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ABSTRACT 

The dissertation research work described here has three primary objectives under 

risk-based decision making. (1) The development of a comprehensive sewer pipe condition 

rating model that incorporates many environmental, structural, and hydraulic parameters. 

(2) The development of a sewer pipe deterioration model used to predict future overall

condition states of the pipe, as well as determining the probability of failure at any given 

age of the pipe. (3) The development of a comprehensive consequence of failure model 

that assesses the consequence of sewer pipe failure using economic, social, and 

environmental cost factors.  

The Pipeline Assessment and Certification Program (PACP) was developed by the 

National Association of Sewer Service Companies, the industry-accepted protocol for 

condition rating sewer pipes in the US. The PACP method relies exclusively on visual 

inspections performed using Closed-Circuit Television (CCTV), where existing structural 

and operation and maintenance (O&M) defects are observed by certified operators. A 

limitation of the PACP method is that it does not use pipe characteristics, depth, soil type, 

surface conditions, pipe criticality, capacity, the distribution of structural defects, or history 

of preventative maintenance to determine the condition rating of the sewer pipe segment. 

Therefore, a comprehensive rating model with pipe characteristics, external characteristics, 

and hydraulic characteristics was developed. The calculating of a comprehensive rating is 

an entirely manual process. 
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Therefore, this research work addresses this limitation of Analytical Hierarchy 

Process (AHP) and suggests AHP is not a suitable method to calculate comprehensive 

rating.  Develops a faster calculation of a comprehensive rating model using and K-NN 

that incorporates pipe characteristics, environmental characteristics, and information about 

PACP structural score and PACP O&M score in hydraulic factors. Factors such as pipe 

age, pipe material, diameter, shape, depth, soil type, loading, carried waste, seismic zone, 

PACP structural score, and PACP O&M score are used. Our proposed model is applied to 

the data received from the City of Shreveport, LA, which is currently under a Federal 

Consent Decree. The results of a comprehensive rating model showed a below-average 

validity percentage because linear regression assumes a linear relationship between the 

input and output variables. Still, the relationship between response and the predictor is not 

linear for AHP to prove AHP is not a suitable method and satisfactory results for K-NN. 

As part of decision-making, for capital improvement planning and budgeting, the 

capacity to predict future sewer pipe conditions and potential breakdowns is essential. In 

contrast to the often-used Discrete Time Markov Chain approaches in the literature, the 

deterioration model created here uses a Continuous Time Markov Chain method to 

calculate the likelihood that a pipe will change from a better to a worse condition at given 

age. 

The consequence of the pipe's failure is established to ascertain the risk of failure 

and to create a comprehensive framework for risk-based decision-making. To estimate the 

impact of the asset's failure, the established consequence of failure model considers a 

significant number of economic, social, and environmental cost elements. For budgeting 
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future capital projects and improvements, the CTMC model and failure consequences for 

sewers are useful. 
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CHAPTER 1 
 

INTRODUCTION 
 
 

1.1 Background 
 
Aging wastewater infrastructure is a growing source of concern for utilities all over 

the country. The US water sector earned a worrying C- (Report, 2021) but got an upgrade 

from the previous D score(USEPA, 2004), US wastewater sector earned a worrying D+ 

(ASCE, 2021) in the most recent Infrastructure Report Card. Over the next 25 years, $271 

billion will be needed to run and manage these networks at the required level of operation. 

In addition, it is expected that demand for wastewater collection and treatment will increase 

by 23% by the end of the year 2032 (ASCE, 2021). Sewer systems are made up of several 

parts that carry wastewater from residences and businesses to a treatment facility. In the 

United States, there are two types of wastewater networks: gravity lines and force mains. 

Gravity is usually the dominant force moving wastewater from its origin to its eventual 

treatment destination. This implies that no mechanical or electrical power is required to 

move the wastewater (Atalah and Ampadu, 2006). But force mains are used when 

wastewater moves from low-lying areas to higher altitudes through steep hills. They 

produce the necessary pressure to push wastewater up to higher elevations, and force mains 

rely on mechanical pumps or compressors situated in a lift station. Risk-based asset 

management entails recognizing the most critical properties to pursue the most effective 

course of action in rehabilitating and replacing these structures. 



 

 

2 

 
 

Firstly, CCTV (Closed-circuit television) crawler inspection is an industry go-to 

for pipe interior inspection. The Pipeline Assessment and Certification Program (PACP), 

established by the National Association of Sewer Service Companies, is the industry-

accepted and used protocol for rating the condition of sewer pipes in the United States 

(DeBoda and Bayer, 2015). Since the initial development of the method, several updated 

versions exist, the most current one is PACP version 7.0.4, released on October 1, 2020 

(Version, 2021, DeBoda and Bayer, 2015, Kumar et al., 2020b, Kumar et al., 2020a, Kumar 

et al., 2018). PACP Ratings are listed in Table 1-1. Some utilities develop their in-house 

defect rating methods, but typically these are also some variations of the PACP method 

(Angkasuwansiri and Sinha, 2015).  

Table 1-1: PACP Ratings And Description. 

PACP Ratings Description 

Defect rating 1 Unlikely in the foreseeable future. 

Defect rating 2 Rehabilitate or replace in 20 years or more. 

Defect rating 3 Rehabilitate or replace in ten to twenty years. 

Defect rating 4 Rehabilitate or replace in five to ten years. 

Defect rating 5 Rehabilitate or replace in next five years 
 

The PACP method is entirely based on visual inspections utilizing closed-circuit 

television (CCTV), in which qualified operators examine existing structural and operation 

and maintenance (O&M) problems. A CCTV camera is mounted on an IBAK crawler with 

a 1000' cable which transmits the high-resolution images to an above-ground computer and 

display.  Continuous video is recorded as the crawler carries the CCTV unit through the 

pipe. The crawler can be stopped at any time and the CCTV camera can be rotated and the 
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area of interest "zoomed" to reveal fine details. The inner surface images of the pipe are 

recorded in real-time for the period of the inspection and the videos are then analyzed by 

the contractors immediately. The contractors make pipe assessment reports using the 

CCTV inspection and the inspectors calculate the final rating of a pipe using the industry 

accepted PACP protocol for all the pipe assessment reports. The overall Rating assessment 

is shown in Figure 1-1. 

 

Figure 1-1: Overall Video Assessment 

A limitation of the PACP method, according to Thornhill, is that it does not 

consider environmental characteristics such as depth, soil type, surface conditions, pipe 

criticality, and capacity, nor the distribution of structural defects or the history of 

preventative maintenance when determining the condition rating of a gravity sewer pipe 

segment. Some utilities create defect rating methods in-house, but these are mostly versions 

of the PACP method (PACP, 2021). Several studies address the need to incorporate pipe, 

structural, operational, and environmental factors with visual pipe inspection data to 

evaluate the performance of sewer collection systems better and developed many Overall 

Condition assessments for both machine learning and statistical models (Velayutham 
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Kandasamy and Sinha, 2018, Ennaouri and Fuamba, 2013, Chughtai and Zayed, 2007, 

Tabesh and Madani, 2006, Yan and Vairavamoorthy, 2003, Vladeanu and Matthews, 

2019a, Vladeanu and Matthews, 2019b, Sai Nethra Betgeri, 2021, Betgeri et al., 2022a, 

Betgeri et al., 2022b). In all the previous studies, pipe conditions from a structural, 

hydraulic, or operational perspective, or some combination of these, fail to consider a more 

comprehensive variety of parameters that affect pipe conditions (Opila and Attoh-Okine, 

2011, Opila, 2011).  

As a result, in addition to the PACP defect ratings, numerous other factors such as 

sewer pipe diameter, pipe material, burial depth, pipe bedding, load transfer, pipe joint type 

and material, surface loading, ground conditions, groundwater level, and soil type, type of 

waste carried, pipe age, sediment level, surcharge, and poor maintenance practices were 

assessed to provide a more precise assessment and these Rating, and it is listed as 

comprehensive rating by the utility department of Shreveport. Comprehensive rating 

descriptions are listed in Table 1-2.  

Few pipes defects leakage; partial blockage; deformation; corrosion, detachment. 

are shown in Figure 1-2. 

Table 1-2: Comprehensive Ratings And Description. 

PACP Ratings Description 

Defect rating 1 Reassess in ten years. 
Defect rating 2 Rehabilitate or replace in six to ten years. 
Defect rating 3 Rehabilitate or replace in three to five years. 
Defect rating 4 Rehabilitate or replace in zero to two years. 
Defect rating 5 Rehabilitate or replace immediately. 
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A developed Pipe Overall Conditional Rating model (POCR) consists of several 

factors related to pipe characteristics, external characteristics, and hydraulic characteristics 

to assess overall pipe rating using Analytic Hierarchy Process (AHP) to reduce the manual 

efforts to the inspector In addition, the AHP for decision-making is considered for 

prioritization in which many variables or criteria are considered. 16 assumed factors related 

to pipe characteristics, external characteristics, and hydraulic characteristics were used in 

calculating comprehensive Rating in POCR model. The factors used in POCR model is 

shown in Figure 1-3. We have compared the final ratings obtained from the POCR model 

using AHP with Comprehensive ratings given by the inspector and the overall accuracy of 

the model is 8.45%.   

 
 

Figure 1-2: Different Pipe Deficiencies. 
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Figure 1-3: Factors Under Each Criterion For POCR AHP Model. 

Secondly, the likelihood that the pipe will fail is necessary for a full decision 

framework (POF). To assess a POF's risk of failure at any given time, knowledge about it 

is essential. Decision-makers can more effectively plan for and allocate funds for present 

and upcoming rehabilitation and replacement projects with the use of this information. Till 

now the POF model developed are used to calculate the pipe probability after one year 

using DTMC. To calculate the pipe probability for large diameters using CTMC. To 

calculate the pipe probability based on pipe age using CTMC. Additionally, no other 

variable related pipe characteristics, external characteristics or hydraulic characteristics are 

considered. 

Thirdly, the consequence of failure is based on Tripe Bottom Line (TBL) method 

to assess the impact of pipe failure based on social, economic, and environmental impact. 

Previously the Consequence of failure (COF) model is built only based on pipe 
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characteristics. It did not consider external or hydraulic characteristics under social, 

economic, and environmental impact. The other COF model developed using AHP has 

factors related to pipe characteristics, external characteristics, and hydraulic characteristics 

under social, economic, and environmental impact but it has limitations because of the 

subject matter expert. Whenever subject matter expert opinion is varying the COF model 

consequence is getting changed and whenever factors are added or removed entire AHP 

process must be redone. 

1.2 Objective 
 
The objective of this research is to build a comprehensive rating model upon the 

previous POCR version using AHP with exact factors used in comprehensive rating by 

utilities of Shreveport and to suggest AHP cannot be used in comprehensive rating. Build 

a model using K-NN with exact factors used in the comprehensive rating. 12 exact factors 

related to pipe characteristics, external characteristics, and hydraulic characteristics, are 

used in the actual comprehensive Rating. The second objective of this research is to build 

a Continuous Time Markov Chain (CTMC) Probability of Failure (POF) model using 12 

factors related to pipe characteristics, external characteristics, and hydraulic characteristics. 

The third objective of this research is to build a weighted ranking based on the weighted 

average consequence of failure (COF) model for the sewer to know the consequence of 

failure using 12 factors related to using pipe characteristics, external characteristics, and 

hydraulic characteristics under social, economic, and environmental impact. Finally, to 

have a risk-based decision-making framework that consists of Comprehensive rating, POF, 

and COF. The developed risk-based model can be used to forecast future sewer conditions 

by utilities to budget current and future capital improvement projects efficiently. 



 

 

8 

 
 

The methods used in this dissertation can be applied to any sewer inspection data 

corresponding to currently approved industry practices within the U.S. The following steps 

achieve this objective: 

• Develop the CR model by using the AHP and K-NN method that considers a series 

of pipe characteristics, external pipe parameters, and structural, operational, and 

hydraulic conditions of the pipe. 

• Based on CR, develop a CTMC model to predict future sewer pipe conditions based 

on the current condition score, as well as determine Probability of Failure (POF) at 

any age of the pipe material.  

• Using the TBL method, determine the COF of a given sewer segment. 

• Risk-based decision-making framework based on Comprehensive rating, POF, and 

COF. 

Figure 1-4 summarizes the proposed research work presented in this dissertation. 

 

Figure 1-4: Proposed Research Work. 
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1.3 Dissertation Organization  
 
This dissertation is organized into seven chapters: (1) Introduction; (2) Review of 

Relevant Literature; (3) Comprehensive Rating Model using AHP; (4) Comprehensive 

Rating Model using K-NN; (5) Sewer Pipe Deterioration Model Using Continuous Time 

Markov Chain Model; (6) Scenario Analysis; and (7) Conclusions and Recommendations. 

 Chapter 2 presents an overview of pipe failure and deterioration models and 

parameters used for their deterioration models. 

Chapter 3 presents the comprehensive rating development using the analytic 

hierarchy process (AHP) method.  A detailed description of the model’s factors as well as 

of the AHP method is provided. Results of comprehensive rating model using AHP. 

Chapter 4 presents the comprehensive rating development using the K-Nearest 

Neighbor (K-NN) method. Results of comprehensive rating model using K-NN. 

Chapter 5 presents the development of a Continuous Time Markov Chain (CTMC) 

model that determines sewer pipe Probability of Failure (POF), as well as the probability 

of being in one of the conditions determined from the POCR model at a given time. 

Chapter 6 presents the consequence of failure model that determines the main 

factors which are responsible for pipe failure model. 

Chapter 7 presents case study of pipe risk status for next year and different scenario 

analyses for 2 different yearly budgets for replacement, rehabilitation, and emergency 

repairs and suggests the best budget allocation for rehabilitation and replacement for our 

data and a risk matrix to find out the pipe risk failure and also budget planning comparison 

was also made. 
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Chapter 8 presents some concluding remarks on the research presented in this 

dissertation, as well as future work for improving the reliability and accuracy of the models 

presented. 

1.4 Key Contributions 
 
The main contributions of this work are detailed below: 

1. The development of a comprehensive sewer condition rating model that 

incorporates the U.S. industry-accepted condition rating method, the Pipeline Assessment 

Condition Program (PACP) developed by NASSCO using Analytic Hierarchy Process. To 

the best of the author’s knowledge, this is the first attempt to prove Analytic Hierarchy 

Process is not a suitable model. 

2. The development of a comprehensive sewer condition rating model that 

incorporates the U.S. industry-accepted condition rating method, the Pipeline Assessment 

Condition Program (PACP) developed by NASSCO. To the best of the author’s 

knowledge, this is the first attempt at developing such a model with high accuracy. 

3. The development of a CTMC sewer deterioration model based. For sewer 

deterioration modeling, models in the literature are comprised of Discrete Time Markov 

Chains (DTMC) due to ease of calculating transition probabilities between conditions. The 

author proposes a CTMC for the calculation of these probabilities. To the author’s 

knowledge, CTMC deterioration models have been developed for bridge deterioration but 

not sewer deterioration. 

4. The development of a TBL COF model that incorporates economic, social, and 

environmental impact factors to determine the COF. This model too is based on the 
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proposed guideline in the PACP methodology, but several factors are considered in 

addition to those proposed by the PACP guidelines. 

5. The developed model can be used by utilities for renewal decision-making and 

capital improvement project planning. 
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CHAPTER 2 
 

REVIEW OF RELEVANT LITERATURE 
 

2.1 Decision-Making For Trenchless Rehabilitation 
 
Prioritizing pipe renewal, rehabilitation, and replacement projects is a basic 

responsibility of water and wastewater utilities that must maximize the effectiveness of 

their yearly allotted funds to deliver the necessary level of service to their consumers. It is 

difficult for utilities to keep up with the maintenance and growth of their water and 

wastewater assets. However, due to the ongoing aging of the water and wastewater 

infrastructures and the underfunding of these systems in the US (ASCE, 2021). According 

to the Environmental Protection Agency, the wastewater infrastructure will need to be 

improved and expanded over the next 25 years in order to accommodate the demands of 

the population that is constantly rising (Selvakumar and Matthews, 2017). 

Numerous prioritizing tools have been created and are now being utilized by 

utilities to identify pipelines that have the highest risk of failure to address the need for 

sewer pipe inspection, repair, and renewal. The chance of failure and the consequences of 

failure are the first two phases in calculating a pipe's risk of failure. Determine the 

likelihood that a pipe will fail at some point in the future by calculating its likelihood of 

failure. In the case of a sewer pipe, failure may be characterized as the condition rating of 

a pipe that is no longer structurally sound, the occurrence of a maintenance procedure, or 
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in any other form that best serves the utility's needs. To make these predictions, statistical 

tools are employed that make use of existing historical pipe condition inspection data.  

A consequence of pipe failure, however, is a more complicated component that 

involves several factors that need to be evaluated. The effects of a sudden sewer failure 

impact society, the environment, and the utility, more specifically the finances of the utility 

that looks after those assets. Ranking the most critical assets can be done to prioritize 

inspection and renewal plans by figuring out the likelihood that each sewer pipe in a system 

will fail. 

There are not many tools available for selecting the optimal technology for sewer 

pipe renewal as they are for critical asset prioritization, as described above. Most of the 

DSS developed for this purpose are concentrated in three areas: (i) using the expertise of 

designers and in-house engineers for municipalities and utilities, (ii) using tools developed 

by consulting firms for municipalities, which are proprietary, in most cases, and (iii) 

internally developed tools (Matthews et al., 2012) 

Numerous complicated activities are involved in the decision-making process for 

trenchless sewer pipe rehabilitation, and none of them can be adequately represented by a 

single model or approach. A comprehensive decision-making tool that can capture the 

system's variability is needed to address the uncertainties connected to arbitrary pipe, 

economic, social, environmental, and technical aspects. Consequently, a thorough DSS 

was created with the aim of capturing the complexity of the procedure and assisting water 

utility management and stakeholders in their decision-making process for wastewater pipe 

replacement. 
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Figure 2-1 provides a summary of the decision-making procedure for pipe renewal. 

When a set of constraints are applied to a degradation model created from the input data, 

an effective DSS should produce the best result. The procedure should start with entering 

the data into the system, then move on to identifying the assets that are most at risk and 

providing, given several constraints, an optimal inspection and renewal schedule for those 

assets. 

 

Figure 2-1: Decision-Making Procedure For Pipe Renewal. 

2.2 Pipe Failure And Deterioration Modeling 
 
There are many studies in the literature that examine the research on pipe failure 

and deterioration models seriously. Kleiner and Rajani (Kleiner and Rajani, 2001, Kleiner 

and Rajani, 2002), Liu, Kleiner, Rajani, Wang and Condit (Liu et al., 2012), Nishiyama 

and Filion (Nishiyama and Filion, 2013), and St. Clair and Sinha (St. Clair and Sinha, 2012) 

are a few of the evaluations that have had the most impact. The reviews above provide a 

thorough overview of the most significant models and techniques created over the past 35 

years, focusing on statistical deterministic and probabilistic failure models as well as 
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advanced models like artificial neural networks and heuristic models (St. Clair and Sinha, 

2012). The review by Scheidegger, Leitao, and Scholten (Scheidegger et al., 2015) covers 

these models comprehensively. It offers model assumptions, explanations, data 

assumptions, the kinds of published probabilistic forecasts, and software implementations 

of the relevant published works. 

When inspection data incorporates previous break events, pipe failure (or break) 

models are typically used to forecast water main breakdowns. Degradation models are 

useful for large-diameter transmission mains and wastewater pipes, where a condition 

rating system represents the current condition of a pipe. As a result, historical degradation 

data is gathered over time and utilized to create multiple deterioration curves that may be 

used to forecast future conditions for the evaluated assets as well as the likelihood that they 

would fail at a specific point in the future. The availability of past failure or deterioration 

data, as well as the type of data obtained, have a significant impact on the model type that 

is employed (i.e., either pipe breaks over time or condition deterioration of individual pipe 

segments over time). 

2.3 Factors Affecting Wastewater Pipe Condition 
 
There is no predictable pattern for how sewer pipe degeneration works, and several 

internal and external pipe variables can affect it (Najafi and Kulandaivel, 2005). The age, 

type of material, and diameter of the pipe are the three most common variables used to 

assess the quality of sewer pipes (Ennaouri and Fuamba, 2013). However, several 

additional elements also have an impact on the structural and functional state of the sewer; 

these variables have been extensively used to assess the present state of the sewer pipe and 

forecast future pipe conditions using deterioration models. According to Davies, Clarke, 
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Whiter, Cunningham, and Leidl  (Davies et al., 2001), the following categories best 

describe the most frequent causes of sewer pipe deterioration: (1) construction-related 

issues, (2) environmental variables, and (3) other factors. Information on the sewer pipe's 

diameter, pipe material, burial depth, pipe bedding, load transfer, pipe joint type and 

material, and sewer pipe connection are examples of construction factors 

(Wirahadikusumah et al., 2001, Ariaratnam et al., 2001, Gedam et al., 2016, Elsawah et 

al., 2016). External factors are considered, such as the root interface, ground conditions, 

groundwater level, and surface loading (Yan and Vairavamoorthy, 2003, Chughtai and 

Zayed, 2008, Elsawah et al., 2016). The type of waste transported, the age of the pipe, the 

degree of sediment, the surcharge, and bad maintenance are the final unrelated variables 

(Ennaouri and Fuamba, 2013). 

A condition rating (or grading) system is used to indicate the current state of the 

sewer network when physical inspections are conducted for individual segments or the 

complete sewer network. To record the state of sewer pipes, a variety of techniques have 

been devised. To determine a structural and operational condition grade, many methods 

employ various input factors. The purpose of creating such a condition rating system is to 

have a process that utilities can readily use and apply swiftly and effectively. Pipes are 

often rated on a scale of 1 to 5, with 1 being in the best condition and 5 necessitating 

immediate renewal action, depending on the condition rating system that a municipality 

implements (DeBoda and Bayer, 2015, PACP, 2021, Version, 2021, Wirahadikusumah et 

al., 2001, Mcdonald and Zhao, 2001, Angkasuwansiri and Sinha, 2015); 

Based on Rahman and Vanier (Rahman and Vanier, 2004), defect scores used to 

establish sewer condition ratings are determined by calculating a mean score, peak score, 
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or total score. These scores are calculated based on the deduct values. Deduct values 

determine how the defect impacts the service life and overall performance of the sewer 

pipe and are assigned for each defect according to the protocols used for the condition 

assessment method.  Mean scores represent the average value of the deduct values over the 

entire length of the pipe segment. Peak scores represent the highest deduct value, and total 

scores are the sum of all deduct values. These scores are calculated based on Eqs. 2-1, 2-2 

and 2-3. 

 𝑀𝑒𝑎𝑛	𝑆𝑐𝑜𝑟𝑒 = 	
∑(𝐷𝑒𝑑𝑢𝑐𝑡	𝑉𝑎𝑙𝑢𝑒𝑠)

𝐿𝑒𝑛𝑔𝑡ℎ	𝑜𝑓	𝑃𝑖𝑝𝑒	𝑆𝑒𝑔𝑚𝑒𝑛𝑡			 Eq. 2-1 
 

 𝑃𝑒𝑎𝑘	𝑆𝑐𝑜𝑟𝑒 = 𝑀𝑎𝑥𝑖𝑚𝑢𝑚	𝐷𝑒𝑑𝑢𝑐𝑡	𝑉𝑎𝑙𝑢𝑒			 Eq. 2-2 
 

 𝑇𝑜𝑡𝑎𝑙	𝑆𝑐𝑜𝑟𝑒 = 	@(𝐷𝑒𝑑𝑢𝑐𝑡	𝑉𝑎𝑙𝑢𝑒𝑠)			 Eq. 2-3 

The Water Research Center (Center, 2004) (WRc) procedure, which was created in 

the UK , served as the foundation for various other sewer condition assessment protocols, 

including the National Research Council (NRC) Guidelines for big sewers in Canada 

(Mcdonald and Zhao, 2001). The WRc recommendations are also the foundation of the 

PACP technique created by NASSCO. The PACP approach is described in depth in the 

next section. The reader is directed to Rahman and Vanier (Rahman and Vanier, 2004) and 

Kley, Kropp, Schmidt, and Caradot (Kley et al., 2013) for further details on those above 

and other widely used sewer condition evaluation approaches. 

2.4 Sewer Pipe Condition Rating Systems In The United States 
 
The standard method to inspect the internal condition of sewer pipes is by video 

inspection using CCTV. To determine the structural state of a pipe, a relevant, repeatable 

and validated methodology must be employed (Opila, 2011). By using a condition rating 
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system, the visual inspection data from CCTV inspection is translated into an easily 

understandable and manageable form, which then can be used for prioritizing rehabilitation 

needs within the system (Kley et al., 2013). Additionally, by using a standardized condition 

rating system, the pipe condition data can be benchmarked and used within and across 

utilities. By using the same condition rating system, deterioration models and DSSs can be 

developed using the same data options. 

2.4.1 Pipeline Assessment And Certification Program (PACP) 
 
In the U.S., the accepted industry standard for sewer pipe condition evaluation is 

the Pipeline Assessment and Certification Program, or PACP, developed by the National 

Association of Sewer Service Companies, NASSCO (NASSCO, 2001). The PACP 

condition rating system uses pre-established capital letters as codes to assess the sewer 

pipe’s defects. Each PACP code is also assigned a condition grade based on the severity of 

the defect. An Overall Pipe Rating is computed by adding all condition grades per pipe 

segment. By dividing the Overall Pipe Rating by the number of defects, the Pipe Rating 

Index can be calculated, which is a representation of the average severity of defects in the 

pipe. 

