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RELAXED WYTHOFF HAS ALL BEATTY SOLUTIONS

JON KAY AND GEREMÍAS POLANCO

Abstract. We find conditions under which the P -positions of three subtraction games
arise as pairs of complementary Beatty sequences. The first game is due to Fraenkel and
the second is an extension of the first game to non-monotone settings. We show that the
P -positions of the second game can be inferred from the recurrence of Fraenkel’s paper if
a certain inequality is satisfied. This inequality is shown to be necessary if the P -positions
are known to be pairs of complementary Beatty sequences, and the family of irrationals for
which this inequality holds is explicitly given. We highlight several games in the literature
that have P -positions as pairs of complementary Beatty sequences with slope in this family.
The third game we present is novel, and we show that the P -positions can be inferred
from the same recurrence in any setting. It is shown that any pair of complementary Beatty
sequences arises as the P -positions of some game in this family. We also provide background
on some inverse problems which have appeared in the field over the last several years, in
particular the Duchêne-Rigo conjecture. This paper presents a solution to the Fraenkel
problem posed at the 2011 BIRS workshop, a modification of the Duchêne-Rigo conjecture.

1. Introduction

Wythoff’s game starts with two piles, labeled A and B, of finitely many tokens. Two
players alternate, and at each turn the current player may either

(a) remove any positive number of tokens from a single pile, possibly the entire pile,
(b) or remove an equal amount of tokens from piles A and B simultaneously.

Under normal gameplay1, the player who leaves both piles empty wins. The game is itself a
modification of Nim (under normal gameplay). In Nim, there may be more than two piles,
and players may make only the first move (a) listed above. It is for this reason that the
moves of type (a) are sometimes called Nim moves. Moves of type (b) are sometimes called
diagonal moves or bishop moves, as indicated by the representation of a game position by a
piece on a chessboard [2] [14].

If piles A and B contain x and y tokens, respectively, then label the game position as
(x, y). It is customary to make the assumption with no loss of generality that x ≤ y. Label
a position (x, y) as an N -position if any player moving from (x, y) has a winning strategy.
Otherwise, label (x, y) as a P -position. Let N denote the set of N -positions and let P denote
the set of P -positions. It is well known that the set of all game positions is partitioned by
P and N because Wythoff’s game is an acyclic combinatorial game with no ties [21].
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Wythoff computed the P -positions of his game as the set
{(

[nφ] ,
[
nφ2

])
| n ∈ Z≥0

}
(1)

where [·] denotes the floor function and φ =
(
1 +

√
5
)
/2. Projecting onto the components of

these pairs yields the sequences of integers {[nφ]} and {[nφ2]} called the Beatty sequences
of slope φ and φ2, respectively. It is no coincidence that 1/φ+ 1/φ2 = 1, for Lord Rayleigh
discovered in 1894 this condition precisely characterizes when the sequences {[nφ]} and
{[nφ2]} exactly cover the positive integers [22], a property which is intimately connected
to the study of two-player subtraction games. Beatty sequences have a rich literature that
touches upon many topics in number theory and combinatorics (see for instance [1], [20],
and the references therein). Formally they can be defined as

Definition 1 (Homogeneous Beatty Sequence). Let α > 0 be irrational. The sequence

{an}∞n=0 = {[nα]}∞n=0 (2)

is called the (homogeneous) Beatty sequence with slope α. In this paper, we are concerned
only with homogeneous Beatty sequences, so the first adjective will be omitted throughout.

It is for the next theorem, mentioned in the previous paragraph, that we may refer to a
pair of complementary Beatty sequences:

Theorem 1 (Rayleigh-Beatty). Let α < β be positive irrationals and define

A = {[nα]}∞n=0 B = {[nβ]}∞n=0. (3)

Then A ∪ B = Z≥0 and A ∩ B = {0} if and only if 1/α + 1/β = 1. In this case, A and B
are said to be the complementary Beatty sequencess parameterized by α or β.

In [5] and [10], a countable family of Wythoff games is defined by adjoining valid moves.
For a fixed positive integer t, the game t-Wythoff is played with standard Nim moves and
an extended diagonal move in which a player who removes k and ℓ tokens from both piles
may do so if and only if |k − ℓ| < t. The P -positions of games in this family are given by
the complementary Beatty sequences parameterized by α where

α =
2− t+

√
t2 + 4

2
. (4)

Note that α = φ is the special case of t = 1, which corresponds to the original Wythoff’s
game with golden P -positions. This family of irrationals will appear repeatedly and its
significance lies in the following.

Lemma 1. If α = (2−t+
√
t2+4)/2 for some integer t > 0 and β satisfies 1/α + 1/β = 1,

then β = α+ t and, in particular, {α} = {β}.
In the history of combinatorial games, it has always been attractive to study the P -

positions of a given game. This is the forward problem. Lately, it has become attractive to
study the inverse problem: where one starts with pairs from a given complementary sequence
or family thereof and finds one or more games which have pairs from those sequences as P -
positions. This has been discussed in [6], [8], [9], [11], [12], [13], and [18]. A particular setting
of this inverse problem was formalized by Duchêne and Rigo in their conjecture, stated in
[3].
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Conjecture 1 (Duchêne-Rigo). Given a pair of complementary Beatty sequences S =
(An, Bn)n≥1, there exists an invariant game having S ∪ (0, 0) as its set of P -positions.

This conjecture was proven by Larsson, Hegarty, and Fraenkel in [17]. Though the exis-
tence is indeed satisfactory for the resolution of the conjecture, it was noted in [4], [12], [13],
and [18] that the general solution is complicated for an ordinary person to play.

For a basic explanation: start with desired complementary sequences; the P -positions
of an auxiliary game G∗ must first be determined to obtain the set of legal moves for a
second game (G∗)∗. Only does this second game have P -positions which are the desired
complementary sequences. This means a player solving the inverse problem accumulates
additional information to obtain their desired P -positions. Figure 1 depicts valid moves for
the second game when the known complementary sequences are the complementary Beatty
sequences with parameters α = 5/4+π/100 and β satisfying 1/α+1/β = 1. The complicated
structure in the figure indicates the player, in fact, accumulates much additional information.

As such, an inverse problem without the requirement of invariance and with the additional
requirement of having “nice” rules has been formulated since then. Indeed, it was posed by
Fraenkel at the 2011 BIRS workshop in combinatorial games

“Find nice rules for a 2-player combinatorial game for which the P -positions
are obtained from a pair of complementary Beatty sequences,” [4]

In this paper, we are concerned with Fraenkel’s inverse problem, which has led to the games
of [4], [11], [18] and others.

The main results of this paper are two-fold. First, an extension of the game family of [6] is
presented and its Beatty P -positions are explicated, from which we recover an uncountable
family of complementary Beatty sequences. Inspired by the derivation of the previous result,
a novel game family is introduced with simple play rules for which any complementary Beatty
sequences are the P -positions of some game in the family, solving the inverse problem posed
by Fraenkel.

