

Dieses Dokument ist eine Zweitveröffentlichung (Postprint) /

This is a self-archiving document (accepted version):

Diese Version ist verfügbar / This version is available on:

https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-860440

Johannes Pietrzyk, Dirk Habich, Patrick Damme, Erich Focht, Wolfgang Lehner

Evaluating the Vector Supercomputer SX-Aurora TSUBASA as a Co-
Processor for In-Memory Database Systems

Erstveröffentlichung in / First published in:

Datenbank-Spektrum. 2019. 19(3), S. 183–197. Springer. ISSN 1610-1995.

DOI: https://doi.org/10.1007/s13222-019-00323-w

https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-853467

Evaluating the Vector Supercomputer SX-Aurora TSUBASA as
a Co-Processor for In-Memory Database Systems

Johannes Pietrzyk1 · Dirk Habich1 · Patrick Damme1 · Erich Focht2 · Wolfgang Lehner1

Received: 14 June 2019 / Accepted: 27 August 2019 / Published online: 9 September 2019
© Gesellschaft für Informatik e.V. and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Abstract
In-memory column-store database systems are state of the art for the efficient processing of analytical workloads. In these
systems, data compression as well as vectorization play an important role. Currently, the vectorized processing is done
using regular SIMD (Single Instruction Multiple Data) extensions of modern processors. For example, Intel’s latest SIMD
extension supports 512-bit vector registers which allows the parallel processing of 8× 64-bit values. From a database system
perspective, this vectorization technique is not only very interesting for compression and decompression to reduce the
computational overhead, but also for all database operators like joins, scan, as well as groupings. In contrast to these SIMD
extensions, NEC Corporation has recently introduced a novel pure vector engine (supercomputer) as a co-processor called
SX-Aurora TSUBASA. This vector engine features a vector length of 16.384 bits with the world’s highest bandwidth of
up to 1.2 TB/s, which perfectly fits to data-intensive applications like in-memory database systems. Therefore, we describe
the unique architecture and properties of this novel vector engine in this paper. Moreover, we present selected in-memory
column-store-specific evaluation results to show the benefits of this vector engine compared to regular SIMD extensions.
Finally, we conclude the paper with an outlook on our ongoing research activities in this direction.

Keywords Vectorization · NEC SX-Aurora TSUBASA · Column stores · Experimental evaluation · SIMD extension

1 Introduction

In our digital world, efficient query processing is still an
open challenge due to the ever-growing amount of data.
To satisfy query response times and query throughput de-
mands, the architecture of database systems is constantly
evolving [14, 17, 25, 28, 4]. For instance, the database ar-
chitecture shifted from a disk-oriented to a main-memory-
oriented architecture to efficiently exploit the ever-increas-

Johannes Pietrzyk
johannes.pietrzyk@tu-dresden.de

� Dirk Habich
dirk.habich@tu-dresden.de

Patrick Damme
patrick.damme@tu-dresden.de

Erich Focht
erich.focht@emea.nec.com

Wolfgang Lehner
wolfgang.lehner@tu-dresden.de

1 TU Dresden – Professur für Datenbanken, Dresden, Germany

2 NEC HPC Europe GmbH, Stuttgart, Germany

ing capacities of main memory [1, 16, 19, 33]. This in-
memory architecture is now state-of-the-art and character-
ized by the fact that all relevant data is completely stored
and processed in main memory. Additionally, relational ta-
bles are organized by column rather than by row [1, 16, 33,
4, 6] and the traditional tuple-at-a-time query processing
model was replaced by newer and adapted processing mod-
els like column-at-a-time or vector-at-a-time [1, 16, 33, 36,
4].

To further increase the performance of queries, in par-
ticular for analytical queries in these in-memory column
stores, two key aspects play an important role. On the one
hand, data compression is used to tackle the continuously
increasing gap between computing power of CPUs and
memory bandwidth (also known as memory wall [4]) [15,
2, 3, 35, 8]. Aside from reducing the amount of data, com-
pressed data offers several advantages such as less time
spent on load and store instructions, a better utilization
of the cache hierarchy, and less misses in the translation
lookaside buffer. On the other hand, in-memory column
stores constantly adapt to novel hardware features like vec-
torization using Single-Instruction Multiple Data (SIMD)
extensions [32, 36], GPUs [14, 18], or non-volatile main
memory [28]. In particular, vectorization is heavily used to

Final edited form was published in "Datenbank-Spektrum". 19 (3), S. 183–197. ISSN: 1610-1995.
https://doi.org/10.1007/s13222-019-00323-w

1

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

http://crossmark.crossref.org/dialog/?doi=10.1007/s13222-019-00323-w&domain=pdf
http://orcid.org/0000-0002-8671-5466

Fig. 1 SX-Aurora TSUBASA
architecture

SX -Aurora TSUBASA

Vector Host
VH

(Intel Skylake)

PC
I E

xp
re

ss

Vector Engine
VE

Vector Engine
VE

Vector Core

Scalar
Processing Unit

Vector
Processing Unit

Address Generation and
Translation

33TT BB //ss

Vector Engine (VE)

Vector
Core

Vector
Core

Vector
Core

Vector
Core

Vector
Core

Vector
Core

Vector
Core

LLC

HBM2 HBM2 HBM2

Vector
Core

LLC

HBM2 HBM2 HBM2

11..22TT BB //ss

improve the processing performance for regular query op-
erators as well as for compression and decompression by
parallelizing computations over vector registers.

Currently, vectorization is performed using regular
SIMD extensions of modern processors such as Intel’s SSE
(Streaming SIMD Extensions), Intel’s AVX (Advanced
Vector Extensions), or ARM’s Neon (Advanced SIMD Ex-
tension aka Neon). Up to now, Intel’s latest SIMD extension
supports 512-bit vector registers corresponding to 8 64-bit
values in parallel. In contrast to that, NEC Corporation
recently released a pure vector engine called SX-Aurora
TSUBASA [20] as a co-processor in a heterogeneous hard-
ware environment. This vector engine features (i) a vector
length of §2 KB (16.384 bits) which significantly exceeds
the size of regular SIMD extensions—256 64-bit values in
parallel—and (ii) the world’s highest memory bandwidth
of up to 1.2 TB/s per vector processor [20]. From that
perspective, this vector engine is very interesting for in-
memory database systems. In particular, from the following
aspects: (i) In contrast to other co-processors like GPUs,
the processing principle does not have to be changed. That
means, vector processing in a uniform way can be per-
formed on the CPU as well as on the vector engine. (ii)
The vector engine SX-Aurora TSUBASA offers enough
memory bandwidth to fill the very large vectors with data
for an efficient processing.