2.5 Probability Of Failure 
 
The possibility of pipe failure, the first element of a risk analysis framework, can 

be calculated by forecasting the asset's future condition rating using previous pipe 

condition data that is commonly gathered through pipe inspection. The condition rating of 

sewer pipes and the ensuing chance of failure are determined by several research in the 

literature using a range of statistical models and approaches. Regression analysis, Markov 

Chain models, artificial neural networks, survival functions, and Bayesian networks are 
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some examples of these techniques. For more information, see Chughtai & Zayed 

(Chughtai and Zayed, 2008, Chughtai and Zayed, 2007), Salem, Salman, & Najafi (Salem 

et al., 2012), Micevski, Kuczera, & Coombes (Micevski et al., 2002), and Baik, Jeong, & 

Abraham (Baik et al., 2006). Anbari, Tabesh, & Roozbahani (Anbari et al., 2017). These 

models use a series of predictive variables, among which the most often used ones are the 

pipe’s age, pipe material, pipe length, pipe depth, pipe diameter, the slope of the pipe, and 

soil type, to determine the condition rating of the pipe. Table 2-1 shows selected studies on 

sewer deterioration modeling highlighting the factors used for determining the condition 

rating. 
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Table 2-1. Studies On Sewer Deterioration Modeling. 
 

Author(s)/Year of 

Publication 
Parameters Used in Study Method Used 

(Wirahadikusumah et al., 

2001) 

Cohorts of pipes based on 

material, groundwater table 

elevation, soil type, and depth 

of cover. 

Discrete Time Markov Chain 

(DTMC) Model with Non-

Linear Optimization 

(Micevski et al., 2002) 

Cohorts of pipes based on 

material, diameter, soil type, 

serviceability, and exposure 

class. 

DTMC Model with 

Metropolis-Hastings 

Algorithms 

(Baur and Herz, 2002) 

Pipe age, material, slope, 

category of street, sewer 

function, pipe shape, type of 

pipe. 

Survival Functions 

(Najafi and Kulandaivel, 

2005) 

Pipe age, diameter, length, 

material, depth of cover, pipe 

slope, and type of sewer. 

Artificial Neural Networks 

(ANN) 

(Baik et al., 2006) 
Pipe length, diameter, age, 

material, and slope. 

DTMC based on Ordered 

Probity Method 

(Chughtai and Zayed, 2008) 

Pipe age, diameter, length, 

material, class of material, 

bedding factors, and category 

of street. 

Multiple Regression 

(Anbari et al., 2017)  

Pipe age, material, cover and 

coating of the sewer, flow 

velocity diameter, depth of 

cover, traffic volume, number 

of connections, groundwater 

table, type of sewer, number, 

and type of trees. 

Bayesian Network 
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2.6 Consequence Of Failure 
 

It is challenging for utilities to quantify the impact of pipe failure that is external to the 

agency, such as social or environmental implications because there are not many studies in 

the literature that describe TBL consequences of failure (Raucher, 2017). (Gaewski and 

Blaha, 2007), (Grigg, 2007) , (Damodaran et al., 2005) authors who have studied the effects 

of water main breaks on TBL (2002). While the study by (Raucher, 2017) concentrated on 

the effects of water main failure, the same approach can be applied to evaluate the effects 

of sewer pipe failure. It has been demonstrated that TBL expenses can be up to four times 

greater than the utility's direct economic cost (Raucher, 2017, Gaewski and Blaha, 2007).  

Another key finding of these studies is that the most important predictive element in 

determining the likelihood of a high consequence of failure is the position of the pipe and 

its closeness to significant receptors (Raucher, 2017). An overall consequence of failure 

was given to the examined sewers after the influence on the economy, society, and 

environment was considered. The authors Raucher, Gaewski and Blaha considered the pipe 

diameter, the distance from the groundwater level, the distance from the water well, the 

wastewater quality, the proximity to the river or lake, the type of road, the proximity to 

public areas, the number, and the significance of lateral connections when determining the 

consequences of failure. Fuzzy logic was used to calculate the risk of failure by combining 

the likelihood and consequences of the pipes' failure. 

However, assessing the consequence of sewer pipe failure using the TBL approach 

is a rather challenging task due to the multiple and complex aspects related to determining 

the consequences on economic, social, and environmental levels. The difficulty lies in 

quantifying these consequences due to the different measurement scales of these impacts. 
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For example, the economic impact is typically measured in monetary units, while social 

and environmental impact, although measurable in monetary units, can also be quantified 

using various indices and/or metrics, such as for example hours of traffic delay due to 

repairs, percent of lost land, or percent of groundwater contaminated.  

The TBL is another approach suggested by NASSCO in the PACP program to 

calculate the COF of sewers for the consequences of failure of sewer pipes. The PACP 

approach offers a generic framework for determining the COF of a sewer pipe as part of 

the risk-based decision-making framework. Under economic, social, and environmental 

criteria, several variables are considered to determine a sewer segment's TBL COF, 

including pipe diameter, burial depth, location, relative network position, distance from 

environmentally sensitive features, customer type, and pipe accessibility. Each of the 

factors is given weight based on its contribution to the economic, social, and environmental 

impacts of failure. A weighted average of each element is used to determine the segment's 

overall COFs. However, utilities are recommended to either add or remove factors 

depending on their circumstances as this method is simply offered as a basic guideline for 

COF. 

2.7 Risk Assessment Of Pipe Failure 
 
Risk is a random factor that carries some uncertainty and may or may not follow a 

stochastic process. Utility companies cannot eliminate risks and uncertainties from their 

systems because doing so would be extremely expensive from an engineering standpoint. 

As a result, minimizing pipe failures and the costs associated with them is a component of 

all risk management strategies used by water and wastewater companies. Utilities have 
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developed a few techniques that they employ effectively to calculate and evaluate the risk 

of a pipe failure. The most popular techniques are discussed here. 

2.7.1 Risk Of Failure 
 
Probably the easiest and most widely used method to quantify risk of a pipe failure 

is expressed as the multiplication between the probability of the occurrence of an event and 

the consequence of that event occurring in Eq.2-1 presents the formula(Pietig, 2015, Hess, 

2015). 

 	𝑅𝑂𝐹 = 𝑃𝑂𝐹 ∗ 𝐶𝑂𝐹			 Eq. 2-4 

Both the probability of failure and its consequences in this situation must be 

assessed. The accuracy of the multiplication prediction may not be as desired because to 

the uncertainties of the various factors that might affect the probability and consequences 

of failure of both sewer and water pipelines. This method gives a fast overview of the most 

susceptible assets within a system.  Additionally, a disadvantage of this method is the fact 

that it cannot differentiate between pipe segments with a high probability of failure and 

low consequence of failure and those with a low probability of failure and high 

consequence of failure. 

2.7.2 Risk Matrix 
 
Risk matrices are typically square matrices, where the columns represent the 

consequence of failure, and the rows represent the probability of failure (or condition) on 

the same scale. A risk matrix can be used to determine the risk associated with a 

combination of probability and consequence of failure. If compared to the previously 

described method, the use of risk matrices has the advantage of allowing to identify among 

pipes that have a low probability of failure and high consequence of failure and those that 



 

 

24 

 
 

have a high probability of failure and low consequence of failure. A typical risk matrix 

(scale 1-5) is presented in Table 2-2. 

One disadvantage of this method is the fact that the POF must be expressed on an 

ordinal scale (1 to 5). As a result, re-coding the numerical values of POF and COF into 

ordinal values might result in losing information, because pipes with different values of 

PoF and CoF might be assigned to the same risk group, depending on the pre-established 

cut-off values for each ordinal value. 

2.8 Decision Support System For Risk Management 
 
The establishment of a DSS to automate all or a portion of the process is usually 

the following step once the sewer deterioration model has been chosen, created, and 

validated. By combining the pipe failure/deterioration model with decision-making 

optimization based on the importance of rehabilitation, repair, or replacement of the 

evaluated assets, a DSS can be developed. Water utility managers and other stakeholders 

utilize DSSs to assist them in their decision-making process when deciding which aspects 

Table 2-2: Risk Matrix. 

Probability 
of Failure 
(POF) 

Consequence of Failure (COF) 

 1 (Low) 2 (Fair) 3 (Moderate) 4 (Moderate 
High) 5 (High) 

1 (Low) Low Low Fair Fair Fair 
2 (Fair) Low Fair Fair Moderate Moderate 
3 
(Moderate) Fair Fair Moderate Moderate Moderate 

High 
4 (Moderate 
High) Fair Moderate Moderate Moderate 

High High 
5 (High) Fair Moderate Moderate 

High High High 
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of their water and wastewater infrastructure should be prioritized for rehabilitation, repair, 

and replacement. A DSS is made up of five parts: users, a knowledge engine, a database 

management system, and a model management system field (Marakas, 2003). 

(Zhang et al., 2013) claims that data gathering, archiving, and analysis all take place 

using the data management system. The model management system can use hybrid, data-

driven, artificial intelligence, physical, mechanical, or mechanical models to enable a 

variety of modeling options within the DSS. An inference system that produces an output 

based on several input factors is part of the knowledge engine. A multi-criteria decision 

analysis tool, which can choose the best option out of numerous alternatives given several 

constraints, is the method most frequently employed in a DSS. It is best to utilize a 

geographical information system (GIS) to manage databases and models and to create a 

user-friendly environment. In (Zhang et al., 2013), the architecture of a DSS as well as its 

main elements are described in further detail. The decisions are based on previously 

established limitations, such as limiting the process's expenses and increasing the asset's 

estimated life while minimizing the system's average condition rating (Altarabsheh et al., 

2016, Ward and Savić, 2012, Ward et al., 2014, Allouche et al., 2000). To do this, 

optimization algorithms are built into the DSS to look for and find the most efficient 

solution for any number of constraints.   

DSSs are frequently used in buried infrastructure management to prioritize the most 

important assets (Loganathan et al., 2002, Sadiq et al., 2004, Giustolisi et al., 2008). 

Furthermore, DSSs are utilized to choose the best trenchless rehabilitation, repair, or 

replacement technology for an effective decision-making process (Kleiner and Rajani, 
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2001). For a thorough analysis of DSSs for risk management, see, for instance, Matthews 

(Matthews et al., 2012, Vladeanu and Matthews, 2018). 

2.9 Summary 
 
The sewer industry and academic literature have both produced a range of models, 

methodologies, and tools for calculating sewer pipe condition ratings for renewal decision-

making, a consequence of failure scores, and failure likelihood for risk assessment. To 

calculate the risk of failure for a pipe, the work presented in this dissertation offers a novel 

and thorough framework for risk-based decision-making that considers several parameters 

related to the pipe's internal and external factors as well as information about the impact 

factors on the economy, society, and environment. With this data, proactive asset 

management may create capital improvement plans for impending renewal projects more 

quickly and affordable.
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CHAPTER 3 
 

COMPREHENSIVE RATING METHODOLOGY USING AHP 
 

3.1 Background 
 
This chapter aims to develop a comprehensive sewer condition rating model that 

incorporates the already well-established PACP defect rating methodology, and that also 

considers additional pipe internal and external parameters and factors.  Analytical 

Hierarchy Process (AHP) is used to develop a Comprehensive Rating (CR) model that 

assesses the overall condition of the sewer pipe on a scale of 1 through 5.  The novelty of 

this study consists of including PACP structural and O&M defects, as well as sewer pipe 

internal and external factors to determine the overall condition of the sewer pipe. The goal 

is to offer a more comprehensive method to determine the condition of a sewer pipe, given 

the existing CCTV inspection data, as well as physical, operational, and environmental 

factors that affect the overall condition of the pipe and to suggest AHP cannot be used in 

comprehensive rating. 

3.2 AHP Process 
 
Saaty is the creator of the AHP system (Saaty, 1980). A commonly used decision-

making approach uses a hierarchical structure to analyze problems and issues. The 

decision-maker is led by a series of small decision blocks that make up the core question 
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to be examined. AHP Process is used to determine weights of all factors and criteria based 

upon factor importance.  

In the following sections, a stepwise description of the AHP is provided. 

3.2.1 Hierarchical Structure 
 
In the first step, the factor under each criterion is shown in Figure 3-1, the 

hierarchical structure of the model was developed, as shown in Figures 3-2, and factors 

that impact the worsening process of sewer pipes were selected and grouped under three 

main criteria: pipe characteristics, external characteristics, and hydraulic characteristics 

(Ennaouri and Fuamba, 2013). 

 

Figure 3-1: Factors Under Each Criterion for CR AHP Model. 

The factors selected for external characteristics and hydraulic and other factors 

characteristics in Comprehensive Rating are different from external characteristics and 
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hydraulic and other factors characteristic from POCR. Groundwater, Distribution of 

defects, flow/inflow, and pipe surcharge might affect the predicted comprehensive Rating 

in the POCR model because these factors were not considered in the actual comprehensive 

Rating. All the other Pipe Characteristics, External Characteristics, and Hydraulic 

Characteristics ratings were defined based on extensive information found in the literature. 

The factors summary is presented in Table 3-1. The rankings for the factors are presented 

in Table 3-2. 

 

Figure 3-2: Hierarchical Structure of Characteristics. 
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Table 3-1: Factors and Description. 

Criteria Factor Data Type Description 
Pipe 
Characteristics 
(PC)  

   

Pipe age 
(years) 

Numeric The time between pipe installation 
and inspection year and aged pipes 
have more issues. 

Pipe material String The pipe material includes various 
types of material, such as ceramic, 
glass, fiberglass, many metals, 
concrete, and plastic.  

Diameter(mm) Numeric Nominal pipe diameter and smaller 
diameters are not easy to access.  

Shape String Typically pipe shapes are circular but 
depending upon the project, and 
shapes are changed. Circular shapes 
are easily accessed. 

External 
Characteristics  
(EC) 
  
  

  
  

Depth (feet) Numeric Higher-depth sewers are more 
challenging to access. 

Soil Type String Soil corrosiveness can impact the 
external pipe wall worsening 
mechanism. 

Traffic 
Loading 

String  A pipe failure on or near a high 
traffic area can significantly increase 
delays and detour distances that 
negatively affect the social impact. 

Waste Type String Waste materials carried in a pipe can 
impact the pipe failure by blocking, 
corrosion, etc.  

Seismic Zone String Zones with higher seismic activities 
can negatively impact the structure. 

Hydraulic 
Characteristics 
(HC) 

 

Structural 
Score 

Numeric The score is given based upon the 
structure alignment. 

O & M Score Numeric The score is given based upon the 
operational and maintenance. 

Repair History String Pipes with more maintenance can 
impact the final Rating 
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Table 3-2: Ranking Value Descriptions For All Factors Under PC, EC And HC. 

Ranking Description 

1 Minor defect grade 

2 Minor to moderate defect grade 

3 Moderate defect grade 

4 Significant defect grade 

5 Most significant defect grade 
 

Under the pipe characteristics (PC) criteria, the following factors are defined: pipe 

age, material, diameter, length, and shape. Accordingly, as the pipe material ages, the 

degradation process becomes more significant (Hawari et al., 2017). In the present study, 

larger diameter pipes are considered more prone to worsening than smaller diameters 

(Balmer and Meers, 1981). Finally, different geometrical shapes will result in varying 

levels of deposits and degradation patterns (Ennaouri and Fuamba, 2013). The factors' 

attributes and the assigned rating of PC is presented in Table 3-3.  
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Table 3-3: Attributes Factors Rating For Pipe Characteristics. 

Factor Attribute Ranking 
Age (years) 
  
  
  

  

<10  1 
≥10 and <25  2 
≥25 and <40  3 
≥40 and <50 4 
≥50 years 5 

Corrosion 
 

Plastic/GRP 1 
Clay 2 

  
  

NRCP/AC 3 
RCP 4 
Metallic 5 

Diameter 
  
  
  

  

>=49 1 
>31 and <=48 2 
>18 and <=30 3 
>11 and <= 18 4 
<=11 5 

Shape 
  
  
  

  

Circular 1 
Oval 2 
Horseshoe 3 
Semielliptical 4 
Arch 5 

 

Under the external characteristics (EC) criteria, the following factors are defined: 

burial depth, soil type, traffic loading, waste carried, and seismic zone. The deep burial of 

the pipe results in increased soil overburden on the pipe. Next, the soil type refers to the 

surrounding soil that comes in direct contact with the pipe, which can impact the external 

pipe wall worsening mechanism, mainly corrosive materials, hydrocarbons, etc., present in 

the soil (Hawari et al., 2017). Traffic loads include all pedestrian and vehicle traffic above 

and in the proximity of the pipe, which impacts the overall integrity of the pipe. The type 

of waste carried can potentially erode the internal pipe wall if highly corrosive. Including 

the seismic zone factor ensures that any possible effects of seismic activities on the overall 



 

 

33 

 
 

condition of the pipe are considered in the model. The factors' attributes and the assigned 

ratings of external characteristics (EC) is presented in Table 3-4. 

Table 3-4: Attributes Factors Rating For External Characteristics. 

Factor Attribute Ranking 
Depth <= 10 Feet 1 

> 10 and <= 15 Feet 2 
> 15 and <= 20 Feet 3 
> 20 and <= 25 Feet 4 
> 25 Feet 5 

Soil Type 
  
  
  

  

Low corrosivity 1 
Low to moderate corrosivity 2 
Moderate corrosivity 3 
Moderate-to-high corrosivity 4 
High corrosivity 5 

Traffic Loading 
  
  
  

  

No traffic to very light traffic 1 
Light traffic 2 
Medium traffic 3 
Moderate to heavy traffic 4 
Heavy traffic 5 

Waste Type 
  
  
  

  

Mildly corrosive 1 
Mildly to Moderate corrosive 2 
Moderately corrosive 3 
Moderately to highly corrosive 4 
Highly corrosive 5 

Seismic Zone 
  
  
  

  

Zone 1 1 
Zone 2 2 
Zone 3 3 
Zone 4 4 
Zone 5 5 

 

Under the hydraulic characteristics (HC) criteria, the following factors are defined: 

PACP structural, PACP operations and maintenance (O&M) defects, and repair history. 

The PACP structural and O&M defect scores are on a scale of 1–5. PACP structural scores 

gives the defect rating for infrastructure with 1 being the least severe and 5 being the most 
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severe defect. PACP operational scores gives the defect rating for maintenance with 1 

being the least severe and 5 being the most severe defect. The repair history gives 

information about the maintenance of pipes in the previous years. The factors' attributes 

and the assigned ratings of Hydraulic characteristics (HC) is presented in Table 3-5. 

Table 3-5: Attributes Factors Rating For Hydraulic Characteristics. 

Factor Attribute Ranking 

Structural Score  

1 1 
2 2 
3 3 
4 4 
5 5 

O & M Score  

1 1 
2 2 
3 3 
4 4 
5 5 

Repair History  

No maintenance  1 
Minor maintenance 2 
Moderate maintenance 3 
Significant maintenance 4 
Extreme maintenance 5 

 

3.2.2 Expert Judgement 
 
Expert judgment is utilized for obtaining the relative importance weights of the 

factors close to the evaluation criteria. The following question is asked: What is the relative 

importance of the first factor compared to the second factor concerned with influencing the 

criterion? The answer of the scale is rated between 1-9 if the first factor is more important 

than the second or the reciprocal of the scale 1-9 if the second factor is more important than 

the first. The detailed description is shown in Table 3-6 (Saaty, 1980). 
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Table 3-6: AHP Importance Scale 

Scale Reciprocal Scale Definition 

1 1 Equally important 

2 1/2 Slightly more important 

3 1/3 Moderately more important 

4 1/4 Moderately plus more important 

5 1/5 Strongly more important 

6 1/6 Strongly plus more important 

7 1/7 Very strongly more important 

8 1/8 Very very strongly more important 

9 1/9 Extremely more important 
 

3.2.3 Pairwise Comparison Matrix 
 
A pairwise comparison matrix is used for collecting the data at Step 2. The row 

components are compared to the column components, and if the criterion in row i is more 

important than the criterion in column j, then the value of the matrix element (i,j) is more 

than 1. Otherwise, the column component is more important than the row component. The 

diagonal elements are always 1. The (j,i) element is the reciprocal value of the (i,j) matrix 

element. 

3.2.4 Factor Weights 
 
Relative importance of the weights is average of each criterion of the normalized 

vector using the matrix multiplication. 
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3.2.5 Consistency Index  
 
A Consistency Index (CI) is evaluated to test the consistency of the responses by 

experts. The comparisons must be re-examined when the CI does not reach the desired 

level. The CI is calculated as shown in Eq 3-1. 

 	𝐶𝐼 =
(𝜆𝑚𝑎𝑥 − 𝑛)
(𝑛 − 1) 		 Eq. 3-1 

λ
max

 is the maximum eigenvalue of the comparison matrix. 

n is the order of the matrix. 

 
3.2.6 Consistency Ratio 

A Consistency Ratio (CR) is calculated by dividing CI by the value for the set of 

judgments corresponding to the order of the matrix, called the Random Consistency Index 

(RCI), as shown in Eq 3-2.  

 	𝐶𝑅 =
𝐶𝐼
𝑅𝐶𝐼		 

Eq. 3-2 

The values of RCI have been pre-determined by Saaty, who calculated these values 

for large samples of random matrices of varying orders, as shown in Table 3-7. If CR is > 

0.1, we need to revisit the comparison. 

Table 3-7: Random Consistency Index For Matrices Of Varying Order 

N 1 2 3 4 5 6 7 8 9 10 
RCI 0 0 0.58 0.9 1.12 1.24 1.32 1.41 1.46 1.49 
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3.3 Comprehensive Rating Score 
 
The final step of the AHP is to determine utility. The utility is a numerical value 

providing information on how useful something is to you, and it will help you to select the 

best option The subject matter expert (SME) is PACP certified and has experience of 7 

years. With the SME help, the relative weight of pipe characteristics (𝑊!"), the weight of 

external characteristics (𝑊#"), and the weight of hydraulic characteristics (𝑊$") and the 

weight of each factor under this criterion has been determined.  

Utility equation is developed using multi-linear regression equation without 

intercept. Regression analysis is a statistical tool used for the investigation of relationships 

between variables. Usually, it helps in seeking the effect of one variable upon another, the 

impact of grades on performance. To explore such issues, the data should be assembled on 

the underlying variables of interest, and regression should be employed to estimate the 

quantitative effect of the causal variables upon the variable that they influence. Typically, 

the 'statistical significance' of the estimated relationships is assessed, which is the degree 

of confidence. 

Regression analysis utilizes the relationship between multiple quantitative or 

qualitative variables to predict dependent variables' behavior based on the independent 

variables' behavior(Gross and Groß, 2003). The simplified model can be created from the 

equation shown in Eq 3-3 that the true relationship is close to the estimated relationship. 

 	Y% = 𝛽& + 𝛽'𝑋% + 𝜀% 			 Eq. 3-3 

𝑌% represents the value of the response variable in the ith trial. 

𝛽& and 𝛽'  represents the regression parameters. 

𝑋% represents the value of the predictor variable in the ith trial. 
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𝜀% represents the random Error. 

Multiple variables are used to predict the behavior of the response variable in 

multiple regression models. As a result, Eq 3-3 can be converted into an Eq 3-4 

 	Y% = 𝛽& + 𝛽'𝑋%' + 𝛽(𝑋%(+. . . . . +𝛽)𝑋%) + 𝜀% 			 Eq. 3-4 

The utility equation developed using multiple regression which is used in AHP is 

shown in Eq 3-5 

 	𝑈*+*,- = 𝑈'𝑊' + 𝑈(𝑊(+. . . . . +𝑈.𝑊.			 Eq. 3-5 

𝑈', 𝑈(	, −−− 𝑈. criteria. 

 𝑊',𝑊(,, −−−𝑊. weight of the criteria. 

These weights, along with multi linear regression without intercept (𝛽&), are 

combined to obtain the final comprehensive rating scores (CRS), as shown from Eq 3-6 to 

Eq 3-9. 

 	𝐶𝑅𝑆 = 𝑊!"𝑃𝐶 +	𝑊#"𝑐𝐸𝐶 +	𝑊$"𝐻𝐶		 Eq. 3-6 

 PC = ∑ (𝑤%𝑅%)1
%	2	' 			 Eq. 3-7 

 EC = ∑ (𝑤3𝑅3).
3	2	' 		 Eq. 3-8 

 HC = ∑ (𝑤4𝑅4)+
4	2	'  Eq. 3-9 

𝑊!"  is the factor weight for overall PC criteria. 

 𝑊#"  is the factor weight for overall EC criteria. 

𝑊$"  is the factor weight for overall HC criteria. 

𝑤% is each factor weights under the PC criteria. 

𝑤3 is each factor weights under the EC criteria. 

𝑤4 is each factor weights under the HC criteria. 

𝑅% is the	𝑖*5category factor rating under the PC criteria. 
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𝑅3 is the	𝑗*5category factor rating under the EC criteria. 

𝑅4 is the	𝑘*5category factor rating under the HC criteria. 

𝑚 is number of factors under the PC criteria. 

𝑛 is number of factors under the EC criteria. 

𝑜 is number of factors under the HC criteria. 

