled land on the boundary %* where we know the Green’s
function is 0 there. However, the probability density of generating
a vertex exactly on the boundary is 0, we will follow the same
approach in forward WoS Chapter �, using a small epsilon band
as the boundary. In this case, we will estimate the Green’s function
by 0 if the distance from either G or H to the boundary is less than
epsilon. Fig. �.� and Fig. �.� shows a purely forward and a purely
reverse walk.

��

� Reverse WoS Algorithms

�.� Solving the Poisson’s Equation

After having an estimator of the Green’s function, now we can
start discussing how to solve the Poisson’s equation. To begin with,
we first split the Poisson’s equation Equation �.� into two PDEs,
the source-only part E and the boundary-only part F, which
satisfy

�E(G) = 5 (G) �F(G) = 0 if G 2 *
E(G) = 0 F(G) = 6(G) if G 2 %*

(�.�)

From the linearity of the Laplace operator, we can see that the
solution D(G) = E(G) +F(G) satisfies the original Poisson problem
(Equation �.�), with �(E + F) = �E + �F = 5 and E + F =
6. Because solutions to the Poisson’s equation are unique [�],
allowing us to retrieve the original solution D exactly via the
sub-problems E and F.

�.�.� Solving the Source Solution E

We begin with using the representation formula Equation �.�
to the split Poisson’s equation for E (Equation �.�). Since the
boundary value is 0, we obtain:

E(G) =
π
*

5 (H)G(G $ H) dH. (�.�)

Calculating this integral by a one-sample Monte-Carlo method
can be done in two steps. First, we sample one point H according
to density ?

*(H). Then we we use the estimator described in
Sec. �.� to estimate G(G $ H) by doing a WoS path with either
Equation �.� or Equation �.� each step until the path hits the
boundary.

hE(G)i = 5 (H)hG(G $ H)i
?
*(H) . (�.�)

By reducing the Poisson problem to estimating the Green’s func-
tion, we get great flexibility in estimating E in any combination of
forward and backward steps. Notably, unlike the classical forward
WoS algorithm, Equation �.� allows us to sample H proportional
to the source term 5 (H) over the whole domain.

��

� Reverse WoS Algorithms

�.�.� Solving the Boundary Solution F

Same as Sec. �.�.�, we first apply representation formula for the
boundary-only Poisson’s equation of F (Equation �.�), we obtain

F(G) =
π
%*

P(G ! I)6(I) dI. (�.�)

Estimating this equation requires knowing the Poisson kernel
P(G ! I) over the whole domain. Luckily, since the Poisson
kernel is the normal derivative of the Green’s function we can
reduce it to the estimating of the Green’s function:

P(G ! I) = %G
%=

(I) (�.�)

= lim
⇢!0

G(G $ I + ⇢=) � G(G $ I)
⇢

(�.�)

= lim
⇢!0

G(G $ I + ⇢=)
⇢

, (�.�)

where the last step used the fact that G(G $ I) = 0 for I 2 %* .

Figure �.�: We sample I on the boundary
of the domain and then push it away
along the normal = to start the WoS path
at H0 = I + ⇢= to estimate P(⇤ ! I).

We can approximate Equation �.� at the cost of bias by choosing a
finite ⇢ instead of taking the limit, which is equivalent to taking the
finite differences of the Green’s function (see Fig. �.�). This allows
us to estimate the Poisson function with the Green’s function
estimators introduced in Sec. �.�:

hP(G ! I)i = hG(G $ I + ⇢=)i
⇢

. (�.��)

By inserting Equation �.�� into Equation �.� and applying Monte
Carlo integration to I, we obtain the estimator

hF(G , I)i = 6(I)hP(G ! I)i
?
%* (I) =

6(I)hG(G $ I + ⇢=)i
?
%* (I)⇢ . (�.��)

for F, where I is sampled from density ?
%*(I) on the boundary

%* (e.g. proportional to boundary term 6(I)). Much like the
estimator for E, we have great flexibility in estimating the Green’s
function using any combination of forward- and backward steps.
Unlike the classical forward WoS algorithm, Equation �.�� allows
us to sample I proportional to the boundary term 6(H) over the
entire boundary.

