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Abstract—Recent reports show that BGP hijacking has in-
creased substantially. BGP hijacking allows malicious ASes to
obtain IP prefixes for spamming as well as intercepting or
blackholing traffic. While systems to prevent hijacks are hard to
deploy and require the cooperation of many other organizations,
techniques to detect hijacks have been a popular area of study.
In this paper, we classify detected hijack events in order to
document BGP detectors output and understand the nature of
reported events. We introduce four categories of BGP hijack:
typos, prepending mistakes, origin changes, and forged AS paths.
We leverage AS hegemony – a measure of dependency in AS
relationship – to identify forged AS paths in a fast and efficient
way. Besides, we utilize heuristic approaches to find common
operators’ mistakes such as typos and AS prepending mistakes.
The proposed approach classifies our collected ground truth into
four categories with 95.71% accuracy. We characterize publicly
reported alarms (e.g. BGPMon) with our trained classifier and
find 4%, 1%, and 2% of typos, prepend mistakes, and BGP
hijacking with a forged AS path, respectively.

I. INTRODUCTION

The Border Gateway Protocol (BGP) is the Internet’s de
facto inter-domain routing protocol [1]. It allows an Au-
tonomous System (AS) to advertise the set of IP prefixes it
manages as well as routes to destinations that its neighbors
can reach by routing traffic towards it. BGP is based on trust,
where an AS is supposed to announce only IP prefixes it owns
and legitimate paths to destinations. However, malicious ASes
can take advantage of this trust model by announcing others’
IP prefixes or by forging AS paths [2]. These techniques
are generally referred to as BGP hijacking [3]. BGP hijacks
have been a problem on the Internet for over 20 years [4],
with routing incidents regularly occurring. In 2018, 4,739
routing incidents have been disclosed by BGPmon, a popular
monitoring service [5]. Once an AS hijacks a prefix, the AS
can blackhole or intercept the hijacked traffic, or impersonate
the legitimate receiver of the traffic [6]. Moreover, the hijacker
AS can use the hijacked IP prefixes for spamming [7], [8].

While work on path validation [9] and RPKI [10] is actively
underway in the IETF [11], deployment of these solutions that
would prevent hijacking remains at an impasse. Since systems
to prevent hijacks are difficult to deploy [12] and require
the cooperation of many ASes, techniques to detect hijacks
after they occur have been a popular area of study [13]–[26].
Existing works [13], [17] detect BGP hijacking by tracking
whether any new pairs of neighboring ASes suddenly appear,
or by searching for the violation of a BGP policy (e.g. a valley-
free violation). However, the former approach may falsely
capture enormous unrelated events, and the latter approach

often relies on AS relationships that are difficult to infer
accurately. Alternatively, ARTEMIS [25] accurately detects
all attack configurations but only towards prefixes owned by
the network running it, making it not applicable to detect
attacks towards other prefixes or to global monitoring Besides,
other BGP anomalies (e.g. link failure, misconfiguration) can
make detection techniques less accurate or the interpretation
of the detected event more difficult. More recently, some
approaches aim to differentiate between different types of BGP
anomalies, such as misconfiguration, link failure, or worm
attacks [14], [15], [24], [27]–[29]. However, they do not aim
to classify BGP hijack events. To our best knowledge, only
Argus [13], [30] takes BGP hijacking into account in their
classification of anomalies. Argus classifies BGP anomalies
into four groups: link failure, hijacking, route migration, and
traffic engineering. However, Argus only classifies hijacking
that causes blackholes (not interceptions), and their system re-
quires access to real-time data plane measurements to perform
such classification.

In this work, we focus on distinguishing four types of BGP
hijack events: typos, prepending mistakes, origin changes, and
forged AS paths. We conjecture that these first two event types
may be more indicative of a misconfiguration or human error,
while the latter two may be more indicative of a malicious
hijacking event. Note that route migration is not our focus in
this paper. To classify events, we use supervised learning, a
random forest (RF) classifier, with five features (Section IV-B).
In our features, we leverage AS hegemony [31] to identify
forged AS paths in a fast and efficient way without relying on
inferred AS relationships. AS hegemony represents a score
of dependency in AS relationships and we can obtain the
scores of all ASes from IIJ’s Internet Health Report (IHR)
API [32]. For other classification features, we use heuristics
that identify typos and prepending mistakes. To verify our
approaches, we run our classifier on our collected ground-
truth data that is manually verified, we then use the trained
classifier to characterize candidate BGP hijacking events (e.g.
BGPMon [33]). We expect that our classifier can help network
operators to prioritize the handling of malicious BGP hijack
attacks as opposed to the events by human error. In this paper,
we make the following contributions:

Utilization of AS hegemony to detect forged AS path. We
demonstrate that we can utilize AS hegemony to detect forged
AS paths (Section IV-B). In addition, by using both definitions
of AS hegemony (local and global AS hegemony) we improve
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our detection accuracy.

