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CHAPTER 14

Data, Knowledge Practices, and Naturecultural 
Worlds: Vehicle Emissions in the Anthropocene

Observation

Lindsay Poirier

Standing at the heart of the US capital city amidst a sea of March for Science 
protesters on 22 April 2017, the rain had soaked through my jacket. For a 
protest with over 100,000 people in attendance, it was an oddly anti-social 
(though not dispassionate) event; looking towards the speaker stage, I could 
see little more than rows of soaked hoods and iPhones emerging above multi- 
coloured umbrellas, trying to snap photos of scientific superstars like Dr 
Michael Mann and Bill Nye. I was attending the march with my cousin 
Robert—a geologist—and his family. We both care deeply about the preserva-
tion of climate data and evidence-based decision making. Robert studies cli-
mate variability and sea-level change over thousands of years by examining rock 
sediments and fossil corals from deep in the Earth. As an anthropologist of data 
infrastructure and culture, prior to the event I had been getting involved to the 
extent that I could with the Environmental Data Governance Initiative 
(EDGI)—a group of researchers, practitioners, and activists convening to plan 
and execute guerrilla archiving efforts to safeguard environmental data from 
deletion by the Trump administration.

As a diverse array of speakers shared thoughts on the importance of advanc-
ing and advocating on behalf of science, it became clear that the stakes for 
generating and disseminating robust data about environmental health were 
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high. I got emotional as Dr Mona Hanna-Attisha—the paediatrician who 
exposed heightened blood lead levels in children after they had been poisoned 
by lead-contaminated drinking water in Flint, MI, in 2015—described how 
‘science spoke truth to power’. I was starstruck as Dr Mann detailed his work 
devising the hockey stick graph in the 1990s. I also felt unsettled by rhetoric 
that data alone should drive environmental regulation. It was not only the re- 
appropriation of derogatory memes such as were seen in protest signs exclaim-
ing ‘Grab ’em by the data’;1 it was also the counterpoising of data against 
partisanship, of empiricism against bias. Encountering protest signs stating, 
‘We want scientific data, not alternative facts’, I did not disagree but grimaced, 
a signal of how my own relationship with environmental governance data can 
be best characterised as ambivalent. Quantitative data about our anthropogenic 
world are indispensable; they are also at least partially mediated by cultural 
forces that prioritise profit and technological progress over environmental 
health equity.

Over a decade after Chris Anderson (2008) claimed that ‘the data deluge 
makes the scientific method obsolete’, there has been bubbling scepticism in 
many governance communities over the hype of big data in knowledge produc-
tion and decision making.2 In the environmental health domain—a domain 
that has been ‘informating’ (Fortun 2004) since the 1980s—widespread expert 
recognition of how uncertainty and estimation figure centrally in the measure-
ment of natural worlds predates Anderson’s claims. In environmental health, 
researchers and policy makers time and again confront how anthropogenic his-
tory is being rewritten through new data and revised models, and how (much 
like the ecological systems constantly transforming under human feet, and 
around and through human bodies) the knowledge we have about our anthro-
pogenic worlds is also constantly transforming in response to scientific advance-
ments, political turnover, and industrial pressures. In constructing technologies 
for making sense of something as spectacular and incomprehensible as the 
Anthropocene, researchers and policy makers in environmental health have 
been forced to consider how to enforce environmental regulation when they 
cannot solely rely on a ‘trust in numbers’ (Porter 1996), and when they have 
to manage what they cannot (at least comprehensively) measure.

In this chapter, I detail various techno-cultural assemblages from which data 
collected to model and measure anthropogenic worlds emerge, arguing that 
data-based technologies both represent and co-produce the Anthropocene. 
Drawing on a case study of how vehicle emissions are measured and regulated 
in the US, I examine how US environmental health researchers and regulators 
grapple with the meaning of evidence and the basis for regulatory decisions as 
they confront the limits of automated data-collecting and modelling technolo-
gies. Finally, I meditate on the role of data-based technologies in mediating the 
environments we inhabit and the knowledge through which we perceive them.
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Data Infrastructure anD KnowleDge PractIces 
In the anthroPocene

Scholarship emerging at the intersection of science and technology studies 
(STS) and information studies (IS) has demonstrated that data infrastructure 
and data modelling (and the expertise and advocacy that emerge around both) 
are important nodes within the anthropogenic assemblages that shape history 
(Edwards 2017). The large-scale data infrastructures and models that enable us 
to visualise and make sense of the Anthropocene emerge from a series of local-
ised practices of defining, classifying, and counting, wherein recognition, 
belonging, and uncertainty are continually being renegotiated. For instance, 
Bowker (1998) articulates how devising the neat boxes into which observa-
tions get classified involves negotiating the messiness of natural experience, 
navigating power struggles, and temporarily stabilising perpetually evolving 
worlds. Similarly, Martin and Lynch (2009) argue that counting, while seem-
ingly trivial, does involve not only numerical operations but also discernments 
of what counts, calling for categorical judgements of identity and difference. 
Indeed, producing (ac)counts of natural observations is an embodied practice, 
demanding attunement to sensory experiences and eliciting emotions that style 
measurements and inscriptions (Calvillo 2018; Garnett 2016; Lorimer 2008).

