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Abstract

Mathematical definitions provide a precise, unambiguous way to formulate concepts. They
also provide a common language between disciplines. Thus, they are the basis for a well-
founded scientific discussion. In addition, mathematical definitions allow for deeper in-
sights into the defined subject based on mathematical theorems that are incontrovertible
under the given definition. Besides their value in mathematics, mathematical definitions
are indispensable in other sciences like physics, chemistry, and computer science. In com-
puter science, they help to derive the expected behavior of a computer program and provide
guidance for the design and testing of software. Therefore, mathematical definitions can
be used to design and implement advanced algorithms.

One class of widely used algorithms in computer science is the class of particle-based al-
gorithms, also known as particle methods. Particle methods can solve complex problems in
various fields, such as fluid dynamics, plasma physics, or granular flows, using diverse sim-
ulation methods, including Discrete Element Methods (DEM), Molecular Dynamics (MD),
Reproducing Kernel Particle Methods (RKPM), Particle Strength Exchange (PSE), and
Smoothed Particle Hydrodynamics (SPH). Despite the increasing use of particle meth-
ods driven by improved computing performance, the relation between these algorithms
remains formally unclear. In particular, particle methods lack a unifying mathematical
definition and precisely defined terminology. This prevents the determination of whether
an algorithm belongs to the class and what distinguishes the class.

Here we present a rigorous mathematical definition for determining particle methods
and demonstrate its importance by applying it to several canonical algorithms and those
not previously recognized as particle methods. Furthermore, we base proofs of theorems
about parallelizability and computational power on it and use it to develop scientific
computing software.

Our definition unified, for the first time, the so far loosely connected notion of particle
methods. Thus, it marks the necessary starting point for a broad range of joint formal
investigations and applications across fields.
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Chapter 1

Introduction

1.1 The Role of Mathematical Definitions

Mathematical definitions provide a precise, unambiguous way to formulate concepts. These
definitions can then be employed in further investigations and calculations. For example,
the symbol of the empty set ∅ is defined as the set containing no elements ∅ := \{ \} , which
is used to define the natural numbers and the von Neumann ordinals [66].

Definitions also provide a common language, thus the basis for a well-founded scientific
discussion. By agreeing on a definition, one can reason and argue about a concept and
distinguish whether a statement about it is true. For instance, if we define \itB := \{ ∅, \{ ∅\} \} 
the statement ∅ \in \itB is true, whereas if we defined \itB := ∅, this would not be the case.
Hence, it becomes necessary to use only equivalent definitions of one concept in a specific
discussion to prevent misunderstandings. By providing a common language, mathematical
definitions can help bridge the gap between different scientific disciplines. For example, in
graph theory, where the edges can be defined as a square matrix (the adjacency matrix)
and vice versa, providing each field the tools of the other.

Mathematical definitions also allow for deeper insights into the defined subject based on
mathematical theorems that are incontrovertible under the given definition. For instance,
a connected graph has an Euler cycle if and only if every vertex has an even degree [39].
If we assume the definitions of graph theory for all these terms, we know, thanks to the
theorem, that this statement is true for all graphs that fulfill this restriction.

Besides their value in mathematics, mathematical definitions are indispensable in other
sciences like physic, chemistry, or computer science. Through the definition of theoretical
computer models, i.e., automata, definitions help to derive the expected behavior of a
computer program, like the convergence rate of a numerical solver or the time and space
complexity of an algorithm. Hence, they provide guidance for the design and testing of
software.

Together, mathematical definitions form the basis for informed scientific discussions in
computer science and can be used to design and implement advanced algorithms.
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1.2 Particle Methods

Particle methods are a classic and widely used class of algorithms in computational sci-
ence, with various applications ranging from computational plasma physics [40, 86, 9] to
computational fluid dynamics [20, 62]. Historically, some of the first computer simulations
in these domains used particle methods [87, 17], and the field is still under active devel-
opment [22, 10]. A key advantage of particle methods is their versatility, as they can be
used to simulate both discrete and continuous models stochastically or deterministically.

In simulations of discrete models, particles naturally represent the discrete entities
of the examined model, such as atoms or molecules in molecular dynamics (MD) simu-
lations [2], cars in simulations of road traffic [57], or grains of sand in discrete-element
simulations of granular flows [89]. When simulating continuous models or numerically
solving differential equations, particles represent mathematical collocation or Lagrangian
tracer points of the discretization of the continuous fields [72, 23]. The evaluation of
differential operators on these fields can directly be approximated on the particles us-
ing numerical methods such as Smoothed Particle Hydrodynamics (SPH) [34, 62, 58],
Reproducing Kernel Particle Methods (RKPM) [56], Particle Strength Exchange (PSE)
[25, 30], or Discretization-Corrected PSE (DC-PSE) [79, 8]. Also, simulations of hybrid
discrete-continuous models are possible, as often done in plasma physics, where discrete
point charges are coupled with continuous electric and magnetic fields [40, 86, 9]. Be-
yond the field of simulations, structurally similar algorithms have been developed, e.g.,
particle-based image processing methods [11, 1], point-based computer graphics [36], and
computational optimization algorithms using point samples [38, 63].

In addition to their versatility, particle methods can efficiently be parallelized on
shared- and distributed-memory computers [48, 43, 77, 44, 75]. Furthermore, they simplify
simulations in complex [78] and time-varying [5] geometries, as no computational mesh
needs to be generated and maintained. Therefore, their versatility, parallelizability, and
flexibility render particle methods popular in various fields.

Despite the structural similarities of all these algorithms and methods, there is no
consensus on what constitutes particle methods and if the methods discussed before are
all particle methods. Some see particle methods exclusively as a method for simulating
continuum mechanics based on the Lagrangian description and meshless discretization [51,
80] like fluid dynamics. In contrast, others exclusively employ particles for discrete objects
of more solid materials [92, 83], others for both [43, 15, 68, 89], and others do not call
their methods ``particle methods"" [38]. Looking deeper, we find similar techniques for the
different views, e.g., representing arbitrarily shaped boundaries by placing particles with
fixed positions on the boundary. In the SPH community, this is referred to as \itd \ity \itn \ita \itm \iti \itc 
\itb \ito \itu \itn \itd \ita \itr \ity \itc \ito \itn \itd \iti \itt \iti \ito \itn \its [24], and for molecular dynamics, we find this as \itf \itr \ito \itz \ite \itn \itp \ita \itr \itt \iti \itc \itl \ite \its 
\itm \ite \itt \ith \ito \itd [92]. In summary, the term ``particle methods"" is widely used but ambiguous.

Not only is the terminology ""particle methods"" widely used and ambiguous, we also
find that these two properties, widespread use, and ambiguity, are also present in defining
the constituents of particle methods. We identify five main constituents, which resemble
five concepts but are denoted with various terms. The first constituent is the basic set of
objects which get manipulated throughout the algorithms. In many cases, abstract terms
are used to denote them like ``particles"" [40, 1, 20, 87, 89, 72, 36, 46, 33, 93, 13, 69, 94,
29, 19, 7, 60, 55, 67], ``agents"" [7, 45, 60, 12, 55], ``points"" [40, 36, 63, 13, 94], ``bodies""
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[87, 19], or ``(discrete) elements"" [89, 29, 19, 67] in other cases, they are named after the
objects they represent, e.g., ``rods"" [40], ``molecules"" [87], or ``pedestrians"" [57]. Despite
their different names, they represent the same concept of an object with properties and,
in most cases, a position in some space but sometimes without a position [45]. The second
constituent is these objects' ability to change each other's properties. This behavior is
abstractly known as ``interaction"" [40, 1, 87, 89, 72, 36, 57, 46, 94, 93, 13, 19, 7, 45,
12, 55, 67], but also denoted as the action it describes, e.g. ``collision"" [40, 89, 46],
``interpolation"" [33, 69], or ``influence"" [60]. The third constituent is the determination
when objects are ``interacting"". This is not only to find interaction partners but often
also reduces computation. This concept is usually known as ``neighborhood"" [1, 72, 36,
46, 94, 93, 13, 19, 12, 67], or ``surrounding"" [40, 57, 13, 69, 7, 12], but also as ``sampling
radius"" [63], ``within a distance"" [87], ``contact"" [29, 19], or described by the method they
use to determine it, like ``Verlet-list"" [89]. The fourth constituent is the change of a particle
independent of other particles. It is rarely abstracted or treated as a unique concept. We
find it as ``evolution"" [72, 33, 94, 12, 19] but more often as the behavior it describes, like
``movement"" or ``motion"" [46, 57, 89, 67, 94, 69, 29]. The fifth and last constituent we
identified is the change of the whole system in one step. This is also called ``evolution"" [1,
72, 36, 63, 69, 7, 45, 60, 55, 67], but more often ``(time) step"" [40, 20, 87, 89, 36, 57, 46,
33, 94, 93, 13, 69, 29, 7, 12, 55, 67], ``update"" [63, 57] or ``iteration"" [1, 45]

In literature, it is seen that the term ""evolution"" is, in fact, employed for three different
sets of transitions, first for the transition of one particle [19], second for the transition of
the system in one time step [67], and third for the transition of the system for the entire
simulation [89]. This highlights the ambiguity of the terms related to particle methods.
There are multiple terms for similar concepts and the same terms for multiple concepts.

Overall, particle methods are a widely used, parallelizable collection of loosely con-
nected methods with a rich theory due to decades of advances but lacking a unifying
mathematical definition with precisely defined terminology.



4

1.3 Scope and Contributions of this Thesis

In this thesis, we aim to demonstrate that a mathematical definition of the algorithmic
class of particle methods unifies the so far loosely connected notion and enables joint
formal investigations across methods. Therefore we follow the following five steps.

First, we give a mathematical definition of particle methods based on the commonly used
terms with their intuitive understanding and their usual way of implementation.

Second, we employ this definition to express a wide variety of algorithms as particle
methods, ranging from canonical examples like SPH and MD to non-canonical examples
like Triangulation refinement and Gaussian elimination.

Third, we analyze the parallelizability of our definition of particle methods for shared- and
distributed-memory parallel computers. Here, we provide formal parallelization schemes,
sets of restrictions under which they are applicable, and requisite proofs that they return
the same results as our definition of particle methods.

Fourth, we investigate the limits of the computational power of our definition of particle
methods. In this regard, we prove for different sets of restrictions of our definition that it
is still Turing powerful, and we prove for a more restrictive set that the definition is not
anymore Turing powerful but instead the halting problem is decidable for it.

Fifth and last, we demonstrate the practical applicability of the definition as an interface
for scientific computing software. For this purpose, we designed, implemented, and tested
a running prototype and showcased its use by implementing and executing examples from
SPH, PSE, and DEM.

Parts of this thesis have been made publicly available as

Johannes Bamme, and Ivo F. Sbalzarini. ""A Mathe-
matical Definition of Particle Methods."" arXiv preprint
arXiv:2105.05637 (2021).

https://arxiv.org/abs/2105.05637
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Chapter 2

Terminology and Notation

We introduce the notation and terminology used and define the underlying mathematical
concepts.

Definition 1. The Kleene star \itA \ast is the set of all tuples of elements of a set \itA , including
the empty tuple (). It is defined using the Cartesian product as follows:

\itA 0 :=\{ ()\} , \itA 1 := \itA , \itA \itn +1 := \itA \itn \times \itA for \itn \in N>0 (2.1)

\itA \ast :=

\infty \bigcup 
\itj =0

\itA \itj . (2.2)

Notation 1. We use bold symbols for tuples of arbitrary length, e.g.

p \in \itP \ast . (2.3)

Notation 2. We use regular symbols with subscript indices for the elements of these
tuples, e.g.

p = (\itp 1, ..., \itp \itn ). (2.4)

Notation 3. We use regular symbols for tuples of determined length with specific
element names, e.g.

\itp = (\ita , \itb , \itc ) \in \itA \times \itB \times \itC . (2.5)

Notation 4. We use the same indices for tuples of determined length and their named
elements to identify them, e.g.

\itp \itj = (\ita \itj , \itb \itj , \itc \itj ). (2.6)

Notation 5. We use underlined symbols for vectors, e.g.

\itv \in \itA \itn . (2.7)

Definition 2. Be \ita \in R, \ita = \itz + \itr with \itz \in Z, \itr \in R, and 0 \leq \itr < 1. Then rounding
down of a real number \ita \in R is defined as

\lfloor \ita \rfloor := \itz . (2.8)



6

Definition 3. Rounding down of a vector \itv \in R\itd is defined element-wise

\lfloor \itv \rfloor :=

\left(   \lfloor \itv 1\rfloor 
...
\lfloor \itv \itd \rfloor 

\right)   . (2.9)

Definition 4. The number of elements of a tuple p = (\itp 1, ..., \itp \itn ) \in \itP \ast is defined as

| p| := \itn . (2.10)

Definition 5. The Euclidean-length of a vector \itv \in R\itd is defined by the \ell 2-norm

| \itv | =

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
\itv 1
...
\itv \itd 

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| :=
\sqrt{} 
\itv 21 + . . .+ \itv 2\itd . (2.11)

Definition 6. The Maximum-length of a vector \itv \in R\itd is defined by the \ell \infty -norm

| \itv | \infty =

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
\itv 1
...
\itv \itd 

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
\infty 

:= max (\itv 1, . . . , \itv \itd ) . (2.12)

Definition 7. The composition operator \ast \ith of a binary function \ith : \itA \times \itB \rightarrow \itA is
recursively defined as:

\ast \ith : \itA \times \itB \ast \rightarrow \itA (2.13)

\ita \ast \ith () := \ita (2.14)

\ita \ast \ith (\itb 1, \itb 2, ..., \itb \itn ) := \ith (\ita , \itb 1) \ast \ith (\itb 2, ..., \itb \itn ). (2.15)

\itE \itx \ita \itm \itp \itl \ite 1. For  - the ordinary arithmetic subtraction, the operator \ast  - is:

9 \ast  - () = 9,

13 \ast  - (3, 4, 1) = (13 - 3) \ast  - (4, 1) = ((13 - 3) - 4) - 1 = 5.

Definition 8. The concatenation \circ : \itA \ast \times \itA \ast \rightarrow \itA \ast of tuples (\ita 1, ..., \ita \itn ) , (\itb 1, .., \itb \itm ) \in \itA \ast 

is defined as:
(\ita 1, ..., \ita \itn ) \circ (\itb 1, .., \itb \itm ) := (\ita 1, ..., \ita \itn , \itb 1, .., \itb \itm ) . (2.16)

Definition 9. We define the construction of a subtuple b \in \itA \ast of a \in \itA \ast . Be
\itf : \itA \ast \times N\rightarrow \{ \top ,\bot \} (\top = \itt \itr \itu \ite , \bot = \itf \ita \itl \its \ite ) the condition for an element \ita \itj of the tuple a
to be in b. b = (\ita \itj \in a : \itf (a, \itj )) defines a subtuple of a as follows:

b = (\ita \itj \in a : \itf (a, \itj )) := (\ita \itj 1 , ..., \ita \itj \itn )

\updownarrow a = (\ita 1, ..., \ita \itj 1 , ..., \ita \itj 2 , ..., \ita \itj \itn , ..., \ita \itm )

\wedge \forall \itk \in \{ 1, .., \itn \} : \itf (a, \itj \itk ) = \top .
(2.17)
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\itE \itx \ita \itm \itp \itl \ite 2. Be a = (4, 1, 1, 5, 66, 3, 4, 30) and \itf (a, \itj ) := (\ita \itj < 5) then

b :=(\ita \itj \in a : \itf (a, \itj ))

=(\ita \itj \in (4, 1, 1, 5, 66, 3, 4, 30) : \ita \itj < 5)

=(4, 1, 1, 3, 4).

