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Abstract  

Moving images contain a wealth of information pertaining to motion. Motivated by the 

interconnectedness of music and movement, we present a framework for transforming the 

kinetic qualities of moving images into music. We developed an interactive software sys-

tem that takes video as input and maps its motion attributes into the musical dimension 

based on perceptually grounded principles. The system combines existing sonification 

frameworks with theories and techniques of generative music. To evaluate the system, we 

conducted a two-part experiment. First, we asked participants to make judgements on 

video-audio correspondence from clips generated by the system. Second, we asked partic-

ipants to give ratings for audiovisual works created using the system. These experiments 

revealed that 1) the system is able to generate music with a significant level of perceptual 

correspondence to the source video’s motion and 2) the system can effectively be used as 

an artistic tool for generative composition. 
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1 Introduction 
Moving images are a fixture in the present-day media landscape. We view them as a whole 

and register what we see (birds flying, people dancing). The perceived motion arising from 

each frame moving into the next is easily taken for granted. If we take a closer look at the 

pixel level, moving images provide a unique wealth of information pertaining to motion.  

This thesis explores the possibility of mining the kinetic features of moving images 

to transform its structural and emotional qualities into music. Cognitively, we are moti-

vated by the interconnectedness of music and movement, including empirical evidence of 

the two sharing a common dynamic structure. Aesthetically, we seek to combine existing 

sonification frameworks with theories and techniques of generative music. 

We designed a computer program that generates music from video data. The pro-

gram takes video as input and uses optical flow to capture the perceived motion of feature 

points. It maps the flow vectors into the musical dimension according to perceptual and 

symbolic relations, then pipes that data into a sound synthesis engine to generate music.  

This program is an example of a generative system: the outputted music is deter-

mined by the image frames given as input; it progresses and evolves without the artist’s 

control. The goal is to generate music that a) has a level of perceptual or affective corre-

spondence to the moving images, and b) has aesthetic potential for creating audiovisual 

works. To test the program against both goals, we designed a two-part experiment. In the 

first experiment, users decide whether several pairings of video and generated music are a 

match. In the second, participants give ratings for audiovisual works created using the pro-

gram. 

More broadly, we aim to set the foundation for an engaging, artist-centric tool suit-

able for creating unique sonic possibilities that are outside the realm of traditional musical 

composition, both in terms of imagination and complexity.    
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2 Survey of Related Work 
2.1 Sonification of Motion and Moving Images 

Sonification, or conveying information with sound, has been used in various scientific and 

industrial contexts, from increasing information access for pilots in the cockpit to rendering 

sound from data sources as diverse as seismology and electrocardiograms [1]. Less com-

monly, it has been used in artistic contexts. For example, methods have been devised to 

creating music from still images [2]. The information stored in still images, however, lacks 

a temporal dimension. Since music and movement are both dynamic phenomena that exist 

only in time, there is arguably a stronger case for sonifying moving images. In the sections 

below we will discuss a few different methods of creatively sonifying moving images that 

have been explored in the past. 

2.1.1 Optical Sound 

Early experimental animators such as Norman McLaren conducted experiments using “op-

tical sound” in which marks were directly scratched or painted onto the soundtrack area of 

film strips [3]. When played through a projector, the sequence of marks would produce 

sound that he described as “a small orchestra of clicking, thudding, buzzing and drum-like 

timbres.” 

 

Figure 1: Norman McLaren drawing synthetic sounds directly onto film [4] 
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 Timbre could be controlled by the shape of the marks, and pitch by the distance 

between lines. Harmony could be achieved by juxtaposing different patterns along the same 

section of film. In this way, McLaren combined music and moving images at a fundamental 

structural level via a “score” that was inherently audiovisual. 

2.1.2 Video Brightness as a Control Signal 

In 1971, Erkki Kurenniemi designed the “Dimi-O,” a video-controlled synthesizer [5]. The 

instrument could receive optical input from a television or video camera and use the video 

feed as a control signal to produce notes. Besides being used to play back graphically rep-

resented music, the Dimi-O facilitated some more avant-garde applications: controlling the 

synthesizer with the performances of ballet dancers or even experimental animations to 

create music.  

Kurenniemi’s instrument sonifies changes in brightness, which is indeed an indica-

tor of perceived motion, albeit a restrictive one. Using the video feed locations as a set of 

on-off switches allows for nearly complete freedom in the instrument’s input but com-

presses the input information into a single dimension, thus limiting the musical variety of 

its output. 

2.1.3 Perceptually Motivated Sonification Using Optical Flow Fields 

Pelletier devised a framework for sonifying moving images using optical flow estimations 

[6] [7]. In this methodology, salient image features are first identified using a corner detec-

tion algorithm. These features coordinates are then passed into an optical flow estimation 

algorithm, which describes the apparent motion at a point. The optical flow estimation 

returns a flow field, a set of (Δ𝑥, Δ𝑦) motion vectors at each feature point describing how 

far the point has moved. Features are re-computed at each frame to account for objects 

entering or leaving the image bounds.  

Pelletier’s framework is “perceptually motivated”—taking into consideration the 

way sounds and images are perceived, in the hopes of creating music that “sounds like 

what it looks.” It is grounded in perceptual and psychological principles, primarily Gestalt 

principles [7]. 
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Gestalt principles start to come into play in the corner detection stage, where the 

original image is reduced into a sparse set of features. Even though this set of features 

contains vastly less data than the original image, it is still possible to identify the makeup 

of the image because of perceptual grouping.  

 

Figure 2: 283 corners detected in an image 

 In addition to visual gestalts, Pelletier describes how sonic gestalts come into play 

in this framework. Gestalt principles can describe and predict groupings in auditory per-

ception analogously to visual perception [8]. 

 To perform the conversion of motion into sound, Pelletier devised the following 

mapping, each motivated by different perceptual considerations: 

 Space: Assign the normalized x value of each motion vector to the stereo pan po-

sition of the sonic element it corresponds to. This is motivated by the inherent spatial 

nature of images. Mapping visual location to stereo pan position preserves the relation-

ships that existed between visual features in the sonic dimension. Sonic components 

are clustered primarily through the principles of proximity (nearby features are percep-

tually grouped) and common fate (features that move in the same direction are 

grouped). 

Amplitude: Assign the length of the motion vector (directly related to velocity) to 

amplitude. Mapping velocity of motion to amplitude establishes a relationship between 

the dynamic contours of both the moving images and the produced sound. Motionless 

features remain silent; moving features produce sound proportional to their perceived 

energy. An additional metaphorical motivation is: since sound can be generated from 

friction, faster movements lead to louder sounds.  



	 5	

Frequency: Rather than define a singular mapping for frequency, a variety of ap-

proaches are suggested. Pitch could be determined by a given image axis (most intui-

tive), distance from origin, displacement direction, or displacement amplitude. Pelletier 

argues that the most appropriate mapping would depend on the nature of the input im-

age, the type of sound synthesis technique used, and the intent of the artist. However, 

the law of common fate plays an important role—visual objects tend to be rigid and 

have feature points that move in correlated trajectories, lending itself to mapping to 

correlated pitch trajectories that are likely to be perceived as a single melodic line. 

Timbre: Like frequency, the mapping depends on the context. Approaches sug-

gested include image complexity (number of feature points, determined either by the 

image itself or the parameters of the feature detector), as well as indirect control via the 

superposition of different sound components. There are cases where features moving 

similarly in very different parts of the image can be mapped to the same frequencies, 

and thus be perceived as a single entity. Pelletier suggests remedying this by mapping 

one of the two dimensions to timbre. 

