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Kurzzusammenfassung

Die Suche nach neuartigen Technologien wie spinbasierte Elektronik sowie nach geeigne-
ten Materialien fiir entsprechende Bauteile erfordert ein tiefgreifendes Verstandnis der
Wechselwirkungen des Elektronenspins und damit verbundener Materialeigenschaften.
Mit der zunehmenden Miniaturisierung von Bauteilen gewinnen in diesem Zusam-
menhang auch Oberflichenphdnomene zunehmend an Bedeutung. In dieser Arbeit
untersuchen wir die elektronischen und magnetischen Eigenschaften quasizweidimen-
sionaler elektronischer Zustédnde an metallischen Oberflichen unter dem Einfluss des
Rashba-Effekts und der Austauschwechselwirkung mit lokalisierten 4 f Momenten, die
bei tiefen Temperaturen magnetisch ordnen. Dabei liegt die Besonderheit der unter-
suchten Systeme darin, dass beide Wechselwirkungen von vergleichbarer Stéarke sind.
Dieser Fall ist in der Fachliteratur bislang unterreprasentiert. Unser Modellsystem
ist die (001)-Oberfldche intermetallischer LnlraSia Verbindungen mit ThCrySiy Struk-
tur, wobei Ln ein Lanthanoidenelement darstellt. Dabei fithren wir die langjahrige
und systematische Untersuchung von LnT5Sio Verbindungen mit 7" = Rh fort, in
denen die Rashba-artige Spin-Bahn-Kopplung ungefahr 100-mal schwécher als die
Austauschwechselwirkung ist.

Mit Hilfe von winkelaufgeloster Photoelektronenspektroskopie (ARPES) und Dichte-
funktionaltheorie (DFT) erkunden wir mit GdIrySis und EulrsSis zwei Vertreter der
LnT5Sio Familie, die beide durch die Insensibilitdt der 4f Schale gegeniiber dem
Kristallfeld ausgezeichnet sind. Zugleich haben sie grundsétzlich verschiedene Vol-
umeneigenschaften. GdlIraSis ist ein robuster Volumenantiferromagnet mit einer hohen
Ordnungstemperatur von 87 K, wohingegen EulrsSis eine gemischtvalente Verbindung
mit einem nicht-magnetischen Volumengrundzustand ist. Die mittlere Eu Valenz ist
stark temperaturabhéngig, sie &ndert sich kontinuierlich von einer nahezu zweiwertigen
Konfiguration bei Raumtemperatur zu einem beinahe dreiwertigen, nicht-magnetischen
Eu Zustand unterhalb von ~ 50 K.

Die Untersuchung der Oberflichenzustdnde in beiden Verbindungen zeigt, dass
die Stérke der Rashba-artigen Spin-Bahn-Kopplung gegeniiber den isoelektronischen
Rh Verbindungen erheblich zunimmt. Dies spiegelt sich in einer riesigen Aufspal-
tung der Oberflichenbénder wider und unterstreicht die Bedeutung der atomaren
Spin-Bahn-Kopplung in Elementen mit grofer Kernzahl Z fiir die Stérke des Rashba-
Effekts. Unsere DFT Rechnungen reproduzieren die gemessene Bandstruktur mit
hoher Genauigkeit und offenbaren dieselbe Dreifachwindung des Spins entlang der Kon-
turen konstanter Energie, die schon als kubischer Rashba-Effekt in den Rh Verbindun-
gen beobachtet wurde. Hierin zeigt sich das allgemeingiiltige Wesen der Oberfldchen-
zustdnde und deren universelle Eigenschaften in den betrachteten LnT5Sis Verbindun-
gen. Das Ordnen der 4 f Momente bei niedrigen Temperaturen fiihrt zu starken Verén-
derungen in der Spinstruktur und der Dispersion der Oberflichenbéander durch die
einsetzende Austauschwechselwirkung. In der Bandstruktur bilden sich starke Asym-
metrien, aus denen die Magnetisierungsachse bestimmt werden kann. Wir zeigen,
dass dies sogar dann noch moglich ist, wenn sich spektrale Strukturen iiberlagern, die
von unterschiedlichen magnetischen Doménen stammen. Besonders bemerkenswert
ist, dass entsprechende Asymmetrien auch in EulrsSis auftreten, trotz des nahezu



dreiwertigen und damit nicht-magnetischen Eu bei tiefen Temperaturen. Mit komple-
mentiren experimentellen Methoden wie Rontgenabsorption, linearem und zirkularem
Rontgendichroismus als auch durch die Beriicksichtigung von Beugungseffekten in der
Photoelektronenspektroskopie zeigen wir, dass Fu im Si—Ir-Si-Eu Oberflachenblock
beinahe zweiwertig und magnetisch aktiv ist. Die zugehorigen Eu Momente ordnen
unterhalb von 49 K ferromagnetisch. Im Fall der Eu-Terminierung stellen wir fest, dass
auch die 4 f Momente der zweiwertigen Eu-Ionen an der Oberflache unterhalb von 10 K
ferromagnetisch geordnet sind, und enthiillen damit ein weiteres Vorkommen zwei-
dimensionalen, oberflichenbezogenen Magnetismus in derselben, nichtmagnetischen
Volumenverbindung. Gleichzeitig spiegeln sich die gemischtvalenten Eigenschaften
von EulrySis deutlich in der elektronischen Volumenbandstruktur in einer kontinuier-
lichen Ausdehnung der Doughnut-Fermifldche mit steigender Temperatur wider. Dies
interpretieren wir als Bandfiillungseffekt.

Unsere Ergebnisse zeigen die hohe Einstellbarkeit des Elektronenspins durch die
Kombination von Spin-Bahn-Kopplung und struktureller Inversionsasymmetrie mit der
Austauschwechselwirkung, was die Grundlage fiir Anwendungen in der spinbasierten
Elektronik bildet. Die Enthiillung von kontrollierbarem, zweidimensionalem Mag-
netismus an der Oberfliche einer Verbindung mit instabiler 4 f Schale, die im Volumen
nicht-magnetisch ist, nominiert gemischtvalente 4 f Verbindungen, insbesondere mit
Eu und Sm, als vielversprechende Kandidaten fiir Grundlagenforschung und Anwen-
dungen. Unsere Studie zeigt zudem den Reichtum und die Vielseitigkeit von 4 f Syste-
men, deren Eigenschaften sich an der Oberfléche deutlich vom Volumen unterscheiden
kénnen.

Abstract

The search for novel technologies like spin-based electronics and suitable materials
for respective devices requires a profound understanding of fundamental interactions
regarding electron spin and related properties. In the same context, with ongoing
device miniaturisation, surface-related phenomena become increasingly important.
Here, we study the electronic and magnetic properties of quasi-2D electron states at
a metallic surface under the influence of the Rashba effect and exchange coupling to
localised 4 f moments that order magnetically at low temperatures. Particularly, in the
considered systems, both interactions are of similar strengths, a case which is rather
unexplored in the literature. Our model system is the (001) surface of intermetallic
LnlrySis compounds with ThCrsSiy structure, where Ln = lanthanide. With this
work, we continue our long-term systematic study of the LnT5Sis compounds with
T = Rh, where the Rashba-like spin-orbit coupling is about a hundred times weaker
than the exchange interaction.

Using ARPES and DFT we explore with GdIrsSis and EulrsSis two representatives
of the LnlrySis family, which are both characterised by the insensitivity of the 4 f shell
to the crystal electric field. On the other hand, they have fundamentally different bulk
properties. GdlrsSis is a robust bulk antiferromagnet with a high ordering temperature
of 87K, whereas EulrySis is a mixed-valent material with a non-magnetic ground
state in the bulk. The mean Eu valency is strongly temperature dependent, changing



continuously from a nearly divalent magnetic configuration at room temperature to a
nearly trivalent non-magnetic Eu state below ~ 50 K.

Studying the surface states in both compounds we find that the magnitude of
the Rashba-like spin-orbit interaction increases tremendously in comparison to the
isoelectronic Rh compounds. This is reflected in a huge splitting of the surface
state bands and emphasizes the importance of atomic spin-orbit coupling in high Z
elements for the strength of the Rashba effect. Employing DFT, which reproduces the
measured band structure very accurately, we find the same exotic triple winding of
the electron spin along the isoenergy contours of the surface state bands as reported
in terms of a cubic Rashba effect for the Rh compounds. This proves the generic
nature of the surface states and their universal properties in the considered LnT5Siy
compounds. With the ordering of the 4 f moments at low temperatures, spin structure
and surface band dispersion undergo significant changes induced by the exchange
interaction. Pronounced asymmetries emerge in the band dispersion, which allow
for the determination of the magnetisation axis. We demonstrate that this is even
possible if spectral structures originating from different magnetic domains overlap in
the spectra. Remarkably, we find respective asymmetries in EulrySis, too, despite
the almost trivalent, and thus non-magnetic Fu state at low temperatures. With
complementary experimental techniques like x-ray absorption, x-ray linear and circular
dichroism as well as by taking photoelectron diffraction into account, we demonstrate
that in the surface Si-Ir-Si-Eu four-layer block Eu is nearly divalent and magnetically
active. The associated Eu moments order ferromagnetically below 49 K. In the case
of Eu termination, we find that the 4 f moments of the divalent Eu ions at the surface
order ferromagnetically below 10K, too, and unveil thus another occurrence of 2D
surface-related magnetism in the same non-magnetic bulk compound. Simultaneously,
the mixed-valent properties of EulrySia and the strong temperature dependence of
the mean Eu valency are clearly reflected in the electronic structure of the bulk in a
smooth expansion of the Doughnut Fermi surface sheet with increasing temperature,
which is interpreted as a band-filling effect.

Our results show the high tunability of the electron spin by combining spin-orbit
coupling and structural inversion asymmetry with the exchange interaction, which is
at the heart of spintronics applications. The disclosure of controllable 2D magnetism
at the surface of a non-magnetic bulk compound, which is enabled by an instability
in the 4f shell, nominates valence fluctuating 4f compounds, especially with Eu
and Sm, to be promising candidates for fundamental studies and applications. Our
study moreover demonstrates the richness and versatility of 4 f physics that may differ
significantly at the surface and in the bulk.
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1. Introduction

In traditional electronic devices founded on Si-based semiconductor technology, the
processing and storage of information rely on the charge of the electron, which is easily
controllable via electric fields. With progressive digitalisation and the continuously
growing amount of data, the requirements for the size and performance of electronic
devices increase steadily [1]. In 1965 Intel co-founder Moore announced that in regular
intervals of about two years the size of computer chips will halve without loss of
performance [2]. Nowadays, integrated circuits are already produced at the nanoscale
with the size of single components like transistors approaching atomic dimensions.
At some point, however, fundamental physical laws will impose a threshold to the
ongoing device miniaturisation [3, 4|, which stimulates the search for new concepts
in information technology and brought another intrinsic property of the electron into
focus — the spin. Having all characteristics of a quantised angular momentum the
electron spin is associated with an intrinsic spin magnetic moment which can be
manipulated by a magnetic field.

Exploiting the spin in addition to (or rather than) the charge of the electron is the
idea behind spintronics which promise novel devices with reduced power consumption
and increasing memory and processing capabilities in comparison to traditional elec-
tronics [5]. With the proposal of the SFET — a spin field effect transistor by Datta
and Das in 1990 [6, 7], spintronics started to be seriously considered to become a key
element in next-generation information technology and further spin-based concepts
have been proposed. Nowadays, intense research is conducted to explore new materi-
als and fundamental mechanisms that allow for full spin control [5, 8] including the
generation of spin-polarised currents, spin transport and spin transfer torque [9].

A popular model system for respective studies is the two-dimensional electron
gas (2DEG). In real systems, quasi 2DEGs exist in 2D materials or can form at
surfaces and interfaces of three-dimensional systems in terms of surface, interface or
quantum-well states [10]. In particular, the naturally broken inversion symmetry at
surfaces/interfaces in combination with the spin-orbit interaction lead to the spin
polarisation and splitting of the quasi-2D states without inducing a net magnetisation;
this is known as the Rashba effect [11, 12|. Phenomenologically, the spin splitting of
the 2D states in momentum space can be described by an effective magnetic field, the
Rashba field, which is theoretically controllable by tuning the electric field emerging
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1. Introduction

from the surface/interface potential gradient. It is indeed the electric-field control
of the spin that makes the Rashba effect so attractive for device application [13].
Particularly, the ability to tune the Rashba field gives control over the spin precession
in the SFET, while spin-orbit torque can be used to change the magnetisation direction
in storage media [13, 14, 15, 16, 17, 18].

In his original work which dates back to 1959 Rashba conducted a theoretical study
on the symmetry of bulk bands in the non-centrosymmetric wurtzite structure type in
which many semiconductors crystallise. He predicted a spin splitting of s states near
the T" point (k = 0), which increases from zero at I' linearly and isotropically with
crystal momentum k [11, 19]. In the early days, experimental studies of the Rashba
effect were thus conducted on bulk materials [19]. In 1984 Rashba and Bychkov
showed that the Rashba model is applicable to spin splitting in quasi-2D systems, too,
considering the particular case of semiconductor hetero junctions [12, 20]. In 1997 it
was shown that the strength of the Rashba spin-orbit interaction is indeed tunable by
the application of an external gate voltage [21|. The study of the Rashba effect spilt
over to metal surfaces, where in 1996 it was reported for the first time in the context
of an ARPES study of the Au(111) surface [22, 23|. In the following, the Rashba effect
has been observed for the surface state of Ag(111) [24] and many other metals with a
large atomic number Z. Huge splittings were found for Bi(111) |25, 26| and Ir(111)
[27] being two orders of magnitude larger than at semiconductor interfaces. The study
of metal surfaces revealed the important role of both the atomic spin-orbit coupling as
well as the surface potential gradient for the strength of the Rashba effect [19, 22]. For
the Ag(111) surface it was shown that the Rashba splitting can be notably increased
by alloying the surface with Bi [28]. Meanwhile, 2D states at semiconductor quantum
wells and surfaces/interfaces of transition-metal oxides came into the focus of research,
too. More exotic realisations of the Rashba effect have been discovered, for instance
in heavy-hole states a cubic Rashba effect has been reported that is characterised by
a rotation of the pseudospin of the heavy hole that is three times faster than in a
classical Rashba system [29, 30].

While the Rashba effect results from broken translational symmetry, the simultane-
ous breaking of time-reversal symmetry opens another channel for the manipulation
of the Rashba-induced spin structure and splitting. This can be realised, for example,
via an exchange coupling of the 2DEG spins to collectively ordered magnetic moments.
This was first shown in 2005 in the work of Krupin et al. who studied 2DEGs at the
Gd(0001) surface and in the Gd(0001)/GdO interface and found that asymmetries
evolve in the surface band dispersion if the electrons are subject to both the Rashba
effect and exchange interaction with the ferromagnetically ordered Gd 4 f moments,
simultaneously [31]. In these and related lanthanide-based systems studied by Krupin
et al., the Rashba spin-orbit interaction is much weaker than the exchange interaction
and therefore the observed asymmetry is small [32]. Carbone et al. conducted similar
studies on AgoBi/Ag(111) thin films, where the Rashba and exchange interactions are
of comparable strength. Their joint action creates asymmetric band gaps which form
due to a k and spin-dependent hybridisation between the electron-like surface and
hole-like interlayer states and generates spin-polarised currents [33].

In this work, we consider the surface of 4f intermetallics investigating the Rashba
spin-orbit interaction and its combination with strong and tunable 2D ferromagnetism.

18



The basis for this study was laid with the discovery of surface states in the Si—-Rh—
Si-Ln four-layer block at the surface of LnRhsSis compounds [34, 35, 36, 37|, where
Ln = lanthanide. In particular, one of the surface states shows the cubic Rashba
effect with a triple winding of the electron spin along its isoenergy contours. With
the magnetic ordering of the 4f moments the spin and band structure experience
significant changes [37]. A high tunability in addition to the generic nature of the
2DEGs in the family of LnT5Sis compounds, with 7" being one of the isoelectronic
elements Co, Rh or Ir, make the silicide surface an ideal model system for systematic
studies of the Rashba effect and its combination with exchange interaction. The
strength of the Rashba effect can be tuned via the spin-orbit coupling through the
atomic number Z of the transition metal element. The exchange interaction can be
controlled by temperature and the magnetisation axis of the ordered 4f moments.
Here, we investigate the respective surface states for 7' = Ir which has with Z =77 a
much larger atomic number than isoelectronic Rh (Z = 45). Since the surface states
are to a large extent built from transition metal d states, the spin-orbit coupling
and the Rashba effect in LnlrsSis compounds are much stronger than in LnRhsSis,
reaching the same order of magnitude as the exchange interaction [38, 39|. For our
study, we consider first the simplest system, the robust antiferromagnet GdlrsSis with
its half-filled 4 f shell. This configuration is of interest for two reasons. Firstly, the
spherical 4 f shell can be regarded to be insensitive to the crystal electric field (CEF).
Secondly, this insensitivity can be accompanied by the tunability of the magnetisation
axis under the preservation of the antiferromagnetic (AFM) order with short laser
pulses, as it was shown for GdRhySiy [40]. This makes respective systems attractive
for AFM spintronics applications [41, 42, 43, 44].

The LnT5Sis compounds belong to the large group of 4f intermetallics which crys-
tallise in the famous ThCrsSis structure [45] and attract great interest due to their
rich variety in exotic properties including Kondo physics [46], quantum criticality [47],
unconventional superconductivity [48|, exotic magnetic phases and mixed-valent phe-
nomena [49], which are related to the interaction of localised 4 f with itinerant valence
or conduction electrons. On the one hand, the 4 f electrons are localised close to the
atomic core and efficiently screened from the surroundings by the completely filled
5s and 5p shells. On the other hand, the binding energy of the 4f states is small
and hybridisation with valence and conduction band states is possible. Of particular
interest for fundamental studies are compounds in which the 4 f shell becomes unsta-
ble [50]. This is the case when the energy needed to promote an electron from the
localised 4f shell into a bonding valence state is similar to the energy that can be
gained if this electron participates in chemical bonding. This situation is typically met
for the lanthanide elements where the electronic configuration is close to an empty,
half-filled or completely filled 4f shell [51|. Due to the proximity of the 4 f"(5d6s)™
and 4" 1(5d6s)™ "1 configurations with n, m being non-negative integers, respective
systems can be tuned from one toward the other configuration, for example, through
temperature, external or chemical pressure as well as exposure to a magnetic field,
which often leads to a mixed valence state characterised by a non-integer mean valency.
In particular Fu systems are known for mixed-valent states where the mean valency
deviates strongly from the purely di- or trivalent state [52, 53|. For divalent EuRhySis
a first-order phase transition is accompanied by a valence transition from the divalent
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1. Introduction

into a mixed-valent state at pressures of about 1 GPa, while the divalent state can be
recovered by the application of an external magnetic field |54, 55]. Moreover, valence
crossovers have been found in different Eu compounds including EuPdsSis [56] and
EulrySis [57]. In these systems, the mean valency changes smoothly with temperature
from an almost divalent to an almost trivalent Eu state in a broad temperature range.
In comparison to intermediate valent Ce or Yb systems, mixed-valent behaviour in
Eu-based compounds is much less explored [53, 58|. Therefore, the second part of this
thesis is dedicated to mixed-valent EulrsSis where the value of the mean Eu valency
changes smoothly from an almost divalent to a nearly trivalent state between room
temperature and ~ 50K [59]. Our study aims at the electronic properties in the
near-surface region concerning the mixed-valent state and the modifications of the
electronic structure with temperature.

For our study of the electronic structure of the (001) surface in GdlreSia and
EulrsSis we employed surface-sensitive ARPES with photon energies in the ultraviolet
and modelled the experimental results utilizing band structure calculations within the
framework of DFT. To investigate the mixed-valent properties of Eu we tuned the
photon energy towards the 4d — 4 f absorption threshold, which leads to the resonant
enhancement of the photoemission intensity from the 4 f shell. We moreover conducted
x-ray magnetic linear and circular dichroism experiments that are valuable techniques
to detect magnetic order with the possibility to distinguish between bulk and surface.
Consideration of photoelectron diffraction in our resonant photoemission experiments
allowed us to access single Eu layers separately for studying their individual properties.

The most important findings of this work can be summarised as follows. First of
all, we find that the replacement of Rh by Ir in the LnT5Sis compounds significantly
increases the Rashba effect, which is reflected in a huge splitting of the surfaces state
bands in the paramagnetic phase that we probed with ARPES for both GdlIrsSis
and EulrsSis. The exotic triple-winding spin structure persists in the Ir compound
emphasising the generic character of the surface states and the close relation to the
crystal structure. Studying the magnetic phase of GdlrsSis we could identify the yet
unknown magnetisation axis to coincide with the [110] direction. Since the Rashba-
like spin-orbit coupling and the exchange interaction between the itinerant surface
state electrons and the ordered 4 f moments are of similar magnitude, we find strong
asymmetries in the surface band dispersion of the magnetic phase which are most
pronounced when the strongly k|| dependent Rashba and the exchange field which
is unidirectional in k| space, are collinear. For mixed-valent EulrsSiz we found a
ferromagnetically ordered Eu monolayer under the Si-terminated surface and thus
quasi-2D magnetism at the surface of a material that is non-magnetic in the bulk,
which, up to our knowledge is the first observation of this kind for a valence-fluctuating
Eu system. The magnetic order is enabled by a deviation of the valency from its mean
value in the bulk towards a divalent configuration. The magnetic ordering was detected
by exploiting the sensitivity of the surface state to the magnetic ordering of the 4 f
moments in the subsurface layer which is reflected in the evolution of the pronounced
asymmetry in the band dispersion in comparison to the paramagnetic phase. For the
Eu-terminated surface where due to the surface-core-level shift Eu is stable divalent,
we observe the magnetic ordering of the respective 4 f moments at low temperatures.
With this, we find a second source of 2D ferromagnetism at the surface of this actually
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non-magnetic Eu system. In contrast, bulk-like features in the electronic structure
change their size with temperature, thus reflecting the change of the intermediate
valency.

This thesis is structured as follows. At first, an introduction into the properties of
the lanthanides in their elemental form as well as in metals or compounds is given
with a special focus on the role of the incompletely filled 4 f shell. This is followed by
a short review of the previous studies on the surface electronic structure of LnRhsySiy
compounds which form the starting point for this work. Then, we continue withthe
fundamentals that are relevant for understanding the results presented here. This
also comprises the experimental methods that were applied, ARPES, x-ray linear
and circular dichroism in x-ray absorption spectroscopy and photoelectron diffraction.
For the theoretical modelling, we used DFT and its implementation in the FPLO
code which both are introduced. An overview is given of the underlying physics,
focussing on band theory with the fundamental Bloch theorem in periodic solids
and the implications for the electronic structure of crystals in the bulk and at the
surface. Before we start with the results, the methods are shortly presented. In the two
following chapters that form the heart of this thesis, the results for the antiferromagnet
GdlIrsSis and the mixed-valent EulreSis are presented and discussed.
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2. Preliminary Studies

2.1. Short introduction to lanthanides and 4f physics

The elements with the atomic number Z ranging from 57 (lanthanum) to 71 (lutetium)
are known as the lanthanides!' and are distinguished by the increasing filling of the
4f shell along the series. The electronic configuration of the lanthanide atoms is
[Xe]4f"5d™6s% with n € {0,1,...,14} and m € {0,1}. Depending on the number m
of 5d electrons the free ions have thus an either divalent (m = 0) or trivalent (m = 1)
oxidation state. In Tab. 2.1 the number of 4 f and 5d electrons is given for each element
of the lanthanide series. Most of the free ions are divalent except La, Ce, Gd and Lu,

Tab. 2.1.: Number of electrons in the 4f and 5d shells for the lanthanide elements in the
ground state of the free atom.