Definition 10. A permutation \sigma is a bijective function mapping the finite set \itA 
(| \itA | < \infty ) to itself

\sigma : \itA \rightarrow \itA . (2.18)

Definition 11. Be a = (\ita 1, . . . , \ita \itn ) \in \itA \itn a tuple and \sigma : \{ \ita 1, . . . , \ita \itn \} \rightarrow \{ \ita 1, . . . , \ita \itn \} a
permutation. Then, the permutation of a tuple is defined as:

\sigma (a) := (\sigma (\ita 1), . . . , \sigma (\ita \itn )) . (2.19)

Definition 12. Be \alpha = (\ita 1, . . . , \ita \itn ) \in \itA 1 \times . . . \times \itA \itn a tuple. Then, an element \langle \alpha \rangle \itj of
a tuple is defined as

\langle \alpha \rangle \itj := \ita \itj , (2.20)

and a collection tuple \langle \alpha \rangle (\itj 1,...,\itj \itm ) of a tuple with \itj 1, . . . , \itj \itm \in \{ 1, . . . , \itn \} is defined as

\langle \alpha \rangle (\itj 1,...,\itj \itm ) := (\ita \itj 1 , . . . , \ita \itj \itm ). (2.21)

Definition 13. A subresult \itk \itf of a function

\itf : \itA 1 \times . . .\times \itA \itn \rightarrow \itB 1 \times . . .\times \itB \itm (2.22)

is defined as

\itk \itf (\ita 1, . . . , \ita \itn ) := \langle \itf (\ita 1, . . . , \ita \itn )\rangle \itk with \itk \in \{ 1, . . . ,\itm \} . (2.23)

Notation 6. We use a big number with over- and underline for a vector with the
same number for all entries, e.g.

1 := (1, . . . , 1)\bfT \in N\itd . (2.24)

Definition 14. Be the dimension of the domain \itd , the vectorial index space

N\itd \cap 
\bigl[ 
1, I

\bigr] 
with I = (\itI 1, . . . , \itI \itd )

\bfT \in \itN \itd 
>0, (2.25)

and the corresponding scalar index space\Biggl\{ 
1, . . . ,

\itd \prod 
\itt =1

\itI \itt 

\Biggr\} 
(2.26)

Then, the translation of a scalar index to a vectorial index is

\bfI \iota :

\Biggl\{ 
1, . . . ,

\itd \prod 
\itt =1

\itI \itt 

\Biggr\} 
\rightarrow N\itd \cap 

\bigl[ 
1, I

\bigr] 
(2.27)
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and defined as

\bfI \iota (\itj ) :=

\left(                    

(\itj  - 1) - 
\Bigl\lfloor 
\itj  - 1
\itI 1

\Bigr\rfloor 
\itI 1 + 1\Bigl\lfloor 

\itj  - 1
\itI 1

\Bigr\rfloor 
 - 

\Bigl\lfloor 
\itj  - 1
\itI 1\itI 2

\Bigr\rfloor 
\itI 2 + 1

...\biggl\lfloor 
\itj  - 1\prod \itl  - 1
\itt =1 \itI \itt 

\biggr\rfloor 
 - 

\Bigl\lfloor 
\itj  - 1\prod \itl 
\itt =1 \itI \itt 

\Bigr\rfloor 
\itI \itl + 1

...\biggl\lfloor 
\itj  - 1\prod \itd  - 2
\itt =1 \itI \itt 

\biggr\rfloor 
 - 

\biggl\lfloor 
\itj  - 1\prod \itd  - 1
\itt =1 \itI \itt 

\biggr\rfloor 
\itI \itd  - 1 + 1\biggl\lfloor 

\itj  - 1\prod \itd  - 1
\itt =1 \itI \itt 

\biggr\rfloor 
+ 1

\right)                    

. (2.28)

The backward translation of a vectorial index to a scalar index is

\bfI \iota  - 1 : N\itd \cap 
\bigl[ 
1, I

\bigr] 
\rightarrow 

\Biggl\{ 
1, . . . ,

\itd \prod 
\itt =1

\itI \itt 

\Biggr\} 
, (2.29)

and defined as

\bfI \iota  - 1(\itj ) := 1+(\itj 1 - 1)+(\itj 2 - 1)\itI 1+(\itj 3 - 1)\itI 1\itI 2+. . .+(\itj \itl  - 1)
\itl  - 1\prod 
\itt =1

\itI \itt +. . .+(\itj \itd  - 1)
\itd  - 1\prod 
\itt =1

\itI \itt . (2.30)
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Chapter 3

A Formal Definition of Particle
Methods

3.1 Introduction

As we discussed in detail in chapter 1, formal mathematical definitions provide a rigorous
way of formulating concepts and form, thus the basis for a well-founded scientific discus-
sion in computational science (see sec. 1.1). One of the classic and widely used classes of
algorithms in computational science is particle methods, with various applications rang-
ing from computational plasma physics to computational fluid dynamics (see sec. 1.2).
The algorithms collected under the term ``particle methods"" share structural and termi-
nological similarities but a formal description of those similarities is missing. The current
understanding of particle methods mainly relies on qualitative and loose notions, such as
particles and their interaction and evolution (see sec. 1.2), which have not yet been rig-
orously formalized and rationalized as standalone concepts or together to depict particle
methods as a whole mathematically.

Here, we fill this gap by presenting a formal definition that unifies particle methods.
It opens up new ways of investigating and developing particle methods and algorithms
based on these principles in practical applications of scientific computing.

3.2 Definition of Particle Methods

We define particle methods based on the identified concepts and their terms from the
literature (see sec. 1.2). In summary, we indemnify five basic concepts, first the manipu-
lated object (``particle"", ``point"", etc.), second, the objects' ability to change each other's
properties (``interaction"", ``collision""), third, the determination when objects change each
other's properties (``neighborhood"", ``surrounding""), fourth the change of a particle in-
dependent of other particles (``evolution"", ``motion""), and fifth the change of the whole
system in one ``iteration"" (``(time) step"").

We also structure our definition into three parts with the goal of separation of con-
cerns: First, the definition of the general particle method algorithm structure, including
structural components, namely data structures and functions. Here we mainly use the
concepts and terms of the literature. Second, the definition of a particle method instance.
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A particle method instance describes a specific problem or setting, which can then be
solved or simulated using the particle method algorithm. Third, the definition of the
particle state transition function. The state transition function describes how a particle
method instance proceeds from the instance to the final state using the data structures
and functions from the particle method algorithm. In summary, we present a definition of
particle methods in the most general, sequential form.

3.2.1 Particle Method Algorithm

The definition of a particle method algorithm encapsulates the structural elements of its
implementation in a small set of data structures and functions that need to be specified at
the onset. This approach follows a similar logic as some definitions of Turing machines [52].
Both concepts describe state-transition systems working on discrete objects.

Definition 15. A particle method algorithm is a 7-tuple (\itP ,\itG , \itu , \itf , \iti , \ite ,\r \ite ), consisting
of the two data structures

\itP := \itA 1 \times \itA 2 \times ...\times \itA \itn the particle space, (3.1)

\itG := \itB 1 \times \itB 2 \times ...\times \itB \itm the global variable space, (3.2)

such that [\itG \times \itP \ast ] is the \its \itt \ita \itt \ite \its \itp \ita \itc \ite of the particle method, and five functions:

\itu : [\itG \times \itP \ast ]\times N\rightarrow N\ast the neighborhood function, (3.3)

\itf : \itG \rightarrow \{ \top ,\bot \} the stopping condition, (3.4)

\iti : \itG \times \itP \times \itP \rightarrow \itP \times \itP the interact function, (3.5)

\ite : \itG \times \itP \rightarrow \itG \times \itP \ast the evolve function, (3.6)

\r \ite : \itG \rightarrow \itG the evolve function of the global variable. (3.7)

These are the only objects to be defined by the user to specify a particle method
algorithm.

3.2.2 Particle Method Instance

Using the above definitions of the particle method algorithm and its data structures and
functions, we define an \iti \itn \its \itt \ita \itn \itc \ite of a particle method as a specific realization.

Definition 16. An initial state defines a particle method instance for a given particle
method algorithm (\itP ,\itG , \itu , \itf , \iti , \ite ,\r \ite ):

[\itg 1,p1] \in [\itG \times \itP \ast ]. (3.8)

The instance consists of an initial value for the global variable \itg 1 \in \itG and an initial tuple
of particles p1 \in \itP \ast .
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3.2.3 Particle State Transition Function

In a specific particle method, the elements of the tuple (\itP ,\itG , \itu , \itf , \iti , \ite ,\r \ite ) (3.1) -- (3.7) need
to be specified. Given a specific starting point defined by an instance, the algorithm pro-
ceeds in iterations. Each iteration corresponds to one state transition step \its that advances
the current state of the particle method [\itg \itt ,p\itt ] to the next state [\itg \itt +1,p\itt +1], starting at
the instance [\itg 1,p1]. The state transition uses the functions \itu , \iti , \ite ,\r \ite to determine the
next state. The state transition function \itS generates a series of these state transition
steps until the stopping function \itf is \itt \itr \itu \ite . The so-calculated final state is the result of
the state transition function. The state transition function is the same for every particle
method and does not need to be defined by the user.

Definition 17. We define the \its \itt \ita \itt \ite \itt \itr \ita \itn \its \iti \itt \iti \ito \itn \itf \itu \itn \itc \itt \iti \ito \itn 

\itS : [\itG \times \itP \ast ]\rightarrow [\itG \times \itP \ast ] (3.9)

with three interact sub-functions (\iota \mathrm{I}, \iota \mathrm{I}\times \mathrm{U}, \iota \mathrm{N}\times \mathrm{U}), two evolve sub-functions (\epsilon \mathrm{I}, \epsilon \mathrm{N}) and
the state transition step (\its ). These functions build upon each other. The interact sub-
functions manipulate only a particle tuple p and ultimately compute all interactions of
each particle with all its neighbors.

The first interact sub-function \iota \mathrm{I} calculates one interaction and results, therefore, in
the change of two particles in the particle tuple p = (\itp 1, ..., \itp | \bfp | ),

\iota \mathrm{I}(\itg ,\itj )(p, \itk ) :=
\bigl( 
\itp 1, .., \itp \itj  - 1, \itp \itj , \itp \itj +1, ..., \itp \itk  - 1, \itp \itk , \itp \itk +1, ..., \itp | \bfp | 

\bigr) 
for

\bigl( 
\itp \itj , \itp \itk 

\bigr) 
:= \iti (\itg , \itp \itj , \itp \itk ) . (3.10)

The second interact sub-function \iota \mathrm{I}\times \mathrm{U} builds on \iota \mathrm{I} and calculates for one particle the
interaction with all its neighbors given by the neighborhood function \itu . The result is a
potential change of all involved particles in the particle tuple p,

\iota \mathrm{I}\times \mathrm{U}
\itg (p, \itj ) := p \ast \iota \mathrm{I}

(\itg ,\itj )
\itu ([\itg ,p], \itj ) (3.11)

The third interact sub-function \iota \mathrm{N}\times \mathrm{U} completes the interactions. It uses \iota \mathrm{I}\times \mathrm{U} to calcu-
late the interactions for all particles with their respective neighbors, leading to a change
of p in potentially every particle,

\iota \mathrm{N}\times \mathrm{U}([\itg ,p]) := p \ast \iota \mathrm{I}\times \mathrm{U}
\itg 

(1, .., | p| ) (3.12)

The first evolution sub-function \epsilon \mathrm{I} calculates the evolution of one particle. The result
is stored in the global variable and an intermediate particle tuple q,

\epsilon \mathrm{I}\bfp 
\bigl( 
[\itg ,q], \itj 

\bigr) 
:=

\bigl[ 
\itg ,q \circ q

\bigr] 
for (\itg ,q) := \ite (\itg , \itp \itj ). (3.13)

The second evolution sub-function \epsilon \mathrm{N} calculates for all particles the evolution. The
result is returned in the global variable and a new particle tuple,

\epsilon \mathrm{N}
\bigl( 
[\itg ,p]

\bigr) 
:=

\bigl[ 
\itg , ()

\bigr] 
\ast \epsilon \mathrm{I}\bfp (1, .., | p| ) (3.14)
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The state transition step \its brings all sub-functions together and advances the particle
simulation by one iteration,

\its ([\itg ,p]) :=
\bigl[ 
\r \ite (\itg ), p

\bigr] 
for [\itg ,p] := \epsilon \mathrm{N}

\bigl( 
[\itg , \iota \mathrm{N}\times \mathrm{U}([\itg ,p])]

\bigr) 
. (3.15)

Finally, the state transition function \itS advances the particle method instance to the
final state,

\itS ([\itg 1,p1]) = [\itg \itT ,p\itT ] \leftarrow \rightarrow 
\itf (\itg \itT ) = \top \wedge \forall \itt \in \{ 2, ...,\itT \} : [\itg \itt ,p\itt ] = \its 

\bigl( 
[\itg \itt  - 1,p\itt  - 1]

\bigr) 
\wedge \itf (\itg \itt  - 1) = \bot . (3.16)

We illustrate the state transition function and its sub-functions with the Nassi-Shneiderman
diagram:

1 [\itg ,p]\leftarrow [\itg 1,p1]

\right\}                                 

\its 

\right\}                                           

\itS 

2 while \itf (\itg ) = \bot \right\}       \iota \mathrm{N}\times \mathrm{U}

3 for \itj \leftarrow 1..| p| \right\}   \iota \mathrm{I}\times \mathrm{U}

4 k\leftarrow \itu ([\itg ,p], \itj )

5 for \itl \leftarrow 1..| k| 
6 (\itp \itj , \itp \itk \itl )\leftarrow \iti (\itg , \itp \itj , \itp \itk \itl ) \} \iota \mathrm{I} \right\}       \epsilon \mathrm{N}

7 q\leftarrow () 1

\biggr\} 
\epsilon \mathrm{I}

8 for \itj \leftarrow 1..| p| 
9 (\itg ,q)\leftarrow \ite (\itg , \itp \itj )

2

10 q\leftarrow q \circ q
11 p\leftarrow q

12 \itg \leftarrow \r \ite (\itg )

Figure 3.1: Nassi-Shneiderman diagram of the state transition function \itS with annotated
sub-functions.

This is the most generic form of the state transition function without further constraints
and for sequential computing. Further constraints can be imposed, leading to more specific
state transition functions valid for a subset of particle methods.

3.3 Explanation of the Definition of Particle Methods

3.3.1 Illustrative Example

To illustrate our definition of particle methods, we use a single, simple example throughout
the explanations. This example is motivated by the Discrete Element Method (DEM) [81]
but is greatly simplified and reduced to its key constituents. This example serves didactic
purposes and has no ambition to resemble any real physics but only to illustrate our
abstract concepts in a concrete and straightforward case.