This paper is structured as follows. First a study of Definition 2 is made, determining
necessary and sufficient condition under which games in this family have P -positions which
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Figure 1. Legal moves in (G∗)∗ depicted as ordered pairs. Lines with slopes
1/(β − 1) and β − 1. Adapted with an alternate parameter from “Wythoff’s
Star” so-named in [16].
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are complementary Beatty sequences. Games in the family of Definition 5 are introduced
and Theorem 3 indicates a sufficient criterion for when one of these games has P -positions
arising in terms of a distinguished recurrence formula. Theorem 4 provides necessary and
sufficient conditions so that a game in this family has P -positions which are complementary
Beatty sequences. Definition 6 is presented and the P -positions of games in this family are
computed by Theorem 5. Corollary 1 states that any desired pair of complementary Beatty
sequences arises as the P -positions of some game in the family of Definition 6.

2. General 2-pile subtraction games

In [6], an infinite family of Wythoff’s game variations is defined, again altering only the
diagonal move. A game in this family is parameterized by a suitable function f of the present
and next game positions in the following sense: a player who removes k and ℓ tokens from
both piles may do so if and only if |k − ℓ| is bounded by f (made precise in the following
definition). Setting f ≡ 1 or f ≡ t for some integer t > 1 retrieve the special cases of the
original Wythoff’s game and t-Wythoff, respectively. Precisely, the family is introduced as

Definition 2 (General 2-pile subtraction games). Given two piles of tokens (x, y) of sizes
x, y, with 0 ≤ x ≤ y < ∞. Two players alternate removing tokens from the piles:

(aa) Remove any positive number of tokens from a single pile, possibly the entire pile.
(bb) Remove a positive number of tokens from each pile by sending (x0, y0) to (x1, y1)

where

|(y0 − y1)− (x0 − x1)| < f(x1, y1, x0), (5)

where the constraint function f(x1, y1, x0) is integer-valued, positive, monotone, and semi-
additive.

The following theorem of the same paper determines the P -positions of any game defined
above.

Theorem 2 (Fraenkel). Let S = {(an, bn)}∞n=0 where a0 = b0 = 0 and for all n ∈ Z>0,

an = mex{ak, bk | k < n} (6)

bn = f(an−1, bn−1, an) + bn−1 + an − an−1. (7)

If f is positive, monotone, and semi-additive, then S is the set of P -positions of a general
2-pile subtraction game with constraint function f .

One can see (proven in Lemma 4) that the function defined by

f(x1, y1, [nα]) = ([nβ]− y1)− ([nα]− x1) (8)

has P -positions which are pairs of the complementary Beatty sequences parameterized by
α. However, this function is many-valued because, in particular, it depends on the position
moved to as well as from. The next section gives a way to tell how many-valued the function
is.
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3. Variance, Invariance, and k-Invariance

There exists a classification of subtraction games according how a player’s allowed moves
depend on the game state. In an invariant subtraction game, the move (x, y) → (x−k, y−ℓ)
is allowed if and only if for all positions (x0, y0), the move (x0, y0) → (x0−k, y0−ℓ) is allowed
(provided the pair is non-negative in both components.) Subtraction games not satisfying
this property are called variant. The following definition introduced in [11] is weaker than
invariance:

Definition 3 (k-Invariance). A subtraction game is called k-invariant if its set of positions
can be partitioned into k disjoint subsets such that, within a subset, each allowed move is
invariant in that subset.

The game played with the function in Equation (8) is not k-invariant for any k ∈ Z>0, be-
cause the number of distinct values of f increases unboundedly. If the P -positions {(an, bn)}
are known and the conclusion of Theorem 2 holds, one can see that a minimal requirement
for such a function f is that

f(an−1, bn−1, an) = (bn − an)− (bn−1 − an−1). (9)

As was observed in Example 3 of [11], this expression achieves at most three values when
sequences {an} and {bn} are complementary Beatty sequences. Therefore, if a constraint
function depends only of the position moved from, then there is a chance to bound the
number of distinct values of f . For example, consider the following family satisfying the
minimal requirement:

Definition 4 (Beatty constraint function). Let 1 < α < 2 be irrational. If β satisfies
1/α+ 1/β = 1, then

f([nα]) = f([nβ]) = ([nβ]− [(n− 1)β])− ([nα]− [(n− 1)α]). (10)

is said to be the Beatty constraint function parameterized by α.

Since this expression achieves at most three values, we can deduce that a Beatty constraint
function induces a game which is k-invariant for some k ≤ 3. For this reason, games played
with these functions are the object of central study in this paper. The next lemma tells us
when a Beatty constraint function may be used to play a game of Definition 2 by checking
that it satisfies the hypotheses required by that definition. When such a function may be
used, the P -positions are known to be the complementary Beatty sequences parameterized
by α, according to Theorem 2.

Lemma 2. Let irrationals 1 < α < 2 < β satisfy 1/α + 1/β = 1. Define the sequence

∆2
n−1 = ([nβ]− [(n− 1)β])− ([nα]− [(n− 1)α]). (11)

The following are equivalent:

(i) ∆2 is monotone
(ii) ∆2 is constant and equals [β]− 1
(iii) α = (2−t+

√
t2+4)/2 where t = [β]− 1.

If one of the above is false, then the range of ∆2 lies within a subset of {[β]− 2, [β]− 1, [β]}.
5



Proof. The implication (ii) =⇒ (i) is trivial, so let us prove (i) =⇒ (ii). Afterwards,
we prove (ii) ⇐⇒ (iii). Suppose the function is monotone. Applying the decomposition
β = [β] + {β}, we can rewrite

[nβ] = [n([β] + {β})] (12)

= [n[β] + n{β}] (13)

= n[β] + [n{β}]. (14)

The first difference in parentheses in Equation (11) becomes

[nβ]− [(n− 1)β] = n[β] + [n{β}]− ((n− 1)[β] + [(n− 1){β}]) (15)

= [β] + g1/{β}(n− 1). (16)

where g1/ρ(n) = [(n+1)ρ]− [nρ] for real ρ. After deriving a similar expression for the second
difference in parentheses in Equation (11) involving α we have,

∆2 = [β]− [α] + g1/{β}(n− 1)− g1/{α}(n− 1) = [β]− 1 + dα(n− 1), (17)

where the term

dα(n) = g1/{β}(n)− g1/{α}(n) (18)

is the sole part of the expression which may vary. To determine precisely when dα is mono-
tone, start by defining the sets X = {[n/{α}]}n≥0 and Y = {[n/{β}]}n≥0. From Chapter 9
of [1], recall that

g1/{α}(n) =

{
1 n ∈ X

0 n /∈ X
g1/{β}(n) =

{
1 n ∈ Y

0 n /∈ Y.
(19)

Studying the possible cases, one obtains that dα and ∆2 achieve at most three of the following
values:

dα(n) =






0 n ∈ (X ∩ Y )∪(Xc ∩ Y c)

1 n ∈ Xc ∩ Y

−1 n ∈ X ∩ Y c.

=⇒ ∆2
n=






[β]− 1

[β]

[β]− 2.

(20)

Theorem 3.11 of [19] states that if an intersection of Beatty sequences is non-empty and
non-zero, then the intersection in fact has infinite size. This means if dα achieves any value,
then it achieves that value infinitely many times, indicating the function dα oscillates if it
achieves more than one value. Therefore, if dα is monotone, then it must achieve only one
value. There are now three possibilities to examine, and we rule out the second two: that
dα ≡ 1 or dα ≡ −1.