3.4 Data 
 
Information such as diameter, depth, length of the pipes is given in pipe segment 

reports (i.e., pdf format), and the other information related to the pipes such as pipe age, 

corrosion, structural score, O&M score, traffic loading, waste type, shape and the seismic 

zone is given in MS Excel from the Dept. of Engineering & Environmental Services, 

Shreveport, Louisiana Phase 3. These Pipe Section reports contain different sections, as 

presented in Table 3-8. Each section contains text input by the inspector.  
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Table 3-8: Description Of Pipe Segment Reports 

Section Description 

Pipe characteristics information about the physical pipe properties (Ex: 

Diameter, Depth, Length) 

Emergency Repair Information about the Emergency Repair (Ex: 

Immediate Leakage Fixes) 

Smoke Testing Assessment Information about any smoke observed from pipes (Ex: 

Medium smoke observed emanating from cleanout) 

CCTV Assessment Information about the pipes using CCTV Camera (Ex: 

Multiple Defects) 

Composite Assessment Information about the Composite Material around the 

pipe  

Criticality Assessment Information about the risk value of the pipe (Ex: 

Medium) 

Capacity Information about the pipe Capacity 

 

We used Python programming to process the records of all the sewer pipe reports 

to extract 12 specified variables from the pdf reports: Pipe ID, Pipe Diameter, Depth 

Category, Total Length (Feet), Existent Height (inches), Existent Material, Existent Lining 

Method, O&M score, Structural score, and Comprehensive Rating listed under Pipe 

characteristics section into a .csv file. For our final data, we have combined the .csv file 

and MS Excel from the Dept. of Engineering & Environmental Services. The flow diagram 

of the data cleaning process to obtain the final data is shown in Figure 3. We then randomly 

selected 200 reports and manually checked the data to verify if the same data was extracted 

using Python programming. The extraction and retrieval of information by the program 

were compared to the results of the manual review. Sample Data extracted using python 
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programming into the .csv file. Final Data generated using Python programming and 

adding with excel is shown in Figure 3-3. 

 

Figure 3-3: Final Data Generation 

In this study, we included records with relevant data by removing 4.2% of records 

with inconsistent data, and 10% to 20% of missing information info per pipe for further 

analysis. This step makes the training dataset cleaner and error-free, which helps in 

improving the accuracy of the model.  

Missing values: It is very usual to have missing values in our dataset. It may have happened 

during data collection by the CCTV inspector. We eliminated 60 reports related to the few 

missing information such as pipe material, depth, or structural score. 

Inconsistent values: We know that data can contain inconsistent values. For instance, the 

unit mm is entered as cm, and feet in entered as inches. It may be due to human error, or 
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maybe the information was misread while scanned from a handwritten form by the CCTV 

inspector. We have eliminated 70 reports related to inconsistent values. 

After all these analyses and verification of data, the final data collection included 

3100 pipe segment data with a total length of approximately 198.9 miles. The data 

contained information about pipes having an average age of 56 years. For this study, a pipe 

length of approximately 29.20 miles, totaling 1240 pipe segments using a stratified random 

sampling technique, were selected. For data analysis, a centralized spreadsheet was created 

with data for the 1240 pipe segments containing all factors listed. Final Data used is shown 

in Figure 3-4. Table 3-9 Table 3-10 Table 3-11 shows the sample data for few selected pipe 

data. 

 

Figure 3-4: Process Of Finally Selected Pipe Data For Our Model. 
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Table 3-9: Pipe Characteristics For Selected Data. 

Inspection ID Year Corrosion Diameter(mm) Shape 

925 1965 Clay 8 Circular 

197 1961 NRCP 8 Oval 

213 1967 RCP 8 Circular 

822 1969 Clay 8 Circular 
 

Table 3-10: External Characteristics For Selected Data. 

Inspection 

ID 

Depth 

(Feet) 
Soil Type 

Traffic  

Loading 

Waste 

Type 

Seismic 

Zone 

925 0-10 Low to moderate Medium Moderately  Zone 2 

197 10-15  Low Light Mildly Zone 2 

213 15-20 Moderate No traffic Moderate Zone 2 

822 0-10 Low Light Highly Zone 2 
 

Table 3-11: Accuracy, Precision, Recall, And F1 Score For CR AHP. 

Inspection ID Structural Score O&M Score Repair History 

925 3 3 Moderate 

197 2  2 Minor 

213 3 3 No  

822 3 3 Moderate 
 

 



 

 

44 

 
 

3.5 AHP Results 
 
The row components are compared to the column components, and if the criterion 

in row i is more important than the criterion in column j, then the value of the matrix 

element (i,j) is more than 1. Otherwise, the column component is more important than the 

row component. The diagonal elements are always 1. The (j,i) element is the reciprocal 

value of the (i,j) matrix element. Table 3-12 shows the pairwise comparison matrix of pipe 

characteristics, external characteristics, and hydraulic characteristics given by the expert.  

Table 3-12: Pairwise Comparison Matrix Of PC, EC, and HC. 

Criteria Pipe 

Characteristics 

External 

Characteristics 

Hydraulic 

Characteristics 

Pipe  

Characteristics 

1 1/2 2 

External 

Characteristics 

2 1 2 

Hydraulic 

Characteristics 

1/2 1/2 1 

 

Table 3-13 shows the pairwise comparison matrix of Age, Corrosion, Diameter and 

Shape of pipe characteristics given by the expert. 
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Table 3-13: Pairwise Comparison Matrix Of PC Criteria. 

Criteria Age Corrosion Diameter Shape 

Age 1 1/9 1 1 

Corrosion 9 1 6 3 

Diameter 1 1/6 1             1 

Shape 1 1/3 1 1 
 

Table 3-14 shows the pairwise comparison matrix of Depth, Soil Type, Traffic 

loading, Waste type and Seismic Zone of external characteristics given by the expert. 

 
Table 3-14: Pairwise Comparison Matrix Of EC Criteria. 

Criteria Depth Soil Type Traffic Loading Waste type Seismic Zone 

Depth 1 2 1/2 1/2 1/2 

Soil Type 1/2 1 1/2 2 1/4 

Traffic Loading 2 2 1 2 1/2 

Waste type 2 1/2 1/2 1 1/4 

Seismic Zone 2 4 2 4 1 
 

Table 3-15 shows the pairwise comparison matrix of Structural Score, O&M Score 

and Repair history of hydraulic characteristics given by the expert. 
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Table 3-15: Pairwise Comparison Matrix Of HC Criteria. 

Criteria Structural Score O&M Score Repair History 

Structural Score 1 2 2 

O&M Score 1/2 1 2 

Repair History 1/2 1/2 1 
 

Once the expert judgment weights were determined using the AHP method, the 

relative importance weights of factors affecting sewer pipe conditions were calculated. The 

ranking of the factors is determined using global weights. The global weights are obtained 

by multiplying the individual factor's relative importance weight with the criterion's weight 

under which it falls. Table 3-16 will show the criteria weight, relative importance weight 

of each factor, global weights, and factors; the sum of all weights is 1. Global weights show 

the consequence of failure and Figure 3-5 shows the priority of factors. 
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Table 3-16: Resulting Weights Of Criteria And Factors Affecting Pipe Condition. 

Criteria Factors 
Criteria 

Weight 

Relative 

Importance 

Weight of 

Factor 

Global 

Weights 

Rank 

Pipe 

Characteristics 

 0.310814    

Age  0.103274 0.03209901 12 

Corrosion  0.646587 0.20096829 1 

Diameter  0.111992 0.03480868 11 
Shape  0.138146 0.04293771 9 

 ∑ = 1.0 0.310814  

External 

Characteristics 

 0.493386    

Depth  0.139967 0.06905776 5 
Soil Type  0.121239 0.05981763 8 
Traffic Loading  0.221753 0.10940983 3 
Waste Type  0.125648 0.06199296 6 
Seismic Zone  0.391392 0.19310733 2 

 ∑ = 1.0 0.493386  

Hydraulic 

Characteristics 

 0.195800    

Structural Score  0.493386 0.09660498 4 
O&M Score  0.310814 0.06085738 7 
Repair History  0.195800 0.03833764 10 

 ∑ = 1.0 0.195800  
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Figure 3-5: Consequence Of Failure Based On AHP. 

Table 3-17 will show the consistency ratio for all the factors. The consistency ratio 

of all the factors was less than 0.1. The judgment of this decision-maker is acceptable. 
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Table 3-17: Consistency Index And Consistency Ratio 

Criteria 

 

λ
max 

m
 

CI CR Factor 

 

λ
max

 CI CR 

Pipe 

Characteristics 

3.05 0.026 0.046 Age 4.11 0.036 0.040 

Corrosion 

Diameter 

Shape 

External 

Characteristics 

Depth 5.37 0.092 0.082 

Soil Type 

Traffic 

Loading 

Waste Type 

Seismic Zone 

Hydraulic 

Characteristics 

Structural 

Score 

3.05 0.026 0.046 

O & M Score  

Repair History 
 

3.6 Comprehensive Rating Results And Model Evaluation 
 
The obtained Comprehensive rating scores for selected pipes calculated using Eq. 

3-6 to Eq. 3-9 are presented in Table 3-18. 
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Table 3-18: Sample Comprehensive Rating Score 

 
Pipe ID PC Score EC Score HOF Score CR Score 

925 2.507650 2.207432 3 2.45592877 
197 3.292383 1.753111 2 2.27987915 
213 3.800824 2.165099 2.60840 2.76030357 
822 2.507650 2.115736 3 2.41068725 

 

The Comprehensive rating score (CRS) of a sewer pipe measures the overall 

deteriorated condition of the segment. Reaching a maximum score involves the fact that all 

the 12 factors have a rating of 5. Suppose the majority of the 12 factors have a rating of 5, 

and a few have intermediate values of 2, 3, and 4; in that case, the Comprehensive rating 

score will be in the maximum interval. Therefore, to categorize each segment into a 

condition based on the segment's Comprehensive Rating score, the following method was 

implemented. 

The top-ranked factor based on the AHP analysis is the Corrosion factor. The 

second and third factor based on the AHP analysis is seismic zone and traffic loading. For 

this study, the selection criterion is the type of material considered for the project. Based 

on the type of material, five cases were analyzed. In each one, all but the Corrosion factors 

were given the same Rating. First, all factors were set to 1; then all were provided a rating 

of 2, then a rating of 3, 4, and finally, all factors' ratings were set to 5.  

This process aimed to obtain an approximate interval variability of the 

Comprehensive rating score based on the value of the factor ratings. The results are 

summarized in Table 3-19.  
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Table 3-19: Ratings Based On Comprehensive Rating Score For Different Materials. 

Pipe Material All 1's All 2's All 3's All 4's All 5's 

Plastic/GRP 1.990323 2.180020 2.369717 2.559414 2.749111 

Clay 2.103344 2.293041 2.482738 2.672435 2.862132 

NRCP/AC 2.216366 2.406063 2.559414 2.749111 2.938808 

RCP 2.329388 2.519085 2.708782 2.898479 3.088176 

Metallic 2.442409 2.632106 2.821803 3.011500 3.201197 
 

Table 3-20 shows the average rating of comprehensive rating 1, comprehensive 

rating 2, comprehensive rating 3, comprehensive rating 4 and comprehensive rating 5.  

 
Table 3-20: Average Ratings Of Comprehensive Rating Score. 

All 1's All 2's All 3's All 4's All 5's 

2.216366 2.406063 2.5884908 2.7781878 2.9678848 
 

Final ratings of comprehensive ratings based on the average are summarized in 

Table 3-21. 

 
Table 3-21: Final Ratings Based On Comprehensive Score For Our Data 

Comprehensive Score Ranges Comprehensive Rating 
 >= 2.216366 and < 2.406063 1 
>= 2.406063 and < 2.5884908 2 
>= 2.5884908 and < 2.7781878 3 
>= 2.7781878 and < 2.9678848 4 
>= 2.9678848 5 
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As a general guideline, pipes in comprehensive rating 1 do not require any further 

consideration as these pipes are in excellent condition and can be reassessed in ten years. 

These pipes in comprehensive rating 2 are in good condition and can be rehabilitated or 

replaced in six to ten years. These pipes are in fair condition for pipes in comprehensive 

rating 3 and can be rehabilitated or replaced in three to five years. These pipes are in poor 

condition for pipes in comprehensive rating 4 and can be rehabilitated or replaced in zero 

to two years. Finally, pipes in condition 5 are in the worst condition and require immediate 

attention. The overall comprehensive rating Framework is shown in Figure 3-6. 

 

 
Figure 3-6: Overall Comprehensive Rating Framework For AHP. 

 

Model evaluation is an essential step in the creation of a model to calculate the 

overall performance of the developed CR model. It helps in showing how well the chosen 

model performed for our data using the confusion matrix. A confusion matrix is used for 
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evaluating the performance of the developed model by comparing the actual 

comprehensive ratings with the predicted comprehensive ratings.  

There are four types of outcomes that are represented in the confusion matrix that 

occur there are True Positive (TP), True Negative (TN), False Positive (FP), and False 

Negative (FN). Accuracy, Precision, Recall, and F1 scores are calculated using Eq 3-10 to 

Eq 3-13. TP, TN, FP, FN, Accuracy, Precision, Recall, and F1 scores are defined below.  

TP - Predict an observation that belongs to one specific comprehensive rating given 

that belongs to this specific comprehensive rating. (Actual comprehensive rating is 1, and 

it predicts the predicted comprehensive rating as 1). 

TN - Predict an observation that does not belong to one specific comprehensive 

rating. (Actual comprehensive rating is 1, and it predicts the predicted comprehensive 

rating as 2, 3, 4, or 5). 

FP - Predict an observation that belongs to one specific comprehensive rating, and 

it does belong to another comprehensive rating. (Actual comprehensive rating is 2 or 3 or 

4 or 5, but it predicts the predicted comprehensive rating as 1) 

FN - Predict an observation that does not belong to one specific comprehensive 

rating. (Actual comprehensive rating is 1, and it predicts the predicted comprehensive 

rating not as 1). 

Accuracy - Percentage of correct predictions for the test data. 

Precision - Ratio of correctly predicted positive observations to the predicted 

positive observations. 

Recall - the ratio of correctly predicted positive observations to all observations in 

the actual class. 
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F1 score - Weighted average of Precision and Recall.  

 

 	𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦	 = 	 (	
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁	) ∗ 100%		 
Eq. 3-10 

 	𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛	 = 	
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 Eq. 3-11 

 	𝑅𝑒𝑐𝑎𝑙𝑙	 = 	
𝑇𝑃

𝑇𝑃 + 𝐹𝑁 Eq. 3-12 

 𝐹1	𝑆𝑐𝑜𝑟𝑒	 = 	
2𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁	 
Eq. 3-13 

These True Positive (TP), True Negative (TN), False Positive (FP), False Negative 

(FN) outcomes are often plotted on a confusion matrix. A confusion matrix is a summary 

of prediction results on a classification problem. The correct and incorrect predictions are 

summarized with count values and broken down by each class using AHP for 

comprehensive rating model is shown in Table 3-22. Table 3-23 shows the confusion 

matrix for POCR using AHP. 

 
Table 3-22: Confusion Matrix For Comprehensive Rating AHP. 

Predicted 
Comprehensive  
Rating 

Actual Comprehensive Rating Count 
1 2 3 4 5 

1 22 44 50 68 30 
2 39 36 58 81 46 
3 46 66 38 95 24 
4 33 75 66 44 32 
5 30 54 65 78 20 
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Table 3-23: Confusion Matrix For POCR AHP. 

Predicted 
Comprehensive  
Rating 

Actual Comprehensive Rating Count 
1 2 3 4 5 

1 15 46 54 72 32 
2 43 25 63 85 49 
3 42 63 29 98 31 
4 36 79 72 34 33 
5 29 53 67 77 13 

 

Overall, the accuracy of our model predicted Comprehensive Rating with the actual 

Comprehensive Rating of the pipe segment reports was 12.90%. Since linear regression 

assumes a linear relationship between the input and output variables, it failed to fit the 

dataset properly because the relationship between response and the predictor is not linear. 

All the conclusions we drew became null and void and led towards the very low accuracy 

of the model. The achieved overall accuracy of all the models is shown in Table 3-24 and 

Figure 3-7. 

 
Table 3-24: Overall Accuracy Between POCR AHP And CR AHP. 

Comprehensive Rating POCR model using AHP CR model using AHP 
Accuracy 9.35% 12.90% 
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Figure 3-7: Overall Accuracy Comparison Between POCR AHP And CR AHP. 

 
Table 3-25 shows the accuracy, precision, recall, and F1 score for 5 predicted 

Comprehensive ratings compared with the Actual Comprehensive Rating given by the 

inspector for comprehensive rating AHP and Table 3-26 shows the accuracy, precision, 

recall, and F1 score for 5 predicted Comprehensive ratings compared with the Actual 

Comprehensive Rating given by the inspector for POCR AHP. 

 
Table 3-25: Accuracy, Precision, Recall, And F1 Score For CR AHP. 

Comprehensive Rating Accuracy Precision Recall F1 Score 
1 72.58% 0.10 0.13 0.11 
2 62.66% 0.14 0.13 0.13 
3 62.10% 0.14 0.14 0.14 
4 57.42% 0.18 0.12 0.14 
5 71.05% 0.081 0.13 0.10 
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Table 3-26: Accuracy, Precision, Recall, And F1 Score For POCR AHP 

Comprehensive Rating Accuracy Precision Recall F1 Score 
1 71.45% 0.068 0.091 0.078 
2 61.21% 0.094 0.094 0.094 
3 60.48% 0.11 0.10 0.11 
4 55.48% 0.13 0.093 0.11 
5 70.08% 0.054 0.082 0.065 

 

The comprehensive ratings vs. predicted comprehensive ratings for few random 

pipes were plotted in Figure 3-8 to evaluate better the difference of both the ratings.  

 

Figure 3-8: Comparison Between Actual And Predicted For Selected Pipe ID’s. 

3.7 Summary 

AHP modeling has been used extensively to develop a model to predict the failure 

of sewer pipes. This study developed an AHP model for sewer pipe failure prediction 

models and calculated the overall pipe rating based on the pipe characteristics, external 

factors, and hydraulic and other factors in the sewer pipes in Shreveport in Louisiana, the 

United States. The comprehensive score was determined using a linear combination 

between the relative importance weights of all factors and their respective ratings. AHP 
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was used to obtain the relative importance weights of all criteria. The predicted 

comprehensive Rating is compared with the actual comprehensive Rating, and this model 

showed us an accuracy of 12.90%, which is not satisfactory. Since the actual relation 

between the response and the predictor is not linear, the accuracy of the model is very low. 

SME judgment can vary among different utilities. Because the CRS score is determined 

using a linear combination, any change in any of the factors will result in an obvious change 

of the outcome, a change that cannot be determined if it is statistically significant or not. 

Therefore, this model is not suggested as it requires manual effort from the inspectors to 

calculate the importance of factors for better accuracy, which might lead to human errors 

again. We have developed a Comprehensive Rating model using K-NN. 
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CHAPTER 4 
 

COMPREHENSIVE RATING METHODOLOGY USING K-NN 
 

4.1 Background 
 
This chapter aims to develop a comprehensive sewer condition rating model that 

incorporates the already well-established PACP defect rating methodology, and that also 

considers additional pipe internal and external parameters and factors.  K-Nearest Neighbor 

(K-NN) is used to develop a Comprehensive Rating (CR) model that assesses the overall 

condition of the sewer pipe on a scale of 1 through 5.  The novelty of this study consists of 

including PACP structural and O&M defects, as well as sewer pipe internal and external 

factors to determine the overall condition of the sewer pipe. The goal is to offer a more 

comprehensive method to determine the condition of a sewer pipe, given the existing 

CCTV inspection data, as well as physical, operational, and environmental factors that 

affect the overall condition of the pipe, which is more accurate than Comprehensive rating 

than AHP and to reduce the manual efforts of the inspector. The present model developed 

is still applied to Shreveport Phase 3 data for validation. 

4.2 Introduction 

In the first step, the factors under criteria of the model developed using AHP, as 

shown in Figure 3-1 are still used. Data used for AHP is still used. The overall framework 

is shown in Figure 4-1. 
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Figure 4-1: Overall Comprehensive Rating Framework For K-NN. 

4.3 Feature Importance 

Feature Importance refers to techniques that calculate a score for all the input 

features for a given model and the scores simply represent the “importance” of each feature. 

A higher score means that the specific feature will have a larger effect on the model that is 

being used to predict a certain variable.  The feature importance which is used is 

Permutation Feature Importance. The feature importance is calculated by noticing the 

increase or decrease in error when we permute the values of a feature. If permuting the 

values causes a huge change in the error, it means the feature is important for our model. 

The best thing about this method is that it can be applied to every machine learning model. 

Its approach is model agnostic which gives you much freedom. There are no complex 

mathematical formulas behind it. The permutation feature importance is based on an 

algorithm that works as follows. 

• Calculate the mean squared error with the original values. 

• Shuffle the values for the features and make predictions. 
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• Calculate the error rate with the shuffled values. 

• Compare the difference between them. 

• Sort the differences in descending order to get features with most to least 

importance. 

4.4 K-Nearest Neighbor 
 
The next step is to build our model using 𝐾 − Nearest Neighbor (K-NN) (Peterson, 

2009) classifier.  The K-nearest neighbor's algorithm was first described in early 1950. This 

method did not gain popularity until 1960, when increased computing power became 

available. The K-nearest neighbor's algorithm is a non-parametric, supervised learning 

classifier, which uses proximity to make classifications or predictions about the grouping 

of an individual data point. K-NN classifies the new data points based on the similarity 

measure of the earlier stored data points. To select the K value, we need to estimate the 

error rate of the classifier for different K values and select the K value which have a 

minimum error rate. 

Compared to other algorithms, K-NN is called Lazy Learner (Instance-based 

learning). It does not learn anything in the training period. It does not derive any 

discriminative function from the training data. It stores the training dataset and learns from 

it only when making real-time predictions. This makes the K-NN algorithm much faster 

than other algorithms that require training e.g., SVM, Linear Regression, etc. New data can 

be added seamlessly at any point in time, which will not impact the algorithm's accuracy. 

Finally, it is very easy to implement because it only requires two parameters K and the 

Euclidean distance function. 



 

 

62 

 
 

Algorithm: 

Input: 𝐸:	All factors, 𝐾: Chosen Number of Neighbors 

Output:  𝐶: Mode of 𝐾 labels 

Begin: 

• Load the data. 

• Initialize K to your chosen number of neighbors. 

• For each testing data: 

o Calculate the distance between 30% of testing data (𝑥, 𝑦) with all 70% of 

the training data. (a, b) using Euclidean distance (ED) as shown in Eq 4-1. 

 	𝐸𝐷	 = 	V(𝑥 − 𝑎)( + (𝑦 − 𝑏)()	 Eq. 4-1 

o Add the distance and the index of testing data to the ordered collection. 

• Sort the ordered collection of distances and indices in ascending order by 

distances. 

• Pick the first K entries from the sorted collection. 

• Get the labels of selected entries. 

• Return the mode of K labels. 

End 

4.5 Results and Model Evaluation 
 
We have divided the data into 70% training and 30% testing data. Permutation 

Feature importance is performed for our algorithm. Base line error is 0.27 with all the 12 

factors. Figure 4-2 shows the Shuffled error rate minus Base line error rate of all factors. 

10 factors except the seismic zone and diameter are important in predicting the target 

variable. 
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Figure 4-2: Feature Importance Of The Factors. 

We have eliminated seismic zone and diameter in our data, and the process is 

repeated several times with different values of K to reduce errors and to make accurate 

predictions.  We have finally chosen the value as K = 9. As the value of K is increased, our 

predictions become more stable and will have more accurate predictions up to a certain 

point.  Figure 4-3 shows the graph of the misclassification rate as a function of K for 25 

and 30, and from both graphs, we see the lowest error is found at K = 9 with a value of 

0.27290. We also checked for different values of K, such as 15 and 20, and we found the 

lowest value of the misclassification rate at 7. So, we have used the value as K = 9 for 

better accuracy. Table 4-1 shows the count and misclassification rate for training and 

testing data for different K values. Misclassification is slightly higher because of less 

training data for comprehensive ratings 1 and slightly fewer training data for 

comprehensive ratings 2 and 3 compared to comprehensive ratings 4. This can be reduced 
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when the model is trained with a broader variety of data with different comprehensive 

ratings. In our scenario, we didn’t consider the entire dataset because we have more 

comprehensive ratings related to 3 and 4 than others. 

 

 
 

Figure 4-3: Misclassification Error For Function Of 𝐾. 
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Table 4-1: Misclassification Rate For Each K. 

   
K  Training 

Count 
Misclassification 
Error 

Validation 
Count 

Misclassification  
Error 

1 868 0.31602 372 0.31806 
2 868 0.31215 372 0.31484 
3 868 0.30984 372 0.30839 
4 868 0.30414 372 0.30839 
5 868 0.30054 372 0.30194 
6 868 0.29594 372 0.30127 
7 868 0.29176 372 0.29627 
8 868 0.28978 372 0.28258 
9 868 0.27796 372 0.27290 
10 868 0.27883 372 0.28548 
11 868 0.27935 372 0.29194 
12 868 0.28011 372 0.29226 
13 868 0.28656 372 0.29871 
14 868 0.28978 372 0.30012 
15 868 0.29012 372 0.30194 
16 868 0.30102 372 0.31484 
17 868 0.30996 372 0.31516 
18 868 0.31125 372 0.32145 
19 868 0.31179 372 0.32349 
20 868 0.32245 372 0.32574 

 

To proceed with the K-NN calculation process, Euclidian distance is used to find 

the distance between each testing data to training data as shown in Eq 4-1. Table 4-2 shows 

the confusion matrix of validation data compared with the actual comprehensive ratings 

given by the inspector. 
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Table 4-2: Confusion Matrix For K-NN. 