Pelletier’s framework is implemented in Cycling ‘74’s Jitter system. For corner detec-

tion, either the Shi-Tomasi method or the FAST method are used, depending on whether 

GPU processing is available. Optical flow is estimated using the pyramidal Lucas-Kanade 

algorithm. 

2.1.4 Color-related Sonification 

The installation sound/tracks [9] aims to capture the visual experience of looking out the 

window of a train by translating it into a musical composition. Here the passing scenery 

can metaphorically be considered the “score” of the musical composition.  

This sonification framework is musically motivated by composer and synesthete 

Alexander Scriabin’s mapping between tone and color. Every 7 frames, the middle column 

of pixels in the frame are analyzed: they are split into 4 sections to generate notes of dif-

ferent octaves. The pixels in each section are mapped to a pitch by computing the cosine 

distance of each pixel’s HSV-value to all twelve colors of Scriabin’s Clavier à lumières, 

and choosing the note with the least cumulative distance [10]. 
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Figure 3: Scriabin's tone-to-color mapping 

2.2 Music-Movement Connection 

Since our thesis aims to devise a method for generating music from movement, it falls upon 

us to review what has already been researched about the connection between the two. As 

it turns out, music and movement are intuitively related to each other; this connection has 

been demonstrated empirically in a number of studies. 

2.2.1 Expressing Emotion with a Shared Dynamic Structure  

In one study [11], Researchers created a computer program that produced isomorphic sam-

ples of music (simple melody) and movement (bouncing ball); both the music and move-

ment were controllable via five parameters that controlled analogous attributes in the music 

and movement samples. 

 

Figure 4: Slider Paradigm for the Sievers et al. Study 

 After learning to use the program, participants were instructed to express five dif-

ferent emotions by moving the sliders. Half of the participants were to express these emo-

tions by shaping the bouncing ball and the other half by shaping the melody. The experi-

ment was conducted in the United States and in a rural Cambodian village.  
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The results suggested that expressions of emotion are cross-culturally universal, 

with similar dynamic contours in music and movement. For example, to express the emo-

tion “angry,” participants in both cultures positioned the slider bars in similar configura-

tions for both the bouncing ball and the music. 

2.2.2 Music and Body Movement  

A number of studies have bridged music and motion specifically with respect to the human 

body. For example, motion analysis using optical flow has been shown to have potential in 

quantitatively evaluating active music therapy for disabled children [12]. Rhythm and tim-

bre-related characteristics of music have also been shown to correlate with different types 

of body movements [13]. One study investigated the effect of music on involuntary body 

motion when the subject was instructed to stand as still as possible, finding quantifiable 

patterns linking features of the pulse, rhythmic pattern, brightness, and loudness to the mi-

cromotions detected in the subject [14].  

In one study exploring how people perceive correspondences between music and 

body movement, participants were asked to create both ‘sound-tracings’ on a digital tablet 

and ‘free dance movements’ that they thought matched a short clip of music [15]. The study 

found a certain level of consistency in the way different participants interpreted the music 

in the form of drawings and dance movements. 

2.3 Brian Eno and Generative Music 

A term coined by Brian Eno in 1996, generative music refers to music that is “ever-differ-

ent & changing, created by a system” [16].  Since this thesis attempts to design a kind of 

generative music system, a discussion of important figures, theories, and techniques sur-

rounding generative music is warranted. 

2.3.1 Generative Work of Brian Eno and its Influences 

Drawing influence from John Cage, Terry Riley, and Steve Reich, Brian Eno was a pio-

neering figure in generative music. Before formalizing the term “generative music,” Eno 

was already exploring the idea of generative processes in works such as Discreet Music 

(1975), where a group of performers follow a set of instructions which undergo various 
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permutations with often surprising results [17]. In Ambient 1: Music for Airports (1978), 

Eno creates seven different tape loops playing a single vocal note truncated by arbitrary 

lengths of silence and starts them playing, creating a soundscape of overlapping notes and 

silence with a very low chance of repeating in the same way. Eno was heavily inspired by 

the work of minimalist composer Steve Reich, who was the first to utilize a tape loop sys-

tem. 

 

Figure 5: Visualization of the tape loop system in Music for Airports [15] 

 Discreet Music and Music for Airports, though produced through generative sys-

tems, are in the end still only a static sample of what the system can produce. The listener 

is only hearing a recording of the process, not witnessing or involved in the process itself. 

Only in 1994 did Eno finally release Generative Music 1, a software system which took 

guiding parameters as “seeds” and subsequently create probabilistic musical developments 

that would never repeat in the same way. At this time, Eno articulated his conception of 

generative music in relation to the types of music already in existence: 

“From now on there are three alternatives: live music, recorded music and genera-

tive music. Generative music enjoys some of the benefits of both its ancestors. Like 

live music, it is always different. Like recorded music, it is free of time-and-place 

limitations - you can hear it when you want and where you want” [18] 

2.3.2 Interactive Generative Music Programs 

Particularly relevant to this thesis, Brian Eno also helped create several interactive appli-

cations for computer generated music. [17] Collaborating with software designer Peter 
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Chilvers, Eno created Bloom for the iPhone in 2008. Bloom allows the user to tap the 

screen, causing circles to appear on the screen and produce different pitches. The user can 

either choose to listen or to actively create music. 

   

Figure 6: Screenshots from Bloom (2008) [19] and Scape (2012) [20] 

After Bloom, Eno and Chilvers developed more apps, including Trope, Scape, and 

Reflection that extended the original idea of Bloom. These all operate on a similar philos-

ophy of a user interacting with a generative music system but differed aesthetically as well 

as in the interaction and composition methods. Trope allows drawing of shapes that pro-

duce sound upon dragging one’s finger across the screen. In Scape, the user selects and 

arrange shapes to influence the nature and evolution of the piece of music, in a way that 

rewards exploration and play. In all cases, the mobile device helped Eno achieve the goal 

of finally allowing his listeners to own the process rather than the results of the process. 
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3 System Design and Implementation 
In this chapter we present the design and implementation of our generative music software 

system. First, we outline the system framework and tools used. Then we discuss details of 

the algorithms, motion-to-music mapping, and user interface. 

3.1 Overview 

3.1.1 System Framework 

 

Figure 7: Video to Music Pipeline 

The system takes video stream (either pre-recorded or from a connected camera) as input 

and processes each frame to produce a musical event. These musical events happen in rapid 

succession over time, producing a musical track. 

1. Feature points are detected at given frame intervals (default is 3 frames but can be 

changed by the user). Once these features are detected, we mark them as the first 

point of a new “trajectory.” 
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2. Optical flow is used to compute the pixel motion and update every trajectory in the 

scene with its next step. 

3. From the trajectories, we extract local and global motion attributes 

a. Local motion (note-specific): the most prominent trajectories (exact number 

depends on user settings) are assigned as “players” to play either a melody 

or harmony note. The speed, position, and pixel contrast at these trajectories 

a particular trajectory controls how that note sounds. 

b. Global motion: we analyze all trajectories in the flow field as a whole and 

compute values such as average speed and directional variation. These val-

ues affect how every note sounds. 

4. To ensure musicality of the output, the result of mapping motion to music under-

goes further processing.  

a. Pitches are quantized to the nearest note in the chosen scale (melody) or 

chord (harmony). 

b. Random pitch offsets with different probability weightings are applied to 

reduce repetition and create melodic variation. 