[La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu
af"lo 1 3 4 5 6 7 7 9 10 11 12 13 14 14
5¢"| 1 1 0 0o 0 0O 0O 1 0 0 O 0O 0 0 1

which form trivalent ions due to their 5d electron. In solids, however, the lanthanides
are typically in a trivalent oxidation state. By promoting an electron from the 4 f shell
into a valence state cohesive energy can be gained when this electron participates in
chemical bonding. The cohesive energy is defined as

N
Ecoh _ Ecrystal o Z Ezatom’ (2.1)

2

where Bt ig the total energy of the crystal and the sum is over the number N of
isolated atoms from which the crystal is built. Exceptions are Eu and Yb which retain
their atomic divalent character also in the pure metals as well as in many compounds.

In many cases, the great importance of lanthanides and their compounds derives
from their magnetic properties. Due to the incomplete filling of the 4 f shell, most

'In spoken language and the literature the term rare earth is often used rather than lanthanide. The
rare earths include also the non-4f elements scandium and yttrium.
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Tab. 2.2.: Theoretical values of angular momentum L, spin momentum S and total angular
momentum J for the 4f shell of the trivalent lanthanides according to Hund’s rules in units
of ii. The resulting Landé factor g; (dimensionless) and magnetic moment gy in multiples of
the Bohr magneton pp are given following Eqns. 2.2 and 2.3.

Ce3t Pr3t Nd3t Pm3t Sm3t Eudt Gd3t Tbh3t+ Dy3+ Ho3t Er3t Tm3t Yb3t

4 1 2 3 4 5 6 7 8 9 10 11 12 13
L 3 ) 6 6 5 3 0 3 5 6 6 5 3

s |1/2 1 32 2 5/2 3 7/2 3 5/2 2 32 1 1/2

J|5/2 4 9/2 4 52 0 7/2 6 152 8 15/2 6 7/2

gs | 6/7 4/5 8/11 3/5 2/1 - 2 3/2 4/3 5/4 6/5 7/6 8/7

iy | 2.54 3.58 3.62 2.68 0.85 0 794 9.72 10.65 10.6 9.58 7.56 4.54

of the lanthanide elements possess a large magnetic moment which is important for
technical applications. The probably most popular examples are neodymium- (NdFeB)
and samarium-based magnets (SmCo), which are the strongest available permanent
magnets produced on a large industrial scale [60, 61, 62]. The electronic configuration
of the 4f shell is determined by the exchange interaction between the electron spins,
the Coulomb interactions of the electron charge and the spin-orbit coupling (SOC)
for which the Russell-Saunders scheme has proven to give an appropriate description.
Altogether, these interactions lead to Hund’s rules for the ground state:

1. Spin S = ) my largest possible with ms = :I:%
2. Angular momentum L = ) my largest possible with m; € {0, £1, £2, +3}

3. Total angular momentum J is given by
(a) J =|L — S| for elements with up to a half-filled 4 f shell

(b) J =|L+ S| for elements with more than seven 4f electrons

The total angular momentum J is associated with the magnetic moment p; given by
wy=4qyj- J<J+1> (2.2)

with J(J+1) = L(L+1)+S(5+1)

2J(J +1)

being the Landé g factor. In Tab. 2.2 the values of L, S, J, g; and uy for the free
trivalent lanthanide ions are listed. Due to localisation and effective screening, the
magnetic properties of the 4f shell are widely preserved in the solid state. On the
other hand, the localised character leads to a negligibly small overlap of the 4 f wave
functions localised on neighbouring atoms, which prevents a direct exchange coupling
of the magnetic moments. Nonetheless, the 4 f metals and compounds typically have
a magnetically ordered ground state. The long-range magnetic order of the localised
4f moments, which typically persists up to finite temperatures, is established via
a conduction-electron mediated indirect exchange coupling that has been explained

g7 =1+

(2.3)
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on the basis of a theory developed by the physicists Ruderman, Kittel, Kasuya and
Yosida and is hence known as the RKKY interaction. In combination with the
spin-orbit interaction (SOI) which leads to a coupling of the electron spin to the
CEF different kinds of long-range magnetic order accompanied by strong magneto-
crystalline anisotropy are observed in magnetically active lanthanide systems, including
ferromagnetic, antiferromagnetic, ferrimagnetic spiral and helical structures. In that
sense, the 85, /2 configuration of the 4 f shell with L = 0 and the pure spin total angular
moment J = S = 7/2 characteristic of Gd, is of great importance in systematic studies
of exchange interactions, which for the corresponding spherical symmetry of the half-
filled 4 f shell, are not influenced by the CEF. This moreover allows, for example, for
systematic studies of how magnetism is influenced by band-filling effects [63].

The magnetic 85, /2 configuration of the 4f shell is found in Eu metal and many
Eu compounds, too, but due to the different number of 5d electrons, divalent Eu and
trivalent Gd compounds have in general slightly different properties. For example,
the magnetic ordering temperature is typically lower for Eu than for Gd compounds
which is related to the nature of the RKKY interaction. Since for Eu the di- and
trivalent configurations are close in energy, in some compounds Eu is in the trivalent
4f5(5d6s)3 state. For the half-filled 4f shell with a maximal number of parallel spins,
the polarisation energy (also referred to as Hund’s rule correlation energy) is very
large. It is therefore energetically quite expensive to promote an electron from the 4 f
shell into a bd state. For a particular system it depends on the energy that can be
gained if an additional electron participates in chemical bonding which Eu valency is
realised. Characteristic of the divalent configuration is a large radius of the Eu?" ion
which leads to larger lattice parameters for divalent Eu compounds in comparison to
materials with a trivalent Eu state. Moreover, in the case of Eu?™ L = S = 3 and thus
the total angular momentum vanishes (J = 0). This implies that the Eu®" ion does
not carry a magnetic moment in its ground state and limits the magnetic properties
of Eu?" to the possible occurrence of Van-Vleck paramagnetism.

Mixed Valency Due to the energetic proximity of the di- and trivalent configurations
of Eu, already small changes in parameters like external or chemical pressure, temper-
ature, doping level or external magnetic field are sufficient to switch a system from a
divalent to a trivalent configuration or vice versa, in many cases even a non-integer
(mixed) valency is realised. In general, there are two fundamentally different types
of mixed valency: In inhomogeneous mixed-valence systems the non-integer valency
results from inequivalent crystallographic sites in the lattice at which the lanthanide
ions have a different integer valence due to a different local environment. In ho-
mogeneous mixed-valent systems, in contrast, the lanthanide ions sit at equivalent
lattice sites. Here, a further distinction is sometimes made between intermediate-
valent and valence-fluctuating systems which have rather different phase diagrams
[58]. The former term is typically used for Ce or Yb-based systems, where the ¢ — f
hybridisation between itinerant conduction-band (c) and localised 4 f states leads to
the non-integer valency. For Fu systems, the non-integral valence is often described
in a picture of thermal valence fluctuations between the two integral-valence states
with a back-and-forth transfer of a charge between the 4f shell and the conduction
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band. In this view, the 4f"(5d6s)™ and the 4f"~!(5d6s)™"! configurations of the
lanthanide element must be nearly degenerate in energy and located at or in the
immediate vicinity to the Fermi level EFr to ensure that the transition between the
two configurations occurs without energy cost. However, in such a two-level model
Eu should have an integer valence of ¥ = 3 in the ground state, which is not observed
for mixed-valent Eu systems, indicating that hybridisation plays an important role
as in intermediate valence systems. In this sense, it seems more appropriate to think
of mixed valency in terms of a quantum-mechanical mixing of the 4 f™(5d6s)™ and
4f7=1(5d6s)™ "1 configurations. A review of particular models and valence fluctuating
lanthanide compounds can be found, for example, in Ref. [51].

Mixed-valent behaviour is predominantly observed in compounds with Ce, Sm, Eu,
Tm and Yb, i.e. at the beginning, in the end and in the middle of the lanthanide series.
Except for Ce?, a valence transition occurs usually at the surface of the respective
pure metals, i.e. the lanthanide ions at the metal-vacuum boundary are in a purely
divalent valence state even for a trivalent configuration in the bulk. At the surface
the coordination is reduced which destabilises the trivalent configuration because the
gain in cohesive energy becomes smaller than the energy that is needed to excite an
electron from a 4f into a 5d state. Surface-valence transitions occur not only in
the pure metals but are equally observed for lanthanide-terminated surfaces of many
compounds. Another phenomenon that is related to the reduced coordination at the
surface, too, is the surface-core-level shift. It consists in a shift of all localised states
including the 4 fs to higher binding energies. In monocrystalline Eu films, for example,
the surface 4f level is separated by 480 meV from the respective core level [64].

Phase diagram of intermetallic Eu compounds The chemical composition of com-
pounds plays an important role for the valence state of Eu. Fig. 2.1(a) schematically
shows the valency of Eu in ternary EuT5Sis intermetallics for different transition-metal
elements T'. Light blue, yellow and light green background colours mark the transition
metals for which Eu is in a trivalent, divalent or mixed-valent state, respectively. The
general trend shows a mixed-valent state for the diagonal formed by Cu, Pd and Ir;
for the transition metals to the left Eu is in a trivalent state, and for those on the
right the divalent configuration is stabilised. This is consistent with an increase in the
Fermi level for the transition metal elements from left to right in a row, or from top
to bottom in a column of the periodic table. An exception forms divalent EuRhsSis,
which has been explained by strong hybridisation of Eu 4f with Rh 4d states [59].
Later studies of the alloy series Eu(Pd;_;Au,)2Sis [65], Eu(Pty_,;Ni,)2Sis [66] and
Eu(Rh;_Ir;)2Sis [67] demonstrated how the Eu valency changes under incremental
substitution of one transition metal with another. Based on these studies and re-
lated pressure experiments, the generic phase diagram, Fig. 2.1(b), has been obtained
that shows how the bulk Eu valency can be tuned from a divalent to a trivalent or
mixed-valent state through the application of external pressure p or increasing the
concentration x of the substituting transition-metal element. Note, that increasing
pressure and alloying enhance the f — d hybridisation in Eu. For small hybridisation,

2In the case of Ce systems, the reduced coordination at the surface leads to a decrease of the 4 f
hybridisation known as the a-to-v transition.
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Fig. 2.1.: Valency in Eu intermetallics. (a) Trivalent (light blue), divalent (yellow) and mixed-
valent (light green) Eu in EuT,Sis; compounds. (b) Phase diagram of Eu compounds. T, p
and x are temperature, external pressure and substituent concentration in alloys, respectively.

Reproduced from Refs. [59] and [58].

the valency is stably divalent with a temperature-induced phase transition from the
AFM ground state to a paramagnetic (PM) state. With increasing hybridisation, the
Néel temperature increases very slightly until the critical value is reached at which the
magnetic transition is superseded by a first-order phase transition between an almost
trivalent ground state and a divalent Fu state that is restored when the transition
temperature 7}, is exceeded. The phase diagram shows, that T, increases with increas-
ing hybridisation up to a critical endpoint at which the first-order phase transition
transforms into a valence crossover indicated by the light green colour.

Photoemission from the Eu-4f shell and final-state multiplets Photoemission (PE)
probes the 4f shell after the removal of an electron from the 4 f™ ground state, which
leaves the 4 f shell in one of the possible excited 4 f"~! final states. The multiplet is the
entirety of the reachable 4 "1 final states, describing the energy separation and the
intensity ratios of the single lines. In PE, the 2+ and 3+ configurations of Eu can thus
be easily identified by their respective 4% and 4f° final-state multiplets which reflect
the highly localised, atomic-like character of the 4 f electrons. In Fig. 2.2(a) exemplary
4f PE spectra are shown to illustrate the Eu?" and Eu3" final-state multiplets for
different EuT5Sis compounds where Eu is in a purely divalent, purely trivalent or
valence-fluctuating state. The angle-integrated ARPES spectra belong to EuCosSis
representing a compound with trivalent Eu, EuRhsSis where Eu is purely divalent as
well as EuPd,Sis and EulreSis which are systems with a fluctuating Eu valence. The
spectra were acquired at different synchrotron radiation facilities using hv = 145eV
(144 eV for EuPdsSis) at which the emission from Eu3" is resonantly enhanced. Areas
under the curves that are highlighted in purple and green colours mark the PE intensity
associated with the 4 % and 4 f° final-state multiplets, respectively. For purely trivalent
EuCos8Sis, we find the peaked structure of the PE signal due to the Eu?* multiplet
between 6.5eV and 10.5e¢V binding energy. In purely divalent EuRhsSis the Eu?"
signal is located close to the Fermi level. The peak at about 2eV is a signature of Eu
atoms at the surface for which the 4 f level experiences a surface-core-level shift. Due
to the short mean free path of the photoelectrons of about 5 A at these photon energies,
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Fig. 2.2.: Eu 4f multiplets in photoemission. (a) Angle-integrated ARPES spectra from the
Si-terminated surfaces of Eu7,Sis compounds with 7' = Co, Pd, Ir, Rh in which different Eu
valencies are realised, acquired in the Beutler-Fano resonance of Eu" with hy = 145eV,
except for the Pd compound, which was measured with 144 eV. PE signals of the 4f° and 4 f¢
final-state multiplets of Eu?" and Eu?" are highlighted in purple and green, respectively. The
appearance of a small peak at a binding energy of ~ 2eV in some of the spectra is a signature
of Eu atoms at the surface, particularly for EuRhySis. The high intensity in the EuCosSis
spectrum at low binding energies originates from the valence band (VB) and possibly from
divalent Eu at the surface. Calculated final-state multiplets in direct photoemission for (b)
Eu?" and (c) Eu?" using an intermediate coupling scheme, adapted from Gerken [68].

for a pure Eu termination the PE intensity exceeds the bulk signal by an order of
magnitude, see for example Fig. 6.11. Note, that due to the modified coordination in
comparison to the bulk, at the surface Eu is usually in a divalent state. This is even
the case for trivalent compounds like EuCoqSiy (69, 70, 71, 72, 73]. In the spectra
of the valence-fluctuating compounds EuPd,Sis and EulrySis, we observe both the
Eu?t and Eu?" multiplets. Their energy separation is a measure of the Coulomb
repulsion energy between the two configurations. Since a fluctuation of the valency is
energetically only possible, if both the Eu?t and Eu®" initial states have an energy
at or very close to the Fermi level, the 4 f6 final state of Eu?", which coincides with
the initial state of Eu®", i.e. with the ground state, is found close to the Fermi level.
In the spectra of the divalent and mixed-valent Eu compounds the valence band (VB)
states near Ep are almost completely outshone by the resonantly enhanced signal of
Eu?*. This effect is amplified by the fact that the transition metal 3d and 4d states
which contribute significantly to the valence band, have a Cooper minimum near the
employed photon energies, i.e. their excitation is strongly suppressed.

For all lanthanides, the final-state multiplets have been calculated in an intermediate-
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coupling scheme® by Gerken [68]. In Fig. 2.2 the results of Gerken for trivalent and
divalent Eu are reproduced in (b) and (c), respectively. In the calculated Eu?*t
spectrum shown in (c), we find the multiplet to consist of seven lines, each of which
corresponds to one possible 4 f9 final state of the 4f shell. The single lines are labelled
in LS coupling nomenclature according to the main contributor in the intermediate
coupling scheme using term symbols with F; for L = 3 and J € {0,1,2,3,4,5,6}
with the total spin S = 3. In the Eu®" multiplet the six dominating lines can be
regarded to form three pairs of Hy (L =5), Fy (L =3) and P; (L = 1) states. Due
to the larger number of possible final states with different angular momenta L, a
splitting of the Eu" multiplet over a wide energy range of about 4eV is observed
in the spectra. Note that a similar splitting of the Eu?" multiplet is missing in the
calculated spectra because in the direct PE process spin-flip transitions are forbidden
by the dipole selection rules. In resonant photoemission spin flips are in principle
possible [74], however, in the spectra given above there is no evidence for a notable
contribution of the latter.

2.2. LnT,Si, compounds

The LnT5Siy ternary silicides, where Ln = lanthanide and T' = Co, Rh, Ir belong
to the large family of the 122 intermetallics. Some of the LnT5Sio compounds are
polymorphs, i.e. they can crystallise in both the primitive CaBesGes structure with
space group P4/nmm and the body-centred ThCrsSis structure with space group
[4/mmm, depending on the crystal growth parameters. Here, we consider only the
ThCrsSis type, which is characterised by the stacking of mono-atomic layers in the
sequence Ln-Si-T-Si along the ¢ axis of the tetragonal crystal.* The corresponding
unit cell is shown in Fig. 2.3(a) with Ln, T and Si atoms coloured in purple, orange
and green, respectively. The occupied Wyckoff positions are 2a for Ln which sits at (0,
0, 0), 4d for T at (0, 0.5, 0.25) and 4e for Si at (0, 0, zgj) with zg; being the only free
parameter. Thanks to the layered crystal structure and the tighter bonding within the
Si—T—Si block in comparison to the bonds between Si and Ln atoms, the crystals can
be easily cleaved perpendicular to the ¢ axis. The resulting (001) surface is terminated
either by Si or Ln, which form atomically flat areas that are large enough to be
studied with ARPES. The different terminations of the (001) surface are sketched in
Fig. 2.3(b), while in Fig. 2.3(c) the Brillouin zones (BZs) of the bulk and the (001)
surfaces are shown in black and red colours, respectively. The three-dimensional bulk
BZ of the ThCraSig-structure type with space group I4/mmm has the shape of a
truncated octahedron, while the 2D surface Brillouin zone (SBZ) forms a square. T,
M and X are the high-symmetry points of the SBZ that are located at the centre, the
corners and the middle of the sides, respectively.

3Intermediate coupling is an improvement over LS coupling in the case of strong SOI because the
mixing of states with the same total angular momentum J but different quantum numbers LS is
considered, too.

4In the CaBesGes structure the stacking sequence is Ln-Si-T-Si-Ln-T-Si-T, i.e. the Ln layers are
separated in alternating order by Si—7—Si and T—Si—T trilayer blocks, or in comparison to the
ThCrSiz structure, T' and Si are interchanged in every second trilayer block.
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(b) (c)

14/mmm
Ln termination

Si termination

Fig. 2.3.: Crystal structure of LnT5Siz compounds. (a) Tetragonal (primitive and conventional)
unit cell of the bulk. The tight bonding within the Si—T-Si trilayer block is indicated by
lines connecting the atoms. (b) Schematic view on the two possible terminations of the
(001) surface by Si or Ln. Surface states are localised in the surface Si-T—Si-Ln block of
the Si-terminated surface. (c) Bulk and surface Brillouin zones with selected high-symmetry
points shown in black and red colours, respectively.

(a) Si-termination (b) Yb-termination
Label Type Allocation
D bulk state bulk
S’ surface resonance Ln surface
S’ surface state Si surface

Fig. 2.4.: Electronic structure of the (001) surface of LnT5Si; compounds. ARPES-derived
Fermi maps and corresponding DFT modelling are shown in the upper and lower row, re-
spectively for (a) Si, and (b) Ln terminations. The white-dashed square marks the SBZ.
Around the M point the star-shaped Fermi contours formed by the surface state S’ are seen
for Si termination only. Characteristic of the Ln termination are a gap around M and the
surface-resonant state S”’. The most prominent bulk features are the Doughnut D which is
projected onto the SBZ. In the calculated maps, §’, 8" and D are highlighted in green, cyan
and red, respectively. From [75].

Band structure Surface-sensitive ARPES studies on the (001) surface in the Rh
series of the LnTsSis compounds unveiled several features in the electronic structure
that are characteristic of the bulk, and Si or Ln terminations and closely related
to the crystal structure. In Fig. 2.4 an overview of the most prominent features is
given. Around T the projection of the so-called “Doughnut” Fermi-surface sheet onto
the SBZ is seen for both terminations. In the calculated spectra this bulk feature is
highlighted in red and labelled D. The size of the Doughnut varies with the valency
of the Ln element. For divalent lanthanides, the Doughnut is large. In this case, its
necks pointing in the direction of the X point of the SBZ are open and interconnected.
In the case of the small Doughnut in trivalent systems, the necks are closed and
there is no overlap between the Doughnuts of neighbouring BZs. This difference in
size is caused by D’s hole-like character. With the additional valence electron in the
trivalent lanthanides the band filling increases which makes the Doughnut shrink in
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comparison to the divalent configuration. Another possibility for a large Doughnut
is an admixture of 4f degrees of freedom in Kondo system like YbRhsSis. Although
Ybh is nearly trivalent in this system, hybridisation of 4 f states with itinerant valence
band states leads to the formation of a large Doughnut |75, 76]. Note, that in a recent
Compton-scattering experiment it was demonstrated that the Doughnut collapses to
its small version after the Kondo breakdown when the 4f degrees of freedom are
removed from the Fermi surface [77].

Surface states Of different nature is the Fermi contour that has the shape of a
four-cornered star, disperses symmetrically around the M point of the SBZ and is
seen for Si termination only. In the calculated spectrum it is labelled 8" and coloured
in green. Comparison between (a) and (b) shows that this Fermi contour is located
within a large gap of projected bulk bands. This spectral feature represents a Shockley
surface state that is confined to the surface Si-Rh—Si—Ln four-layer block and highly
spin polarised due to the Rashba effect. In the example of YbRhsSis given here, the
Rashba splitting of the Fermi contour is too small to be resolved with ARPES.