1\bfq is an intermediate result.
2\bfq is an intermediate result.
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The example models perfectly elastic collisions between spheres of uniform diameter
\itd and constant unit mass in a one-dimensional continuous space. The space is without
boundaries, such that no boundary conditions are required. The position \itx of an individual
sphere changes over time \itt , as:

\itx (\itt ) = \itx 0 +

\int \itt 

0
\itv (\itt ) d\itt , (3.17)

where \itv is the velocity of the sphere and \itx 0 its initial position. The explicit Euler time-
stepping algorithm discretizes this equation in time using a fixed time step size \Delta \itt , yield-
ing:

\itx \itt +\Delta \itt = \itx \itt + \itv (\itt )\Delta \itt , (3.18)

which is iterated until a given final time \itt \ite \itn \itd . A perfectly elastic collision between two
spheres 1 and 2 results in them swapping their velocities. The positions before the collision
\itx \itn and the positions after the collision \itx \itn +1 remain the same, leading to the following
collision rules:

\itx \itn +1
1 = \itx \itn 

1 , \itx \itn +1
2 = \itx \itn 

2 , \itv \itn +1
1 = \itv \itn 2 , \itv \itn +1

2 = \itv \itn 1 . (3.19)

Two spheres 1 and 2 are considered colliding if and only if | \itx 2  - \itx 1| \leq \itd .

3.3.2 Explanation of the Particle Method Algorithm

The particle method algorithm definition encapsulates the structural elements the user
has to define. It incorporates two data structures and five functions. In this section, we
explain the data structures and functions in detail and showcase these with the illustrative
example (sec. 3.3.1).

Explanation of the Particle Space \itP 

\itP := \itA 1 \times ...\times \itA \itn (3.1)

The structure of the particle space \itP follows directly from the observation that in any
particle method, the particles are points in some space that carry/store some properties.
Hence, in our definition, a particle is a tuple of properties, with its position being one of
them. The particle space is the Cartesian product of the property sets \itA 1, ...,\itA \itn since
every of the \itn properties of a particle can be of a different data type and hence live
in a different space. Examples of particle properties can include a color, a velocity, an
acceleration, a Boolean flag, a position in some space, a vector, a name, etc.

In the example from Section 3.3.1:

\itp := (\itx , \itv ) \in \itP := R\times R (\itn = 2, \itA 1,\itA 2 = R) (3.20)

In the example, particles are spheres of identical size and mass. Therefore, a particle is
fully described by its position \itx and its velocity \itv . Hence, it is reasonable to choose the
particles space as \itP := R\times R.
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Explanation of the Global Variable Space \itG 

\itG := \itB 1 \times ...\times \itB \itm (3.2)

The structure of the global variable space \itG is analogous to that of the particle space.
A global variable is also a tuple of properties. From the perspective of computational
power, the global variable is unnecessary. Still, it simplifies the formulation of many
particle method algorithms by encapsulating simulation properties that are not specific to
a particle. The global variable improves readability and possibly implementation efficiency.
The global variable is accessible throughout the particle method. All functions can depend
on it. The global variable space is the Cartesian product of the property sets \itB 1, ...,\itB \itm .
Generally, the property sets \itB 1, ...,\itB \itm of the \itm components of the global variable can
be of arbitrary data type. Examples of global properties include the time step size of a
simulation, the total number of particles in the simulation, the total energy of the system,
and so on.

In the example from Section 3.3.1:

\itg := (\itd , \itt ,\Delta \itt , \itt \ite \itn \itd ) \in \itG := R\times R\times R\times R (\itm = 4, \itB 1, ...,\itB 4 = R) (3.21)

In the example, the global variable \itg is the collection of the non-particle-specific diameter \itd 
of the spheres and the time parameters of the simulation, the current time \itt , the simulation
time step size \Delta \itt , and the stopping time \itt \ite \itn \itd . Again, all can be chosen as real numbers.
If instead of storing the time, one would store the index of the current time step, then the
corresponding set could be N instead of R.

Explanation of the State Space [\itG \times \itP \ast ]

[\itG \times \itP \ast ]

The state of a particle method collects all information about a particle method at a
particular time point. Hence, the state of a particle method consists of a global variable
and potentially many particles collected in a particles tuple.

The particle method's state space is the Cartesian product of the global variable
space \itG and the set of all tuples of particles \itP \ast from the particle space \itP (def. 1).
An element [\itg \itt ,p\itt ] \in [\itG \times \itP \ast ] fully describes the state of a particle method at a time
point \itt . We use the square brackets ([\cdot ]) to mean that the state is one element even though
we write the global variable \itg and the particle tuple p separately.

Explanation of the Neighborhood Function \itu 

\itu : [\itG \times \itP \ast ]\times N\rightarrow N\ast (3.3)

The neighborhood function \itu is the only function that generally depends on the particle
method's entire state [\itg ,p]. We introduce this function to reduce computation. Without it,
each particle would need to interact with every other particle to decide if it contributes to
their respective changes. Suppose the number of contributing interactions is low compared
to all particles. In that case, the neighborhood function helps reduce the computation by
returning the indices of only those interaction partners contributing to the result. For
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instance, we can define the neighborhood by a cut-off radius beyond which particles no
longer ``feel"" each other. We can use a Cell list [71], or Verlet list [87] to implement a
neighborhood function with linear run-time. However, a neighborhood does not need to
be defined geometrically but can be an arbitrary set of particle indices.

The neighborhood function, therefore, operates on particle indices. It takes an index as
input, pointing to a particle in the current state, and returns a tuple of indices, indicating
the neighboring particles of the input particles. We chose indices instead of particles
directly because an index is an element's unique identifier in a tuple. Besides, indices
provide stable identifiers of particles throughout the whole interaction phase. They remain
the same, while the particle itself may change.

Formally, the neighborhood function maps a state of a particle method and an index
of a particle to a tuple of particle indices. It returns the indices of all interaction partners
of the particle with the input index.

In the example from Section 3.3.1:

\itu ([\itg ,p], \itj ) := (\itk \in (1, ..., | p| ) : \itp \itk , \itp \itj \in p \wedge 0 < \itx \itk  - \itx \itj \leq \itd ) (3.22)

In the example, the neighborhood function \itu returns a subtuple (def. 9) of all colli-
sion partners of the particle \itp \itj \in p. In this case, the neighborhood function considers
each collision pair only once, i.e., if \itp \itk is in the neighborhood of \itp \itj , then \itp \itj shall not
be in the neighborhood of \itp \itk . This is a matter of definition and is typically known as
``asymmetric neighborhood"" in particle methods. If the neighborhood function \itu would
be: \itu ([\itg ,p], \itj ) := (\itk \in (1, ..., | p| ) : \itp \itk , \itp \itj \in p \wedge \itk \not = \itj \wedge | \itx \itk  - \itx \itj | \leq \itd ), then both colli-
sion partners would show up as neighbors of the respective other.

Explanation of the Interact Function \iti 

\iti : \itG \times \itP \times \itP \rightarrow \itP \times \itP (3.5)

A particle method proceeds by computing interactions between particles. The basic build-
ing block for this is the interact function, which specifies how two particles interact.
Higher-order interactions, e.g., three-body interactions, are realized by multiple pairwise
interactions. The interact function can change both particles. This provides a performance
advantage in cases of symmetric interactions. Therefore, it cannot only read information
from the interacting particles but also write information into the interacted particles.

Formally, the interact function maps a triple of a global variable and two particles to
two particles. It describes the changes the interaction causes to the properties of both
interacting particles. While, in general, \iti can change both particles, the change can be
zero for one or both of them. The interact function is only applied for pairs of particles
identified by the tuple of indices provided by the neighborhood function \itu .

In the example from Section 3.3.1:

\iti (\itg , \itp \itj , \itp \itk ) := ((\itx \itj , \itv \itk ), (\itx \itk , \itv \itj )) (3.23)

In the example, an interaction amounts to an elastic collision between two spheres, as
described by the collision rules (3.19). Hence, the two involved particles \itp \itj and \itp \itk keep
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their positions \itx \itj and \itx \itk but swap their velocities \itv \itj and \itv \itk . In this case, the interact
function \iti changes both particles. Therefore the neighborhood function \itu defines an
asymmetric neighborhood, preventing duplicate interactions. Meaning, if \itp \itk is in the
neighborhood of \itp \itj , then \itp \itj will not be in the neighborhood of \itp \itk . Hence, they interact
just once \ita \its \ita \itp \ita \iti \itr . In practical applications, this type of symmetric interaction reduces the
computational cost of the algorithm and helps conserve quantities such as energy. If the
interaction changed only one particle, we would need an additional mechanism to ensure
that no kinetic energy gets lost, e.g., by using additional properties to keep a running tally
of the net velocity exchanged.

Explanation of the Evolve Function \ite 

\ite : \itG \times \itP \rightarrow \itG \times \itP \ast (3.6)

The evolve function \ite changes the properties of a particle due to its properties and the
global variable. This includes any change that is independent of interactions with other
particles. The evolve function provides a place to update properties that need to stay
constant during all interactions or to reset properties that serve as temporary accumulators
used during the interactions. It is also the place to implement autonomous dynamics, i.e.,
dynamics that, for example, only depend on time but not on the properties of the other
particles. Examples include simulations of the chemical reaction terms in a spatio-temporal
reaction-diffusion simulation or autonomous stochastic processes.

Formally, the evolve function maps a global variable and a particle to a global variable
and a tuple of particles. It can therefore change the global variable, for instance, to
implement global reduction operations like summing a property over all particles. Since
the result is a tuple of particles, \ite can also create or destroy particles. This is, for example,
used in population dynamics simulations or adaptive-resolution methods for continuous
models [72]. Hence, \ite potentially changes the total number of particles | p| .

In the example from Section 3.3.1:

\ite (\itg , \itp \itj ) :=
\bigl( 
\itg ,

\bigl( 
(\itx \itj +\Delta \itt \cdot \itv \itj , \itv \itj )

\bigr) \bigr) 
(3.24)

In the example, the global variable \itg remains unchanged by the evolve function, even
though this is not necessary per the definition. The position \itx \itj of the particle \itp \itj in the
example is evolved according to the velocity \itv \itj and the time step size \Delta \itt \in \itg using explicit
Euler time-stepping (3.18). The velocity \itv \itj of the particle \itp \itj stays the same.

Explanation of the Evolve Function of the Global Variable \r \ite 

\r \ite : \itG \rightarrow \itG (3.7)

The evolve function of the global variable \r \ite changes the global variable based only on the
current value of the global variable. We chose to have this function because otherwise,
the only place to change the global variable would be the evolve function of the particles,
which would make it challenging to prevent multiple evolutions of the global variable.
Hence, the evolve function of the global variable provides us with a structure to describe
the singleton global behavior of the simulation, such as increasing the simulation time
after the completion of a time step.
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Formally, the evolve function of the global variable maps a global variable to a global
variable. It describes the changes to the global variable due to its values. This allows
updating the global variable without requiring a global operation.

In the example from Section 3.3.1:

\r \ite (\itg ) := (\itd , \itt +\Delta \itt ,\Delta \itt , \itt \ite \itn \itd ) (3.25)

In the example, the evolve function of the global variable \r \ite increments the current time \itt 
by the time step size \Delta \itt . All other global properties remain unchanged.

Explanation of the Stopping Condition \itf 

\itf : \itG \rightarrow \{ \top ,\bot \} (3.4)

The stopping condition \itf only depends on the global variable. This choice is not limiting
because every particle can change the global variable in the evolve function. Hence, each
particle can influence the outcome of the stopping condition.

Formally, the stopping condition is a function that maps a global variable to a Boolean
value, \top (true) or \bot (false). It determines when the algorithm ends. It ends when
\itf (\itg ) = \top .

In the example from Section 3.3.1:

\itf (\itg ) := (\itt > \itt \ite \itn \itd ) (3.26)

In the example, the algorithm terminates when the current time \itt exceeds the stopping
time \itt \ite \itn \itd , then \itf (\itg ) = \top .

3.3.3 Explanation of the Particle Method Instance

The particle method instance [\itg 1,p1] (3.8) specifies the starting point of a particle method.
We chose to separate the definition of the particle method instance from the definition
of the particle method algorithm to distinguish the specific problem from the general
algorithm.

Formally, a particle method instance [\itg 1,p1] is an element of the state space [\itG \times \itP \ast ]
of a particle method. Since an element [\itg \itt ,p\itt ] \in [\itG \times \itP \ast ] fully describes the state of a
particle method at a time point \itt , the particle method instance [\itg 1,p1] fully describes the
state of a particle method at the beginning.

In the example from Section 3.3.1:
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[\itg 1,p1] \in [\itG \times \itP \ast ] initial state of the particle method (3.27)

\itg 1 :=(\itd , \itt ,\Delta \itt , \itt \ite \itn \itd ) \in \itG initial global variable (3.28)

\itd := 0.5 diameter of the spheres

\itt := 0 initial time

\Delta \itt := 0.1 time step size

\itt \ite \itn \itd := 0.1 stopping time

p1 :=
\bigl( 
\itp 1, \itp 2, \itp 3

\bigr) 
\in \itP \ast initial particle tuple (3.29)

\itp 1 := (0, 2) particle 1 with \itx 1 = 0 and \itv 1 = 2

\itp 2 := (0.49, - 1) particle 2 with \itx 2 = 0.49 and \itv 2 =  - 1
\itp 3 := (2, 1) particle 3 with \itx 3 = 2 and \itv 3 = 1

This example of a particle method instance is the initial state for the didactic example
from the section 3.3.1. It is a 1D elastic collision simulation of three spheres with the
same diameter and mass. Since mass cancels out if it is the same for all spheres, we do
not explicitly store it. This particle method instance defines the initial state [\itg 1,p1]. The
initial values of the properties of the global variable \itg 1 are the diameter of the spheres
\itd = 0.5, the initial time \itt = 0, the time step size \Delta \itt = 0.1, and the stopping time
\itt \ite \itn \itd = 0.1. The initial particle tuple p consists of three particles, representing three
spheres. These particles are \itp 1 = (0, 2), \itp 2 = (0.49, - 1), and \itp 3 = (2, 1). As one can see,
\itp 1 and \itp 2 are already colliding. Their distance is smaller than \itd , and their velocities point
toward each other.

3.3.4 Explanation of the State Transition Function

In a specific particle method, the elements of the tuple (\itP ,\itG , \itu , \itf , \iti , \ite ,\r \ite ) (3.1) -- (3.7) need
to be specified. Given a specific starting point defined by an instance, the algorithm pro-
ceeds in iterations. Each iteration corresponds to one state transition step that advances
the current state of the particle method [\itg \itt ,p\itt ] to the next state [\itg \itt +1,p\itt +1], starting at
the instance [\itg 1,p1]. The state transition function \itS determines the final state from the
instance by going through all in-between states using the state transition step \its . The state
transition function is based on \itu , \itf , \iti , \ite ,\r \ite . Hence, it is the same for every particle method
and does not need to be defined by the user.

We defined the transition function \itS (3.16) using the particle method state transi-
tion step \its (3.15) and five sub-functions \iota \mathrm{I}, \iota \mathrm{I}\times \mathrm{U}, \iota \mathrm{N}\times \mathrm{U}, \epsilon \mathrm{I}, \epsilon \mathrm{N} (3.10)--(3.14). The Nassi-
Shneiderman diagram (fig. 3.1) shows what state transition function \itS , the state transition
step \its , and the sub-functions \iota \mathrm{I}, \iota \mathrm{I}\times \mathrm{U}, \iota \mathrm{N}\times \mathrm{U}, \epsilon \mathrm{I}, \epsilon \mathrm{N} are calculating.