Our Contribution and Outline: In this paper, we make
the following contributions, whereat this journal paper is an
extended version of a workshop paper [29] published at the
NoDMC workshop:

1. We start by describing the unique architecture and prop-
erties of this novel vector engine SX-Aurora TSUBASA
in Sect. 2.

2. Then, we present MorphStore [13], a regular in-memory
column store systemwith a novel compression-aware and

highly vectorized query processing concept in Sect. 3.
We added the system description of MorphStore to this
journal version to highlight our general research direction
in this field.

3. Based on MorphStore, we present selected evaluation
results to show the benefit of this vector engine com-
pared to regular SIMD extensions of modern processors
in Sect. 4. Moreover, we show that our MorphStore con-
cepts are well-designed for Intel processor systems as
well as for the NEC vector engine.

Afterwards, we briefly introduce our ongoing research ac-
tivities in Sect. 5. Finally, we conclude the paper with
a short summary in Sect. 6.

2 Hardware System SX-Aurora TSUBASA

NEC Corporation has a long tradition in vector supercom-
puters with a series of NEC SXmodels starting in 1983. The
most recent model is NEC SX-Aurora TSUBASA [20]. In
the following sections, we will describe the overall architec-
ture, the vector processing and the programming approach
of this novel SX-Aurora TSUBASA model.

2.1 Overall Architecture

The overall architecture of SX-Aurora TSUBASA com-
pletely differs from its predecessors. The new system model
is a heterogeneous system consisting of a vector host (VH)
and one or more vector engines (VE). As illustrated in
Fig. 1, the vector host is a regular Intel Xeon Skylake CPU
featuring a standard x86 Linux server that provides standard
operating system functions. Moreover, the vector host also
includes a special operating system for the vector engines
called VEOS running in the user mode of the vector host.

Final edited form was published in "Datenbank-Spektrum". 19 (3), S. 183–197. ISSN: 1610-1995.
https://doi.org/10.1007/s13222-019-00323-w

2

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

Table 1 Specifications for SX-Aurora TSUBASA

Type Frequency DP Performance DP Performance Memory Memory Vector

of a core of a Processor Bandwidth Capacity Size in bit

VE 10A 1.6 GHz 307.2 Gflop/s 2457.6 Gflop/s 1228.8 GB/s 48 GB 16.384

VE 10B 1.4 GHz 268.8.2 Gflop/s 2150.4 Gflop/s 1228.8 GB/s 48 GB 16.384

VE 10C 1.4 GHz 268.8.2 Gflop/s 2150.4 Gflop/s 750.0 GB/s 24 GB 16.384

VH Intel 128, 256,

Xeon Gold 6126 2.5 GHz 83.2 Gflops/s 998.4 Gflops/s 128 GB/s 96 GB and 512

VEOS controls the vector engines, whereby each vector en-
gine is implemented as a PCI Express card equipped with
a newly developed vector processor [20].

As illustrated in Fig. 1 on the right side, each vector pro-
cessor/engine consists of 8 vector cores, 6 banks of HBM21

high-speed memory, and only a last-level cache (LLC) with
a size of 16 MB between memory and the vector cores.
The LLC is on both sides of the vector cores as depicted
in Fig. 1, and it is connected to each vector core through
a 2D mesh network-on-chip with a total cache bandwidth
of 3 TB/s [20]. Moreover, this vector processor design pro-
vides a memory bandwidth of up to 1.2 TB/s per vector
engine [20]. Each vector core consists of three core units:
(i) a scalar processing unit (SPU), (ii) a vector processing
unit (VPU), and (iii) a memory-addressing vector control
and processor network unit (AVP). The SPU has almost
the same functionality as modern processors such as fetch,
decode, branch, add, and exception handling. However, the
main task of the SPU is to control the status of the vector
core.

2.2 Vector Processing and Specific Systems

This vector engine does not only feature high bandwidths
but also a very advantageous architecture of the vector pro-
cessing units (VPU). Each VPU has three vector-fused
multiply add units with 32 vector pipelines and differ-
ent vector instructions can be independently executed on
the units [20]. Generally, the vector length of the VPU is
256 elements2, each of which is 8 Byte [20]. Thus, one
vector instruction executes 256 arithmetic operations within
eight cycles [20]. The major advantage, compared to wider
SIMD functionalities, e.g., in Intel processors like AVX-
512, is that the operations are not only executed spatially
parallel, but also temporally parallel which better hides
memory latency [20].

Each VPU has 64 vector registers and each vector regis-
ter is 2 KB in size (256 elements with 8 bytes per element).
Thus, the total size of the vector registers is 128 KB per

1 High Bandwidth Memory Version 2.
2 In comparison, the vector length of Intel’s latest vector extension
AVX-512 is limited to 8 elements with 8 Byte per element.

vector core, which is larger than an L1 cache in modern
regular processors. To fill these large vector registers with
data, the LLC is directly connected to the vector registers
and the connection has roughly 400 GB/s bandwidth per
vector core [20].

Generally, NEC offers three types of these vector engines
called 10A, 10B, and 10C as illustrated in Table 1, which
only differ in frequency, memory bandwidth, and memory
capacity. In every case, the vector host (VH) is an Intel
Xeon Gold 6126 with 12 cores. Tab. 1 also compares VE
and VH with respect to double-precision (DP) performance
per core or per processor as well as memory bandwidth
and memory capacity. As we can see, memory bandwidth
of each vector engine is many times higher than that of the
vector host, but maximum memory capacity of the vector
engine is 48 GB.

The SX-Aurora TSUBASA systems have a high-level
configuration flexibility and the series includes three prod-
uct types:

� A100 is a workstation model with one VH and one VE.
� A300 is a standard rack-mount model with up to eight

VEs with one VH. In this case, the maximum size of the
vector main memory is 384 GB.

� A500 is designed as large-scale supercomputer with up to
eight A300 models connected which results in maximum
vector main-memory capacity of 3.072 GB.

With these memory capacities and bandwidths, this het-
erogeneous system approach is very interesting for mem-
ory-intensive applications such as databases.