Rashba effect The Rashba effect emerges as a combination of structure-inversion
asymmetry and SOC. The coupling of the spin to the orbital motion of the electron
is a relativistic effect. In an atom, electrons with spin § move in the rest frame of the
nucleus in the electric field of the latter. In the rest frame of the electron, however,
the nucleus orbits around the electron inducing a magnetic field to which the electron
spin S couples. In its property as angular momentum, each spin is linked up with a
magnetic moment g. Since the energy of a magnetic moment in a magnetic field B is
given by —u B, spin-up and spin-down electrons have different energies in the magnetic
field of the nucleus. In solids, this can lead to a Zeeman-like splitting of electron bands,
provided that there are no symmetry constraints imposed by the crystal structure. To
demonstrate the symmetry constraints for the spin-orbit splitting of Bloch states we
consider a spin-orbit Hamiltonian of the form

HESE o (VV x k) - o (2.4)

with V being the crystal potential, k the crystal momentum and o the vector of Pauli
matrices which account for the spin (S = 2¢). The Hamiltonian in Eqn. 2.4 is invariant
under time reversal, i.e. the replacements k — —k and ¢ — —o leave the spin-
orbit Hamiltonian unaltered. If the potential V' is moreover invariant under structure
inversion, i.e. V(r) = V(—r), a spin-orbit splitting of crystal states |k, o) is prohibited
and the solutions to Eqn. 2.4 will be degenerate in energy, see Fig. 2.5. In non-
centrosymmetric systems, however, a spin-orbit splitting of bands can occur due to the
absence of inversion symmetry. Surfaces and interfaces always lack inversion symmetry,
which leads to the spin-orbit splitting of the quasi-2D surface and interface states by
the effective electric potential gradient along the normal of the surface/interface. This
is known as the Rashba effect and reflected by a k| dependent lifting of spin degenerate
states. The strength of the Rashba splitting depends on the electric field gradient and
scales with the strength of the atomic SOC which is related to the atomic number Z.
Therefore, the Rashba effect can be increased either by choosing high Z elements or
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Fig. 2.5.: Transformation behaviour of position r, crystal momentum k and spin o, € (1, })
under time reversal and structure inversion and the implications for the eigenvalues € of the
Hamiltonian if it has time reversal or structure inversion symmetry. If both symmetries apply,
the states are Kramer’s degenerate.

by creating a large potential gradient, which can in certain systems be tuned via an
external voltage. In its classical form, the Rashba effect induces an orthogonal spin-
momentum locking which consists in a helical spin structure along the constant-energy
contours (CECs) as schematically illustrated in Fig. 2.6 for the nearly-free-electron
paraboloid. Note, that spin rotates in opposite direction along the inner and outer
CEGCs, according to €4 = e_g |, see Fig. 2.5.

For the surface state S’ in the LnRhsSis compounds, however, the bands deviate
from the parabolic dispersion of the free electron gas, in particular due to the four-
fold warping that creates the star-like shape of the CECs. Interestingly, also the spin
structure has been found to deviate significantly from that of a classical Rashba system.
Namely, the electron spin rotates three times faster on a closed loop along the CECs
of surface state’s CECs introduced in Fig. 2.4(a) or in other words, the spin completes
three full rotations by 27. This exotic spin structure which was first predicted on
the basis of DFT calculations for GdRhsSis by Monika Giittler, has been confirmed
experimentally through spin-resolved ARPES experiments on ThRhySis [37].

Exchange interaction Another intriguing property of the surface state S’ is the
exchange coupling of the itinerant spins to magnetically ordered 4 f moments in the
first (subsurface) Ln layer below the Si-terminated surface. Most of the LnT5Sis
compounds order antiferromagnetically at low temperatures due to the AFM stacking
of ferromagnetically ordered Ln layers along the tetragonal ¢ axis. The ordering of
the 4f moments leads to a huge splitting of the surface state bands. The exchange
interaction, which is the fundamental interaction that leads to collective magnetic
order is actually a consequence of the indistinguishability of electrons and their non-
integer spin. The many-body wave function describing a system of N electrons must be
anti-symmetric under exchange, i.e. if two electrons in the system are interchanged the
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ky 2ko

Fig. 2.6.: Classical Rashba effect in a 2DEG with the typical splitting of the nearly-free-electron
paraboloid into two bands. Blue and red parabolas indicate the opposite spin polarisation
of the Rashba-split bands. Small orange arrows illustrate the characteristic orthogonal spin-
momentum locking with a single helical winding of the spin along the CECs with opposite
chirality on the inner and outer CECs. Image from Ref. [78].

spin-statistic theorem imposes that the wave function must change sign. The exchange
symmetry leads to an additional term in the expectation value of the Hamiltonian
called the exchange energy, which gains in importance when the temperature lowers
and the system approaches its ground state. In models, the exchange symmetry is
taken into account in terms of an effective exchange interaction of spins interacting
with each other or a mean field.

With its large exchange splitting the surface state S’ in the LnRhsSis compounds
can be regarded as a detector for the magnetic ordering in the subsurface layer, whereby
the splitting contains information about the orientation of the magnetisation, too. In
EuRhsSis and GdRhsSis the 4 f moments align ferromagnetically within the ab plane.
For the heavy lanthanides with a non-spherical symmetry of the 4 f shell, however, the
CEF tilts the 4f moments out of the ab plane. In the E(k)) curves, this is reflected in
different behaviour of the surface-state bands near the M point. This is illustrated in
Fig. 2.7 where ARPES-derived band maps along X-M-X are shown for HoRhySis (a, b)
and EuRhsSis (¢,d) in the PM and AFM phases. In the PM phase the bands of the
surface state &', which is labelled S, in Fig. 2.7, are degenerate in the M point. This
is best seen in the second-derivatives of the ARPES data which are shown as insets
in (a) and (c) for HoRhySis and EuRhsSia, respectively. In the AFM phases, a large
splitting of the surface-state bands in the M point is seen in (c) for HoRhySiy due to
the out-of-plane orientation of the 4 f moments. In contrast, when the moments order
perpendicular to the ¢ axis as it is the case in EuRhySis, the bands remain two-fold
degenerate in the M point, Fig. 2.7. Note, that the M point is a time-reversal invariant
momentum (TRIM) of the SBZ, i.e. forming the corner of the SBZ it is symmetric
under time reversal. This symmetry, however, is broken when the 4 f moments point
out of the ab plane.

Since the wave function is confined to the topmost four atomic layers, the surface
state is sensitive to magnetic order in the subsurface Ln layer only. Therefore, we use
the Curie temperature T¢ in the discussion of the magnetic properties of the surface
rather than the AFM Néel temperature Ty. For EuRhsSis and GdRhySiy different
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Binding Energy (eV)

Binding Energy (eV)

Fig. 2.7.: Shockley state at the Si-terminated surface of (a,c) HoRhySiy and (b,d) EuRhySiy
in the PM (a,b) and AFM (c,d) phases forming the bands S and Sy with electron- and
hole-like dispersion, respectively. Insets show the details of the surface state bands after
curvature/first /second derivative treatment. In the insets showing the bulk unit cell the
orientation of the magnetic moments is indicated by arrows. From [79].

temperature scales were found for the magnetic ordering in the bulk and at the surface.
In EuRhySip Ty = 24.5K, while for the subsurface T = 41K is about 40 % higher
[79]. In GdRhsSis the opposite case has been observed with Tc = 90K being lower
than in the bulk where Ty = 106 K [35]. This large difference has been discussed as
follows. Firstly, the additional exchange interaction with the Shockley state increases
the ordering temperature at the surface. Secondly, the reduced coordination at the
surface lowers Tc. For EuRhsSip, which is a quasi-2D magnet with a small AFM
interlayer coupling, the first mechanism prevails, while the impact of the missing
neighbouring Eu layer at the surface is comparably small. In GdRhySis, in turn, the
AFM interlayer coupling is very strong and thus essential in stabilising the magnetic
order. Therefore the existence of the surface constitutes a strong perturbation which
leads to a significant reduction of the ordering temperature that cannot be compensated
by the energy gained due to the exchange coupling with the surface state [35].

In the ARPES spectra in Fig. 2.7, the hole-like bands of a second surface state
labelled S, are seen below the bands of Se that have been in the focus of our discussion
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Fig. 2.8.: Tight-binding model describing the Shockley surface states Se and Sy at the Si-
terminated surface of LnT5Sis compounds considering different interactions. (a) Without SOI,
(b) with SOI and structure inversion symmetry, (c¢) with SOI and Rashba effect (structure
inversion asymmetry), (d) with SOI, Rashba effect and exchange interaction along z, and (e)
with SOI, Rashba effect and effective exchange field in y direction. From Ref. [80].
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so far. Note the different binding energies of the surface states in HoRhoSis and
EuRhsSis in Fig. 2.7. For the former, the binding energy of the upper bands is about
0.5eV in the M point, whereas it is only about 0.1eV for EuRhySis. The difference
is related to the additional 5d electron in trivalent lanthanides like Ho and Gd which
shifts the Fermi level upward.

Modelling DFT proved to reproduce the measured surface-state bands very accu-
rately but it cannot be used to disentangle the Rashba-like SOC, which is a consequence
of the inversion-symmetry breaking at the surface, from the intrinsic SOC. Separation
of both effects requires effective models. In the following, we have a short look at the
instructive results obtained from a tight-binding model developed by Marc Héppner
in which the intrinsic SOC, the surface gradient and the exchange interaction acting
on the LnRhySiy surface states can be switched on and off individually. In Fig. 2.8(a),
we start with two parabolic bands that represent the surface states S and Sy, in
absence of any interactions. In this case, the bands are doubly-degenerate in spin
and of electron-like (Se) and hole-like (Sy,) characters, respectively. At the M point
Se and Sy, are degenerate. In (b), we switch on the intrinsic SOI which results in the
opening of a large gap in the vicinity of the M point that separates the two bands by
about 100meV and lifts the fourfold degeneracy in the M point. Simultaneously, the
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two-fold degeneracy of the bands is retained due to the structure inversion symmetry.
Note the hole-like deformation of Se band near the M point which reflects the mixing
of the Se and Sy, states by the intrinsic SOI. In the next step, Fig. 2.8(c), we simulate
the surface and break the inversion symmetry by adding a potential gradient to our
model. This lifts the two-fold degeneracy of the Se and Sy, bands and induces the
familiar Rashba-like spin-structure, represented in red and blue colours for S, > 0
and S, < 0, respectively. S, is the expectation value of the y component of the
electron spin. At the M point, which is a TRIM, Se and S}, remain two-fold degenerate.
Note, that the tight-binding model does not correctly reproduce the DFT-derived spin
structure in the region close to the M point for which DFT predicts identical sign of
the spin expectation value on the split bands of both Se and Sy,. This effect is due to a
hidden spin polarisation [81] that cannot be described within this simple tight-binding
model.’ In the next step, Fig. 2.8(d), we consider in addition to the intrinsic SOI and
the Rashba effect, an effective exchange field along the z direction. It can be seen
that this induces a spin component along the z axis. S, > 0 and S, < 0 are plotted
in yellow and light-blue colours, respectively. Although the spins are rotated out of
the ab plane S, # 0 and its sign remains the same as in (c). We moreover observe
that the splitting of the bands increases and the degeneracy in the M point is lifted.
If the field is applied within the plane, Fig. 2.8(e), the degeneracy in the M point
is not lifted, while the overall k-dependent magnitude of the spin polarisation and
splitting increase significantly. The details of the tight-binding model can be found in
the supplementary file to Ref. [36].

Within a rather simple tight-binding model dispersion, splitting and the spin struc-
ture (for k| that are not in the immediate vicinity of the M point) of the surface state
can be correctly reproduced by tuning respective model parameters. However, some
limitations are found in the incorrect description of the spin structure close to M.
Note that meanwhile a six-band k - p model has been developed, which is capable of
precisely reproducing dispersion and spin structure of the surface states in the Si-T—
Si-Ln surface block [39]. Since the k - p Hamiltonian is built from the DFT-derived
wave functions of the surface state, it intrinsically contains all the symmetries in the
system. In particular, it correctly describes the spin structure in the vicinity of M
and shows that the single surface states interact with each other. Note further, that
a detailed DFT study on the formation and composition of the surface states in the
considered LnT5Sis compounds has been conducted by Alexandra Vyazovskaya et al.
using the example of GdRhsSis [82].

5The hidden spin polarisation is a consequence of intrinsic SOC and the existence of two crystal-
lographic inequivalent T sites in the ab plane of the crystal. Considered separately, each site is
almost completely spin-polarised with opposite signs. Considered as an entity, they cancel each
other almost completely.
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3.1. Band structure

Macroscopic properties of materials like their conductivity, electrical resistivity, specific
heat, optical absorption or magnetism can be understood on an atomic and subatomic
scale studying the properties of the electrons. Band theory is a microscopic model
that has proven very successful in describing the electronic structure of periodic solids.

In quantum mechanics a physical system is completely determined by its wave
function |¥), which, in a non-relativistic framework!, can be obtained by solving the
stationary Schrodinger equation H |U) = E |¥). The eigenvalue E of the Hamiltonian
H is then the total energy of the system under study. Here, the physical systems of
interest are single crystals, which are built of positively charged nuclei (subscript n)
periodically arranged in a crystal lattice, and negatively charged electrons (subscript
e). All particles comprising the many-body systems are mutually interacting with
each other through the Coulomb interaction. The corresponding Hamiltonian

H = TnJFTe TLVnnTL‘/eeJF‘/en (31)
—— —_—

kinetic energy = Coulomb interaction

comprises the electron-electron (Ve.), nucleus-nucleus (V4,) and electron-nucleus (Vo)
interactions as well as the kinetic energies T;, and T of nuclei and electrons, respectively.
The explicit expressions for the kinetic and potential energies of an N-particle system
are

r=3:(-5n)

2m0

and o
N N
1 ZiZ;
V=- —_—
2 Z Z dmeg|ri — ;]
1=1 j#i
with mg, Z; and r; being rest mass, charge and position of the i-th particle, V; is the
nabla operator acting on particle ¢ and €y the dielectric constant in vacuum. Plugging

'In fully relativistic quantum mechanics the Dirac equation takes the Schrédinger equation’s place.
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these expressions into Eqn. 3.1 gives

e o
a 2 MIn
IZlM M (3.2)
1 1 Z[ZJ ZIe
+4ﬂeo[;§2” ;%:QIT —7“3\ Zzlm—ml

where upper and lower case indices are used for nuclei and electrons, respectively, with
my, and me being the corresponding rest masses. The sums are over the numbers M and
N of nuclei and electrons, respectively, and N = N + M. The huge number of particles
in the order of 10?3 in a crystal requires reasonable and powerful approximations,
otherwise the problem given in Eqn. 3.2 is infeasible. A first step is to neglect the
motion of the nuclei and to treat their positions as bare parameters. This is known
as the Born-Oppenheimer or adiabatic approximation and justified by the fact, that
the rest mass of a proton exceeds that of an electron by a factor of 1836. Since the
inverse mass enters the expression for the kinetic energy in Eqn. 3.2, this term is
negligibly small in comparison to T,. The Born-Oppenheimer approximation thus
allows us to decouple the motion of electrons and nuclei and to reformulate Eqn. 3.2
in terms of a pure electronic problem expressed by the Hamiltonian (in atomic units:
e=h=m,=4meg = 1)

N

i=1 j#i

where the exclusively nuclear contributions are absorbed into the additive constant Ej;.
Eqn. 3.3 thus describes the motion of the electrons in a fixed arrangement of nuclei.
The wave function (r ={ri,r2,...,rn}||V) = ¥(r{,r2,...,rN) solving Eqn. 3.3 is,
in accordance with the Pauli exclusion principle, the anti-symmetrised product of
single-particle orbitals.

Independent-particle approximations A further simplification of Eqn. 3.3 is achieved
within independent-particle approximations which can be divided into two subclasses
considering non-interacting (Hartree-like) or interacting (Hartree-Fock) electrons. In
either case, electron correlations are included only in terms of the Pauli exclusion
principle? and the resulting demand for the asymmetry of the wave function under the
exchange of two electrons. In non-interacting particle approximations, a single-particle
Schrédinger equation is solved for an effective potential Vg,

2
Ho, = (” + veﬁ> bu = e, (34)
2m
where ¢, is a single-particle wave function (orbital) and v represents all quantum
numbers to describe a pure state. From the solutions ¢, the anti-symmetrised N-
electron product function can be built using a Slater determinant. Depending on the
choice of Vg electron-electron interactions may be included implicitly.

2All electrons must have a different set of quantum numbers.
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3.2. Bulk states, surface states and surface resonances

Periodic lattice and Bloch waves For a periodic crystal the effective potential is
given by the crystal potential Verys With Vorys(r + T') = Verys(r). The Hamiltonian
p?
H= om + Verys (3.5)
is invariant under translations by a lattice vector T' = nia; + nsas + ngas with the n;
being integers and the a; basis vectors of the crystal lattice. Bloch’s theorem states
that the eigenstates of an electron that moves in a periodic potential have the form

Pk (r) = ug(r)e™”, (3.6)

where ¢t*

" is a plane wave and uy is a function with the periodicity of the lattice, i.e.
ug(r) = ug(r +T). The crystal momentum k is a quantum number that characterises
an electron state in the crystal with energy E(k). Note, that for a periodic potential
hk is not identical to the electron momentum p = —ihV as in the case of a free electron.
Due to the periodicity of the reciprocal lattice k is not unique and g g = @k, where
G is a vector of the reciprocal lattice. This implies that all energy solutions to the
Schrodinger equation can be considered in the first BZ of the reciprocal lattice by
replacing k with k' = k + G, such that k' lies within the first BZ. In this case, one
speaks of the reduced zone scheme. After the back-folding of E(k) branches from
higher BZs into the first BZ, many energy eigenvalues are assigned to each k. A
positive integer n, the band index, is therefore introduced to distinguish states with
the same crystal momentum but different energies. The dispersion relation E,(k), i.e.
the relation between the single-particle energy F,, of an electron in the crystal and its
wave vector k, is what we call an electron band and the entirety of all bands the band
structure.

3.2. Bulk states, surface states and surface resonances

For a crystal that is periodic in three dimensions of space k must be real, because
otherwise the wave function cannot be normalised. For complex k with k = kq + i ko
where (kl, kg) eR

exp(i k1 + i ko] ) = exp(i kir) exp(—kor), (3.7)

where for ko > 0 the wave function is exponentially damped for r — —oo but diverges
for r — oco. A corresponding argumentation holds for ko < 0. It follows that solutions
of Eqn. 3.3 with complex k are forbidden. This leads to energy gaps in the band
structure of the crystal. Note, that the periodic potential is, of course, an idealisation.
First of all, because real crystals are always finite in size. Nonetheless, Bloch’s theorem
remains valid since inside the bulk of a crystal, far away from the edges the assumption
of a periodic potential is justified. This does not hold anymore close to a surface (or
interface), which breaks the translational symmetry along the direction of the surface
normal. In the simplest approach for the description of a crystal with a surface the
potential can be assumed to be periodic parallel to the surface, say in the (z, y) plane,
and semi-infinite for the z direction as sketched in Fig. 3.1. Then, Bloch’s theorem is
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(a)

bulk state

surface state
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Fig. 3.1.: Periodic crystal with a surface. (a) Simple model considering the potential V along
the direction of the surface normal to change at the surface from cosine-like to constant with
V = Wy in vacuum. (b-d) Real part of wave functions that are possible solutions to the
Schrodinger equation for the potential in (a) in the case of (b) a bulk state, (c) a surface state
and (d) a surface-resonant state.

still valid in the plane parallel to the surface and the wave function
W = o (z)ug, e FII (3.8)

separates into the solution Wy(z) of Eqn. 3.5 for the one-dimensional problem ac-
counting for the surface and the solution for an infinite crystal in two dimensions,
ukHe_ik”r” underlying Bloch’s theorem. kj = (kz, ky). To calculate Wo(z) Eqn. 3.5
must be solved for a potential of the type schematically sketched in Fig. 3.1 which is
periodic in the bulk and constant in vacuum chosen here as

V(z) = Vo + WpO(—2) + Vg cos(Gz)O(z) (3.9)

with the step function ©(z) defined as

@(Z):{o <0

1 z>0

with the surface being at z = 0. In real crystals, of course, the potential changes
smoothly at the surface but for a qualitative treatment, the assumption of a jump at
the crystal-vacuum boundary suffices. The solutions take the form

Bu_ —ik,z C ik,z <0
qx(z)—{ k€ T ST (3.10)

n A ek=2 z>0
i.e. inside the crystal (z < 0) the ansatz for the wave function is of the Bloch type,

while it must decay exponentially into the vacuum (z > 0). The coefficients A, B and
C are determined by application of the matching conditions for the two solutions and
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their first derivatives at z = 0 giving the three types of solutions sketched in Fig. 3.1.
Those are (a) bulk Bloch waves, (b) surface states which are localised at the surface
and damp exponentially in the bulk, and (c) surface resonances that penetrate deep
into the bulk but have an enhanced amplitude at the surface. The energy is given by

(3.11)

where Ej is the energy eigenvalue of the surface state ¥ and E that of ¥ with the
effective mass m*. In difference to the bulk where only real k are allowed, the surface
states must have a complex wave number k, to guarantee the exponential damping in
the bulk. This can be seen from Eqn. 3.10. For z < 0 and k, = k,1 + ik,2 the wave
functions reads

(Bu_kze_ik““zl + Cukzeik“p')ew‘w'.

If for the imaginary part k.o = 0 one gets a bulk Bloch wave as shown in Fig. 3.1(a).
A surface state on the contrary requires a complex k, with k,o < 0 to obtain the
exponential damping. The complex wave number of a surface state implies that the
energy of the latter lies in a forbidden gap of the bulk band structure. The electronic
band structure of the bulk and the surface can be measured with angle-resolved
photoelectron spectroscopy.

3.3. The principles of photoelectron spectroscopy

Photoelectron or photoemission spectroscopy (PES) is based on the photoelectric effect,
which was discovered in 1887 by Hertz and Hallwachs and interpreted by Einstein in
1905. It is nowadays widely used to study the electronic and magnetic structure of
matter. In photoemission an electron gets released from a bound state in an atom,
molecule or solid into the vacuum after the absorption of a photon with energy hv.
Measured is the intensity distribution, i.e. the number of photoexcited electrons with
kinetic energy FEp;, upon irradiating a sample with monochromatic light. Additional
information can be gained by considering other experimental parameters like the light
polarisation, the angle of incidence and the direction of the released photoelectrons,
too. We start with the formal description of the PE process considering a system of
N electrons in some initial state (index ) that is described by the many-body wave
function [WY). With the absorption of an incident photon with energy hv which leads
to the liberation of one of the electrons, the system undergoes a transition into an
excited final state |\I/ifv ) (index f). In the excitation process the conservation laws for
energy F and momentum £k,

EY —EY = hv (3.12)

)

kY — kY = kn, (3.13)

must be fulfilled. Here, kp, is the photon momentum, while k" is the momentum of
the N-electron state. The transition probability w;_,; between the initial and final
state this given by Fermi’s Golden rule

2
Wing = | (O Hi | 92) P 6(EY — BN — hw), (3.14)
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where the d-function ensures the energy conservation within the N particle system.
The interaction Hamiltonian

mt A P (315)

accounts for the coupling of the electromagnetic field of the photon described by the
vector potential A, to the charge of an electron with momentum p. In the derivation
of Eqn. 3.15 certain assumptions are made: (1) A? is negligible with respect to the
linear terms in A; (2) A is constant over atomic dimensions and thus VA = 0 (dipole
approximation), which holds in the ultraviolet; (3) For a scalar potential ® the gauge
is chosen ® = 0. The expression for the interaction Hamiltonian in Eqn. 3.15 is known
as dipole approximation. Note, that Hi, does not explicitly depend on the spin, since
the electromagnetic field interacts only with the charge of the electron. Now we will
see how the transition probabilities w;_, s can be related to the intensity distribution of
photoelectrons with kinetic energy Fii,. In the calculation of the w;_,, it is convenient
to assume that the removal of the electron happens instantaneously, i.e. without any
interactions between the ejected photoelectron and the remaining (N — 1)-electron
system. This is called the sudden approzimation and allows for factorisation of the
final-state wave function into a product function of a single-electron wave function \gp'ﬁ
that describes a photoelectron with momentum k, and the wave function [N 1) that
can be chosen to be an eigenstate of the excited (N — 1) electron system. Because of
the fermionic nature of electrons, the product function must be anti-symmetric which
is ensured by the anti-symmetric operator A. This leads us to the final approximation
for the final-state wave function

UF) = Alef) ), (3.16)

where m indicates that we are dealing with an eigenstate of the excited (N —1) electron
system with energy F,,. The same formal expression can be used for the initial state,
where, however, | 1) is not an eigenstate of the (N — 1)-electron system. The
expectation value in Eqn. 3.14 then reads

(U | Hine [ ON) = (08| Hing | 0F) (@ 1@ N1, (3.17)

Vv
::M’}’ ; =Cmt
i

where the Mk are the one-electron dipole matrix elements and the ¢, ; the overlap
integrals, Wthh describe the probability that the removal of an electron from the
initial state leaves the (N — 1)-electron system in the excited state m. What we
determine in photoemission is thus the state of an (N — 1)-electron system, which may
deviate significantly from the initial N-electron state. This is particularly important
in spectroscopic studies on atoms and molecules, where ionised final states can be
created that couple differently to each other and have energy eigenvalues which are
completely different from the neutral element. In solid-state spectroscopy the situation
is different. Since N is very large, the difference between the N and (N — 1)-electron
system consists essentially in a macroscopic charging of the sample. If the latter is
grounded, a respective charging is neutralised due to the electrostatic screening by the
conduction electrons. The screening charge occupies a state near the Fermi energy
which turns the (N — 1)-electron system efficiently back into a system of N electrons.
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While this argumentation is widely valid for itinerant electrons, it is problematic for
more localised states, i.e. core states, and in particular the 4 f electrons which play
a central role in this work. The corresponding wave function of the (N — 1)-electron
system is strongly localised at the respective ionic core. In contrast, the state of
the screening charge is built from the outer valence orbitals of the atoms. As Bloch
waves, they have wavelengths larger than the lattice constant and thus they cannot
completely neutralise the charge distribution of the photo-hole inside the atom. The
result is a shift to higher binding energies and multiplet splittings which are caused by
different couplings of states of the local (N — 1) system. Except for a scaling factor of
only a few per cent, which takes the particular screening of the final state into account,
it is identical with respective multiplet structures of free atoms.