All particles interact with their respective interaction partners (possibly all particles),
as given by the neighborhood function \itu . We disassemble the interactions into a loop
over all particles \iota \mathrm{N}\times \mathrm{U} (3.12), where each particle interacts with its specific neigh-
bors \iota \mathrm{I}\times \mathrm{U} (3.11). Each of these interactions, in turn, is a pairwise interaction between two
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particles \iota \mathrm{I} (3.10) as defined by \iti (3.5). After all interactions, evolutions happen. We can
break it down into a loop over all particles \epsilon \mathrm{N} (3.14), where each particle evolves \epsilon \mathrm{I} (3.14)
as defined by \ite (3.6). The state transition step \its advances one state to the next state by
using the interaction loop \iota \mathrm{N}\times \mathrm{U}, the evolution loop \epsilon \mathrm{N}, and the evolution of the global
variable \r \ite (3.7). The state transition function \itS uses the state transition step \its and the
stopping condition \itf (3.4) to determine the series of states from the instance to the final
state.

These functions are entirely defined (3.10)--(3.16) and can be formally written down
by using the formal definition of a particle method algorithm (sec. 3.2.1). Over-bars
indicate intermediate results used in the subsequent sub-functions, e.g., the result

\bigl( 
\itp \itj , \itp \itk 

\bigr) 
of the interact function \iti (\itg , \itp \itj , \itp \itk ) is used in \iota \mathrm{I}. The composition operator \ast \ith (def. 7) is
only defined for functions \ith with exactly two arguments. Therefore, functions with more
than two arguments are written in an indexed form. For example, the function \iota \mathrm{I} has 3
arguments where one is a state. Hence, it is written as \iota \mathrm{I}(\itg ,\itj )(p, \itk ), such that only the two
arguments p and \itk are arguments of the function, whereas \itg and \itj become indices.

In our definition, after each interaction, the current particle tuple is updated such
that the result of the interaction can affect the following interactions. The same applies
to the evolve function concerning the global variable \itg . We include this possibility in
the definition for generality, even though many practical examples do not require it. In
general, the algorithm result depends on the order of the interactions and evolutions, hence
on the index ordering of the particles. The result of the algorithm becomes independent of
particle ordering if a commutative operation reduces the interaction results and the global
variable during the evolution, usually the addition, and accumulated in a separate particle
property until the final evolve step \epsilon \mathrm{N}.

For the following explanations, we use the particle method algorithm and instance as
defined in the explanations (sec. 3.3.2, 3.3.3).

Explanation of the First Interaction Sub-function \iota \mathrm{I}

\iota \mathrm{I} : [\itG \times \itP \ast ]\times N\times N\rightarrow \itP \ast (3.30)

\iota \mathrm{I}(\itg ,\itj )(p, \itk ) :=
\bigl( 
\itp 1, .., \itp \itj  - 1, \itp \itj , \itp \itj +1, ..., \itp \itk  - 1, \itp \itk , \itp \itk +1, ..., \itp | \bfp | 

\bigr) 
for

\bigl( 
\itp \itj , \itp \itk 

\bigr) 
:= \iti (\itg , \itp \itj , \itp \itk ) . (3.10)

The first interaction sub-function \iota \mathrm{I} describes how the interaction of two particles con-
tributes to the state change of the particle method. It is the core component of the loop
over all particles and all neighbors of each particle. The function \iota \mathrm{I} evaluates the inter-
action function \iti for a given pair of particles and a given current state of the particle
method. It then takes the changed particles that \iti returns and stores this change again
in the state. We choose this encapsulation over directly evaluating \iti because it requires
no external storage to accumulate the changes of subsequent interactions. Formally, this
function maps a particle method state and two particle indices to a tuple of particles.
The returned tuple of particles is the same as p from the input state except for the inter-
acting particles \itp \itj and \itp \itk , which might be changed. The result of the interact function
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\iti (\itg , \itp \itj , \itp \itk ), which is the tuple
\bigl( 
\itp \itj , \itp \itk 

\bigr) 
, replaces these particles.

In the example from Section 3.3.1:

(\itp 1, \itp 2) = \iti (\itg 1, \itp 1, \itp 2) (3.31)

= \iti 
\bigl( 
\itg 1, (0, 2), (0.49, - 1)

\bigr) 
(3.32)

=
\bigl( 
(0, - 1), (0.49, 2)

\bigr) 
, (3.33)

\iota \mathrm{I}(\itg 1,1)(p
1, 2) = (\itp 1, \itp 2, \itp 3) (3.34)

=
\bigl( 
(0, - 1), (0.49, 2), (2, 1)

\bigr) 
. (3.35)

Here, the result of the interaction of the particles \itp 1 and \itp 2 is \itp 1 and \itp 2. Both \itp 1 and \itp 2
have the same positions as \itp 1 and \itp 2 but swapped velocities. The function \iota \mathrm{I} replaces in
the particle tuple p the interacting particles \itp 1 and \itp 2 by their interaction results \itp 1 and
\itp 2.

Explanation of the Second Interaction Sub-function

\iota \mathrm{I}\times \mathrm{U} : [\itG \times \itP \ast ]\times N\rightarrow \itP \ast (3.36)

\iota \mathrm{I}\times \mathrm{U}
\itg (p, \itj ) := p \ast \iota \mathrm{I}

(\itg ,\itj )
\itu ([\itg ,p], \itj ) (3.11)

The second interaction sub-function \iota \mathrm{I}\times \mathrm{U} describes how the interaction of one particle
with all its neighbor particles contributes to the state change of the particle method. It
calculates the inner loop where a particle interacts with all its neighbors. Therefore, it
uses the previous function \iota \mathrm{I} and evaluates it for each neighbor given by \itu .

Formally, it maps a state of the particle method and a particle index to a tuple of
particles. It uses the composition operator \ast (def. 7) over the function \iota \mathrm{I}(\itg ,\itj ), i.e., \ast \iota \mathrm{I}(\itg ,\itj ) , to
compute the loop over all neighbors of one particle. It, therefore, computes the interactions
of the particle \itp \itj with all its neighbors in p. The neighborhood function \itu ([\itg ,p], \itj ) returns
the indices of these neighbors. The result of each pairwise interaction is stored in an altered
tuple of particles p. This altered tuple of particles is then used for the subsequent pairwise
interaction until \itp \itj has interacted with all its neighbors.

In the example from Section 3.3.1:

\itu ([\itg 1,p1], 1) = (2), (3.37)

\iota \mathrm{I}\times \mathrm{U}
\itg 1

(p1, 1) = p1 \ast \iota \mathrm{I}
(\itg 1,1)

\itu ([\itg 1,p1], 1) (3.38)

= p1 \ast \iota \mathrm{I}
(\itg 1,1)

(2) (3.39)

= \iota \mathrm{I}(\itg 1,1)(p
1, 2) \ast \iota \mathrm{I}

(\itg 1,1)
() (3.40)

= \iota \mathrm{I}(\itg 1,1)(p
1, 2) (3.41)

=
\bigl( 
(0, - 1), (0.49, 2), (2, 1)

\bigr) 
. (3.42)

The neighboring indices of the first particle in p1, which is \itp 1, are calculated by the
neighborhood function \itu ([\itg 1,p1], 1). The result of this function is the one-element index
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tuple (2) since only particle 2 collides with particle 1. Hence, the composition operator
in the function \iota \mathrm{I}\times \mathrm{U} only needs to iterate over one index. Composition with an empty
tuple () would not change anything. Hence, the result of the function \iota \mathrm{I}(\itg 1,1)(p

1, 2) as

described in (3.35) is reduced.

Explanation of the Third Interaction Sub-function \iota \mathrm{N}\times \mathrm{U}

\iota \mathrm{N}\times \mathrm{U} : [\itG \times \itP \ast ]\rightarrow \itP \ast (3.43)

\iota \mathrm{N}\times \mathrm{U}([\itg ,p]) := p \ast \iota \mathrm{I}\times \mathrm{U}
\itg 

(1, .., | p| ) (3.12)

The third interaction sub-function \iota \mathrm{N}\times \mathrm{U} describes how the interactions of all particles
with all their respective neighbors contribute to the state change of the particle method.
Therefore, it calculates both the inner and the outer loop to calculate for each particle
the interaction with its neighbors, recursively using the second interaction sub-function
for the inner loop.

Formally, this maps a state of the particle method to a tuple of particles. It uses the
composition operator \ast (def. 7) over the second interact sub-function \iota \mathrm{I}\times \mathrm{U} to iterate over
all indices of the particles in the tuple p. The function \iota \mathrm{N}\times \mathrm{U} calculates the interaction
between these particles and their neighbors for each of these particles, hence completely
computing all necessary interactions between all particles in p.

In the example from Section 3.3.1:

\iota \mathrm{N}\times \mathrm{U}([\itg 1,p1]) = p1 \ast \iota \mathrm{I}\times \mathrm{U}

\itg 1
(1, 2, 3) (3.44)

= \iota \mathrm{I}\times \mathrm{U}
\itg 1

(p1, 1) \ast \iota \mathrm{I}\times \mathrm{U}

\itg 1
(2, 3) (3.45)

=
\bigl( 
(0, - 1), (0.49, 2), (2, 1)

\bigr) \underbrace{}  \underbrace{}  
=:\^\bfp 1

\ast \iota \mathrm{I}\times \mathrm{U}

\itg 1
(2, 3) = \^p1 \ast \iota \mathrm{I}\times \mathrm{U}

\itg 1
(2, 3) (3.46)

= \iota \mathrm{I}\times \mathrm{U}
\itg 1

(\^p1, 2) \ast \iota \mathrm{I}\times \mathrm{U}

\itg 1
(3) (3.47)

=
\Bigl( 
\^p1 \ast \iota \mathrm{I}

(\itg 1,2)
\itu ([\itg 1, \^p1], 2)

\Bigr) 
\ast \iota \mathrm{I}\times \mathrm{U}

\itg 1
(3) (3.48)

=
\Bigl( 
\^p1 \ast \iota \mathrm{I}

(\itg 1,2)
()
\Bigr) 
\ast \iota \mathrm{I}\times \mathrm{U}

\itg 1
(3) (3.49)

= \^p1 \ast \iota \mathrm{I}\times \mathrm{U}

\itg 1
(3) (3.50)

= \iota \mathrm{I}\times \mathrm{U}
\itg 1

(\^p1, 3) \ast \iota \mathrm{I}\times \mathrm{U}

\itg 1
() (3.51)

=
\Bigl( 
\^p1 \ast \iota \mathrm{I}

(\itg 1,3)
\itu ([\itg 1, \^p1], 3)

\Bigr) 
\ast \iota \mathrm{I}\times \mathrm{U}

\itg 1
() (3.52)

=
\Bigl( 
\^p1 \ast \iota \mathrm{I}

(\itg 1,3)
()
\Bigr) 
\ast \iota \mathrm{I}\times \mathrm{U}

\itg 1
() (3.53)

= \^p1 \ast \iota \mathrm{I}\times \mathrm{U}

\itg 1
() (3.54)

= \^p1 (3.55)

=
\bigl( 
(0, - 1), (0.49, 2), (2, 1)

\bigr) 
. (3.56)
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The function \iota \mathrm{N}\times \mathrm{U} calculates the pairwise interactions of all particles with all their neigh-
bors starting from the particle \itp 1 and its neighbors. This is already calculated in the
previous step (3.37) -- (3.42) with the result named \^p1 for better readability. The next
particle is \itp 2. It has to interact with all of its neighbors, calculated through \iota \mathrm{I}\times \mathrm{U}

\itg 1
(\^p1, 2). In

the example, particle \itp 2 has no neighbors in \^p1. Hence, there is no interaction or change
in \^p1. The same is valid for particle \itp 3. It also has no neighbors. Hence, there is again
no change in \^p1. This makes \^p1 the result particle tuple of the pairwise interactions of all
particles with all their neighbors.

Explanation of the First Evolution Sub-function \epsilon \mathrm{I}

\epsilon \mathrm{I} : [\itG \times \itP \ast ]\times \itP \ast \times N\rightarrow [\itG \times \itP \ast ] (3.57)

\epsilon \mathrm{I}\bfp 
\bigl( 
[\itg ,q], \itj 

\bigr) 
:=

\bigl[ 
\itg ,q \circ q

\bigr] 
for (\itg ,q) := \ite (\itg , \itp \itj ). (3.13)

The first evolution sub-function describes how the evolution of one particle contributes
to the state change of the particle method. Therefore it evolves a particle and stores the
result in a new particle tuple.

Formally, it maps a state of the particle method, a particle tuple, and an index to a
state of the particle method. It handles the result of the evolution of one particle and
concatenates (def. 8) the result, a particle tuple q, to a particle tuple q. Also, the
function \epsilon \mathrm{I} handles the change this particle causes to the global variable. The calculations
are done using a given particle method's evolve function \ite .

In the example from Section 3.3.1:

\^p1 =
\bigl( 
\^\itp 1, \^\itp 2, \^\itp 3

\bigr) 
=

\bigl( 
(0, - 1), (0.49, 2), (2, 1)

\bigr) 
, (3.58)

(\itg ,q) = \ite (\itg 1, \^\itp 1) (3.59)

=
\bigl( 
\itg 1,

\bigl( 
(\^\itx 1 +\Delta \itt \cdot \^\itv 1, \^\itv 1)

\bigr) \bigr) 
(3.60)

=
\bigl( 
\itg 1,

\bigl( 
(0 + 0.1 \cdot  - 1,  - 1)

\bigr) \bigr) 
(3.61)

=
\bigl( 
\itg 1,

\bigl( 
( - 0.1,  - 1)

\bigr) \bigr) 
, (3.62)

\epsilon \mathrm{I}\^\bfp 1

\bigl( 
[\itg 1, ()], 1

\bigr) 
=

\bigl[ 
\itg , () \circ q

\bigr] 
(3.63)

=
\bigl[ 
\itg 1, () \circ 

\bigl( 
( - 0.1,  - 1)

\bigr) \bigr] 
(3.64)

=
\bigl[ 
\itg 1,

\bigl( 
( - 0.1,  - 1)

\bigr) \bigr] 
. (3.65)

We use the result \^p1 of the previous function \iota \mathrm{N}\times \mathrm{U} (3.44) -- (3.56) as the starting point for
this example calculation since \epsilon \mathrm{I} and \iota \mathrm{N}\times \mathrm{U} are connected by the state transition step \its .
The result (\itg ,q) of the evolve function \ite (\itg 1, \^\itp 1) is the initial global variable \itg 1 and the
particle \^\itp 1 with a changed position from \^\itx 1 = 0 to \^\itx 1 =  - 0.1. The velocity stays the
same \^\itv 1 =  - 1. The function \epsilon \mathrm{I} uses this result to change the state [\itg 1, ()], which consists
of the initial global variable \itg 1 and an empty particle tuple (). The global variable \itg 1 is
changed to \itg according to \ite (\itg 1, \^\itp 1) is \itg = \itg 1. Hence, there is no effective change in \itg 1.
The particle tuple q =

\bigl( 
( - 0.1,  - 1)

\bigr) 
is concatenated (def. 8) to the empty tuple (). Hence,

the overall result of \epsilon \mathrm{I} is the state
\bigl[ 
\itg 1,

\bigl( 
( - 0.1,  - 1)

\bigr) \bigr] 
.
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Explanation of the Second Evolution Sub-function \epsilon \mathrm{N}

\epsilon \mathrm{N} : [\itG \times \itP \ast ]\rightarrow [\itG \times \itP \ast ] (3.66)

\epsilon \mathrm{N}
\bigl( 
[\itg ,p]

\bigr) 
:=

\bigl[ 
\itg , ()

\bigr] 
\ast \epsilon \mathrm{I}\bfp (1, .., | p| ) (3.14)

The second evolution sub-function \epsilon \mathrm{N} describes how the evolution of all particles con-
tributes to the state change of the particle method. Therefore, it evolves all particles and
stores the results.