5. All active players produce their assigned sound. 

The system operates within a user interface, where the user can change settings pertaining 

to feature detection, optical flow, and additional musical parameters not included in the 

motion-to-music mapping. 

3.1.2 Technologies Used 

The system is written in Python 3 within a virtual environment. Several libraries provide 

functionality for computer vision, image processing, and a graphical user interface (GUI). 

Music generation is achieved by sending data to SuperCollider, a sound synthesis engine. 

1. OpenCV provides algorithms for Shi-Tomasi corner detection and sparse optical 

flow (Lucas-Kanade). We use these two in tandem to compute a flow field at each 

frame of the video input. Additionally, we utilize OpenCV drawing functions to 

visualize the flow field on top of the image frame 

2. Tkinter provides a toolkit for creating a simple GUI. 

3. Pillow configures each frame of the video stream to be displayed within the GUI. 
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4. FoxDot provides an API to define and schedule musical events before sending them 

to SuperCollider. This creates music in real time. 

3.2 Motion Tracking 

3.2.1 Optical Flow 

Optical flow describes the apparent motion of objects in a scene. Apparent motion can be 

attributed to the objects themselves moving or the camera moving. We can quantify optical 

flow as a field of 2D vectors, where each vector represents the displacement of a point from 

one frame to the next. Algorithms exist to compute optical flow both for every pixel in the 

frame (dense optical flow) as well as for a sparse feature set [21].  

Dense optical flow computes optical flow for every pixel in the frame. The output 

is visually descriptive and lends itself well to the idea of mapping motion to sound. The 

initial iteration of the program used dense optical flow as a preliminary proof of concept 

of sending motion data into a music generator and producing responsive results. For a sim-

ple, discrete mapping scheme, we divided the y-axis into three bands, each with a different 

pitch, and divided the x-axis into two halves, each with a different timbre. The average 

length of flow vector over the flow field was assigned to intensity. When running the in-

terface with the webcam, the user was able produce rudimentary music by moving around 

the screen. Faster motions produced louder sounds, and “higher” movements produced a 

higher pitch. The user could also creatively choreograph motion between left and right 

hands to produce sound of each timbre independently or in unison. 

 

Figure 8: Visualizing Dense Optical Flow Field on Webcam Stream 
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Dense optical flow provides a rich amount of data about movement globally across 

the frame. At the same time, it is computationally intensive; frames were unable to be 

played back in real time on a MacBook Pro with a 3.2 GHz M1 chip. For the purposes of 

generating music, the dense flow field contains a high level of redundancy. It also proved 

to be difficult to interpret the data, that is, how to distill all the flow vectors into a small 

number of relevant metrics describing the current motion. Discretizing the flow field into 

bands is not a very flexible approach. 

The problems of redundancy and interpretation with dense optical flow can be 

solved by looking at a sparse feature set instead, as originally explored by Pelletier [6]. 

3.2.2 Sparse Optical Flow with Corner Detection 

The final system implementation utilizes sparse optical flow to extract motion information 

from videos. By reducing each frame from hundreds of thousands of pixels to a few hun-

dred (or less) feature points, we can compute flow information much faster. In order to 

decide which points to track, we use the Shi-Tomasi method for corner detection provided 

by OpenCV. The algorithm examines spatial differences in pixel intensity to find the most 

visually distinct points in an image. At given frame intervals i (i set by user, default i=3), 

the system detects at most k Shi-Tomasi corner points (k set by user, default k=12).  

 Once a new set of corner points is detected, they are initialized as the first point in 

a trajectory, and this trajectory is added to a running list of trajectories. We will refer to 

the set of all latest points in every trajectory as the frontier. At each new frame, we pass in 

the frontier, previous frame, and current frame into a sparse optical flow algorithm (Lucas-

Kanade method provided by OpenCV). The Lucas-Kanade method computes the motion 

flow of each point in the frontier, thereby updating every trajectory with a new point rep-

resenting where it moved to.  
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Figure 9: Optical Flow Field on a Sparse Feature Set 

Using this technique, we were able to achieve real-time playback on a Macbook 

Pro with a 3.2 GHz M1 chip. In addition, the flow field is easier to interpret and use for 

generating music. We can take the most prominent motion vectors (greatest magnitude) 

and directly convert them into individual sonic entities. This precludes the need for poten-

tially having to do neighborhood search and clustering operations in a dense flow field.  

Having a set of salient flow vectors facilitates an “ensemble” setup, where each 

vector can act as a musical “player,” producing a specific sound based on its own attributes. 

This lends itself to generating music with both melodic and harmonic elements, which will 

be discussed in the next section. 

3.2 Algorithmic Music Generation with FoxDot 

A project of Ryan Kirkbride, FoxDot was created primarily for the purpose of “live cod-

ing,” an emerging style of performance where a programmer/artist/composer codes in front 

of an audience, “executing, editing, and re-executing blocks of code to generate music 

[22]”. In practice, in can be used both as an interactive live coding environment or simply 

as Python library that provides an API for sending commands to Supercollider, a sound 

synthesis engine.  
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For our system to generate music, we use FoxDot as a Supercollider API. We spe-

cifically take advantage of FoxDot’s ability to define player objects—objects that play a 

sound based on instructions given. Relevant instructions for our system include duration, 

pitch, stereo pan, synthesizer style, timbre, (for individual notes), as well as scale, key, and 

tempo (globally for all player objects). 

 

Figure 10: Example FoxDot code generating a repeating E minor seventh chord 

 Having a set of player objects streamlines the mapping process: individual motion 

vectors can be mapped to individual player objects. As the video stream progresses in time, 

the player objects evolve with it, generating a stream of music. How we map the video 

attributes into musical attributes is the subject of the following sections. 

3.3 Motion-to-music Mapping 

As a generative system is governed by a set of rules, we developed a set of rules in the 

form of a mapping from video motion to music. As mentioned previously, some of these 

mappings are local (trajectory-specific) and some are global (based on entire flow field).  

Video Data (Local) Musical Parameter 

A feature point A “player” object which plays a note.  

Speed of flow at a feature point (length 
of  flow vector) / (number of steps)  

• Amplitude of the player 
• Dampening (low pass filter) 

Y-position of the feature point Pitch of the player 

X-position of the feature point Panning (left/right) of the note 

Pixel contrast of feature point Dampening 

 

Video Data (Global) Musical Parameter 

Average speed of flow field Tempo (beats per minute)  
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Circular standard deviation (modified) 
of flow field directions 

Degree of variation in note length 

Average hue (from HSV) of pixels at 
flow frontier 

Chord quantization 

	
 Table 1: Summary of Mapping  

Each individual mapping is described in detail below. 

3.3.1 Players (Notes) 

The system produces musical elements by assigning motion vectors to FoxDot player ob-

jects. We set a maximum of m melody players and h harmony players; both m and h can 

be customized by the user. Adding player objects beyond this limit tends to produce soni-

cally congested results and can quickly overwhelm CPU memory via SuperCollider. 

We assign the longest m trajectories to melody players and the next longest h tra-

jectories to harmony players. Although all player objects undergo the same mapping 

scheme, the way we compute pitch, intensity, and duration is different for the melody and 

harmony players. 