Predicted Actual Comprehensive Rating Count 
Comprehensive 
Rating 

1 2 3 4 5 

1 33 12 0 0 0 
2 6 58 7 6 0 
3 0 7 79 15 5 
4 0 0 11 61 9 
5 0 2 10 13 38 

 

We have compared our same data set for Pipe overall conditional rating (POCR) 

model  developed (Vladeanu and Matthews, 2019a) using multicriteria decision analysis 

and Comprehensive Rating (CR) model using Analytical Hierarchy Process (AHP)  

(Betgeri, 2022) a with the actual comprehensive ratings given by the inspector.  Table 4-3 

shows the confusion matrix of the POCR model, and Table 4-4 shows the confusion matrix 

of the Comprehensive Rating model using AHP. The achieved overall accuracy of all the 

models is shown in Table 4-5 and Figure 4-4. 

 
Table 4-3: Confusion Matrix For Comprehensive Rating Model Using AHP. 

Predicted Actual Comprehensive Rating Count 
Comprehensive 
Rating 

1 2 3 4 5 

1 5 17 23 20 6 
2 10 2 20 31 14 
3 7 22 20 27 18 
4 9 20 19 8 13 
5 8 18 25 9 1 
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Table 4-4: Confusion Matrix For POCR Model Using AHP. 
 

Predicted Actual Comprehensive Rating Count 
Comprehensive 
Rating 

1 2 3 4 5 

1 4 15 24 21 8 
2 12 3 22 23 17 
3 7 21 11 26 19 
4 8 27 21 5 12 
5 6 14 27 17 2 

 

Table 4-5: Overall Accuracy Comparison Between K-NN, CR AHP And POCR AHP. 
 

Comprehensive 

Rating 

CR model K-

NN 

CR model 

using AHP  

POCR model 

using AHP 

Accuracy 72.31% 9.68% 6.72% 
 

 

Figure 4-4: Overall Accuracy Comparison Between K-NN, POCR AHP And CR AHP. 

Table 4-6 Table 4-7 and Table 4-8 shows the accuracy, precision, recall, and F1 

score for all 5 predicted comprehensive ratings for K-NN CR, AHP CR and POCR. For 

Classification predictions, four types of outcomes occur there are True Positive (TP), True 
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Negative (TN), False Positive (FP), False Negative (FN), and Accuracy, Precision, Recall 

and F1 score are calculated using Eq 3-10 to Eq 3-13. 

 
Table 4-6: Accuracy, Precision, Recall, And F1 Score Of K-NN CR. 

Comprehensive Rating Accuracy Precision Recall F1 Score 
1 95.16% 0.73 0.85 0.79 
2 89.25% 0.75 0.73 0.74 
3 85.22% 0.75 0.74 0.74 
4 85.48% 0.75 0.64 0.69 
5 89.52% 0.60 0.73 0.66 

 

Table 4-7: Accuracy, Precision, Recall, And F1 Score Of AHP CR. 

Comprehensive Rating Accuracy Precision Recall F1 Score 
1 73.12% 0.070 0.13 0.091 
2 59.14% 0.026 0.025 0.026 
3 56.72% 0.210 0.190 0.200 
4 60.22% 0.120 0.084 0.098 
5 70.16% 0.016 0.019 0.018 

 

Table 4-8: Accuracy, Precision, Recall, And F1 Score Of AHP POCR. 

Comprehensive Rating Accuracy Precision Recall F1 Score 
1 72.85% 0.056 0.11 0.073 
2 59.41% 0.039 0.037 0.039 
3 55.11% 0.130 0.100 0.120 
4 58.33% 0.068 0.054 0.061 
5 67.74% 0.030 0.034 0.032 

 

In summary, K-NN classifier is superior to the AHP POCR and AHP CR for 

classifying defect ratings based on the 10 factors and reducing the manual efforts of the 

inspector. In general, we have used other Machine Learning classifiers to check the 
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accuracy of the classification of comprehensive rating. Fortunately, K-NN performed well 

compared to other classifiers. Table 4-9 shows the accuracy of the other Machine Learning 

classifier algorithms. 

Table 4-9: Accuracy Of The Other Classifier Algorithms. 

Algorithm Accuracy 
Naïve Bayes 55.38% 

Decision Tree 63.25% 
Random Forest 67.72% 

 

4.6 Summary 
 
The proposed condition rating model assesses the overall state of degradation of 

the sewer pipe, combining a series of pipe characteristics, external characteristics, and 

hydraulic characteristics. A K-Nearest Neighbor (K-NN) model was used to find the pipe 

rating based on existing training data. To validate the model, the predicted Comprehensive 

ratings of our model were compared with actual comprehensive ratings, and our accuracy 

was 72.31% which is satisfactory. We also compared the predicted comprehensive rating 

Pipe overall conditional rating (POCR) model using AHP and the Comprehensive Rating 

model AHP with actual comprehensive ratings. The accuracy was 6.72%, and 9.68%, 

which shows the K-NN model is more accurate in predicting the comprehensive rating. In 

general, we have used other Machine Learning classifiers to check the accuracy of the 

classification of comprehensive rating. Fortunately, K-NN performed well compared to 

another classifier.
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CHAPTER 5 

 

DETERIORATION MODEL USING MARKOV CHAIN 
 

5.1 Background 
 
A comprehensive model for rating the condition of sewer pipes has so far been 

created. The likelihood that the pipe will fail is necessary for a full decision framework 

(POF). To assess a POF's risk of failure at any given time, knowledge about it is essential. 

Decision-makers can more effectively plan for and allocate funds for present and upcoming 

rehabilitation and replacement projects with the use of this information. This chapter's 

objective is to show a sewer deterioration model that calculates the likelihood that any 

given age of the pipe will be in one of the five states previously established with the model 

developed in chapter 4. Specifically, a Continuous Time Markov Chain (CTMC) model is 

developed to model a pipe cohorts’1 deterioration process over time, from existing 

condition assessment data. The model produces several results. First, a transition rate 

matrix is created, which is then used to compute the probabilities of transitioning from one 

condition to another at any given time. Next, deterioration curves are created to provide a 

visual representation of the pipe's conditions over time. 

 
1 Pipe cohort, in this work, refers to a group of pipes that have the same characteristics, such as 

same pipe material, same diameter, and being part of the sewer basin. 
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For decision-making reasons, several studies developed sewer pipe deterioration 

models using the Markov Chain technique. The degradation process is typically believed 

to occur on a discrete timescale in research studies that focus on deterioration modeling, 

indicating that condition changes happened at distinct time steps (such as yearly, bi-yearly, 

or every five years). (Wirahadikusumah et al., 2001, Kleiner and Rajani, 2001, Baik et al., 

2006, Micevski et al., 2002, Wirahadikusumah et al., 1998, Abraham et al., 1998),  are 

some of the most well-known studies (2006). 

For large, combined sewers, for instance, Wirahadikusumah (Wirahadikusumah et 

al., 2001) created a discrete time markov chain (DTMC) model on the presumption that 

only one condition change can take place during a one-year transition period. The transition 

probabilities between the five condition states were predicted using a nonlinear 

optimization, and different deterioration models were created for various combinations of 

pipe material, backfill material, groundwater table elevation, and depth of cover. The 

study's conclusion was that to confirm the Markovian property, at least three successive 

data sets containing inspection data from various observation periods were required. In 

short, the Markovian property states that the conditional probability distribution of any 

future event is independent of past states and depends only on the current condition (Babu, 

1998, Kulkarni, 1995).  

The condition changes in a wastewater pipe deterioration process modeled with 

Continuous Time Markov Chain (CTMC) occur on a continuous time scale as opposed to 

a discrete one like a DTMC process. To simulate the degradation of large diameter water 

and wastewater systems, Kleiner and Rajani (Kleiner and Rajani, 2001) used a semi-

Markov approach. A semi-Markov model is a Markovian process in which the time spent 
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in each state has an independent distribution in duration. This work used a two-parameter 

Weibull probability distribution to model the duration of time as a random variable. It was 

thought that degradation happened one state transition at a time. Since there were no 

inspection data available for the investigation, data were generated using a Monte Carlo 

simulation to determine the duration periods in each state. However, due to a lack of actual 

data, the study still only serves as a theoretical foundation. Additionally, no other variables, 

such as pipe material, diameter, soil type, or any other parameters, were employed to 

evaluate the impact of these variables on the asset's degradation other than the asset's age 

as a factor determining deterioration (Baik et al., 2006). 

For stormwater pipelines, Micevski (Micevski et al., 2002) created a Markov 

model. In contrast to earlier studies, this one considered various state changes within the 

one-year transition period. With the help of the Metropolis-Hastings algorithm, the 

transition probabilities were calculated. According to the study's findings, separate Markov 

deterioration models are needed for pipes belonging to different categories depending on 

the pipe's diameter, material, type of soil, and proximity to a coastline. 

For the deterioration of wastewater systems, (Baik et al., 2006) created a Markov 

chain model. For each of the five condition states under consideration, the transition 

probabilities were calculated separately using an ordered probity model. Their research 

revealed that older pipes in better condition are more likely to decay at a faster rate than 

pipelines that are shorter or newer. More specifically, a pipe with a steeper slope has a 

larger chance of degradation. The absence of data integrity resulted in a lower goodness of 

fit for the ordered probity model of conditions 4 and 5, and the subjectivity of certified 

inspectors' interpretation of the CCTV inspection data are two limitations of the model that 
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the authors mention. Additional shortcomings of the application of the ordered probity 

model in estimating transition probabilities of Markov chain models (Baik et al., 2006, 

Madanat et al., 1995) has been presented by Kallen (Kallen, 2009). One of the most 

noteworthy drawbacks of estimating the transition probabilities for groups of assets using 

the ordered probit method is that these probabilities should be estimated directly using 

inspection data for all the assets and not by averaging transition probabilities of individual 

assets. Kallen has detailed other drawbacks of using the ordered probity model to estimate 

the transition probabilities of Markov chain models (Madanat et al., 1995, Baik et al., 2006, 

Kallen, 2009). The fact that these probabilities should be calculated directly using 

inspection data for all the assets rather than by averaging the transition probabilities of 

individual assets is one of the most notable disadvantages of estimating the transition 

probabilities for groups of assets using the ordered probity method. 

5.2 Discrete-Time Markov Chain Process 
 
The Markov Chain (MC) process is a stochastic process in which the conditional 

probability distribution of any future event is independent of past states and depends only 

on the current condition (Babu, 1998, Kulkarni, 1995). This property of a stochastic process 

is called the Markovian property. According to Kallen and Van Noortwijk (2006), 

stochastic processes are especially useful for modeling dynamic systems that involve 

uncertainty over time. 

Infrastructure deterioration is typically a function of the asset’s age, as well as its 

structural and hydraulic condition over time. A Discrete Time Markov Chain (DTMC) 

model is useful in modeling the deterioration process of infrastructure systems such as 

bridges (Kallen and Van Noortwijk, 2006, Madanat et al., 1995) and wastewater pipes 
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(Abraham et al., 1998, Wirahadikusumah et al., 2001, Wirahadikusumah et al., 1998, 

Micevski et al., 2002, Kleiner and Rajani, 2001, Kleiner and Rajani, 2002, Baik et al., 2006, 

Angkasuwansiri and Sinha, 2015) over time. 

Let Xn be a stochastic process {Xn, n=0, 1, 2 …} with a finite number of states. If 

the process is in state i at time t, then it is represented as Xt = i. The probability that the 

system will move to state j at time t+1 is expressed in Eq. 5-1. This is the definition of a 

Discrete Time Markov Chain (DTMC), where deterioration, or better said, change of 

condition is assumed to occur and are observed at discrete points in time. 

 𝑃{𝑋*6' = 𝑗|𝑋* = 𝑖, 𝑋*7' = 𝑖.7', … , 𝑋' = 𝑖', 𝑋& = 𝑖&} = 	𝑝%3 Eq. 5-1 

For all states i0, i1... in-1, i, j and all n ≥ 0, and pij is the probability that, given the 

current condition i, the process will transition to condition j. The Markovian property is 

expressed in Eq. 5-2: 

 
𝑃{𝑋.6' = 𝑗|𝑋. = 𝑖, 𝑋.7' = 𝑖.7', … , 𝑋' = 𝑖', 𝑋& = 𝑖&}

= 𝑃{𝑋.6' = 𝑗|𝑋. = 𝑖} 	= 	𝑝%3 
Eq. 5-2 

Wastewater pipes are assumed to be installed in an excellent condition that is 

worsening as the pipe ages. The Comprehensive rating, previously determined in Chapter 

4, describes this overall condition. So, a wastewater pipe will deteriorate from condition 1 

at the time of installation, to a worse condition, condition 5 as time passes, assuming no 

maintenance or rehabilitation actions are taken. Figure 5-1 presents the DTMC of a 

wastewater deterioration process where there are five conditions the pipe can be in at any 

given time. The probabilities of moving from a good condition to a worse condition are 

shown as pij. 
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Figure 5-1: DTMC Process Of Wastewater Pipe Deterioration In Five Conditions. 
 

Considering the DTMC model and Eq. 5-3, the transition probabilities can be 

presented in a 5 x 5 transition probability matrix, P, where deterioration occurs 

entropically, which means that the pipe can stay in the same condition, or move to a worse 

condition, but it cannot improve to a better condition. The transition probability matrix is 

presented in Eq. 5-3: 

𝑃 = 	

⎣
⎢
⎢
⎢
⎡
𝑝'' 𝑝'( 𝑝'8 𝑝'9 𝑝':
0 𝑝(( 𝑝(8 𝑝(9 𝑝(:
0 0 𝑝88 𝑝89 𝑝8:
0 0 0 𝑝9: 𝑝::
0 0 0 0 1 ⎦

⎥
⎥
⎥
⎤
 Eq. 5-3 

 
Each element of matrix P represents the probability that a pipe that is currently in 

state i will deteriorate to state j at the next observation period. The transition probabilities 

in matrix P represent one-time step probabilities, depending on the condition inspection 

frequency (i.e., transition probabilities for one year, two years, or five years, depending on 

the considered observation time). Probabilities are always non-negative, and the process 

always transitions in some other state; therefore, the following properties as shown in Eq. 

5-4 are applicable: 

𝑝%3 	≥ 0								𝑖, 𝑗 ≥ 0;									e𝑝%3 = 1												𝑖 = 0, 1, …
;

32&

	 , 𝑚	  Eq. 5-4 
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The element in the last row of matrix P represents the absorbing state; therefore, 

the probability is 1, meaning that once a wastewater pipe enters condition state 5, it will 

remain there with probability 1 until it is rehabilitated or replaced. Once a wastewater that 

is in condition 5 is replaced, it automatically moves to a better condition. For these 

instances, a new DTMC model must be developed, with inspection data on the conditions 

over time of the new replaced pipes. This aspect is not discussed in this research. 

However, infrastructure deterioration occurs on a continuous time scale, as opposed 

to a discrete time scale. Even if deterioration is observed at discrete points in time, the 

process itself is still a continuous process. Therefore, it is warranted that the deterioration 

process is modeled as a Continuous Time Markov Chain (CTMC) model, as opposed to a 

DTMC.  

As a result, in this research, a CTMC approach is used to model wastewater pipe 

deterioration. Arguments for using a DTMC rather than a CTMC for modeling 

infrastructure asset deterioration are that calculations are more straightforward using the 

former rather than the latter (Kallen and Van Noortwijk, 2006). According to Kallen and 

Van Noortwijk (Kallen and Van Noortwijk, 2006), this is true, but the complexity of 

computations in a CTMC is not much higher than in a DTMC, thus making these 

simplifications is not warranted. 

5.3 Continuous-Time Markov Chain Process 
 
5.3.1 CTMC Process 

 
A CTMC is a stochastic model that describes a system with a countable state space 

that enters state i at time s and stays there for a random amount of time. In this study, the 

stochastic process {X(t), t ≥ 0} is a CTMC that describes the uncertain condition of a 
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wastewater segment over time. This is called the sojourn time, and it is exponentially 

distributed, with parameter qi (qi ≥ 0).  

Formally, a stochastic process {X(t), t ≥ 0} that has a countable state space, S, is a 

CTMC if it changes states at times 0 < S1 < S2 < … and the embedded process {X0,(Xn,Yn), 

n ≥ 1} defined by Xn = X(Sn+)2 (n ≥ 1), Yn = Sn-Sn-1 (n ≥ 1) with S0 = 0 satisfies Eq. 5-5 

(Kulkarni, 1995): 

𝑃f𝑋.6' = 𝑗, 𝑌.6' > 𝑦, h𝑋. = 𝑖, 𝑌.,	𝑋.7', 𝑌.7', … , 𝑋', 𝑌', 𝑋&, 𝑌&i = 	𝑝%3𝑒7<$=  Eq. 5-5 

where 

• Yn=Sn-Sn-1 (n ≥ 1) is the nth sojourn time 

• Sn is the time of the nth (n ≥ 1) transition 

A CTMC, {X(t), t ≥ 0}, has an embedded DTMC, {Xn, n ≥ 0}, for which transition 

probabilities, given the sojourn times, can be expressed as shown in Eq.5-5 (Kulkarni, 

1995). 

5.3.2 Transition Probabilities Of A CTMC Process 
 
After spending exponentially distributed time in state i, the system jumps to state j 

with probability pij at a time t. According to Kulkarni (Kulkarni, 1995), the sojourn time 

and the new state depend only on the current state, that is state i, and not on any past states 

prior to time t. Thus, the history impacts the future outcome through the current, present 

state of the system. 

To find and solve the transition probability matrix at time t, P(t), of such a process, 

the differential equation shown in Eq. 5-6 (forward Kolmogorov equation) must be solved: 

∂
∂t 𝑃

(𝑠, 𝑡) = 𝑃(𝑠, 𝑡)𝑄(𝑡)	  Eq. 5-6 

 
 

2 Xn=X(Sn+) is the state of the system immediately after the nth transition, and is X(Sn) 
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In Equation (5-6), Q is called the transition intensity, transition rate, or generator 

matrix. It is important to note that t is the time since the process X(t) has started, and not 

the time since entering the last state (Kallen, 2009). Therefore, the transition intensities 

depend on the pipe’s age, and not on the duration of the last state of the wastewater. For a 

finite state space, computing the transition probability matrix P(t) associated with a CTMC 

is done using Eq.5-7: 

𝑃(𝑡) = exp	(𝑄𝑡)  Eq. 5-7 

The generator matrix, Q, is defined as per Eq. 5-8. 

𝑄 = q𝑞%3s																				𝑖, 𝑗	 ∈ 𝑆  Eq. 5-8  

For the generator matrix, Q, the sum of all elements in a row adds up to 1, as shown in 

Eq.5-9:  

e𝑞%3
3∈?

= 0,					𝑞%% = −e𝑞%3 = −
3@%

𝑞% ,										𝑖 = 0, 1, … , 𝐽  Eq. 5-9  

The matrix of transition rates 𝑄 = q𝑞%3s column values should be zero and the diagonal 

elements are the negative sum of the off-diagonal elements in the column. 

The CTMC that describes the wastewater deterioration model in this study is shown in 

Figure 5-2. 

 

 

Figure 5-2: CTMC Process Of Wastewater Deterioration Considered In This Study. 
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The time spent in a state before moving to a next state, the sojourn time (Yij), can 

be computed from the transition rates. As a result, the time spent in rating 1 before moving 

to rating 2 is calculated using the rate q11, while the sojourn time in rating 2 is calculated 

using rate q22 and similarly the sojourn time for other ratings is calculated as shown in Eq. 

5-10:  

 		𝑌%3 =
1
𝑞%3
	 , 𝑖 = 𝑗			 Eq. 5-10 

 
It is said that a CTMC {X(t), t ≥ 0} is fully described by its initial distribution, a, 

and its transition probability matrix, P(t). The initial distribution of a CTMC is a row vector 

that represents the probability mass function of the system being in state i at time t=0 

(Kulkarni, 1995). So, in the case of the CTMC presented in Figure 5-2, a is a row vector 

of five elements, each element representing the probability of being in any of the five states, 

at time 0, that is the time of installation of the pipes. Since it is assumed that the pipes were 

installed in perfect conditions and installed at same year, so the initial distribution of the 

CTMC in this study is the row vector shown in Eq. 5-11: 

 𝑎 = [1	0	0	0	0]  Eq. 5-11  

To find the transition probabilities at any age of the wastewater pipe, the desired 

age must be inserted into Eq. 5-7. When observation data is available at age t of the pipe, 

transition probabilities to worse conditions at subsequent times are found from the 

transition probability matrix P(t+s), where s is the time elapsed from the observation (i.e., 

the last CCTV inspection). However, the most difficult part of the solution is to find the 

generator matrix because our CTMC model will only be in the present state or will move 

to worst state but will not improve its condition. The method to computationally find 

generator matrix Q is described in next Section 5.4. 
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5.4 Estimation Of The Generator Matrix, Q, For CTMC 

 
The goal of this research is to use a CTMC process to model wastewater pipe 

deterioration, not to develop computational methods to solve for the generator matrix. 

There is extensive literature across various disciplines such as medicine, business, or 

physics that have developed a variety of computational methods for determining Q and P(t) 

see for example the works of  (Bladt and Sørensen, 2005, Bladt and Sørensen, 2009)).  In 

this work, estimation of the generator matrix, Q, was done by using the statistical software 

R, and implementing the “ctmcd” package (Pfeuffer, 2017). 

The major difficulty when estimating the parameters of a CTMC is that 

continuously observed data is not available in most cases, but only discrete-time 

observations exist. This is the case of wastewater condition assessment data as well. This 

drawback has been solved in the contributed research article of the “ctmcd” package by 

(Pfeuffer, 2017) who presents several methods to estimate the generator matrix of a CTMC. 

In the current research work, the Gibbs sampling method has been used, and the following 

paragraphs will briefly describe it. For other computational methods available in R, the 

reader is referred to (Pfeuffer, 2017) and Bladt and Sørensen (Bladt and Sørensen, 2005, 

Bladt and Sørensen, 2009). 

Gibbs sampling is a Monte Carlo Markov Chain (MCMC) sampling method. 

MCMC methods are used in Bayesian inference to characterize a distribution by randomly 

drawing samples out of it without knowing all of its properties (Van Ravenzwaaij et al., 

2018). Any statistic of the posterior distribution can be, theoretically, computed by 

simulating a large number of samples from the distribution(Yildirim, 2012). As a note, 

prior and posterior distributions are used in Bayesian statistics where the prior distribution 
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is an initial belief about the studied parameter, and it is updated based on the available data 

to obtain the posterior distribution of the parameter, using Bayes’ theorem. 

Gibbs sampling generates posterior distributions of the parameter (or parameters) 

by sequentially sampling through each parameter from its conditional distribution while 

the rest of the parameters’ values remain fixed at their current value(Yildirim, 2012). To 

have an easier understanding of this process, Yildirim (Yildirim, 2012) presented the 

generic algorithm of the Gibbs sampling method. 

Algorithm 1 for Gibbs Sampler generalized by Yildirim: 

Initialize 𝑥(&)~𝑞(𝑥) 

for iteration i=1,	2,….	N do 

 𝑥'
(%)~𝑝(𝑋' = 𝑥'|𝑋( = 𝑥(

(%7'), 𝑋8 = 𝑥8
(%7'), … , 𝑋C = 𝑥C

(%7')) 

 𝑥(
(%)~𝑝(𝑋( = 𝑥(|𝑋' = 𝑥'

(%), 𝑋8 = 𝑥8
(%7'), … , 𝑋C = 𝑥C

(%7')) 

 … 

 𝑥C
(%)~𝑝(𝑋D = 𝑥D|𝑋' = 𝑥'

(%), 𝑋( = 𝑥(
(%), … , 𝑋C = 𝑥C7'

(%) ) 

end for 

In the above generalized algorithm, the samples are generated by passing through 

all the conditional posterior distributions of the parameters, one random variable at a time. 

At the initialization, random samples are generated that might not be representative of the 

posterior distribution. As a result, these algorithms are typically run for many iterations 

and early iterations are generally discarded. The discarded samples, or iterations, are called 

the burn-in period (Yildirim, 2012, Bladt and Sørensen, 2005, Bladt and Sørensen, 2009). 

To be specific, solving for the generator matrix Q in this study using the MCMC 

method, a prior density of the generator matrix is chosen, ϕ(Q), and the method is used to 
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solve for the conditional distribution of Q given the existing data 𝑥 =

f𝑥%4h𝑖 = 1,2, … , 𝑛4 , 𝑘 = 1,2, … , 𝑁i. Samples are drawn from the conditional distribution of 

(Q, X) given x, and by implementing the Gibbs sampler alternately X, is drawn given (Q, 

x) and Q is drawn given (X, x) by following the algorithm presented above. The continuous 

time sample paths of the process are represented by 𝑋 = {𝑋*4h0 ≤ 𝑡 ≤ 𝜏, 𝑘 = 1,2, … , 𝑁}. 

Further detailed description of the Gibbs sampler is provided in Bland and Sørensen (2005) 

with an application to estimate transition rates between credit ratings from observations at 

discrete points in time. 

Pfeuffer (Pfeuffer, 2017) developed the “ctmcd” package for the R environment 

that allows for the implementation of the Gibbs sampling method to solve for the generator 

matrix of a CTMC, having only discrete observed data at times 0 and T. This is actually 

the case for many of the systems in the wastewater industry, where condition data is known 

at the time of installation (t = 0, assuming an almost perfect condition), and condition 

inspection is performed at another time in the future at age T of the pipe. The case study 

presented in Section 5.5 has this type of data as well. 