2.3 ExecutionModel and Programming Approach

Unlike other accelerators, SX-Aurora TSUBASA is pursu-
ing a different execution model. In general, VE is entirely
responsible for executing applications, while VH provides
basic OS functionalities such as process scheduling and
handling of system calls invoked by the applications on the
VE [20]. Applications for VEs are written in standard pro-
gramming languages such as C, C++ or Fortan without hav-
ing to use special programming models. In particular, a C li-
brary compliant with standards is ported to VE [20]. There-

Final edited form was published in "Datenbank-Spektrum". 19 (3), S. 183–197. ISSN: 1610-1995.
https://doi.org/10.1007/s13222-019-00323-w

3

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

Fig. 2 MorphStore architec-
ture [13]

fore, existing (non-vectorized) applications can be ported to
VE just by recompiling via the NEC compiler.

3 MorphStore — In-Memory Database
System

As already mentioned, data compression as well as vec-
torization are extremely relevant techniques for in-memory
column-store database systems. As we have shown in [10,
8], there is a large variety of lightweight data compression
schemes available and there is no single-best algorithm,
but the decision depends on data as well as on hardware
properties. However, existing column store systems only
provide a very limited set of compression algorithms for
base data [1, 11, 22]. Furthermore, during query processing,
these systems only keep the data compressed until an opera-
tor cannot process the compressed data directly, whereupon
the data is decompressed, but not recompressed. Thus, the
full optimization potential is not exploited.

To overcome that, we developed MorphStore3, a new
regular in-memory column-store with a novel compression-
aware and highly vectorized query processing concept [13,
15]. The unique features of MorphStore are: (i) compres-
sion and vectorization are first-class citizens as depicted
in Fig. 2, (ii) support a large variety of lightweight in-
teger compression algorithms and vectorization concepts,
(iii) a continuous handling of compression from base data
through intermediate results, (iv) a cost-based decision for
the best-suited compression algorithm, and (v) morphing
intermediates from one to another compression scheme to
dynamically adapt the physical representation to the chang-

3 https://morphstore.github.io.

ing data characteristics at query run-time. In the following,
we briefly describe the different layers as depicted in Fig. 2.

Storage Layer. This layer follows a well-known ap-
proach: (i) encode values of each column as a sequence
of integers using some kind of dictionary encoding [3]
and (ii) apply lightweight lossless integer compression to
each sequence of integers resulting in a sequence of com-
pressed column codes [1, 7, 8]. As illustrated in Fig. 2,
MorphStore does not assume or prefer a specific in-mem-
ory storage layout. Instead, it aims to support a large variety
of lightweight integer compression algorithms and a vari-
ety of specific layouts for compressed data, e.g., BitWeav-
ing [26]. In principle, these are two different things, but
since some compression algorithms also specify a storage
layout for the compressed data, the pool of possible layouts
becomes even larger. Therefore, this layer focuses on the
different layouts for storing uncompressed as well as com-
pressed sequences of integers in-memory. We follow this
approach, since, as we have shown in [8], the compression
algorithms are always tailored to certain data characteristics
and their behavior in terms of performance and compression
ratio strongly depends on the data. There is no single-best
compression algorithm [8], thus we need a large variety to
support all possible data characteristics. For the algorithm
selection, we introduced a compression-specific cost model
allowing the estimation of the compression ratio as well as
the performance in [10].

Morphing Layer. While the storage layer focuses on
providing different layouts, the morphing layer provides
an infrastructure for a seamless transition (we call it mor-
phing) from data in a specific layout into another layout.
Thus, the different (de)compression algorithms, which are
responsible for transforming uncompressed data into the
corresponding compressed layout and vice versa, are ma-

Final edited form was published in "Datenbank-Spektrum". 19 (3), S. 183–197. ISSN: 1610-1995.
https://doi.org/10.1007/s13222-019-00323-w

4

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

https://morphstore.github.io

Fig. 3 Integration of compression and operators. A to C are com-
pressed formats; U is uncompressed [7]

jor parts of this layer. Furthermore, we introduced novel
transformation algorithms in [9] to directly transform data
from a compressed source layout into a compressed target
layout. These transformations are also components of this
layer.

For our morphing purposes—applying decompression
and recompression—during query execution, we depend
on highly efficient implementations of these existing al-
gorithms. One way to achieve these is to use vectorization
allowing the application of one operation to multiple data
elements at once. In fact, the employment of SIMD in-
structions has been the major driver of the research in the
lightweight integer compression domain in recent years [12,
24, 34, 8]. To support the different available vector ex-
tensions as well as a dedicated vector engine provided by
NEC [20, 29] with a low effort, we developed a Vector
Library abstracting different SIMD extensions that is com-
parable to [31].

Processing Layer. The execution model of MorphStore
corresponds to an operator-at-a-time model, where all in-
termediates are materialized in main memory. Thus, this
layer provides all physical query operators for MorphStore,
thereby different degrees of integration between these op-
erators and compression are possible. Figure 3 shows these
variants andMorphStore supports all of them. The selection
of the best-suited operator variant within a query execution
plan (QEP) will be done using an appropriate cost model in
a subsequent step following the regular query optimization
Fig. 3a shows the baseline of processing only uncompressed
data.

A first variant to support compressed intermediates is
shown in Fig. 3b. The original operator for uncompressed
data is surrounded by a wrapper, which temporarily de-
compresses the inputs and recompresses the outputs. This
approach is called transient decompression and was pro-
posed in [5], but to the best of our knowledge, it has never
been investigated in practice. For efficiency, in MorphStore
the decompression (recompression) does not work on the
entire inputs (outputs), but on small chunks fitting into the
L1 cache. Changing the compressed format of the interme-
diates is possible by configuring the wrapper’s input and
output formats accordingly. The advantage of this variant is

its simplicity: It reuses the existing operator and relies only
on n already existing (de)compression algorithms. How-
ever, it does not exploit the benefits of working directly on
compressed data.

The second variant is to adapt the operator such that it
can work directly on compressed data (Fig. 3c). Existing
works such as [23, 26] have already proposed certain oper-
ators on certain compressed formats. We contribute to this
line of research by covering the formats of recent vector-
ized compression algorithms. For this variant, we assume
a common compression format (format B in Fig. 3c) for all
inputs and outputs of the operator; for arbitrary combina-
tions of formats, the operator is again wrapped. However,
in this case the wrapper utilizes the direct transformation
algorithms we developed. The idea of bringing compressed
inputs into a common format has already been proposed
in [23], but only for joins on dictionary encoded data – and
without direct transformations. This approach requires n
variants of the operator and n2−n transformations, whereby
the latter can be reused for all other operators. Nevertheless,
the existence of a wrapper still causes a certain overhead.
The final variant maximizes the efficiency by tailoring the
operator to a specific combination of formats (Fig. 3d).
Unfortunately, this approach implies the highest implemen-
tation effort, requiring ni+o operator variants.