Classifying different types of BGP hijacking events. We
show that we can classify the four aforementioned BGP
hijacking events: typos, prepending mistakes, origin changes,
and forged AS paths using our features. Our approach carries
over to other measurement databases such as those generated
by BGPMon [33] and BGPStream [34]. With BGPMon’s
datasets, we find 4%, 1%, and 2% of typos, prepend mistakes,
and BGP hijacking with a forged AS path, respectively.

II. BACKGROUND: ANOMALOUS BGP ANNOUNCEMENTS
AND CAUSES

In this section, we overview the types of anomalous BGP
events that we look for in traces of BGP control-plane mes-
sages. We first overview two suspicious events that may be
observed in the control-plane and how they may be used
by a malicious entity to perform prefix hijacking. We then
overview two types of human error that may cause these types
of anomalies. Our goal in this work is to distinguish cases of
the first two anomalies that can be explained by the latter two
sources of error.

Route origin change. A hijacker advertises to neighboring
ASes a prefix that it does not own, illustrated in Figure 1.
Since the BGP path selection process favors shorter paths
(among paths where the next hop AS has the same LocalPref
value or business relationship), other ASes may choose the
illegitimate path announced by the hijacker if it is shorter than
their paths to the legitimate AS. For example, AS5 may choose
the illegitimate path announced by the hijacker (AS6) since the
path is shorter.

In other cases, a hijacker announces a more specific version
of the prefix announced by the legitimate AS. This type of
BGP hijack is particularly problematic because routers using
the longest prefix match will select and advertise this route.
Thus, packets are forwarded to the hijacker rather than to the
legitimate AS.

neighbor xx.xx.xx.xx route-map 
test out
route-map test permit 10
set as-path prepend 47868 47868 47868 47868

set as-path prepend 47868 3

set as-path prepend 47868 48768 47868 47868

Fig. 3. EXAMPLE OF AS PATH PREPENDING.

AS-Path manipulation. Since an origin change or an origin
legitimacy may be detected (e.g. via RPKI [10]), a hijacker
may announce a forged path with its ASN on the path, but
not as the route origin AS. The hijacker may place either the
legitimate route origin AS or an unrelated AS as the route
origin. For instance, Figure 2 shows that AS6 announces a
fake path, [AS6, AS1], as if it is neighboring to the legitimate
origin, AS1. By doing this, a hijacker can evade an origin
authentication.
Typos in ASN or prefixes. When setting up routers, network
operators have to type their ASNs and prefixes to the router
configuration. In the process, there is a high chance for them
to mistype ASN or prefixes. For instance, in May 2016,
AS203959 announced prefix 191.86.129.0/24, which was a
more specific prefix that another AS had announced. This inci-
dent was noticed because multiple origin ASes had announced
the same prefix at the same time. Later on, it turned out that
this was not an intended BGP hijack but just a typo. The
reported hijacker, a network operator, mistyped the number 9
to 8 when typing its own prefix 191.96.129.0/24 [35].
Wrong AS path prepend. Another common error happens
when network operators try to prepend their ASNs to an-
nounced paths. AS path prepending is a traffic engineering
technique that consists in adding multiple times an ASN to a
path so that the advertised path becomes less desirable due to
its inflated path length. As shown in Figure 3, AS prepending
mistakes can happen when an operator writes the number, ”3”,
of repetitions of the ASN, ”47868”, instead of writing the ASN
multiple times, ”47868 47868 47868”, or when an operator
mistypes a sequence of the ASN such as ”48768” instead of
”47868”. The former case results in an origin change and the
latter case results in a forged AS path.