3.3.2 Pitch 

Pitch is an essential component of music, describing the auditory sensation caused by the 

frequency of a sound’s vibrations [23]. Pitches heard in succession and simultaneously 

produce what we perceive as melody and harmony. Our system maps the y-position of a 

player (relative to frame height) to pitch. The decision of using the y-axis stems from the 

intuitive associations of “low” and “high” across movement and music. Physical locations 

such as the ground and the sky often set lower and upper bounds of observable motion. In 

most forms of music notation, where higher notes are printed higher up. Higher frequencies 

are associated with higher pitches. 

 An important element of producing coherent-sounding music is that pitches should 

be selected to fit a scale. To achieve this, we must quantize the raw computed pitches. For 

melody players, each raw pitch is rounded to the nearest note in the scale (for C Major, that 

would be the C, D, E, F, G, A, B). For harmony players, each raw pitch is rounded to the 
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nearest note in the current chord, for example the tonic (I) or the dominant seventh (V7) 

chord. The default chord is the tonic (for C Major, that is C, E, G), but mapping to different 

chords will be discussed in Section 3.3.8. 

 Finally, melody and harmony players are mapped to a different range of chords. In 

the default key setting of C Major, melody players are linearly mapped to a range from one 

octave below middle C to three octaves above it. Harmony players are mapped to the range 

of two octaves below to one octave above. This lower range helps the harmonic elements 

server as more of a backdrop to the music overall. 

3.3.3 Intensity 

We map speed to the intensity (loudness) of a player. Speed is defined as the total distance 

along the trajectory divided by the number of points in the trajectory (equal to the number 

of frames that have passed). We map this speed value to an intensity value on a logarithmic 

scale. We chose a log scale after performing tests on a wide range of stock video footage 

and finding that variations between slow and moderately fast motion are more commonly 

seen (and more perceptually salient) than variations between moderately fast and very fast 

motion. In turn, we want to emphasize these dynamic contrasts in the generated music. 

3.3.4 Space 

Following the perceptually motivated framework of Pelletier [6], we translate the inherent 

spatial nature of images into the sonic dimension. Our system maps the x-position of a 

player to the stereo pan position of the player, in the range of [-1, 1]. A player in the leftmost 

pixel column of the frame is panned completely to the left, while a player in the centermost 

pixel column produces sound that is equally distributed between both sides. Objects mov-

ing on either side of the screen or horizontally across the screen thereby generate clear 

sonic positionings and trajectories. 

3.3.5 Tempo 

We map the average speed of the flow field to tempo. At each frame, we compute the 

average speed over all trajectories, map it to a tempo marking (in BPM, beats per minute) 

using a log scale, and set the global BPM to that value using FoxDot. We chose a log scale 
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for a similar reason as for the intensity mapping: it emphasizes slow to fast tempo changes 

and prevents very fast motion from producing excessively fast music (to the point of sound-

ing unmusical).  

Because most pieces of music follow consistent periods of a set tempo, the decision 

to map average speed to tempo was not initially perceived as sensible. Doing so can pro-

duce instantaneous (frame-wise) tempo change, and therefore jittery music. However, we 

can reduce this effect by rounding the computed value to the nearest 10 BPM. With the 

rounding, successive frames that are close in average flow field velocity will not change 

the tempo. The results are perceptually convincing—videos with repetitive motion tend to 

produce music that moves at a constant pace, whereas videos with high variation in velocity 

can still generate music that emulates the jittery quality. 

3.3.6 Note Length 

We map the directional variation of the flow field to the degree of variation in note lengths 

(duration of notes relative to the tempo). Directional variation is computed using circular 

standard deviation (so that a direction of 5 degrees and 355 degrees are measured as 10 

degrees apart rather than 350). The baseline note length has a value of ¼ (quarter notes). 

We define a series of ascending thresholds at which different notes lengths are added to 

the set of possible note lengths. The final chosen note length for the current player object 

is randomly sampled from this set. 

Certain videos have motion that we perceive to be moving in a single direction, yet 

due to perspective, the pixel trajectories go in a variety of directions (for example, videos 

where the camera dollies forward). To counteract this effect, we split the video into four 

quadrants, and compute the directional variation for each quadrant. (If a quadrant has less 

than 2 trajectories, we skip it since standard deviation cannot be computed). We then 

weight the value for each quadrant by the fraction of the total trajectories present in that 

quadrant before adding them together.  

𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝑎𝑙	𝑣𝑎𝑟 = 	1
𝑛𝑢𝑚_𝑡𝑟𝑎𝑗𝑒𝑐𝑡𝑜𝑟𝑖𝑒𝑠(𝑞𝑢𝑎𝑑!)

𝑡𝑜𝑡𝑎𝑙_𝑡𝑟𝑎𝑗𝑒𝑐𝑡𝑜𝑟𝑖𝑒𝑠 𝑐𝑖𝑟𝑐𝑠𝑡𝑑𝑒𝑣(𝑞𝑢𝑎𝑑!)
"

!#$
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Figure 11: Computing Directional Variation Per Quadrant 

 The result of this mapping is that videos where objects are moving in the same 

direction overall produce repetitive rhythmic patterns, while videos with plenty of direc-

tional variation produce varied rhythmic patterns. 

3.3.7 Dampening 

We map both pixel contrast and speed to the level of dampening, or softness in timbre, of 

a trajectory’s player. Dampening is controlled using the low-pass filter (LPF) attribute in 

FoxDot. The LPF passes signals below a certain threshold and attenuates signals above the 

threshold. A lower threshold permits lower frequencies to pass through, therefore creating 

a more dampened timbre. 

 The trajectory’s speed is first linearly mapped to an initial LPF threshold, with LPF 

increasing with speed. Thus, slower trajectories have more dampening than fast trajecto-

ries. (Note that speed is already mapped to intensity; we found that mapping it to dampen-

ing makes perceptual sense as well). 

We then compute an additional attenuation factor, based on pixel contrast, to add 

more dampening. To obtain a rough measure of pixel contrast, we define a 10x10 pixel 

patch around the latest point in the trajectory and compute luminance (perceived bright-

ness) values for each pixel. Pixel patches that would go beyond frame boundaries are 
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simply cropped. Given the BGR value of a pixel, its luminance is estimated as 0.0722*B + 

0.7152*G + 0.2126*R. We calculate the standard deviation of luminance over this pixel 

patch, and map that value to an attenuation factor using a square root scale. This attenuation 

factor is multiplied with the initial LPF threshold for the player. Lower standard deviation, 

i.e. lower pixel contrast, therefore leads to additional dampening. 

  

  

Figure 12: Trajectory with high contrast (left) and low contrast (right) 

 Assuming speed is similar, the brighter fireworks map to a high LPF threshold and 

generate a brighter sound. Correspondingly, the faded, blurry fireworks map to a much 

lower LPF threshold and sound much more muted. 

3.3.8 Chords 

To incorporate evolving patterns in the harmony via chord progressions, we map 

hue to chord. Hue is extracted from the HSV (hue, saturation, value) of a pixel. We take 

inspiration from Scriabin’s color to tone mapping but instead use the HSV color wheel, 

split into 4 sections rather than 12. Each section corresponds to a different chord index.  

To define the current chord index, we compute the HSV at each pixel in the frontier 

and add each hue value to the nearest bin in a four-binned histogram, unless the saturation 

or value are below a threshold (too light or too dark). We evaluate and reset the histogram 

every 10 frames, assigning the chord index to the fullest bin. The initial (default) index is 

1. 
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Figure 13: Hue to Chord Index Mapping 

The set of chords is pre-defined and can be changed by the user (e.g., I IV V I). The 

chosen chord is simply the ith  index of the set of chords. Harmony pitches will be quantized 

to fit the nearest note in the chosen chord. Thus, it is not the colors themselves that hold 

any particular meaning, but rather the color changes in relation to the set of pre-defined 

chords. 