��

� Reverse WoS Algorithms

�.� A Two-Pass Algorithm

� sample

�� samples

Converged result

Figure �.�: The solution estimated via
reverse WoS with �, ��, and ���,��� sam-
ples to a Poisson equation with a single
point source inside a circle with a black
boundary.

In practice, we are usually interested in not only in estimating
the solution 5 (G) at a single point, but over a dense region. This
allows for an efficient algorithm that reuses reverse walks.

If we recursively expand Equation �.� or Equation �.�� using
the reverse estimator Equation �.�, then at each step H8 the walk
contributes to all points G within the ball ⌫H8

. This is analogous
to VPLs, where at each bounce the VPL contributes its flux to all
points in the scene, modulated by a geometry term. The equivalent
of the geometry term for reverse WoS is the Green’s function on
the ball, G(G H8).

We exploit this by first performing a large number of reverse
walks from the boundary and sources in the domain, and store
the ball and Green’s function estimate of each step of each walk
in a spatial data structure. To estimate the solution at G, we then
simply look up into the data structure to obtain all balls that
overlap with G, and evaluate the Green’s function estimate times
G(G H8). A pseudo code for this algotihm is showed in Alg. �.
This is analogous to two-pass many-light algorithms common in
rendering [��]. We show an example of a solution estimate using
increasing number of reverse WoS walks in Fig. �.�.

�.� Bias Compensation

Although the finite difference method in Sec. �.�.� makes it
possible to estimate the Poisson kernel via the Green’s function,
the finite step ⇢ introduces additional bias. This is made worse by
the fact that ⇢ >> & for practical reasons: If ⇢ is of smaller or equal
magnitude to &, then reverse walks starting at the boundary will
immediately terminate; larger values of ⇢ are needed to “push
off” walks away from the boundary.

Figure �.�: Left: Reverse WoS without
normalization is darker than the ground
truth. Mid: Reference image created by
forward WoS. Right: Reverse WoS with
normalization has the same brightness
as the reference image.

��

� Reverse WoS Algorithms

In practice, the bias from finite differences manifests as darkening
of the solution due to reverse walks terminating early (Fig. �.�).
This means that, unlike Equation �.��, the finite difference Poisson
kernel no longer integrates to �.

We can compensate for this fact by renormalizing the Poisson
kernel. While evaluating reverse walks, in addition to the solution
F we also estimate the integral of the Poisson kernel at each point
using a second Monte Carlo estimate,

π
%*
hP(G ! I)i dI ⇡ 1

"

"X
9=0

hP(G ! I9)i
?
%* (I9)

= hPnorm(G)i,

(�.��)

where I1 , . . . , I" are the boundary samples generated in the
course of solving for F.�

Dividing Equation �.�� by the estimate of the normalization
factor hPnorm(G)i then allows us to compensate for the systematic
darkening caused by the finite difference Poisson kernel:

hF(G , I)i = 6(I)hP(G ! I)i
?
%* (I)hPnorm(G)i . (�.��)

Although this estimate is still biased, the apparent error is much
reduced (Fig. �.�, right).

�.� Combining Forward and Reverse Walks

x y02

y1

y
2

y3
x0

x1

Figure �.�: We can perform forward
walks from sensor points and look up the
solution from the reverse WoS’s result.
In this figure, we take two forward steps
and then estimate the Green’s function
at G2.

Forward- and reverse walk on spheres share some of the same
tradeoffs as forward and reverse transport simulation in rendering.
Sparse, high frequency sources are much more difficult to find
for forward methods than reverse methods; simultaneously, it is
much more difficult to get even coverage of the sensor points for
reverse methods than forward methods.

For example, if we are interested in computing the solution in
only a small subset of a scene, it may be much more difficult for
reverse walks to contribute to the solution. This is analogous to
light tracing performing poorly when the camera only views a
small part of a scene.

� Care should be taken that ?%* (I) > 0 over the entire boundary. Even if the
boundary term 6(I) = 0 for some of the boundary, the Poisson kernel is not.