III. DATASETS

A challenge in a study of BGP hijacking is the limited
number of sources of ground truth data - specifically, which
events are intended (i.e. planned traffic engineering) versus
those that are not (i.e. human error and potential hijacking
attacks). In this section, we overview the ground truth data1

we use to train our machine learning classifier as well as the
longitudinal datasets we use to study the four routing event
types described in Section II. A summary of the datasets that
we use in our work is summarized in Table I.

A. Ground truth

We leverage two sources of unintended BGP routing events:
potentially malicious hijacks and human error.

1https://github.com/grace71/bgp-hijacks-classifier



Potentially malicious hijacks. It is difficult to infer intent
from BGP routing announcements. However, we can use
the articles about the unexpected and occasionally impactful
BGP events from the Dyn blog [36] as a source of routing
announcements that are manually checked by experts and
reported as suspicious.
Likely typos. As a second set of anomalous BGP events,
we again use the articles on typos from the Dyn blog [35].
However, this type of report is rare so we also use data from
the BGPMon [33] platform. BGPMon reports possible BGP
hijacking events on a daily basis, and all reported events are
the cases where an illegitimate AS announces a prefix or
more specific prefix owned by another AS (e.g. multiple origin
ASes). BGPMon reports only events that are highly possible
to be BGP hijacking after excluding the obvious non-hijacking
events. We use these events to find possible events caused by
human error, for example, if the hijacked prefix (or ASN) is
similar to the hijacker’s legitimate prefixes (or ASN) and the
routing announcement is withdrawn in a short time after the
original announcement.

We also look for cases where the origin AS is a number, n,
less than ten and when we observe a rapid withdrawal followed
by the origin prepended n times. We consider such events as
prepending mistakes by network operators (see Figure 2 for a
specific example of this).
BGP data for ground truth events. After retrieving the
details of each event from Dyn [36] and BGPMon [33], we col-
lect historical BGP data using CAIDA’s BGPStream [34], [37],
which is an open source software framework for the analysis of
both historical and real-time BGP data. To retrieve BGP data
from CAIDA’s BGPStream we need to know the prefix and
likely time of the anomalous announcement/event. For events
from Dyn we are able to retrieve relevant announcements
for 35 events. Similarly, for BGPMon, we also retrieve the
BGP data for 35 events, all labelled as typos and prepending
mistakes (see Table I).

B. Additional datasets

In addition to our ground truth data, we gather addi-
tional data from BGPMon [33] and BGPStream [34], [37]
and characterize announcements and events in these datasets
with the features described in the following section. While
BGPMon gives a pre-filtered sample of highly likely BGP
hijacks, BGPStream, in contrast, allows us to observe all
anomalous BGP messages (e.g. multiple origin-AS prefixes)
without filtering to perform our analysis. We perform our own
filtering on data from BGPStream to avoid the cases that are
likely traffic engineering (e.g. by avoiding incidents involving
sibling ASes). We describe this in more detail in Section V-D

IV. METHODOLOGY

Our goal is to identify a set of features that can not only
identify instances of multiple origin-AS prefix announcements
and forged paths but also distinguish those instances from the
cases likely caused by human error (e.g. typos or misconfigur-
ing prepending). To accomplish this, we use machine learning

TABLE I
DATASET CHARACTERISTICS.

Dataset Ground truth BGPMon BGPStream
Period 2008-02

∼2018-07a
2018-05
∼2019-02

2019-01-01
∼2019-01-31

Total events 70 2,418 566
– w/MOAS 16 2,418 526
– w/New edges 18 - 40
– w/Typos 21 - -
– w/Prepending 15 - -
Avg # of pathsb 669 795 157

aOur ground truth includes only the events reported by and manually
checked, not all events that occurred during this period.

bThe average number of AS paths per event.

to build a model of these events based on five main features
using our ground truth dataset as input. A key metric used
in two of our features is AS hegemony, which is a proxy for
measuring the importance of an AS in the Internet graph [31].
These two features allow us to identify potential forged paths,
which are difficult to infer accurately without knowing AS
relationships. In this section, we first review the principles of
AS hegemony then we introduce all the features we use for
our classification.

A. AS hegemony

AS hegemony [31] is a metric that quantifies the likelihood
of an AS to lie on paths toward certain destination IP prefixes.
We distinguish two variants of this metric, global and local AS
hegemony. The global AS hegemony is computed with paths to
all IP prefixes globally reported by the BGP viewpoints. In this
case, ASes with a large value stand for large transit networks
that are commonly used to reach any host on the Internet. For
instance, tier-1 ASes, like Level 3 (AS3356), have the highest
scores, and stub ASes have the lowest scores.