Scholars in STS and IS have also characterised how practices of naming, clas-
sifying, and structuring data have become sites of collaboration, conflict, and 
politics. Standards for describing and storing data—often designed to network 
data across disciplinary, geographic, and temporal borders—emerge and trans-
form in the face of capitalist, regulatory, and activist pressures (Bowker and Star 
1999; Lampland and Star 2008; Ottinger 2010; Timmermans and Epstein 
2010). This research has shown how, as data migrate across time and space, 
representations of anthropogenic worlds evolve alongside iterations in data 
semiotics (Bowker 2005). For example, Waterton (2002) shows how, as clas-
sification systems concerned with vegetation and natural habitats mutate in the 
face of controversy and instability, they come to reflect the dynamism and fluid-
ity of the cultural systems within which they operate more than the contexts of 
their production.

Cultural practices of classifying and counting shape how identities form 
through data and how problems become both discernible and governable. 
Citing Hacking (2006), Kitchin and Lauriault (2014) argue that practices of 
counting and classifying are both contentious and consequential, ‘making up 
people’ and at least temporarily stabilising certain social and natural orders. 
Asdal (2008) demonstrates how nature-wholes are enacted—rendered real—
through political methods of quantification and accounting designed to pro-
duce governable spaces. Kirksey (2015) demonstrates how species come into 
being through their entangled intra-actions with taxonomists and their tech-
nologies of classification: a dance of recognition, differentiation, and stabilisa-
tion on which many organisms depend to avert extinction. Similarly, 
Hepler-Smith (2019, p. 552) shows how toxic chemicals are identifiable in US 
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regulatory structures through information practices that encode them on a 
molecule-by-molecule basis, a result of a ‘molecular bureaucracy’ in which ‘law, 
administration, and politics meet empirical measurement and the material 
world’. Contemporary environmental problems receive public attention and 
enter debates through community engagement in environmental sense-making 
and the technologies they leverage. For example, Fortun et al. (2016) docu-
ment how public pollution problems emerge as critical data designers couple 
skill in data visualisation with a hermeneutic sensibility to read the social, cul-
tural, and political conditions that have eclipsed those problems. Other schol-
ars have shown how research is left ‘undone’ because expert data 
systems—designed in ignorance of certain socio-cultural histories—preclude it 
(Frickel et al. 2010; Frickel and Vincent 2007; Nafus 2018).

Since different communities produce and consume data in different ways 
and with a diversity of ascribed meanings, it can be difficult to integrate data 
produced in different settings. Edwards et  al. (2011) summarise this set of 
issues as ‘data friction’: the abrasive contact of the differing technologies, stan-
dards, and worldviews that represent and consume data. Scholars in this field 
have gone on to characterise how scientists address data friction in a cultural 
practice that involves attempts to cleanse data of their cultural influences. For 
instance, drawing on research in biology laboratories, Leonelli (2010) describes 
how, in order to facilitate the re-interpretation of data in new settings, data 
managers have had to learn to package data for travel, a practice that involves 
attempting to strip from data the personality and nuance of the contexts in 
which they were produced, meanwhile documenting their provenance so that 
others may re-contextualise the data for their own purposes. Since the contexts 
of data production and dissemination are often amorphous, power-laden, and 
unequal, Lampland and Star (2008) argue that translating data through vari-
ous means of establishing common ground is always a political practice, one 
privileging certain semiotic orders over others.

As data move through complex and distributed socio-technical assemblages, 
frictional data practices call attention to their context-dependence and areas 
where they are incomplete or uncertain. Studies of the history and practices of 
data modelling have examined the ways in which such technologies mediate 
how knowledge is legitimised in the face of uncertainty. Oreskes (2000) argues 
that global data models have emerged to represent natural systems in instances 
when scientists lack complete access to the phenomena they are studying. 
Building upon this work, Knox (2018) ethnographically demonstrates how 
models serve as ‘baseline data’ against which messy and inconsistent observa-
tional data can be compared, enabling local-level administrative decision mak-
ing in the face of missing data and other observational limits. However, 
Edwards (1999) shows that models themselves are also unstable, controversial, 
and constantly evolving, often in response to data frictions and inconsistencies 
with locally derived observational data. The movement of data across borders, 
scales, classification systems, and models troubles the local/global data binary. 
While Loukissas (2019) argues that ‘all data are local’—that is all data are 
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situated in a particular time and place—scholarship on practices and politics of 
data modelling demonstrates that data are also always more than local, the 
products of a ‘cultural heterogenisation’ of people, technologies, capital, 
media, and ideologies that propagate data flows, integrations, and disjuncture 
(Appadurai 1990). Through this scholarship we can see that, resonating with 
anthropologists’ arguments that globalisation is not seamless and totalising 
(Ferguson 2006), global data infrastructuring is not moving us towards a 
mono-cultural data world. Data modelling and integration can divide the sci-
ences and the representations they produce just as much as they bring them 
together.