4 Comparative Evaluation

Based on our MorphStore design concepts, we present se-
lective comparative evaluation results to show the benefits
of the vector engine compared to regular SIMD extensions
of modern processors in this section. Thus, we start with
an introduction of our investigated operations in Sect. 4.1,
followed by a description of our experimental setup and
methodology in Sect. 4.2. Then, we present single-threaded
and multi-threaded evaluation results in Sects. 4.3 and 4.4.
Finally, we summarize lessons learned from this compara-
tive evaluation in Sect. 4.5.

4.1 Selected InvestigatedOperations

Since all MorphStore operations are memory bound, we
basically have focused our comparative evaluation on ex-
amining the specified memory throughput. Therefore, we
measured plain sequential memory access in a first step,
followed by (i) a compression algorithm and (ii) a column-
scan which can be considered as a fundamental physical
query operator.

Final edited form was published in "Datenbank-Spektrum". 19 (3), S. 183–197. ISSN: 1610-1995.
https://doi.org/10.1007/s13222-019-00323-w

5

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

a b

c

Fig. 4 Illustration of BitWeaving/H [27]. a Data, b BitWeaving/H, c Predicate Evaluation

4.1.2 Bit Packing Compression

Lightweight integer compression plays an important role in
MorphStore. Thus, we decided to evaluate a representative
compression algorithm called Bit Packing (BP) [24]. The
basic idea of BP is to partition a sequence of integer values
into blocks and compress the values within each block sep-
arately. The number of bits used to represent every value in
a block is determined by the effective bit width of the largest
value in that block. The compression operations consist of
the following steps.

Step 1: Partition sequence of integer values into blocks.
Step 2: Read values in each block to determine the bit

width of the largest value in the block.
Step 3: Read the values again for bit packing based on the

largest bit width found in the previous step.
Step 4: Write packed words to output.

The block length depends on the used vector length [10,
24]. For example, for a vector length 128-bit, the num-
ber of integers per blocks has to be 128 to get an aligned
output [24]. This means for the VE, each block contains
16.384 integer values.

4.1.1 Memory Access Primitives

Every physical MorphStore query operator has the same
operation mode: (i) reading data from memory, (ii) process-
ing data, and (iii) writing the result back to main memory.
Thus, memory accesses are fundamental tasks in our over-
all concept and we focus on these core primitives (reading,
writing, and copying) as a first step in our evaluation. While
reading from memory without any further operations will
most probably be deleted by the compiler, an aggregation is
performed over the read memory using the bitwise OR op-
erator. Thus, only a cache-resident value has to be updated
per actual read. Given a relatively fast aggregation operation
with regard to the memory access, it can be assumed that
the measured throughput is not distorted by computation
efforts. To measure the behavior of write-intense sequential
memory access, we filled an array with a constant value,
like a memset. As a combination of reading and writing,
we measured the throughput of copying the values from
a given array into another array.

Final edited form was published in "Datenbank-Spektrum". 19 (3), S. 183–197. ISSN: 1610-1995.
https://doi.org/10.1007/s13222-019-00323-w

6

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

Fig. 5 Excerpt of C++-code
for read-intense task and cor-
responding diagnostic listing,
produced by nc++ while com-
pilation with optimization in-
dications. a C++ Code for Ag-
gregation, b nc++ Listing after
compilation

a b

4.1.3 Column Scan Operator

As a representative physical query operator, we evaluated
a column scan operation using a state-of-the-art approach
called BitWeaving/H [26] (operator according to Fig. 3d).
Fundamentally, BitWeaving assumes a fixed-length order
preserving compression scheme (like bit packing), so that
all compressed column codes of a column have the same bit
length [26]. Then, the bits of the column codes are aligned
in main memory in a way that enables the exploitation of
intra-cycle parallelism using ordinary processor words. An
example is shown in Fig. 4a, where eight 32-bit integer
values Ci are represented using 3-bit compressed column
codes. As illustrated in Fig. 4b, the column codes are con-
tiguously stored in processor word Hi in BitWeaving/H,
where the most significant bit of every code is used as a de-
limiter bit between adjacent column codes. In our example,
we use 8-bit processor words, so that two 3-bit column
codes fit into one processor word including one delimiter
bit per code. The delimiter bits are used later to store the
predicate evaluation result.

Now, the task of a column scan is to compare each col-
umn code with a constant C and to output a bit vector
indicating whether or not the corresponding code satisfies
the comparison condition. To efficiently perform such a col-
umn scan using the BitWeaving/H, Li et al. [26] proposed
an arithmetic framework to directly execute predicate eval-
uations on the compressed column codes. There are two
main advantages: (i) predicate evaluation is done without
decompression and (ii) multiple column codes are simulta-
neously processed within a single processor word using
full-word instructions (intra-cycle parallelism) [26]. The
supported predicate evaluations include equality, inequality,
and range checks. For each of these predicate evaluations,

a function consisting of arithmetical and logical operations
is defined [26].

Figure 4c highlights the equality check in an exemplary
way; the other predicate evaluations work in a similar way.
The input from Fig. 4b is tested against the condition Ci =
3. Then, the predicate evaluation steps are as follows:

Initially: All given column codes and the query constant
number 3 are converted into the BitWeaving/H
storage layout .H1;H2;H3;H4/ and Q1, respec-
tively.

Step 1: An Exclusive-OR operation between each word
.H1;H2;H3;H4/ and Q1 is performed.

Step 2: Masking1 operation (Addition) between the in-
termediate results of Step 1 and the M1 mask
register (where each bit of M1 is set to one, ex-
cept the delimiter bits) is performed.

Step 3: Masking2 operation (Exclusive-OR) between
the intermediate results of Step 2 and the M2

mask register (where only delimiter bits of M2

are set to one and the rest of all bits is set to
zero) is performed.

Step 4 (optional): Add delimiter bits to achieve the total
count (final result).