The local AS hegemony is computed with paths from all
BGP viewpoints towards only one origin AS. In this case,
high values stand for ASes that are commonly used to reach
the given origin AS. For instance, computing the local AS
hegemony for UCSD (AS7377) reveals that the highest score
is attributed to the Californian academic network, CENIC
(AS2152), which is UCSD’s main upstream provider. We
obtain AS hegemony scores every 15 minutes for every AS
using Internet Health Report (IHR) API [32].

B. Features

We now overview features we use to classify the different
BGP events.

Number of valleys (Global hegemony) With the global AS
hegemony, we identify BGP hijacking by path manipulation
and the violation of BGP policy. Usually the global AS
hegemony values corresponding to an AS path have only
one local maximum around the middle of the path, which
means large transit ASes are located in the middle of the AS
path. However, if we find any valleys in global AS hegemony
values, as illustrated in Figure 4, we define them as anomalies.
In other words, if a rare transit AS with a low global AS
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hegemony score is located between two common transit ASes
with higher scores, we define the dip between the two transit
ASes as a valley. We consider the uncommon AS that causes
the valley as the potential hijacker. For example, as illustrated
in Figure 4, a hijacker, AS26627, is located between two tiers
1 ASes, CenturyLink(AS3561) and GTT(AS4436), and that is
obviously suspicious [38].

In practice, due to approximation and measurement errors
we observe many small valleys which may affect our classifi-
cation. As illustrated in Figure 5, Orange (AS5511) generates a
small valley on the AS path; however, Orange is not a hijacker,
and Orange, Cogent (AS174), and UFINET (AS52468) are
tier-1 or tier-2 networks. Thus, the small valleys should not
be considered as an anomaly. To address this problem, we
define how deep a minimum should be to be counted as a
valley. Then, we ignore the negligible small valleys that are
less than a certain threshold. We calculate the depth by taking
an average of the rate of change between two local maxima,
shown in Figure 4 for our ground truth data set. The calculated
depth for each category is shown in Figure 6. We use 0.95 as
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Fig. 6. CDF OF RELATIVE CHANGE IN DEPTHS ON EACH AS PATH IN OUR
GROUND TRUTH DATA SET.

our threshold to count a dip as a valley. The threshold allows
us to keep 85% of valleys in forged AS path, but to get rid
of 99%, 99%, and 96% of valleys in origin change, typo, and
prepend mistakes, respectively.
Similarity (Local hegemony) An AS that is closer to the
origin AS on the AS path has a higher local AS hegemony
score in general, and a higher score means that the AS is more
important for the origin AS connectivity. If a hijacker creates
a false AS paths or violates BGP policies, these changes may
not be compliant with the previously computed local AS hege-
mony scores. As an example, all paths to AS14618 (Amazon)
go through AS16509 (Amazon)2 and thus a local hegemony of
AS16509 for AS14618 is 1.0. If a hijacker announces a fake
path between these two ASes, the announcement will cause a
significant change on the local AS hegemony scores; thus the
instances can be identified with this feature.

We use cosine similarity of the previous and current local
hegemony as our feature. To get cosine similarity, we first
recalculate local hegemony scores of origin AS during the po-
tential BGP hijacking event. Next, we retrieve local hegemony
scores of the same origin AS before the event through the
IHR API [32]. Finally, we select the top three ASes in terms
of local hegemony scores from each group and calculate the
cosine similarity between them. This feature isolates ASes that
rarely or never appeared on paths before but now become the
major transit ASes for the origin AS.
Edit distance: Prefixes and Origin ASN. We use Lev-
enshtein’s edit-distance to identify typos made by network
operators in route origin AS and prefixes. Our edit distance
feature allows all possible edit operations, which are insertion,
deletion, substitution, and transposition. For typos in origin
ASN, we calculate the edit distance between the potential
hijacker ASN and the victim ASN.