Formally, it maps a state of the particle method to a state of the particle method.
It uses the composition operator \ast (def. 7) over the first evolution sub-function \epsilon \mathrm{I}\bfp to
iterate over all indices of the particles in the tuple p and compute their evolution. The
function \epsilon \mathrm{N} handles the evolution of each of these particles and accumulates the results in
a new state starting from the state

\bigl[ 
\itg , ()

\bigr] 
.

In the example from Section 3.3.1:

\^p1 =
\bigl( 
\^\itp 1, \^\itp 2, \^\itp 3

\bigr) 
=

\bigl( 
(0, - 1), (0.49, 2), (2, 1)

\bigr) 
, (3.44) -- (3.56)

\epsilon \mathrm{N}
\bigl( 
[\itg 1, \^p1]

\bigr) 
=

\bigl[ 
\itg 1, ()

\bigr] 
\ast \epsilon \mathrm{I}

\^\bfp 1
(1, ..., | \^p1| ) (3.67)

=
\bigl[ 
\itg 1, ()

\bigr] 
\ast \epsilon \mathrm{I}

\^\bfp 1
(1, 2, 3) (3.68)

= \epsilon \mathrm{I}
\bigl( 
[\itg 1, \^p1], (), 1

\bigr) 
\ast \epsilon \mathrm{I}

\^\bfp 1
(2, 3) (3.69)

=
\bigl[ 
\itg 1,

\bigl( 
( - 0.1,  - 1)

\bigr) \bigr] 
\ast \epsilon \mathrm{I}

\^\bfp 1
(2, 3) (3.70)

= \epsilon \mathrm{I}
\bigl( 
[\itg 1, \^p1],

\bigl( 
( - 0.1,  - 1)

\bigr) 
, 2

\bigr) 
\ast \epsilon \mathrm{I}

\^\bfp 1
(3) (3.71)

=
\bigl[ 
\itg 1,

\bigl( 
( - 0.1,  - 1) \circ (\^\itx 2 +\Delta \itt \cdot \^\itv 2, \^\itv 2)

\bigr) \bigr] 
\ast \epsilon \mathrm{I}

\^\bfp 1
(3) (3.72)

=
\bigl[ 
\itg 1,

\bigl( 
( - 0.1,  - 1) \circ (0.49 + 0.1 \cdot 2, 2)

\bigr) \bigr] 
\ast \epsilon \mathrm{I}

\^\bfp 1
(3) (3.73)

=
\bigl[ 
\itg 1,

\bigl( 
( - 0.1,  - 1), (0.69, 2)

\bigr) \bigr] 
\ast \epsilon \mathrm{I}

\^\bfp 1
(3) (3.74)

=
\bigl[ 
\itg 1,

\bigl( 
( - 0.1,  - 1), (0.69, 2), (2.1, 1)

\bigr) \bigr] 
. (3.75)

We use the result \^p1 of \iota \mathrm{N}\times \mathrm{U}([\itg 1,p1]) again, that was calculated above (3.44) -- (3.56) for
this example, knowing that \epsilon \mathrm{N} and \iota \mathrm{N}\times \mathrm{U} are connected. Hence, it remains to calculate
the evolution of the particles \^\itp 1, \^\itp 2, and \^\itp 3 and add them up into the state [\itg 1, ()].
The evolution of \^\itp 1, namely \epsilon \mathrm{I}\^\bfp 1

\bigl( 
[\itg 1, ()], 1

\bigr) 
, has already been calculated above (3.63)--

(3.65). The same procedure is followed for the following two particles, \^\itp 2 and \^\itp 3. After
each evolution, the resulting particle tuple, with just one element, is concatenated to the
previous result, such that they combine into a particle tuple of three particles in the end.
In this example, the global variable \itg 1 remains unchanged by the function \epsilon \mathrm{N}.

Explanation of the State Transition Step \its 

\its : [\itG \times \itP \ast ]\rightarrow [\itG \times \itP \ast ] (3.76)

\its ([\itg ,p]) :=
\bigl[ 
\r \ite (\itg ), p

\bigr] 
with [\itg ,p] := \epsilon \mathrm{N}

\bigl( 
[\itg , \iota \mathrm{N}\times \mathrm{U}([\itg ,p])]

\bigr) 
. (3.15)
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The particle method state transition step \its handles the interactions and evolutions neces-
sary to advance a particle method from one state to the next. Therefore it combines the
functions \iota \mathrm{N}\times \mathrm{U}, \epsilon \mathrm{N}, and \r \ite . Moreover, the state transition step \its does it sequentially. For-
mally, the state transition function is a function that maps a state of the particle method
to a state of the particle method.

In the example from section 3.3.1:

\itg 1 = (\itd , \itt ,\Delta \itt ,\itT ) = (0.5, 0, 0.1, 0.1), (3.28)

p1 =
\bigl( 
(0, 2), (0.49, - 1), (2, 1)

\bigr) 
, (3.29)

\epsilon \mathrm{N}
\bigl( 
[\itg 1, \iota \mathrm{N}\times \mathrm{U}([\itg 1,p1])]

\bigr) 
=

\bigl[ 
\itg 1,

\bigl( 
( - 0.1,  - 1), (0.69, 2), (2.1, 1)

\bigr) \underbrace{}  \underbrace{}  
=:\bfp 2

\bigr] 
, (3.67)--(3.75)

\its 
\bigl( 
[\itg 1,p1]

\bigr) 
=

\bigl[ 
\r \ite (\itg ), p

\bigr] 
with [\itg ,p] = \epsilon \mathrm{N}

\bigl( 
[\itg 1, \iota \mathrm{N}\times \mathrm{U}([\itg 1,p1])]

\bigr) 
(3.77)

=
\bigl[ 
\r \ite (\itg ), p

\bigr] 
with [\itg ,p] = [\itg 1,p2] (3.78)

=
\bigl[ 
\r \ite (\itg 1), p2

\bigr] 
(3.79)

=
\bigl[ 
(\itd , \itt +\Delta \itt ,\Delta \itt ,\itT ), p2

\bigr] 
(3.80)

=
\bigl[ 
(0.5, 0 + 0.1, 0.1, 0.1), p2

\bigr] 
(3.81)

=
\bigl[ 
(0.5, 0.1, 0.1, 0.1)\underbrace{}  \underbrace{}  

=:\itg 2

, p2
\bigr] 

(3.82)

=
\bigl[ 
\itg 2, p2

\bigr] 
. (3.83)

The instance [\itg 1,p1] in this example is given as a reminder, as well as the second evolve
sub-function \epsilon \mathrm{N}

\bigl( 
[\itg 1, \iota \mathrm{N}\times \mathrm{U}([\itg 1,p1])]

\bigr) 
. We define the particle tuple of the result of \epsilon \mathrm{N} as p2.

This indicates that this particle tuple is already part of the following state [\itg 2,p2]. This is
true because there will be no further change to it. Since \epsilon \mathrm{N}

\bigl( 
[\itg 1, \iota \mathrm{N}\times \mathrm{U}([\itg 1,p1])]

\bigr) 
= [\itg 1,p2],

only the evolution of the global variable \r \ite remains. \r \ite (\itg 1) advances the current time \itt by
one time step size \Delta \itt . Hence, the current time increases from \itt = 0 to \itt = 0.1. The rest
of the properties of the global variable remain unchanged in this example. We call the
new global variable \itg 2 because this step has no further change.

Explanation of the State Transition Function \itS 

\itS : [\itG \times \itP \ast ]\rightarrow [\itG \times \itP \ast ], (3.9)

\itS ([\itg 1,p1]) = [\itg \itT ,p\itT ] \leftarrow \rightarrow 
\itf (\itg \itT ) = \top \wedge \forall \itt \in \{ 2, ...,\itT \} : [\itg \itt ,p\itt ] = \its 

\bigl( 
[\itg \itt  - 1,p\itt  - 1]

\bigr) 
\wedge \itf (\itg \itt  - 1) = \bot . (3.16)

The state transition function \itS iterates over the state transition step \its from the in-
stance [\itg 1,p1] until the stopping condition \itf is \itt \itr \itu \ite .
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In the example from Section 3.3.1:

[\itg 1,p1] = [(0.5, 0, 0.1, 10),
\bigl( 
(0, 2), (0.49, - 1), (2, 1)

\bigr) 
] (3.28),(3.29)

\itf (\itg 1) = (\itt \geq \itt \ite \itn \itd ) (3.84)

= (0 \geq 0.1) (3.85)

= \bot , (3.86)

\its 
\bigl( 
[\itg 1,p1]

\bigr) 
=

\bigl[ 
(0.5, 0.1, 0.1, 10),

\bigl( 
( - 0.1,  - 1), (0.69, 2), (2.1, 1)

\bigr) \bigr] 
(3.77)--(3.83)

=
\bigl[ 
\itg 2, p2

\bigr] 
.

\itf (\itg 2) = (\itt \geq \itt \ite \itn \itd ) (3.87)

= (0.1 \geq 0.1) (3.88)

= \top , (3.89)

\rightarrow \itS 
\bigl( 
[\itg 1,p1]

\bigr) 
=

\bigl[ 
\itg 2, p2

\bigr] 
(3.90)

In the example, all calculations are done using the state transition step \its of the particle
method (3.77) -- (3.83). The particle method state transition function \itS iterates over the
state transition step \its until the stopping condition \itf is \itt \itr \itu \ite , which is the case for the
state [\itg 2,p2]. The particle method halts with the result [\itg 2,p2].

3.4 Conclusion

Particle methods are used in a wide range of fields such as plasma physics [40], compu-
tational fluid dynamics [17, 20], image processing [11, 1], computer graphics [36], and
computational optimization [38, 63]. But there was no common understanding of what
constitutes a particle method.

Here, we presented a general mathematical definition of particle methods and showed
its applicability in developing a common interface for this important class of algorithms in
computational science. The proposed definition highlights the algorithmic commonalities
across applications, enabling a sharp classification of particle methods.

We formulated the presented definition in the most general way to encompass every-
thing called a ``particle method"". However, most practical instances do not exploit the
full generality of the definition.

Even though the presented definition is general a particle method could potentially
have a worse time and space complexity than a non-particle algorithm, especially for
non-canonical problems but also for algorithms where only a part of the particles are ac-
tive like for treatment of boundary conditions. Further, our definition is limited by its
monolithic nature. An algorithm composed of smaller algorithms, such as a solver for the
incompressible Navier-Stokes equation, would become very large and complex with several
nested cases when explicitly formulated in our definition. Importantly, our definition is not
unique. Alternative, possibly more compact, but equivalent definitions are possible. We
chose the presented formulation for its similarities to practical implementations. Notwith-
standing these limitations, the present definition establishes a rigorous algorithmic class
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that contrasts the so-far loose and empirical notion of particle methods in practice. This
rigorousness paves the way for further research both in the theoretical and algorithmic
foundations of particle methods and the engineering of their software implementation.

Future work could develop a less monolithic definition that allows modular combi-
nations of different particle methods. While this could lead to a formulation that can
potentially be exploited directly in software engineering or the design of domain-specific
programming languages for particle methods [48, 50], one would first need to solve some
theoretical problems: How can different types of particles from different methods inter-
act, e.g., during interpolating stored values from one set of particles to another? How
can access be restricted to a particle subset, e.g., for boundary conditions? Solving these
problems might lead to additional data structures or functions in the presented definition.

Overall, formal definitions reveal the concepts upon which a method is founded, and
they render it possible to rationalize the fundamental characteristics of a method. The
presented definition of particle methods is a necessary first step toward a sound and
formal understanding of what particle methods are, what they can do, and how efficient
and powerful they can be.
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Chapter 4

Algorithms as Particle Methods

4.1 Introduction

Our definition of particle methods is designed to provide a rigorous, mathematical struc-
ture to express a broad range of algorithms. Even though our definition of particle methods
is derived from the formulation and practical implementation of various particle methods
such as Smoothed Particle Hydrodynamics (SPH) [34, 58], Particle Strength Exchange
(PSE) [26, 25, 30, 79], Molecular Dynamics (MD) [53], Discrete Element Methods (DEM)
and others, it remains to be shown that the structure of the definition is naturally capable
of expressing these classic particle methods.

Here, we fill this gap by presenting a range of classic particle methods and also non-
canonical algorithms in the structure of our particle methods definition. We show how
classic particle methods can be formalized using our definition by considering the examples
of SPH and PSE as continuous particle methods and MD and DEM as discrete particle
methods. We further show how other algorithms, not generally recognized as particle
methods, can also be cast in terms of our definition. As examples, we consider triangulation
refinement [28], Conway's game of life [32], and Gaussian elimination.
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4.2 Perfectly Elastic Collision in Arbitrary Dimensions

The perfectly elastic collision example is the same as the illustrative example from the
section 3.3.1 but in an arbitrary dimension. Hence, it models perfectly elastic collisions be-
tween spheres of uniform diameter \itd and constant unit mass in a continuous n-dimensional
space. The space is without boundaries, such that no boundary conditions are required.

In this example, position \itx of an individual sphere changes over time \itt , as shown in
section 3.3.1. The explicit Euler time-stepping algorithm discretizes this again in time
using a fixed time step size \Delta \itt , yielding:

\itx \itt +\Delta \itt = \itx \itt + \itv (\itt )\Delta \itt , (4.1)

which is iterated until a given final time \itt \ite \itn \itd . A perfectly elastic collision between two
spheres \itj and \itk in n-dimensions results in them swapping the portion of their velocities in
the direction of the other particle. Hence, the change in velocity is the difference between
the two velocities projected down onto the normalized direction vector from one particle
center to the other. The positions before the collision \itx \itn and the positions after the
collision \itx \itn +1 remain the same, leading to the following collision rules:

\Delta \itv \itj \itk :=
\itx \itj \itk 

| \itx \itj \itk | 2
\bigl( 
\itx \itj \itk \cdot \itv \itj \itk 

\bigr) 
with \itv \itj \itk := \itv \itk  - \itv \itj , \itx \itj \itk := \itx \itk  - \itx \itj (4.2)

\itx \itn +1
\itj =\itx \itn 

\itj , (4.3)

\itx \itn +1
\itk =\itx \itn 

\itk , (4.4)

\itv \itn +1
\itj =\itv \itn \itj +\Delta \itv \itj \itk , (4.5)

\itv \itn +1
\itk =\itv \itn \itk  - \Delta \itv \itj \itk . (4.6)

Two spheres \itj and \itk are considered colliding if and only if | \itx \itj \itk | \leq \itd . Note that this
particle method can express unphysical behavior beyond the obvious if the particles are
initialized closer than \itd and if more than one particle is closer to a particle than \itd at a
time step. This defines the particle method:

\itp :=(\itx , \itv ) for \itp \in \itP := R\itn \times R\itn , (4.7)

\itg :=(\itd ,\Delta \itt , \itt \ite \itn \itd , \itt ) for \itg \in R4, (4.8)

\itu ([\itg ,p], \itj ) :=(\itk \in (1, ..., | p| ) : \itp \itk , \itp \itj \in p \wedge | \itx \itj \itk | \leq \itd \wedge \itk > \itj ), (4.9)

\itf (\itg ) :=(\itt > \itt \ite \itn \itd ), (4.10)

\iti (\itg , \itp \itj , \itp \itk ) :=

\Biggl( \biggl( 
\itx \itj 

\itv \itj +\Delta \itv \itj \itk 

\biggr) \bfT 

,

\biggl( 
\itx \itk 

\itv \itk  - \Delta \itv \itj \itk 

\biggr) \bfT 
\Biggr) 

(4.11)

\ite (\itg , \itp \itj ) :=

\Biggl( 
\itg ,

\Biggl( \biggl( 
\itx \itj +\Delta \itt \itv \itj 

\itv \itj 

\biggr) \bfT 
\Biggr) \Biggr) 

, (4.12)

\r \ite (\itg ) :=(\itd ,\Delta \itt , \itt \ite \itn \itd , \itt +\Delta \itt ). (4.13)

In this particle method algorithm, a particle has a position \itx and a velocity \itv . The global
variable \itg has the sphere diameter \itd that is the same for all particles and the properties
for the time management, the time step size \Delta \itt , the end time \itt \ite \itn \itd , and the current time \itt .
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The neighborhood function ensures that just closer particles than \itd are interacting. Since
the interaction is symmetric, \itu takes care that if \itp \itk is in the neighborhood of \itp \itj , \itp \itj is not
in the neighborhood of \itp \itk . The simulation stops if the current time \itt exceeds the end time
\itt \ite \itn \itd , defined in the stopping function \itf . The interact function \iti calculates what happens
during a collision (4.2)--(4.6). The evolve function \ite calculates the Euler time step (4.1).
The evolve function of the global variable \r \ite advances the current time \itt by the time step
size \Delta \itt .