Settings where scientists and policy makers grapple with the ambiguity and 
uncertainty woven through data practices and environmental sense-making are 
prominent sites for assessing shifting cultures of science and environmental 
regulation. Work in STS has documented how uncertainty can cripple scientific 
authority in policy making (Jasanoff 1987). For instance, Murphy (2006) has 
noted that, in the 1980s, the purposeful promotion of studies that furthered 
scientific uncertainty became a tool for anti-regulation at the US Environmental 
Protection Agency (EPA). However, other work in STS has shown that some 
scientific communities have responded to the limits of data, the complexity of 
environmental problems, and the extent of the unknown with ‘humility and 
ambition’. Fortun and Fortun (2005), for instance, have described the culture 
of toxicology as shifting towards one that privileges experimentalism, wherein 
research is not necessarily designed to confirm what is already known but to 
generate new knowledge. In such communities, uncertainty is not seen as 
debilitating, and the knowledge produced through data systems and applied 
science is not the only knowledge useful in advancing regulation.

In summary, scholarship examining knowledge practices for characterising 
the natural world has demonstrated that technologies designed to measure and 
model the impact of human (and more-than-human) activity on earth systems 
are profoundly animated by the very human (and more-than-human) activities 
they attempt to measure. While dominant metaphors equate data with natural 
resources to be controlled or extracted, formulated in claims such as ‘data is the 
new oil’, or that we can be ‘flooded with data’ (Puschmann and Burgess 2014), 
scholars in critical data studies (e.g. see Gitelman 2013) often echo Bowker’s 
(2000) claim that the term ‘raw data is an oxymoron’. Suggestions that data 
could emerge from or return to a ‘pure’ or uncooked state mirror the blunder-
ing calls to return nature to its pure state. Data (and the worlds they inhabit) 
are always naturecultural (Haraway 2003; Subramaniam 2014). Anthropological 
attention to the materialities and mutability of data-producing technologies, 
along with the cultures and politics that shape them, can help to unpack how 
expertise operates, how knowledge is legitimised, and the way both have styled 
our experience of the Anthropocene.
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technologIes for countIng anD estImatIng VehIcle 
emIssIons In the us

What does it mean for environmental policies to be enacted ‘based on’ scien-
tific data that are at times contested, always context-dependent, and modelled 
to measure things to which researchers do not have direct access? I explore this 
question in the following case study as I archaeologically trace select lineages of 
annual vehicle emissions estimates in the US to the moment when cars are first 
counted on federal highways. Rather than providing a holistic picture of how 
vehicle emissions estimates come into being, I ethnographically describe the 
data-collecting technologies involved in specific moments of their production 
in order to characterise environmental air quality regulation as a technologi-
cally mediated knowledge practice. In looking ‘under the hood’ at the configu-
ration of a subset of technologies for measuring vehicle emissions, I elaborate 
on the diverse techno-cultural assemblages that animate systems of anthropo-
genic knowledge production and demonstrate the inextricable ties between the 
Anthropocene and the tools developed to understand it. Following Peter-Paul 
Verbeek’s (2016) scholarship on ‘technological mediation’, I examine how 
technologies of data production mediate relationships between humans and 
the natural world, style everyday environments, and shape perception around 
what constitutes an empirical foundation for scientific claims.

Techno-Cultural Mediations of Emissions Standards

The US Clean Air Act, first signed into law in 1963 and updated several times 
since, was the first US policy to legislate air pollution control at the federal 
level.3 A significant fortification of the federal government’s role in air pollu-
tion control came with the 1970 amendments, which authorised the newly 
formed EPA to set National Ambient Air Quality Standards (NAAQS), and 
required each state to submit a periodical State Implementation Plan to the 
EPA outlining the policies and programmes they would enact to attain or 
maintain the standards.4 NAAQS have been the subject of contentious debate 
and continuous evolution since the 1970s, with activists pressuring the EPA to 
strengthen regulation, corporations suing the EPA over the standards’ strin-
gency, and successive administrations revisiting the standards’ review process, 
loosening or tightening the role of EPA staff in recommending policy options. 
Debates around the technical feasibility of implementing the standards have 
always been at the forefront of controversy. As a result, standards have emerged 
from a discursive space where technology, both available and speculative, tends 
to be positioned as a privileged signifier, in turn provoking changes in techno-
logical landscapes.