Returning to quantitative description of photoemission, the total intensity is given
by

I(k, Exin) = Y _wisp o< 3 [ME 2> JemiP0(Bn + BN = EY — hv). (3.18)
Z‘7f Z?f m

In a system of non-interacting electrons, \IllN_l = UN-1 for m = myg, ie. only
Cm=mo,i 7 0. If also for the corresponding matrix element M'Jﬁl # 0, the PE intensity
I(k, Eyy,) is given by a single Delta function. In this case,, the final state of the
photoelectron can be directly related to its initial state by exploiting the energy
conservation law

Ekm = hv — EB — (I)(), (3.19)

where Ep is the binding energy of the photoelectron prior to its excitation and ®q is
the material-specific work function. In contrast, for a correlated system, several of
the ¢, ; contribute to the sum in Eqn. 3.18 and the PE spectrum will consist of a
main peak with several satellites. To describe correlations properly typically a more
convenient approach is used which is given within the theoretical framework of the
Green’s function formalism, see for example Ref. [83]. Note, that the contribution
of an extrinsic continuous background due to inelastically scattered electrons are not
taken into account in Eqn. 3.18. Moreover, experimental broadening due to finite
resolution or lifetime has to be considered, too, when it comes to the modelling of PE
spectra.

We continue the discussion for non- or only weakly correlated electrons in crystalline
solids. Fig. 3.2 illustrates the different reference frames for the energy of an electron
bound in a solid and of a free electron in the vacuum as well as their relation according
to Eqn. 3.19. In the sample the electrons has a binding energy Ep which is referenced
to the Fermi level Ep, i.e. Eg = 0 at Ep. The kinetic energy of the photoelectron
is referenced to the vacuum level F,., which is defined by Ey;, = 0. The distance
between Fermi and vacuum levels is given by the material-specific work function ®g,
which is a measure of the minimal photon energy that is required to release an electron
from the sample. Moreover, Fig. 3.2 illustrates how the PE spectrum N (Ey;,) relates
to the density of states N(E) in the sample. Straight lines in the sample’s diagram on
the left indicate the non-dispersive core states. Due to their discrete binding energy
and their non-dispersive character, they appear in the PE spectrum as sharp peaks,
whereas valence-band emissions form a broad feature that falls off to zero at the Fermi
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Fig. 3.2: Relation between the band structure
of a crystalline, metallic sample and the PE
spectrum for a system of non- or weakly inter- hv
acting particles. Eg is the binding energy of

the photoelectron prior to its excitation and ~E | Sample
referenced to the Fermi energy Er at which,
by definition, g = 0. ®¢ is the work func-
tion, Fy is the energy of the bottom of the
valence band and V} is the inner potential. In
the PE spectrum FEy;, is the kinetic energy
of the photoelectrons which is referenced to
the vacuum energy F.,. which corresponds to
Eyin = 0. N(E) and N(Ey;,) are the density
of states in the solid and the intensity dis-
tribution of the photoelectrons, respectively. —
From Ref. [83]. N(E)
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edge. Since the valence band is occupied only up to Er as it is indicated by the grey
shaded area in the parabolic density of states on the left, in photoemission there is a
rather sudden intensity drop at the high-kinetic-energy side of the spectrum. Thermal
occupation of states near but above Er and finite resolution lead to a broadening
of the Fermi edge such that the measured intensity drops smoothly to zero. Note,
that in general, the valence-band emission is not identical to the number of occupied
states in the sample because depending on photon polarisation or energy the excitation
probability can vanish. Resulting intensity variations in the PE spectra are referred
to as matrix-element effects (cf. M;; in Eqn. 3.18).

3.4. Angle-resolved photoelectron spectroscopy

Angle-resolved photoelectron spectroscopy or shortly ARPES, sometimes ARUPS if
the use of photons with energies in the ultraviolet (UV) is to be emphasized, is the
principal experimental technique to study the electronic structure of materials and the
main tool used in this work. In contrast to ordinary photoemission, in ARPES also the
angular distribution of the photoelectrons is measured giving an intensity distribution
I = I(Fxin, 0, ) = I(Fxin, K), where K is the momentum of the photoelectron. The
emission angles 6 and ¢ are defined in Fig. 3.3, where the geometry of an ARPES
experiment is sketched. @ is the angle between the propagation direction of the
photoelectron and the surface normal which is parallel to the z axis in Fig. 3.3, while
@ is the azimuthal angle within the surface plane. Measuring Fii,, € and ¢ the
momentum K = (Kx,Ky,KZ)T of the photoelectron in the vacuum can be easily
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Electron
7z analyser

hv

Sample

Fig. 3.3.: Monochromatic light with energy hv liberates electrons from the sample. For certain
emission directions the emitted photoelectrons enter and pass the hemispherical electron
analyser and get detected. From Ref. [84].

calculated using

K=|K| = \ZmBa/ie (3.20)
K, = |K]|sinfcosyp (3.21)
K, = |K|sinfsing (3.22)
K, = |K|cosf (3.23)

To relate the momentum of the free photoelectron to the crystal momentum in its
initial state in the crystal, it must be taken into account that in the PE process only
k), the component of the crystal momentum that is parallel to the surface is conserved,
while the component k| that is perpendicular to the surface is not because the surface
breaks the symmetry of the periodic lattice. This leads to a potential barrier at the
surface in the direction z of the surface normal that the electron has to overcome and
results in the following relations for the momentum of the photoelectron prior to its
excitation

ky, = K, (3.24)
k, = K, (3.25)
k. = /2m(Eyncos26 + Vo) /B2 (# K.), (3.26)

in the extended zone scheme with Vj being the inner potential, see Fig. 3.2. Note, that
the momentum of the photon is negligible in the UV range in which ARPES experi-
ments are typically conducted. Considering the momentum conservation, Eqn. 3.13,
this implies that we are dealing with vertical transitions in the reduced zone scheme,
i.e.transitions of the type ky = k; + G, where G is a reciprocal lattice vector.

Surface sensitivity To achieve good energy and momentum resolution, ARPES ex-
periments are most often conducted using photon energies in the UV (3.3¢eV to 100 eV
or low-energy soft x-ray radiation, which makes ARPES an extremely surface-sensitive
technique. The attenuation of the PE signal with increasing distance from the surface
is given by an exponential law of the form e~%/*, where z is the distance from the
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surface and A the inelastic mean free path, i.e. the distance that an electron can on
average travel through the solid without being inelastically scattered. Fig. 3.4 shows
the inelastic mean free path for different elements in dependence on kinetic energy.
The solid line is a fit of the data points known as the universal curve. For the energies

Inelastic mean free path (nm)
=

T

10 100 1000
Kinetic Energy (eV)

Fig. 3.4.: Universal curve for the inelastic mean free path in dependence on the kinetic energy
of electrons moving in a crystal. From Ref. [83].

that we deal with in ARPES experiments, A is below 10 A. To increase the probing
depth, soft x-rays of higher energies are used which may increase the inelastic mean
free path from about 5 A in the UV to about 20 A in the soft x-ray, however, at the
cost of resolution. Besides the high surface sensitivity, a small inelastic mean free
path A\ has also another consequence. Although the Bloch waves extend over the
entire crystal, vertical to the surface they are probed only in an interval in the size
of X\. If X is notably smaller than the lattice constant in this direction, which is, in
particular, the case in the layered compounds discussed in this work, the uncertainty
relation leads to the smearing out of the k| component in the order of magnitude of
the respective reciprocal lattice vector. Instead of discrete inter-band transitions, we
observe transitions into final states in which k| is well defined, whereas k| can take
all values between +G | . We thus observe the projected band structure along the k|
axis.

The surface sensitivity requires an atomically clean and well-ordered surface. ARPES
is hence conducted under ultra-high vacuum (UHV) conditions to minimise contamina-
tion of the sample surface and scattering of the emitted photoelectrons at air molecules
on their way to the detector. A convenient way to prepare an atomically clean and
flat surface that does not immediately become contaminated, is to cleave a single-
crystalline sample in the UHV. For this purpose, a so-called top post is glued onto the
sample which is a small pin of cylindrical shape. In the UHV system, the sample can
be cleaved from the outside by exploiting the lever principle applying a force onto the
top post with a wobble stick. Alternative surface-preparation techniques can be the
removal of a few layers on the top by argon sputtering, heating the sample to remove
adsorbates or in-site growth of thin films in the UHV.
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g Analyzer slit

Incident light Electron analyzer

Fig. 3.5.: Translational (X, Y, Z) and rotational (¢, 6, ¢) degrees of freedom of a six-axes
manipulator used in ARPES experiments. Image from Ref. [85].

Experimental setup To move and align the sample within the UHV the sample
holder with the sample is mounted on a manipulator that ideally provides six degrees
of freedom, three translational and three rotational about the X, Y, Z axes as it
is illustrated in Fig. 3.5. The translational degrees of freedom allow for moving the
sample upward/downward (Z), right/left (X) and toward/away (Y, focus) from the
analyser. The corresponding angles are termed azimuth ¢ for rotations about the axis
defined by the surface normal, polar 6 for rotations about the axis that is perpendicular
to the entrance slit of the analyser and tilt ¢ for rotations about the axis parallel to
the slit. Note, that since the Y axis forms an angle of 45° with the beam, changing
the focus inevitably changes the illuminated position on the sample. Equivalently, if
the polar or tilt angles are changed, also the focus changes slightly.

Spectrometer The spectrometer consists of an electrostatic input lens system, a
spherical deflection analyser (SDA) and an electron detector. An SDA is built of
two concentric hemispheres with radii Ry and Rg, which lie on different potentials.
The potential difference AV between the inner and outer hemispheres generates a
spherical electrostatic field in which the photoelectrons that are reaching the analyser
are deflected by the electrostatic force acting on their charge. Only electrons with
kinetic energies in a small range centred around the so-called pass energy s, which is
given by Epass = €AV (R1/Ra—R2/Ry), can pass the electrostatic field between the two
hemispheres and reach the detector. The emitted electrons enter the analyser through
an entrance slit which selects the emission angles. Before the photoelectrons reach
the entrance slit they pass an electrostatic lens system, where a retarding potential
decelerates them to Epas. Moreover, the lens system is responsible for the focussing of
the electron beam onto the entrance slit. Electrons with the same kinetic energy are
focussed onto the same spot in the entrance slit before they get deflected when they
pass the SDA. They leave the SDA through an exit slit and propagate further to the
detector. The two projected directions of the entrance slit can be understood as follows.
The parallel direction along the slit is proportional to the emission angle and thus
represents the k dependence, while the orthogonal direction to the slit corresponds
to the electron dispersion depending on their kinetic energy. The two-dimensional
detector is located behind the focal plane and is built of two micro-channel plates
followed by a phosphorus plate and a CCD camera. The micro-channel plates serve as
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electron multipliers for the impinging photoelectrons with one axis accounting for the
kinetic energy and the other for the angular distribution «, originally defined by the
entrance slit. Hitting the phosphorus plate, the secondary electrons produce photo-
luminescence which is detected by a CCD camera that converts the light intensity into
a current.

Experimental Resolution The energy resolution AFEgpe. of the spectrometer is given
by

AEspec = Epass(w/RO + 052/4) (327)

where Ry = (R1 + R2)/2, a is the acceptance angle of the analyser and w is the width
of the entrance slit. Note that reducing the pass energy and decreasing the width of
the entrance slit lowers the intensity, hence the resolution of the spectrometer cannot
be tuned towards arbitrarily small values by simply reducing these parameters. The
total energy resolution A F}, depends also on the bandwidth Av of the synchrotron
radiation, being

(AEit)? = (hAV)? + (AEgpec)? (3.28)

For momentum resolution, the finite bandwidth of the radiation plays a minor role. It
is given by

Ak~ \/2mExin /h? cos YA, (3.29)

with A¢ being the angular resolution of the spectrometer, which is nowadays about
0.1°. The finite resolution leads to the broadening of the experimental data that
is described by a Gaussian with an FWHM given by the experimental energy and
momentum resolution. Experimental broadening is also influenced by the quality of
the sample and the surface and the associated probability for elastic scattering events.

Deflector In most cases already a small rotation of the sample causes a change
in the position at which the beam hits the surface. This is a large drawback and
particularly disadvantageous when it comes to isoenergy mapping covering a large
region of the BZ. Fortunately, this difficulty is partly overcome thanks to new state-of-
the-art spectrometers that come with a deflector mode, i.e. with deflecting electrodes
in the lens system that allow for rasterisation of the beam of photoelectrons emitted
from the sample. This is sketched schematically in Fig. 3.6, where a top view on
the emission cones is given with each circle corresponding to a certain kinetic energy.
The axes a; and oy correspond to the detector and deflector angles, respectively, and
the green rectangle represents the probed region for a given deflector angle. With
deflection mode, the emission cone can be mapped without rotating the sample and
changing the deflector angle oy, i.e. changing the deflector voltage, is much faster
than a mechanical rotation of the sample. Lately, most of the ARPES end stations at
synchrotron radiation sources upgraded their spectrometer with a deflection mode.
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Fig. 3.6.: ARPES mapping using the deflection mode. The red circles represent the emission
cone with each circle corresponding to a particular kinetic energy for a given pair (6,,6,) of
detector and deflector angles. The outermost circle corresponds to the acceptance cone of the
analyser, the green rectangle marks the probed area (a) without deflection and (b, c¢) with
deflection for different deflector angles 6,. Image from Ref. [86].

3.5. Photoabsorption and resonant photoelectron
spectroscopy

When the photon energy is close to the binding energy of a core level a core electron
can be excited into an unoccupied state above the Fermi level, a process which is
known as photo- or x-ray absorption (XA). The de-excitation of the excited state
may be realised radiatively or non-radiatively. In both cases, the core hole is filled
by an outer-shell or valence electron. In a radiative decay process also known as
fluorescence, the energy gained by filling the core hole is emitted in form of a photon.
In the case of the non-radiative or Auger decay, the energy is transferred to another
electron which is excited into the vacuum. The Auger decay can be understood as an
auto-ionisation process in which a sudden change of the potential is induced by the
virtual excitation of the primary electron into a localised intermediate state with the
energy being transferred to a third electron. In the general case the electronic levels
that are involved in the absorption and the Auger decay, i.e. the core level A where
the hole is produced, the level B from which the core hole is filled, and the level C
from which the Auger electron is liberated into the vacuum, have different principal
quantum numbers n. In the special case where the two levels in ABC have the same
principal quantum number, the Auger process is called a Koster-Kronig decay. If
all three levels have the same n one speaks of a super-Koster-Kronig decay (SKK).
As an example of the latter, we consider the 4d — 4f absorption threshold in the
lanthanides,

4404 4 hy — 22 4qOqpntt KKy gl0g el o (3.30)

where e~ is the emitted Auger electron. After absorption of the photon, an electron
from the 4d core level is excited into an empty 4f state. Within the super-Coster-
Kronig decay, one 4f electron fills the core hole, while another one is liberated into
the vacuum.

The final state in 3.30 can be reached via direct photoemission, too. In resonant
photoelectron spectroscopy (RPES) the photon energy is chosen such, that the
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direct PE process, i.e.
A4d04 "+ hy ——— 44104 e (3.31)

in the case of the example given above, and the (super-) Koster-Kronig decay quantum-
mechanically interfere with each other because they both lead to the same final state.
Thus, the PE signal from a valence-band state can be resonantly enhanced by tuning
the photon energy close to the absorption threshold of a core level. The resonance
measured in dependence on the photon energy has an asymmetric line shape which
is known as Fano profile. When approaching the resonance energy the PE intensity
passes a minimum which corresponds to destructive interference of the two excitation
channels. In this minimum, the emission from the final state under consideration
is almost completely suppressed. Therefore, if hv is chosen for the Fano minimum
one speaks of an off-resonance PE experiment for the final state under consideration,
whereas the term on-resonance is used if the energy is chosen at the maximum of the
Fano resonance, also known as Beutler-Fano resonance [87, 88|. Note, that in RPES
the photoabsorption and the Auger decay must be viewed as a coherent one-step
process. Moreover, the interaction Hamiltonian Hj, in Eqn. 3.15 must be extended,
i.e. the second order perturbation term has to be included, too. Mathematically, the
interference of the two excitation channels results from summing up the respective
transition matrix elements. The benefit of the RPES is the element and orbital
selectivity which allows to switch the PE signal from a particular initial state on (“on
resonance”) or off (“off resonance”) by the proper choice of the photon energy.

3.6. X-ray absorption spectroscopy

In solid-state physics, x-ray absorption spectroscopy (XAS) is widely used as a probe
of the local atomic structure and the local environment in compounds which are con-
stituted of different types of atoms. Measured is the absorption of monochromatic
radiation incident on a sample in dependence on the photon energy. The dominating
absorption process is photoexcitation, where the energy and momentum of the photon
are completely transferred to an electron leading typically to its liberation into a
free vacuum state. However, if the energy of the incident light corresponds to an
absorption threshold a second excitation channel opens in which core electrons are
excited into unoccupied states above Er localised by the potential of the photohole,
which leads to a resonant enhancement of the absorption. The characteristic energy
of transitions at the absorption edges makes XAS an element- and orbital-selective
technique. Prominent examples are the Lo 3 edge for 3d transition metals, i.e. exci-
tation from the spin-orbit split 2p; 9 3/ core into 3d valence bands states, and the
My, 5 edge for lanthanides with 3d3/5 5/2 — 4f. The two principal detection modes in
XAS experiments are the total electron yield (TEY) and the total fluorescence yield
(TFY), respectively. The term total indicates that all electrons/photons are counted
independent of their kinetic/photon energy and emission angle. Due to the small es-
cape depth of photoelectrons, especially in the soft x-ray regime, TEY probes mostly
the surface region, whereas TFY is rather bulk sensitive. Therefore the combination
of both detection modes allows for a distinction between surface and bulk properties.
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3.6.1. X-ray magnetic circular dichroism

Dichroism in XAS describes the polarisation dependence of the light absorption due to
asymmetries in the distribution of the electronic charge or the magnetisation around
an atom [89]. Magnetic dichroism is widely used to study magnetic materials with
collinear order but can be also applied to the investigation of non-collinear systems.
The difference in the absorption of circularly left and right polarised light is known as
x-ray magnetic circular dichroism (XMCD) and proportional to (M), the expectation
value of the magnetisation. More precisely, the XMCD sum rules allow for relating
the XAS and XMCD spectra to the expectation values (L.) and (S.), the z compo-
nents of angular momentum and spin operators, respectively, and thus, for separate
determination of the angular and spin magnetic moments in the ground state [90].
The XMCD will be strongest if the propagation vector uy, of the incident light and the
magnetisation M are collinear because the matrix elements are proportional to the
scalar product (M - ug). Therefore the sample is typically magnetised by an external
magnetic field in the direction of the propagation vector of the incident light.

For systems with itinerant magnetism like the 3d transition metals XMCD is usually
explained in a single-particle picture using a two-step model and the general optical
selection rules for electronic dipole transitions Al = +1, Am; = 0, £1 and Amg = 0.
In the first step, the circularly polarised light produces a spin-polarised current of
photoelectrons. Changing the polarisation changes the sign and the absolute value of
the photocurrent’s spin polarisation. In the second step, the excited electrons reach for
unoccupied states in the valence band. Since spin flips are forbidden by the selection
rules, the electrons can only occupy states with the same spin. Thus, if there is a
spin imbalance in the available valence band states the absorption will be larger for
the spin sort that has a larger number of unoccupied valence states at its disposal.
For example, in the magnetic 3d transition metals like Co, Fe or Ni, electrons that
carry the minority spin have a higher probability to reach the valence band than those
with majority spins, because most majority-spin states are occupied. It follows that
the absorption cross-sections differ for opposite light polarisation and XMCD will be
observed. A prerequisite for producing a spin-polarised current in the first step is
spin-orbit coupling which is the only way to partly transfer the angular momentum
of the photon to the spin of the electron (recall that Hjy in Eqn. 3.15 is independent
on spin). Since the absorption depends strongly on the available spin states in the
valence band, the latter is said to act as a spin detector.

In the case of local-moment magnetism like in the 4 f materials, the atomic config-
uration must be considered rather than a single-electron picture because the atomic
properties of the 4f shell are preserved in compounds. Here, the transitions are of
the type J — J' with selection rules AJ = +1 and AM; = 0, £1. If the 4fs are
magnetically ordered, the single My levels are Zeeman split and at 7' = 0 K only the
lowest level with M ; = —J is occupied. Taking the example of absorption at the My 5
edge of trivalent Yb the transition is from 3d'%4 13 (J = 7/2) to 3d%4f1* (J = 5/2).
In the ground state, where only the M; = —7/2 level is occupied only transitions into
M, = —5/2 of the J' = 5/2 final state are allowed. In this particular case and under
the assumption that there is no configurational mixing, absorption can take place
only for one type of circular polarisation. Note that with increasing temperatures
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the probability for the occupation of higher M levels grows and hence, the XMCD
spectrum will in general show a temperature dependence.