We need to fix the parameters and the initial condition to define a specific instance
of this particle method. Here we choose a small instance with just three particles in two
dimensions.

\itg 1 := (\itd ,\Delta \itt , \itt \ite \itn \itd , \itt ) initial global variable

\itd := 0.5 sphere diameter

\Delta \itt := 0.1 time step size

\itt \ite \itn \itd := 10 end time of the simulation

\itt := 0 current time

p1 :=(\itp 1, \itp 2, \itp 3) initial particle tuple

\itp \itj := (\itx \itj , \itv \itj ) j-th particle

\itp 1 :=

\biggl( \biggl( 
0
0

\biggr) 
,

\biggl( 
0.25
0

\biggr) \biggr) 
\itp 2 :=

\biggl( \biggl( 
1
0.2

\biggr) 
,

\biggl( 
 - 0.5
0

\biggr) \biggr) 
\itp 3 :=

\biggl( \biggl( 
 - 0.1
0.8

\biggr) 
,

\biggl( 
0.2
 - 0.7

\biggr) \biggr) 

Figure 4.1: Perfectly elastic collision of three spheres in two dimensions. The arrows
indicate the direction and magnitude of the velocities. Left at \itt = 0.1. Right at \itt = 1.6.
(Visualized using ParaView [85].)
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4.3 Particle Strength Exchange

Particle Strength Exchange (PSE) is a classic particle method that numerically solves
partial differential equations in time and space [26, 25, 30, 79]. It provides a general
framework for numerically approximating differential operators over sets of irregularly
placed collocation points called particles. Here, we consider the example of using PSE
to numerically solve the isotropic, homogeneous, and normal diffusion equation in three
dimensions:

\partial \itw (\itx , \itt )

\partial \itt 
= \itD \Delta \itw (\itx , \itt ) (4.14)

for the continuous and sufficiently smooth function \itw (\itx , \itt ) : R4 \rightarrow R. We use the explicit
Euler method for time integration and PSE for space discretization on equidistant points
with spacing \ith . PSE approximates the Laplace operator \Delta \itw , a second-order differential
operator in space, at location \itx \itj using the surrounding particles at positions \itx \itk as [26]:

\Delta \itw (\itx \itj ) \approx 
\ith 3

\epsilon 2

\itN \sum 
\itk =1

\bigl( 
\itw (\itx \itk ) - \itw (\itx \itj )

\bigr) 
\eta \epsilon (\itx \itj  - \itx \itk ). (4.15)

Using PSE theory, we determine the operator kernel \eta \epsilon such as to yield an approxima-
tion error that converges with the square of the kernel width \epsilon :

\eta \epsilon (\itx ) =
15

\epsilon 3\pi 2
1\Bigl( 

| \itx | 
\epsilon 

\Bigr) 10
+ 1

. (4.16)

The kernel's support is [ - \infty ,\infty ]. However, the exponential quickly drops below the ma-
chine precision of a digital computer, so it is custom to introduce a cut-off radius \itr \itc to
limit particle interactions to non-trivial computations. The approximation of the Laplace
operator then is:

\Delta \itw (\itx \itj ) \approx 
15\ith 3

\epsilon 3\pi 2

\sum 
\itx \itk : 0<| \itx \itk  - \itx \itj | \leq \itr \itc 

\itw (\itx \itk ) - \itw (\itx \itj )\Bigl( | \itx \itk  - \itx \itj | 
\epsilon 

\Bigr) 10
+ 1

(4.17)

The explicit Euler method allows the approximation of the continuous time deriva-
tive \partial \itw 

\partial \itt at discrete points in time \itt \itn , \itn \in N with time step size \Delta \itt := \itt \itn +1  - \itt \itn :

\partial \itw 

\partial \itt 
(\itt \itn ) \approx 

\itw (\itt \itn +1) - \itw (\itt \itn )

\Delta \itt 
(4.18)

Hence, the above differential equation is discretized as:

\itw (\itx \itj , \itt \itn +1) (4.19)

\approx \itw (\itx \itj , \itt \itn ) +\itD \Delta \itt \Delta \itw (\itx \itj ) (4.20)

\approx \itw (\itx \itj , \itt \itn ) +
15\ith 3\itD \Delta \itt 
\epsilon 3\pi 2

\sum 
\itx \itk :0<| \itx \itk  - \itx \itj | \leq \itr \itc 

\itw (\itx \itk ,\itt \itn ) - \itw (\itx \itj ,\itt \itn )\biggl( 
| \itx \itk  - \itx \itj | 

\epsilon 

\biggr) 10

+1

.
(4.21)

To numerically solve (4.14), this expression is evaluated over the particles at locations \itx \itj 

with property \itw \itj at time points \itt \itn . For simplicity, we consider a free-space simulation
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without boundary conditions. Hence, we assume that an instance of this particle method
has enough particles with no or low concentration \itw \itj around the region of interest in the
initial tuple of particles. We further assume that the particles are regularly spaced with
inter-particle spacing \ith such that \ith 

\epsilon \leq 1. This is a theoretical requirement in PSE known
as the ``overlap condition"". Without it, the numerical method is not consistent. This
defines the particle method algorithm data structures:

\itp := (\itx ,\itw ,\Delta \itw ) for \itp \in \itP := R3 \times R\times R, (4.22)

\itg := (\itD , \ith , \epsilon , \itr \itc ,\Delta \itt , \itt \ite \itn \itd , \itt ) for \itg \in R7, (4.23)

and functions:

\itu ([\itg ,p], \itj ) :=
\bigl( 
\itk \in (1, ..., | p| ) : \itp \itk , \itp \itj \in p \wedge | \itx \itk  - \itx \itj | \in (1, \itr \itc ]

\bigr) 
, (4.24)

\itf (\itg ) := (\itt > \itt \ite \itn \itd ) , (4.25)

\iti (\itg , \itp \itj , \itp \itk ) :=

\left(     
\left(    

\itx \itj 

\itw \itj 

\Delta \itw \itj +
\itw \itk  - \itw \itj \biggl( 

| \itx \itk  - \itx \itj | 
\epsilon 

\biggr) 10

+1

\right)    
\bfT 

, \itp \itk 

\right)     , (4.26)

\ite (\itg , \itp \itj ) :=

\left(   \itg ,

\left(   
\left(  \itx \itj 

\itw \itj +\Delta \itt 15\itD \ith 3

\epsilon 5\pi 2 \Delta \itw \itj 

0

\right)  \bfT 
\right)   

\right)   , (4.27)

\r \ite (\itg ) := (\itD , \ith , \epsilon , \itr \itc ,\Delta \itt , \itt \ite \itn \itd , \itt +\Delta \itt ) . (4.28)

Each particle \itp represents a collocation point of the numerical scheme. It is a collection
of three properties, each of which is a real vector/ number: the position \itx , the concentra-
tion \itw , and the accumulator variable \Delta \itw that collects the concentration in the interact
function \iti . An accumulator variable is required here to render the computation result
independent of the indexing order of the particles.

The global variable \itg is a collection of seven real-valued properties that are accessible
throughout the whole calculation: the diffusion constant \itD , the spacing between parti-
cles \ith , the kernel width \epsilon , the cut-off radius \itr \itc , the time step size \Delta \itt , the end time of the
simulation \itt \ite \itn \itd , and the current time \itt .

The neighborhood function \itu returns the surrounding particles no further away than
the cut-off radius \itr \itc and different from the query particle itself. The stopping condition \itf 
is true (\top ) if the current time \itt exceeds the end time \itt \ite \itn \itd . Then the simulation halts.

The interact function \iti evaluates the sum in the PSE approximation (4.17). Each
particle \itp \itj accumulates its concentration change in \Delta \itw \itj during the interactions with the
other particles. In the present example, we choose an asymmetric/ pull interact function \iti ,
just changing particle \itp \itj . The neighborhood function \itu accounts for this. However, this
is unnecessary, and symmetric formulations of PSE are also possible.

The evolve function \ite uses the accumulated change \Delta \itw \itj to update the concentration \itw \itj 

of particle \itp \itj using the explicit Euler method (4.21). For that, it also uses \itD , \ith , \epsilon , and \Delta \itt 
from the global variable \itg . In addition, the evolve function \ite resets the accumulator \Delta \itw \itj 

to 0. In this example, the evolve function does not change the global variable \itg . That is
exclusively done in \r \ite , which updates the current time \itt by adding the time step size \Delta \itt .
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We need to fix the parameters and the initial condition to define a specific instance of
this particle method. We choose a box where \itw = 0 for all particles except for the center,
where we place a concentration peak.

\itg 1 :=
\bigl( 
0.01\underbrace{}  \underbrace{}  
\itD 

, 0.02\underbrace{}  \underbrace{}  
\ith 

, 0.02\underbrace{}  \underbrace{}  
\epsilon 

, 0.06\underbrace{}  \underbrace{}  
\itr \itc 

, 0.005\underbrace{}  \underbrace{}  
\Delta \itt 

, 0.5\underbrace{}  \underbrace{}  
\itt \ite \itn \itd 

, 0\underbrace{}  \underbrace{}  
\itt 

\bigr) 
(4.29)

p1 := (\itp 1, ..., \itp 513), \itp \itj := (\itx \itj ,\itw \itj ,\Delta \itw \itj ) (4.30)

For \itj \in \{ 1, ..., 513\} \setminus \{ 513+1
2 \} we can uniquely represent \itj as \itj = \itj 1 + \itj 251 + \itj 351

2 where
\itj 1, \itj 2, \itj 3 \in \{ 0, ..., 50\} , then we set \itp \itj as

\itp \itj := ((\ith (\itj 1  - 25), \ith (\itj 2  - 25), \ith (\itj 3  - 25)) , 0, 0) , (4.31)

and we set
\itp 513+1

2

:=
\bigl( 
(0, 0, 0) , \ith  - 3, 0

\bigr) 
. (4.32)

The result of executing this instance is visualized for time \itt = 0.5 in figure 4.2.
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(a) Simulation compared with the analytical solution. It is the plot of the values along
the x-axis vs. the concentration.

(b) Visualization of the simulation with a clipped domain for better visibility (visualized
using ParaView [85]).

Figure 4.2: Particle Strength Exchange simulation of diffusion in three-dimensions
at \itt = 0.5.
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4.4 Smoothed Particle Hydrodynamics

We use Smoothed Particle Hydrodynamics (SPH) [34, 58] to showcase our definition ap-
plies to one of the most popular particle methods. The example we chose is a dam break
fluid simulation based on the Navier-Stokes equations.

PSE and SPH are related. However, they follow different but similar approaches. The
main difference is that in SPH, the kernels for the derivative interpolation are derivatives
of the function interpolation kernel, while in PSE, all kernels are potentially unrelated.

The Navier-Stokes equation of momentum

\itD \itv 

\itD \itt 
=  - 1

\rho 
\nabla p+\nabla \cdot 

\bigl( 
\nu 
\bigl( 
\nabla \itv +\nabla \itv \bfT 

\bigr) \bigr) 
+ \itg (4.33)

describes the motion of a viscous fluid. The parameter \nu denotes the kinematic viscosity,
and \itg is the gravitational force. The unknown fields are the velocity \itv , the density \rho , and
the pressure p. The density convergence equation

\itD \rho 

\itD \itt 
=  - \rho \nabla \cdot \itv (4.34)

describes mass conservation. The momentum equation and the density convergence equa-
tion are, in this case, coupled with the Cole [18] equation of state

p(\rho ) :=
\itc 20 \rho 0
\gamma 

\biggl( \biggl( 
\rho 

\rho 0

\biggr) \gamma 
 - 1

\biggr) 
. (4.35)

The parameter \itc 0 is the so-called speed of sound of the fluid, \rho 0 is the reference density,
and \gamma is the polytropic index. The choice of the parameters of the equation of state
strongly influences the density fluctuations.
The system of equations is discretized by the method of SPH [34, 62, 58] using a smoothing
kernel function. We use a fifth-order Wendland kernel [90]

\itW \itj \itk =

\left\{   21
16 \pi \ith 3

\Bigl( 
1 - | \itx \itj \itk | 

2\ith 

\Bigr) 4 \Bigl( 
1 + 2

| \itx \itj \itk | 
\ith 

\Bigr) 
if 0 \leq | \itx \itj \itk | \leq 2\ith ,

0 else
, (4.36)

and its derivative

\nabla \itW \itj \itk =  - \itx \itj \itk \itF \itj \itk =

\left\{           
 - \itx \itj \itk 

\Biggl( 
 - 5 \cdot 21
16\pi \ith 5\underbrace{}  \underbrace{}  

=:\delta 

\biggl( 
1 - 
| \itx \itj \itk | 
2\ith 

\biggr) 3

\underbrace{}  \underbrace{}  
=:\itF \itj \itk 

\Biggr) 
if 0 \leq | \itx \itj \itk | \leq 2\ith ,

0 else

, (4.37)

where \ith scales the kernel support and \itx \itj \itk := \itx \itk  - \itx \itj . Using the Wendland kernel and its
derivative, we arrive at the discretized momentum equation

\itD \itv \itj 
\itD \itt 
\approx 

\sum 
\itk \in \itK 

\Biggl( 
p\itj 
\rho 2\itj 

+
p\itk 
\rho 2\itk \underbrace{}  \underbrace{}  

=: \Omega \itj \itk 

+
\Pi \itj \itk 

\rho \itj 

\Biggr) 
\itx \itj \itk \delta \itm \itj \itF \itj \itk + \itg , (4.38)
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and discretized density convergence equation

\itD \rho \itj 
\itD \itt 

=
\sum 
\itk \in \itK 

\itv \itj \itk \cdot \itx \itj \itk \delta \itm \itj \itF \itj \itk , (4.39)

with \itv \itj \itk := \itv \itk  - \itv \itj . The parameter \itm \itj denotes the mass of a particle, which we choose
to be and stay the same for all particles, and