If dα ≡ 1, then Xc ∩Y = Z>0, so that X = ∅ and Y = Z≥0, a contradiction. A symmetric
argument can be applied to eliminate the case dα ≡ −1, leaving possible only the remaining
case dα ≡ 0, from which it follows that ∆2

n−1 ≡ [β]− 1.
To finish, a formula for α is derived, also providing a converse to Lemma 1. The argument

in the previous paragraph shows (X ∩ Y ) ∪ (Xc ∩ Y c) = Z≥0. Since both X and Y are
non-empty, this implies X = Y . Proceed by elementary algebra. Let t = [β] − 1. Because
{α} = α− [α] and {β} = β − [β], it follows that

α− [α] = β − [β], (21)

6



Substitute the values β = α/(α− 1), [α] = 1, and [β] = t+ 1 to obtain the equation

α− 1 =
α

α− 1
− (t+ 1) (22)

which can be re-arranged into a quadratic equation. The positive solution from the quadratic
formula equals

α =
2− t+

√
t2 + 4

2
, (23)

completing the proof. �

Remark 1. The previous proof indicates that ∆2
n−1 ≥ 0, for all n because

∆2 ≥ [β]− 2 ≥ 2− 2 = 0. (24)

The preceding lemma and its proof constitute a refinement of Proposition 1 in [11], which
studies the same difference, by additionally finding the pre-image of each value [β]−2,[β]−1,
and [β]. The paper [18] also makes heavy study of this difference in its Section 3. The lemma
(and the preceding remark) will be used in the next section also, particularly in the proof of
Theorem 4. The preceding lemma also showed that a game played with a Beatty constraint
function f is either invariant, 2-invariant, or 3-invariant. In the latter cases, the game
positions decompose into the disjoint union

{(an, y), (bn, y) | n− 1 ∈ (X ∩ Y ) ∪ (Xc ∩ Y c)}∪ (25)

{(an, y), (bn, y) | n− 1 ∈ Xc ∩ Y }∪ (26)

{(an, y), (bn, y) | n− 1 ∈ X ∩ Y c}. (27)

where if the game is 2-invariant, one of the preceding sets is empty. In the next section, we
expand Theorem 2 to be compatible with non-monotone constraint functions. That some
non-monotone boolean constraint function enjoys the conclusion of Theorem 2 was observed
in Section 4 of [7]. That the same conclusion is enjoyed by certain Beatty constraint functions
is what Section 5 is devoted to.

4. Modified 2-pile subtraction games

By the preceding discussion, it is of interest to consider a game family including constraint
functions lacking monotonicity. Continuing to require f ≥ 1 is mandated by a complemen-
tary setting, for if f is vanishing, then certain Wythoff moves are blocked entailing that
P -positions may not be complementary. This can be found in Table 62 of [6], where a van-
ishing constraint function has the P -position (1, 1). By the proof of Lemma 3, a game of
Definition 5 will have the P -position (an, an) if and only if f(ak, bk, an) = 0 for all k < n.
If the constraint function depends only on the position moved from, the latter condition is
simply f(an) = 0.

The main result of this section is a classification of the P -positions of games in Definition
5 which are pairs of complementary Beatty sequences. To remove the built-in compatibility
of Definition 2 with Theorem 2, we will work with the following game family, particularly
with functions in the family of Definition 4.

2This example is presented by its author as a counterexample, but it appears to instead be a genuine
example. The main lemma of this section can be used to prove this.
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Definition 5 (Modified 2-pile subtraction games). Given two piles of tokens (x, y) of sizes
x, y, with 0 ≤ x ≤ y < ∞. Two players alternate, removing tokens from the piles as follows

(aa) Remove any positive number of tokens from a single pile, possibly the entire pile.
(bb) Remove a positive number of tokens from each pile by moving from (x0, y0) to (x1, y1)

where

|(y0 − y1)− (x0 − x1)| < f(x1, y1, x0), (28)

where the constraint function f is integer-valued.

Remark 2. Because we are interested in k-invariant games (as discussed in the previous
section), constraint functions which depend only on the position moved from are prioritized.
For this reason, it is understood (unless otherwise specified) that a constraint function f in
this family satisfies f(x1, y1, x0) = f(x0). Setting the next lemma within this definition is
convenient because it permits two motivating examples at the end of the section.

Remark 3. For the sake of consistent equation indexing, the following recurrence starting
with (a0, b0) = (0, 0) and proceeding by

{
an = mex{ak, bk | k < n}
bn = f(an−1, bn−1, an) + bn−1 + an − an−1

for all n > 0 (29)

is the recurrence of Equation (7) adapted to the games of Definition 5.

By playing a game in Definition 5 with the Beatty constraint function parameterized by
α = 1 +

√
5/5, one can see the P -positions do not coincide with pairs of the recurrence

in Equation (29) (see Figure 2 for a list of P -positions and recurrence pairs written as
Beatty pairs). One could have decided that the failure of Theorem 2 to apply is because the
constraint function was non-monotone, but this assumption is not necessary (except that it
was required by Definition 2). Indeed, consider the non-monotone Beatty constraint function
with parameter α = 1 + (2

√
19 − 8)/2. Playing a game with this constraint function, the

P -positions can be verified to coincide with pairs of the recurrence in Equation (29). See
Figure 3 for several of the first P -positions.

In the next lemma, we solve the forward problem of finding the P -positions of a particular
game in the family of Definition 5, allowing us to designate our specific inverse problem in
the next section.

Now that f has been assumed to be merely integer-valued, the next lemma is a general-
ization of Theorem 2. Algorithms like the one exposed in the statement and proof of this
lemma are know as Minimum Excluded algorithms and variations of this proof strategy have

n 0 1 2 3 4 5 6 7 8 9
an 0 1 2 4 7 8 9 10 11 12
bn 0 3 6 5 13 16 19 15 23 26
[nα] 0 1 2 4 5 7 8 10 11 13
[nβ] 0 3 6 9 12 16 19 22 25 29

Figure 2. Top: P -positions of the game played in Definition 5 with the
constraint function in Equation (10) parameterized by α = 1+

√
5/5. Bottom:

Complementary Beatty sequences parameterized by α. Disagreement at n = 3.
8



n 0 1 2 3 4 5 6 7 8 9
an 0 1 2 4 5 6 8 9 10 12
bn 0 3 7 11 15 18 22 26 30 34
[nα] 0 1 2 4 5 6 8 9 10 12
[nβ] 0 3 7 11 15 18 22 26 30 34

Figure 3. Top: P -positions of the game played in Definition 5 with the
constraint function in Equation (10) parameterized by α = 1 + (2

√
19− 8)/2.

Bottom: Complementary Beatty sequences parameterized by α.

their origins in Wythoff’s original paper [2] [23]. Contemporary references include [3], [5],
[6], [14], and many others. Later on, we adapt the lemma to analyze the game in Definition
6, exposing its P -positions in Theorem 5.

The statement of this lemma shows how to compute the set of P -positions. The proof
shows that a player in a P -position may never move to a lower P -position, and that a
player in an N -position may always move to a P -position, so that we may apply the P - and
N -position structure theorem.