Responding to growing environmental concerns about smog, in 1970, 
Congress’ amendments to the Clean Air Act mandated a 90% reduction in 
vehicle tailpipe emissions (including hydrocarbons, CO, and NOx) for passen-
ger vehicles within five years (Gerard and Lave 2005). At the time, there had 
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been no major improvements to the internal combustion engine in 20 years, 
and with little incentive for manufacturers to design technologies to reduce 
emissions, the new standard was considered ‘technology-forcing’ and designed 
to provoke innovation (Gerard and Lave 2005). For every car sold that did not 
meet the standards within the designated timeframe, automakers would face a 
$10,000 fine, double the average cost of a vehicle at the time (Gerard and Lave 
2005). While the reductions were not achieved by the 1975 deadline, this 
regulatory pressure to innovate did lead to the introduction of the catalytic 
converter in 1975 and the three-way catalyst in 1981, both of which control 
tailpipe emissions through a chemical conversion process.

This technology-driving standard did not only spur innovation for emission 
control technologies but also helped motivate innovation around the chemicals 
that interfered with them. Until the 1970s, oil refiners had been adding lead to 
gasoline in order to raise the temperature and pressure at which engine knock-
ing (or a premature ignition) occurs. At the time, lead in gasoline made up 
approximately 90% of airborne lead pollution, and there was growing concern 
about the threats the pollutant posed to public health (Stikkers 2002). Further, 
the combustion by-products of lead in gasoline can ‘poison’ catalytic convert-
ers by coating the metals responsible for converting exhaust chemicals (Stikkers 
2002). As it was becoming increasingly clear that catalytic converters would be 
the primary means of reducing tailpipe emissions in the 1970s, the EPA began 
to introduce rules demanding the sale of unleaded gasoline. In culmination, 
the 1990 amendments to the Clean Air Act banned all leaded gasoline by 1996.

The year 1990 marked a historic change for the Clean Air Act for a number 
of reasons, but perhaps most notably for the way the US Congress further cen-
tred technology in standards-setting. When the Clean Air Act was first imple-
mented in 1970, emissions standards for a number of pollutants were to be set 
based solely on what is requisite to protect public health (Bachmann 2007). 
However, as it became increasingly clear that scientific uncertainty about expo-
sure risks would continuously immobilise the promulgation of standards, 
Congress pivoted the Act to require that standards be set based on the best 
currently available emission control technologies (or technologies available in 
the foreseeable future) (Flatt 2007; McCubbin 2003). Residual health risks 
would be assessed eight years after each standard was set. As a result, technical 
feasibility was increasingly privileged in standards-setting over the normative 
end goal of protecting health.

Approximately once a decade since the 1990 amendments, the EPA has 
introduced increasingly stringent standards on vehicle emissions. While in the 
1990s emissions standards applied primarily to passenger vehicles, in the 2000s 
the same standards were extended to medium-duty passenger vehicles such as 
SUVs and passenger vans, and in the 2010s the standards were further extended 
to some heavier-duty vehicles such as cargo trucks (box vans). Successive stan-
dards also required reductions of sulphur and eventually ethanol in gasoline. 
Innovations such as hybrid vehicles and clean diesel engines emerged in the 
wake of these changes. While the EPA has been sued almost every step of the 
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way, courts have reacted favourably to technology-forcing standards. 
Responding to a petition from automakers to block regulations requiring a 
30% reduction in greenhouse gas emissions by 2016, Judge William Sessions 
III wrote in his ruling, ‘History suggests that the ingenuity of the industry, 
once put in gear, responds admirably to most technological challenges’ 
(Freeman 2007).

Regulators’ discursive privileging of technology in connection with emis-
sions standards has provoked shifts in technological, environmental, regula-
tory, and health landscapes in the US. These technology-driving standards have 
also, however, mediated the empirical foundation of scientific knowledge pro-
duction around vehicle emissions. To calculate estimates of annual vehicle 
emissions, the EPA coordinates a number of scientific studies examining emis-
sions from vehicles meeting current standards, along with how they fluctuate 
with changes in factors such as fuel additives, speed, and outdoor temperature 
conditions at start-up (US EPA Office of Transportation and Air Quality 
2015). The EPA then estimates how many vehicles in the US meet these stan-
dards by analysing data about car sales and certifications in model years before, 
during, and after the phase-in of new standards. In other words, vehicle emis-
sions standards, which emerge in a balance of what is technologically feasible 
and what can incentivise technological change, delimit how evidence regarding 
current and future vehicle emissions gets generated, in turn shaping how, 
when, and where environmental policies get enacted, the future prospects for 
transportation and energy industries, and the air we eventually breathe.