While detecting typos in origin AS is simple, identifying
prefix typos is relatively complicated. To detect prefix typos,
we first retrieve all prefixes of the potential hijacker’s AS
that are globally reported from BGP viewpoints before the
BGP hijacking event occurred. Then, we calculate the edit
distance between the hijacked prefix and each reported prefix;
and return the minimum edit distance among them. Intuitively,
operators are unlikely to make two mistakes in a single ASN
or IP prefix; therefore, in both typo cases of origin AS and
prefixes, if the edit distance is 1, it is highly likely to be a
human error, not a hijacking.
Prepending mistakes To identify human error in AS path
prepending (as shown in Figure 2), we use a simple method.
For this type of error, the new origin AS will appear to
be a small number (corresponding to the operator’s desired
amount of prepending) and the potential victim will appear
as a direct upstream to this AS. So, we check whether the
victim AS is a direct upstream of the new origin AS. Then,
we assign the scaled probability against the number of origin
ASN based on the prevalence of AS prepending observed on

2https://ihr.iijlab.net/ihr/14618/asn/?af=4&date=2015-03-26&last=7&
hegemonydate=2015-03-26+07\%3A15&hegemonyy=y
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the Internet. Figure 7 shows the CDF of how many times ASes
are prepended over a period of 3.5 days based on all AS paths
to all IP prefixes, which are globally advertised on the Internet
from BGP viewpoints. We use these results to compute the
probability.
Multiple-origin AS (MOAS). We use a binary digit to
indicate a MOAS conflict, which is one of the standard rules
to determine BGP hijacking. These events may be potentially
malicious hijacking or likely typos or errors as discussed in the
prior sections, thus the presence of a MOAS violation cannot
be the only feature to classify the events.

V. RESULTS

A. Evaluation of features

We evaluate (1) whether our features are able to distinguish
the different types of events we have, and (2) the accuracy of
our classifier.
Identifying forged AS path. As discussed earlier, because
small valleys on AS paths add noise to our features, we set
a threshold to filter out negligible small valleys. In order to
understand whether the threshold removes the noise effec-
tively, we analyze the number of valleys for each AS path
with different thresholds. As illustrated in Figure 8, our results
show that, with a threshold 0.95, most valleys on AS paths in
human error are eliminated while the valleys of forged AS
path remain.

From Figure 9, we get concern on the utilization of the
feature because less than 20% of AS paths are identified with
significant valleys. We compute the average number of valleys
across all paths of each forged AS path event. As a result,
we find that 53% of the events have an average number of
valleys higher than 0.05. This indicates that the majority of
these events contain at least a path with a valley. Thus, we
can still utilize this feature to identify forged AS path events.

We now investigate forged AS path events that have a small
average number of valleys to understand the reason. In our
analysis, we observe a few hijackers placing themselves on
a direct upstream position of a route origin AS. Because
a hijacker is too close to the route origin AS, the hijacker
does not create any valleys even when the hijacker has a
low global hegemony score. We discuss this problem in
details in Section VI. To mitigate this problem, we utilize
local hegemony feature. Even if some hijackers yield small
valleys, they can be detected with local similarity, illustrated in
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Figure 9. We find that 88% of samples in forged AS path cases
have less than 0.002 in local similarity. Our manual inspection
of the 12% events, where local similarity is larger than 0.002,
reveals that in all these cases a hijacker announces an assigned
but unused prefix using a forged AS path, which means no
MOAS conflict is reported. Besides, the hijacker places its
downstream customer as origin AS, so that local similarity is
relatively larger than other cases.

Identifying human error. We now evaluate our features
that are designed to identify human error. As illustrated in
Figure 10, the prepending feature allows us to distinguish
between forged AS path cases and prepending cases, although
the local similarity values of these two types of events are
similarly distributed. This observation also supports the com-
plementarity of our features and the use of machine learning to
combine all features and improve their discrimination power.

Our results of the edit distance feature are illustrated in
Figure 11. The edit distance is derived from the minimum
value of edit distances between a hijacked prefix and a set
of prefix owned by a potential hijacker in our dataset. In
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Fig. 12. EVENT OF FORGED AS PATH IN BGPMON.

Figure 11, we see that nearly 98% of the returned edit distance
is larger than four.