Lemma 3. Let S = {(an, bn)}∞n=0 where a0 = b0 = 0 and for all n ∈ Z>0

an = mex{ak, bk | k < n} (30)

bn = min{b ≥ an | b 6=bk and |(b−bk)−(an−ak)|≥f(ak, bk, an)∀k<n}. (31)

Then S = {(an, bn)}∞n=0 is the set of P -positions of a game in Definition 5 with constraint
function f .

Remark 4. The minimum above can be rewritten as the mex:

bn = mex
≥an

({bk}0<k<n ∪ {b ≥ an | |(b−bk)−(an−ak)|<f(ak, bk, an)}k<n) . (32)

Proof. In the setting of a subtraction game ending at (0, 0) the P -positions can be generated
inductively, starting with (0, 0). Label the first non-zero P -position (a1, b1). The component
a1 = mex{0} is indicated because (0, b) can be moved to (0, 0) for any b > 0. The component
b1 is found by taking the minimum b for which (a1, b) has no move to lower P -positions:

b1 = min{b ≥ 1 | |(b− 0)− (1− 0)| ≥ f(0, 0, 1)} (33)

= 1 + f(0, 0, 1). (34)

At the nth step, the position (an, bn) is computed similarly by taking a mex for the first
component

an = mex{ak, bk | k < n}. (35)

If an were not equal to this mex, then an = ak or an = bk for some k < n. In the first
case, (an, bn) = (ak, bn). If bn > bk, then moving to (ak, bk) is possible by a Nim move,
a contradiction. Otherwise, if bn < bk, then the P -position (ak, bk) has a move to the P -
position (an, bn) via a Nim move, which is also a contradiction. Finally, if an = bk, then
the P -position (an, bn) = (bk, bn) has a move to (bk, ak) which is relabelled as the P -position
(ak, bk), also a contradiction.

For the second component, now that n > 1, we need to add a quantifier and restrict b 6= bk:

bn=min{b≥an | b 6= bk and |(b−bk)− (an−ak)|≥f(ak, bk, an)∀k<n}. (36)

9



Note that we can be sure bk ≥ ak because that is the convention we adopted for denoting
game positions. Moreover, bn = an if and only if f(ak, bk, an) = 0 for all k < n.

The above paragraph indicates how to compute the set S. Now we show that if a player is
in any game position in the complement of S, then they can always move directly to a game
position in S. Once this is proven, the structure theorem of P - and N -positions implies that
S is the set of P -positions.

It suffices to consider the following game positions, because the sequence {an} consists of
minimum excludants:

(an, am) (an, bm) (bn, am) (bn, bm) (37)

for distinct m and n. If f(ak, bk, an) = 0 for all k < n, then bn = an and only the first two
cases need to be inspected. For the first position, note that am > an = bn, so that moving to
(an, bn) is possible. For the second position, note that bm > an = bn, so a player can move
to (an, bn).

Otherwise, suppose f(ak, bk, an) 6= 0 for some k < n. To handle the first case, suppose
am > bn. Then a player may move to (an, bn). Otherwise we have am < bn. Interpreting bn
as the minimizer

bn = min{b ≥ an | b 6=bk and |(b−bk)−(an−ak)|≥f(ak, bk, an)∀k<n}, (38)

one can see that there exists k < n such that

|(am − bk)− (an − ak)| < f(ak, bk, an) (39)

which indicates a player may make the diagonal move to (ak, bk). For the second case, if
bm > bn, then a player may make a Nim move to (an, bn). If bm < bn, then interpreting bn
as a minimizer again reveals that a player may make a diagonal move from (an, bm) to some
(ak, bk).

For the third case, if n < m then a player may make a Nim move to (bn, an) which is
relabeled as (an, bn). Otherwise we shall have m < n, thus obtaining the strict inequality

am < an ≤ bn ≤ am, (40)

which is a contradiction, because the case an = bn was already addressed. Finally, suppose a
player is in the fourth position-type above. If bm > an, then a player can make a Nim move
to (bn, an). Otherwise, bm < an implies the strict inequality

bn ≤ bm < an ≤ bn, (41)

but we already handled the case an = bn.
Therefore, S is the set of P -positions for a game played with the constraint function f . �

The next two examples show how the previous lemma can be used to deduce P -positions.
First, let us prove the observation surrounding Equation (8).

Lemma 4. If a game in Definition 5 is played with the constraint function

f(x1, y1, [nα]) = ([nβ]− y1)− ([nα]− x1) (42)

then the P -positions are pairs of the complementary Beatty sequences parameterized by α.
10



Proof. By induction, suppose (ak, bk) = ([kα], [kβ]) for all k < n−1. This is true in the base
case (0, 0). At the nth step, the P -position (an, bn) is computed by Lemma 3 as follows:

an = mex{ak, bk | k < n} (43)

bn = mex({bk} ∪ [an + bk − ak − f(ak, bk, an) + 1, an + bk − ak + f(ak, bk, an)− 1]). (44)

The upper endpoint of any of the intervals in Equation (44) can be simplified as

an + bk − ak + f(ak, bk, an)− 1 = an + bk − ak + [nβ]− an − (bk − ak)− 1 (45)

= [nβ]− 1. (46)

The lower endpoint the intervals can be simplified as

an + bk − ak − f(ak, bk, an) + 1 = an + bk − ak − [nβ] + an + (bk − ak) + 1 (47)

= 2an − [nβ] + 2(bk − ak) + 1. (48)

This indicates the intervals expand. After taking the entire union, we are left evaluating
mex≥an([2an − [nβ] + 1, [nβ]− 1]). Since [nβ] > an, we can see that 2an − [nβ] < an, and so
2an − [nβ] + 1 ≤ an, which indicates the mex equals [nβ]. �

Let us also prove that the third counterexample in Proposition 2 of [6] is a actually a
genuine example. The constraint function in question is

f(x1, y1, x0) = (1 + (−1)y1+1)x1/2. (49)

Table 6 of the same paper contains several S-positions according to the recurrence formula
of Equation (7). The author claims these are not P -positions, because “(10, 29) cannot be
moved to any of the lower S-positions”, suggesting that the pair (10, 31) from the table is not
a P -position, because (10, 29) ought to be. However, a closer look shows that moving from
(10, 29) to the S-position (8, 21) is allowed, because |(29−21)− (10−8)| = 6 < f(8, 21, 10) =
(1 + (−1)22)8/2 = 8. The remaining P -positions can be computed using Lemma 3, showing
the same recurrence formula holds.

Lemma 5. If a game in Definition 5 is played with the constraint function in Equation (49),
the set of S-positions starting with (a0, b0) = (0, 0) and (a1, b1) = (1, 1), followed by

an = mex{ak, bk | k < n} (50)

bn = an + bn−1 − an−1 + f(an−1, bn−1, an) (51)

=

{
an + bn−1 bn−1 odd

an + bn−1 − an−1 bn−1 even.
(52)

for all n ≥ 2 are P -positions.