The output is a result bit vector, with one bit per input code
that indicates if the code matches the predicate on the col-
umn. In our example in Fig. 4, only the second column code
(C2) satisfies the predicate which is visible in the resulting
bit vector.

4.2 Experimental Setup andMethodology

All our selected operations were measured on two different
versions of the SX-Aurora TSUBASA co-processor (VEs)

Final edited form was published in "Datenbank-Spektrum". 19 (3), S. 183–197. ISSN: 1610-1995.
https://doi.org/10.1007/s13222-019-00323-w

7

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

a

d

g

b

e

h

c

f

i

Fig. 6 Single-thread sequential memory access evaluation: measured throughput of VH and VE as well as the speedup obtained by the VE of
different IO-operations executed using one thread

of a measurement of all specified tasks, every experiment
was repeated 10 times and the reported runtimes were aver-
aged. To avoid distortion by the actual time measurement,
all tasks were repeated multiple times and the accumulated
time was divided by the number of repetitions.

Thus, our focus was on evaluating the computing perfor-
mance of vectorized code alongside the memory bandwidth,
all tasks were implemented using vectorization. This was
done using intrinsics for the VH. To examine the best per-
formance of the different SIMD extensions offered by the
VH, all tasks were implemented and tested using either SSE
(128), AVX2 (256) or AVX512.

As shown in Fig. 5a, a combination of compiler spe-
cific preprocessor pragma directives, strip mining, and local
buffers were used for the VE to facilitate the auto-vector-

and on a recent Intel Skylake processor (VH). The general
specifications of these hardware systems are denoted in Ta-
ble 1. To compile the implemented operators for VH, a gcc
7.3.1 was used with the optimization flags -O3 -flto and dis-
abled auto-vectorization with -fno-tree-vectorize. For VE,
the proprietary NEC compiler nc++ 1.6.0 was used with
the optimization flag -O3 -fipa and -mvector, enabling the
auto-vectorization. A distinction between single-thread per-
formance and multi-thread performance was made by link-
ing the binary with and without OpenMP. To minimize the
runtime overhead through dynamic linking, all files were
linked statically.

The time measurements were performed using a C++
wall-time clock on the VH and inline assembly for retriev-
ing user clock cycles on the VE. As an experiment consists

Final edited form was published in "Datenbank-Spektrum". 19 (3), S. 183–197. ISSN: 1610-1995.
https://doi.org/10.1007/s13222-019-00323-w

8

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

a

d

b

e

c

f

Fig. 7 Single-thread BP compression evaluation: measured compression rate of BP on VH and VE for different outlier probabilities

ization feature of the NEC compiler. At first, the main loop
which iterates over the buffer as a whole is fragmented into
strips according to the size of a vector register (see Line 7).
To prevent the compiler from undoing the so called loop
strip-mining, an according pragma was used (see Line 6).
The most inner loop, containing the operator-specific in-
structions, is marked as a shortloop (see Line 8) giving the
compiler a hint that the loop should be completely trans-
formed into vector code. In addition, the specific instruc-
tions work on temporal buffers which are forcedly assigned
to a vector register using #pragma _NEC vreg(arrayName)
(see Line 4). First measurements showed that this specific
hint can significantly improve the performance of the al-
gorithm. OpenMP were introduced through parallel regions
using #pragma omp parallel (see Line 2) alongside with
loop parallelism using #pragma omp for depicted at Line 5.
When compiling the annotated C++-Code using the NEC
compiler, a diagnostic listing, indicating all applied opti-
mizations, can be generated (see Fig. 5b).

Within the VE, two different element sizes (32-, 64-bit)
were measured. Within the VH, different load and store
modes (stream, aligned, unaligned) were measured. To eval-
uate a possible influence of different memory structures on
the performance, every experiment was executed while pro-
cessing different sizes of data ranging from 16 KB to 8 GB.

4.3 Single-Thread Evaluation Results

In this section, we present our single-threaded comparative
evaluation results for our selected operations.

Memory Access Primitives: Fig. 6 shows the through-
put of plain memory access measured on the VH (a)-(c)
as well as on the VE (d)-(f). Using the VH, a maximum
throughput of around 100 GB/s was obtained when the pro-
cessed data fits completely into L1. In general, the perfor-
mance is decreasing when the buffer sizes exceed the cache
sizes. While read-intense tasks can utilize L2 without signif-
icant performance penalties, write-intense tasks suffer from
accessing higher levels of cache. Conversely, the throughput
measured on the VE improves with bigger buffer size ob-
taining an overall maximum throughput of around 300 GB/s
(processing 1 MB) for write-intense tasks (see Fig. 6e) and
250 GB/s (processing 2 MB) while executing read-intense
tasks (see Fig. 6f). Accessing the HBM2 leads to a marginal
decrease in measured throughput.

As shown in Fig. 6d, only the performance of a vec-
torized copy drops dramatically when the processed data
sizes exceed the boundaries of the existing last-level cache
(LLC). Since the tasks were executed in vectorized form
and a single vector register can hold up to 2 KB data, small
buffers prevent the VE from using the given vector regis-
ters in an efficient manner. In general, the experiments have
shown that processing 64-bit-wide elements lead to signif-
icantly higher throughputs compared to the results when

Final edited form was published in "Datenbank-Spektrum". 19 (3), S. 183–197. ISSN: 1610-1995.
https://doi.org/10.1007/s13222-019-00323-w

9

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

a

d

g

b

e

h

c

f

i

Fig. 8 Single-thread column scan evaluation: measured throughput of VH and VE as well as the speedup obtained by the VE of different BitWeav-
ing/H-operations executed using one thread

Bit Packing Compression: As mentioned in Sect. 3, one
possible opportunity of enhancing the processing speed of
query execution is the compression of the underlying data.
While performance can be considered as the main focus for
primitive operators, compression algorithms also takethe
compression rate into account. BP compresses a block with
a fixed size, determined by the used vector length. The
biggest bit width of any data within this block is used to en-
code every element. Consequently, the size of the resulting
compressed block depends on the biggest value. Taking this
into account, we generated different data sets with varying
data sizes as well as with varying probabilities of big val-
ues (outliers). The results shown for data set sizes of 8 GB
are depicted in Fig. 7. As shown in Fig. 7a–c, the number
of used bits per integer value (compression rate) increases

working on 32-bit-sized data. This results from the under-
utilization of available vector registers. The vector pipeline
processes its elements at a granularity of 64-bit.