Bladt and Sørensen (Bladt and Sørensen, 2005) proved that the Gamma distribution 

can be used as a prior distribution for estimating the off-diagonal elements of the generator 

matrix (Pfeuffer, 2017). As a result, the posterior distribution is derived as shown in Eq. 

(5-12): 

𝑓(𝑄|{𝑠(0), 𝑠(𝑇)})

∝ 𝐿(𝑄|{𝑠(0), 𝑠(𝑇)})��𝑞%3
E$%7' exp�−𝑞%3𝜓%�

3@%

F

%2'

∝ 	��𝑞%3
C$%(G)6E$%7' exp�−𝑞%3(𝑅%(𝑇) + 𝜓%)�

3@%

F

%2'

 

 Eq. 5-12 
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Briefly, the Gamma distribution is a two-parameter continuous probability 

distribution, where the first parameter, α, is called the shape parameter, and the second 

parameter, β, is the rate parameter. Both α and β are positive real numbers. In Eq. (5-12), 

Bladt and Sørensen (Bladt and Sørensen, 2005) define a Gamma distribution with 

parameters ϕ and ψ: Γ(ϕ,ψ). More details about this can be found in Bladt and Sørensen 

(Bladt and Sørensen, 2005, Bladt and Sørensen, 2009). 

Based on Eq. 5-12, the Gibbs sampler used in the “ctmcd” package samples at each 

iteration a full conditional distribution from the missing data, given the current parameter 

values and the existing observations at discrete times. The method simulates at each 

iteration the missing number of transitions from state i to state j and the cumulative sojourn 

times in each state before the process moves to another state given the current parameter 

estimates. New parameter values are drawn then, based on the imputed data. The sampling 

is run for 10,000 iterations, the first 1,000 being discarded. After the 10,000 iterations, each 

element of the generator matrix is sampled. 

5.5 Data Preparation and Implementation 
 
The selected pipe cohort for developing the CTMC and subsequent deterioration 

model is Vitrified Clay (VC) sanitary wastewater pipe of 8-inch diameter. To prepare the 

data for the R environment, a tabular format was used in a .cvs file. For each pipe segment 

(PipeID), there were two consecutive rows of information: the first row contains data from 

the installation year (t=0) which is 1965, and the second row of information contains data 

from the inspection year which is 2021. Therefore, all pipe segments have two discrete 

time condition data points, one from the time of installation and one from the time of the 

only reported available inspection. For each pipe segment, the Comprehensive Rating was 
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computed using K-NN, as presented in Chapter 4. We have considered that during the 

installation all the pipes are installed in the best condition, so the comprehensive rating of 

1 is assigned for all the pipes installed in the year 1965. Part of the data file which is given 

as input to R environment is shown in Table 5-1. 

Table 5-1: Input Data In R Environment For Computing Generator Matrix Q. 

Pipe ID Inspection Year Age [Year] CR 

1 1965 0 1 

1 2021 56 3 

2 1965 0 1 

2 2021 56 3 

3 1965 0 1 

3 2021 56 3 

4 1965 0 1 

4 2021 56 4 

5 1965 0 1 

5 2021 56 2 

6 1965 0 1 

6 2021 56 2 
 

After the data file was read into R, the absolute transition frequency matrix was 

calculated, as this is required as input for the Gibbs sampler algorithm. The R code is found 

in Appendix F. To use the method, the prior distribution must also be specified as a list 

object. After both the absolute transition frequency matrix and the prior distribution have 

been defined, the Gibbs method was called, using the following command: 



 

 

85 

 
 

Q ←gm(tm = abs_freq, te = 56, method = "GS", prior = pr, burnin = 1000) 

where 

• tm is the absolute transition frequency matrix 

• te is the average elapsed time between observations (in years) 

• the method stands for Gibbs sampler 

• prior is the prior distribution defined in a list form 

• burning is the first 1000 iterations that are removed from the method 

• Q is the 5x5 generator matrix obtained using the Gibbs sampler 

method 

The Gibbs sampler method runs for 10,000 iterations, from which the first 1,000 

are removed due to them not being fully representative of the posterior distribution of the 

generator matrix elements (Bladt and Sørensen, 2005, Bladt and Sørensen, 2009). The 

results are discussed in the next section. 

5.6 Results 
 

5.6.1 Generator Matrix 
 
The R programming code for obtaining the generator matrix of the CTMC is in 

Appendix H. Once the code was run, each element of the generator matrix Q was 

determined, following the 10,000 iterations of the Gibbs sampler. The generator matrix 

that shows the transition rates between conditions for the analyzed VC pipe cohort is 

presented below. 

𝑄 =	

⎣
⎢
⎢
⎢
⎡
						−1.870230								 0.794333 0.533956 0.485380 0.056558

0.000000 −2.507080 1.449363 0.854130 0.203587
0.000000 0.000000 −2.870152 1.439711 1.430441
0.000000 0.000000 0.000000 −3.971936 3.971936
0.000000 0.000000 0.000000 0.000000 0.000000⎦

⎥
⎥
⎥
⎤
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From the generator matrix, the sojourn times were calculated using Eq. 5-10. The 

results show that the time spent in rating 1, before moving to rating 2, is on average 29.94 

years. The time spent in rating 2, before moving to the rating condition 3, is 22.33 years. 

The time spent in rating 3, before moving to the rating condition 4, is 19.51 years. The time 

spent in rating 4, before moving to the rating condition 5, is 14.09 years. Based on the 

sojourn times, a VC pipe of 8-inch diameter from the analyzed cohort moves to the worst 

rating 5 is after 85.87 years. Figure 5-3 presents these results. 

 

Figure 5-3: Sojourn Times VC Pipes Of 8-Inch. 

5.6.2 Transition Probabilities 
 
Once the generator matrix is found, transition probabilities for given age of pipe 

are easily found using Eq. 5-7. Note that the time interval between the observations is 56 

years; therefore, a factor of (t/56) must be accounted in the exponential expression, where 

t is the time between the observation and desired time. The one-step transition probability 

matrix is therefore computed as shown below: 
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𝑃(1) = exp �� '
:H
� 𝑄� = 

⎣
⎢
⎢
⎢
⎡
0.96715460 0.013640910 0.009315716 0.008448261 0.001440503
0.00000000 0.956218070 0.024668287 0.014710140 0.004403507
0.00000000 0.000000000 0.950038552 0.024185950 0.025775494
0.00000000 0.000000000 0.000000000 0.931529490 0.068470508
0.00000000 0.000000000 0.000000000 0.00000000 1.000000000⎦

⎥
⎥
⎥
⎤
 

  

Thus, Equation shows the one-year transition probabilities between conditions from 

the last observation. The probability of failure is defined as the probability of entering the 

worst state that is rating 5 from any of the rating 1 is 0.001440503.  The probability of 

failure is defined as the probability of entering the worst state that is rating 5 from any of 

the rating 2 is 0.004403507.  The probability of failure is defined as the probability of 

entering the worst state that is rating 5 from any of the rating 3 is 0.025775494.  The 

probability of failure is defined as the probability of entering the worst state that is rating 

5 from any of the rating 4 is 0.068470508.  

It can be verified that the sum of rows of matrix Q is 0, and the sum of rows of 

matrix P(1) is 1, as previously mentioned. Figure 5-4 shows the probability of being in any 

of the three states based on the pipe’s age. The plot was obtained by iterating through 200-

time steps (the 200 years of life of VCP) and computing P(t) at each time step, using Eq. 

5-7, and knowing the initial distribution, Eq. 5-10.   
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Figure 5-4: Probability Failure Of VC Pipes Of 8-Inch For 200 Years. 

From Figure 5-4 the probability of being in the worst condition state of rating 5 is 

seen. The probability is almost 0.85 for the pipe at the age of 85 years for comprehensive 

rating 5. The finding corroborates the results of Salman and Salem (2011), who developed 

a deterioration model for VCP with a 12-inch diameter. However, it is important to note 

that the large data gap of 56 years is not desirable and might lead to inaccurate estimations 

of the generator matrix that subsequently may lead to unreliable probability estimates.  

5.7 Summary 
 
This chapter presented the application of the “ctmcd” R package to a set of 

wastewater pipe discrete time condition data. The analyzed pipes were selected from one 

wastewater basin and are VC pipes with a diameter of 8-inch. The condition of the pipes 

was observed at two different times: observations at the time of pipe installation in 1965 

(at time t = 0), and observations after 56 years in 2021 (t = 56). It was assumed that at time 
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0, almost all wastewaters were in excellent condition, rating 1. It was also assumed that a 

small percentage of the installed wastewaters reached condition rating 2, rating 3, rating 4  

and rating 5 very shortly after installation due to unforeseen problems, such as structural 

defects when installed, or poor workmanship during pipe installation.  

To find the generator matrix Q the R programming package “ctmcd” was used 

which describes the pipes’ deterioration process. To find the generator matrix Q the Gibbs 

sampling method was implemented. Once the generator matrix Q was found using R 

programming package, transition probabilities were determined based on Eq. 5-7 starting 

from the observation time in 2021 to any desired future time.  More importantly, POF 

values from any observed condition in 2021 can be determined as the probability of 

transitioning from any rating to rating 5 during the analyzed time. The main limitation of 

our developed CTMC model is the fact that the available observation data has a large gap 

of 56 years because it makes the results of the elements of Q matrix obtained from the 

implementation of the Gibbs sampling uncertain. If more observation data at shorter time 

intervals were available, the accuracy of the generator matrix Q matrix could be improved. 

Additionally, a larger data with multiple inspections at various points in time would allow 

for validation of the developed deterioration model.  As of now, the developed CTMC 

model could not be validated due to insufficient data.
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CHAPTER 6 
 

CONSEQUENCE OF FAILURE OF WASTEWATER PIPE 
 

6.1 Background 
 
This chapter presents the second critical component of the decision-making 

framework for wastewater pipe rehabilitation and renewal planning, a comprehensive 

Consequence of Failure of wastewater pipe (COF) model. The COF model is built using 

the TBL methodology and includes a total of 12 factors. The model is developed using 

weightage ranking. Having the COF, Comprehensive Rating value obtained as previously 

presented in Chapter 4 and POF obtained in Chapter 5 allows for determining the risk of 

failure of the analyzed wastewaters for risk-based decision-making purposes. 

6.2 Consequence Of Failure Of Wastewater Pipe (COF) Model 
 
Water Research Foundation report on the COF for buried assets current practices 

focus on assessing mostly the direct economic costs of asset failure, which might be one 

of the main causes of the underfunding of buried assets. The report stressed the importance 

of assessing the COF not only from an economic perspective but from a social and 

environmental aspect as well, called the triple bottom line (TBL). A TBL approach 

accounts for a large number of impact factors resulted from a possible failure, such as (1) 

economic costs borne by the utility; (2) social impacts borne by customers and the affected 

community due to travel delays, rerouting, service outages, and property damages; and (3) 
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environmental impacts that might arise due to percent land lost upon an unforeseen 

wastewater failure, contamination of groundwater and wildlife habitats, and other 

environmental impacts. A total of 12 factors have been identified and used from the PACP 

COF guidelines and extensive literature review as shown in Chapter 3. The 12 factors are 

arranged under the three main criteria (economic, social, and environmental) 

hierarchically. Previously there were a developed model for consequence of failure for 

wastewater (COF) (Vladeanu and Matthews, 2019b) using weightage average and AHP. 

COF model built using the Analytical Hierarchy Process consists of pipe characteristics, 

external characteristics, and hydraulic characteristics under social, economic, and 

environmental impact. The relative importance of COF model is calculated using expert 

advice which is like the POCR model. The COF score are determined using the Equation 

6-1 to 6-4.  

 
 	COF = 	𝑤#F × EI + 𝑤?F × SI + 𝑤#CIF × ENVI			 Eq. 6-1 

 EI	 = 	e(𝑤%𝑅%)
.

%2'

		 Eq. 6-2 

 SI	 = 	e�𝑤3𝑅3�
1

32'

	 Eq. 6-3 

 ENVI	 = 	e(𝑤4𝑅4)
+

42'

 Eq. 6-4 

𝑊#F is the factor weight for overall EI criteria. 

 𝑊?F is the factor weight for overall SI criteria. 

𝑊#CIF is the factor weight for overall ENVI criteria. 

𝑤% is each factor weights under the EI criteria. 
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𝑤3 is each factor weights under the SI criteria. 

𝑤4 is each factor weights under the ENVI criteria. 

𝑅% is the	𝑖*5category factor rating under the EI criteria. 

𝑅3 is the	𝑗*5category factor rating under the SI criteria. 

𝑅4 is the	𝑘*5category factor rating under the ENVI criteria. 

𝑚 is number of factors under the EI criteria. 

𝑛 is number of factors under the SI criteria. 

𝑜 is number of factors under the ENVI criteria. 

Since AHP involves subject matter expert (SME), whenever SME opinion is 

varying consequence of failure is changing. COF model built using weightage average 

consists of only 5 factors related to pipe characteristics under social, economic, and 

environmental impact. Weighted rating based on weightage average with only pipe 

characteristics was used to find the consequence of failure by giving them low, medium, 

and high values(Anbari et al., 2017). The Hierarchical structure of COF model is shown in 

Figure 6-1. Description of factors of COF model are shown in Table 6-1, list of factors of 

economic, social and environmental factors are shown from Table 6-2 Table 6-3 and  Table 

6-4 and Ranking description is shown in Table 6-5. For wastewater pipe COF, the TBL 

was also the method proposed by National Association of Wastewater Service Companies 

(NASSCO) in the Pipeline Assessment and Certification Program (PACP) program to 

quantify the COF of wastewaters. In the United States, PACP is the accepted industry 

standard for wastewater pipe condition evaluation, developed by NASSCO (2001). As part 

of the risk-based decision-making framework, the PACP methodology provides a general 

guideline on determining the COF of a wastewater pipe. To determine a wastewater 
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segment’s TBL COF, a series of factors are considered under economic, social, and 

environmental criteria. An overall COF score of the analyzed segment is calculated as a 

weighted average of all individual factors. 

 
 

Figure 6-1: Hierarchical Structure Of COF Model. 
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Table 6-1: Factors And Description Of Consequence Of Failure Model. 

Criteria Factor Data Type Description 

Economic  
Impact 

Pipe age  
(years) Numeric 

The time between pipe installation 
and inspection year and aged pipes 
have more issues. 

Pipe 
material String 

The pipe material includes various 
types of material, such as ceramic, 
glass, fiberglass, many metals, 
concrete, and plastic. 

Diameter 
(mm) Numeric Nominal pipe diameter and smaller 

diameters are not easy to access. 

Shape String 

Typically pipe shapes are circular 
but depending upon the project, and 
shapes are changed. Circular shapes 
are easily accessed. 

Depth  
(feet) Numeric Higher-depth wastewaters are more 

challenging to access. 
Repair  
History String Pipes with more maintenance can 

impact the final Rating 
Structural 
Score Numeric The score is given based upon the 

structure alignment. 
O & M  
Score Numeric The score is given based upon the 

operational and maintenance. 

Social  
Impact 

Traffic 
Loading String 

 A pipe failure on or near a high 
traffic area can significantly increase 
delays and detour distances that 
negatively affect the social impact. 

Seismic  
Zone String 

Zones with higher seismic activities 
can negatively impact the structure. 
Zone 1, Zone 2, Zone 3, Zone 4, 
Zone 5. 

Environmental 
Impact 

Waste  
Type String 

Waste materials carried in a pipe can 
impact the pipe failure by blocking, 
corrosion, etc.  

Soil  
Type String 

Soil corrosiveness can impact the 
external pipe wall worsening 
mechanism. 
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* Based on 2017 USGS Seismic Maps: 

Seismic Zone 1: ND, MN, WI, MI, IA, NE, FL, South LA, TX, Northeast MT, West KS, 

OK (except Central) 

Seismic Zone 2: West NY and PA, OH, WV, VA, East NC, MD, DC, South GA, South 

AL, South MS, North LA, Southwest AR, Central OK, East KS, North IL, North IN, North 

KY, North and West MO, North TX, East CO, East NM, South SD, North NE, ME, North 

NH, North VT 

Seismic Zone 3: Parts of East SC, AR and MO, Parts of South IL, Parts of West KY and 

TN, North of VT, Central WA, Large part of OR and NV, Central AK, Central CA, Parts 

of NM, AZ, Co and TN, MA, CT, RI, East NY, North NJ, East PA 

Seismic Zone 4: Parts of West WA, OR, CA, NV, WY, and MT, Parts of East SC, AR and 

MO, Parts of South IL, Parts of West KY and TN, Parts of MT, West WY, East ID, Central 

UT 

Seismic Zone 5: West and East CA, West NV, West WA, West OR, HI, South AK  
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Table 6-2: Attributes Factors Rating For Economic Impact (EI). 

Factor Attribute Ranking 

Age (years) 

<10  1 
≥10 and <25  2 
≥25 and <40  3 
≥40 and <50 4 
≥50 years 5 

Corrosion 

Plastic/GRP 1 
Clay 2 
NRCP/AC 3 
RCP 4 
Metallic 5 

Diameter 

>=49 1 
>31 and <=48 2 
>18 and <=30 3 
>11 and <= 18 4 
<=11 5 

Shape 

Circular 1 
Oval 2 
Horseshoe 3 
Semielliptical 4 
Arch 5 

Depth 

<= 10 Feet 1 
> 10 and <= 15 Feet 2 
> 15 and <= 20 Feet 3 
> 20 and <= 25 Feet 4 
> 25 Feet 5 

Structural  
Score 

1 1 
2 2 
3 3 
4 4 
5 5 
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Table 6-2 (Cont..): Attributes Factors Rating For Economic Impact. 

Factor Attribute Ranking 

O & M Score 

1 1 
2 2 
3 3 
4 4 
5 5 

Repair History 

No maintenance  1 
Minor maintenance 2 
Moderate maintenance 3 
Significant maintenance 4 
Extreme maintenance 5 

 

 
Table 6-3: Attributes Factors Rating For Social Impact (SI). 

Factor Attribute Ranking 

Traffic Loading 

No traffic to very light traffic 1 
Light traffic 2 
Medium traffic 3 
Moderate to heavy traffic 4 
Heavy traffic 5 

Seismic Zone 

Zone 1 1 
Zone 2 2 
Zone 3 3 
Zone 4 4 
Zone 5 5 
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Table 6-4: Attributes Factors Rating For Environmental Impact (ENVI). 

 
Factor Attribute Ranking 

Soil Type 

Low corrosivity 1 
Low to moderate corrosivity 2 
Moderate corrosivity 3 
Moderate-to-high corrosivity 4 
High corrosivity 5 

Waste Type 

Mildly corrosive 1 
Mildly to Moderate corrosive 2 
Moderately corrosive 3 
Moderately to highly corrosive 4 
Highly corrosive 5 

 

 

Table 6-5: Ranking Value Descriptions For All Factors Under EI, SI And ENVI. 

Ranking Description 

1 Very low 

2 Low 

3 Moderate 

4 Moderate to High 

5 High 
 

 

6.2.1 Weighted Average 
 
The weighted average is a calculation considering the varying degrees of 

importance of the numbers in a data set. In calculating a weighted average, each number in 

the data set is multiplied by a predetermined weight before the final calculation is made. 

Weighted Average is calculated using the Eq. 6-5. Weights given to the quantities can be 

a percentage, whole number, or decimal. 
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𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑	𝐴𝑣𝑒𝑟𝑎𝑔𝑒 = 	
∑(𝑊𝑒𝑖𝑔𝑡ℎ𝑠 ∗ 𝑄𝑢𝑎𝑛𝑡𝑖𝑡𝑖𝑒𝑠)

∑𝑊𝑒𝑖𝑔𝑡ℎ𝑠   Eq. 6-5 

The weighted average is calculated using following steps: 

1. Determining the weight of each data point. 

2. Find the sum of all weights. 

3. Calculate the sum of each number multiplied by its weight. 

4. Divide the results of step two by the sum of all weights. 

 
6.2.2 Weighted Ranking 

 
Weighting the criteria by ranks in either ascending or descending order. Ascending 

means factors which are least responsible for consequence of failure are given rank 1, the 

second criterion rank 2 etc. When ranking in descending order, rank 1 the factors are 

responsible for consequence of failure are given rank 1, the second criterion rank 2 etc. In 

our scenario we have considered descending order for weighted ranking. 

 
6.2.3 Standard Competition Ranking 

 
Standard Competition Ranking is a ranking system where ranking positions, are 

given by taking the possibility of ties occurring into account. It indicates that data items 

that are equal in value receive the same ranking.  

6.3 Results 

To apply the developed COF model, the same VCP 8-inch cohort was selected as 

in the case of the Comprehensive Rating model application. The same process as for the 

Comprehensive Rating model was followed for all 1240 wastewater pipes. Information 

such as diameter, depth, length of the pipes is given in pipe segment reports (i.e., pdf 
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format), and the other information related to the pipes such as pipe age, corrosion, and the 

seismic zone is given in MS Excel from the Dept. of Engineering & Environmental 

Services, Shreveport, Louisiana Phase 3. Final spreadsheet is created using combining MS 

Excel and pdf reports. The sample data which is used to calculate weightage average is 

shown in Table 6-6. 

 
Table 6-6: Sample Data To Calculate Weigtage Average. 

Factor Pipe  
Data 1 

Pipe  
Data 2 

Pipe  
Data 3 

Pipe  
Data 4 

Pipe  
Data 5 

Pipe  
Data 6 

Age  5 5 1 4 4 4 
Corrosion 4 2 4 4 2 1 
Shape 2 3 1 1 1 1 
Depth 3 4 1 1 3 3 
Soil Type 4 5 3 3 1 1 
Traffic Loading 2 2 3 3 2 3 
Waste type 3 3 3 3 1 1 
Structural Score 1 3 1 1 3 5 
O&M Score 3 1 1 5 3 3 
Repair History 2 2 1 3 1 3 
Diameter 2 2 2 2 2 2 
Seismic Zone 2 2 2 2 2 2 

 

The calculate weightage average results calculated using Eq 6-5 are shown in Table 

6-7, and the weightage ranking calculated using standard competition ranking are shown 

in Table 6-8. 
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Table 6-7: Weigtage Average. 

Factor 1 2 3 4 5 Weighted Average 

Age  175 0 0 97 100 2.86 

Corrosion 72 69 70 84 77 3.07 

Shape 176 123 55 18 0 1.77 

Depth 75 78 73 79 67 2.96 

Soil Type 72 81 76 67 76 2.98 

Traffic Loading 68 105 149 15 35 2.58 

Waste type 57 79 121 49 66 2.97 

Structural Score 254 19 35 29 35 1.85 

O&M Score 205 46 32 45 44 2.13 

Repair History 189 41 51 42 49 2.25 

Diameter 0 372 0 0 0 2.00 

Seismic Zone 0 372 0 0 0 2.00 
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Table 6-8: Weigtage Ranking Using Standard Competition Ranking. 

Factor Weighted Average 

Age  5 

Corrosion 1 

Shape 12 

Depth 4 

Soil Type 2 

Traffic Loading 6 

Waste type 3 

Structural Score 11 

O&M Score 8 

Repair History 7 

Diameter 9 

Seismic Zone 9 
 

Based on values presented in Table 6-8, the corrosion is ranked 1, soil type is ranked 

2, waste type is ranked 3, depth is ranked 4, age grade is ranked 5, loading is ranked 6, 

repair history is ranked 7, diameter and the seismic zone is ranked 8 according to standard 

competition ranking, O & M score is ranked 10, the shape is ranked 11, and the structural 

score is ranked 12. According to the rankings assigned to the factor corrosion plays an 

important role in pipe consequence failure, followed by soil type and waste type. The 

weightage average is shown in Figure 6-2 and factors for the consequence of failure based 
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on its responsibility to pipe failure is shown in Figure 6-3 and percentage of consequence 

of failure is shown in Figure 6-4. 

   

 
Figure 6-2: Weightage Average. 

 

   

Figure 6-3: Consequence Of Failure Based On Its Responsibility To Pipe Failure. 
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Figure 6-4: Consequence Of Failure In Percentage. 
 

 
From Figure 6-2 and Figure 6-3 we can see that corrosion is the main reason for 

pipe consequence failure. Under the economic factor corrosion plays an important 

consequence for pipe failure, traffic loading plays an important consequence for pipe 

failure under social factor and waste type plays an important consequence for pipe failure 

under environmental factor. The developed model could not be verified because the main 

factors determining the consequence of failure is not mentioned in the data or the by the 

contractor or the inspector. 

To determine a wastewater segment’s TBL COF for each wastewater, a series of 

factors considered under economic, social, and environmental criteria is applied to each 

wastewater pipe. An overall CoF score of the analyzed segment is calculated as a weighted 

average of all individual factors. Weightage average for each pipe is for a sample data is 

shown in Table 6-9. 
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Table 6-9: Weigtage Average Calculation For Sample Data. 

Factor Pipe  
Data 1 

Pipe  
Data 2 

Pipe  
Data 3 

Pipe  
Data 4 

Pipe  
Data 5 

Pipe  
Data 6 

Age  5 5 1 4 4 4 
Corrosion 4 2 4 4 2 1 
Shape 2 3 1 1 1 1 
Depth 3 4 1 1 3 3 
Soil Type 4 5 3 3 1 1 
Traffic Loading 2 2 3 3 2 3 
Waste type 3 3 3 3 1 1 
Structural Score 1 3 1 1 3 5 
O&M Score 3 1 1 5 3 3 
Repair History 2 2 1 3 1 3 
Diameter 2 2 2 2 2 2 
Seismic Zone 2 2 2 2 2 2 
Weighted Average 3.1818 3.3529 2.4783 3.2500 2.5200 3.0690 

 

This process aimed to obtain an approximate interval variability of the weighted 

average score based on the value. The results are summarized in Table 6-10 to determine 

the pipes consequence of failure.  