3.6.2. X-ray magnetic linear dichroism

X-ray linear dichroism (XLD) describes the differential absorption of x-rays with
linear polarisation parallel and perpendicular to a given quantisation axis defined, for
example, by a molecular orbital, a directional bond or the symmetry axis of a crystal.
The difference in the absorption of mutually perpendicularly polarised light originates
from anisotropies in the charge distribution. The oscillation of the E vector of the
linearly polarised light defines the axis along which the sample is scanned by the
incident light. Therefore, E is said to act as a searchlight for occupied or unoccupied
states along its oscillation axis. Consequently, XLD, i.e. the difference between spectra
acquired with either light polarisation, is largest if the oscillation axis of E coincides
for one polarisation with a given symmetry axis of the sample. In x-ray magnetic
linear dichroism (XMLD), which is used to gain information about the magnetic
properties of a sample with ferro-, ferri- or antiferromagnetic order, the symmetry
axis is given by the magnetisation axis. In difference to XMCD, the XMLD signal is
proportional to (M 2} and therefore sensitive to antiferromagnetic order. It is observed
because the coupling of the spin to the angular momentum of the electron leads to
the deformation of the charge cloud when the spins order magnetically. Using sum
rules the sizes, directions and anisotropies (sizes in different directions) of the atomic
magnetic moments can be determined from respective XMLD spectra [91]. Due to the
nature of linear polarisation, possible transitions have Am; = 0. Note, that XMLD
is also used in investigations of non-collinear magnetic order with a canted or spiral
magnetic structure for which the relative orientation of the sublattice magnetisation
directions can be determined.

3.7. Photoelectron diffraction

Elastic scattering of a photo-excited core electron at neighbouring atoms leads to
angle-dependent intensity variations in the angular distribution of the photoemission
spectrum. To understand this one must consider the wave picture in which the primary
wave describing the photoelectron interferes with itself after being elastically scattered
by surrounding atoms as it is schematically illustrated in Fig. 3.7(a). Depending
on the path difference at the position r between the primary wave ¢o(r, k) and the
scattered wave ¢;(r,r; — k), where r; is the vector between the emitter atom and
the scatterer atom j, and k the wave vector in vacuum, the two waves may interfere
constructively or destructively which results in modulations in the photoemission
intensity for different emission angles. From these modulations, structural information
can be gained, for example about interlayer spacings, bonding lengths or position and
orientation of adsorbed molecules at the surface. This requires a detailed model of
the system under study, a so-called cluster, Fig. 3.7(b), on the basis of which the
photoelectron diffraction (PED) spectra can be simulated with the help of dedicated
computer codes and compared to the experimental results. Within the framework of
a reliability- or R-factor analysis, which quantifies the agreement of the model with
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Fig. 3.7.: (a) In the wave picture a photoexcited core electron leaves the emitter atom as
spherical wave, which scatters at neighbouring scatterer atoms. Depending on the path differ-
ence between the primarily emitted wave and the scattered wave for a given scattering angle
0; it comes to constructive or destructive interference, which is seen as intensity modulation
in a core-level PE spectrum. Image from Ref. [92]. (b) Cluster as it is used in the modelling
of PED data. Circles represent atoms with the one shaded in dark grey being the emitter.
For scattering only the grey-coloured atoms are considered which fulfil the criterion that the
sum of their distances from the emitter and the surface is smaller dy.x. Image from [93]. (c)
Experimental geometry from Ref. [94].

the experiment, model parameters (e.g. the interlayer distance between the first and
second layer of some compound) are tuned until the best agreement of the simulation
with the experiment is obtained.

A PED experiment is conducted as a series of ARPES experiments in which a
specific core level is probed for a given excitation energy hrv and all accessible emission
directions. Fig. 3.8(a) illustrates the data collection process. The grey-shaded circle
represents the sample surface, and the dashed-dotted line in the centre indicates the
normal emission direction. The hemisphere is the constant-kinetic-energy isosurface of
the liberated photoelectrons in the upper-half space, that are emitted from the point
where the normal-emission line cuts the surface plane. For a fixed manipulator angle
¢Man (see Fig. 3.7(c)), a set of ARPES spectra is acquired for different polar angles
Onian with a well-defined step size Afyran as indicated by the black circular arcs on the
hemispherical isoenergy surface, where each line corresponds to a different Oya,. The
length of the lines corresponds to the acceptance range for emission angles « of the
spectrometer. After a full set is measured for a given ¢nan, azimuth is changed and
another set of spectra is measured. This repeats until the whole hemisphere, i.e. all
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Fig. 3.8.: PED experiment. (a) Isoenergy hemisphere centred at the normal emission line
which simultaneously marks the spot on the sample surface from which the photoelectrons
are emitted. The circular arcs drawn in black show which cut on the isoenergy hemisphere,
where a single arc corresponds to an ARPES spectrum for a fixed pair of azimuthal and polar
manipulator angles (dnan, Ovan)- Fach scan contributes the intensity distribution over the
detector angle « for a given energy as shown in the upper window. (b) 3D representation of
the data acquired in a PED experiment for fixed kinetic energy that determines the radius
of the hemisphere. The intensity modulations are plotted onto the hemisphere, appearing as
hills and valleys. (c) The resulting diffraction pattern after using the method of stereographic
projection is shown for a complete polar scan at a fixed azimuthal angle (upper panel) and a
complete set of azimuthal angles (lower panel). Pictures from Ref. [94].

emission directions, has been rasterised. In Fig. 3.8(b) a 3D view of the acquired data
for a complete set of measurements is given, showing the PE intensity plotted onto the
isoenergy surface of the selected Fi;, introduced in (a). In a quite elaborate process,
the single ARPES spectra are then combined to construct a diffraction pattern of
the selected core level under study, projecting the angular dependent intensities onto
the (kz, ky) plane using for example the method of stereographic projection [94]. The
result is a diffraction pattern similar to that shown in Fig. 3.8(c). There, the grey
plots on the left illustrate the projection of the probed angles, while on the right the
projected data are shown for a single azimuthal angle and a complete polar scan in
the upper, and a complete data set in the lower row. Since information should be
gained about a designated emitter atom and its environment the photon energy is
chosen for the excitation of electrons from an element-specific core level of the emitter.
To cover all accessible directions the sample must be rotated without changing the
irradiated spot on the sample surface throughout the entire measurement. Therefore,
a manipulator that allows for translations and rotations about the z, y and z axes is
indispensable for a PED experiment.

3.8. Synchrotron and synchrotron radiation

The experimental techniques described above benefit strongly from the availability of
synchrotron radiation that is generated at dedicated synchrotron radiation facilities
(synchrotrons). In general, the term synchrotron radiation refers to the light emitted
by a relativistic charged particle tangentially to the direction of movement due to its
radial acceleration. Photon science strongly benefits from the technical availability of
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Fig. 3.9.: Layout of a synchrotron radiation source. Image from Ref. [95].

synchrotron radiation, which has many advantages over lab sources like gas-discharge
lamps or x-ray tubes: the photon energy can be chosen from a continuous spectrum
ranging from the far-infrared to hard x-rays and is tunable within a wide range; the
light is of high intensity; the photon beam has a small spot size; synchrotron radiation
is highly polarised. Two important parameters used to describe the quality of the
radiation, and thus for comparison of different radiation sources, are the spectral flux,
that is the number of photons hitting the sample per second and unit bandwidth?,
and the brightness or brilliance, that is the spectral flux per unit solid angle per
unit area, which is a measure for the spatial dependence of a source’s intensity for a
given energy. Dedicated synchrotron radiation sources are typically electron storage
rings, where the light is produced by electrons that are circulating in an evacuated
ring with a velocity close to the speed of light. The radiation which is emitted in
the forward direction, when the electron gets radially accelerated in a magnetic field,
forms a strongly collimated cone. This is a relativistic effect that results from the high
velocity of the electrons. A typical layout of a synchrotron is given in Fig. 3.9. The
electrons are produced by an electron gun and pre-accelerated in a linear accelerator.
With relativistic energies of several hundred MeV, they enter the booster synchrotron
where they are accelerated further reaching a velocity close to the speed of light at
which they are injected in time intervals of a few seconds into the storage ring. This
operation mode is called Top-Up. Note, that the bunch length and the time between
injections can be tuned to realise, for example, time-resolved experiments down to the
pico-second scale. In the storage ring, the electron bunches move on a closed loop with
an energy that is in the order of a few GeV4. The larger the energy of the electrons
in the storage ring, the higher the photon energies that can be reached and the more
collimated the radiated light cone. Exploiting the Lorentz force, the trajectory of the
electron beam is controlled by magnetic fields. Travelling through the storage ring
the electrons pass homogeneous magnetic fields induced by dipole (bending) magnets
installed along the storage ring. The field lines run vertical to the horizontal plane

3For synchrotrons the unit band with is defined as 0.1 %.
4Storage ring energies at different synchrotron light sources: DLS: 3 GeV, BESSY II: 1.7 GeV, SLS:
2.4 GeV, MAX TV: 3 GeV, SOLARIS: 1.5 GeV, SOLEIL: 2.75 GeV
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of the storage ring and thus, to the velocity vector of the electrons guiding them on
a circular trajectory. Passing the bending magnet, the electrons emit synchrotron
radiation in a wide spectral range. In the straight segments between two bending
magnets radiation is produced by so-called insertion devices, which are described
below in more detail. Within each loop through the storage ring, the electrons pass
radio-frequency cavities to compensate for the energy loss due to the emission of
radiation. To keep the beam focused and to correct the path of the electrons, other
types of magnets are used including quadrupole, sextupole, octopole and higher-order
magnets. At the front ends the radiation is directed through a beamline, i.e. an
evacuated straight tube, to the experiment, passing monochromatising and focussing
optics.

Insertion devices are wigglers or undulators, i.e. arrays of dipole magnets with
alternating polarisation. In the resulting sinusoidal magnetic field, the electrons are
forced on a wiggling or undulating path on which they emit radiation. The radiation
produced by a wiggler is incoherent and basically that of a series of bending magnets.
Therefore, the continuous spectrum is characterised by a large bandwidth and high
intensity. For experiments that require a sharp energy the large bandwidth of a wiggler
is disadvantageous because the required monochromatisation leads to undesired heat
production in the optical devices. In the smaller magnetic field of an undulator,
the amplitude of the oscillations of the electrons is much smaller than in a wiggler,
which enables the interference of the emitted radiation cones. Since, depending on the
wavelength, the radiation interferes constructively as well as destructively, undulators
generate a spectrum of highly intense radiation peaks with a sharp energy instead of
a broad continuous spectrum. By tuning the period length between the undulator’s
dipole magnets the photon energy can be tuned to the required value. Another
advantage of undulators over wigglers or bending magnets is the larger collimation of
the beam and the resulting higher brilliance.

Light Polarisation Many experimental techniques, like XMCD and XMLD require
polarised light. Since electromagnetic radiation is a transverse wave, the mutually
perpendicular vectors of the electric field E and magnetic field B span a plane that is
orthogonal to the direction of propagation. If they oscillate along a fixed axis the light
wave is linearly polarised, while elliptical or circular light polarisation is given if the
field vectors rotate in the plane perpendicular to the propagation direction. Since the
electric field vector may rotate clockwise or counter-clockwise there are two possible
realisations of circular polarisation, namely circular left (CL) and circular right (CR).
In the literature different conventions for the definition of CL and CR polarisations
exist because the rotational direction of the E field depends on the position of the
observer. Ambiguity and confusion can be avoided using the helicity instead, i.e. the
projection of the photon spin onto its momentum, rather than the polarisation giving
-+h and —h for the photon spin parallel or antiparallel to momentum, respectively.
Synchrotron facilities usually offer light of linear, elliptical and circular polarisation.
Planar undulators and wigglers, just like bending magnets, produce radiation that is
linearly polarised in the storage-ring plane. If the E vector oscillates in the plane of

56



3.8. Synchrotron and synchrotron radiation

Scienta
hemispherical
analyzer

Plane

Entrance slit

4-jaw
aperture

& Spherical
mirror

Electrostatic lens
Detector

Plane
= ) : gratings
ol Toroidal -~
Sample mirror Exit slit Scan

Fig. 3.10.: Design of an ARPES beamline. The light produced by the undulator is directed
towards the sample passing different optics that serve for monochromatisation (mirrors and
plane gratings) and focussing (mirrors) of the radiation as well as the adjustment of the
intensity (exit slit). From Ref. [83].

the latter we speak of linear horizontal (LH) polarisation, while linear vertical (LV)
polarisation is used if the oscillation is along the axis perpendicular to the plane of the
storage ring. Out of the storage-ring plane, the light has elliptical polarisation. Pro-
ducing brilliant light of non-linear polarisation requires special undulators or wigglers,
for example using helical fields that force the electrons on a spiral trajectory. Modern
undulators exploit that circularly polarised light results from the superposition of LH
and LV polarised waves of the same amplitude and phase. Finally note, that in the
literature also the terms s and p polarised light are met, which refer to a perpendicular
or parallel oscillation axis of E with respect to a symmetry axis or plane defined by
the geometry of the experiment but not actually to the storage-ring plane.

Beamline The beamline is the connecting element between the insertion device or
bending magnet where the light is produced, and the experimental end station where
the measurements are conducted. An exemplary beamline setup is shown in Fig. 3.10.
Along the beamline, optical devices like mirrors and plane gratings are installed to
monochromatise the radiation produced by the undulator, wiggler or bending magnet.
Insertion device, beamline and end station form a unity in the sense, that they are well-
matched to meet the requirements of a particular experimental technique. ARPES,
e.g. requires UV and soft x-ray photons which are ideally available in linear and
circular polarisations. Moreover, highly monochromatic light, high flux and a small
spot size of the photon beam are desirable. Which photon-energy range is available
at an end station is determined by the insertion device. A slit that partly blocks
the beam can be further opened or closed to increase or decrease the intensity of
the radiation. The energy resolution of the beamline is determined by the resolution
AFE,, of the monochromator, which depends on the slits. The ultimate resolution
is given by the monochromator’s resolving power E/AFE,,, where E is the photon
energy. Slits account for a vertical and/or horizontal definition of the beam size,
mirrors for focussing and the plane grating monochromator (PGM) monochromatises
the radiation exploiting the principle of diffraction.
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3. Foundations

3.9. Density functional theory

Theorems of Hohenberg and Kohn

In density functional theory (DFT) the problem of solving the stationary Schrodinger
equation for the electronic many-body Hamiltonian in Eqn. 3.3 is circumvented by
mapping the infeasible interacting problem onto a solvable non-interacting problem.
DFT is built upon the theorems of Hohenberg and Kohn [96], which state that the
external potential Veyt is a unique functional of the ground state density ng. This
implies that ng determines the Hamiltonian and thus, the ground state wave function
|Wo). It follows that ng contains all information about the system under consideration
and instead of calculating an N-particle wave function, one needs to find only a scalar
function ng(r). For that, the energy functional is written as

Eln] = (¥[n]|H|¥[n]) (3.32)
= (U[n||T +V + U|¥[n)) (3.33)
= T|n|+ V|n| + Uln] (3.34)

with T and U being universal density functionals describing the kinetic energy and
the electron-electron interactions, respectively. The term “universal” means that T
and U are the same for any system of interacting electrons, while V' depends on the
system under study. In their second theorem Hohenberg and Kohn state that for an
arbitrary density n(r) with n(r) >0 and [dr n(r) =N

Ey = Elno(r)|] < E[n(r)], (3.35)

i.e. the ground state energy Ej forms a lower bound for the energy functional E[n(r)]
where equality is only given if n(r) equals the ground state density no(r). Eqn. 3.35
allows us to apply the variational principle

SE[n(r)]

S lr) =0 (3.36)

n=ng

providing a practical guideline for the calculation of ng and thus, of any observable.
However, straightforward application of the theorems of Hohnenberg and Kohn requires
explicit knowledge of the energy functional in Eqn. 3.34, yet only V[n] is known to be

Vin| = /dr Vext (1) n(r), (3.37)

where Vgt is the external potential describing, for example, the electric field of the
nuclei in a crystal. Similar expressions for T'[n| and U|n| are not known.

Kohn-Sham theory

Kohn and Sham developed a formalism [97] to solve the variational problem given in
Eqn. 3.36. In the Kohn-Sham formalism, the interacting N-electron system is replaced
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by a non-interacting N-electron system that has the same density n(r). The energy
functional 3.34 takes the form

E[n] = Tks[n] + Vks|n]

with
N

1
Tks[n| = 3 Z<¢i’v?|¢i>
i
accounting for the kinetic energy of the fictive, non-interacting system expressed by
the single-particle orbitals |¢;). Further,

Viks[n| = Vext|n] + Viz|n] + Exc[n|

comprises the functionals associated with the external potential Vey: and the electron-
electron Coulomb interaction in terms of the Hartree term Vg

Vi|n| = / dr n’(:)nfn;’)

The remaining contribution F\. is the so-called exchange-correlation functional, which
is defined as
Eye = (T — Tks) + (Vee — Vi)

comprising the difference in energy between the interacting and non-interacting sys-
tems. Application of the variational principle given in Eqn. 3.36 gives

\& n(r’
-5+ Vext (1) + /d'r’ i <_ 2/| + Uxe(1) | @i(7) = €;i(T) (3.38)
with the Kohn-Sham energies ¢; and the Kohn-Sham orbitals ¢; being the solutions
to the non-linear, single-particle Kohn-Sham equations, where the newly introduced
local potential vy is the functional derivative of the exchange-correlation functional,

B dExc|n|
e = ()

If vy was known, the original problem of the N-electron interacting system could be
solved exactly. However, since this is not the case good approximations are indispens-
able.

Exchange-correlation functionals

There are many approaches for the description of the exchange-correlation functional
Exc[n]. Two of them which will be used in this thesis are the linear density approx-
imation (LDA) and the generalised gradient approximation (GGA). In LDA it is
assumed that the inhomogeneous density can be approximated by decomposing the
system into sufficiently small volume elements with a homogeneous density. The LDA
exchange-correlation functional takes the form

XC

Eyc|n] = E)I;?A[n] = / dr ehom(n)

n—n(r) - /dr eggm(n(l")) (3.39)
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with e)Ig?A being the exchange energy of the homogeneous electron liquid.

Aiming at a more realistic description of the spatial dependence of the density, in
GGA functions f that depend in addition to the density n also on the gradient |Vn(r)|
are constructed. ESGA takes the form

ECCA,| — / dr f(n(r), Vn(r)). (3.40)

DFT+U

Strong on-site Coulomb repulsion between localised electrons in partially filled shells,
like the 4f electrons in the lanthanides, are not well described by the LDA and
GGA exchange-correlation functionals which tend to over-delocalise these electrons.
Improvement can be achieved by the DFT+U method which is basically the incorpo-
ration of the Hubbard model into the DFT energy functional E[n| [98]. In its simplest
form, the Hubbard model comprises nearest-neighbour hopping of electrons between
sites ¢ and 7, i.e. an effective de-localisation of the electrons, and a second term which
accounts for Coulomb interactions between electrons centred at the same atomic site
1. The corresponding Hamiltonian reads

Hyy, =t Z (CI,UCj7O- + h.C.) + UZ NG 415, | (3.41)
(i,5)),0 %

where t is the hopping amplitude, ¢/ and ¢ are creation and annihilation operators, o
describes the spin coordinate with 1 and | for spin up and down, respectively, and U
is the so-called Hubbard U describing the on-site Coulomb interaction. Incorporating
Eqn. 3.41 into the DFT functional the LDA+U?® energy functional takes the form

Erpaun(r)] = Evpa[n(r)] + Eawl{nk,}] — Eacl{n'"}]. (3.42)

With this, the Hubbard term FEyy1,, which derives from the Hubbard Hamiltonian and
acts only on the correlated states, is added to the LDA energy functional. Since the
correlated electrons are now included in both the LDA and the Hubbard functional,
a term Fg4. must be subtracted to avoid double counting. The indices | and m are
the orbital and magnetic quantum numbers, respectively, and emphasize that only
the correlated states are affected by the Hubbard term. The two implementations
of the double-counting functional are known as fully-localised or atomic limit (AL)
and around mean field (AMF). In practice, DFT+U calculations consist in a proper
choice of the effective Coulomb interaction U and exchange interaction J included
in Fgy, and Eyc, such that a good agreement with experimental data is achieved.
An instructive review of the fundamentals of the DFT+U method can be found in
Ref. [99].

Self-consistency cycle

The Kohn-Sham equations are solved numerically in a self-consistency cycle for the
appropriate exchange-correlation functional. The procedure involves

® Accordingly for GGA. Note, that DFT+U is only meaningful with spin polarisation.
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init

1. Choosing a start density n
2. Calculating V4t for ninit,
3. Calculating the ¢; solving Eqn. 3.38 for VIi{nSit.

4. Calculating a new density ny using n = ZZ]L [ dr ¢fo;

5. Repeating steps 2 to 4 until the convergence criterion is met.

FPLO

The full-potential non-orthogonal local-orbital minimum-basis band structure scheme
(FPLO) [100], belongs to the class of LCAO (linear combination of atomic orbitals)
methods which have the advantage of being computationally much less expensive
than methods based on plane waves. This has the advantage that a calculation can
be run on a single core of a laptop without the need to apply for computational
time on a supercomputer. The extended wave functions of the crystal, the crystal
density and the potential are constructed using only local atomic-like functions. Full
potential means that the real crystal potential is used rather than an approximate
representation. Fach atom in the unit cell located at site s contributes a set of basis
functions. FPLO optimises the basis functions in each iteration cycle by solving a
single-particle Schrodinger equation for the potential

1
v(r) = / 0 o(r — R — 8) + v, (3.43)
vy

where the first term is the spherically averaged crystal potential and v°** a confining

potential. R is a Bravais vector. The confining potential compresses the valence
orbitals thus increasing their energy which makes them more suitable for the construc-
tion of extended crystal states. The FPLO basis functions are local, non-orthogonal,
atomic-like orbitals of the form

(r|RsL) :gbls(]r—R—s\)YL(r—R—s), (3.44)

where ¢, is the radial part of the basis function with angular momentum [ and the Y7,
are real spherical harmonics with L = ml being angular momentum quantum numbers.
The solutions to Eqn. 3.43 are classified as core, semi-core and valence orbitals. Core
orbitals are defined by

<R/3IL/’R3L> = 6L/L5R/+s/,R+S7 (345)

that is, there is no overlap between core orbitals centred at different sites, whereas
overlapping orbitals are assigned to the valence basis. However, there are border cases
where a clear assignment to core or valence orbital is difficult. For example, this is
the case for the 4f orbitals in rare earths. On the one hand, due to their strong
localisation, they should be assigned to the core basis. On the other hand, their
low binding energies are in the region of the valence electrons. Within the so-called
open-core approach basis functions can be manually defined as core states. In this

61
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case, the occupancy of the core-shifted valence orbitals is chosen by the user and fixed
throughout the calculation.