While this provides estimates of the emissions properties of certified vehi-
cles, it does not offer information on when, where, the speed at which, and the 
duration of time these vehicles are actually operating. To calculate this, the 
EPA leverages data collection programmes that count vehicles on roads 
throughout the US, to which I turn next.

Vehicle-Counting Data Collection Technologies

One of the most important inputs for air emission models is the count of 
vehicles on federal highways each year, along with the number of miles they 
have travelled, a measure referred to as Vehicle Miles Travelled. Most US states 
have several hundred permanent traffic counters installed in or on roadways to 
produce continuous traffic counts. Inductive road loop counters, for instance, 
are coiled wires installed underneath or into the surface of roadways that can 
electromagnetically detect when a vehicle has passed over them. While induc-
tive loop counts are widely considered to be accurate, the technology is expen-
sive to install, even more expensive to maintain, and causes disruptions to 
traffic, roadway resurfacing, and utility repairs (The Vehicle Detector 
Clearinghouse 2007). Further, inductive loop counters are susceptible to fluc-
tuations in weather conditions with freezing and thawing causing the loops to 
break. Thus, continuous traffic count programmes are mainly instituted to 
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collect data regarding overall traffic trends across the state versus counts on 
every highway.

To ensure traffic is accounted for across every highway, state departments of 
transportation (DOTs) also manage short-term traffic count programmes. The 
most common method of producing these counts for a given highway is to hire 
consultants to lay a set of temporary pneumatic tubes on a road segment, a 
dangerous job that involves managing multiple lane closures (The Vehicle 
Detector Clearinghouse 2007). Each time a tyre passes over the rubber tubes, 
a signal is sent to a counter. Pneumatic road tubes are typically left in place for 
a few days, and then state DOTs calculate the Average Annual Daily Traffic for 
a roadway segment by averaging daily traffic on the days the tubes were placed 
and then multiplying the figure by 365. Multiplying the result by the length of 
the segment yields Vehicle Miles Travelled.

The daily traffic on a given highway can, however, vary drastically over the 
course of a week, month, or year. In order to plan for and amend these fluctua-
tions in counts when determining annual average traffic, data collectors at state 
DOTs have become attuned to the cultural contexts of roadways. As a repre-
sentative from a state traffic monitoring programme described in a 2016 inter-
view with me,

we collect 72-hour counts, but […] you can’t count before Monday at 6 AM and 
[after] Friday at noon. It has to fall in there. So we consider Monday say to be a 
typical day, [and] Tuesday, Wednesday, Thursday, Friday morning to be typical. 
Friday afternoons, a lot of times, I look at the [highway] or something, and 
everybody’s heading north for the weekend […] so we don’t collect Friday 
afternoons.

Discerning what constitutes a ‘typical’ traffic day becomes more complicated 
when zooming out to the span of a year. In the interview, the representative 
discussed another situation where the DOT recognised numerical contingen-
cies and considered options for normalising the count:

We were looking at traffic counts [in] some real part of [the state] right near a 
college, … The two previous [counts] were in the 2000s for [average daily traf-
fic]. And the current one we were looking at was 300 and something. But then 
you look at the dates, and the two previous ones were taken during college. The 
[third] one was taken in the summer when college wasn’t in session. So if it was 
made in a rural area, colleges—they make a huge difference in the volume of traf-
fic, right?

This anecdote demonstrates one of many ways in which traffic counters account 
for cultural patterns of migration and vehicle use. Unsuitable for snowy condi-
tions, road tubes are typically not placed down in the winter in regions where 
there may be snow, and seasonal adjustments must be made so as not to over-
estimate winter traffic. Dips and spikes in the counts from year to year can 
signal legitimate changes in traffic conditions or, alternatively, faulty counting 
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equipment. On busy highways, the rubber tubes can wear down, compromis-
ing the accuracy of the count (The Vehicle Detector Clearinghouse 2007), 
while in areas where there is often stop-and-go traffic, it is difficult for the 
system to distinguish one vehicle from the next (The Vehicle Detector 
Clearinghouse 2007). State DOTs will use overall trends identified by continu-
ous traffic counters, along with cultural competency, to assess the quality of 
short-term highway counts and make necessary adjustments.