 
Table 6-10: Final Ratings Based On Weighted Average For Our Data. 

 
COF Ranges COF  Costs Involved 

 >= 1.65145 and < 2.1812 1 Very low 

>= 2.1812 and < 2.7471 2 Low 

>= 2.7471 and < 3.313 3 Moderate 

>= 3.313 and < 3.8778 4 Moderate to High 

>= 3.8778 5 High 
 

Figure 6-5 shows the percentage of pipes with consequence of pipe failure rating 1 

to 5.  
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Figure 6-5: Pipe Consequence Of Failure In Percentage. 
 

6.4 Summary 
 
This chapter presented the development of a consequence of failure model for 

wastewater pipes that assesses the impact of a potential failure using the TBL method, 

combining a series of economic, social, and environmental cost factors. The weightage 

average and weighted ranking using standard competition ranking is used to find the 

consequence of pipe failure.  

The model was applied to a data set containing pipe condition assessment 

information of wastewater pipes from a Northeastern Louisiana wastewater utility. VC 

pipes of 8-inch diameter were selected for the case study. The results showed that the 

corrosion plays an important consequence for pipe failure from the selected VC pipe 

segments under economic factor, traffic loading under social factor and waste type under 

environmental factor. By considering all the economic, social, and environmental cost 40% 
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of pipes have failure rating 4. The developed model could not be verified because the main 

factors determining the consequence of failure is not mentioned in the data.
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CHAPTER 7 
 

RISK OF FAILURE, BUDGET PLANNING FOR OUR CASE STUDY 
 

7.1 Assessment Of Risk Of Failure 
 
Risk is an uncertain quantity that may or may not follow a stochastic process since 

it involves some degree of uncertainty. Utility companies are unable to totally eliminate 

risks and uncertainties from their systems because doing so would be extremely expensive 

from an engineering standpoint. As a result, minimizing pipe failures and the costs 

associated with them is a component of all risk management strategies used by water and 

wastewater companies. Utilities have developed a number of techniques that they employ 

effectively to calculate and evaluate the risk of a pipe failure. The most popular techniques 

is outlined here. 

 
7.1.1 Risk Of Failure 

 
Probably the easiest and most widely used method to quantify risk of a pipe failure 

is expressed as the multiplication between the probability of the occurrence of an event and 

the consequence of that event occurring in Eq.7-1 presents the formula (Pietig, 2015, Hess, 

2015). 

 	𝑅𝑂𝐹 = 𝑃𝑂𝐹 ∗ 𝐶𝑂𝐹			 Eq. 7-1 

The Risk of Failure (ROF) is determined as the multiplication between the POF 

(Chapter 5) and COF (Chapter 6) scores. POF can be determined at any desired time in the 
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future using the developed CTMC model. Since most of the criteria have a consistent 

rating, the COFS score is likely to remain stable as the pipe matures. All factor ratings 

remain constant, except for age, unless there are significant changes in the area around the 

sewer (such as the development of a new road, highway, or building that might affect any 

of the variables). The age rating, however, remains constant at 5 once the pipe has been in 

service for more than 50 years. As a result, by considering the POF and COF values, the 

ROF may likewise be calculated for any age of the pipe. The 56-year probabilities must be 

employed, multiplied by the COF score established in the preceding section, in order to 

compute the ROF of the pipe at the moment of observation. The most important assets are 

ranked and then given the highest priority using the ROF values for each individual 

segment. A risk matrix designed specifically for the key POF and COF score values 

discovered in this investigation is shown in Figure 7-1. 

 

Figure 7-1: Risk Of Failure. 

 
From the risk matrix presented in Figure 7-1, the Very Low, Low, Moderate, 

Moderate to High and High regions of ROF are clearly differentiated. Generally, to 

determine a wastewater ROF, Table 7-1 summarizes the critical values. 
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Table 7-1: ROF Based On POF And COF 
 

Risk of Failure Probability of 

Failure 

Consequence of 

Failure Score 

Risk of Failure 

Value 

Very Low <= 0.2 <=2.18 <=0.4 

Low >0.2 and <= 0.4 >2.18 and <=2.75 >0.4 and <=1.1 

Moderate >0.4 and <= 0.6 >2.75 and <=3.31 >1.1 and <=2 

Moderate to High >0.6 and <= 0.8 >3.31 and <=3.87  >2 and <=3.1 

High >0.8 and <= 1.0 >3.87 >3.1  
 

Having the POF values and the COF score of each individual pipe segment, the 

ROF for 2023 is determined by multiplying these values. From the total length of VC pipe 

8-inch pipes, 1.29% have a low risk of failure, while 64.52% have a moderate risk of failure 

and 34.19% have a moderate to high risk of failure. None of the segments fell into the 

moderate ROF category. Figure 7-2 shows the distribution of pipes, of the ROF of the 

analyzed sewer cohort. 

 

Figure 7-2: Risk Of Failure Distribution. 
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7.2 Cost Considerations For VC Pipe Renewal 
 
Cost information about VC pipe renewal (pipe rehabilitation and replacement) was 

obtained from the report by Simicevic and Sterling (Simicevic and Sterling, 2000). For 

pipe rehabilitation, the Cured-In-Place-Pipe (CIPP) technology and for replacement, the 

open-cut method was considered. CIPP pipe lining is one of several methods used to repair 

existing pipelines that don’t require digging up the pipes, which is results in low pipe 

rehabilitation cost and minimum social impact. Open cut method is the most common 

method for pipe replacement, and it is less expensive compared to other trenchless 

methods. Accordingly, Eq. (7-2) presents the equation for the best curve fit for CIPP 

technology, where D is the diameter of the pipe: 

𝐶𝑜𝑠𝑡"F!! = 0.77	 ×	𝐷8/( + 25.90 Eq. 7-2 

Similarly, Eq. (7-3) presents the best fit curve for CIPP technology, where D is the 

diameter of the pipe 

𝐶𝑜𝑠𝑡+)K.	LM* = 0.60	 ×	𝐷8/( + 76.24   Eq. 7-3 

Both costs are in $/foot of pipe. As a result, using Eq. (7-1) and (7-2), rehabilitation 

using CIPP for an 8-inch VC pipe cost pipe costs $ 43.32/ft and for the open-cut 

replacement of an 8-inch VC pipe cost was $ 89.82 /ft., while. It is important to note that 

these costs are for 2000 data. Therefore, the value of both the rehabilitation and 

replacement costs need to be determined for the current observation year 2021, using Eq. 

(7-4): 

𝐹𝑉 = 𝑃&(1 + 𝑟). Eq. 7-4 

Where, 

• FV is the future value of P0 
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• P0 is the original amount. 

• r is the rate of interest, or discount value. 

• n is the number of compounding periods (in years). 

For determining the discount value, we used historic information from the U.S. 

Federal Reserve. The long-term average discount rate was used in this study, which on 15 

November 2021 was 0.25%3 

As a result, the 2021 value of the cost items were determined to be $45.65/ft. for 

CIPP rehabilitation technology and $94.65/ft. for open-cut replacement and. For both costs, 

future value will be determined starting from 2022 until the year 2040. Additionally, 

emergency replacement costs are considered double the amount of scheduled replacement 

costs, i.e., $189.31/ft. in 2021. This information is summarized in Table 7-2. 

 

 

 

 

 

 

 

 

 

 

 
3 Information was retrieved from https://ycharts.com/indicators/us_discount_rate on 15th 

November 2021. 
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Year 

Future Value of CIPP 

Rehabilitation 

Technology [$/ft.] 

Future Value of Open-

Cut Replacement [$/ft.] 

Future Value of 

Emergency 

Replacement 

[$/ft.] 

2022 45.76 94.89 189.78 
2023 45.88 95.12 190.24 
2024 45.99 95.36 190.72 
2025 46.11 95.60 191.2 
2026 46.22 95.84 191.68 
2027 46.34 96.08 192.16 
2028 46.45 96.32 192.64 
2029 46.57 96.56 193.12 
2030 46.68 96.80 193.6 
2031 46.80 97.04 194.08 
2032 46.92 97.29 194.58 
2033 47.04 97.53 195.06 
2034 47.15 97.77 195.54 
2035 47.27 98.02 196.04 
2036 47.39 98.26 196.52 
2037 47.51 98.51 197.02 
2038 47.63 98.75 197.5 
2039 47.75 99.00 198 
2040 47.87 99.25 198.5 

 

7.3 800,000 US Dollars Yearly Cost Condition-Based Rehabilitation And 
Replacement Scenario  

 
For this, all wastewater segments with a Comprehensive rating of 5 were selected 

with 22,774 ft. of total length. This is the total length of the pipes that are in condition 5 in 

2021. A fixed budget of $800,000 can be used each year to address a maximum length of 

the wastewater pipes in the worst condition, and the costs should fit within the yearly 

allocated budget. The $800,000 yearly budget must cover the scheduled replacement of as 

many feet of wastewater as possible while addressing all emergency repairs first. It was 

Table 7-2: Future Value Of Scheduled And Emergency Renewal Costs Of VCP 8-Inch. 
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assumed that emergency repairs would cover one percent of the total length (116,634 ft) of 

the system each year. This equals to roughly 1,166 ft. of pipe length requiring emergency 

repairs. The emergency repairs are considered at this fixed rate each year and are addressed 

first. The remaining amount from the yearly budget is then used to replace or rehabilitate 

as many feet of pipe as possible.  

7.3.1 $800,000 Yearly Rehabilitation Analysis 
 
Table 7-3 summarizes the results of the $800,000 yearly rehabilitation scenario 

analysis for all wastewater pipes with a Comprehensive Rating of 5. Remaining Length are 

calculated using Eq. (7-5)  

 

	𝑅𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔	𝐿𝑒𝑛𝑔𝑡ℎ

= 	𝐼𝑛𝑖𝑡𝑖𝑎𝑙	𝐿𝑒𝑛𝑔𝑡ℎ	

− 	𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑑	𝑅𝑒𝑝𝑎𝑙𝑐𝑒𝑚𝑒𝑛𝑡	(𝑜𝑟)	𝑅𝑒ℎ𝑎𝑏𝑖𝑙𝑖𝑡𝑎𝑡𝑖𝑜𝑛	𝐿𝑒𝑛𝑔𝑡ℎ	 

Eq. 7-5 

Table 7-3: $800,000 Yearly rehabilitation scenario analysis of VCP 8-inch 

Year 

Yearly 

Budget 

[$] 

Initial 

Length 

[ft.]] 

Emergency 

Replacemen

t Length 

[ft.]] 

Emergency 

Cost [$] 

Remaining 

Budget 

Scheduled 

Rehabilitati

on Length 

Remaining 

Length   

2022 800,000 22,774.00 1,166 221,283.00 578,717.00 12,583.53 10,190.47 

2023 800,000 10,190.47 1,166 221,819.84 578,180.16 10190.47 0 

 
 
7.3.2 $800,000 Yearly Rehabilitation Analysis 

 
Table 7-4 summarizes the results of the $800,000 yearly replacement scenario 

analysis for all wastewater pipes with a Comprehensive Rating of 5. Remaining Length are 

calculated using Eq. (7-5)  
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Table 7-4: $800,000 Yearly Replacement Scenario Analysis Of VCP 8-Inch. 

Year 

Yearly 

Budget 

[$] 

Initial 

Length [ft.]] 

Emergen

cy 

Replace

ment 

Length 

[ft.]] 

Emergency 

Cost [$] 

Remaining 

Budget 

Scheduled 

Replacement 

Length 

Remaining 

Length   

 
2022 800,000 22,774.00 1,166 221,283.00 578,717.00 6,098.81 16,675.19  

2023 800,000 16,675.19 1,166 221,819.84 578,180.16 6,078.42 10,596.77  

2024 800,000 10,596.77 1,166 222,379.52 577,620.48 6,057.26 4,539.51  

2025 800,000 4,539.51 1,166 222,939.20 577,060.80 4,539.51 0.00  

 

7.3.3 $800,000 Yearly 20% Rehabilitation And 80% Replacement Analysis 

Dept. of Engineering & Environmental Services, Shreveport, Louisiana initial 

recommendation is to consider 20% remaining budget for rehabilitation and 80% 

remaining budget for replacement and these results are summarized in Table 7-5 
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Table 7-5: $800,000 Yearly 20% Rehabilitation And 80% Replacement Scenario Analysis. 

Year 

Yearly 

Budget 

[$] 

Initial 

Length 

[ft.]] 

Emerg

ency 

Replac

ement 

Lengt

h [ft.]] 

Emergency 

Cost [$] 

Remaining 

Budget 

Scheduled 

Rehabilita

tion 

Length 

Schedule

d 

Replacem

ent 

Length 

Remaining 

Length   

 
2022 800,000 22,774.00 1,166 221,283.00 578,717.00 2,516.71 4,855.01 15,402.28  

2023 800,000 15,402.28 1,166 221,819.84 578,180.16 2,507.83 4,838.33 8,056.13  

2024 800,000 8,056.13 1,166 222,379.52 577,620.48 2,499.44 4,821.54 735.15  

2025 800,000 735.15 1,166 222,939.20 577,060.80 147.03 588.12 0.00  

 

As seen from Table 7-3, in two years, all wastewater pipes that are in 

comprehensive rating 5, will be rehabilitated using CIPP and from Table 7-4, With in four 

years, all wastewater pipes that are in comprehensive rating 5 are replaced using Open cut. 

From Table 7-5, with in 4 years all the wastewater pipes can be rehabilitated or replaced 

when 20% and 80% budget is allocated is allocated. For the next years comprehensive pipe 

ratings 4 and 3 are reassessed and the next budgets can be used to rehabilitate or replace 

those pipes. Figure 7-3 shows the number of years required for rehabilitation and 

replacement for 100% rehabilitation, 100% replacement and 20% rehabilitation and 80% 

replacement of a yearly budget of $800,000. 



 

 

117 

 
 

 

Figure 7-3: Years Required For Few Case Study With A Yearly Budget Of $800,000. 

 

7.4 800,000 US Dollars Yearly Cost Condition-Based Rehabilitation And 
Replacement Scenario With Different Budget Ratio’s 

It is still assumed that emergency repairs would cover one percent of the total length 

(116,634 ft) of the system each year. This equals to roughly 1,166 ft. of pipe length 

requiring emergency repairs. We have considered different budget ratios for pipe 

rehabilitate and replacement and the results are shown in different case studies below. 

7.4.1 $800,000 Yearly 10% Rehabilitation And 90% Replacement Analysis 
 
Table 7-6 summarizes the results of the yearly replacement and rehabilitation 

scenario analysis for all wastewater pipes with a Comprehensive Rating of 5 with 10% 

budget for rehabilitation and 90% budget for replacement. 
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Table 7-6: $800,000 Yearly 10% Rehabilitation And 90% Replacement Analysis. 
 

Year 
Yearly 
Budget 
[$] 

Initial 
Length 
[ft.]] 

Emerg

ency 

Replac

ement 

Length 

[ft.]] 

Emergency 

Cost [$] 

Remaining 

Budget 

Scheduled 

Rehabilita

tion 

Length 

Scheduled 

Replacem

ent 

Length 

Remaining 

Length   

 
2022 800,000 22,774.00 1,166 221,283.00 578,717.00 1,258.35 5,461.88 16,053.76  

2023 800,000 16,053.76 1,166 221,819.84 578,180.16 1,253.91 5,443.12 9,356.73  

2024 800,000 9,356.73 1,166 222,379.52 577,620.48 1,249.72 5,424.23 2,682.78  

2025 800,000 2,682.78 1,166 222,939.20 577,060.80 268.27 2,414.51 0.00  

 

7.4.2 $800,000 Yearly 30% Rehabilitation And 70% Replacement Analysis 
 
Table 7-7 summarizes the results of the yearly replacement and rehabilitation 

scenario analysis for all wastewater pipes with a Comprehensive Rating of 5 with 30% 

budget for rehabilitation and 70% budget for replacement. 
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Table 7-7: $800,000 Yearly 30% Rehabilitation And 70% Replacement Analysis.  
 

Year 

Yearly 

Budget 

[$] 

Initial 

Length 

[ft.]] 

Emerge

ncy 

Replace

ment 

Length 

[ft.]] 

Emergency 

Cost [$] 

Remaining 

Budget 

Scheduled 

Rehabilita

tion 

Length 

Scheduled 

Replacem

ent 

Length 

Remaining 

Length   

 
2022 800,000 22,774.00 1,166 221,283.00 578,717.00 3,775.06 4,248.13 14,750.81  

2023 800,000 14,750.81 1,166 221,819.84 578,180.16 3,761.74 4,233.54 6,755.52  

2024 800,000 6,755.52 1,166 222,379.52 577,620.48 2,026.66 4,728.87 0.00  

 

7.4.3 $800,000 Yearly 40% Rehabilitation And 60% Replacement Analysis 
 
Table 7-8 summarizes the results of the yearly replacement and rehabilitation 

scenario analysis for all wastewater pipes with a Comprehensive Rating of 5 with 40% 

budget for rehabilitation and 60% budget for replacement. 

 

 

 

 

 

 

 

 



 

 

120 

 
 

Table 7-8: $800,000 Yearly 40% Rehabilitation And 60% Replacement Analysis.  
 

Year 

Yearly 

Budget 

[$] 

Initial 

Length 

[ft.]] 

Emerg

ency 

Replac

ement 

Length 

[ft.]] 

Emergency 

Cost [$] 

Remaining 

Budget 

Scheduled 

Rehabilita

tion 

Length 

Scheduled 

Replaceme

nt Length 

Remaining 

Length   

 
2022 800,000 22,774.00 1,166 221,283.00 578,717.00 5,033.42 3,641.26 14,099.33  

2023 800,000 14,099.33 1,166 221,819.84 578,180.16 5,015.66 3,628.75 5,454.92  

2024 800,000 5,454.92 1,166 222,379.52 577,620.48 2,181.97 3,272.95 0.00  

 
 

7.4.4 $800,000 Yearly 50% Rehabilitation And 50% Replacement Analysis 
 
Table 7-9 summarizes the results of the yearly replacement and rehabilitation 

scenario analysis for all wastewater pipes with a Comprehensive Rating of 5 with half 

remaining budget for rehabilitation and half remaining budget for replacement. 
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Table 7-9: $800,000 Yearly 50% Rehabilitation And 50% Replacement Analysis.  
 

Year 

Yearly 

Budget 

[$] 

Initial 

Length 

[ft.]] 

Emerg

ency 

Replac

ement 

Lengt

h [ft.]] 

Emergency 

Cost [$] 

Remaining 

Budget 

Scheduled 

Rehabilita

tion 

Length 

Scheduled 

Replacem

ent 

Length 

Remaining 

Length   

 
2022 800,000 22,774.00 1,166 221,283.00 578,717.00 6,323.39 3,049.41 13,401.20  

2023 800,000 13,401.20 1,166 221,819.84 578,180.16 6,301.00 3,039.21 4,060.98  

2024 800,000 4,060.98 1,166 222,379.52 577,620.48 2,030.49 2,030.49 0.00  

 

7.4.5 $800,000 Yearly 60% Rehabilitation And 40% Replacement Analysis 
 
Table 7-10 summarizes the results of the yearly replacement and rehabilitation 

scenario analysis for all wastewater pipes with a Comprehensive Rating of 5 with 60% 

budget for rehabilitation and 40% budget for replacement. 
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Table 7-10: $800,000 Yearly 60% Rehabilitation And 40% Replacement Analysis.  
 

Year 

Yearly 

Budget 

[$] 

Initial 

Length 

[ft.]] 

Emerg

ency 

Replac

ement 

Length 

[ft.]] 

Emergency 

Cost [$] 

Remaining 

Budget 

Scheduled 

Rehabilita

tion 

Length 

Scheduled 

Replaceme

nt Length 

Remaining 

Length   

 
2022 800,000 22,774.00 1,166 221,283.00 578,717.00 7,550.12 2,427.50 12,796.37  

2023 800,000 12,796.37 1,166 221,819.84 578,180.16 7,523.49 2,419.16 2,853.72  

2024 800,000 2,853.72 1,166 222,379.52 577,620.48 1,712.23 1,141.49 0.00  

 

7.4.6 $800,000 Yearly 70% Rehabilitation And 30% Replacement Analysis 
 
Table 7-11 summarizes the results of the yearly replacement and rehabilitation 

scenario analysis for all wastewater pipes with a Comprehensive Rating of 5 with 70% 

budget for rehabilitation and 30% budget for replacement. 
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Table 7-11: $800,000 Yearly 70% Rehabilitation And 30% Replacement Analysis.  
 

Year 

Yearly 

Budget 

[$] 

Initial 

Length 

[ft.]] 

Emerg

ency 

Replac

ement 

Length 

[ft.]] 

Emergency 

Cost [$] 

Remaining 

Budget 

Scheduled 

Rehabilita

tion 

Length 

Scheduled 

Replacem

ent 

Length 

Remaining 

Length   

 
2022 800,000 22,774.00 1,166 221,283.00 578,717.00 8,808.48 1,820.63 12,144.89  

2023 800,000 12,144.89 1,166 221,819.84 578,180.16 8,777.40 1,814.37 1,553.12  

2024 800,000 1,553.12 1,166 222,379.52 577,620.48 1,087.18 465.94 0.00  

 
 

7.4.7 $800,000 Yearly 80% Rehabilitation And 20% Replacement Analysis 

Table 7-12 summarizes the results of the yearly replacement and rehabilitation 

scenario analysis for all wastewater pipes with a Comprehensive Rating of 5 with 80% 

budget for rehabilitation and 20% budget for replacement. 
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Table 7-12: $800,000 Yearly 80% Rehabilitation And 20% Replacement Analysis.  
 

Year 

Yearly 

Budget 

[$] 

Initial 

Length 

[ft.]] 

Emerg

ency 

Replac

ement 

Length 

[ft.]] 

Emergency 

Cost [$] 

Remaining 

Budget 

Scheduled 

Rehabilitati

on Length 

Schedule

d 

Replace

ment 

Length 

Remaining 

Length   

 
2022 800,000 22,774.00 1,166 221,283.00 578,717.00 10,066.83 1,213.75 11,493.42  

2023 800,000 11,493.42 1,166 221,819.84 578,180.16 10,031.32 1,209.58 252.51  

2024 800,000 252.51 1,166 222,379.52 577,620.48 202.01 50.50 0.00  

 

7.4.8 $800,000 Yearly 90% Rehabilitation And 10% Replacement Analysis 
 
Table 7-13 summarizes the results of the yearly replacement and rehabilitation 

scenario analysis for all wastewater pipes with a Comprehensive Rating of 5 with 90% 

budget for rehabilitation and 10% budget for replacement. 
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Table 7-13. $800,000 Yearly 90% Rehabilitation And 10% Replacement Analysis.  
 

Year 

Yearly 

Budget 

[$] 

Initial 

Length 

[ft.]] 

Emerg

ency 

Replac

ement 

Length 

[ft.]] 

Emergency 

Cost [$] 

Remaining 

Budget 

Scheduled 

Rehabilita

tion 

Length 

Schedule

d 

Replace

ment 

Length 

Remaining 

Length   

 
2022 800,000 22,774.00 1,166 221,283.00 578,717.00 11,325.19 606.88 10,841.94  

2023 800,000 10,841.94 1,166 221,819.84 578,180.16 9,757.74 1,084.19 0.00  

 

Figure 7-4 shows the number of years required for rehabilitation and replacement 

for the above-mentioned cases of a yearly budget of $800,000. 

 

Figure 7-4: Years Required For 8 Cases With Yearly Budget Of $800,000. 
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7.5 400,000 US Dollars Yearly Cost Condition-Based Rehabilitation And 
Replacement Scenario 

 
For this scenario also, we considered wastewater segments with a Comprehensive 

rating of 5 with 22,774 ft. of total length. A fixed budget of $400,000 can also be used each 

year to address a maximum length of the wastewater pipes in the worst condition, and the 

costs should fit within the yearly allocated budget. The $400,000 yearly budget must cover 

the scheduled replacement of as many feet of wastewater as possible while addressing all 

emergency repairs first. It is still assumed that emergency repairs would cover one percent 

of the total length (116,634 ft) of the system each year. This equals to roughly 1,166 ft. of 

pipe length requiring emergency repairs.  

7.5.1 $400,000 Yearly Rehabilitation Analysis 
 
Table 7-14 summarizes the results of the $400,000 yearly rehabilitation scenario 

analysis for all wastewater pipes with a Comprehensive Rating of 5. The remaining Length 

was calculated using Eq. (7-5). 
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Table 7-14. $400,000 Yearly Rehabilitation Analysis Of VCP 8-Inch. 
 

Year 

Yearly 

Budget 

[$] 

Initial Length 

[ft.]] 

Emergenc

y 

Replacem

ent Length 

[ft.]] 

Emergency 

Cost [$] 

Remaining 

Budget 

Scheduled 

Rehabilitati

on Length 

Remaining 

Length   

 
2022 400,000 22,774.00 1,166 221,283.00 178,716.52 3,905.52 18,868.48  

2023 400,000 18,868.48 1,166 221,819.84 178,180.16 3,883.61 14,984.87  

2024 400,000 14,984.87 1,166 222,379.52 177,620.48 3,862.15 11,122.71  

2025 400,000 11,122.71 1,166 222,939.20 177,060.80 3,839.97 7,282.75  

2026 400,000 7,282.75 1,166 223,498.88 176,501.12 3,818.72 3,464.03  

2027 400,000 3,464.03 1,166 224,058.56 175,941.44 3,464.03 0.00  

 

7.5.2 $400,000 Yearly Replacement Analysis 

Table 7-15 summarizes the results of the $400,000 yearly replacement scenario 

analysis for all wastewater pipes with a Comprehensive Rating of 5. 
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Table 7-15. $400,000 Yearly Replacement Analysis Of VCP 8-Inch. 
 