\Pi \itj \itk 

\rho \itj 
:=  - 10\nu 

\rho \itj 

\itv \itj \itk \cdot \itx \itj \itk 

| \itx \itj \itk | 2
(4.40)

is the artificial viscosity term describing the viscous contribution of the momentum equa-
tion. Having the spatial discretization of the partial differential equation system, we now
use a predictor-corrector integration scheme [95] to discretize time. The scheme has two
phases. The first calculates a half step used in the second phase to calculate a corrected
full step.
First phase:

\Delta \itv \itn = \Delta \itv (\itx \itn , \itv \itn , \rho \itn ) =
\itD \itv 

\itD \itt 

\bigm| \bigm| \bigm| \bigm| 
\itt =\itt \itn 

(4.41)

\Delta \rho \itn = \Delta \rho (\itx \itn , \itv \itn , \rho \itn ) =
\itD \rho 

\itD \itt 

\bigm| \bigm| \bigm| \bigm| 
\itt =\itt \itn 

(4.42)

\itx \itn + 1
2 = \itx \itn +

\Delta \itt 

2
\itv \itn (4.43)

\itv \itn +
1
2 = \itv \itn +

\Delta \itt 

2
\Delta \itv \itn (4.44)

\rho \itn +
1
2 = \rho \itn +

\Delta \itt 

2
\Delta \rho \itn (4.45)

Second phase:

\Delta \itv \itn +
1
2 = \Delta \itv 

\Bigl( 
\itx \itn + 1

2 , \itv \itn +
1
2 , \rho \itn +

1
2

\Bigr) 
(4.46)

\Delta \rho \itn +
1
2 = \Delta \rho 

\Bigl( 
\itx \itn + 1

2 , \itv \itn +
1
2 , \rho \itn +

1
2

\Bigr) 
(4.47)

\itx \itn +1 = \itx \itn +\Delta \itt 

\biggl( 
\itv \itn +

\Delta \itt 

2
\Delta \itv \itn +

1
2

\biggr) 
(4.48)

\itv \itn +1 = \itv \itn +\Delta \itt \Delta \itv \itn +
1
2 (4.49)

\rho \itn +1 = \rho \itn +\Delta \itt \Delta \rho \itn +
1
2 (4.50)

So far, we have described the behavior of the fluid, not the geometry in which it flows.
Hence we need boundary conditions. We choose a pool with a pillar. SPH doesn't need
boundary conditions for free surfaces. Hence it is enough to describe the solid walls of the
pool and the pillar. We use the so-called dynamic boundary conditions [24], where fluid
particles represent the boundary. These boundary particles have constant zero velocity
and therefore do not move. Thus, the remaining properties of the particles do not differ
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from the standard fluid particles.

In the particle method algorithm, we have these two types of particles, the fluid
particles and the boundary particles, the property \itb indicates this. For boundary
particles, is \itb = \top , and for fluid particles, \itb = \bot . In addition, each particle has a
position \itx , velocity \itv , density \rho , and for each of these exists a storage for the previous
value (\itx \ito \itl \itd , \itv \ito \itl \itd , \rho \ito \itl \itd ). Furthermore, the particles have two accumulators for the velocity
change \Delta \itv and density change \Delta \rho .

The global variable \itg consists of the parameter \varphi that indicates the current predictor-
corrector phase, \varphi = 0 for the first phase, and \varphi = 1 for the second, and further SPH-
and physical parameters as well as parameters relevant for the time management. This
defines the particle method algorithm as follows:

\itp :=(\itb , \itx , \itx \ito \itl \itd , \itv , \itv \ito \itl \itd , \rho , \rho \ito \itl \itd ,\Delta \itv ,\Delta \rho ) (4.51)

for \itp \in \itP := \{ \bot ,\top \} \times 
\bigl( 
R3

\bigr) 4 \times R\times R\times R3 \times R,
\itg :=(\varphi , g, \rho 0,\itm , \ith , \itr \itc , \itc 0, \nu , \gamma ,\Delta \itt , \itt \ite \itn \itd , \itt ) (4.52)

for \itg \in \itG := \{ 0, 1\} \times R3\times (R)10,
\itu ([\itg ,p], \itj ) :=(\itk \in (1, ..., | p| ) : \itp \itk , \itp \itj \in p \wedge | \itx \itj \itk | \leq \itr \itc \wedge \itj < \itk ), (4.53)

\itf (\itg ) :=(\itt > \itt \ite \itn \itd ), (4.54)

\iti (\itg , \itp \itj , \itp \itk ) :=

\left(                

\left(                

\itb \itj 
\itx \itj 

\itx \ito \itl \itd 
\itj 

\itv \itj 
\itv \ito \itl \itd \itj 

\rho \itj 
\rho \ito \itl \itd \itj 

\Delta \itv \itj +
\Bigl( 
\Omega \itj \itk +

\Pi \itj \itk 

\rho \itj 

\Bigr) 
\itx \itj \itk \itF \itj \itk 

\Delta \rho \itj + \itv \itj \itk \cdot \itx \itj \itk \itF \itj \itk 

\right)                

\bfT 

,

\left(               

\itb \itk 
\itx \itk 

\itx \ito \itl \itd 
\itk 

\itv \itk 
\itv \ito \itl \itd \itk 

\rho \itk 
\rho \ito \itl \itd \itk 

\Delta \itv \itk  - 
\Bigl( 
\Omega \itj \itk +

\Pi \itj \itk 

\rho \itk 

\Bigr) 
\itx \itj \itk \itF \itj \itk 

\Delta \rho \itk + \itv \itj \itk \cdot \itx \itj \itk \itF \itj \itk 

\right)               

\bfT 
\right)                
,

(4.55)
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\ite (\itg , \itp \itj ) :=

\left(                                      

\itg ,

\left(                                     

\itb \itj \left\{       
\itx \itj +

\Delta \itt 
2 \itv \itj if \itb \itj = \bot \wedge \varphi = 0

\itx \ito \itl \itd 
\itj +\Delta \itt 

\Bigl( 
\itv \ito \itl \itd \itj + \Delta \itt 

2 (g+ \delta \Delta \itv \itj )
\Bigr) 

if \itb \itj = \bot \wedge \varphi = 1

\itx \itj else\Biggl\{ 
\itx \itj if \itb \itj = \bot \wedge \varphi = 0

\itx \ito \itl \itd 
\itj else\left\{     

\itv \itj +
\Delta \itt 
2 (g+ \delta \Delta \itv \itj ) if \itb \itj = \bot \wedge \varphi = 0

\itv \ito \itl \itd \itj +\Delta \itt (g+ \delta \Delta \itv \itj ) if \itb \itj = \bot \wedge \varphi = 1

\itv \itj else\Biggl\{ 
\itv \itj if \itb \itj = \bot \wedge \varphi = 0

\itv \ito \itl \itd \itj else\Biggl\{ 
\rho \itj +

\Delta \itt 
2 \delta \Delta \rho \itj if \varphi = 0

\rho \ito \itl \itd \itj +\Delta \itt \delta \Delta \rho \itj else\Biggl\{ 
\rho \itj if \varphi = 0

\rho \ito \itl \itd \itj else

0
0

\right)                                     

\bfT \right)                                      

, (4.56)

\r \ite (\itg ) :=

\Biggl\{ 
(1, g, \rho 0,\itm , \ith , \itr \itc , \itc 0, \nu , \gamma ,\Delta \itt , \itt \ite \itn \itd , \itt ) if \varphi = 0

(0, g, \rho 0,\itm , \ith , \itr \itc , \itc 0, \nu , \gamma ,\Delta \itt , \itt \ite \itn \itd , \itt +\Delta \itt ) else
. (4.57)

The neighborhood function for symmetric interactions depends on the distance between
two particles. The stopping condition \itf is true if the current time \itt exceeds the end
time \itt \ite \itn \itd . The interaction function \iti takes care of the accumulation of the velocity
change \Delta \itv and density change \Delta \rho . It evaluates the calculations inside the sums of (4.38)
and (4.39) without the \delta \itm . We combine the two parameters to \delta := \delta \itm . The factor of \delta 
is accounted for in the evolve method.

The evolve method is a bit more complex. It needs to distinguish between boundary
and fluid particles and between the first and second predictor-corrector phases. Hence, it
calculates the time integration, sets the storage of the previous properties, and sets the
accumulators back to 0.

The evolve method of the global variable switches the predictor-corrector phase \varphi back
and forth and advances the current time in the second phase \varphi = 1.

We need to fix the parameters and the initial condition to define a specific instance of
this particle method. Here we set boundary particles in the form of a pool with a column
and place fluid particles in a block inside the pool. The parameters of the global variable
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are chosen such that the fluid particles behave roughly like water.

\itg 1 :=(\varphi , g, \rho 0,\itm , \ith , \itr \itc , \itc 0, \nu , \gamma ,\Delta \itt , \itt \ite \itn \itd , \itt ) initial global variable

\varphi := 0 phase of the algorithm

g := (0, 0, - 9.81) directed gravitation

\rho 0 := 1000 reference density

\itm :=
\rho 0
643

particle mass

\ith :=
1.3

64
characteristic kernel length

\itr \itc := 2\ith interaction cut-off radius

\itc 0 := 45 speed of sound

\nu := 10 - 4 viscosity parameter

\gamma := 7 polytropic index

\Delta \itt := 0.00005 time step size

\itt \ite \itn \itd := 3.5 end time of the simulation

\itt := 0 current time

p1 :=pfl\itu \iti \itd initial particle tuple containing

\circ p\itl \itW \circ p\itr \itW \circ p\itf \itW \circ p\itb \itW \circ p\itd \itW fluid, wall, and pillar particles

\circ p\itl \itP \circ p\itr \itP \circ p\itf \itP \circ p\itb \itP \circ p\itt \itP 

\itp \itj :=
(\itb \itj , \itx \itj , \itx 

\ito \itl \itd 
\itj , \itv \itj , \itv 

\ito \itl \itd 
\itj ,

\rho \itj , \rho 
\ito \itl \itd 
\itj ,\Delta \itv \itj ,\Delta \rho \itj )

j-th particle

\itb \itj :=

\Biggl\{ 
0 if \itp \itj \in pfl\itu \iti \itd 

1 else

indicator if a particle is a fluid
or a boundary particle

\itx fl\itu \iti \itd 

\iota 33, 63, 65
\itj , \itk , \itl 

:=
1

64
(\itj + 1, \itk + 1, \itl + 1)\bfT position of fluid particles

\itx \itl \itW 
\iota 2, 69, 65
\itj , \itk , \itl 

:=
1

64
(\itj  - 2, \itk  - 2, \itl )\bfT position of left wall particles

\itx \itr \itW 
\iota 2, 69, 65
\itj , \itk , \itl 

:=
1

64
(\itj + 193, \itk  - 2, \itl )\bfT position of right wall particles

\itx \itf \itW 

\iota 193, 2, 65
\itj , \itk , \itl 

:=
1

64
(\itj , \itk  - 2, \itl )\bfT position of front wall particles

\itx \itb \itW 
\iota 193, 2, 65
\itj , \itk , \itl 

:=
1

64
(\itj , \itk + 65, \itl )\bfT position of back wall particles

\itx \itd \itW 
\iota 197, 69, 2
\itj , \itk , \itl 

:=
1

64
(\itj  - 2, \itk  - 2, \itl  - 2)\bfT position of bottom wall particles
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\itx \itl \itP 
\iota 2, 21, 65
\itj , \itk , \itl 

:=
1

64
(\itj + 126, \itk + 22, \itl )\bfT position of left pillar particles

\itx \itr \itP 
\iota 2, 21, 65
\itj , \itk , \itl 

:=
1

64
(\itj + 145, \itk + 22, \itl )\bfT position of right pillar particles

\itx \itf \itP 

\iota 17, 2, 65
\itj , \itk , \itl 

:=
1

64
(\itj + 128, \itk + 22, \itl )\bfT position of front pillar particles

\itx \itb \itP 
\iota 17, 2, 65
\itj , \itk , \itl 

:=
1

64
(\itj + 128, \itk + 41, \itl )\bfT position of back pillar particles

\itx \itt \itP 
\iota 21, 21, 2
\itj , \itk , \itl 

:=
1

64
(\itj + 126, \itk + 22, \itl + 65)\bfT position of top pillar particles

\itx \ito \itl \itd 
\itj := (0, 0, 0)\bfT storage for previous position

\itv \itj := (0, 0, 0)\bfT velocity

\itv \ito \itl \itd \itj := (0, 0, 0)\bfT storage for previous velocity

\rho \itj := 1000 density

\rho \ito \itl \itd \itj := 0 storage for previous density

\Delta \itv \itj := (0, 0, 0)\bfT accumulator for velocity change

\Delta \rho \itj := 0 accumulator for density change

The result of the execution is visualized in figure 4.3 for time \itt = 2
3 .

Figure 4.3: Dam Break simulation using smoothed particle hydrodynamics at the
time \itt = 2

3 . The wall facing the viewer is clipped for better visualization (visualized
using ParaView [85]).
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4.5 Lennard-Jones Molecular Dynamics

Particle methods cannot only be used to discretize continuous models, such as the PDE
from the previous example but also to simulate discrete models. A famous example is
molecular dynamics, where the Newtonian mechanics of a collection of discrete atoms or
molecules is simulated by evaluating their interaction forces. A classic molecular dynam-
ics simulation is that of a so-called Lennard-Jones gas, a dilute collection of electrically
neutral, inert, and mono-atomic molecules that interact with each other according to the
Lennard-Jones potential [53]

\itU (\itr ) = 4\epsilon 

\biggl( \Bigl( \sigma 
\itr 

\Bigr) 12
 - 

\Bigl( \sigma 
\itr 

\Bigr) 6
\biggr) 
. (4.58)

This potential defines the energy of the interaction as a function of the distance \itr between
two atoms. It is a good approximation of how noble gases behave in function of two
parameters: \sigma that controls the equilibrium distance between atoms and hence the target
density of the gas, and \epsilon that defines the strength of the interactions by setting the energy
scale of the potential.

From this interaction potential, the force between any two atoms a distance \itr apart
can be computed as \itF =  - \mathrm{d}\itU (\itr )

\mathrm{d}\itr . From the forces summed up over all other atoms, the
acceleration of each atom is computed from Newton's law \itF = \itm \ita , where \itm is the atom's
mass. The acceleration is then used to update the velocity and position of the atoms using
a symplectic (i.e., energy-conserving) time-stepping method, such as the velocity Verlet
scheme [87, 82].