The extended wave functions |kn), where k is the crystal momentum and n the
band index, are expanded in terms of the basis orbitals as linear combinations of Bloch
sums:

|kn) = > |RsL)cfae™™ o), (3.46)
RsL

with the coefficients c¥”. Plugged into the Kohn-Sham equation H|kn) = |kn)eg,, the
equation

> [(0s'L'|H|RsL) — (0s'L'|H|RsL)eF"|ckne*(Bre=s) — o (3.47)
RsL

is solved, giving the |kn) from which the density is calculated using

occ

n=> = lkn)knl|, (3.48)

kn

where the sum is over all occupied states. In each step of the Kohn-Sham self-
consistency cycle, the total energy is calculated from Eqn. 3.34. The computational
effort is reduced by the exploitation of symmetries, minimisation of the basis set and
differentiation of the latter into core and valence orbitals.

Note, that the introduction to FPLO given here is valid for non-relativistic systems.
However, DFT solvers like FPLO would be of little use if they would not allow for a
relativistic treatment. In the case of scalar-relativistic calculations, the kinetic energy
is treated relativistically but the spin-orbit coupling is neglected. The basis functions
are two-component-spinor wave functions that are solutions of the Pauli equation. In
the fully relativistic setup, which is the method of choice if SOC is of importance, the
basis functions are Dirac spinors which are used to solve the relativistic Kohn-Sham-
Dirac equations. Moreover, with FPLO collinear magnetic order can be modelled.
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4. Methods

4.1. Experimental details

Single crystals

All ARPES experiments presented in this thesis have been conducted on single crys-
talline samples that were provided by our collaborators. In the group of Cornelius
Krellner at the Goethe University Frankfurt am Main GdIrsSis single crystals [101]
were grown by Kristin Kliemt. EulrySiy single crystals [67] were grown in the group of
Christoph Geibel at the Max Planck institute Dresden for chemical physics of solids
by Silvia Seiro and Nubia Caroca-Canales.

For the growth of both GdlrsSis and EulrsSis single crystals, an indium-flux tech-
nique has been applied. The high-temperature metal-flux method is used to combine
lanthanides which have a high vapour pressure and react with oxygen and humidity,
with high-melting-point elements like the transition metals and Si. The constituting
high-purity elements Gd or Eu, Ir and Si get first solved in the metal flux, which is
then cooled following a precise protocol known as the Bridgman method. For each
compound, the particular crystal-growth parameters must be optimised individually.
The resulting single crystals have a black colour and form flat platelets with their
smallest extension along the ¢ axis, while the longest edges form typically along the
[100] or [110] crystallographic directions.

Measurements

All experiments were conducted with synchrotron radiation at dedicated facilities, in-
cluding the Diamond Light Source (DLS) in Oxfordshire, UK, the MAX IV laboratory
in Lund, Sweden, the European Synchrotron Radiation Facility (ESRF) in Grenoble,
France and the Swiss Light Source (SLS) in Villigen, Switzerland. To prepare a clean
surface we transferred the samples with a small screw glued on top into the ultra-high
vacuum chamber in which the sample is installed on the cryogenic manipulator and
cooled down. When the desired temperature is reached the top post is removed with
the help of a wobble stick. This cleaves the sample leaving a part of the sample with
a clean surface on the holder for the experiment. To delay surface contaminations
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and prevent quick ageing of the sample for measurements at different temperatures
we preferably begin at the higher temperature and cool down.

In the case of GdIrySis ARPES measurements were conducted at the Bloch beam-
line [102] at the MAX IV laboratory, which is optimised for photon energies between 10
and 200eV and provides both linearly and circularly polarised light that is produced
with an undulator. The end station is equipped with a six-axis cryomanipulator and a
DA30 hemispherical deflection analyser from ScientaOmicron. The deflector is a large
benefit since Fermi maps can be acquired without rotating the sample. An angular
and energy resolution of 0.1° and 2meV, respectively, and temperatures down to 20 K
can be reached. Another large advantage of the Bloch end station is the small spot
size of the beam which can be tuned to 10 yum x 10 um. A photon energy of 55eV
and linear light polarisation proved to be ideal for the investigation of the Shockley
surface states at the Si-terminated surface.

The ARPES data shown for EulrySis have been acquired at the HRPES end station
of the 105 undulator beamline [103] at the Diamond Light Source. This end station
provides a six-axis cryomanipulator, where temperatures down to 7K can be reached.
The beamline is optimised for energies between 18 and 240eV, the spot size of the
photon beam is 50 um by 50 pm and linear as well as circular light polarisations
are available. In normal emission the incidence angle of the light is 50°. A polar
rotation towards negative angles is more grazing, while positive polar is towards
normal incidence, i.e. towards the beam and a positive emission angle in the measured
spectra corresponds to an emission above the plane of incidence. The analyser is a
Scienta R4000, the analyser slit is oriented vertically. For energy and angle a resolution
of 2meV and 0.1° can be reached, respectively.

Also here, we used a photon energy of 55eV for our study of the Shockley surface
state. To gain deeper insight into the mixed-valent properties we also investigated
the 4f emission from the Eu 4f shell for Si termination using photon energies of
141 eV and 145eV that correspond to the maxima of the Beutler-Fano resonance for
emission from divalent and trivalent Eu, respectively. To gain information about
the magnetic properties of the Eu-terminated surface we measured the temperature
dependence of the 4 f emission. The measurements were performed at the ULTRA end
station [104] at the Surface and Interface beamline SIS at the SLS, which has a 6-axis
cryomanipulator on which the sample can be cooled down to 4 K. The spectrometer
is a Scienta Omicron DA30-L with an energy resolution down to 1.6 meV, and an
angular resolution of 0.1° reachable. The available photon energies are ranging from
10 to 800V with linear and circular light polarisations.

At the PEARL beamline [105], which is located at the SLS, too, the light is produced
by a bending magnet. We used it to conduct PED measurements to determine the
Eu valency for individual single layers at and near the surface. The spectrometer
is a Scienta EW4000 with an acceptance angle of 60°. Radiation with an energy
between 60 to 2000eV is available with linear and partly circular polarisation. The
sample is mounted on a six-axis cryomanipulater with the lowest temperature that
can be reached being 30 K. In our experiments, we considered the Eu 4 f multiplets
which we measured in the Beutler-Fano resonance using a photon energy of 141eV
for the divalent final-state multiplets of surface and bulk europium and 145eV for the
trivalent 4 f multiplet. The analysis of the data and the theoretical modelling have
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been realised by Dmitry Usachov and his team using the EDAC code [106] for the
PED modelling.

XMCD and XMLD measurements in TEY and TFY were performed at the ID32
undulator beamline [107] at the ESRF to uncover the magnetic properties of Eu. De-
tails on the experiments, which have been conducted and evaluated by Kurt Kummer
are given in the main chapter on EulrySis.

4.2. DFT calculations

All DFT calculations presented in this thesis have been performed using the version
fplo18.00-53-286 6/ of the FPLO code.

GdIrySip  To model the electronic structure of GdIrySis we started with the deter-
mination of the lattice parameters that minimise the total energy using the GGA
functional [108] for the exchange-correlation energy. In our initial setup, we con-
sidered a bulk unit cell with the experimental lattice parameters a and ¢ given in
Ref. [101]. For the calculation we used the DFT+U approach in the atomic-limit config-
uration for the Gd 4f states with the Slater parameters F* = 6.7eV, F? = 8.2817¢V,
F* = 5.69781eV and FS = 4.0994415eV, which correspond to U = 6.7¢V and
J = 0.7¢eV!. In the given case using the Hubbard U has the effect of shifting the 4f
states away from the Fermi level to a binding energy of approximately 8 eV, where
the final-state multiplet of the Gd 4f shell appears in photoemission spectra. The
k mesh was chosen 16 x 16 x 16 and the convergence criteria for density and energy
set to 1e 8 A=3 and le 8 Ha, respectively. The optimisation was performed in the
scalar-relativistic approach, where relativistic effects are only considered for the ki-
netic energy, while the spin-orbit coupling is neglected. To take the AFM order into
account, we modelled the bulk in space group P4/mmm (123) with 5 atoms in the unit
cell. For the 4f magnetic moments carried by the Gd atoms that occupy two distinct
Wyckoff positions, we put the opposite orientation in the initial setup. The AFM
order retained throughout the iteration process until the calculation converged with a
magnetic moment of ugq ~ £7.24 up per Gd atom. The relative z coordinate of Si
as the only free parameter has been optimised for each set of lattice parameters {a, c}
using the force-driven optimisation routine implemented in FPLO for scalar relativistic
calculations. The convergence criterion for the forces has been set to le~3eV/A. We
obtained the lattice parameters a = 4.096 A and ¢ = 10.049 A which are in good agree-
ment with the experimental lattice parameters from which they deviate by about 1 %.
For Si, we obtained zg; = 0.379 which deviates by —2.3% from the literature value.
With the optimised parameters a, ¢ and zg; we repeated the calculation in a fully
relativistic setup where the spin-orbit coupling is automatically taken into account
since the Kohn-Sham-Dirac equation is solved. From this, we calculated the bulk band
structure. For the respective modelling of the paramagnetic phase, we used the same
optimised parameters but calculated in the open-core approximation, where the Gd 4 f
states are removed from the valence basis and treated as core orbitals. Paramagnetism
with randomly oriented magnetic moments cannot be treated in FPLO. Therefore,

'For f electrons J is given by J = (286F2 + 195F" + 250F°) /6435 [109).
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we used an unpolarised 4f shell in which the seven 4f electrons of Gd are evenly
distributed over the 2(2] 4 1) states with each state |m;, o) being occupied by half an
electron.

To compute the electronic structure of the (001) surface we built an asymmetric slab
of 16 atomic layers terminated by Si on the one, and Gd on the other side, separated
by a vacuum of approximately 21 A, thereby using the lattice parameters obtained
from the optimisation of the bulk structure. The slab was modelled in space group
P4mm (99). Before calculating the band structure, the slab has been relaxed using
the force method implemented in FPLO for scalar-relativistic calculations. Following
symmetry constraints, in the relaxation procedure only the z coordinates, i.e. the
relative position of each atomic layer along the tetragonal ¢ axis can change. This
leads to changes in the interlayer spacings, especially in the atomic layers near the
surfaces. We calculated the band structure for the relaxed slab coordinates where
in the modelling of the magnetically ordered phase the Gd 4 fs were treated within
DFT+U, while for the paramagnetic phase the open-core approximation with the
unpolarised 4f shell was used. Note, that in the scalar-relativistic approach spin is
independent of the angular momentum and thus a good quantum number. Therefore,
there is no magnetic anisotropy, i.e. for a magnetically ordered system the total energy
does not depend on the magnetisation axis. This is not the case for a full-relativistic
treatment, where the spin can couple to the orbital motion and is thus in general no
good quantum number anymore. For systems like GdIraSis with a collinear magnetic
order, a quantisation axis must be defined that simultaneously fixes the magnetisation
axis. Since the latter was unknown for GdlIrySis, we calculated the band structure
for the quantisation axes [100] and [110]. The results for the calculated band and
spin structure of GdlIrySis have been double-checked by Alexandra Vyazovskaya from
the Tomsk State University, who performed respective calculations with the Vienna
ab-initio simulation package (VASP) [110]. This DFT solver is, in difference to the
FPLO code, a plane-wave method.

EulraSia  For the DFT modelling of EulrySis we used exclusively the open-core ap-
proximation in the linear spin density approximation (LSDA) [111], which has the
advantage of fixing the occupancy of the Eu 4 f shell to any arbitrary value and facili-
tates the computational treatment of the non-integer Eu valency in this mixed-valent
compound. For the bulk different values of the valency ranging from 2.0 to 3.0 have
been considered in steps of 0.1, which corresponds to the occupancy of the Fu 4 f shell
ranging from 7 to 6. For each configuration, the lattice parameters a and c as well as
zgi have been optimised for the minimal total energy as described above. The bulk unit
cell has been modelled in space group 14/mmm (139) with 3 Wyckoff positions, one for
Si, one for Ir and one for Eu with the only free parameter being the z component of Si.
With the optimised values for lattice parameters and Si position, the calculations were
repeated in a fully relativistic setup in which also the band structure was computed.

To model the surface we built a slab of 19 atomic layers using the space group
P4/nmm (129) with Si termination on both sides of the slab. Surface relaxation has
been taken into account for the first four layers on each side of the slab, while the
remaining bulk-like layers were fixed. For Eu in the first layer below the Si-terminated

66



4.2. DFT calculations

surfaces, we assumed a valency of 2.0, i.e. seven electrons in the 4f shell. In the
modelling of the paramagnetic phase, an unpolarised 4 f shell was used, while for the
ferromagnetically ordered Eu layer the same spin was assigned to each of the seven 4 f
electrons. The quantisation axis which is antiparallel to the orientation of the magnetic
moments was set to [100]. Here, the computational results were double-checked by
Ilya Nechaev, who was at that time affiliated with the Centro de Fisica de Materiales
in Donostia, Spain.
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5. GdIrsSio

This chapter is dedicated to the electronic structure of the Si-terminated surface of the
layered 122 material GdIreSis in the PM and AFM phases which we investigated using
ARPES and DFT. Herein, the main focus lies on the two surface states o and ~, which
reside in a large gap of projected bulk bands around the M point of the SBZ and are
subject to linear and cubic Rashba effects, respectively. While the spin structure of
the ~ state describes the well-known Rashba pattern, the cubic Rashba effect creates
an exotic triple spin winding along the CECs of . In combination with the exchange
interaction, the strong Rashba-like SOC leads to intriguing asymmetries in the band
dispersion and the CECs. Moreover, the observation of domains is discussed. Please
note, that parts of this chapter are taken from Ref. [112] and the corresponding
supplementary information.

5.1. Introduction

GdlIrsSia has been subject to studies for more than five decades [63, 101, 113, 114, 115,
116, 117, 118, 119]. It is known for polymorphism, existing in the I-type (ThCraSis
structure) and P-type (CaBeyGey structure) with both structural phases showing
AFM order with Néel temperatures of Ty = 87K for the I-type and Ty = 12K
in the case of the primitive structure [119]|. In the following, we consider only the
ThCrySis-type. Since Ir does not carry a magnetic moment the magnetic properties
of GdlIrySiy are exclusively determined by the Gd ions, primarily by the 4 f electrons.
From Maossbauer studies a magnetic moment of 8.05 ug has been obtained, which
is larger than the theoretical value for a free Gd®* ion, c¢f. Tab. 2.2. The excess
moment has been ascribed to Gd 5d electrons being induced by the 4f — 5d exchange
interaction [117]. In a recent study on single-crystalline samples, an even larger value
of the effective moment has been reported being 8.2 ug or 8.3 ug depending on the
direction of the applied magnetic field [119]. In the same work, a small magnetic
anisotropy has been observed in the susceptibility curves for T > Tx. This is rather
surprising because with L = 0 the Gd 4 f shell is supposed to be insensitive to the CEF
and for vanishing angular momentum the observed anisotropy cannot be explained by
the coupling of the spin to the crystal lattice either. Below T = 87 K the Gd moments
order antiferromagnetically. In the basal plane, the Gd moments are perpendicular to
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5. GdIl"QSjQ

the ¢ axis. As for many other members of the LnT5Sis family, the AFM order consists
in an AFM stacking of ferromagnetically ordered Gd layers along the tetragonal ¢ axis
with an alternating sign of the magnetisation in subsequent layers mediated via the
RKKY interaction. The rather high Néel temperature indicates a strong intralayer
exchange coupling between the Gd moments.

5.2. Results and discussion

5.2.1. Paramagnetic phase

Gd termination Si termination asymmetric slab

® Sj surface ® Gd surface

0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8
ke (2/a) ke (2r/a) ke (2r/a)

Fig. 5.1.: Electronic structure of the Si- and Gd-terminated (001) surfaces of GdIrySiz in
the PM phase. Shown are ARPES spectra acquired with hv = 55eV and respective DFT
modelling for an asymmetric slab that allows us to model both terminations within a single
calculation. The asterisk marks a surface-resonant state, while the surface states are labelled
a,  and 7. In the upper and lower rows, Fermi and E(kj) maps along X-M-X are given,
respectively. ARPES results shown in (a,d) are obtained for Gd, in (b, e) for Si termination.
In the modelled data given in (c,f) contributions of the topmost Si-Ir-Si block of the Si-
terminated surface are plotted in orange, while green represents the topmost Gd-Si-Ir-Si block
for Gd termination. Bulk bands projected onto the SBZ are shown in grey.

We start our discussion of the surface electronic structure of GdlIrsSis with the
comparison of ARPES spectra acquired with hv = 55eV from Gd- and Si-terminated
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surfaces. The experimental results are given in Fig. 5.1 and compared to respec-
tive DFT band-structure calculations. In the upper row, Fermi maps are shown for
(a) Gd and (b) Si termination, below we present respective cuts along the X-M-X
high-symmetry direction. It can be seen that the two possible surface terminations
are clearly distinguishable in ARPES. The spectra in (a,d) acquired from the Gd-
terminated surface show the characteristic gap around the M point enclosed by the
surface resonance (x), which is seen as a distorted square in the Fermi map. Along
the high-symmetry direction X-M-X it has a parabolic character. In the ARPES
maps taken for Si termination, the bulk gap is populated by the spectral features
of the surface states «, 8 and +v.! The « state forms a pair of electron-like bands
with parabolic-like dispersion, which are strongly split due to the Rashba effect. In
the Fermi map they are seen as two well-separated concentric CECs with the shape
of a four-cornered star centred at the M point. Note, that the fourfold symmetry
of the CECs impressively represents the Cy4, symmetry of the surface. The hole-
like dispersing bands of the surface state 5 are strongly Rashba-split, too. Close to
k, = (0.5 4+ 0.1)27/a they cross the bunch of bulk bands that form the gap border
and disperse further towards the X point with slightly decreasing intensity. The ~
state of which only the band bottom is occupied, hardly crosses the Fermi level and
appears in the Fermi map as a circular intensity spot at the M point. Note the very
weak signature of the @ and  bands within the band gap in (d), which indicates a
tiny admixture of Si termination to the mainly Gd-terminated probed area. Near the
corners of the Fermi maps, along the M —T direction, parts of the projected Doughnut
are visible for both terminations. In the calculated spectra the features of the Si- and
Gd-terminated surfaces are plotted in orange and green colours, respectively, while
the surface-projected bulk bands are shown as grey shading. It can be seen, that DFT
reproduces all experimental features with great precision. The only notable deviation
from the experimental findings consists in the relatively large shift of the calculated ~y
bands below Ew, which is attributable to limitations of DFT in correctly describing
the relaxation of the surface and discussed in detail in the Appendix [A].

Dispersion Fig. 5.1 proves that DFT is capable of accurately describing the experi-
mental results obtained with ARPES. We will thus utilise it to gain deeper insight into
the properties of the surface states at the Si-terminated surface. DFT also allows us to
switch on and off particular interactions like SOC and thus, to get an idea which effect
SOI has on the surface states from first-principles calculations. Fig. 5.2 illustrates how
the bands get modified under the action of SOI with the computational results for «,
B and «y shown in orange, blue and green colours, respectively. In (a) and (c) the band
structure is shown for calculations where SOI is switched off and on. Without SOI we
find each surface state «, 8 and ~ to form two bands, which are doubly degenerate in
spin. At the M point the bands formed by o and 3 are degenerate, too, there the total
degeneracy is thus fourfold. Switching on SOI we reproduce the huge Rashba-type
splitting that we observed experimentally for all states. Only in near the M point the
a and  bands deviate from the parabolic dispersion that is seen without SOI. As

Note, that « is the same surface state like S’ or Se introduced in section 2.2, while 3 corresponds
to Sp. 7y is above Er in most of the LnT>Siz compounds and was not introduced before.

71



5. GdITQSiQ

Si(1) Ir(2a) Ir(2b) Ir(2a+2b) Si(3) Gd(4)
(@) ~—sorom (b) B
< 0.8 1 k 1 . k 1 o
R £ 06 1 /\ t 1 . t 1 —8
o °
I —05 =041 NN ] T 1 I T
“4 N\ 02 1 X >< 1 \/ [|[==] 1
~1.0 1 r T 0.0 r - r L : r .\/. .7<><. —_——
(C) SOl on (d)
=~ 0.8 1 k
@ 0.0 1 £ 0.6 A /\ J
5 N
I —0.5 =041 A~ ] | N i i |
w 0.2 4 b '\@/‘ 1 - Ry —~ ]
4 N T~—" =
~10 .\Q.Q/. 001y : —L . =1 . . .-<.>—. —_—
03 05 07 03 05 0703 05 0703 05 0703 05 0703 05 0703 05 07
ky(2m/a) ky(2m/a)

Fig. 5.2.: Surface state dispersion and k,-resolved per-layer weight along X-M-X calculated
(a,b) without and (c,d) with SOIL In brackets the layer count is given with (1) corresponding
to the surface layer, (2) to the first layer below the surface and so on. Orange, blue and green
graphs represent the results for the surface states «, § and ~, respectively. Grey stripes in
the lower row mark the region of intrinsic SOI.

demonstrated in Ref. [79] by means of a tight-binding model and shown in Fig. 2.8
the deviation is due to the intrinsic SOC that causes a mixing of the two bands and
leads to the opening of the large spin-orbit gap.

Weights In Fig. 5.2 the band weights of the surface states are shown for the individual
layers of the surface Si-Ir-Si-Gd four-layer block, comparing the cases (b) without
SOI and (d) if SOI is taken into account. The plots for each layer are labelled by the
elemental symbol and the layer position in the slab, where the counting starts from
the surface Si layer Si(1). Note that the Ir layer is represented by three plots because
the Ir Wyckoff position comprises two symmetrically non-equivalent crystallographic
sites which give different contributions to the surface states’ wave functions. The first
and second Ir plots show the weights from either site, while the third one represents
the average weight from both sites.

The weights are a measure of how much a particular atom contributes to the wave
function of a band state. At first, we consider the case without SOI (upper row).
For v the dominating contribution comes from the surface Si layer reaching a value
of 90% at M which, however, reduces to 40 % at a distance of about 40.2 %’T from
the M point. With decreasing contribution from Si(1), the admixture of the adjacent
Ir layer increases from 10% to 17 % and also contributions from the subsurface Si
and Gd layers, which are almost zero at M, increase up to 10 % and 5% within the
given distance, respectively. 7 states with a wave vector close to the M point are thus
strongly localised within the two topmost Si and Ir layers, whereas with increasing
distance from the M point the wave functions reach increasingly deeper into the surface
four-layer block with a small but finite probability in the Gd layer. In difference, o and
B are built to almost the same amount by basis orbitals from the three outermost Si
and Ir layers, whose contribution reaches in dependence on k| between 15 % and 25 %.
The Gd layer contributes between 5% and 7%. We may thus conclude, that « and 3
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(a) (b) 7y state
0.6 1
0.0

S = N

uf S &g S 051
| > | >
w x w -0.4 x

—0.6 1 0.4 4

03 05 0.7 0.3 0.5 0.7 03 05 0.7 0.4 0.5 0.6
ke (2m/a) ke (2m/a) ke (2/a) ke (2/a)

Fig. 5.3.: Spin structure of the surface states (a) a and (b) ~. For the high-symmetry direction
X-M-X|| k; the expectation value of the y component of the spin is shown in red (S, > 0)
and blue (S, < 0), the line width reflects the absolute value of S,. The CECs of the states o
and y are given at —0.13eV and 0eV, respectively. Gray and black arrows represent the spin
S for states on the outer and inner CECs, respectively.

stretch out over the whole surface four-layer block in accordance with the findings for
related EuRhsSis[34] and GdRhsSiz[35] compounds. Comparing this to the results
of the calculation with SOI, shown in Fig. 5.2(d), we generally find a very similar k,
dependence of the band weights. For a and 3, however, a difference is seen in the
vicinity of the M point, where the intrinsic SOI becomes important. This region is
highlighted in light blue. There, the strongest changes are seen in the weight functions
of the individual Ir sites, Ir(2a) and Ir(2b), where the o bands seem to become more
B like and vice versa which we interpreted as a mixing of the two states. When the
edge of the exotic region is reached the weight functions are qualitatively the same as
in the case without SOI. Note, that for kj # M the contributions of the split bands
have been summed up for each surface state.