3.4 Additional Musical Processing 

3.4.1 Melodic Offsets 

Inspired by musical and perceptual grouping principles based on proximity [24], we prob-

abilistically add small random offsets to the current pitch if it is the same as the previous 

pitch. In conjunction with player trajectories, these random offset help achieve an effect 

similar to the stochastic melody generation technique of a random walk [24]. The player 

trajectories create general melodic trajectories, while the offsets add small fluctuations to 

the melodic trajectories. Doing this enhances melodic interest by reducing the presence of 

constantly repeated pitches (from horizontal motion) and monotonously ascending or de-

scending scales (from vertical/diagonal motion). 

3.4.2 Pitch Refinement 

To reduce the amount of dissonance between different layers of melody (mainly due to 

adjacent pitches being played simultaneously, we probabilistically “refine” the melody 

players at each frame so that their pitches are most likely either all even or all odd. We also 

allow a smaller likelihood for mixed parity of pitches, as a small amount of adjacent pitch 

intervals can add melodic interest. 
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3.4.3 Synth Volume Calibration 

We found that different FoxDot synthesizers produce widely varying intensities given the 

same amplitude setting, so we normalize volumes by individually multiplying intensity by 

a factor based on synthesizer type. 

3.5 User Interface 

An important part of the system’s design is a GUI enabling the user to take part in the 

generative process as an artist as well as visualize the motion being transformed into music. 

 

 
Figure 14: The GUI 



	 23	

3.5.1 Playback Visualization 

To begin using the system, the user is able to select an input video from the local machine 

or opt to use their webcam. The selected video or webcam stream will be loaded into the 

player window. The user can then press “Generate” to begin playback and music genera-

tion, and pause or stop as desired. 

The system provides visualization of the motion flow field by marking tracked fea-

ture points with a red dot and tracing each trajectory (up to “trajectory length” frames) with 

white lines. Additionally, trajectories that are being converted to music are highlighted in 

yellow (melody) and blue (harmony). The user is able to toggle the visibility of the video 

and flow field. Depending on the situation, one may want to hide the flow field, hide the 

video, or overlay the two. 

   

Figure 15: Toggle Options for Showing Only Video or Motion Flow 

 
3.5.2 Motion Settings 

The user can alter parameters for motion detection depending on the nature of the video. 

“Max Corners” specifies the maximum number of new feature points that the corner de-

tection algorithm will generate each time it runs. For visually dense scenes with “busy” 

motion, it may be useful to turn this down for performance, since many of the feature points 

will be redundant.  

“Trajectory Length” specifies the number of frames a feature point will be tracked 

for. Longer trajectory lengths will tend to produce more continuous lines of melody, since 

a player object will persist for longer. Trajectory length will also slightly influence the 

amount of directional variation.  
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Figure 16: Same scene, with trajectory length of 160 on the left vs 3 on the right 

Finally, “Detect Interval” specifies the number of frames that passes before corner 

detection is performed again. For scenes with objects moving in and out of frame rapidly, 

it is useful to have a lower detect interval to keep up with the visible feature points. 

3.5.3 Music Settings 

The user can alter parameters for music generation, elevating the program as a composi-

tional tool. They can change the key, scale, chord progression, synthesizer type, maximum 

number of melody or harmony players, and level of sustain for harmony. 

3.5.4 Feature Spec 

Feature UI Element Functionality 

Select video button Opens file dialog for user to select in-
put video 

Use webcam button Starts the webcam to use webcam 
stream as input 

Set max corners slider Sets the max number of corners for 
corner detection 

Set trajectory length slider Sets max number of frames that mo-
tion of a feature point is tracked for 

Set detect interval slider Sets the frame interval at which new 
feature points are detected 

Select root dropdown Sets the root of the scale (C, C#, 
D,…,B#)  

Select chords dropdown Set the possible chords to be used 
(from a set of predefined chord 
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progressions) 

Select scale dropdown Sets the scale (major, minor, penta-
tonic, etc.) 

Select melody synth dropdown Sets the synth for playing melodies 

Select harmony synth dropdown Sets the synth for playing harmonies 

Set number of melody layers slider Sets the maximum number of synths 
playing melody at the same time 

Set number of harmony layers slider Sets the maximum number of synths 
playing harmony at the same time 

Set harmony sustain slider Sets the sustain level of harmony 
players 

Generate/Pause Music Toggle but-
ton 

Start/Pause video playback and mu-
sic generation 

Stop Button Stops video playback (reset to first 
frame) and music generation 

Show/Hide Video Toggle Shows/hides the video stream 

Show/Hide Flow Field Toggle Shows/hides the flow field 

 
Table 2: GUI Feature Spec 
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4 Testing Methodology 

To test the system, we conducted an empirical study of the system’s output from both cog-

nitive and artistic points of view. 20 participants, aged 19 to 30, were recruited to each take 

part in a two-part experiment. Participants were asked to rate their musical ability and video 

editing/videography background from 1 to 5, though no significant differences were found 

between music/video background levels at the conclusion of the study. 

4.1 Experiment One: Judgement of Video-Music Input/Output Correspondence 

In the first experiment, we tested the efficacy of our video-to-music mapping. Specifically, 

we wanted to investigate whether subjects (with no knowledge of the system) would be 

able to correctly judge if the generated music matches the source video, and to what extent. 

4.1.1 Energy Scores 

To prepare for data collection, we gathered 20 video clips with a wide range of 

“energy” (slow-moving jellyfish, rapidly blowing wind, etc.) and fed them into our system 

to generate music. All video clips were edited to be 18 seconds in length. Music and motion 

settings were kept as default to ensure that the only factor influencing how the music 

sounded was the source videos themselves. 

In order to obtain more descriptive results with regards to motion and music con-

nections, we devised and computed several metrics to describe the motion of a video: ve-

locity, velocity variation, directional variation, and hue variation. These are the average 

velocity, standard deviation of velocity, standard deviation of direction, and circular stand-

ard deviation of hue, respectively, of the flow field over all frames of the video. Velocity 

is measured in pixels moved per frame, direction ranges from 0 to 2𝜋, and hue ranges from 

0 to 4. 

Using these 4 values we created a composite metric called “energy,” defined as 
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𝐸 = 	𝑣	 + 	𝑣_𝑣𝑎𝑟 • 𝑣	 + 	𝑑_𝑣𝑎𝑟	 • 𝑣	 + 	ℎ_𝑣𝑎𝑟	, 

where v is velocity, v_var is velocity variation, d_var is directional variation, and h_var is 

hue variation. We give precedence to velocity since it appears to carry the most influence 

in our subjective interpretation of energy. Velocity variation and directional variation are 

also perceptually important, so we decided to weight their contributions with velocity. 

Color changes in the video have a much more subtle perceptual influence, so we add that 

as a constant. 

video velocity velocity var direction var hue var energy 
fireworks 1.96 0.9 0.85 0.46 5.85 
blooming 0.31 0.26 0.72 0.12 0.73 

 

Table 3: Example motion metrics 

 We then converted each of the 20 energy values into an energy score: 

𝐸_𝑠𝑐𝑜𝑟𝑒 = 	
𝐸

𝐸%&'
	 • 100 

The video with the highest energy is given a score of 100, and all other videos are given a 

score relative to that. We categorized the videos into two classes: high energy (energy score 

>= 40) and low energy (energy score < 40). 