Year 

Yearly 

Budget 

[$] 

Initial 

Length 

[ft.]] 

Emergency 

Replacemen

t Length 

[ft.]] 

Emergency Cost 

[$] 

Remaining 

Budget 

Scheduled 

Rehabilitati

on Length 

Remaining 

Length   

 
2022 400,000 22,774.00 1,166 221,283.48 178,716.52 1,883.41 20,890.59  

2023 400,000 20,890.59 1,166 221,819.84 178,180.16 1,873.21 19,017.38  

2024 400,000 19,017.38 1,166 222,379.52 177,620.48 1,862.63 17,154.75  

2025 400,000 17,154.75 1,166 222,939.20 177,060.80 1,852.10 15,302.65  

2026 400,000 15,302.65 1,166 223,498.88 176,501.12 1,841.62 13,461.02  

2027 400,000 13,461.02 1,166 224,058.56 175,941.44 1,831.20 11,629.83  

2028 400,000 11,629.83 1,166 224,618.24 175,381.76 1,820.82 9,809.00 

2029 400,000 9,809.00 1,166 225,177.92 174,822.08 1,810.50 7,998.50 

2030 400,000 7,998.50 1,166 225,737.60 174,262.40 1,800.23 6,198.27 

2031 400,000 6,198.27 1,166 226,297.28 173,702.72 1,790.01 4,408.26 

2032 400,000 4,408.26 1,166 226,880.28 173,119.72 1,779.42 2,628.84 

2033 400,000 2,628.84 1,166 227,439.96 172,560.04 1,769.30 859.54 

2034 400,000 859.54 1,166 227,999.64 172,000.36 859.54 0.00 

 

7.5.3 $400,000 Yearly 20% Rehabilitation And 80% Replacement Analysis 

Table 7-16 summarizes the results of the 20% remaining budget for rehabilitation 

and 80% remaining budget for a replacement for all wastewater pipes with a 

Comprehensive Rating of 5. 
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Table 7-16. $400,000 Yearly 20% Rehabilitation And 80% Replacement Analysis.  
 

Year 

Yearly 

Budget 

[$] 

Initial 

Length 

[ft.]] 

Emerg

ency 

Replac

ement 

Length 

[ft.]] 

Emergency 

Cost [$] 

Remaining 

Budget 

Scheduled 

Rehabilita

tion 

Length 

Scheduled 

Replacem

ent 

Length 

Remaining 

Length   

 
2022 400,000 22,774.00 1,166 221,283.48 178,716.52 781.10 1,506.73 20,486.17  

2023 400,000 20,486.17 1,166 221,819.84 178,180.16 776.72 1,498.57 18,210.88  

2024 400,000 18,210.88 1,166 222,379.52 177,620.48 772.43 1,490.10 15,948.34  

2025 400,000 15,948.34 1,166 222,939.20 177,060.80 767.99 1,481.68 13,698.67  

2026 400,000 13,698.67 1,166 223,498.88 176,501.12 763.74 1,473.30 11,461.63  

2027 400,000 11,461.63 1,166 224,058.56 175,941.44 759.35 1,464.96 9,237.32  

2028 400,000 9,237.32 1,166 224,618.24 175,381.76 755.14 1,456.66 7,025.52  

2029 400,000 7,025.52 1,166 225,177.92 174,822.08 750.79 1,448.40 4,826.32  

2030 400,000 4,826.32 1,166 225,737.60 174,262.40 746.63 1,440.19 2,639.51  

2031 400,000 2,639.51 1,166 226,297.28 173,702.72 742.32 1,432.01 465.18  

2032 400,000 465.18 1,166 226,880.28 173,119.72 93.03 372.15 0.00  

 

As seen from Table 7-14, in six years, all wastewater pipes that are in 

comprehensive rating 5, will be rehabilitated using CIPP and from Table 7-15, Within 

thirteen years, all wastewater pipes that are in comprehensive rating 5 are replaced using 

Open cut. From Table 7-16, within 11 years all the wastewater pipes can be rehabilitated 

or replaced when 20% and 80% budget is allocated. For the next years, comprehensive 

pipe ratings 4 and 3 are reassessed and the next budgets can be used to rehabilitate or 

replace those pipes. Figure 7-5 shows the number of years required for rehabilitation and 
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replacement for 100% rehabilitation, 100% replacement and 20% rehabilitation, and 80% 

replacement of a yearly budget of $400,000. 

 

Figure 7-5: Years Required For Few Case Study With A Yearly Budget Of $400,000. 

 

7.6 400,000 US Dollars Yearly Cost Condition-Based Rehabilitation and 
Replacement Scenario with different budget ratio’s 

It is still assumed that emergency repairs would cover one percent of the total length 

(116,634 ft) of the system each year. This equals to roughly 1,166 ft. of pipe length 

requiring emergency repairs. We have considered different budget ratios for pipe 

rehabilitation and replacement and the results are shown in different case studies below. 
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7.6.1 $400,000 Yearly 10% Rehabilitation And 90% Replacement Analysis 
 
Table 7-17 summarizes the results of the yearly replacement and rehabilitation 

scenario analysis for all wastewater pipes with a Comprehensive Rating of 5 with a 10% 

budget for rehabilitation and a 90% budget for replacement. 

 
Table 7-17. $400,000 Yearly 10% Rehabilitation And 90% Replacement Analysis.  
 

Year 

Yearly 

Budget 

[$] 

Initial 

Length 

[ft.]] 

Emerg

ency 

Replac

ement 

Length 

[ft.]] 

Emergency 

Cost [$] 

Remaining 

Budget 

Scheduled 

Rehabilita

tion 

Length 

Scheduled 

Replacem

ent 

Length 

Remaining 

Length   

 
2022 400,000 22,774.00 1,166 221,283.48 178,716.52 390.55 1,695.07 20,688.38  

2023 400,000 20,688.38 1,166 221,819.84 178,180.16 388.36 1,685.89 18,614.13  

2024 400,000 18,614.13 1,166 222,379.52 177,620.48 386.22 1,676.37 16,551.54  

2025 400,000 16,551.54 1,166 222,939.20 177,060.80 384.00 1,666.89 14,500.66  

2026 400,000 14,500.66 1,166 223,498.88 176,501.12 381.87 1,657.46 12,461.32  

2027 400,000 12,461.32 1,166 224,058.56 175,941.44 379.68 1,648.08 10,433.57  

2028 400,000 10,433.57 1,166 224,618.24 175,381.76 377.57 1,638.74 8,417.26  

2029 400,000 8,417.26 1,166 225,177.92 174,822.08 375.40 1,629.45 6,412.41  

2030 400,000 6,412.41 1,166 225,737.60 174,262.40 373.31 1,620.21 4,418.89  

2031 400,000 4,418.89 1,166 226,297.28 173,702.72 371.16 1,611.01 2,436.72  

2032 400,000 2,436.72 1,166 226,880.28 173,119.72 368.97 1,601.48 466.27  

2033 400,000 466.27 1,166 227,439.96 172,560.04 46.27 420.00 0.00  
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7.6.2 $400,000 Yearly 30% Rehabilitation And 70% Replacement Analysis 
 
Table 7-18 summarizes the results of the yearly replacement and rehabilitation 

scenario analysis for all wastewater pipes with a Comprehensive Rating of 5 with 30% 

budget for rehabilitation and 70% budget for replacement. 

 
Table 7-18. $400,000 30% Yearly Rehabilitation And 70% Replacement Analysis.  
 

Year 

Yearly 

Budget 

[$] 

Initial 

Length 

[ft.]] 

Emerg

ency 

Replac

ement 

Length 

[ft.]] 

Emergency 

Cost [$] 

Remaining 

Budget 

Scheduled 

Rehabilita

tion 

Length 

Scheduled 

Replaceme

nt Length 

Remaining 

Length   

 
2022 400,000 22,774.00 1,166 221,283.48 178,716.52 1,171.66 1,318.39 20,283.96  

2023 400,000 20,283.96 1,166 221,819.84 178,180.16 1,165.08 1,311.25 17,807.63  

2024 400,000 17,807.63 1,166 222,379.52 177,620.48 1,158.65 1,303.84 15,345.14  

2025 400,000 15,345.14 1,166 222,939.20 177,060.80 1,151.99 1,296.47 12,896.68  

2026 400,000 12,896.68 1,166 223,498.88 176,501.12 1,145.62 1,289.14 10,461.93  

2027 400,000 10,461.93 1,166 224,058.56 175,941.44 1,139.03 1,281.84 8,041.06  

2028 400,000 8,041.06 1,166 224,618.24 175,381.76 1,132.71 1,274.58 5,633.77  

2029 400,000 5,633.77 1,166 225,177.92 174,822.08 1,126.19 1,267.35 3,240.23  

2030 400,000 3,240.23 1,166 225,737.60 174,262.40 1,119.94 1,260.16 860.13  

2031 400,000 860.13 1,166 226,297.28 173,702.72 258.03 602.10 0.00  
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7.6.3 $400,000 Yearly 40% Rehabilitation And 60% Replacement Analysis 
 
Table 7-19 summarizes the results of the yearly replacement and rehabilitation 

scenario analysis for all wastewater pipes with a Comprehensive Rating of 5 with 40% 

budget for rehabilitation and 60% budget for replacement. 

 
Table 7-19. $400,000 Yearly 40% Rehabilitation And 60% Replacement Analysis.  
 

Year 

Yearly 

Budget 

[$] 

Initial 

Length 

[ft.]] 

Emerg

ency 

Replac

ement 

Length 

[ft.]] 

Emergency 

Cost [$] 

Remaining 

Budget 

Scheduled 

Rehabilita

tion 

Length 

Scheduled 

Replacem

ent 

Length 

Remaining 

Length   

 
2022 400,000 22,774.00 1,166 221,283.48 178,716.52 1,562.21 1,130.04 20,081.75  

2023 400,000 20,081.75 1,166 221,819.84 178,180.16 1,553.45 1,123.93 17,404.37  

2024 400,000 17,404.37 1,166 222,379.52 177,620.48 1,544.86 1,117.58 14,741.93  

2025 400,000 14,741.93 1,166 222,939.20 177,060.80 1,535.99 1,111.26 12,094.69  

2026 400,000 12,094.69 1,166 223,498.88 176,501.12 1,527.49 1,104.97 9,462.23  

2027 400,000 9,462.23 1,166 224,058.56 175,941.44 1,518.70 1,098.72 6,844.81  

2028 400,000 6,844.81 1,166 224,618.24 175,381.76 1,510.28 1,092.49 4,242.03  

2029 400,000 4,242.03 1,166 225,177.92 174,822.08 1,501.59 1,086.30 1,654.14  

2030 400,000 1,654.14 1,166 225,737.60 174,262.40 661.65 992.49 0.00  
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7.6.4 $400,000 Yearly 50% Rehabilitation And 50% Replacement Analysis 
 
Table 7-20 summarizes the results of the yearly replacement and rehabilitation 

scenario analysis for all wastewater pipes with a Comprehensive Rating of 5 with half the 

remaining budget for rehabilitation and half the remaining budget for replacement. 

 
Table 7-20. $400,000 Yearly 50% Rehabilitation And 50% Replacement Analysis.  
 

Year 

Yearly 

Budget 

[$] 

Initial 

Length 

[ft.]] 

Emerg

ency 

Replac

ement 

Length 

[ft.]] 

Emergency 

Cost [$] 

Remaining 

Budget 

Scheduled 

Rehabilita

tion 

Length 

Schedule

d 

Replace

ment 

Length 

Remaining 

Length   

 
2022 400,000 22,774.00 1,166 221,283.48 178,716.52 1,952.76 941.70 19,879.54  

2023 400,000 19,879.54 1,166 221,819.84 178,180.16 1,941.81 936.61 17,001.12  

2024 400,000 17,001.12 1,166 222,379.52 177,620.48 1,931.08 931.32 14,138.73  

2025 400,000 14,138.73 1,166 222,939.20 177,060.80 1,919.98 926.05 11,292.70  

2026 400,000 11,292.70 1,166 223,498.88 176,501.12 1,909.36 920.81 8,462.53  

2027 400,000 8,462.53 1,166 224,058.56 175,941.44 1,898.38 915.60 5,648.55  

2028 400,000 5,648.55 1,166 224,618.24 175,381.76 1,887.86 910.41 2,850.29  

2029 400,000 2,850.29 1,166 225,177.92 174,822.08 1,876.98 905.25 68.05  

2030 400,000 68.05 1,166 225,737.60 174,262.40 34.02 34.03 0.00  
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7.6.5 $400,000 Yearly 60% Rehabilitation And 40% Replacement Analysis 
 
Table 7-21 summarizes the results of the yearly replacement and rehabilitation 

scenario analysis for all wastewater pipes with a Comprehensive Rating of 5 with 60% 

budget for rehabilitation and 40% budget for replacement. 

 
Table 7-21. $400,000 Yearly 60% Rehabilitation And 40% Replacement Analysis.  
 

Year 

Yearly 

Budget 

[$] 

Initial 

Length 

[ft.]] 

Emerg

ency 

Replac

ement 

Length 

[ft.]] 

Emergency 

Cost [$] 

Remaining 

Budget 

Scheduled 

Rehabilita

tion 

Length 

Schedule

d 

Replace

ment 

Length 

Remaining 

Length   

 
2022 400,000 22,774.00 1,166 221,283.48 178,716.52 2,343.31 753.36 19,677.33  

2023 400,000 19,677.33 1,166 221,819.84 178,180.16 2,330.17 749.29 16,597.87  

2024 400,000 16,597.87 1,166 222,379.52 177,620.48 2,317.29 745.05 13,535.53  

2025 400,000 13,535.53 1,166 222,939.20 177,060.80 2,303.98 740.84 10,490.71  

2026 400,000 10,490.71 1,166 223,498.88 176,501.12 2,291.23 736.65 7,462.83  

2027 400,000 7,462.83 1,166 224,058.56 175,941.44 2,278.05 732.48 4,452.30  

2028 400,000 4,452.30 1,166 224,618.24 175,381.76 2,265.43 728.33 1,458.54  

2029 400,000 1,458.54 1,166 225,177.92 174,822.08 875.12 583.42 0.00  
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7.6.6 $400,000 Yearly 70% Rehabilitation And 30% Replacement Analysis 
 
Table 7-22 summarizes the results of the yearly replacement and rehabilitation 

scenario analysis for all wastewater pipes with a Comprehensive Rating of 5 with a 70% 

budget for rehabilitation and a 30% budget for replacement. 

 
Table 7-22. $400,000 Yearly 70% Rehabilitation And 30% Replacement Analysis.  
 

Year 

Yearly 

Budget 

[$] 

Initial 

Length 

[ft.]] 

Emerg

ency 

Replac

ement 

Lengt

h [ft.]] 

Emergency 

Cost [$] 

Remaining 

Budget 

Schedule

d 

Rehabilita

tion 

Length 

Schedule

d 

Replace

ment 

Length 

Remaining 

Length   

 
2022 400,000 22,774.00 1,166 221,283.48 178,716.52 2,733.86 565.02 19,475.11  

2023 400,000 19,475.11 1,166 221,819.84 178,180.16 2,718.53 561.96 16,194.62  

2024 400,000 16,194.62 1,166 222,379.52 177,620.48 2,703.51 558.79 12,932.32  

2025 400,000 12,932.32 1,166 222,939.20 177,060.80 2,687.98 555.63 9,688.72  

2026 400,000 9,688.72 1,166 223,498.88 176,501.12 2,673.10 552.49 6,463.13  

2027 400,000 6,463.13 1,166 224,058.56 175,941.44 2,657.73 549.36 3,256.04  

2028 400,000 3,256.04 1,166 224,618.24 175,381.76 2,643.00 546.25 66.80  

2029 400,000 66.80 1,166 225,177.92 174,822.08 46.76 20.04 0.00  
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7.6.7 $400,000 Yearly 80% Rehabilitation And 20% Replacement Analysis 
 
Table 7-23 summarizes the results of the yearly replacement and rehabilitation 

scenario analysis for all wastewater pipes with a Comprehensive Rating of 5 with 80% 

budget for rehabilitation and 20% budget for replacement. 

 
Table 7-23. $400,000 Yearly 80% Rehabilitation And 20% Replacement Analysis.  
 

Year 

Yearly 

Budget 

[$] 

Initial 

Length 

[ft.]] 

Emerg

ency 

Replac

ement 

Length 

[ft.]] 

Emergency 

Cost [$] 

Remaining 

Budget 

Scheduled 

Rehabilita

tion 

Length 

Schedul

ed 

Replace

ment 

Length 

Remaining 

Length   

 
2022 400,000 22,774.00 1,166 221,283.48 178,716.52 3,124.41 376.68 19,272.90  

2023 400,000 19,272.90 1,166 221,819.84 178,180.16 3,106.89 374.64 15,791.37  

2024 400,000 15,791.37 1,166 222,379.52 177,620.48 3,089.72 372.53 12,329.12  

2025 400,000 12,329.12 1,166 222,939.20 177,060.80 3,071.97 370.42 8,886.73  

2026 400,000 8,886.73 1,166 223,498.88 176,501.12 3,054.97 368.32 5,463.43  

2027 400,000 5,463.43 1,166 224,058.56 175,941.44 3,037.40 366.24 2,059.79  

2028 400,000 2,059.79 1,166 224,618.24 175,381.76 1,647.83 411.96 0.00  

 

7.6.8 $400,000 Yearly 90% Rehabilitation And 10% Replacement Analysis 
 
Table 7-24 summarizes the results of the yearly replacement and rehabilitation 

scenario analysis for all wastewater pipes with a Comprehensive Rating of 5 with 90% 

budget for rehabilitation and 10% budget for replacement. 
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Table 7-24. $400,000 Yearly 90% Rehabilitation And 10% Replacement Analysis.  
 

Year 

Yearly 

Budget 

[$] 

Initial 

Length 

[ft.]] 

Emerg

ency 

Replac

ement 

Length 

[ft.]] 

Emergency 

Cost [$] 

Remaining 

Budget 

Schedule

d 

Rehabilit

ation 

Length 

Schedule

d 

Replace

ment 

Length 

Remaining 

Length   

 
2022 400,000 22,774.00 1,166 221,283.48 178,716.52 3,514.97 188.34 19,070.69  

2023 400,000 19,070.69 1,166 221,819.84 178,180.16 3,495.25 87.32 15,388.12  

2024 400,000 15,388.12 1,166 222,379.52 177,620.48 3,475.94 86.26 11,725.92  

2025 400,000 11,725.92 1,166 222,939.20 177,060.80 3,455.97 85.21 8,084.74  

2026 400,000 8,084.74 1,166 223,498.88 176,501.12 3,436.85 84.16 4,463.73  

2027 400,000 4,463.73 1,166 224,058.56 175,941.44 3,417.08 83.12 863.54  

2028 400,000 863.54 1,166 224,618.24 175,381.76 777.18 6.35 0.00  

 

Figure 7-6 shows the number of years required to rehabilitate and replacement for 

above mentioned 8 cases of a yearly budget of 400,000 US dollars. 
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Figure 7-6: Years Required For 8 Cases With Yearly Budget Of $400,000. 

After our entire analysis, we have considered we suggest 800,000 US dollars budget 

with 90% for rehabilitation and 10% for replacement which is going to complete in 2 years. 

Even though 800,000 US dollars budget with 100% for rehabilitation, there might be a few 

pipes that cannot be rehabilitated and needs only replacement. According to comprehensive 

rating 4 pipes needs to be reassessed within 2 years so by allocating the scenario mentioned 

above pipes with comprehensive rating 5 replacement and rehabilitation will be complete 

and pipe of comprehensive rating 4 which move to 5 replacement and rehabilitation and 

can be assessed. 
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7.7 800,000 US Dollars Yearly Cost Condition-Based 90% Rehabilitation And 
10% Replacement Scenario For CR-AHP And POCR 

 
For this scenario also, we considered wastewater segments with a Comprehensive 

rating of 5 with 29,231 ft. of total length for CR-AHP and 34,367 ft. of total length for 

POCR-AHP. A fixed budget of $800,000 with 90% rehabilitation and 10% replacement 

for comparative study with K-NN CR. The $800,000 yearly budget must cover the 

scheduled replacement and rehabilitation of as many feet of the wastewater as possible 

while addressing all emergency repairs first. It is still assumed that emergency repairs 

would cover one percent of the total length (116,634 ft) of the system each year. This equals 

to roughly 1,166 ft. of pipe length requiring emergency repairs. Table 7-25 summarizes the 

results of the yearly replacement and rehabilitation scenario analysis for all wastewater 

pipes with a Comprehensive Rating of 5 with 90% budget for rehabilitation and 10% 

budget for replacement for CR-AHP. 
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Table 7-25. $800,000 Yearly 90% Rehabilitation And 10% Replacement For CR-AHP.  
 

Year 

Yearly 

Budget 

[$] 

Initial 

Length 

[ft.]] 

Emerg

ency 

Replac

ement 

Length 

[ft.]] 

Emergency 

Cost [$] 

Remaining 

Budget 

Scheduled 

Rehabilita

tion 

Length 

Schedule

d 

Replace

ment 

Length 

Remaining 

Length   

 
2022 800,000 29,231.30 1,166 221,283.00 578,717.00 11,325.19 606.88 17,299.23  

2023 800,000 17,299.23 1,166 221,819.84 578,180.16 11,341.80 607.84 5,349.59  

2024 800,000 5,349.59 1,166 222,379.52 577,620.48 4,814.63 534.96 0.00  

 

Table 7-26 summarizes the results of the yearly replacement and rehabilitation 

scenario analysis for all wastewater pipes with a Comprehensive Rating of 5 with a 90% 

budget for rehabilitation and a 10% budget for a replacement for POCR-AHP. 
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Table 7-26. $800,000 Yearly 90% Rehabilitation And 10% Replacement Analysis For POCR.  

Year 

Yearly 

Budget 

[$] 

Initial 

Length 

[ft.]] 

Emerg

ency 

Replac

ement 

Length 

[ft.]] 

Emergency 

Cost [$] 

Remaining 

Budget 

Scheduled 

Rehabilita

tion 

Length 

Schedule

d 

Replace

ment 

Length 

Remaining 

Length   

 
2022 800,000 34,367.00 1,166 221,283.00 578,717.00 11,325.19 606.88 22,434.93  

2023 800,000 22,434.93 1,166 221,819.84 578,180.16 11,341.80 607.84 10,485.29  

2024 800,000 10,485.29 1,166 222,379.52 577,620.48 9,877.01 608.28 0.00  

 

Figure 7-7 shows the number of years required to rehabilitate and replacement for 

CR - K-NN, CR-AHP and POCR-AHP. 

 

Figure 7-7: Number Of Years Required For K-NN CR, CR-AHP, POCR-AHP. 
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After the comparative study we suggest K-NN CR with more accurate rating is 

preventing the saving of the budget for one year which can be used for other pipe 

replacement or rehabilitation. 

7.8 Summary 
 
This chapter presented the cost analysis and budget planning for 22,774.00 Feet 

total length using $400,000 and $800,000 budgets. Cost analysis and budget planning for 

both budgets are considered for different scenarios of pipe rehabilitation and pipe 

replacement.  For pipe rehabilitation, the Cured-In-Place-Pipe (CIPP) technology and for 

replacement, the open-cut method was considered. CIPP pipe lining is one of several 

methods is used to repair existing pipelines that don’t require digging up the pipes, which 

is results in low pipe rehabilitation cost and minimum social impact. Open cut method is 

the most common method for pipe replacement, and it is less expensive compared to other 

trenchless methods. We suggest by the best budget allocation is 800,000 US dollars budget 

with 90% for rehabilitation and 10% for replacement. Finally, we have compared our same 

data budget analysis for CR-AHP and POCR-AHP.
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CHAPTER 8 
 

CONCLUSIONS LIMITATIONS AND FUTURE WORK 
 

8.1 Summary  
 
A review of the relevant literature on risk-based decision-making for wastewater 

pipe renewal, including a review of condition rating methods and models allowed for the 

development of the Comprehensive rating model using Analytic Hierarchy Process and K-

NN. The suggested Comprehensive rating model using Analytic Hierarchy Process is not 

a suitable method. A CTMC model was developed to determine the POF at any given age 

of the pipe, using the Comprehensive Rating conditions as states of the Markov chain at 

two separate observation times. A consequence of failure COF model was developed to 

find out the main consequence of failure. Finally cost analysis and budget planning for 2 

different budgets is considered to find out time required to rehabilitate and replace pipe 

segments and suggested the best budget for pipe replacement and rehabilitation. 

8.2 Conclusions 
 

The following conclusions are presented from the research work of this dissertation: 

1. The proposed condition rating model assesses the overall state of degradation of 

the wastewater pipe, combining a series of pipe characteristics, external 

characteristics, and hydraulic characteristics. The model considered 12 initial 

factors that contribute to the wastewater pipe degradation. Analytic Hierarchy 
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Process is used for model building. Finally, we suggested that Comprehensive 

rating model using Analytic Hierarchy Process is not a suitable method. 