��

� Reverse WoS Algorithms

Purely reverse WoS
Runtime: ��.�s

Poisson’s kernel heuristic
(T=�.�) Runtime: ��.�s

Poisson’s kernel heuristic
(T=�.�) Runtime: ��.�s

Converged reference

Mean variance: �.��e-� Mean variance: �.��e-� Mean variance: �.��e-� Normalization factor

Figure �.�: Left three of the top row: results with different choice of WoS paths. Left three of the bottom row: variance per pixel
of these choices, calculated by doing ��� independent runs. Bottom right: the normalization factor estimated by the reverse WoS.
Insufficient samples in the reverse WoS will lead to structured artifacts in the region hard for a reverse path to covered (Top left).
Using final gather with Poisson’s kernel heuristic will make the algorithm do more samples in region where reverse WoS failed
to have a good result and is able to fix the artifacts (Middle left). However, setting the threshold too strict will lead to poor
performance (Middle right).

Reverse WoS
Runtime: ��.�s

Forward steps = �
Runtime: ��.�s

Forward steps = ��
Runtime: ��.�s

Forward WoS
Runtime: ��.�s

Figure �.�: Left: reverse WoS; middle two: bidirectional WoS with � and �� forward final gather steps; right: forward WoS. We
used a single point source in a square boundary, in this case, at each vertex, the forward WoS is solving the local mean value
theorem analytically (this is not possible when there is a complex source term). We also tested final gather with different forward
steps on many different scenes. However, from the results, we conclude that unless there is an efficient way to reuse forward
samples or we are only interested in solving PDEs for a small portion of the scene, doing forward steps only introducing more
noise and taking up more time for solving the source solution.

Although the different path spaces preclude robustly weighted
combinations of all forward and reverse strategies using MIS
(Sec. �.�), we take inspiration from early light transport work [��]
and choose between different combinations of forward and reverse
strategies based on heuristics.

��

� Reverse WoS Algorithms

We already have access to a metric of how well reverse WoS
performs: The integral of the finite difference Poisson kernel,
hPnorm(G)i. If this estimate deviates significantly from 1, reverse
WoS is performing poorly. This leads to a simple but effective
heuristic for combining forward and reverse walks: Instead of
computing the solution 5 (G) from the data structure directly as in
Sec. �.�, we first evaluate |hPnorm(G)i �1| <) to see if the Poisson
kernel norm deviates from unity by more than a threshold). If
it does, the reverse WoS solution is unreliable, and we perform
one forward WoS step and repeat the procedure. This continues
until the heuristic succeeds, at which point we look up into the
data structure to estimate the solution (see Fig. �.�). This is exactly
analogous to final gather methods in graphics [��], and helps
greatly to reduce artifacts (Fig. �.�) at little extra cost (Fig. �.�).

��

Control variates �
In this chapter, we will discuss another way to estimate the Green’s
function, that is control variates. This method is estimating the
Green’s function by a function � minus the corrector function
which equals � � G. The corrector can be viewed as a solution to
a Laplace’s equation and � can be viewed as the Green’s function
in R= with no boundary. In this thesis, we will introduce this
idea through the mean value theorem of the Green’s function
Equation �.�.

�.� The Corrector Function

The proof for the mean value theorem Equation �.� does not
require the subdomain to be a ball. We can use an arbitrary shape
for it. Now suppose we find a large ball ⌫ that covers the entire
domain, * ⇢ ⌫. Let � denote the Green’s function on this ⌫, we
can still apply the mean value theorem Equation �.� but using *

as the subdomain, which will give us:

�(G $ H) = G(G $ H) +
π
%*
P(G ! G

0)�(G0$ H) dG0. (�.�)

Move G to left hand side and move � to right hand side:

G(G $ H) = �(G $ H) �
π
%*
P(G ! G

0)�(G0$ H) dG0. (�.�)

Same as the mean value theorem of H Equation �.�, we can swap
G , H here too, which gives us:

G(G $ H) = �(G $ H) �
π
%*
P(H ! H

0)�(H0$ G) dH0. (�.�)

In practice, it is natural to use the ⌫ = R= since any domain will
be covered by R= . Then � will be the fundamental solution of
Poisson’s equation on R= , which satisfy the following Poisson’s
equation with no boundary

�G�(G $ H) = ⇣H(G), (�.�)

where �G means the Laplace’s operator for G. � has a nice analyt-
ical form, let �(=) denote the volumen of = dimension unit ball:

��

� Control variates

�(G $ H) =
8>><
>>:

1
2� log(|G � H |) = = 2

1
=(=�2)�(=)

1
|G�H |=�2 = � 3

(�.�)

According to Equation �.�, we can see the integral on the right
hand side

Ø
%*

P(G ! G
0)�(G0$ H) dG0 is giving the solution to

a Laplace’s function:

�D(G) = 0 if G 2 *
D(G) = �(G $ H) if G 2 %* .