Notably, the data collection programmes responsible for producing a calcu-
lation of Vehicle Miles Travelled are not maintained by the EPA, but by the 
Federal Highway Administration (FHWA), and their initial purpose was not to 
measure vehicle emissions but to support transportation planning and to direct 
the allocation of federal highway aid (Federal Highway Administration, Office 
of Highway Policy Information 2019). The FHWA classifies counted vehicles 
into 13 categories (e.g. motorcycles, buses, and combination trucks), informa-
tion that is important for pavement and bridge designers when considering 
how to maintain highway infrastructure. Responding to the affordances of 
road tubes and other vehicle classifying technologies in the 1980s, the bound-
aries dividing one vehicle class from the next are not determined visually, but 
by the vehicle classifiers’ detecting and calculating the spacing between a vehi-
cle’s axles (Federal Highway Administration 2014). When the FHWA first pro-
posed these classifications, the length of the wheelbase could readily differentiate 
a passenger vehicle from other two-axle, four-tyre vehicles (such as a pick-up 
truck or van). However, as SUVs and PT Cruisers gained popularity as passen-
ger vehicles in the US, the logic dividing these categories became increasingly 
fuzzy. To better represent the data that they were actually collecting, in 2007 
the FHWA changed the category of passenger vehicle to light-duty, short wheel-
base vehicle, and the other two-axle, four-tyre category to light-duty, long wheel-
base vehicle.5

The EPA does not regulate vehicle emissions based on wheelbase, however, 
but on the vehicle’s gross weight. Having designed their emissions modelling 
systems around the inputs available through the FHWA, the EPA had to devise 
new algorithms for determining what percentage of long wheelbase vehicles 
were actually passenger carriers rather than commercial trucks (vans) in order 
to model emissions (US EPA, Office of Transportation and Air Quality 2016). 
One strategy for this involved analysing the composition of private and com-
mercial truck (van) fleets in the US based on the results of the Census Bureau’s 
Vehicle Inventory and Use Survey, a paper questionnaire mailed to and then 
collected from US-registered truck (van) owners every five years that gathers 
data about vehicle use. Megan Beardsley, team leader for the EPA’s vehicle 
emissions model MOVES (to which I turn next), acknowledged this method 
to be limited since the survey was last taken in 2002.

Counting cars on US highways is not simply a numerical operation. It 
involves an array of networked people, institutions, calibrations, technologies, 
and data systems. Producing an ‘accurate’ count rarely involves relying on vehi-
cle counting technologies alone, but also integrates cultural expertise attuned 
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to when and why driving habits and vehicle purchases change, and is prepared 
to adjust counts accordingly. State DOTs must balance counting costs against 
numerical accuracy in the mix of diminishing infrastructure budgets, expensive 
equipment, and federal air quality regulations. Counting cars is a practice that 
poses risks to human safety while being designed to improve highway (and air) 
safety conditions, one that reacts to climatic fluctuations and detection limits as 
it becomes an input for knowledge systems measuring anthropogenic impacts 
on our air and climate. In other words, vehicle counts designed to measure and 
model human impacts on natural worlds are also a product of naturecul-
tural worlds.

Technologies for Modelling Vehicle Emissions

In order to model annual pollution emissions from motor vehicles for their 
State Implementation Plans, all states (except California)6 must leverage the 
EPA’s Motor Vehicle Emissions Simulator (MOVES), a computer technology 
developed and maintained in the EPA’s Office of Transportation and Air 
Quality. In preparing their plans, states input data about Vehicle Miles Travelled, 
weather conditions, and local demographics into MOVES. The system then 
calculates estimated emissions of criteria air pollutants, greenhouse gases, and 
air toxics based on data curated from millions of scientific emissions tests. 
MOVES is designed to predict future vehicle emissions conditions by ordering 
data about past and present conditions, along with estimations of how they 
might change.

The first version of MOVES was released in 1978 as MOBILE and has gone 
through at least ten major revisions since then ‘to reflect improved data, 
changes in vehicle, engine, and emission control system technologies, changes 
in applicable regulations and emission standards and test procedures, and 
improved understanding of in-use emission levels and the factors that influence 
them’ (US EPA 2016). For the MOVES team, designing an all-inclusive model 
of vehicle emissions, one that can comprehensively account for the array of 
natural (and more-than-natural) forces impacting emissions, is always a pursuit, 
that is, always open to further improvement. As improved strategies become 
available for estimating emissions from different mobile sources (such as from 
boats, lawnmowers, snowmobiles, and other agricultural equipment), the 
MOVES team seeks to incorporate the inputs into the modelling technology. 
As mechanisms become available for more accurately tracking the speed of 
vehicles on highways and the times highways are most populated (such as satel-
lites and cell phone tracking), the MOVES team seeks to incorporate the inputs 
into the modelling technology. In October 2016, Megan Beardsley, team 
leader for the MOVES model, told me that the MOVES team maintains a 
‘huge laundry list of stuff that [they]’d like to the model to do better’. For 
example, as manufacturers began improving emissions from already warmed-
 up vehicles, the MOVES team began diverting their attention to producing 
better models of the time, place, and quantity of start-up emissions, and how 
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they vary based on fluctuations in outdoor temperatures. In the early 2010s, 
when the EPA promulgated stricter standards for vehicle emissions and a new 
standard for gasoline sulphur, the MOVES team adjusted the models to 
account for cleaner vehicles and fuels on the road. Thus, the knowledge 
MOVES models are both cumulative and iterative alongside changes in tech-
nology and regulation. MOVES inputs are meticulously curated from the 
expansive corpus of factors impacting emissions. At any given moment, the 
evidence MOVES produces is acknowledged to be both robust and, to a cer-
tain degree, partial. While the MOVES team is judicious in incorporating the 
latest scientific research regarding vehicle emissions into the models, the selec-
tion of inputs is still mediated by what is currently possible to quantify, what is 
considered a priority for inclusion, and the capacity of the MOVES team (com-
prising about 20 individuals, many of whom as of 2016 do not work on the 
project full-time) to make the revisions.