B. The accuracy of our classifier

We use a random forest (RF) classifier with all our features
to classify BGP hijacking events. To evaluate the accuracy
of our classifier, we run the RF classifier on our ground
truth dataset. First, we remove one event from the dataset.
Then, we train our RF classifier with all other events and
make the classifier predict the label for the removed event.
We repeat this process for all events and count how many
times the classifier has correctly classified the removed event.
Using this experiment, we evaluate the accuracy of our RF
classifier to 95.71%. We also tried other classifiers, k-means
and DBSCAN, and obtained the best results with RF. The
accuracy of these classifiers is 54.5% and 61.9%, respectively.
As some of our features are discrete, thus random forest (the
use of decision tree) is the most appropriate.

C. Classification of BGPMon dataset

We train the RF classifier with our ground truth dataset,
then predict classes of BGP hijacking events reported by
BGPMon [33]. Figure 13 shows the result of our classifier
for a total of 2418 hijacking alarms over ten months. We find
5%, 4%, 2% of forged AS path, typo, and prepend mistakes,
respectively.

We further investigate and verify whether each event is clas-
sified correctly. As an example, in one of the forged AS path
events, AS101 is pointed out as a hijacker by BGPMon against
a prefix 103.100.12.0/24 owned by AS136650. However, we
find that there is a forged AS path between a hijacker AS101
and AS134269, illustrated in 12. In this case, the valley created
by the hijacker is clearly visible; furthermore the two networks
are registered in two distance countries. AS101 stands for the
University of Washington in USA and AS134269 is registered
in India.

While investigating human error in AS path prepending
in the BGPMon dataset, we find some unexpected cases. In
these cases, both a potential hijacker and an original ASN
are smaller than 10. We further investigate these cases with
BGP measurements data over a period of two hours. We find
that there are not only one but also more potential hijackers
of which ASNs are all smaller than 10. Besides, the direct
upstream AS of all the origin ASes is the same for all. For
example, all route origins, ASN2 and ASN6, have only one
direct upstream AS48420. We can infer that AS48420 tried
to do AS path prepending with several numbers at that time,
and BGPStream was confused with this and considered the
repeated error as a change of an origin AS.

D. Classification of CAIDA’s BGPStream dataset

Our approach carries over to another measurement dataset,
CAIDA’s BGPStream. BGPStream allows us to observe all
anomalous BGP messages, and we focus on two events: multi-
ple origin-AS prefixes and newly appeared pair of neighboring
ASes. We perform our filtering on each event to avoid the
cases that are likely traffic engineering (e.g., by avoiding
incidents involving sibling ASes.) and to focus only on pos-
sible hijacking events. After running our trained classifier
on events of multiple origin-AS prefixes, we find 1%, 1%,
14% of forged AS path, prepending mistakes, and typos,
respectively from MOAS. For the events of newly appeared
pair of neighboring ASes, we find 20%, 30% of forged AS
path and typo, respectively.

VI. DISCUSSION

Limitation of features using AS hegemony. Our AS
hegemony based features cannot classify forged AS paths if
a hijacker is either tier-1 or tier-2 transit AS. These ASes
already have a relatively high global hegemony, so they are less
prone to create valleys on AS paths. Also, as many stub ASes
generally depend on tier-1 or tier-2 transit ASes to transmit
their traffic, a route origin AS of an AS path is likely to have a
high dependency on those ASes. It means that we also might
not find any anomalies on the AS path with local hegemony
if the tier-1 or -2 networks are the upstream provider of the
origin AS. However, in our ground truth, the real hijackers
had relatively small hegemony, 0.00125 global hegemony on
average. This is relatively smaller than 0.134 (Level 3) and
0.006 (UCSD).

Trial to fool edit distance. A hijacker may tailor an attack to
make it similar to an operators mistake and fool our classifier.
Due to the limited availability of IP address space, however, a
hijacker has a limited number of choices to bypass and fool our
detector. To explain this, we note that our edit distance features
allow all possible edit operations, which are insertion, deletion,
substitution, and transposition. A hijacker has to use only one
operation among the set to avoid our detection. Computing
the exact number of such possible edits is difficult. Thus, we
check the number of the maximum possibilities of hijacking
attacks where the number of edits is equal to 1. In other words,
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we look at the number of possibilities where the hijack can
pretend to be a case of human error in the worst case scenario.