(�.�)

The solution to this Laplace equationEquation �.� is called the
corrector function of the Poisson/Laplace’s equation [�].

�.� Solving the Poisson’s Equation

To estimate Green’s function, we only need to solve the Laplace
equation for corrector functions Equation �.�. From Chapter �
and Chapter �, we can either use the classical WoS algorithm or
the reverse WoS algorithm to solve the Laplace equation.

��

Implementation and Results �

�.� Algorithm implementation

Same as generating a forward walk, generating a reverse walk
only requires querying the closest point to the boundary in order
to expand the largest sphere. We implemented a �D version
of reverse WoS that is entirely on the CPU and use a standard
acceleration structure [��] to make the closest point query efficient.
In this case, the main bottleneck is drawing the Green’s disks,
which we currently do naively by testing all pixels within each
disk’s bounding box. Performing the reverse walk on the CPU
but then splatting the Green’s disks using rasterization on the
GPU would likely result in a dramatic speedup. To implement
our method one needs to evaluate G(G ! H) and P(G ! H). The
concrete values of these depend on the PDE one is solving and we
refer to the appendix in Sawhney et al. [��] for a comprehensive
listing.

�.� Comparison between forward and

reverse WoS

We compared our method with forward WoS algorithm in multi-
ple scenes to evaluate the efficiency, quality and robustness of our
method. We found our method works better than the forward
WoS in several cases because reverse WoS is able to importance
sample the source term 5 and boundary value 6 in Equation �.�
globally, making the algorithm focus more on the sources with
high impact to the entire scene.

�.�.� Sparse boundary values

Fig. �.� shows the estimated solution of a Laplace’s equation of
both algorithms using the same amount of time. In this example we
set the boundary value to be 0 (black) at most boundary locations,
leaving only a few small regions with colorful values along the
circular boundary. A forward walk has no control of where the
path will hit the boundary, so in a scene with sparse boundary

��

� Implementation and Results

Forward WoS Reverse WoS

fe
w

sa
m

pl
es

(e
qu

al
tim

e)
m

or
e

sa
m

pl
es

(e
qu

al
tim

e)

Figure �.�: We compare forward WoS
(left) to reverse WoS (right) at equal time
with few samples (top) and with 16⇥
as many samples (bottom). Reverse WoS
produces a smooth result even with few
samples, converging more quickly than
forward WoS.

Forward WoS

Reverse WoS

Converged reference Source terms

Figure �.�: Here we perform an equal-
time comparison of forward (top of split)
vs. our reverse (bottom of split) WoS on
a scene with three sparse sources (bot-
tom right) and zero boundary conditions.
Compared to the converged reference
(bottom left), our approach with only �e�
sampled paths produces visually better
results than forward WoS with �.��e�
total paths.

values, most walks are unlikely to receive a large contribution,
resulting in high variance. Just as in purely unidirectional path
tracing, the variance for forward WoS would get arbitrarily worse
if we were to make the “lights” (boundary values) even more
concentrated. In contrast, reverse WoS can importance sample the
boundary values, dramatically reducing variance.

��

� Implementation and Results

�.�.� Sparse sources

Fig. �.� shows the estimated solution by reverse and forward WoS
on a Poisson equation with black boundary, but three differently
sized disk-shaped sources inside the domain. Since the source
terms are spatially sparse, it is difficult for a forward WoS path to
hit those disks sources and evaluate their contribution along the
forward path. However, in the reverse WoS, since we know where
the disks are located in space, we can easily importance sample 5

in Equation �.� when sampling the starting points of our paths.
This importance sampling is essentially choosing global optimal
sampled source points, while forward WoS can only sample local
optimal choices at each step.

��

Conclusion �
In this thesis, we presented the bidirectional formulation for
Green’s functions, taking the first step toward the bidirectional
WoS algorithm. Using the bidirectional formulas described in
Chapter �, we derived and implemented WoS algorithms with
different combinations of “forward” and “reverse” steps Chapter �.
Our algorithms surpass the traditional WoS method in multiple
scenes Chapter �.

�.� Limitations and Future Work.