Spin structure Fig. 5.3(a) and (b) show the calculated spin structure for the surface
states o and , respectively, along the high-symmetry direction X-M-X parallel k,
and CECs. Since we are going to discuss the spin structure in the light of the Rashba
effect, we omit the 3 state, whose bands lie mostly within the exotic region around the
M point.? In systems with strong SOC, my is not a good quantum number. Therefore,
we analyse the spin structure in terms of the spin expectation values S, = (S;) and
Sy = (Sy) for the  and y components of the electron spin. Note, that due to the
fourfold rotational symmetry in combination with time-reversal symmetry S, = 0 for
all k”, which is explicitly shown below. Along the X-M-X cuts shown in Fig. 5.3
Sz = 0. Red and blue colours correspond to S, > 0 and S, < 0, respectively, while the
line width is proportional to the absolute value of Sy. On the CECs the expectation
values of the single spin components are combined to the spin expectation value

2As we discussed above, the intrinsic SOI mixes a and f states which leads to a vanishing spin
polarisation, as can be seen in Fig. 5.3(a) for a. The spin polarisation of states in this region
is hidden due to the crystallographic inequivalent Ir sites. If the spin expectation values are
calculated separately one finds strongly spin-polarised states with opposite polarisation on the
two sites. In the total wave function, however, the two contributions almost cancel each other,
which results in the weak polarisation. A detailed discussion of the hidden spin polarisation is
given in Ref. [81]. For the specific case of the surface states of the Si-terminated surface of LnT>Sis
compounds, the site-resolved spin structure is shown and discussed in Ref. [39].
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(8) = (S, Sy,0)T, which is visualised by small arrows.

The spin structure of the ~ state, Fig. 5.3(b), is reminiscent of a classical Rashba
system, where the spin is locked perpendicularly to the momentum and rotates into
opposite directions along the inner and outer CECs completing one full rotation by
27 on a closed loop. In the case of the Fig. 5.3(b) shows, that along v’s CECs spin
rotates smoothly in the clockwise direction on the inner, and in the counter-clockwise
direction on the outer CECs, whereby it completes one full rotation by 27 on a closed
loop. In difference to a classical Rashba system, however, there are deviations from
the perpendicular spin-momentum locking. Along X-M-X, we find a similar spin
structure for o, Fig. 5.3(a), except for the region near the M point, which we exclude
from our discussion of the Rashba effect. In difference to the E(k;) cut which might
suggest that the « state is subject to the classical Rashba effect, too, a look at the
CECs reveals a very different spin structure which is characterised by a triple winding
of the electron spin. Namely, on a closed loop around the CECs, the spin completes
three full rotations by 27, instead of one in the case of the classical Rashba effect. To
emphasize the triple winding three encircled arrows mark three states on «a’s outer
CEC with the same spin. Along a segment of the CEC that connects two of those
points, the spin performs a single winding, i.e. one complete rotation by 2.

Spin winding For a consistent description of the rotation of the spin along a CEC,
we introduce the following definitions. The winding number n € Z is defined in such
a way that 2mn describes the angle of rotation of the spin when performing a closed
loop along the contour. Since for a closed contour the spin at the start and end has to
coincide, the winding number n has to be an integer and therefore expresses the number
of full rotations of the spin. On the other hand, the sign of n represents the sense of
rotation of the spin. When moving along the CEC in a counterclockwise direction,
the spin can turn counterclockwise or clockwise. Hence, if the spin rotates in the same
direction as the movement direction along the CEC, we define n to be positive, while
an opposite rotation of the spin to the movement along the CEC has a negative sign.
In Fig. 5.4 we illustrate the spin winding through a hypothetical spin structure on a
circular CEC for different winding numbers n ranging from 41 to £5. For a better
visualisation we use a colour scheme that ranges from orange for S = h/2e, over red
for § = h/2e, to light blue for § = —h/2e, to blue for § = —h/2e, which are equally
expressed by the angle pg in the coordinate system of the spin illustrated in the upper
right. In a system without symmetry restrictions, any winding number is allowed.
For the surface of GdlIrsSis, however, some winding numbers n are forbidden by the
underlying Cy,, symmetry. The winding of the spin S(pg) along the CEC, where ¢y is
the polar angle that defines a point on the CEC, has to follow this four-fold symmetry
of the crystal, meaning that the spin S(pg + §) = R.(5)S(px) with R. being the
rotation matrix about the rotation axis z. In other words, the spin needs to rotate
by 2mn + § with n € Z when moving along the CEC by an angle of 5. This way,
the full rotation around the closed contour 27n = 4(27n + %) leads to the allowed
winding numbers n = 4n + 1. The simplest allowed winding of the spin is thus n =1
with n = 0, meaning that the spin performs one full rotation when moving along the
closed CEC. Here, the spin rotates in the same direction as the movement along the
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Fig. 5.4.: Illustration of different winding numbers ngy on the circular CEC of a hypothetical
spin-1/2 system. The arrows represent the electron spin. The geometry is shown in the upper
right, with the (k,, k,) axes being the coordinate system of the CEC and the (S,, S,) axes
that of the spin at a given point on the CEC determined by the angle ¢. The expectation
value of the spin is determined by the angle g with pg = (0, 7/2, 7, 37/2) corresponding to
S = (h/2e;,h/2e,,—N/2e,,—N/2e,), respectively. Accordingly, the colour map ranges from
orange to red and light blue to blue. The cases that are allowed in a system with fourfold
rotational symmetry are highlighted.

CEC. We will call this rotation henceforth single winding. The next lowest number
of rotations is n = —3 for n = —1. In this case, the spin rotates oppositely to the
direction taken along the closed CEC performing three full rotations. This rotation of
the spin is therefore called triple winding. In principle, higher orders of rotation are
possible with alternating sense of rotation (n =5,—7,9...). Another consequence of
the C4, symmetry is that S, vanishes for all kH. Since S, must be invariant under
rotations by integer multiples of /2 about the z axis it must hold that

Sx(ky) = S:(—ky). (5.1)
At the same time, time-reversal symmetry implies that
S.(ky) = —S.(—ky). (5.2)

Eqns. 5.1 and 5.2 can be fulfilled simultaneously only if S, = 0 proofing that all
spins lie within the ab plane. That this is indeed a feature of the fourfold rotational
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symmetry can be seen by comparison to the spin structure of the surface state of the
Au(111) surface, which has a threefold symmetry and for which a tiny but finite S,
component has been observed with spin-resolved ARPES [120].

Based on the definitions given above, we can now evaluate the CECs in Fig. 5.3(a)
and (b) for a and ~, respectively. Starting with the inner contour of v shown in
black, we can see that the spin rotates clockwise when moving along the contour in
the clockwise direction and performs one full rotation of 27 along the closed contour.
The same applies to the outer contour of v shown in grey, hence we find the winding
number to be ny, = 1 for the inner and outer contours. For the more complex-looking
CECs of «, we perform the analysis in the same way. Let us start at the uppermost
point of the outer contour (k; = 0.527”, ky ~ 0.73%”) with the spin pointing to the
right along the k, direction. Moving now a small section along the contour in the
clockwise direction, the spin starts to rotate counterclockwise pointing more and more
to the top of the figure along the k, direction. Thus, the winding number has to be
negative. Following the spin along the closed contour, it performs three full rotations,
highlighted by the three encircled arrow marks of the spin pointing along the k,
direction, which are related by a full rotation of the spin by 27. The inner contour
behaves in the same way, resulting in a winding number of n = —3 for a.

Effective Rashba field To describe the spin-orbit induced spin structures we intro-
duce a Rashba-like Hamiltonian Hr o« Bro with By being an effective magnetic field
and o the vector of Pauli matrices accounting for the spin. For a general description,
we can expand Bpg in terms of rotations ng with

Bg’R) x sgn(ng) k™ (sin ng g, — cos nrpg, 0), (5.3)

where @y, is the polar angle of the wave vector k in the (k,, ky)-plane. From Eqn. 5.3, we

clearly see that the different signs of ny are connected by Bgm) =(1,-1, O)BgnR)
expressing the different senses of rotation. In Fig. 5.5 the effective Rashba field
introduced in Eqn. 5.3 is shown for different winding numbers ngr. Since we are

)

interested in the orientation of Bgl ®/ rather than in its absolute value, we neglect the

(nr)

k dependence, setting |Bgm)| = 1 for all k. To visualise the ng-fold symmetry of By

a colour scheme is used for the polar angle ppg of Bg R) at a given point in k| space.

For example ¢ g = 0 corresponds to B e; as illustrated in the legend in the

(nr)

upper right of Fig. 5.5. The orientation of By ™’ is additionally represented by small
black arrows. The configurations with n = (1, —3, 5) that are allowed by the four-fold
Cyy symmetry of the surface of GdIrgSis are highlighted in yellow. Since ng ®) has to
follow the crystal symmetry too, ng = 4n + 1 (n € Z). Hence, the lowest order term
with ng = 1 results in Bg) = k(sin @, — cos ¢k, 0), which corresponds to the classical
linear Rashba term. The resulting spin structure of the linear Rashba term is a single
winding of the spin making this the dominating term for the v state. The next higher
order is ng = —3 with ng) = —k3(sin —3¢p, — cos —3¢g, 0) = k3(sin 3y, cos 3o, 0)
resulting in a triple winding of the spin. Hence, this is the dominant term to describe
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Fig. 5.5.: Effective Rashba field Bgl ®) calculated with Eqn. 5.3 for different winding numbers

nr and k = 1 (neglecting the k) dependence of the field strength). The orientation of Bgl »)
is illustrated by small black arrows and the colour scheme which indicates the polar angle pp

of Bg ) as shown in the upper right. Winding numbers that are compatible with the Cy,
symmetry are highlighted in yellow.

the spin structure of the surface state o.> Higher orders can be used to describe more
complex spin rotations [121].

In Fig. 5.6 we compare the effective fields ng ®) for (a) ng = 1 and (d) and ng = —3
with the energy-projected spin structure of the states v and a considering the inner
and outer bands formed by each surface state separately. Obviously, the symmetry of
the Bg ) field in (a) coincides with the symmetry of the spin structure of (b) the outer
and (c) the inner v bands. For the outer band, the spin and effective Rashba fields
have opposite signs, which corresponds to an antiparallel configuration of the spin
and the effective field, while for the inner band spin and field are parallel. This is not
surprising, since an antiparallel alignment of spin and the magnetic field is energetically
favourable. For the bands formed by « we find the spin structure to correspond equally
well to the effective ng) field. Note, however, that for an exact description of the
spin structure by the effective Rashba field, for both « and ~ states a small admixture
of the Bg) and the B(P:B) fields must be taken into account, respectively.

3Note that it is quite common to drop the sign of ng in 5.3 and to use BgR) interchangeably
for Bg”") and B%_nR) [37, 121]. The same problem has to be kept in mind when using the

names linear and cubic Rashba term as they can be ascribed to Bg ) or Bgl) and Bg’ ) or B%—s)’
respectively.
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Fig. 5.6.: Comparison of B%") from Eqn. 5.3 for (a) n = 1 with the DFT-calculated spin
structure of (b) the outer and (c) the inner bands of the state v and for (d) n = —3 with
the spin structure of (e) the outer and (f) the inner band of the state cv. The colour scheme

(n)
R

represents the polar angle ¢ of By’ and spin S as introduced in Fig.5.5.

Origin of single and triple winding That the leading contribution to By differs
strongly between the a and ~ states can be understood as a direct consequence of
their different orbital composition. In the following, we will see that consideration
of SOI as a small perturbation to the local-orbital eigenfunctions ¢ of the scalar-
relativistic DFT calculation, reproduces the above spin structure. We start with the
Schrédinger equation of the unperturbed Hamiltonian Hgy with eigenenergies FEj

Ho¢ = Eyo

The perturbed Hamiltonian due to the spin-orbit interaction Hgo reads
H=Hy+ Hygo,

with
h 1dV

_ _ _ l, 1_
HSO_2m202Tdrl s=¢l U_é(u —lz>’

where I and s describe the angular and spin momenta, respectively, & = £(r) includes
the potential gradient, o is a vector of Pauli matrices, and [+ = [, £ il,. The effective
SO field is defined as

B={(p|¢L] o).

Defining
By = B, +iB,,

the Hamiltonian matrix takes the form

. Ey+ B, B_
H_< By EO—BZ>'
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From the diagonalisation of this matrix, we obtain the dispersion to be
E+(k) = Eo(k) £ [B(k)|.

and the wave functions

sy (o) (o) 20 (7))

Spin expectation values (in atomic units) are obtained as

B

1
i=§<¢i|0|¢i>=im.

Now we expand ¢ in spherical harmonics Y;™
qb = Z eik.Ra Z Calm(k))/}mRal(’r - Ra|)7
R, lm

where the R, are the positions of nuclei in the unit cell, R,; is the radial wave function
and C,, are the expansion coefficients. Taking into account that SOI is non-vanishing
only close to the nucleus (strong potential gradient, large &), we consider only one-
centre contributions to SOC. Then, we obtain

B.=(o|& |¢)=> Or.r, Y CalCm¥/™ |11 | ComVi™) =

R.,R,/ Iml’'m/’
= 3 GGl 1Cn VI 1) —m(m 1), (5.4)

R,,l,m

where ( is a radial integral accounting for the strength of SOI.

Si 3p In the particular case of one atom in the unit cell with only one shell I = 1
(p-orbitals), we obtain

B, = (V2(C5yCho1 + C,Cho) .

Transformation of the basis from complex spherical functions to real orbitals leads to

o ReB+ . i{ e
Sy =45 = g (-Ci.Cy,) (5.5)
and B iC
mby *
Sy ==+ = o Im (C; Cp,) . 5.6
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Fig. 5.7.: Spin structure of the surface states a, 5 and ~ determined from the orbital com-
position of scalar-relativistic wave functions calculated in DFT by treating SOI as a small
perturbation. The resulting spin expectation values calculated for 5d states of Ir in the
subsurface layer of the Si-terminated surface are given for (a) S, and (c) S, according to
Eqns. 5.8 and 5.9, respectively, in orange (red) for S, > 0 (S, > 0) and light blue (dark blue)
for S; < 0 (Sy < 0). Shown are the results for each of the two Ir sites separately as well as
the sum over both sites. In (b) the band dispersion is shown with the states on the «, 8 and
~ bands for which the spin expectation values have been calculated highlighted in cyan, pink

and purple colours, respectively. In (d) the spin structure obtained for the 3p coefficients of

the surface Si layer according to Eqns. 5.5 and 5.6 are given.
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Ir 5d For the case of [ = 2 (d-orbitals) we get
By =¢ [2(05_10272 + C3yC1) + V6(C3Co1 + C5,Cao)
Transformation to a real orbital basis leads to
B, =2([ilmC;,C,2

—Im C;ZCW + Im C;Zsz 2 + ¢Im szcmy

_y2 —y
+V3(im C55Cp — Im C5Cy.)| (5.7)
Finally, we obtain
_ Re B+ _ ic * * *
) (Cyzcx2_y2 C*.Cly ﬁczgcyz) (5.8)
and L B e
_ mib _ S * * *
N (cxzcx2_y2 Gy + \/§CZ2C$Z) . (5.9

These equations relate the spin structure to the orbital composition of the wave
function expressed by the coefficients C. In the case of more than one atom in the
unit cell, we have to sum up the spin components on each atom. For the considered
case of the Si-terminated GdIrySis surface, the dominating contribution to the spin
structure of the surface states comes from the Ir 5d orbitals of the two Ir sites in the
second atomic layer and Si 3p orbitals from the surface layer. The results for the spin
structure obtained by the formalism described above are shown in Fig. 5.7. In (a) and
(c) the spin components S, and S, obtained from Eqns. 5.8 and 5.9, respectively, are
shown for the two Ir sites. Note, that the prefactor +(/|B| has been neglected and
only the imaginary part is shown. One can see that the spin structure of the o and ~
surface states expected from their orbital composition corresponds to the cubic and
classical Rashba models with their characteristic triple and single winding of the spin,
respectively. The band 8 shows intermediate properties, described by comparable
contributions of linear and cubic Rashba effects. Corresponding results for 3p states
of the surface Si according to Eqns. 5.5 and 5.6 are given in (d). Apparently, the
contribution of the Si 3p orbitals of the topmost Si layer to the wave functions of
surface states favours a triple and single winding of the spin vector for the a and -y
bands, too.

5.2.2. Magnetically ordered phase

In the following, we are going to discuss the modifications of the electronic structure
of the Si-terminated surface in the AFM phase, i.e. below the ordering temperature
Tn = 87K. Fig. 5.8 provides a comparison of the ARPES-derived band structure
along the high-symmetry direction X-M-X and Fermi maps around the M point of the
SBZ in the PM and AFM phases. The ARPES spectra were acquired at 120K (a, b)
and 23K (c,d) using a photon energy of hv = 55eV. For the cuts along X-M-X raw
and normalised data are shown, as well as a 1D curvature plot [122]. As we already
discussed above, the dispersion in the PM phase is symmetric with respect to the M

point and shaped by a strong Rashba effect, which causes a large splitting of the surface

81



5. GdITQSiQ
(a) (b)
Y // - oo 4
—024 "W\ iy B J \ // v
3 —04- N\ 7 | ® 04 e« A%
& \ /v , & Ll :y.h. _________ h."’.’-..
N 0 | < —0.6 1 -
w .
~0.8 - . 4 ‘
~1.0 4 d i i —0.8 1
T |T=120K raw normalized 1D curvature ; 2 .T = 12? K
T T T T T T T T T T T T
(c)
it 1 1 -
\ i \\ / N \\ //"
—0.2 o 1 \ I/
3 0.4 -
o
| —0.6 L . !
w
—0.8 1 . l\(’ 3
—1.0 ﬁy 4 A —0.8 \’
T |T=23K raw normalized 1D curvature / ; : = 2?’ K
T T T T T T T T T T T T
02 04 06 08 02 04 06 08 02 04 06 08 02 Ok"‘ e /Ov)ﬁ 08
« (2m/a

ke (2/a)

ke (270/a)

ke (27/a)

Fig. 5.8.: Band structure of the Si-terminated surface of GdIrySi; measured with ARPES in
the PM (T = 120K) and AFM (T = 23K) phases. The photon energy is hv = 55eV. The

band maps along X-M—-X are shown as measured, after normalisation and after curvature
treatment [122] for (a) the PM and (c) the AFM phases. In (b) and (d) the corresponding
Fermi surfaces are shown around the M point of the SBZ. The bands of the surface states
are labelled «, 8 and ~, the surface resonant state is marked by an asterisk (*). The purple
dotted lines in the Fermi maps show the direction in the SBZ along which the cuts in (a, ¢)
were taken.

state bands. Comparison between the high-symmetry cuts in (a) and (c), and between
the Fermi maps in (b) and (d), reveals that the bands undergo strong modifications in
the magnetic phase. Let us consider the bands formed by the « state first. In the PM
phase, Fig. 5.8(a), a forms one pair of Rashba spin-split bands, whereas in the AFM
phase, Fig. 5.8(c), four bands can be distinguished along X-M-X, i.e. the number of
bands has doubled. The doubling is well visible in the Fermi surface of the « state,
too. In particular, at the corners of the star-shaped contours, additional contour lines
are clearly visible in Fig. 5.8(d). Similarly, the 5 state shows an additional band
in the AFM phase which appears in the energy range between —0.8eV and —0.7eV
and is best seen in the curvature plot. Since the degeneracy of the bands is already
lifted in the PM phase due to the Rashba effect the observed band doubling cannot
be attributed to an additional Zeeman-like splitting of the surface state bands but
points to the formation of magnetic domains. If different magnetic domains are probed
simultaneously the spectrum is a superposition of the spectral patterns associated with
each domain. A multi-domain scenario can be easily simulated with DFT comparing
the band structure of calculations for different orientations of the Gd 4 f moments but
this requires knowledge of the magnetisation direction. It is known that the Gd 4 f
moments order ferromagnetically in the ab plane, perpendicular to the ¢ axis but the
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Fig. 5.9.: Schematic illustration of the vector sum of the effective fields and the resulting
orientation of the spin for the exchange field pointing along [100].

precise orientation of the magnetisation within the ab plane is unknown. Therefore, we
will start with a DF'T study, where we consider two different magnetisation directions,
[100] and [110]. Those are not only the two simplest cases but correspond to the
easy axes observed in closely related compounds of the 122 family. Moreover, for
GdRhsSiy it was reported, that the magnetisation direction is tunable with short laser
pulses, which allow for a rotation from the easy [100] axis to [110] in a controllable
fashion [40].

In the previous section, we introduced the Rashba field By as the effective magnetic
field BE&VI of the PM phase to explain the spin structure and splitting of the surface
state bands. With the same intention we are now going to introduce for the AFM

phase the effective magnetic field B4F™ as the vector sum

BﬁfFM = Bsf%v[ + Bxec = BRr + Bxc (5.10)
of the spin-orbit and the exchange field By, with
B,. = —Jey, (5.11)

where ejps is a unit vector along the magnetisation direction of the ferromagnetically
ordered Gd moments in the first Gd layer below the Si-terminated surface, and J is
the strength of the exchange coupling and in general k-dependent. Fig. 5.9 illustrates
schematically, how the adding-up of the two fields changes the spin of an electron for
the case that By, = —Je,. The spin-orbit and the exchange fields are represented in
the lower half plane as red and blue arrows, respectively. The purple-coloured arrow
is the sum of the latter, representing the effective magnetic field of the AFM phase. In
the upper half plane, the orientation of a majority spin (antiparallel in the field) in the
effective magnetic fields of the PM and AFM phases is shown. In the first case, the
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majority spin is antiparallel to the spin-orbit field as represented by the red-rimmed
grey arrow. In the second case, it is antiparallel to the effective magnetic field of the
AFM phase, as indicated by the purple-rimmed grey arrow. This simple scheme can
be used to predict qualitatively, how the spin structure of a system described by By
in the PM phase may change under the action of an exchange interaction described
by Byc. The amount by which the spin gets rotated by the exchange field depends on
the angle and the absolute value of the latter with respect to the spin-orbit field. For
the given case in which the exchange field is —Je,, we see, that only the  component
of the effective magnetic field can change, while the y component remains unaltered.
For the spin, in general both, S, and S, will change, however, the sign of .Sy will
be conserved, whereas the sign of S, may change for particular configurations of the
spin-orbit and exchange fields.