If only 32-bit-wide elements were processed, the remain-
ing bits left unused. An improvement in terms of the mem-
ory access could not be achieved on the formally faster
TSUBASA 10B neither for vectorized write-intense nor for
read-intense tasks. Only the performance of the copy task
could benefit from the better memory bandwidth of the
10B. As shown in Fig. 6g–i, both VE outperform the VH
for write-intense tasks up to a factor of 15 on the 10C and
20 on the 10B, respectively. A maximum speedup of around
21 was obtained for read-intense tasks when the processed
data exceeds the cache and has to be loaded from DRAM
(VH) or HBM2 (VE), respectively.

Final edited form was published in "Datenbank-Spektrum". 19 (3), S. 183–197. ISSN: 1610-1995.
https://doi.org/10.1007/s13222-019-00323-w

10

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

a

d

g

b

e

h

c

f

i

Fig. 9 Multi-thread sequential memory access evaluation: measured throughput of different IO-operations executed on the VH using multiple
threads

when the outlier probability gets higher. When bigger vec-
tor registers are used, the overall block size increases. This
leads to a higher outlier proneness (see Fig. 7a–b). While
the vector host support a maximum vector length of 512-
bit, the VE processes data blocks of 16.384 elements. Con-
sequently, the compression rate of the vector engine gets
significantly higher for small outlier probabilities compared
with the VH. When it comes to processing speed, the VE
outperforms the VH by a factor of 8. While the VH reaches
a maximum throughput of around 9 GB/s, the VE achieves
up to 70 GB/s when processing 32-bit values, 30 GB/s when
processing 64-bit values, respectively. The reasonably low
throughput on the VE results from the fact, that the exist-
ing vector pipeline can not be kept busy. A single block
contains 16.384� 64-bit values. Thus, only 128 KB data is

processed per iteration. After every iteration, a scalar part
which is choosing the next bit width has to be executed.

Column Scan Operator: As mentioned in Sect. 4.1,
a recent column scan is executed using arithmetic opera-
tions. While a filter for equality needs two bitwise opera-
tors (XOR and NOT) and an addition, a filter for less than
requires only one bitwise operator (XOR) and an addition.
To scan for elements which are greater than the predicate
only one addition is executed. These characteristics can be
seen in Fig. 8a–c, where this column scan operator achieves
a maximum throughput in the range of 80 GB/s (Fig. 8a)
up to 150 GB/s (Fig. 8c) when the processed data fits en-
tirely into L1. Running onto the VE, the total amount of
executed operations does not affect the overall throughput
leading in most cases to a similar behavior as the write task.

Final edited form was published in "Datenbank-Spektrum". 19 (3), S. 183–197. ISSN: 1610-1995.
https://doi.org/10.1007/s13222-019-00323-w

11

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

a

d

g

b

e

h

c

f

i

Fig. 10 Multi-thread column scan evaluation: measured throughput of different Bitweaving-H operations executed on the VH and the VE using
multiple threads

theless, multithreading pays off on the VH when the pro-
cessed data exceeds the L2 cache (see Fig. 9a–c) obtaining
a maximum throughput of around 320 GB/s for copying,
400 GB/s for writing, and 700 GB/s for aggregating, re-
spectively. Taking this into account, using multiple threads
for plain memory access can speedup the processing up to
a factor of 7 compared to single-thread execution.

The same observation holds for the VE in terms of pro-
cessing small buffers up to 2 MB. While plain memory ac-
cess using a single thread reaches a maximum throughput
when processing 1 MB and more, multiple threads reach
a local maximum of around 4 MB buffer size for copying
and 8 MB buffer size for reading and writing, respectively.
For bigger buffers which still fit into the LLC, the through-
put decreases are probably causes by cache pollution, but

A maximum throughput of around 400 GB/s was reached
when the processed buffer exceeds the boundaries of the
LLC. As shown in Fig. 8g–i, both VE outperform the VH
up to a factor of 20 when the processed buffer is resident
in the caches. When the buffer exceeds the LLC, a speedup
of factor 33 could be achieved by the VE.

4.4 Multi-Thread Evaluation Results

Generally, the utilization of multiple threads introduces ad-
ditional complexity in terms of thread creation as well as
data partitioning.

Memory Access Primitives: As shown in Fig. 9, this
overhead leads to significant lower throughputs for both
the VH and the VE when processing small buffers. Never-

Final edited form was published in "Datenbank-Spektrum". 19 (3), S. 183–197. ISSN: 1610-1995.
https://doi.org/10.1007/s13222-019-00323-w

12

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

we are not able to measure it. As shown in Fig. 9d–f,
the measured throughput of the 10C remains stable with
a throughput around 300 GB/s for copying and 600 GB/s
to 700 GB/s for write- and read-intense tasks, respectively,
when the processed buffer size exceeds the boundaries of
the LLC. The 10B even outperforms the 10C when pro-
cessing HMB resident buffers through the higher maximum
bandwidth resulting in an overall maximum throughput of
around 800 GB/s for writing and nearly 1 TB/s for aggre-
gation (read-intense task). Using multiple threads, the VE
10B outperforms the VH up to a factor of 10 for copying
and aggregating, 13 for writing, respectively.

Column Scan Operator: Executing bit-parallel column
scan using multiple threads shows similar behavior as the
reading task by exceeding the reached throughput of single
thread execution by a factor of around 2. Interestingly, the
bit width has a significant influence when running on the
VE. As shown in Fig. 10d–f, processing 64-bit-wide ele-
ments led to higher throughputs in general. This impact of
processed word size decreases for processing big buffers
using less operations. Using multiple threads, the VE 10B
outperforms the VH up to a factor of 10 for the column
scan operator as depicted in Fig. 10g–i.

4.5 Summary

Our conducted comparative evaluation has shown that the
vector co-processor SX-Aurora TSUBASA can, on the one
hand, improve the performance of computational-bound al-
gorithms through the utilization of wide vector registers
alongside an efficient vector processing pipeline. On the
other hand, memory-bound algorithms can benefit from the
integrated high-bandwidth memory in combination with the
shared LLC which is accessible from the vector processing
units (VPU) directly. Thus, our MorphStore concepts are
well-designed for Intel systems with their SIMD extensions
and for the NEC vector engine SX-Aurora TSUBASA. Gen-
erally, we are able to fully utilize the maximum achievable
bandwidth on the VH as well as on the VE in a multi-
threaded environment with our approaches, however, the
VE outperforms the VH.