There are several topics that we do not address in this thesis.
Particularly, the reverse WoS is only unbiased when estimating
Green’s function, the finite difference method we used to han-
dle Poisson’s kernelSec. �.�.� is not ideal. We hope there is an
unbiased Monte-Carlo way to estimate the Poisson’s kernel. On
the theoretical side, we do not extend the set of equations that
WoS can solve. First, the Feynmann-Kac theorem introduced in
Sec. �.� can also give the solution to all parabolic partial differen-
tial equations[��]. For example, the WoS algorithm should also
work on heat equations and other similar linear PDEs that include
the time variable. Back to the rendering side, both the radical
transport equation and the rendering equation are linear PDEs,
which means our theory can also be generalized to those PDEs
as long as we know the Green’s function of a ball. Our method
should have less variance compared with traditional path-tracing
algorithms or even photon primitives because we can simulate
an infinite number of bounces inside each ball using the Green’s
function.

Additionally, our method still requires the boundary condition to
be Dirichlet boundary condition. While many real-world problems
require other boundary conditions like Neumann and Robin
boundary conditions. WoS algorithm could be more useful to
those problems if it can handle different boundary conditions.

On the performance side, we only implemented a naive version
of the algorithm. Different optimizations can be done to increase
the performance. For example, the main bottleneck of the reverse
WoS is rasterizing the ball, which could be solved easily if moved

��

� Conclusion

onto a GPU. In our implementation, the next vertex is always
uniformly sampled on the boundary of the ball to importance
sample the Poisson’s kernel of the ball, this might not be the best
choice in all situations. When solving the boundary value part,
because we always start walks close to the boundary, many walks
will touch the boundary very quickly even before they contribute
anything to the scene.

Related to the bidirectional WoS method, currently, our bidi-
rectional algorithm described in Sec. �.� does not have a stable
and nice heuristic for how to combine the forward and reverse
walk(the integral of the Poisson’s kernel only equals one if this
is Poisson’s equation). It may require doing multiple tests on
different scenes to figure out when we should use a reverse step or
a forward step in estimating Green’s function. Finally, an obvious
next step related to our contribution is to establish a single path
integral formulation for all path construction strategies to allow
for a robust combination of strategies via MIS as discussed in
Sec. �.�.

We hope Monte-Carlo methods can be used more in solving PDEs
in various applications and hope our work gives a starting point
to do so.

��

A�������

��

Pseudo-Code A
Here we provide pseudo-code for the two-pass algorithm for
solving the source solution E(G) described in Sec. �.�

Algorithm � A Two-pass Algorithm for Source Solution E(G)
Input: G

/* Sample # reverse WoS path and store them into ! . */
! vertex_storage()
for 8 0 to # do

H , ?H sample_source() // Sample H according to pdf ?H

BH 5 (H) // Evaluate the source term at H

AH distance_to_boundary(H8)

/* Loop until the path hits the boundary. */
while AH > & do

AH distance_to_boundary(H)
! .store(H , ?H , BH)
H sample_sphere_uniform(H , AH) // Continue the

walk

end while

end for

/* Look up the solution E(G) from stored reverse WoS vertices. */
E 0
for (H , ?H , BH) in ! do

if |G � H | < AH then

6 G(G H) // Evaluate the local Green’s function

E E + 6 ⇤ BH/?H
end if

end for

return E

��

Bibliography

[�] Michael Kazhdan, Matthew Bolitho, and Hugues Hoppe. ‘Poisson surface reconstruction’. In:
Proceedings of the fourth Eurographics symposium on Geometry processing. Vol. �. ���� (cited on
page �).

[�] Lawrence C. Evans. Partial differential equations. Providence, R.I.: American Mathematical Society,
���� (cited on pages �, �, �, ��, ��).

[�] James T. Kajiya. ‘The Rendering Equation’. In: Computer Graphics (Proceedings of SIGGRAPH) ��.�
(Aug. ����), pp. ���–���. ���: 10/cvf53j (cited on pages �, ��).

[�] Michael F. Cohen et al. ‘An Efficient Radiosity Approach for Realistic Image Synthesis’. In: IEEE

Computer Graphics & Applications �.� (Mar. ����), pp. ��–��. ���: 10/c3mmt4 (cited on pages �, �).

[�] Michael F. Cohen and John R. Wallace. Radiosity and Realistic Image Synthesis. NY: Academic
Press, ���� (cited on pages �, �).