2. The proposed condition rating model assesses the overall state of degradation of 

the wastewater pipe, combining a series of pipe characteristics, external 

characteristics, and hydraulic characteristics. The model considered 12 initial 

factors that contribute to wastewater pipe degradation. A K-Nearest Neighbor (K-

NN) model was used to find the pipe rating. To validate the model, the predicted 

Comprehensive ratings of our model were compared with actual comprehensive 

ratings, and our accuracy was 73.31% which is satisfactory.  

3. We compared the predicted comprehensive rating Pipe overall conditional rating 

(POCR) model and the Comprehensive Rating model of AHP with actual 

comprehensive ratings, and the accuracy was 6.72% and 9.14% which shows the 

K-NN model is more accurate in predicting the comprehensive rating. 

4. A CTMC deterioration model was developed using the CR of VC pipe of 8-inch 

diameter to determine the POF at any age of the pipe. Pipe moves to the worst 

rating 5, after 85.87 years. 

5. A COF model was developed to determine the main consequence of pipe failure 

corrosion plays an important consequence for pipe failure from the selected VC 

pipe segments under economic factor, traffic loading under social factor and waste 

type under environmental factor. By considering all the economic, social, and 

environmental cost 40% of pipes have failure rating 4. The developed model could 

not be verified because the main factors determining the consequence of failure is 

not mentioned in the data.  
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6. Finally cost analysis and budget planning for 2 different budgets is considered to 

find out the time required to rehabilitate and replace pipe segments and compared 

with CR-AHP and POCR-AHP and a risk matrix is developed and pipe risk of 

failure for next year is calculated. 

8.3 Limitations 
 
This section presents limitations in this work: 

1. One of the main limitations of the study was the data. All the pipes’ data had the 

same diameter and seismic zone. Therefore, more pipe from different geographic 

locations is needed to improve and convey more robustness to the obtained results. 

2. The other limitation was the execution time because K-NN Classifiers are real-time 

execution, so their execution is slow compared to other classifier algorithms. 

3. CCTV inspection data at closer time intervals is needed more to have a more 

accurate CTMC deterioration model and to validate the model. 

4. We did not find the main consequence of failure reason in our data to validate the 

COF model. 

8.4 Future Work 
 
This section presents future research work to be done to improve the reliability, 

accuracy, and robustness of the risk-based decision-making framework presented in this 

work: 

1. More experimental applications to case studies are suggested for refining and 

improving the number of structural, operational, and hydraulic factors used in the 

model by considering more variety of data. By adding more factors, this method 

could be applied to any wastewater pipes to recognize the worst condition of 
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wastewater pipes that need to be replaced immediately. In significantly less time 

by reducing many manual efforts.  

2. More CCTV inspection data at closer time intervals is needed to improve the 

reliability of the CTMC deterioration model and to validate the predictions of the 

model. 
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APPENDIX A  
 

AHP CALCULATION 
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A.1 AHP Questionnaire 
 

The purpose of this questionnaire is to ask you, as a subject matter expert in wastewater 

pipe conditions, to perform a pairwise comparison between several factors and sub-factors. 

The aim of Section 1 of the questionnaire is to establish a weighted rating scale of pipe 

characteristics, external characteristics, and hydraulic characteristics related to the 

worsening of wastewater pipe conditions. Questions 1 through 4 are connected to 

establishing priorities among various factors and sub-factors as they relate to the condition 

of the wastewater pipe. The scores presented in Table A-1 must be used for the pairwise 

comparison. 

 
Table A-1: AHP Importance Scale 

Scale Definition 

1 Equally important 

2 Slightly more important 

3 Moderately more important 

4 Moderately plus more important 

5 Strongly more important 

6 Strongly plus more important 

7 Very strongly more important 

8 Very very strongly more important 

9 Extremely more important 
 

When performing the pairwise comparisons, compare the row component to the 

column component. For example, (Ex. 1), if Pipe characteristics are extremely more 
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important than External characteristics with respect to the condition of a wastewater pipe, 

the importance for the Pipe characteristics row would be a strong Importance of 5. 

Alternatively, if External characteristics are strongly more important than Pipe 

characteristics with respect to the condition of a wastewater pipe, the importance for the 

Pipe characteristics would be the inverse of Strong Importance or 1/5 (see example in Table 

A-2 below). 

 
Table A-2: Example pairwise comparison between two factors 

Condition of Wastewater Pipe Pipe characteristics External 
characteristics 

Ex. 1: Pipe characteristics 1 5 

Ex. 2: External characteristics 1 1/5 
 

The following figures are presented as a reference for the questions. (see Figures A-1) for 

reference only. 

 

Figure A-1: Hierarchical structure 
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S E C T I O N:   C O N D I T I O N   OF   P I P E   S E G M E N T S 

 

1. What are the relative importance of pipe characteristics, external conditions, and other 

factors relative to the overall condition of the wastewater pipe? 

 

Table A-3: Relative Importance Of PC, EC And HC 

Condition Pipe 

Characteristics 

External 

Characteristics 

Hydraulic 

Characteristics 

Pipe 

characteristics 

1   

External 

Characteristic 

 1  

Hydraulic 

Characteristic 

 1 

 

2. What is the relative importance of the age, Corrosion, diameter, and pipe shape relative 

to other pipe characteristics? 
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Table A-4: Relative Importance Of PC Characteristics 

Pipe 

Characteristics 

Age Corrosion Diameter Shape 

Age 1    

Corrosion  1   

Diameter  1  

Shape  1 
 

3. The relative importance of depth, soil type, loading, waste type, seismic zone, and 

groundwater relative to the other external characteristics? 

 

Table A-5: Relative Importance Of EC Characteristics 

External 

Characteristics 

Depth Soil 

Type 

Traffic 

Loading 

Waste 

Type 

Seismic 

Zone 

Depth 1     

Soil Type  1    

Traffic Loading  1   

Waste Type  1  

Seismic Zone  1 
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4. What is the relative importance of the PACP structural score, PACP O&M score, and 

repair history relative to other Hydraulic Characteristics? 

 

Table A-6: Relative Importance Of HC Characteristics 

Hydraulic Characteristics Structural Score O&M Score Repair History 

Structural Score 1   

O&M Score  1  

Repair History  1 
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SUPPORTING INFORMATION FOR OVERALL CONDITION OF 

WASTEWATER PIPE 

 

Table A-7: Supporting Information Of PC Characteristics 

FACTOR 
SCORE 

PIPE CHARACTERISTICS 

Pipe Age 
[yrs] Corrosion Diameter [inch] Shape 

1 < 10 yrs 

Reinforced Plastic Pipe, Polyvinyl Chloride,  
Vitrified clay pipe, Polyethylene 

>=49 

Circular 

2 ≥ 10 yrs and 
< 25 yrs 

Cast Iron, Ductile Iron Pipe >31 and <=48 

Oval 

3 ≥ 25 yrs & < 
40 yrs 

Reinforced Concrete Pipe, concrete pipe 
(non-reinforcement), Concrete Segments 

>18 and <=30 

Horseshoe 

4 ≥ 40 yrs & < 
50 yrs 

Not Known >11 and <= 18 
Semi-elliptic 

5 ≥ 50 yrs Other <=11 Arch 
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Table A-8: Supporting Information Of EC Characteristics 

FACTOR 

SCORE 

EXTERNAL CHARACTERISTICS 

Depth [feet] Soil Type 
Traffic 

Loading 

Waste 

Type 

Seismic 

Zone* 
Groundwater 

1 

<10 Feet 
Granular 

(Crushed 

Stone/Gravel) 

No/Very 

Light 

Traffic 

Mildly 

Corrosive 
Zone 1 Low 

2 

> 10 and <= 15 Feet Coarse 

Grained 

(Gravelly 

Sand) 

Light 

Traffic 

Mildly to 

Moderately 

Corrosive 

Zone 2 
Low to 

Moderate 

3 

> 15 and <= 20 Feet 
Silty/Clayey 

Gravels 

Medium 

Traffic 

Moderately 

Corrosive 
Zone 3 Moderate 

4 

> 20 and <= 25 Feet 

Fine Grained 

(Sands/Silts) 

Moderate 

to 

Heavy 

Traffic 

Moderately 

to 

Highly 

Corrosive 

Zone 4 
Moderate to 

High 

5 

> 25 Feet 
Inorganic 

Silts/Clays 

Heavy 

Traffic 

Highly 

Corrosive 
Zone 5 High 
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Table A-9: Supporting Information Of HC Characteristics 

FACTOR SCORE 

 HYDRAULIC 

CHARACTERISTICS 

Structural Score O&M Score Repair History 

1 1 1 No maintenance  

2 2 2 Minor maintenance 

3 3 3 Moderate maintenance 

4 4 4 Significant maintenance 

5 5 5 Extreme maintenance 
 

*Based on 2017 USGS Seismic Maps: 

Seismic Zone 1: ND, MN, WI, MI, IA, NE, FL, South LA, TX, Northeast MT, West KS, OK (except Central) 

Seismic Zone 2: NY, PA, OH, WV, VA, East NC, MD, DC, South GA, South AL, South MS, North LA, Southwest AR, 

Central OK, East KS, North IL, North IN, North KY, North and West MO, North TX, East CO, East NM, South SD, North NE 

Seismic Zone 3: Parts of East SC, AR, and MO, Parts of South IL, Parts of West KY and TN, North of VT, Central WA, 

Large part of OR and NV, Central AK, Central CA, Parts of NM, AZ, Co, and TN. 

Seismic Zone 4: Parts of West WA, OR, CA, NV, WY, and MT, Parts of East SC, AR and MO, Parts of South IL, Parts of 

West KY and TN, Parts of MT, West WY, East ID, Central UT 

Seismic Zone 5: West and East CA, West NV, West WA, West OR, HI, South AK 

 

A.2 Example Calculation Of Relative Weights And Consistency Ratio 

This appendix presents an example calculation of the Relative weights and Consistency 

Ratio (CR) with random values. 

 
Step 1. Pairwise comparison 

Each entry of the upper diagonal is based on where the row component is evaluated 

against the column component based on the following questions: What is the relative 

importance of pipe characteristics, external conditions, and other factors relative to the 

overall condition of the wastewater pipe? As shown in Table A-3 
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Table A-10: Example pairwise comparison between two factors 

  Pipe Characteristics External 
Characteristics 

Hydraulic 
Characteristics 

Pipe Characteristics 1 3 9 

External 
Characteristics 0.333 1 6 

Hydraulic 
Characteristics 0.111 0.167 1 

Σ 1.444 4.167 16 
 

Step 2. Normalization and Relative weight calculation 

The next step is to normalize the matrix by calculating the sum of all the column 

components and then dividing each individual column component by the sum of the 

column components and calculating the normalized eigenvectors which is the relative 

weight. As a result, a new matrix is obtained. For example, the first component of the first 

row is obtained as '
'.999

= 0.6923. For this matrix, the sum of all rows is calculated, and 

normalized eigenvector also computed, as shown in Table A-4. The sum of eigen vector is 

1. 



 

 

158 

 
 

Table A-11:  Normalized matrix 

  Pipe 
Characteristics 

External 
Characteristics 

Hydraulic 
Characteristics 

Normalized 
Eigen Vector 

Pipe 
Characteristics 0.6923 0.7200 0.5625 0.6583 

External 
Characteristics 0.2308 0.2400 0.3750 0.2819 

Hydraulic 
Characteristics 0.0769 0.0400 0.0625 0.0598 

Σ 1 1 1 1 
 

Relative weight is the average of the normalized matrix 

W = �
0.6583
0.2819
0.0598

� 

Step 3: 𝝀𝒎𝒂𝒙 calculation 

 The Next step is to calculate 𝜆1,R 

𝜆1,R  = (0.6583*1.444) + (0.2819*4.617) + (0.0598*16) = 3.20888 

Step 4. Consistency Index (CI) calculation 

The next step is to calculate the consistency index.  

The Consistency Index is calculated as the next step as presented in Eq. A-1. 

 𝐶𝐼 =
(𝜆𝑚𝑎𝑥 − 𝑛)
(𝑛 − 1)  Eq. A-1 

Then 

𝐶𝐼 =
3.20888 − 3

2 = 0.10444 

 

Step 5. Calculation of the Consistency Ratio (CR.) 

The CR is calculated as presented in. 
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 𝐶𝑅 =
𝐶𝐼
𝑅𝐶𝐼 

Eq. A-2 

Where RCI is found in Table 5 and is 0.58 in this case, the value of CR is: 

𝐶𝑅 = &.'&999
&.:S

= 0.180   

The CR is less than 0.10, meaning that the judgment of this decision-maker is acceptable, 

but our CR is greater than 0.10, which means we need to revisit our comparison. 

A.3 Example Calculation Of Comprehensive Rating 
 
 	𝐶𝑅𝑆 = 𝑊!"𝑃𝐶 +	𝑊#"𝑐𝐸𝐶 +	𝑊$"𝐻𝐶			 Eq. A-3 

 PC = ∑ (𝑤%𝑅%)1
%	2	' 			 Eq. A-4 

 EC = ∑ (𝑤3𝑅3).
3	2	' 		 Eq. A-5 

 HC = ∑ (𝑤4𝑅4)+
4	2	'  Eq. A-6 

PC = (0.103274 * 4) + (0.646587 * 2) + (0.111992 * 5) + (0.138146 * 1) = 2.404376 

EC = (0.139967 * 1) + (0.121239 * 4) + (0.221753 * 3) + (0.125648 * 3) + (0.391392 * 2) 

= 2.44991 

HC = (0.493386 * 3) + (0.310814 * 3) + (0.195800 * 3) = 3   

CRS = (0.310814 * 2.404376) + (0.493386 * 2.44991) + (0.195800 * 3) = 2.5434 

Comprehensive Rating score of 2.5434 belongs to comprehensive rating 2 
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APPENDIX B  
 

CODE FOR DATA EXTRACTION 
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import PyPDF2 
import pandas as pd 
import glob 
import os 

 
os.chdir(r"D:\PhD\Phase3\Reports")  

   
print("Directory changed")  
def read_content(filename): 

pdf_file = open(filename, 'rb') 
read_pdf = PyPDF2.PdfFileReader(pdf_file) 
number_of_pages = read_pdf.getNumPages() 
page1 = read_pdf.getPage(0) 
page_content1 = page1.extractText().split('\n') 
page2 = read_pdf.getPage(1) 
page_content2 = page2.extractText().split('\n') 
return page_content1, page_content2 
 
 

def find_values(page_content1, page_content2): 
Column_names1 = ['GM','Comprehensive Type of Construction','Comprehensive 

Rating','Pipe Diameter Needed (if replaced)','Up Rim to Invert (feet)','Up Grade to Invert 
(feet)','Up Rim to Grade (feet)','Down Rim to Invert (feet)','Down Grade to Invert 
(feet)','Down Rim to Grade (feet)','Max Grade to Invert (feet)','Depth 
Category','FlwMtrBasin','Total Length (feet)','Existent Height (inches)','Existant 
Material','Existant Lining Method','DrainageArea','Major Defect','Minor Defect'] 

Column_names2 = ['Assessment Rating'] 
Column_names = Column_names1 + Column_names2 
values = [] 
    for i in Column_names1: 
        values.append(page_content1[page_content1.index(i)+1]) 
    for i in Column_names2: 
        values.append(page_content2[page_content2.index(i)+1]) 
    return Column_names, values 
 
 

if __name__ == '__main__': 
mypath = r"D:\PhD\Phase3\Reports" 
result = [] 
for file in glob.glob(mypath + "/*.pdf"): 
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     page_content1, page_content2 = read_content(file) 
     Column_names, values = find_values(page_content1, page_content2) 
     result.append(values) 
         
    df = pd.DataFrame(result, columns = Column_names) 
    df.to_csv('output.csv') 
     
print("Program terminated Successfully, output.csv") 
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APPENDIX C  
 

CODE FOR FEATURE IMPORTANCE FOR ONE ATTRIBUTE 
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import numpy as np 
import pandas as pd 
import matplotlib.pyplot as plt 
from sklearn.model_selection import train_test_split 
from sklearn.linear_model import KNeighborsClassifier 
from sklearn.metrics import confusion_matrix 
from sklearn.metrics import classification_report 
from sklearn.metrics import accuracy_score 
 
dataset=pd.read_csv(r"/Users/nethrachekuri/Documents/Nethra/PhD/Research_Work/Fin
al Output/VCP8Inch_Broadmoor_FinalData_5_Phase3.csv") 
 
dataset1 = dataset.copy() 
dataset1['Diameter'] = np.random.permutation(dataset1['Diameter']) 
 
x = dataset1.iloc[:,[2,14]].values 
y = dataset1.iloc[:-1].values 
 
 
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.30,random_state=0) 
 
classifier = KNeighborsClassifier(n_neighbors=9,weights='uniform',algorithm='auto',p=2 
) 
classifier.fit(x_train,y_train) 
y_pred=classifier.predict(x_test) 
 
bias=classifier.score(x_train,y_train) 
bias 
variance= classifier.score(x_test,y_test) 
variance 
cm = confusion_matrix(y_test,y_pred) 
cr = classification_report(y_test, y_pred) 
c = accuracy_score(y_test, y_pred) 
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APPENDIX D  
 

CODE FOR COMPREHENSIVE RATING K-NN  
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 import numpy as np 
import pandas as pd 
import matplotlib.pyplot as plt 
from sklearn.model_selection import train_test_split 
from sklearn. neighbors import KNeighborsClassifier 
from sklearn.metrics import confusion_matrix 
from sklearn.metrics import classification_report 
from sklearn.metrics import accuracy_score 
 
dataset=pd.read_csv(r"/Users/nethrachekuri/Documents/Nethra/PhD/Research_Work/Fin
al Output/VCP8Inch_Broadmoor_FinalData_5_Phase3.csv") 
 
 
x = dataset.iloc[:,[2,12]].values 
y = dataset.iloc[:-1].values 
 
 
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.30,random_state=0) 
 
classifier = KNeighborsClassifier(n_neighbors=9,weights='uniform',algorithm='auto',p=2 
) 
classifier.fit(x_train,y_train) 
y_pred=classifier.predict(x_test) 
 
bias=classifier.score(x_train,y_train) 
bias 
variance= classifier.score(x_test,y_test) 
variance 
cm = confusion_matrix(y_test,y_pred) 
cr = classification_report(y_test, y_pred) 
c = accuracy_score(y_test, y_pred)
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APPENDIX E  
 

CODE FOR COMPREHENSIVE RATING NAÏVE BAYE’S  
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import numpy as np 
import pandas as pd 
import matplotlib.pyplot as plt 
from sklearn.model_selection import train_test_split 
from sklearn.naive_bayes import GaussianNB 
from sklearn.metrics import confusion_matrix 
from sklearn.metrics import classification_report 
from sklearn.metrics import accuracy_score 
 
dataset=pd.read_csv(r"/Users/nethrachekuri/Documents/Nethra/PhD/Research_Work/Fin
al Output/VCP8Inch_Broadmoor_FinalData_5_Phase3.csv") 
 
 
x = dataset.iloc[:,[2,12]].values 
y = dataset.iloc[:-1].values 
 
 
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.30,random_state=0) 
 
classifier = classifier = GaussianNB() 
classifier.fit(x_train,y_train) 
y_pred=classifier.predict(x_test) 
 
bias=classifier.score(x_train,y_train) 
bias 
variance= classifier.score(x_test,y_test) 
variance 
cm = confusion_matrix(y_test,y_pred) 
cr = classification_report(y_test, y_pred) 
c = accuracy_score(y_test, y_pred) 
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APPENDIX F  
 

CODE FOR COMPREHENSIVE RATING DECISION TREE  
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import numpy as np 
import pandas as pd 
import matplotlib.pyplot as plt 
from sklearn.model_selection import train_test_split 
from sklearn.tree import DecisionTreeClassifier 
from sklearn.metrics import confusion_matrix 
from sklearn.metrics import classification_report 
from sklearn.metrics import accuracy_score 
 
dataset=pd.read_csv(r"/Users/nethrachekuri/Documents/Nethra/PhD/Research_Work/Fin
al Output/VCP8Inch_Broadmoor_FinalData_5_Phase3.csv") 
 
 
x = dataset.iloc[:,[2,12]].values 
y = dataset.iloc[:-1].values 
 
 
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.30,random_state=0) 
 
classifier = DecisionTreeClassifier(criterion="gini",splitter="best", max_depth=None) 
classifier.fit(x_train,y_train) 
y_pred=classifier.predict(x_test) 
 
bias=classifier.score(x_train,y_train) 
bias 
variance= classifier.score(x_test,y_test) 
variance 
cm = confusion_matrix(y_test,y_pred) 
cr = classification_report(y_test, y_pred) 
c = accuracy_score(y_test, y_pred)
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APPENDIX G  
 

CODE FOR COMPREHENSIVE RATING RANDOM FOREST  
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import numpy as np 
import pandas as pd 
import matplotlib.pyplot as plt 
from sklearn.model_selection import train_test_split 
from sklearn.ensemble import RandomForestClassifier 
from sklearn.metrics import confusion_matrix 
from sklearn.metrics import classification_report 
from sklearn.metrics import accuracy_score 
 
dataset=pd.read_csv(r"/Users/nethrachekuri/Documents/Nethra/PhD/Research_Work/Fin
al Output/VCP8Inch_Broadmoor_FinalData_5_Phase3.csv") 
 
 
x = dataset.iloc[:,[2,12]].values 
y = dataset.iloc[:-1].values 
 
 
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.30,random_state=0) 
 
classifier = RandomForestClassifier(n_estimators=200,criterion="gini", 
max_depth=None) 
classifier.fit(x_train,y_train) 
y_pred=classifier.predict(x_test) 
 
bias=classifier.score(x_train,y_train) 
bias 
variance= classifier.score(x_test,y_test) 
variance 
cm = confusion_matrix(y_test,y_pred) 
cr = classification_report(y_test, y_pred) 
c = accuracy_score(y_test, y_pred) 
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APPENDIX H  
 

CODE FOR MARKOV CHAIN MODEL 
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#Load required packages: 
library(readxl) 
library(msm) 
library(expm) 
library(markovchain) 
library(ctmcd) 

   
#Data Import: 
data<-read_excel("/Users/nethrachekuri/Documents/Nethra/PhD/Research_Work/Final 
Output/VCP8Inch_Broadmoor_FinalData_5_Phase3.xlsx") 

 
#Summarize multi-state data: 
statetable<-statetable.msm(CRFINAL, PipeID, data=data) 
states<-matrix(0,5,5) 
states[3,]<-statetable[2,] 
states[1,]<-statetable[1,] 
rownames(states)<-c("1","2","3","4","5") 
colnames(states)<-c("1","2","3","4","5") 
states 

 
#Relative transition frequencies: 
reltransfreq <-rbind((statetable/rowSums(statetable))[1,],rep(0,5), 

                     (statetable/rowSums(statetable))[2,], 
                     rep(0,5),rep(0,5)) 

rownames(reltransfreq)<-c("1","2","3","4","5") 
reltransfreq 

 
#Average elapsed time between observations (in years): 
te<-mean(abs(diff(data$`Installation Year`))) 
te 

 
# Generator Matrix: 
pr<-list()       
pr[[1]]<-matrix(1,5,5)     
pr[[1]][5,]<-0 
pr[[2]]<-c(rep(1,4),Inf) 
pr 
gmgs<-gm(tm=states,te=52,method="GS",prior=pr,burnin=1000) 

 
Q<-as.matrix(gmgs[[1]]) 
Q 
#One year transition probability matrix: 
p1<-expm((1/56)*Q) 
p1 
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#Probability variation of states in Markov process: 
V0<-c(1,0,0,0,0)   
for (step in 1:200) { 

  matplot(t(sapply(1:200, function(step) {V0 %*% (expm((Q)*(step/56))})), 
          cex=0.7, 
          main="Probability of being in any of the comprehensive rating's based on 

the pipe's age", 
          xlab="Time [Years]", ylab="Probability") 
} 

 
#Sojourntime 
Y11<-(-1/(Q[1,1])) 
Y22<-(-1/(Q[2,2])) 
Y33<-(-1/(Q[3,3])) 
Y44<-(-1/(Q[4,4])) 
sojourn.time<-c(0, Y11, Y11+ Y22, Y11+ Y22+ Y33, Y11+ Y22+ Y33+ Y44) 
time.data<-as.matrix(sojourn.time,ncol=1,byrow=FALSE) 
colnames(time.data)<-"Sojourn Time" 

 

 



 

176 
 

APPENDIX I  
 

WEIGHTED AVERAGE CALCULATION  
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This appendix presents about weighted calculation for one Pipe ID  

𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑	𝐴𝑣𝑒𝑟𝑎𝑔𝑒 = 	
∑(𝑊𝑒𝑖𝑔𝑡ℎ𝑠 ∗ 𝑄𝑢𝑎𝑛𝑡𝑖𝑡𝑖𝑒𝑠)

∑𝑊𝑒𝑖𝑔𝑡ℎ𝑠   Eq. E-1 

𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑	𝐴𝑣𝑒𝑟𝑎𝑔𝑒

= 	

(5 ∗ 5) + (4 ∗ 4) + (2 ∗ 2) + (3 ∗ 3) + (4 ∗ 4) + (2 ∗ 2) + (3 ∗ 3) + (1 ∗ 1) + (3 ∗ 3)
+	(2 ∗ 2) 	+ (2 ∗ 2) + (2 ∗ 2)

5 + 4 + 2 + 3 + 4 + 2 + 3 + 1 + 3 + 2 + 2 + 2  

𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑	𝐴𝑣𝑒𝑟𝑎𝑔𝑒 = 	3.1818 

Weighted average is 3.1818, the COF rank is 3 which means moderate costs planned by 

utilities are involved. 
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