Each time a revised version of the technology is applied in modelling, the 
quantified history of vehicle emissions in a given region slightly morphs, as 
does the understanding of present and future air quality conditions. Yet the 
pacing of revisions to the computer technology is tempered, not only by the 
timing of technological innovations and scientific advancements, but also by 
the bureaucratic pacing of research funding, peer review, and EPA rule-making 
processes. Years can pass from the introduction of new emissions standards 
until their benefits are understood through scientific research; the same applies 
to the period from when scientific data becomes available until a new version 
of the modelling technology is released. While the Clean Air Act requires State 
Implementation Plans to be prepared based on the most current information 
and models, the plans are sometimes prepared months to years before they are 
approved. This means that by the time the EPA approves a State Implementation 
Plan, there may already be swaths of new evidence repainting the picture of 
past, present, and future emissions in that state. To make progress towards 
emissions reductions, the EPA often must make governance decisions based on 
admittedly outdated estimations.

For example, in the early 2000s, the Sierra Club, one of the oldest and most 
influential environmental organisations in the US, filed a complaint with the 
US DC District Court regarding the EPA’s conditional decision to approve 
components of Washington DC’s State  Implementation  Plan (SIP). Since 
1991, Washington DC had been classified as an area of ‘serious’, and at times 
even ‘severe’, non-attainment of NAAQS, requiring that it submit a Rate of 
Progress Plan with its State Implementation Plan that demonstrated 3% reduc-
tions in emissions each year leading up to their attainment deadline. The dis-
pute was based, in part, on Washington DC’s use of MOBILE5 (an earlier 
version of MOVES) in measuring the rate of progress towards attainment from 
1996 to 1999. While MOBILE5 had been the most recent vehicle emission 
model available at the time the plan was created, just a month before the plan 
was submitted, MOBILE6 had become available. It took the EPA another year 
to approve the plan. The Sierra Club contested the EPA’s decision to accept a 
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Rate of Progress Plan that had not been based on the latest data models. The 
Court responded:

Indeed, as its name suggests, MOBILE5 is the fifth generation of this particular 
model; MOBILE6 is sixth. To require states to revise completed plans every time 
a new model is announced would lead to significant costs and potentially endless 
delays in the approval processes. EPA’s decision to reject that course, and to 
accept the use of MOBILE5  in this case, was neither arbitrary nor capricious. 
(Sierra Club v USA EPA 2004, p. 19)

While this demonstrates the politics of the model’s diachronicity, battles of 
evidence and rival claims over what constitutes sound experimental design can 
underlie the data inputs that inform MOVES’ emissions calculations even in 
moments of temporary stability. For example, in 2015, the State of Kansas, the 
State of Nebraska, the Energy Future Coalition, and the Urban Air Initiative 
filed a suit with the DC Court of Appeals, asking them to review MOVES 2014 
in light of a ‘flawed fuel effects study’ called EPAct/V2/E-89, conducted to 
test the effect of ethanol on particulate emissions (State of Kansas et al. v US 
EPA Brief for Respondents 2015). The petitioners argued that in the study the 
EPA used a method of blending ethanol with gasoline called a Match Blend, 
while most car manufacturers use a Splash Blend method. With a Splash Blend 
method, 10% ethanol is simply added to gasoline. In Match Blending, how-
ever, aromatic hydrocarbons are added to the mixture in order to ensure the 
gasoline meets a certain boiling point. These hydrocarbons, the petitioners 
argued, increase the toxicity of the mixture when emissions tests are run, while 
simply adding ethanol should reduce the toxicity of the mixture. In 
MOVES2014, ethanol gets modelled according to the results of this study, and 
increased ethanol volumes are shown to increase toxic emissions.