5 FutureWork

Our research results have shown that the NEC vector en-
gine is very beneficial for an efficient in-memory data
processing mainly due to the large vector registers as well
as the pipeline-based processing model, which perfectly
suits data-intensive operations and in-particular to our
MorphStore design concepts. Compared to standard SIMD
extensions of common processors, the NEC vector proces-
sor outperforms these extensions by an order of magnitude

in average. Thus, we are enthusiastic to continue and to
expand our research in this direction.

In particular, we did not present the execution times of
complete queries in our comparative evaluation, because
we are currently not able to keep all vector registers (vec-
tor pipelines) busy during the query evaluation over the
different physical query operators of a query leading to
a poor performance. For example, a filter operator disqual-
ifies vector elements depending on the predicate and these
disqualified elements cause underutilization in the subse-
quent operators leading to a sub-optimal performance (un-
derutilization of vector registers during query evaluation).
Unfortunately, such filter operators are usually executed
early to reduce the amount data being processed by later
operators. To tackle that challenge, several approaches are
possible. One approach would be, for example, adaptively
populating vectors during query processing with new data
elements as proposed in [21]. This requires the recognition
of underutilized vectors within query operators and an ef-
ficient approach to reload new data elements for refilling.
An alternative approach would be to move such operators
to the end of a query data flow in order to reduce the im-
pact of such operators. In our ongoing research activities,
we will examine the pros and cons of such (non-standard
query) optimizations to optimally reflect the characteristics
of the vector engine.

Another interesting research direction would be the ef-
ficient utilization of the heterogeneity of the SX-Aurora
TSUBASA. As we have already shown in [17], heteroge-
neous hardware systems provide a great opportunity for
database systems to increase the overall query performance
if the different processors can be utilized efficiently. To
achieve this goal, the main challenge is to place the right
work on the right processing unit. Thus, we want to investi-
gate the following research hypothesis: As of now, a CPU-
based system drives the execution of database queries and
offloads specific operations to accelerators like GPUs or
even FPGAs. In this context, we are eager to explore the
research hypothesis to let the NEC vector processor com-
pletely own the execution and offload parts of the query
evaluation to the CPU host, for example, to conduct com-
plicated logic using SIMD in combination with the many
threads of the CPU. Such a functional accelerator model
has never been explored before in the context of database
query processing.

In detail, we want to develop a novel concept to of-
fload non-existing, but desirable vector operations to the
SIMD functionality of the vector host. For example, Intel’s
latest SIMD extension includes a new instruction feature
set called Conflict Detection (CD), which allows the vec-
torization of loops with possible address conflicts. In [30]
and [34], we have shown that this CD functionality can be
efficiently used to speedup compression as well as hashing.

Final edited form was published in "Datenbank-Spektrum". 19 (3), S. 183–197. ISSN: 1610-1995.
https://doi.org/10.1007/s13222-019-00323-w

13

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

In particular, hashing is a core primitive for the grouping
and join operator. With this functionality offloading, we
will establish a generic, but database-centric approach to
export very specific functionalities to the vector host. Here,
the biggest challenge is to design and to implement an ef-
ficient approach that seamlessly integrates with pipeline-
based processing on the vector engine. Finally, this will
yield a deep understanding and experimental evaluation of
the interplay between vector engine and vector host.

6 Conclusion

In this paper, we introduced the recently released pure co-
processor vector engine NEC SX-Aurora TSUBASA by
describing the architecture and the unique properties. This
vector engine features a vector length of 16,384-bit with the
world’s highest bandwidth of up to 1.2 TB/s. Moreover, we
presented MorphStore, a new regular in-memory column
store database system where compression and vectorization
are first class citizens. Based on that design concepts, we
described selective comparative evaluation results showing
the benefits of this novel vector engine compared to reg-
ular SIMD extensions of modern hardware. As we have
presented, this vector engine outperforms regular SIMD ex-
tensions. Nevertheless, ourMorphStore design concepts are
well-suited for Intel systems as well as the vector engine in
a uniform way. Finally, we described our future work and
closed paper with a short summary.

Funding This work was funded by NEC Corporation within the
project Highly vectorized query processing on compressed columnar
data.

References

1. Abadi D, Boncz PA, Harizopoulos S, Idreos S, Madden S (2013)
The design and implementation of modern column-oriented database
systems. Found Trends Databases 5(3):197–280

2. Abadi DJ, Madden S, Ferreira M (2006) Integrating compression
and execution in column-oriented database systems. In: SIGMOD,
pp 671–682. ACM: New York

3. Binnig C, Hildenbrand S, Färber F (2009) Dictionary-based order-
preserving string compression for main memory column stores. In:
SIGMOD, pp 283–296. ACM: New York

4. Boncz PA, Kersten ML, Manegold S (2008) Breaking the memory
wall in monetdb. Commun ACM 51(12):77–85

5. Chen Z, Gehrke J, Korn F (2001) Query optimization in compressed
database systems. In: SIGMOD, pp 271–282. ACM: New York

6. Copeland GP, Khoshafian S (1985) A decomposition storage
model. In: SIGMOD, pp 268–279. ACM: New York

7. Damme P (2017) Query processing based on compressed interme-
diates. VLDB PhD Workshop. Munich, 28.08.2017

8. Damme P, Habich D, Hildebrandt J, Lehner W (2017) Lightweight
data compression algorithms: An experimental survey (experiments
and analyses). In: EDBT, pp 72–83. Venice, 21–24.03.2017

9. Damme P, Habich D, Lehner W (2015) Direct transformation tech-
niques for compressed data: General approach and application sce-
narios. In: ADBIS, pp 151–165. Springer

10. Damme P, Ungethüm A, Hildebrandt J, Habich D, Lehner W (2019)
From a comprehensive experimental survey to a cost-based selec-
tion strategy for lightweight integer compression algorithms. ACM
Trans Database Syst 44(3):9:1–9:46

11. Faerber F, Kemper A, Larson P, Levandoski JJ, Neumann T, Pavlo
A (2017) Main memory database systems. Found Trends Databases
8(1-2):1–130

12. Habich D, Damme P, Ungethüm A, Lehner W (2018) Make
larger vector register sizes new challenges?: Lessons learned from
the area of vectorized lightweight compression algorithms. In:
DBTest@SIGMOD, pp 8:1–8:6. ACM: New York