[�] Per H. Christensen and Wojciech Jarosz. ‘The Path to Path-Traced Movies’. In: Foundations and

Trends® in Computer Graphics and Vision ��.� (Oct. ����), pp. ���–���. ���: 10/gfjwjc (cited on
page �).

[�] Luca Fascione et al. ‘Path Tracing in Production (Parts � and �)’. In: ACM SIGGRAPH Courses.
Aug. ����. ���: 10/gfz2ck (cited on page �).

[�] Mervin E. Muller. ‘Some Continuous Monte Carlo Methods for the Dirichlet Problem’. In: Annals

of Mathematical Statistics ��.� (Sept. ����), pp. ���–���. ���: 10/cpxd3d (cited on page �).

[�] Rohan Sawhney and Keenan Crane. ‘Monte Carlo Geometry Processing: A Grid-Free Approach
to PDE-based Methods on Volumetric Domains’. In: ACM Transactions on Graphics (Proceedings of

SIGGRAPH) ��.� (����). ���: 10.1145/3386569.3392374 (cited on page �).

[��] Rohan Sawhney et al. ‘Grid-Free Monte Carlo for PDEs with Spatially Varying Coefficients’. In:
(Jan. ����) (cited on pages �, ��).

[��] Mark C. Reichert. ‘A Two-Pass Radiosity Method Driven by Lights and Viewer Position’. M.Sc.
Thesis. Ithaca, NY: Program of Computer Graphics, Cornell University, Jan. ���� (cited on
pages �, ��).

[��] Henrik Wann Jensen. Realistic Image Synthesis Using Photon Mapping. Natick, MA, USA: AK Peters,
Ltd., ���� (cited on page �).

[��] Henrik Wann Jensen. ‘Global Illumination Using Photon Maps’. In: Rendering Techniques (Proceed-

ings of the Eurographics Workshop on Rendering). Vienna: Springer-Verlag, June ����, pp. ��–��. ���:
10/fzc6t9 (cited on page �).

[��] Carsten Dachsbacher et al. ‘Scalable Realistic Rendering with Many-Light Methods’. In: Computer

Graphics Forum ��.� (Feb. ����), pp. ��–���. ���: 10/f5twgd (cited on pages �, ��).

[��] Alexander Keller. ‘Instant Radiosity’. In: Annual Conference Series (Proceedings of SIGGRAPH).
ACM Press, Aug. ����, pp. ��–��. ���: 10/fqch2z (cited on pages �, ��).

��

[��] Bruce Walter et al. ‘Lightcuts: A Scalable Approach to Illumination’. In: ACM Transactions on

Graphics (Proceedings of SIGGRAPH) ��.� (Aug. ����), pp. ����–����. ���: 10/dhp5d3 (cited on
page �).

[��] Bruce Walter et al. ‘Multidimensional Lightcuts’. In: ACM Transactions on Graphics (Proceedings of

SIGGRAPH) ��.� (July ����), pp. ����–����. ���: 10/dzgsz7 (cited on page �).

[��] Bruce Walter, Pramook Khungurn, and Kavita Bala. ‘Bidirectional Lightcuts’. In: ACM Transactions

on Graphics (Proceedings of SIGGRAPH) ��.� (July ����), ��:�–��:��. ���: 10/gfzrcx (cited on
page �).

[��] Miloš Hašan, Fabio Pellacini, and Kavita Bala. ‘Matrix Row-Column Sampling for the Many-Light
Problem’. In: ACM Transactions on Graphics (Proceedings of SIGGRAPH) ��.� (July ����), ��:�–��:��.
���: 10/djv68s (cited on page �).

[��] Henrik Wann Jensen and Per H. Christensen. ‘Efficient Simulation of Light Transport in Scenes
with Participating Media Using Photon Maps’. In: Annual Conference Series (Proceedings of

SIGGRAPH). ACM Press, July ����, pp. ���–���. ���: 10/b64p36 (cited on page �).

[��] Wojciech Jarosz, Matthias Zwicker, and Henrik Wann Jensen. ‘The Beam Radiance Estimate for
Volumetric Photon Mapping’. In: Computer Graphics Forum (Proceedings of Eurographics) ��.� (Apr.
����), pp. ���–���. ���: 10/bjsfsx (cited on page �).