Video Energy Score  Video Energy Score 
pendulum 100  birds 35 
dolphins 89  cars 34 
coaster 76  train 27 
DVD 64  waves 18 
fish 60  candle 15 
rays 53  puppy 14 

dancer 50  jellyfish 13 
wind 50  aquarium 7 

escalator 49  blossoms 6 
fireworks 46  blooming 6 

	
Table 4: Energy Scores (high energy on left, low energy on right) 
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4.1.2 Trial Generation 

Before meeting with each participant, we systematically generated a set of 10 trials, each 

containing a video clip and a music clip. First, we randomly sampled 5 high energy videos 

and 5 low energy videos from the set of all videos and shuffled them in a random order. 

Then we randomly assign 5 of the 10 videos to be “match” trials and the other 5 to be 

“mismatch” trials. For the “match” trials, we paired each video with the music clip it gen-

erated. For the mismatch trials, we paired each video with a randomly selected music clip, 

making sure no music clip appeared twice in the entire set of 10 trials. 

Video Music Energy Difference 
fireworks birds 11 

waves waves  
birds jellyfish 22 

candle blossoms 9 

blossoms fireworks 40 
blooming blooming  

wind wind  
coaster coaster  

escalator DVD 15 
aquarium aquarium  

 

Table 5: Example set of trials (highlighted are mismatch) 

 For each mismatched trial, we took note of the difference in energy score between 

the video and music. We consider the energy score of a music clip to be that of its source 

video. 

4.1.3 Participant Judgement Sessions 

Sessions were conducted mainly over Zoom using screen and audio sharing, but several 

were conducted in person. In both cases, participants were using headphones. At the be-

ginning of each session, participants were told that they would watch short video clips, 

listen to short music/audio clips, and make judgements about whether or not they match. 

(We use “music/audio” here due to inconsistent wording between earlier and later ses-

sions.) 
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Because out system first takes in video and then generates music, we adhered to 

this directionality when testing correlational judgements. Using a psychological priming 

technique, we first showed the video, then played the audio, before asking for the partici-

pant’s judgement. 

 With a set of 10 trials as described above, the participant first watched the video 

clip, then immediately listened to the audio clip. Then they were asked to give a yes or no 

answer to the question, “does the music/audio match the video?” If the answer was yes, 

they were asked to rate how well it matched on a scale of 1-5, 5 being a perfect match and 

1 being only a slight match.  

Because our system aims to generate music with a level of perceptual correspond-

ence to the source video, the goal was for participants to correctly answer “yes” or “no” 

more often than not. The null hypothesis was that the accuracy distribution of participants’ 

judgements will be statistically no different from that of randomly guessing “yes” or “no”. 

The alternative hypothesis was that the accuracy distribution will be greater than that of 

randomly guessing. We set ∝	= 0.05. 

 At the end of the 10 trials, participants were asked a follow-up question: “how did 

you judge whether the music/audio matched the video?” 

4.2 Experiment Two: Subjective Ratings of Audiovisual Pieces 

In the second experiment, we evaluated the artistic potential of the system as a tool for 

generative composition, specifically in the case of creating soundtracks and soundscapes 

that accompany video.  

4.2.1 Creating Audiovisual Pieces 

We created 10 different musical pieces meant to be played back along with their source 

videos. 5 high energy and 5 low energy video clips were used. We will refer to these crea-

tions as “audiovisual pieces.”  

Rather than restricting the settings to default as in the first experiment, we granted 

ourselves complete freedom to change the motion and music parameters. The goal was to 

create music with aesthetic appeal while complementing the source video. Depending on 
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the video, we changed the key, scale, synthesizers, melody/harmony density, as well as 

motion settings to widely different configurations. Each audiovisual piece took no more 

than several minutes to craft using our GUI. 

4.2.2 Trial Generation 

Before each session, we generated a set of trials by randomizing the order of the 10 audio-

visual pieces to show to the participant. 

4.2.3 Subjective Ratings 

Participants were told they would watch 10 more video clips, this time accompanied by 

music. Subjects were instructed to rate each audiovisual piece from 0-10 based on how 

well the music “fits” the video. 

At the end of the 10 trials, participants were asked: “what relationship, if any, do 

you think there is between the videos and the music in this part of the experiment?”  
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5 Results 

5.1 Judgement of Video-Music Correspondence 

5.1.1 Judgement Accuracy 

To analyze the accuracy of participant judgements, we create a confusion matrix catego-

rizing the true positives, false positives, true negatives, and false negatives.  

 Actual Match  

yes no  

Pe
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no
 

 
24 
FN 
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TN 

 

 

Table 6: Confusion Matrix for Participant Judgements 

From that, we compute the rate of each type of correct and incorrect judgement, as 

well as the overall accuracy (rate of correct judgements). 

True positive rate 0.76 

False negative rate 0.24 

True negative rate 0.43 

False positive rate 0.57 

Accuracy 0.6 
 

Table 7: Judgement Statistics 

The true positive rate of 0.76 is high, indicating that when the music actually 

matched video, participants indeed said it matched most of the time. At the same time, the 
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false positive rate of 0.57 is quite high, indicating that even when the music did not actually 

match the video, the participants said it did half of the time.  

The overall accuracy of 0.6 suggests that participants performed better than ran-

domly guessing. 

0.8 0.7 0.5 0.6 0.5 0.7 0.4 0.4 0.8 0.4 

0.9 0.4 0.4 0.6 0.6 0.6 0.7 0.6 0.7 0.6 
 

Table 8: Accuracy of each participant's judgements 

To test our null hypothesis and assess the statistical significance of the accuracy 

distribution, we performed a one-sample t-test (one-tailed, 𝑛 = 20, 𝑠 = 0.15, 𝜇( = 0.5). 

Here 𝑛 is the sample size, 𝑠 is the sample standard deviation, and 𝜇( is the theoretical mean 

accuracy of randomly guessing. The test yields a t-statistic of 2.83 and p-value of 0.0054. 

Thus, we reject our null hypothesis and find evidence to support our alternative hypothesis. 

Participants performing better than randomly guessing is statistically significant. 

5.1.2 Ratings for “yes” Judgements 

Recall that when a participant made a “yes” judgement, we asked them to rate how well, 

from 1-5, they thought the music/audio matched the video. We found a very slightly higher 

mean rating for true positives than for false positives. 

judgement count mean rating sample standard deviation 

TP 76 3.67 1.06 

FP 57 3.49 1.18 
 

Table 9: Participant Ratings for "yes" Judgements 

A simple t-test reveals that the difference in ratings between true positives and false 

positives is not statistically significant. 

5.1.3 Mismatch Trial Judgements and Energy Difference 

Due to the high rate of false positives, it is worth taking a closer look at participant judge-

ments where the music did not actually match the video. To do this, we analyzed false 

positives and true negatives in relation to energy differences between video/audio pairings. 
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judgement count mean energy 
difference 

portion of pairings at different 
energy levels (“low” vs “high”) 

FP 57 28.44 0.19 

TN 43 42.3 0.56 
 

Table 10: Overall Energy Difference for Mismatch trials 

 Overall, there was a noticeably higher mean energy score difference for true nega-

tive judgements than for false positive judgements. In addition, over half of true negative 

judgements occurred when a “high-energy” video was paired with a “low-energy” music 

(or vice versa), while only about a fifth of false positive judgements occurred under these 

circumstances. This strongly suggests that video-music pairings that are closer in energy 

are more likely to warrant false positives. Likewise, video-music pairings that are farther 

apart in energy are more conducive to true negatives. 