Proof. Base cases at n = 0, 1 can be verified by hand. For an induction step, the next
P -position is found by applying Lemma 3

an = mex{ak, bk | k < n} (53)

bn = mex({bk} ∪ [an + bk − ak − f(ak, bk) + 1, an + bk − ak + f(ak, bk)− 1]k<n). (54)

Note that the intervals

[an−1 + bk − ak − f(ak, bk) + 1, an−1 + bk − ak + f(ak, bk)− 1]k<n−1 (55)

11



cover the set {an−1, an−1 + 1, . . . , bn−1 − 1} by the inductive hypothesis. Therefore it can be
seen that the shifted intervals

[an + bk − ak − f(ak, bk) + 1, an + bk − ak + f(ak, bk)− 1]k<n−1 (56)

cover the set {an, an + 1, . . . , bn−1 − 1 + (an − an−1)}.
If bn−1 is even, then f(an−1, bn−1) = 0 and the last interval of Equation (54) is empty, so

we simply take bn = an + bn−1 − an−1. If bn−1 is odd, then f(an−1, bn−1) = an−1 and the last
interval considered is

[an + bn−1 − 2an−1 + 1, an + bn−1 − 1]. (57)

There are no integers in-between the set {an, an + 1, . . . , bn−1 − 1 + (an − an−1)} and this
interval, because we can see that

an + bn−1 − 2an−1 + 1 ≤ bn−1 − 1 + (an − an−1) + 1 ⇐⇒ (58)

1 ≤ an−1 (59)

which holds for all n ≥ 2. Therefore, we can determine that bn = an + bn−1. �

Now that we have seen two examples of how Lemma 3 can be used to determine a game’s
P -positions, let us move on to the main result characterizing when the P -positions in games
of Definition 5 are pairs of complementary Beatty sequences.

5. The Inverse Problem

In this section, we pose our inverse problem: if the P -positions of a game in Definition 5
are pairs of complementary Beatty sequences, what is the constraint function of that game?
Is it the Beatty constraint function? From which functions arise games whose P -positions
are pairs of complementary Beatty sequences? These three questions are answered in this
section, per the proviso in Remark 2.

The next theorem refines the minimum for a class of constraint functions which satisfy a
certain inequality.

Theorem 3. Let f ≥ 1 be a function of integers into integers and let n > 1 be fixed. Suppose
a game in Definition 5 has P -positions (ak, bk) which satisfy

ak = mex{aj , bj | j < k} (60)

bk = f(ak) + bk−1 + ak − ak−1

for all 0 < k < n. If 2f(an)− f(ak) ≥ 1 is true for all 0 < k < n, then

bn = f(an) + bn−1 + an − an−1. (61)

Proof. First off, if f(an) = 1, we can deduce the inequality

2− f(ak) ≥ 1 =⇒ 1 ≥ f(ak) =⇒ f(ak) = 1∀k < n (62)

from which we obtain the classical Wythoff game. The recurrence formula is known in this
case. Otherwise, suppose f(an) 6≡ 1.

12



By combining the second line of Equation (60) and the hypothesis f ≥ 1, one can deduce
the sequence {bk − ak} is monotone, because

bk − ak = bk−1 − ak−1 + f(ak) (63)

≥ bk−1 − ak−1 + 1 (64)

As in the remark following Lemma 3, we can re-write the minimum for bn of the same lemma
as a minimum excludant:

bn = mex
≥an

({bk}k<n ∪ {b ≥ an | |(b−bk)−(an−ak)| < f(an)}k<n) . (65)

By re-writing the inequality |(b−bk)−(an−ak)| < f(an) we conclude that b belongs to the
interval of integers

Ik = [an+bk−ak−f(an)+1, an+bk−ak+f(an)−1] ∩ Z≥an . (66)

Therefore, the mex in equation (65) is an integer lying outside any interval Ik. With the
assumption 2f(an)−f(ak) ≥ 1 for all 0 < k < n, we can deduce that the union of the intervals
{Ik} is also an interval. To see this, recall that {bk − ak} is monotone. This indicates that
the intervals can be ordered monotonically also. Now, count the number of integers lying
between the right-endpoint of the interval Ik and the left-endpoint of the interval Ik+1:

(an + bk+1 − ak+1 − f(an))−(an + bk+1 − ak+1 + f(an)) + 1 (67)

= f(ak+1)− 2f(an) + 1 (68)

≤ 0 (69)

where the last inequality follows from the assumption. Thus the number of integers between
consecutive intervals is less than or equal to zero. In other words, we arrive at the impor-
tant conclusion that there is no gaps between interval, i.e., consecutive intervals are either
overlapping or the starting point of the next interval is exactly one integer away from the
end point of the previous interval. This permits an ansatz for the minimum excluded bn by
simply evaluating max In + 1.

b̃n = an + bn−1 − an−1 + f(an). (70)

Now that we have a candidate for bn, we need to just be sure that b̃n 6= bj for all j < n,
which can be demonstrated by contradiction. Suppose

bj = an + bn−1 − an−1 + f(an) (71)

for some j < n. Since the sequence {ak} is monotone and j < n we can deduce that

bj > aj + bn−1 − an−1 + f(an) (72)

=⇒ (bj − aj)− (bn−1 − an−1) > f(an). (73)

But since {bk − ak}k<n is monotone, this implies that f(an) < 0, contradictory to our
assumption that f ≥ 1. �

Applying the previous result, we can deduce the following special case.

Lemma 6. Let a game in Definition 5 be played with the Beatty constraint function pa-
rameterized by some α < 5/4. Then the P -positions are pairs of the complementary Beatty
sequences parameterized by α.
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Proof. The assumption α < 5/4 and the relation α−1 + β−1 = 1 imply that [β] ≥ 5. The
study of the difference function in Lemma 2 indicates that the constraint function may take
values only from the set {[β]−1, [β], [β]−2} which implies the constraint function is bounded
from below, i.e., f ≥ 3. Suppose the function f is three-valued. Then

2min f −max f = 2([β]− 2)− [β] = [β]− 4 ≥ 1. (74)

If f is two-valued, then there are two other possibilities to exhaust:

2min f −max f = 2([β]− 1)− [β] = [β]− 2 ≥ 3 (75)

2min f −max f = 2([β]− 2)− ([β]− 1) = [β]− 3 ≥ 2. (76)

If f is constant, 2min f − max f ≡ f ≥ 3. In all of these cases, we see that 2min f −
max f ≥ 1, so that Theorem 3 may be applied. To explicate that the P -positions are
indeed complementary Beatty sequences, an inductive argument is sufficient. Assume that
(an, bn) = ([nα], [nβ]) for all n < N . This is true for N = 1. For the inductive step, note
that the formula of Equation 61 holds for all n > 0. We can thus deduce that

bN = f(aN) + bN−1 + aN − aN−1 (77)

= ([Nβ]− [Nα])− ([(N − 1)β]− [(N − 1)α]) + bN−1 + aN − aN−1 (78)

= ([Nβ]− [Nα])− ([(N − 1)β]− [(N − 1)α]) + [(N − 1)β] + aN − [(N − 1)α] (79)

= [Nβ] + aN − [Nα] (80)

where the inductive hypothesis was applied to substitute values for bN−1 and aN−1. It is
a property of complementary Beatty sequences that aN = mex{ak, bk} = [Nα], which then
implies bN = [Nβ], completing the induction. �

The next lemma demonstrates that the inequality derived in the proof of Theorem 3
is a necessary property of a constraint function whose game has P -positions which are
complementary Beatty sequences.