Firstly, we want to collect some information about the exchange field. Since the Gd
moments that form the source of the exchange interaction order ferromagnetically, we
assume that the orientation of the exchange field coincides with the magnetisation axis
in the subsurface Gd layer. This contrasts with the effective spin-orbit field, which
has a different orientation at each k). The absolute value of the exchange field varies
with k|| and is given by the exchange-induced band splitting. Fig. 5.10 shows the band
structure of the surface state bands along the vertical X-M-X path || k,, for different
computational setups assuming (a) neither SOI nor exchange interaction, (b) exchange
interaction only, (¢) SOI only, and (d) both SOI and exchange interaction with the
Gd moments pointing along the [100] direction. First, we consider the bare exchange
coupling without SOI, Fig. 5.10(b). In this case, spin is a good quantum number and
each band state has either mgs =1 or mgy =] with mg being the z component of the spin.
Note, that in a scalar-relativistic calculation without SOI the exchange interaction is
isotropic, i.e. the total energy is independent of the choice of the magnetisation axis
and mg could equally be the z or y component of the spin. Comparison of (a) and
(b) shows how the exchange interaction lifts the degeneracy of the bands. A general
trend for all three surface states is the lowering of the “1” bands in energy, while the
“]” bands are raised by the exchange interaction, indicating a predominantly parallel
coupling between the spins of the itinerant surface state electrons and the spin of the
Gd 4f shell. Only at the M point a two-fold degeneracy remains between each of the
T and | states of « and 3, which are equally lowered or raised in energy, respectively.
The k, dependence of the exchange field correlates with the k, dependence of the
splitting AE = E| — E; between the 1 and | bands. We identify AE with the exchange
coupling strength J; for i € {a, 8,7} introduced in Eqn. 5.11. In the case of a parallel
coupling, J > 0, whereas J < 0 if the surface-state spins couple antiparallelly to the 4 f
spins. In Fig. 5.10(f) the splitting AE; = J; is shown in orange, blue and green for «,
B and v, respectively. The largest (smallest) values of the splitting reached by «, 8 and
v are 176 meV (144meV), 149meV (—14meV) and 62meV (—32meV), respectively.
The maximum value reached by « is thus about three times larger than for + and
about 1.2 times larger than for 8. Moreover, for o the minimum and maximum values
of the splitting differ by 32 meV, while the difference amounts to 153 meV and 94 meV
for B and v, respectively, emphasizing the strong k| dependence of the exchange field
experienced by the latter two states. In that regard J, can be considered constant and
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Fig. 5.10.: Dispersion and spin structure of the surface states along X-M-X for (a) neither SOI
nor exchange interaction, (b) exchange interaction, (¢) SOI and (d) both SOI and exchange
interaction with magnetisation along [100]. In (b) spin-up and spin-down polarised bands are
shown as solid and dashed lines, whereas orange and light blue markers indicate S, > 0 and
Sz < 0, respectively, for the expectation value S, in (c¢) and (d). The marker size corresponds
to the absolute value of S, multiplied by the surface weight. The second row shows (e) the
band weights of the Gd subsurface layer, and (f)-(h) the splitting AE = E| — E; between
states with (predominantly) minority (}) and majority (1) spins. In (a) and (b) the bands
formed by «, 8 and «y are coloured in orange, blue and green, respectively. The same colour
scheme is used for the corresponding band weights and splittings. The dotted lines in (h) are
the sums of the curves in (f) and (g).

because J, > 0 for all k,, the coupling to the Gd spins is always parallel. In contrast
Jg shows a pronounced maximum at the M point from which it falls off to zero at
about ky, = (0.5 £ 0.15) %’T up to which the coupling is parallel, too. Upon further
approaching the bulk bands, Jg < 0, i.e. the exchange coupling becomes antiparallel
at the edges of the band gap. For « the exchange splitting, and hence J,, changes
sign from positive for k, = (0.5 4 0.04) 2777 to negative in the vicinity of the M point,
i.e. the coupling to the Gd moments is mostly parallel, except for a small region of
antiparallel coupling around the M point. Finally, take note of the strong similarity in
the kj-dependent curve shape of the exchange-splitting and the Gd weight function,
Fig. 5.10(e), for each surface state «, 8 and ~. It can be seen that the splitting scales
with the Gd weight or in other words, the strength of the exchange interaction and the
nature of the coupling seem to depend on the overlap between the surface state wave
function with the Gd layer. « for example, which has the largest and comparatively
most constant Gd contribution, shows the greatest splitting with only small variations
in ky.

Let us now consider the splitting calculated for pure SOC, Fig. 5.10(c) and (g).
Since here spin is not a good quantum number, the expectation value S, is plotted
and the splitting is given by the energy difference AE = E| — E; between states with
S; < 0 (light blue) and S, > 0 (orange) in analogy to mg =] and mg =71 in (b)
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Tab. 5.1.: Values AFE of the minimal and maximal band splitting in units of meV which are
reached at ki, and kpax, respectively.

State || ABN, | AEN || AERD! | AERDL || ABun ™ | ABR e || Fmins kmax
144 176 -153 153 -58 252 0.22%,0.82%
-14 149 -300 300 -155 260 0.332%,0.672%
-32 62 -202 202 -243 354 0.372%,0.632%

and (f), respectively. Note, that for a and § this definition cannot be applied to the
exotic region in the vicinity of the M point, where spin has the same sign on the split
branches of each band. Therefore, the sign of the splitting is chosen such, that the
splitting function is steady in k,. In analogy to the exchange field and in accordance
with our findings for the spin-orbit field in the previous section, we express the latter
as

BY — —AED (k,)e, (5.12)

with ¢ € {«,3,7}. Apparently, Bg) (M) = 0, while with increasing distance from
M the absolute value of Bg) first increases linearly in k, for all three surface states.
For a and § the linear behaviour is restricted to the exotic region of the intrinsic
SOL At k, = (0.5 + 0.05)%’r which lies at the boundary of the latter, the splitting
reaches its maximal absolute value with 153 meV for o« and 202meV for 5. Further,
the slope of the splitting function changes sign and becomes increasingly smaller
with increasing distance from M. In accordance with our extensive discussion of the
Rashba field, the splitting has opposite sign to the right and left of the M point, i.e.
Bg) (0.5—Ak) = —Bg)(—(0.5+A/~c)), where Ak describes the distance from M. As we
will see in the following, it is important to notice, that the spin-orbit and the exchange
interactions are of similar strengths. Comparing (f) and (g) we immediately see, that
the exchange splitting J is an even function in kj, i.e. J(0.5 - Ak) = J(—(0.5+ Ak)),

whereas the spin-orbit splitting Bg)(k‘”) is odd, Bg)(0.5 —Ak) = —Bg)(—(o.f) +AE)).
This implies that on one side of M the two fields point in the same direction, while on
the other side they are antiparallel. For k, < 0.5 the effective exchange and spin-orbit

fields of o and 3 are antiparallel, while for £, > 0.5 both Bé{a’ﬁ ) and Ja,p are positive,
the fields must thus be parallel. In the case of v exchange and spin-orbit fields are
parallel for k£, < 0.5—0.04 and 0.5 < k,, < 0.5+ 0.04, whereas for 0.5—-0.04 < k, < 0.5
and k, > 0.5 + 0.04 they are antiparallel.

Fig. 5.10(d) shows the band and spin structure when both the spin-orbit and ex-
change interactions are taken into account. According to Fig. 5.9 and our assumption
that BA™ is the vector sum of the spin-orbit and exchange fields, the mutual orien-
tation and the respective strength of the latter two determines how the spin-structure
and dispersion change in the AFM phase. In Fig. 5.10 we consider the high-symmetry
direction for which spin-orbit and exchange fields are collinear. In the case of a parallel
alignment of the latter, they augment each other and consequently the splitting of
the bands increases, whereas in the case of an antiparallel alignment they weaken
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each other and consequently the splitting of the bands becomes smaller. If in the
antiparallel scenario Bg) = J; the splitting may even vanish and for B < J, spin may
even change sign. Looking at Fig. 5.10(d), we find indeed that each of the considered
cases is realised. The corresponding band splitting is given in (h) and defined in the
same way as for the case, where only SOI is considered. Comparing (h) to (g) we
find that the splitting functions are shifted upward. This implies for v and S that
for k£ < 0.5 the splitting is mostly reduced in the AFM phase, while for k > 0.5 the
splitting becomes larger, which is in accordance with our discussion of the weakening
or augmentation of the effective magnetic field due to the mutually antiparallel and
parallel alignment of the spin-orbit and exchange fields to the left and right of M,
respectively. For oo we even meet the cases in which (1) the two fields cancel each other
and the splitting vanishes, and (2) the effective magnetic field changes sign in the
AFM phase, which is seen in a change of sign of the splitting function from negative
in the PM to positive in the AFM phase. In the dispersion, this appears in form of
the crossing of the a bands with opposite spin characters. In the M point itself, the
splitting remains zero but the energy separation between o and 3 increases by 31 meV
from 238 meV to 269 meV proving that the exchange field does not vanish. For + the
spin-orbit field has the opposite sign than for a and , thus the splitting increases for
ky < 0.5 and decreases for k, > 0.5. Moreover, the crossing point of the v bands at
which the splitting vanishes is shifted slightly away from M.

To check if BA™ is indeed the sum of the bare exchange field in (b,f) and the
spin-orbit field in (c, g), the sums of the respective splitting functions are shown as
dotted lines in (h). We find, that outside of the exotic region around the M point the
splitting of « is well approximated by the sum .J, + B,, whereas in the vicinity of M
the offset between the solid and dotted orange lines is very large. For 8, whose bands
are mostly confined to the exotic k) region, we get a very similar result. On the other
hand, the summation works well for «, for which, however, the exchange interaction
around the M point is much weaker than the SOI. Thus we may conclude, that outside
of the exotic region around the M point B?HF M can be indeed described as the sum
of the bare exchange and the spin-orbit field, whereas close to M the exchange field
strongly deviates. Finally, Table 5.1 summarises the minimum and maximum values
of the splittings.

Spin structure In the following, we are going to analyse the band and spin structure
of v and ~y for the other high-symmetry directions and the CECs, too. In our discussion,
we will omit the exotic region around the M point as well as the 3 state, whose bands
range mostly within the latter. Instead, we will focus on the combination of the
linear and cubic Rashba-like SOI with the exchange interaction. Fig. 5.11 shows
the DFT-derived dispersion and the spin structure of o and + in terms of isoenergy
contours and high-symmetry cuts for the PM (a,d) and AFM phases (b, e, ¢, ). For the
magnetisation direction we consider [100] and [110]. The calculated band structure for
either case is given in (b, e) and (c, f), respectively. Note, that a given magnetisation
direction refers to the first Gd layer below the Si-terminated surface, while the global
magnetic order in the slab is of course antiferromagnetic. In Fig. 5.11 each row presents
one spin component: red and blue colours encode S, > 0 and S, < 0, orange and light
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Fig. 5.11.: Dispersion and spin structure of the surface states a and v in (a,d) the PM
and (b, e,c,f) the AFM phases. The expectation values of the spin components S, and S,
are shown in orange (S, > 0) or light blue (S, < 0) and red (S, > 0) or blue (S, < 0),
S, = 0. The line width reflects the absolute value of the single spin components. In the
left column, isoenergy cuts are drawn. The black dotted lines indicate the high-symmetry

directions X-M—X or I'-M-T. In (a) and (d) they are numbered consecutively from 1 to 4.
Small black arrows mark the direction in which we move along a particular k& path in the
four accordingly numbered panels on the right. Gray arrows drawn with the isoenergy cuts
indicate the direction of the exchange field, which is [100] in (b,e), and [110] in (c, f).

blue S; > 0 and S, < 0, respectively. The columns containing the F (k”) plots are
numbered from (I) to @). Each number corresponds to a particular X-M-X or I-M-T'
high-symmetry path, specified by the dotted lines drawn in the upper CECs plot in
Fig. 5.11(a). There, small black arrows additionally indicate the direction along which

the bands are plotted.

Obviously, there are pronounced differences in the dispersion and the spin structure
between the PM and the two considered AFM phases. We can make several general
statements that are valid for both magnetisation directions. A comparison of the
CECs reveals that the fourfold rotational symmetry of the PM phase reduces to mirror
symmetry in the magnetic phases. The mirror line is the axis that is perpendicular
to the magnetisation axis. The reduced symmetry is reflected in the high-symmetry
E (k:”) cuts, too. While in the PM phase the bands disperse symmetrically with respect
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to the M point for all high-symmetry directions, in the magnetic phases the dispersion
is only symmetric for the high-symmetry direction that is parallel to the magnetisation
axis. Those are the X-M-X path (D) for [100] and the T-M-T path (2) for [110]. As
we will discuss in detail below, a symmetric dispersion is found when exchange and
spin-orbit fields are perpendicular to each other. The dispersion of the bands along
the remaining high-symmetry directions shows strong asymmetries, which are most
pronounced for those who are perpendicular to the magnetisation axis. The changes
in the dispersion are closely related to changes in the spin structure. For example,
along the horizontal X-M-X path (I) in the PM phase the spin structure is Sy-only,
i.e. the expectation value S, vanishes for all k,, whereas in the magnetic phases
Sz # 0. Another interesting observation is the change of the spin expectation value
along a particular band as seen, for example, in Fig. 5.11(c) in the left branch along
the vertical X-M-X path (3).

Let us now consider the surface states in detail, starting with « for the [100]
magnetisation direction. According to our previous discussion the changes in spin
and dispersion are related to the mutual alignment and relative strength of spin-orbit
and exchange fields, which add up to the total effective field of the AFM phase, as
was schematically shown in Fig. 5.9. For o we found a negligible k| dependence of
the exchange field having an absolute value of about 180 meV, and a slightly varying
absolute value of the spin-orbit field, which decreases with increasing distance from M,
cf. Fig. 5.10(f, g). Moreover, the orientation of the exchange field is fixed along [100],
while the Rashba field possesses the triple-winding symmetry, continuously changing
direction with the polar angle . Here, we consider three limiting cases for the mutual
alignment between the Rashba and exchange fields:

1. Br | By, The first case is realised along the horizontal X-M-X path (). Here,
the spin structure is Sy-only in the PM phase, i.e. S; = 0 for all k; and the Rashba
field points into negative (k, < 0.5, left branch) or positive (k; > 0.5, right branch)
y direction. The addition of the exchange field to the Rashba field implies that the
effective magnetic field acquires an x component in the AFM phase, which is the same
for all k; (assuming that J = const.) on the given path and leads to S, > 0 (orange)
on the outer and S; < 0 (light blue) on the inner band of the « state. Moreover, the
absolute value of the effective magnetic field increases in the AFM phase which results
in a larger energy splitting of the surface state bands.

2. Br || Bxc In the second case, the Rashba and exchange fields point in the same
direction (—e;). In this scenario, which is realised along the X-M-X path (3) for
ky, > 0.55, each field considered separately would induce an S;-only spin structure
with Sy, = 0 for all k,. Hence, the spin structure does not change in the AFM phase
but the parallel alignment increases the effective magnetic field and hence, the energy
splitting of the bands.

3. Br ]| Byc The third case with an antiparallel configuration of the Rashba and
exchange fields is realised along the X-M-X path (3), too, for k, < 0.45. Looking at
Fig. 5.11 we find, that at k, ~ 0.38 the two bands of the left branch are degenerate
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implying that the exchange field compensates the Rashba field and B?ff M — 0. For
larger k, (closer to M) the Rashba field is larger than the exchange field, and thus
the spin structure is the same as in the PM phase, while the splitting is reduced since
the exchange field partly compensates the Rashba field. For k, < 0.38 (further away
from M) the exchange field is stronger than the Rashba field and thus, spin changes
sign. A similar argumentation can be applied to the I-M-T' directions, which are
intermediate cases.

For magnetisation along [110] the exchange field is given by By. = —J/v/2(es + €y).
For this arrangement, the limiting cases in which the exchange and Rashba fields
are mutually collinear or perpendicular emerge along the T-M-T' paths (@) and (2),
respectively. Since the modification of the spin structure in the AFM phase follows
the same principles as in the [100] case, we will refrain from a detailed discussion
of the band and spin structure in Fig. 5.11(c). The only thing to be pointed out is
the spin structure for the X-M-X high-symmetry path (3). Moving from M leftwards
along one of the o bands towards smaller k,, we find that the sign of S, changes on
the band without passing of a degeneracy as we observed it for [100]. In difference to
[100], here the Rashba and exchange fields are not antiparallel and thus, the sign of
one spin component may change without band crossing. A crossing as for X-M-X in
the [100] case, we find for [110] along the T-M-T path (4).

For the ~ state the Rashba field is characterised by a single winding with opposite
winding sense in comparison to «. In difference to «, here we can expand our discussion
to the M point and its immediate vicinity since « is not subject to the intrinsic SOI.
The principles apply to the description of the changes in spin and dispersion in terms
of two effective magnetic fields due to the Rashba effect and exchange interaction. For
v the exchange field lifts the degeneracy of the bands at the M point, shifting the
crossing point into the close vicinity of M. For magnetisation along [100] the crossing
point is shifted along X-M-X path (3) toward smaller ky, i.e. leftward. For [110], it
is shifted leftward, too, but along the T-M-T path (@). As we may expect from our
previous discussion, in both cases the crossing point is shifted along the high-symmetry
directions for which the Rashba and exchange fields are collinear to each other.

To conclude the discussion of the spin structure in the AFM phase Fig. 5.12 gives
a compact, energy-projected view of the spin structure of the surface state bands. In
the left and right columns, the results for the energetically lower and higher bands are
shown, while the rows represent the PM, the [100]-AFM and the [110]-AFM phases.
The colour map ranges from orange for S = e, over red for § = e, and light blue
for § = —e, to dark blue for § = —e,, or equally, the polar angles g of 0, 5, 7, 37”,
respectively. Note, that the absolute value of the spin is neglected and set to S = g
for all k. Moreover, on the right-hand side, the S, and Sy spin components are shown
separately in the previously used orange-light blue and red-dark blue colour schemes,
respectively.

Comparing the results for the AFM phase with [100] to those of the PM phase,
we still recognise a triple winding of the spin along the CECs up to an energy of
about ' ~ —0.36 eV, at which we observed the crossing point in the E(k,) plot along
X-M-X path (3) in Fig. 5.11(b). For higher energies the triple winding collapses in the
lower corner of the star-shaped plot where the exchange field is (almost) antiparallel
to the Rashba field and becomes stronger than the latter, flipping the spins close to
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Fig. 5.12.: Calculated spin structure of « in (a,b) the PM phase, (b,c) the AFM [100] phase
and (e, f) the AFM [110] phase for the lower and upper band, respectively. The colour scheme
used to visualise the orientation of the spin is the same as before, see Fig. 5.6.

the vertical X-M-X path and ky =~ 0.375, ky, > 0.565. Note, that the spin-flip is
nicely seen in the S; map, too. Sy, in turn widely preserves the symmetry of the PM
phase. For AFM with magnetisation along [110], we can find CECs on which the triple
winding is preserved, too. Equally, we find CECs where the triple winding collapses.

Magnetic domains

In Fig. 5.13 the ARPES-derived Fermi map taken at 23 K is compared with the results
of DFT calculations simulating two magnetic domains with opposite magnetisation.
Like before, we consider the two cases in which the moments are oriented collinear with
the [110] or [100] directions. The results are plotted in Fig. 5.13(b) and (c), respectively,
where states that belong to the positive sign of the magnetisation are plotted in green,
and those reflecting the opposite magnetisation in purple. Accordingly coloured arrows
drawn in the lower right corner point into the corresponding magnetisation direction.
Apparently, the shape of the Fermi contours of the « state differs notably not only
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Fig. 5.13.: Fermi surface of GdIrsSis in presence of magnetic domains. (a) ARPES data
taken at 23K from the Si-terminated surface of GdIrySis. DFT simulations in the case of
two domains associated with an antiparallel magnetisation for (b) the [110] and (c) the [100]
direction. Purple and green correspond to the sign of magnetisation.

between (b) and (c) but also for opposite magnetisation directions with respect to the
same axis. A closer look at the green and purple CECs reveals that they are mirror
images of each other with the mirror line being perpendicular to the magnetisation
axis. Comparison of the calculated data with the measured Fermi map thus supports
the interpretation that the band doubling is due to domain formation. Moreover, the
very good agreement of the measured CECs with those shown in Fig. 5.13(b) gives
strong evidence that the magnetisation axis is [110], at least for the measurement
temperature of 23 K. However, we cannot exclude that the easy axis changes with
temperature.

The domain formation that leads to the doubling of the surface state bands can
be of different origins. If we assume an ideal, atomically flat and uniform surface a
band doubling can be observed only if magnetic domains form in the crystal and are
probed simultaneously, which is inevitable if the size of the domains is smaller than the
probed area, i.e. smaller than the spot size of the photon beam. Another possibility
is the probing of different surface domains due to an imperfect, stepped surface.
In the cleaving procedure that is applied to prepare the atomically clean surface
indispensable for UV-ARPES experiments, a manifold of atomically flat regions of
uniform termination is produced. Assuming exclusively Si termination those uniform
“crystallites” are separated from each other by multiple steps of three atomic layers
(Gd-Si-Ir). If the number of steps between neighbouring, uniform areas is uneven, the
adjacent crystallites will have opposite magnetisation, for an even number of steps,
they will have the same magnetisation. This is a consequence of the AFM order of
GdIrySis in the bulk and holds only if the considered crystallites belong to the same
magnetic domain. The two scenarios are schematically sketched in Fig. 5.14.

Note, that we observe additional bands for 3, too. Moreover, we find that the
surface resonant band (*) splits in the magnetic phase into two bands. This state is
rather located at the Gd-terminated surface, indicating an admixture of the latter
in our spectra. Nonetheless, in the PM phase, this band is not split or the splitting
is too small to be resolved experimentally, which implies that the surface resonant
state is not subject to the Rashba effect since, as surface resonance, it underlies the
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Fig. 5.14.: Domain formation. Schematic view on the origin of the doubling of the surface-state
bands due to magnetic domains or a stepped surface.

symmetry restrictions of the bulk, and hence, it must be degenerate. Therefore the
splitting must be pure magnetic splitting, i.e. the spin degenerate bands split under
the influence of some exchange interaction due to the ordering of the Gd moments.

5.3. Summary

Extensive and long-term studies of LnT5Siz, compounds showed, that the surface
Si—T—Si—Ln block forms a promising system for studying the Rashba-like SOI and
its joint action with exchange magnetism on 2D charge carriers. Particularly, the
surface states located in a large projected band gap around the M point attracted
great interest. To combine a strong SOC with exchange magnetic interaction it seems
logical to bring together heavy Ir with magnetically active Gd within the respective
Si—T-Si—Ln block. Due to its half-filled 4f shell, implying L = 0, and therefore
pure spin moment J = S = 7/2, Gd is the simplest magnetically active rare-earth
elemen