13. Habich D, Damme P, Ungethüm A, Pietrzyk J, Krause A, Hilde-
brandt J, Lehner W (2019) Morphstore – in-memory query process-
ing based on morphing compressed intermediates LIVE. In: SIG-
MOD, pp 1917–1920. ACM: New York

14. He J, Zhang S, He B (2014) In-cache query co-processing on cou-
pled CPU-GPU architectures. PVLDB 8(4):329–340

15. Hildebrandt J, Habich D, Damme P, Lehner W (2016) Compres-
sion-aware in-memory query processing: Vision, system design and
beyond. In: ADMS, pp 40–56. Springer

16. Idreos S, Groffen F, Nes N, Manegold S, Mullender KS, Kersten
ML (2012) Monetdb: two decades of research in column-oriented
database architectures. IEEE Data Eng Bull 35(1):40–45

17. Karnagel T, Habich D, Lehner W (2017) Adaptive work place-
ment for query processing on heterogeneous computing resources.
PVLDB 10(7):733–744

18. Karnagel T, Müller R, Lohman GM (2015) Optimizing gpu-accel-
erated group-by and aggregation. In: ADMS, pp 13–24. Springer

19. Kissinger T, Schlegel B, Habich D, Lehner W (2013) QPPT: query
processing on prefix trees. In: CIDR. Asilomar, 06.–09.01.2013

20. Komatsu K, Momose S, Isobe Y, Watanabe O, Musa A, Yokokawa
M, Aoyama T, Sato M, Kobayashi H (2018) Performance evalu-
ation of a vector supercomputer sx-aurora TSUBASA. In: SC, pp
54:1–54:12. IEEE/ACM: New York

21. Lang H, Kipf A, Passing L, Boncz PA, Neumann T, Kemper A
(2018) Make the most out of your SIMD investments: counter
control flow divergence in compiled query pipelines. In: Da-
MoN@SIGMOD, pp 5:1–5:8. ACM: New York

22. Lang H, Mühlbauer T, Funke F, Boncz PA, Neumann T, Kemper
A (2016) Data blocks: Hybrid OLTP and OLAP on compressed
storage using both vectorization and compilation. In: SIGMOD, pp
311–326. ACM: New York

23. Lee J et al (2014) Joins on encoded and partitioned data. PVLDB
7(13):1355–1366

24. Lemire D, Boytsov L (2015) Decoding billions of integers per sec-
ond through vectorization. Softw Pract Exper 45(1):1–29

25. Li F, Das S, Syamala M, Narasayya VR (2016) Accelerating re-
lational databases by leveraging remote memory and RDMA. In:
SIGMOD, pp 355–370. ACM: New York

26. Li Y, Patel JM (2013) Bitweaving: Fast scans for main memory data
processing. In: SIGMOD, pp 289–300. ACM: New York

27. Lisa NJ, Ungethüm A, Habich D, Lehner W, Nguyen TDA, Kumar
A (2018) Column scan acceleration in hybrid CPU-FPGA systems.
In: ADMS@VLDB, pp 22–33. Rio de Janeiro, 27.08.2018

28. Oukid I, Booss D, Lespinasse A, Lehner W, Willhalm T, Gomes G
(2017) Memory management techniques for large-scale persistent-
main-memory systems. PVLDB 10(11):1166–1177

29. Pietrzyk J, Habich D, Damme P, Lehner W (2019) First investi-
gations of the vector supercomputer sx-aurora TSUBASA as a co-
processor for database systems. In: BTWWorkshopband, pp 33–50.
GI: Bonn

Final edited form was published in "Datenbank-Spektrum". 19 (3), S. 183–197. ISSN: 1610-1995.
https://doi.org/10.1007/s13222-019-00323-w

14

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

30. Pietrzyk J, Ungethüm A, Habich D, Lehner W (2019) Fighting the
duplicates in hashing: conflict detection-aware vectorization of lin-
ear probing. In: BTW, pp 35–53. GI: Bonn

31. Pirk H, Moll O, Zaharia M, Madden S (2016) Voodoo – A vec-
tor algebra for portable database performance on modern hardware.
PVLDB 9(14):1707–1718

32. Polychroniou O, Raghavan A, Ross KA (2015) Rethinking SIMD
vectorization for in-memory databases. In: SIGMOD, pp 1493–1508.
ACM: New York

33. Stonebraker M, Abadi DJ, Batkin A, Chen X, Cherniack M, Fer-
reira M, Lau E, Lin A, Madden S, O’Neil EJ, O’Neil PE, Rasin A,
Tran N, Zdonik SB (2005) C-store: a column-oriented DBMS. In:
VLDB, pp 553–564. ACM: New York

34. Ungethüm A, Pietrzyk J, Damme P, Habich D, Lehner W (2018)
Conflict detection-based run-length encoding – AVX-512 CD in-
struction set in action. In: ICDE Workshops, pp 96–101. IEEE
Computer Society: Washington D.C.

35. Zukowski M, Héman S, Nes N, Boncz PA (2006) Super-scalar
RAM-CPU cache compression. In: ICDE, p 59. IEEE Computer
Society: Washington D.C.

36. Zukowski M, van de Wiel M, Boncz PA (2012) Vectorwise: a vec-
torized analytical DBMS. In: ICDE, pp 1349–1350. IEEE Com-
puter Society: Washington D.C.

Final edited form was published in "Datenbank-Spektrum". 19 (3), S. 183–197. ISSN: 1610-1995.
https://doi.org/10.1007/s13222-019-00323-w

15

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

	Evaluating the Vector Supercomputer SX-Aurora TSUBASA as a Co-Processor for In-Memory Database Systems
	Abstract
	Introduction
	Hardware System SX-Aurora TSUBASA
	Overall Architecture
	Vector Processing and Specific Systems
	Execution Model and Programming Approach

	MorphStore — In-Memory Database System
	Comparative Evaluation
	Selected Investigated Operations
	Memory Access Primitives
	Bit Packing Compression
	Column Scan Operator

	Experimental Setup and Methodology
	Single-Thread Evaluation Results
	Multi-Thread Evaluation Results
	Summary

	Future Work
	Conclusion
	References

	ADP5580.tmp
	Dieses Dokument ist eine Zweitveröffentlichung (Postprint) /
	Johannes Pietrzyk, Dirk Habich, Patrick Damme, Erich Focht, Wolfgang Lehner