Lemma 7. Suppose a game in Definition 5 is played with the Beatty constraint function f
parameterized by α. Then the P -positions are the complementary Beatty sequences if and
only if 2min f −max f ≥ 1.

Proof. Theorem 3 shows that 2min f − max f ≥ 1 implies the P -positions are pairs of the
complementary Beatty sequences parameterized by α after expanding the recurrence.

For the reverse direction, we prove its contrapositive, that 2f min f −max f < 1 implies
the P -positions are not complementary Beatty sequences. Suppose 2min f − max f < 1.
Continue as in the proof Theorem 3, where a sequence of intervals is considered. Select
n > 1 and 0 < k < n such that there is a gap between the endpoints of the intervals Ik−1 and
Ik of maximal size. The size of the gap equals f(ak)−2f(an)+1. If this is greater than one,
then we can be sure the gap is not filled by the sequence {bk}, because this sequence grows
by at least two at a time. If every gap has size one, apply the next lemma, which shows not
all gaps are filled in this case. In both of these situations, the fact that a gap appears in the
intervals means that some bn is less than an + bn−1 − an−1 − f(an).

bn < an + bn−1 − an−1 − f(an). (81)
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If n is the least value for which a gap in the intervals is left unfilled, then the lower P -
positions are segments of the complementary Beatty sequences parameterized by α. The
inequality above implies

bn ≤ an + bn−1 − an−1 − f(an) (82)

= an + bn−1 − an−1 − (([nβ]− an)− (bn−1 − an−1)) (83)

The Beatty element [nβ] can be written [nβ] = bn + d where d > 0, since an + bn−1 − an−1 +
f(an) = [nβ]. (We have assumed n is the least value for which a gap appears.) Substituting
into the previous inequality shows

bn ≤ an + bn−1 − an−1 − bn − d+ an + bn−1 − an−1 (84)

2bn − 2an ≤ 2(bn−1 − an−1)− d (85)

2(bn − an)− 2(bn−1 − an−1) ≤ −d. (86)

However, the study of the difference function as in Lemma 2 reveals that this quantity is
non-negative for complementary Beatty sequence {ak} and {bk}. Therefore the sequence are
not complementary Beatty sequences. �

Lemma 8 (Gap lemma). Let f be a Beatty constraint function satisfying the property that
any gap between the intervals

Ik−1 = [an+bk−1−ak−1 − f(an)+1, an+bk−1−ak−1 + f(an)−1] (87)

Ik = [an+bk−ak − f(an)+1, an+bk−ak + f(an)−1] (88)

has size f(ak) − 2f(an) + 1 exactly equal to one. Then there exists n > 1 and 0 < k < n
such that the gap at Ik−1 is left unfilled by any bj. In symbols:

an + bk−1 − ak−1 + f(an) /∈ {bj}j<n. (89)

Proof. Suppose conversely that for every n > 1 and 0 < k < n satisfying f(ak)−2f(an)+1 =
1, there exists bj such that an+ bk−1−ak−1+f(an) = bj . Then for any n > 1, the cardinality
of the set

G = {0<k<n | 2f(an) = f(ak)} (90)

equals that of the set

H={0<k<n | 2f(an)=f(ak) and an+bk−1−ak−1+f(an)=bj}. (91)

By Lemma 6, we can assume [β] = 2, 3, 4. Recall f achieves the the following values:

f(an) =






[β] n− 1 ∈ Xc ∩ Y

[β]− 2 n− 1 ∈ X ∩ Y c

[β]− 1 otherwise

(92)
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where X = {[n/{α}]} and Y = {[n/{β}]}. By performing casework, if 2f(a) = f(a′) and
f 6= 0, then one of the following is true:






2[β] = [β]− 1 =⇒ β < 0

2[β] = [β]− 2 =⇒ β < 0

2([β]− 1) = [β] =⇒ [β] = 2

2([β]− 1) = [β]− 2 =⇒ [β] = 0

2([β]− 2) = [β] =⇒ [β] = 4

2([β]− 2) = [β]− 1 =⇒ [β] = 3.

(93)

This shows that we need only consider the cases [β] = 2, 3, 4. It also shows for a given
Beatty constraint function f that the equality 2f(a) = f(a′) is achieved for a unique pair
of values f(a) and f(a′). Assume [β] = 2. The casework showed we require f(an) = 1 and
f(ak) = 2. The value f(ak) = 2 is achieved if and only if k − 1 lies in the sequence Xc ∩ Y .
Note that this sequence has density (1−{α}){β}. The sequence {bk−1−ak−1}≥1 has density
1/(β − α), which means for fixed n that the sequence {bk−1 − ak−1 + an + f(an)}k≥1 has the
same density. After taking into account the density of the sequence {bn}, one deduces

lim
n→∞

f(an)=1

|H|
n− 1

≤ (1− {α}){β}/((β − α)β) (94)

< (1− {α}){β} = lim
n→∞

f(an)=1

|G|
n− 1

(95)

which indicates |H| < |G| for sufficiently large n.
For [β] = 4, we require f(an) = 2 and f(ak) = 4, so that k − 1 ∈ Xc ∩ Y , which permits

the same proof. For [β] = 3, we require f(an) = 2 and f(ak) = 1 so that k− 1 ∈ X ∩Y c. To
adapt the argument in this case, replace the density (1 − {α}){β} with {α}(1− {β}) after
considering the pre-images of each value f achieves.

Because |H| < |G|, for sufficiently large n in any case, we know that the sets H and G
are not equal. Therefore, there is a gap of size one between two of the intervals which is left
unfilled by any bj . �

The next lemma demonstrates that Beatty P -positions necessarily arise from Beatty con-
straint functions; i.e., the inverse problem has a unique solution which, if it exists, coincides
with a candidate function.

Lemma 9. Suppose a game in Definition 5 is played with the constraint function f and
moreover that the P -positions agree with pairs of the complementary Beatty sequences {an}
and {bn} parameterized by α. Then f agrees with the function f̃ in Equation (10) over all
an with n positive.

Proof. Let 1 < α < 2 < β satisfy 1/α + 1/β = 1. Denote the P -positions by

{(an, bn)} = {([nα], [nβ])}. (96)
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To proceed by induction, suppose f(an) = f̃(an) for all n < N . The Nth P -position is found
be evaluating

aN = mex{ak, bk}k<N (97)

bN = mex
≥aN

{bk}k<N ∪ [aN + bk−ak − f(aN)+1, aN + bk−ak + f(aN)−1]k<N . (98)

If there is no gap in the intervals, then the mex can be computed by adding one to the
greatest interval’s right-endpoint, to obtain

bN = aN + bN−1 − aN−1 + f(aN). (99)

This implies f(aN) = (bN − aN) − (bN−1 − aN−1) = f̃(aN), which is the desired result.
Otherwise, there is a gap between the intervals Ik and Ik+1, which implies that

bN = aN + bk − ak + f(aN) (100)

and

f(aN ) = (bN − aN )− (bk − ak) =
N∑

j=k+1

f̃(aj) ≥ f(ak+1). (101)

But the existence of a gap implies that 2f(aN) − f(ak+1) ≤ 0 or that f(aN) ≤ f(ak+1)/2.
The joint inequality f(ak+1) ≤ f(aN) ≤ f(ak+1)/2 implies f(ak+1) = f(aN) = 0, which
contradicts the definition of f (recall that if f = 0 at any point, then the P -positions are not

complementary). Therefore, there is no gap in the intervals, which implies f(an) = f̃(an)
for all positive n. �

The next theorem extends the discussion preceding Lemma 2 to games in the family of
Definition 5 and determines the range of possible Beatty sequences for the forward problem.
Figure 4 illustrates the set of permitted α.