 We visualized all mismatch trials with respect to their energy score differences in 

the scatter plot below. The x and y axes represent the energy score for the video and music 

clip, respectively, in a given mismatch trial. The line 𝑦 =	x indicates all hypothetical pair-

ings with equal energy between video and music.  

 

Figure 17: Scatter Plot of Mismatch Trials with respect to Energy Score 
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From the scatter plot we see that true negatives are rather spread out and false pos-

itives are comparatively clustered more closely around 𝑦 =	x. This suggests that false pos-

itives are more common at lower energy differences and less common at higher energy 

differences. Intuitively, lower energy differences between video and music may often be 

mistakenly perceived as a match, while high energy differences may register as more ob-

viously mismatched.  

5.1.4 Participants’ Rationale 

Participants gave a variety of answers to the question, “how did you judge whether the 

music/audio matched the video?” Emotion and energy were two main factors. Out of 20 

participants, 12 mentioned a combination of “emotion,” “mood,” “ambience,” or “vibe.” 

These participants often used specific words like “peaceful,” “solemn,” “excitement,” “in-

tense,” or “chaotic” to describe both video and audio. 10 participants pointed to speed, 

tempo, pacing, and rhythmic changes/correspondences between video and music, using 

words like “slow” “fast,” “moderate,” “repetitive.” 4 participants directly mentioned mo-

tion (as opposed to indirectly mentioning it through speed of things moving), either in terms 

of the amount of motion or how the motion of the video matched the qualities of the music. 

One participant made a correct “yes” judgement based on how the stereo panning matched 

the motion of the video (for the DVD clip). A few participants noted that timbre was a 

difficult factor to consider, since all the music samples used the same default synthesizer. 

One participant was caught off guard by the default synthesizer’s timbre, saying that it 

evoked 8-bit style video game music in their mind which to them did not match the videos. 

 Overall, participants seemed to base judgements on their expectations for the music 

after watching the video. Their “yes” or “no” answer often reflected whether or not the 

music aligned with those expectations. One participant made a false negative judgement of 

the “dolphins” clip because it felt too frenzied and dissonant, contrary to their expectation 

for something more harmonious. In addition, short-term recall may have been an influence, 

as some participants mentioned trying to replay the video in their head while listening to 

the music. 

5.2 Subjective Ratings of Audiovisual Pieces 
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 With regards to how well the music “fit” the video for each audiovisual piece, par-

ticipants gave a mean score of 7.8 and median score of 8. Several audiovisual pieces con-

sistently score 9 or above. The lowest median score for a piece was 6.5 (“rays”).  Lower 

energy pieces performed slightly better than high energy pieces, except “pendulum.” 

 
Figure 18: Median Ratings of Audiovisual Pieces (ordered from low to high energy) 

 With regards to the question, “what relationship, if any, do you think there is be-

tween the videos and the music in this part of the experiment?”, most participants articu-

lated, in some form, that the “emotion,” “tone,” or “mood” of the music matched what they 

saw in the video. In addition, about half of participants directly mentioned similarities in 

“motion” or “movement.” Several pointed out that the timing of musical changes was 

synced with changes in the video; this was especially apparent in “fireworks.” Participants 

who referred back to the first experiment all stated that the connections were much stronger 

in the second experiment.  

 A few participants said that they could picture the audiovisual piece as a scene from 

a movie. One participant mentioned an instance where the music did not match their ex-

pectations based on the video (“escalator”), but they still found it to be a good fit in an 

artistic sense. 
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6 Discussion 
In this chapter we interpret our findings, contextualizing the quantitative data with partici-

pants’ qualitative responses. We also discuss limitations of our system and avenues for 

future work. 

At this point it is worth addressing an inconsistent word choice in the first experi-

ment. (We used “audio” in earlier sessions and “music” in later sessions). It is possible that 

the word “music” may have led to a greater expectation for “artistic” correspondence with 

the video clip, whereas “audio” may have led an interpretation closer to “does the audio 

sound like how the video looks?”  

6.1 Success in Generating Music with Similarity to Source Video Motion 

Recall the first experiment: judgement of video-music correspondence. To evaluate our 

generative music system based on participants’ judgements, it is useful to articulate what 

each of the four types of judgements might imply: 

• True positives may indicate cases where the system generated music that success-

fully evoked some degree of similarity to the source video. Conversely, false neg-

atives may indicate cases where the system generated music that failed to evoke 

sufficient similarity to the source video. 

• False positives may indicate cases where the generated music evokes similarities 

to an arbitrary video. The qualities of the music may be broad enough to subjec-

tively match many different kinds of videos. Conversely, true negatives may indi-

cate cases where the generated music does not resemble an arbitrary video. 

Since participant judgements revealed a high rate of true positives, we infer that, under 

default settings without artistic control, the system is usually able to generate music with a 

level of perceptual similarity to the source video.  
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At the same time, as evidenced from the considerable rate of false positives, the music 

is often perceived as similar to other videos as well. Our analysis of mismatch trials with 

respect to energy difference revealed that false positives are associated with lower energy 

differences than true negatives. In other words, participants were more likely to correctly 

identify a video/audio mismatch when the energy difference was higher versus when the 

energy difference was lower. Since our metric of energy is based on motion qualities, this 

suggests that motion is being mapped to music in a relatively consistent manner. 

Considering that 1) overall judgements had a statistically significant mean accuracy of 

0.6, 2) participants judged mismatch trials more accurately when energy difference was 

higher, and 3) these results were achieved by the system itself without any artist’s involve-

ment, it appears that the system is able to take a video and generate music with a level of 

affective/perceptual correspondence to its motion. This is as we originally intended. 

6.2 Limitations of Motion-to-music Mapping 

The rate of false positives (0.57) and false negatives (0.24) may indicate that there may be 

certain limitations our motion-to-music mapping.  

 Based on comments from participants, false negatives occurred when the music did 

not align with participants’ expectations after watching the video This often occurred be-

cause the music did not match certain symbolic or semantic associations evoked by the 

video (e.g., dolphins with serenity and harmony). In an initial test run of the experiment, 

participants unanimously gave a false negative judgement to a video of soldiers marching. 

Because the level of motion in the video was quite small (it was filmed at a distance), the 

system generated music that was slow and soft, albeit rhythmic. Participants were probably 

expecting faster and/or stronger music. In another case with a video of a candle flame flick-

ering and then blowing out, one participant expected the music to also die down at the end. 

However, the smoke blowing from the extinguished candle has plenty motion, which our 

mapping converts into a loud and fast sequence of notes. 

Likewise, false positives may also have occurred in cases where an arbitrary music 

clip matched the participants’ notions of a video clip. For example, the videos clips “train” 

and “wind” evoked feelings of “peacefulness” that aligned with a number of different 
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music clips with much lower energy scores.  

 Indeed, our system strictly generates music based on the pixel data of moving im-

ages. Symbolic and semantic associations between the video and the viewer are therefore 

overlooked. With regard to the goal of generating music with affective/perceptual corre-

spondence to the source video, we may infer that directly mapping motion attributes to 

music does not always produce the intended output from an emotion perspective.  

Thought we might be able to improve these results by making changes to the map-

ping, it would not be appropriate to fine tune the mapping so much that it becomes tailored 

to specific types of videos. There should be a balance between emotional correspondence 

and adaptability to various source videos. There may even be the possibility of integrating 

symbolic meaning into our system by using techniques such as semantic segmentation, but 

doing so would likely introduce severe performance limitations and is outside the scope of 

this thesis. 