The petitioners argued that the inclusion of consultants from the petroleum 
industry in the design of EPAct/V2/E-89 had biased the study and that the 
use of the computer technology for modelling emissions would injure Kansas 
and Nebraska by categorising them as areas of non-attainment of air quality 
standards, depressing ethanol prices, and imposing detrimental effects on tax 
revenues. In their response, the EPA defended the study, justifying the team 
involved in the study design and endorsing their own expertise to carry out the 
research effectively. They also argued that the petition lacked standing because 
the MOVES technology was non-binding. While the states were required to 
use it in preparing their State Implementation Plans, MOVES was not a legisla-
tive tool, and the EPA could consider the quality of the model’s outputs on a 
case-by-case basis. As they argued, ‘applying the model in a particular agency 
action requires flexibility and the exercise of judgment’ (State of Kansas et al. v 
US EPA Brief for Petitioners 2015, p. 12). The Court dismissed the petition 
for lack of standing.

In this response, we see how technology can mediate the meaning of 
evidence- based regulation and what emissions estimates are understood to be 
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‘based on’. While the Clean Air Act specifies that attainment decisions are to be 
made based on the latest data models, this case reveals that what counts as 
empirical evidence can shift in response to a number of political, cultural, and 
judiciary pressures, particularly when data are contested and technological lim-
its on representing and measuring future emissions are recognised. Still, 
Beardsley acknowledged in our interview that, for the MOVES team, ‘there’s 
a real desire to do the best stuff we can’, because they always face the risk of a 
lawsuit when the legitimacy of MOVES as an evidence-producing technology 
is called into question. Notably, the possibility that the EPA might be sued over 
their work creates incentives for slowing down the modelling technology’s 
development to allow for more careful study design and more thorough peer 
review, in turn widening the liminal gap between when new evidence becomes 
available and when it gets incorporated into the model. In other words, the 
knowledge about annual vehicle emissions produced through MOVES is both 
cumulative and co-constitutive of the conditions, cultures, and technologies of 
knowledge production.

conclusIon

The arguments presented in this case study echo decades of scholarship in the 
anthropology of technology arguing that naturecultural worlds are co- produced 
with technology (Downey and Dumit 1997). Data-based representations of 
nature emerge from situated and routinised human engagements with tech-
nologies of data collection and analysis, helping to render complex, pervasive, 
yet local issues like air pollution a national (and thus, in the US, federally regu-
lable) concern. Decisions about how to calibrate data collection technologies, 
what inputs to include in data modelling technologies, and how to account for 
various sources of technological error are made in the face of political, eco-
nomic, and cultural competencies and pressures, responding to the limits to 
knowing the world through technologically mediated apparatuses. Corporate 
interest, environmental activism, and human labour are thus all represented in 
data about natural worlds—interlaced through standards, measurements, and 
estimations as data flow between different people, technologies, and institu-
tions. These technological configurations in turn mediate how the air we 
breathe, the worlds we inhabit, and the technologies available for mediating 
them come into being and evolve. Thus, for researchers and regulators, envi-
ronmental decision making often demands critical judgement beyond what 
automated data collection and modelling technologies can produce and what 
can be quantitatively measured.

Ethnographically examining technologies of data collection and modelling 
‘under the hood’ reveals far more than merely how they work and the phenom-
ena they are designed to represent. Ethnographies of data-producing technolo-
gies provide a unique lens into complex cultures of knowledge production and 
environmental regulation, along with their technological mediation. They 
foreground how diverse stakeholders value (in multiple senses of the word) the 
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environment, human health, and technological innovation, how regulators 
learn how to manage and mitigate pollution in light of acknowledged limita-
tions to its measurement, and how the meaning of empirical evidence gets 
negotiated. In other words, the anthropology of technologies of data collec-
tion and modelling can highlight what makes natural worlds, and the data 
through which we present them, so human.
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notes

1. This was a pithy reference to a 2005 videotape in which Donald Trump, while 
making a number of vulgar comments about women, told US television personal-
ity Billy Bush to ‘Grab ’em by the pussy’.

2. I have lost count of the number of times when, in conversation with data analysts 
in municipal, state, and federal governments about the dangers of an overreliance 
on data systems and models, I have been surprised to find them nodding in agree-
ment and referencing Cathy O’Neil’s (2016) Weapons of Math Destruction. Part 
of this abmivalence has emerged from experience; many experts and policy mak-
ers can cite several examples where over-dependence on data-based systems of 
governance has prevented sound decision making.

3. Federal regulation of air pollution responded to two interrelated concerns: first, 
that as states compete for new jobs and industry, they have incentives to side-line 
environmental regulations; and second, that regardless of an individual state’s 
degree of regulation, air does not know state boundaries.

4. Once approved by the EPA, the control strategies outlined in the plan became 
enforceable at both state and federal levels, and failure to comply with the plans 
would permit the federal government to take over enforcement.

5. For example, see https://www.fhwa.dot.gov/policyinformation/statistics/ 
2007/vm1.cfm.

6. California, with the worst traffic conditions in the country, has much more strin-
gent air quality regulations and is thus exempt from several federal policies.
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