[��] Wojciech Jarosz et al. ‘A Comprehensive Theory of Volumetric Radiance Estimation Using Photon
Points and Beams’. In: ACM Transactions on Graphics ��.� (Jan. ����), �:�–�:��. ���: 10/fcdh2f
(cited on page �).

[��] Wojciech Jarosz et al. ‘Progressive Photon Beams’. In: ACM Transactions on Graphics (Proceedings

of SIGGRAPH Asia) ��.� (Dec. ����), ���:�–���:��. ���: 10/fn5xzj (cited on page �).

[��] Benedikt Bitterli and Wojciech Jarosz. ‘Beyond Points and Beams: Higher-Dimensional Photon
Samples for Volumetric Light Transport’. In: ACM Transactions on Graphics (Proceedings of

SIGGRAPH) ��.� (July ����), ���:�–���:��. ���: 10/gfznbr (cited on page �).

[��] Xi Deng et al. ‘Photon Surfaces for Robust, Unbiased Volumetric Density Estimation’. In: ACM

Transactions on Graphics (Proceedings of SIGGRAPH) ��.� (July ����). ���: 10.1145/3306346.
3323041 (cited on page �).

[��] Jan Novák et al. ‘Virtual Ray Lights for Rendering Scenes with Participating Media’. In: ACM

Transactions on Graphics (Proceedings of SIGGRAPH) ��.� (July ����), ��:�–��:��. ���: 10/gbbwk2
(cited on page �).

[��] Jan Novák et al. ‘Progressive Virtual Beam Lights’. In: Computer Graphics Forum (Proceedings of the

Eurographics Symposium on Rendering) ��.� (June ����), pp. ����–����. ���: 10/gfzndw (cited on
page �).

[��] Eric Veach and Leonidas J. Guibas. ‘Optimally Combining Sampling Techniques for Monte Carlo
Rendering’. In: Annual Conference Series (Proceedings of SIGGRAPH). Vol. ��. ACM Press, Aug.
����, pp. ���–���. ���: 10/d7b6n4 (cited on pages �, ��).

[��] Iliyan Georgiev et al. ‘Light Transport Simulation with Vertex Connection and Merging’. In:
ACM Transactions on Graphics (Proceedings of SIGGRAPH Asia) ��.� (Nov. ����), ���:�–���:��. ���:
10/gbb6q7 (cited on pages �, ��).

��

[��] Toshiya Hachisuka, Jacopo Pantaleoni, and Henrik Wann Jensen. ‘A Path Space Extension for
Robust Light Transport Simulation’. In: ACM Transactions on Graphics (Proceedings of SIGGRAPH

Asia) ��.� (Nov. ����), ���:�–���:��. ���: 10/gbb6n3 (cited on pages �, ��).

[��] Bernt Øksendal. Stochastic Differential Equations: An Introduction with Applications. Sixth. Universi-
text. Berlin Heidelberg: Springer-Verlag, ���� (cited on pages �, ��).

[��] Eric Veach and Leonidas J. Guibas. ‘Bidirectional Estimators for Light Transport’. In: Photorealistic

Rendering Techniques (Proceedings of the Eurographics Workshop on Rendering). Springer-Verlag, ����,
pp. ���–���. ���: 10/gfznbh (cited on pages ��, ��, ��).

[��] Henrik Wann Jensen and Niels Jørgen Christensen. ‘Photon Maps in Bidirectional Monte Carlo
Ray Tracing of Complex Objects’. In: Computers & Graphics ��.� (Mar. ����), pp. ���–���. ���:
10/d9xr6q (cited on page ��).

[��] Eric Veach. ‘Robust Monte Carlo Methods for Light Transport Simulation’. PhD thesis. Stanford
University, Dec. ���� (cited on pages ��, ��).

[��] Eric P. Lafortune and Yves D. Willems. ‘Bi-Directional Path Tracing’. In: Proceedings of the

International Conference on Computational Graphics and Visualization Techniques (Compugraphics).
Vol. ��. Alvor, Portugal, Dec. ����, pp. ���–��� (cited on pages ��, ��).

[��] Rohan Sawhney et al. fcpw. https://github.com/rohan-sawhney/fcpw. ���� (cited on page ��).

��

	A bidirectional formulation for Walk on Spheres
	Recommended Citation

	Binder4