6.3 Potential as an Artistic Tool 

In the case of artistic use, the substantial rate of false positives from our first experiment 

may actually be a feature rather than a bug. The fact that our system is able to generate 

music that matches a video more often than not lays an aesthetic foundation for fine tuning 

the settings as an artist. It is important to note that the choice of source video does not need 

to match the desired emotion in the music. Our tests of video-audio correspondence and 

correctness of judgements do not imply that the video-to-music mapping should be taken 

literally. A video of a march will not necessarily translate to march-like music. As dis-

cussed, there may be symbolic and semantic meanings inherent in different types of videos 

that are independent of their motion qualities.  

As shown in the results of our second experiment, audiovisual pieces created using 

our system (in the span of minutes) were perceived to demonstrate a very good fit overall 

between video and music. Having the freedom to change attributes such as the key, scale, 

timbre, and melodic/harmony density was very conducive to creating music that strongly 

resonated with its source video.  

Based on the results found of the two different experiments, we can potentially infer 
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that motion and music have more of a synergistic relationship than a directly mappable 

relationship. Played separately, their meanings can often become vaguely interchangeable 

or even distorted to fit one another (false positives), or sometimes simply fail to resonate 

with each other (false negatives). When played in tandem there is more potential for strong 

emotional resonance with one another. 

This is arguably where the artist comes in and takes advantage of the synergistic 

relationship. It is the artist’s task to choose a source video and set the audiovisual parame-

ters to generate a desired sound. It is also up the artist to decide if they want to avoid videos 

with strong symbolic associations, or to use them anyway and generate unexpected results. 

We can imagine what it might be like to practice using the system much like one would 

practice playing a musical instrument—trying out different source videos and configura-

tions of settings to understand which types of visuals translate into which types of sound. 

There may be potential for use of this type of system as a mode of live performance or 

installation, perhaps as an “audiovisual jockey” who curates and sequences video material 

(possibly abstract) to generate an ever-evolving stream of music. There may also be poten-

tial for use as a tool for filmmakers or video-creators with limited musical background to 

generate soundscapes or soundtracks (possibly temp tracks) based on emotions they want 

to evoke in certain scenes. 

6.4 Future Work 

6.4.1 More Advanced Tools and Software 

The system currently generates music through SuperCollider via the FoxDot API in Py-

thon. This choice of tools was made based on convenience. More sophisticated program-

ming environments and music synthesis engines can be explored, such as Max/Jitter, which 

is optimized for real-time audiovisual work [25]. This would require a rewrite a of the 

system but could open up more flexibility in our motion-to-music mapping and algorithmic 

music manipulation. 

6.4.2 Improvements to Motion Tracking 

The system currently employs corner detection without considering the “usefulness” of 

each corner to our generative system. This leads to cases where it misses out on the actual 
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motion present in the scene. In the frame below, the stationary buildings are tracked be-

cause they represent areas of high contrast, but the moving clouds are not tracked because 

they are visually “weaker” corners (less contrast). 

 
Figure 19: Example where Inactive Feature Points are Tracked 

 To remedy this, future improvements might be made to the system framework so 

that corner points are given a “motion rating” before deciding whether or not to track them. 

Corner points below a certain motion rating threshold could then be discarded to make 

room for other corner points that may be less visually salient but are actually moving. 

 Another (considerably more advanced) improvement to motion tracking would be 

to counteract the effect of camera movement, so that the movement of objects in the video 

can be isolated from the movement of the camera. 

6.4.3 Improvements to Trajectory-Player Mapping 

Recall that the system produces musical elements by assigning motion vectors to FoxDot 

player objects. Specifically, we assign the longest m trajectories to melody players and the 

next longest h trajectories to harmony players. Doing so poses a slight problem for melodic 

continuity: the longest m and h trajectories may change rapidly, sometimes every frame. 

This can cause melody and harmony players to jump between different pitches rather than 

follow a single feature point through its trajectory. Visually, we can see this when the mel-

ody and harmony trajectories are “flickering” in the GUI player window. 

In the next iteration of the system, it would be valuable to devise a method to ensure 

that when a trajectory is paired with a player object, this pairing persists until the trajectory 

length falls below a certain threshold (and thus is not perceptually salient enough to warrant 
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its use). Doing so may create more continuous lines of melody. 

6.4.4 Additional GUI Features 

There are numerous ways that our system can possibly be enhanced as a piece of creative 

software. Here we list a few: 

• Supporting multiple “layers” of video to create additional sonic possibilities from 

overlaying multiple scenes 

• Creating a looping system to save and replay generated sonic fragments. This can 

be a tool in live performance. 

• Packaging the system into a mobile application (in the tradition of Brian Eno) with 

the ability for live recording and generation  

6.4.5 Conducting Video-Music Correspondence Experiments with Reaction Time 

In retrospect, for our experiment on judgements of video-music correspondence, one im-

portant metric was left out: reaction time. In future studies it may be valuable to measure 

how long it takes participants to come up with a judgement of “yes” or “no,” making sure 

that this reaction time is measured entirely without their knowledge. Reaction time data 

may provide further insight into how participants respond to video and audio correspond-

ences at various energy levels and energy differences. This data has potential to be highly 

informative in cognitive and psychological spheres. 
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7 Conclusions 

In this thesis, we presented and evaluated a framework for generating music from moving 

images. We began by contextualizing a desired framework in terms of existing literature 

around artistic sonification, generative music, and cognitive/emotive links between motion 

and music. Next, we detailed our implementation of a software system that maps motion 

data to music using optical flow, corner detection, and a perceptually grounded mapping 

scheme. Then, we outlined the design of two experiments for our empirical study: one to 

test the robustness of our motion-to-music mapping by having participants make judge-

ments on video-audio correspondences, the other to evaluate the system’s potential as an 

audiovisual compositional tool. We followed by presenting the results of each experiment, 

noting that 1) participants correctly judged the correspondences at a rate better than ran-

domly guessing, and 2) participants gave high ratings to the audiovisual works generated 

using the system. 

 In conclusion, we developed a system that is able to take moving images and gen-

erate music with a level of affective/perceptual correspondence to their motion qualities. 

The system also functions effectively as an artistic tool for generative composition, which 

can be explored in a wide variety of avenues from soundtrack generation to live perfor-

mance. Future work should be done to improve the motion tracking and mapping scheme, 

enhance the functionality of the GUI, migrate the system to a more advanced audiovisual 

programming environment such as Jitter, and also potentially take reaction time into ac-

count for future experiments on video-audio correspondence. 

 

 
 
 
 
 



	 43	

Appendix 

Experiment 1 Media: Video Only 

https://www.youtube.com/playlist?list=PLjn8JyHMp4TJF6Ua7FMO_NKMrW6FcT_y6 

Alternate Link: https://tinyurl.com/48h2ka3f 

Experiment 1 Media: Audio Only 

https://www.youtube.com/playlist?list=PLjn8JyHMp4TI7wM1hTx9w35m4diTn_EdQ 

Alternate Link: https://tinyurl.com/4y5d4hw9 

Experiment 2 Media: Audiovisual Pieces 

https://youtube.com/playlist?list=PLjn8JyHMp4TIaw2b3jiEo47SWd7ZpiKFg 

Alternate link: https://tinyurl.com/e3bmzhtm  
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