Assume that we have an IP address, 1.1.1.1/32. For inser-
tion, a hijacker can insert any one digit from 0-9 before and
after ”1” in the first octet. The possibilities for each octet
are 20 so that the total possibilities of insertion is 80. For
deletion, because there are three numbers for each octet, the
total possibilities of deletion are 12. For substitution, a hijacker
can insert [1,2], [0-9], [0-5], respectively to each octet. Thus,
the total possibility of substitution is 60. Transposition has
the smallest number of possibilities, 8, because each octet is
available for only two transposition operations.

Note that the total number of IP addresses is equal to
232. We consider the total number of possible edits and the
number of possible cases with edit distance equal to 1. We
find from the previous case that in the worst case scenario,
the probability of fooling edit distance is negligibly small,
which is equal to 3.73× 10−8.

VII. RELATED WORK

Detection of BGP Hijacking. To mitigate BGP hijacking, a
number of detection techniques have been proposed [13]–[26].
Existing works detect BGP hijacking by searching for a MOAS
violation or a BGP policy violation, or by tracking whether any
new pairs of neighboring ASes suddenly appear. Argus [13]
and Hu et al. [21] measure the number of hijacking attacks
by correlating multiple sources of information from the data
and control planes of the network and finding inconsistencies
among them or checking reachability. Tahara et al. [22] use
ping tests to detect similar attacks. Our work builds on these
studies to detect BGP hijacks, but also take into account the
possibility of human error.

A number of other studies also attempt to detect in real-time
to protect the system from such attacks. PGBGP [17] designs
heuristics to detect BGP hijacking and propose slowing down
the propagation of such routes to allow human operators to
respond to such attacks. Deshpande et al. [15] and Theodoridis
et al. [16] use statistical analysis to identify anomalies and
instabilities and thus detect BGP hijacks in real-time. Our
work uses similar statistical techniques to detect BGP hijacks.
However, unlike our work, these studies do not take into
account the possibility of operator errors.

Classification of Internet Anomalies. Some works try to
classify the different types of BGP anomalies observed in
routing. The work [23] surveys the types of possible BGP
anomalies (e.g. direct and indirect anomalies, link failure)
and enumerates detection techniques with different approaches
(e.g. machine learning, statistical pattern recognition). Mari-
jana et al. [39] use standard statistical classification techniques
to identify the types of BGP attacks, but do not consider
human error. Some works [27]–[29] use machine learning
techniques (e.g. SVM, HMMs) to classify BGP anomalies.
However, these studies all focus on the classification between
work attacks, link failure, and misconfiguration, and do not
consider BGP hijacking. The study closest to our work is
I-Seismograph [40]. It finds major changes in the Internet
routing patterns and tries to identify the root cause behind
it. However, unlike our work, it does not check if an error is
by a hijacker AS or an operators mistake.

VIII. CONCLUSION

In this work, we leveraged AS hegemony and heuristic ap-
proaches to classify BGP hijack events into typos, prepending
mistakes, origin changes, and forged AS paths. We improved
the accuracy of our features by removing noise (e.g., small
valleys) and using empirical measurements. In addition, our
results show that even though each feature seems to be
independent with each other, they can be leveraged together
to enhance the accuracy of classification. Moreover, we use
a random forest (RF) classifier with our five features and
show that our classifier has 95.71% accuracy. We trained our
classifier with our ground truth, and then used it to characterize
candidate BGP hijacking events generated by BGPMon and
BGPstream. With BGPMon, the results show that we classify
4%, 1%, and 2% of alarms as typos, prepend mistakes, and
BGP hijacking with a forged AS path, respectively. With
BGPStream, for multiple origin-AS prefixes events, we find
that 1%, 1%, 14% of events are forged AS path, prepending
mistakes, and typos, respectively. For events of newly appeared
pair of neighboring ASes, we find that 20%, 30% of events
have forged AS path and typo, respectively. Our results show
that typos and prepending mistakes account for more number
of events than origin changes and forged AS path.

For future work, we plan to utilize AS hegemony to localize
a hijacker on an AS path. Localizing is possible by returning
AS that is responsible for the valley on a path. In addition,



we are aware of the cases where we cannot detect a forged
AS path with the number of valleys so we plan to look at
different statistical techniques to mitigate such cases. Finally,
in this paper, we focus on only BGP hijack attacks, but we
plan to extend our datasets to include the data of all anomalies
and utilize our features to characterize the anomalies. Also,
we plan to increase the scope of human mistakes to cover
configuration errors in routing policies.
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