Theorem 4 (Unifying Theorem). Let a game in Definition 5 have P -positions which are
the complementary Beatty sequences parameterized by α. Then one of the following is true:

(i) α = (2−t+
√
t2+4)/2 for some integer t > 0,

(ii) [β] = 3 or [β] = 4 and there exist integers, p, q > 0 such that

α =

√
4pq+([β]p−1)2 + 2q−([β]p−1)

2q
, (102)

(iii) [β] = 4 and there exist integers p, q > 0 such that

α =

√
4pq + (q−3p−1)2 + 3q−3p−1

2q
, (103)

(iv) [β] ≥ 5 or, equivalently, α < 5/4.

Proof. If f ≡ t for some t > 0, then α is as in case (i) by Lemma 2. Otherwise, the previous
lemmata showed we require that f is a Beatty constraint function as in Definition 10 and
that 2min f −max f ≥ 1.
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To proceed, we inspect the possible values of f as α values, some of which indicate this
inequality is true. Recall the trichotomy Equation (20), which says that if X = {[n/{α}]}
and Y = {[n/{β}]}, then

dα(n) =






0 n ∈ (X ∩ Y ) ∪ (Xc ∩ Y c)

1 n ∈ Xc ∩ Y

−1 n ∈ X ∩ Y c

=⇒ f =






[β]− 1

[β]

[β]− 2.

(104)

If f achieves more than one value, then f achieves each of those values infinitely many
times as discussed in Lemma 2. Therefore we can determine the minimum and maximum
by looking at the three values in Equation (104).

Suppose now that f is three-valued. We then require

2([β]− 2)− [β] ≥ 1 ⇐⇒ [β] ≥ 5. (105)

This case was handled in Lemma 6. Therefore suppose f achieves only two values. If those
two values are [β]−2 and [β], then we require the same inequality, which, again, was already
handled. If f achieves only the values [β]− 2 and [β]− 1, then we require

2([β]− 2)− ([β]− 1) ≥ 1 ⇐⇒ [β] ≥ 4. (106)

If f achieves only the values [β]− 1 and [β], then we require

2([β]− 1)− [β] ≥ 1 ⇐⇒ [β] ≥ 3. (107)

Therefore, if [β] = 3 or [β] = 4, then the inequality 2min f − max f ≥ 1 is satisfied only
when f excludes one or more of its possible values from its range.

To handle these cases in an explicit fashion, start by letting [β] = 3 or [β] = 4 and exclude
the value f = [β]− 2 by setting X ∩ Y c = ∅. Theorem 3.13 of [19] states this is equivalent
to the existence of integers p, q > 0 solving p(1− {β}) + q{α} = 1. Note that

1

α
+

1

β
= 1 (108)

implies β = α/(α− 1) = (1 + {α})/{α}. Therefore
{β} = (1 + {α})/{α} − [β] and (109)

1− {β} = [β]− 1

{α} . (110)

Manipulating the equation p ([β]− 1/{α})+ q{α} = 1, one arrives at the quadratic equation

qα2 + ([β]p−1−2q)α+ q−p+([β]p−1) = 0. (111)

The quadratic formula yields a solution in the interval (1, 2)

α =

√
4pq + ([β]p−1)2 + 2q − ([β]p−1)

2q
. (112)

Finally, we let [β] = 4 and exclude the value f = [β] by setting Xc ∩ Y = ∅. Equivalently,
there exist integers p, q > 0 such that

p{β}+ q(1− {α}) = 1. (113)
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1 1.25 1.33 1.41 1.62 2

Figure 4. Black: irrationals in case (i) of Theorem 4. Red: irrationals in case
(ii) with [β] = 3. Green: irrationals in case (ii) with [β] = 4. Blue: irrationals
in case (iii). Yellow: irrationals in case (iv).

Similar to the previous derivation, the quadratic equation

qα2 + (3p− 3q + 1)α+ (2q − 4p− 1) = 0 (114)

arises and the quadratic formula yields the solution

α =

√
4pq + (q−3p−1)2 + 3q−3p−1

2q
. (115)

In each of the above cases 2min f − max f ≥ 2, and Theorem 3 implies the equality bn =
an + bn−1 − an−1 + f(an) is always true.

The preceding casework is exhaustive, yielding the statement. Figure 4 displays visually
the family of irrationals derived. �

If p = q = 1 and t = [β]− 1 are substituted into Equation (102), then the special case of
the formula in Equation (4) appears. Moreover, setting q = p, m = [β]p−1, and [β] = 3, 4 in
Equation (102), one can deduce a family of Definition 5 games whose P -positions are pairs
of the complementary Beatty sequences parameterized by

α =

√
m2+4p2+2p−m

2p
. (116)

This is precisely the irrational family mentioned in Section 1.6 of [14] and the family of
Section 1.4.5 in [15]. In those papers, the family of irrationals is made in reference to a game
whose P -positions are “close” to pairs of the complementary Beatty sequences parameterized
by α. The preceding theorem shows that if m = 3p− 1 or m = 4p− 1, then the P -positions
may be brought even closer (to a distance of zero) by playing a game in Definition 5 with
the Beatty constraint function parameterized by α. This is in contrast with the statement
of the appendix in the same paper, which states that for p > 1, there exists no game of a
certain type with P -positions which are the complementary Beatty pairs. The appendix also
makes reference to a special family of irrationals

r =

√
4p2 + 1 + 2p− 1

2p
. (117)

This family can be deduced by the same method the family Equation (103) was derived by
instead setting [β] = 2 and letting q = p.
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In [18], an invariant family of games is defined whose P -positions arise as pairs of the
complementary Beatty sequences parameterized by

αk = [1; k, 1, k, 1, k, . . . ] =
1 +

√
1 + 4/k

2
=

√
4k + k2 + k

2k
(118)

for all k ≥ 1. For any [βk] ≥ 2, we can substitute p = 1 and q = [βk]− 1 = k into Equation
(102) to arrive at the same formula.

It is for the previous examples that we view the family of quadratic irrationals in the
previous theorem statement as a kind of unifying family. A special property is that ∆2 is
two valued for these α.

The key to our solution to Fraenkel’s inverse problem is to observe that the disagree-
ment of bn with the recurrence formula depends (in a sufficient way) on the intervals Ik
mentioned in the proof of Theorem 3 having gaps between them. To instead be sure that
the intervals always overlap, we can replace each interval’s lower endpoint with −∞. This
has the advantage of also removing the problematic absolute value symbol which yields
non-complementary P -positions for vanishing constraint functions. The next game family is
introduced as Definition 6. As a corollary, we deduce a family of games whose P -positions
are any desired complementary Beatty sequences.

6. Relaxed Wythoff

In this section, a third, novel family of games is defined. This family accepts a constraint
function and has three possible move types. It is shown that some game in this family has
P -positions which are pairs of any desired complementary Beatty sequences.

Definition 6 (Relaxed Wythoff). Given two piles of tokens (x, y) of sizes x, y, with 0 ≤
x ≤ y < ∞. Two players alternate removing tokens from the piles in one of the following
ways:

(aa) Remove any positive number of tokens from a single pile, possibly the entire pile.
(bb) Remove more tokens from the smaller pile than from the larger pile. (A special case

of the next move type.)
(cc) Remove a positive number of tokens from each pile by sending (x0, y0) to (x1, y1)

where

(y0 − y1)− (x0 − x1) < f(x0), (119)

where the constraint function f is integer-valued and non-negative.

Lemma 3 provides a strategy to prove the following theorem, which is analogous to The-
orem 2

Theorem 5 (P -positions of Relaxed Wythoff). Let S = {(an, bn)}∞n=0 where a0 = b0 = 0
and for all n ∈ Z>0 set

an = mex{ak, bk | k < n} (120)

bn = f(an) + bn−1 + an − an−1. (121)

If f ≥ 0 and f(1) ≥ 1, then S = {(an, bn)}n≥0 is the set of P -positions of a game in Definition
6 played with the constraint function f . Moreover, the sets {an} and {bn} are monotone
and complementary sequences of integers covering the natural numbers and {bn − an} is a
monotone sequence.
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Proof. We proceed by inductively constructing the P -positions similar to the proof of Lemma
3. Let f be as given. The trivial P -position is (0, 0). Similar to Lemma 3, the first non-trivial
P -position has left-component a1 = mex{0} = 1 and

b1 = min{b ≥ 1 | (b− b0)− (1− a0) ≥ f(1)} (122)

where we have omitted the absolute value signs. Note that any b in this set has the property
that

b ≥ 1 + b0 − a0 + f(1) = 1 + f(1) = a1 + f(1). (123)

The least such b equals b1 = 1 + f(1). By the assumption on f , this implies b1 ≥ 2. Note
that b1 − a1 = f(1) > 0 = b0 − a0. Therefore, an induction hypothesis that

{
bk = ak + bk−1 − ak−1 + f(ak) and

bk − ak > bk−1 − ak−1

(124)

is true for all 1 < k < n.
For an inductive step, we proceed similar to the derivation of the first non-trivial P -

position. After adding a quantifier and restricting b 6= bk, we obtain

an = mex{ak, bk | k < n} (125)

bn = min{b ≥ an | b 6=bk and (b−bk)−(an−ak)≥f(an)∀k<n}. (126)

If b 6= bk lies in the set restriction, then rearranging shows

b ≥ an + f(an) + bk − ak ∀k < n. (127)

Since the inequality holds for all k and {bk − ak} is increasing, we may as well set k = n− 1
and find the minimal such b at the endpoint of the inequality:

bn = an + f(an) + bn−1 − an−1, (128)

completing the proof of the recurrence formula. Re-arranging Equation (128) reveals

bn = bn−1 + (an − an−1) + f(an), (129)

from which we can deduce that {bn} is strictly monotone, because {an} is strictly monotone
and f ≥ 0. A similar re-arrangement shows {bn−an} is monotone. For a final remark on the
P -positions, notice that {an, bn ∈ S} = Z≥0 since the first component consists of minimum
excludants.

To prove that a player in an N -position may always move to a P -position, apply the same
argument of Lemma 3 with the substitution of the minimum

min{b ≥ an | b 6=bk and (b−bk)−(an−ak) ≥ f(an)∀k < n} (130)

instead of

min{b ≥ an | b 6=bk and |(b−bk)−(an−ak)| ≥ f(an)∀k < n}. (131)

�

Re-using some of the results from the proof of Theorem 4, we obtain the following corollary
to Theorem 5.
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n 0 1 2 3 4 5 6 7 8 9
an 0 1 2 4 5 7 8 10 11 13
bn 0 3 6 9 12 16 19 22 25 29
[nα] 0 1 2 4 5 7 8 10 11 13
[nβ] 0 3 6 9 12 16 19 22 25 29

Figure 5. Top: P -positions of the game played by Definition 6 with the
constraint function in Equation (10) parameterized by α = 1+

√
5/5. Bottom:

Beatty sequences parameterized by α. Compare to Figure 2.

Corollary 1. If {an} = {[nα]} and {bn} = {[nβ]} are complementary Beatty sequences with
α < β, then there is a function f such that if a game in Definition 6 is played with f as its
constraint function, then the P -positions are precisely the pairs {(an, bn)}∞n=0.

Proof. Theorem 5 shows that the game in Definition 6 played with the Beatty constraint
function f parameterized by α should yield the desired Beatty P -positions. It remains only
to prove f(1) 6= 0 and that f(an) ≥ 0 for all an > 0 to apply Theorem 5.

First,

f(1) = [β]− [α] = [β]− 1 ≥ 2− 1 = 1, (132)

so the first criterion is satisfied. For the second criterion, recall the proof of Theorem 4,
which showed that [β]− 2 ≤ f ≤ [β]. Since [β] ≥ 2, we can deduce that f ≥ 0. Therefore,
the hypotheses on f are satisfied, so the P -positions of the game in Definition 6 with the
function f may now be evaluated using the recurrence in the statement of this theorem. It
is seen directly that the P -positions are the complementary Beatty sequences parameterized
by α. �

Therefore, Relaxed Wythoff gives simple rules for which the P -positions are pairs of given
complementary Beatty sequences. In Figure 5, we return to the example in Figure 2. Playing
the game as in Definition 6 with the same constraint function yields P -positions which
coincide with the associated Beatty pairs.

7. Discussion and Conclusion

The forward problem of finding the P -positions of a given game has existed since game
theory began. The inverse problem of finding a game for given P -positions has recently been
developed and offers a fresh perspective on classical problems. In this paper, we precisely
characterized the Beatty sequences arising from the P -positions of a known game family.
The analysis of the sequence ∆2

n−1 was crucial and yielded insight to finding simple rules
for another game with Beatty P -positions. A solution was proposed to the inverse problem
posed by Fraenkel at the 2011 BIRS workshop via the definition of Relaxed Wythoff played
with a Beatty constraint function. Note that this inverse problem was further refined at the
end of [11]:

Is it possible to find short 2-invariant game rules, without disclosing any part
of the P -positions?

Our proof of Theorem 4 showed that if a game is played with the Beatty constraint function
parameterized by some α in the statement of the theorem, then the game is k-invariant
for some k ≤ 3. Each of the irrationals in the countable family of Theorem 3 corresponds
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to a Beatty constraint function inducing a 2-invariant game. Supplying the players with
the formula for the Beatty constraint function automatically reveals the irrationals which
parameterize the Beatty P -positions. Revealing some aspect of the irrationals is a common
feature of the games in [11] and [13]. In spite of this, each game is indeed simple. A move can
be validated with finite calculations. Moreover, the study of the game family in Definition
5 over Beatty constraint functions is significant on its own because it expands the study
of non-monotone constraint functions, also seen in [7]. A striking feature of this analysis
revealed that the uncountable family of complementary Beatty sequences parameterized by
α ∈ (1, 5/4) arise as P -positions of games in the family of Definition 5.
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