For simplicity, we choose \epsilon = \sigma = \itm = 1. The acceleration between two atoms \itj and \itk 
a distance \itr \itj \itk := \itx \itk  - \itx \itj apart then is:

\ita (\itr \itj \itk ) =
24

\itr 7\itj \itk 
 - 48

\itr 13\itj \itk 
. (4.59)

This acceleration is then used in the velocity-Verlet method [87] to update the velocity \itv 
and position \itx of an atom over a time step \Delta \itt , from \itt \itn to \itt \itn +1, as:

compute \ita (\itt \itn ) from \itx (\itt \itn ), (4.60)

\itv (\itt \itn ) = \itv (\itt \itn  - 1
2
) +

\Delta \itt 

2
\ita (\itt \itn ), (4.61)

\itv (\itt \itn + 1
2
) = \itv (\itt \itn ) +

\Delta \itt 

2
\ita (\itt \itn ), (4.62)

\itx (\itt \itn +1) = \itx (\itt \itn ) + \Delta \itt \itv (\itt \itn + 1
2
). (4.63)

We choose to have periodic boundary conditions at the boundaries of the simulation
domain \itx \in [0,\itD ). A directed distance function imposes these boundary conditions

\itd \itD (\itx , \ity ) :=

\left\{     
\ity  - \itx  - \itD if \ity  - \itx > 1

2\itD ,

\ity  - \itx +\itD if \ity  - \itx \leq  - 1
2\itD ,

\ity  - \itx else

(4.64)
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and through the modulo operator

\ita mod \itb := \itr \Leftarrow \Rightarrow \ita = \itb \cdot \itc + \itr 

with \ita , \itb \in R, \itc \in Z, \itr \in [0, | \itb | ) ,
(4.65)

that we use to adapt (4.63) to

\itx (\itt \itn +1) =
\Bigl( 
\itx (\itt \itn ) + \Delta \itt \itv (\itt \itn + 1

2
)
\Bigr) 
mod \itD . (4.66)

Each atom is represented as a distinct particle in a particle method simulation of
Lennard-Jones molecular dynamics. They interact pairwise to compute the resultant sum
of all accelerations of each atom and then evolve their position and velocity using velocity-
Verlet time stepping. For simplicity, we again consider a one-dimensional domain. This
defines the following particle method in our framework:

\itp := (\itx , \itv , \ita ) for \itp \in \itP := R3, (4.67)

\itg := (\itr \itc ,\itD ,\Delta \itt , \itt \ite \itn \itd , \itt ) for \itg \in R5, (4.68)

\itu ([\itg ,p], \itj ) :=(\itk \in (1, ..., | p| ) : \itp \itk , \itp \itj \in p \wedge 0 < \itd \itD (\itx \itj , \itx \itk ) \leq \itr \itc ), (4.69)

\itf (\itg ) := (\itt \geq \itt \ite \itn \itd ) , (4.70)

\iti (\itg , \itp \itj , \itp \itk ) :=

\left(           

\left(   \itx \itj 
\itv \itj 

\ita \itj +
24

\itd \itD (\itx \itj ,\itx \itk )7
 - 48

\itd \itD (\itx \itj ,\itx \itk )13

\right)   
\bfT 

\left(   \itx \itk 
\itv \itk 

\ita \itk +
24

\itd \itD (\itx \itk ,\itx \itj )7
 - 48

\itd \itD (\itx \itk ,\itx \itj )13

\right)   
\bfT 

\right)           

\bfT 

, (4.71)

\ite (\itg , \itp \itj ) :=

\left(   \itg ,

\left(   
\left(  (\itx \itj +\Delta \itt (\itv \itj +\Delta \itt \cdot \ita \itj )) mod \itD 

\itv \itj +\Delta \itt \cdot \ita \itj 
0

\right)  \bfT 
\right)   
\right)   , (4.72)

\r \ite (\itg ) := (\itr \itc ,\itD ,\Delta \itt , \itt \ite \itn \itd , \itt +\Delta \itt ) . (4.73)

In this example, a particle \itp is the collection of properties of one atom, namely its
position \itx , velocity \itv , acceleration \ita , and previous acceleration \ita \ito \itl \itd , as required for the
velocity-Verlet method. All properties are real numbers. The global variable \itg is also a
collection of real numbers: the cut-off radius \itr \itc for the interactions, the time-step size \Delta \itt ,
the end time of the simulation \itt \ite \itn \itd , and the current time \itt .

The neighborhood function \itu returns the surrounding particles, which are no further
away than the cut-off radius \itr \itc , are not the particle itself and are to the right of the particle
(absence of absolute value in the distance computation). This hence defines an asymmetric
neighborhood, which is used for symmetric interactions. The stopping condition \itf is
true (\top ) if the current time \itt reaches or exceeds the end time \itt \ite \itn \itd .

The interact function \iti sums up all forces acting on a particle. Because the neighbor-
hood is asymmetric, the interactions are symmetric, changing both involved particles. In
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each pairwise interaction of two particles \itp \itj and \itp \itk , these particles add the contribution
of the Lennard-Jones acceleration into their current acceleration. The evolve function \ite 
computes for a particle \itp \itj the new position \itx \itj and the new velocity \itv \itj from the current ac-
celeration \ita \itj (calculated in \iti ) and the previous acceleration \ita \ito \itl \itd 

\itj (stored). It also uses the
time step size \Delta \itt from the global variable \itg . In the velocity-Verlet method, the position
\itx is calculated before the acceleration \ita . Since the acceleration \ita is calculated in \iti , the
position \itx needs to be calculated afterward. Hence, \itx for the next time step is calculated
in \ite using \ita (\itt \itn +1) and \itv (\itt \itn +1). The evolve function also overwrites \ita \ito \itl \itd 

\itj with \ita \itj and resets
\ita \itj to 0 for the next time step. In this example, it does not change the global variable \itg .
That is only done in \r \ite , which advances the current time \itt by adding the time step size
\Delta \itt .

An instance is again defined by fixing the parameters and instance of the particle
method. In this example, we choose to initially place ten particles with a linearly increasing
spacing between them and initialize all other properties to 0, hence:

\itg 1 := (\itr \itc ,\itD ,\Delta \itt , \itt \ite \itn \itd , \itt ) initial global variable

\itr \itc := 3 cut-off radius

\itD := 19 domain size

\Delta \itt := 0.0001 time step size

\itt \ite \itn \itd := 10 end time of the simulation

\itt := 0 current time

p1 := (\itp 1, ..., \itp 10) initial particle tuple

\itp \itj :=(\itx \itj , \itv \itj , \ita \itj ) j-th particle

\itx \itj :=\itj (0.9 + 0.11\itj ) initial particle positions

\itv \itj :=0 initial particle velocities

\ita \itj :=0 initial particle accelerations

The result of executing this instance is shown in figure 4.4 at the initial and final time. As a
validation, we show in figure 4.5 that the system's total (i.e., kinetic plus potential) energy
is behaving as expected for a symplectic time integrator like the velocity-Verlet scheme
used here. Due to numerical round-off errors, the global energy difference fluctuates around
zero with errors comparable to the square of machine epsilon for double-precision floating-
point arithmetics, as expected from the second-order time integration method used.
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Figure 4.4: Visualization of a molecular dynamics simulation of 10 Lennard-Jones atoms
in one dimension at times \itt = 0 (top) and \itt = \itt \ite \itn \itd = 10 (bottom) (visualized using
ParaView [85]).
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Figure 4.5: Deviation of the total energy of the molecular dynamics simulation from the
total initial energy at \itt = 0.

4.6 Triangulation refinement

After seeing classic particle methods, we also show three examples of how we can formulate
algorithms not generally recognized as particle methods in our definition. This does not
imply one should implement them as practice methods but to show the generality of our
definition and the value of having a formal framework.

The first example considers an algorithm for triangulation refinement as often used
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in computer graphics [28]. It refines a triangulation by replacing each triangle with four
smaller triangles. It creates three new vertices for each existing triangle, one at the
midpoint of each edge. Three new edges connect then these vertices. Together with the
existing vertices and edges, this creates a refined triangulation. We illustrate the process
in figure 4.6.

There are multiple ways of formulating this process as a particle method. An obvious
choice might be to represent each vertex of the triangular mesh by a particle and to store
the incoming or outgoing edges as (integer-valued) properties of the particles. Another
choice we follow here for illustration is to represent each triangle by a particle. Each
particle (triangle) then stores a unique index, a vector of three vertices, the indices of its
face-connected neighbors, and a ``reverse index"" storing the information which neighbor
(0th, 1st, or 2nd) it is from the perspective of its neighbor particles.

Through the interact function \iti , this neighbor information is exchanged. The evolve
function \ite is then used to calculate the neighbor indices of the new, smaller particles
(triangles). The old particles (triangles) are deleted by the evolve function \ite , and four
new particles (triangles) are created. We choose this representation because it illustrates
a case where the evolve function creates and destroys particles. Assuming that everything
happens in a two-dimensional space, the resulting particle method reads:

\itp :=

\left(  \iota ,
\left(  0\itv 

1\itv 
2\itv 

\right)  ,

\left(  0\beta 
1\beta 
2\beta 

\right)  ,

\left(  0\gamma 
1\gamma 
2\gamma 

\right)  \right)  
for \itp \in \itP := N0 \times 

\bigl( 
R2

\bigr) 3 \times (N0 \cup \{  - 1\} )3 \times \{ 0, 1, 2\} 3,

\itg := (\itt \ite \itn \itd , \itt ) for \itg \in \itG := N0 \times N0,

(4.74)

\itu ([\itg ,p], \itj ) :=
\bigl( 
0\beta \itj ,

1\beta \itj ,
2\beta \itj 

\bigr) 
, (4.75)

\itf (\itg ) := (\itt \geq \itt \ite \itn \itd ) , (4.76)

\iti (\itg , \itp \itj , \itp \itk ) := (4.77)\left(                  

\left(                  
\iota \itj ,

\left(  0\itv \itj 
1\itv \itj 
2\itv \itj 

\right)  ,

\left(  0\beta \itj 
1\beta \itj 
2\beta \itj 

\right)  ,

\left\{                                   

\left(   \itr 
1\gamma \itj 
2\gamma \itj 

\right)   with \iota \itj =
\itr \beta \itk if \iota \itk = 0\beta \itj 

\left(   
0\gamma \itj 

\itr 
2\gamma \itj 

\right)   with \iota \itj =
\itr \beta \itk if \iota \itk = 1\beta \itj 

\left(   
0\gamma \itj 
1\gamma \itj 

\itr 

\right)   with \iota \itj =
\itr \beta \itk if \iota \itk = 2\beta \itj 

\right)                  
, \itp \itk 

\right)                  
,
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\ite (\itg , \itp \itj ) := (4.78)\left(                                                 

\itg ,

\left(                                                 

\left(         
4 \iota \itj ,

\left(      
0\itv \itj 

0\itv \itj +
1\itv \itj 

2

0\itv \itj +
2\itv \itj 

2

\right)      ,

\left(         

\Biggl\{ 
4 0\beta \itj + (0\gamma + 1) mod 3 if 0\beta \itj \not =  - 1
 - 1 else

4\iota \itj + 3\Biggl\{ 
4 2\beta \itj +

2\gamma if 2\beta \itj \not =  - 1
 - 1 else

\right)         
,

\left(  0
0
0

\right)  
\right)         

\left(         
4 \iota \itj + 1,

\left(      
1\itv \itj 

1\itv \itj +
2\itv \itj 

2

0\itv \itj +
1\itv \itj 

2

\right)      ,

\left(         

\Biggl\{ 
4 1\beta \itj + (1\gamma + 1) mod 3 if 1\beta \itj \not =  - 1
 - 1 else

4\iota \itj + 3\Biggl\{ 
4 0\beta \itj +

0\gamma if 0\beta \itj \not =  - 1
 - 1 else

\right)         
,

\left(  0
0
0

\right)  
\right)         

\left(         
4 \iota \itj + 2,

\left(      
2\itv \itj 

0\itv \itj +
2\itv \itj 

2

1\itv \itj +
2\itv \itj 

2

\right)      ,

\left(         

\Biggl\{ 
4 2\beta \itj + (2\gamma + 1) mod 3 if 2\beta \itj \not =  - 1
 - 1 else

4\iota \itj + 3\Biggl\{ 
4 1\beta \itj +

1\gamma if 1\beta \itj \not =  - 1
 - 1 else

\right)         
,

\left(  0
0
0

\right)  
\right)         

\left(      4 \iota \itj + 3,

\left(      
0\itv \itj +

1\itv \itj 

2
1\itv \itj +

2\itv \itj 

2
0\itv \itj +

2\itv \itj 

2

\right)      ,

\left(   4 \iota \itj + 1

4 \iota \itj + 2

4 \iota \itj 

\right)   ,

\left(  0
0
0

\right)  
\right)      

\right)                                                 

\bfT \right)                                                 

,

\r \ite (\itg ) := (\itt \ite \itn \itd , \itt + 1) . (4.79)

In this example, a particle \itp is the collection of properties of one triangle: the index \iota ,

the vertices
\bigl( 
0\itv , 1\itv , 2\itv 

\bigr) \itT 
, the indices of the neighbor particles (triangles)

\bigl( 
0\beta , 1\beta , 2\beta 

\bigr) \itT 
,

and the storage for the information which neighbor (0th, 1st, or 2nd) the particle is from

the perspective of its neighbor particles
\bigl( 
0\gamma , 1\gamma , 2\gamma 

\bigr) \itT 
. The index is a natural number.

Each vertex is a real 2D vector storing the vertex position in a 2D plane. The neighbor
indices are natural numbers but include  - 1 to indicate if there is no neighbor. The storage
order is 0, 1, 2. The global variable \itg is a collection of two natural numbers, including
zero: the number of refinement steps \itt \ite \itn \itd to be made, and the current refinement step \itt .

The neighborhood function \itu returns the indices of the neighbor particles (trian-

gles)
\bigl( 
0\beta , 1\beta , 2\beta 

\bigr) \itT 
. The stopping condition \itf is true (\top ) if the current refinement step \itt 

reaches the number of refinement steps \itt \ite \itn \itd .
The interact function \iti exchanges the information which neighbor (0th, 1st, or 2nd)

the particle \itp \itj is from the perspective of particle \itp \itk and saves this information in the \gamma \itj 
corresponding to the position of the index \iti \itk of the particle \itp \itk in \beta \itj . The evolve function
\ite creates the new particles and uses the information stored in \gamma \itj to determine the indices
of the new particles. The old particle no longer exists in the following state (refined trian-
gulation). Instead, a tuple of new particles is created. In this evolve function, the global
variable \itg remains unchanged. The evolve method of the global variable \r \ite increments the
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refinement step \itt by 1.
An instance of this particle method has to specify the initial set of triangles (particles)

and the number of refinement steps. We recapitulate the situation in figure 4.6, performing
one refinement step of a single triangle into four smaller triangles. The method therefore
starts from one particle with index 0 and vertices ((0, 0), (4, 0), (2, 4))\itT . The neighbor
indices are all set to \itr \beta 1 =  - 1 (\itr = 0, 1, 2) to indicate that there are no neighbors yet.
The reverse indices are arbitrarily set to \itr \gamma 1 = 0 (\itr = 0, 1, 2), but this has no meaning
because there are no neighbors yet. This leads to the instance:

\itg 1 := (\itt , \itt \ite \itn \itd ) initial global variable

\itt \ite \itn \itd := 1 number of refinement steps

\itt := 0 current refinement step

p1 := (\itp 11) initial particle

\itp 11 =

\left(  \iota 1,
\left(  0\itv 1

1\itv 1
2\itv 1

\right)  ,

\left(  0\beta 1
1\beta 1
2\beta 1

\right)  ,

\left(  0\gamma 1
1\gamma 1
2\gamma 1

\right)  \right)  initial triangle

:=

\left(  0,

\left(  (0, 0)
(4, 0)
(2, 4)

\right)  ,

\left(   - 1 - 1
 - 1

\right)  ,

\left(  0
0
0

\right)  \right)  
The result of executing this is shown in figure 4.6.

(0,0) (4,0)

(2,4)

(0,0) (4,0)

(2,4)

(2,0)

(1,2) (3,2)

p1
1 p4

2

p1
2 p2

2

p3
2

Figure 4.6: Visualization of the \itr \ite fi\itn \ite \itm \ite \itn \itt of a single triangle p1 to four triangles by
inserting three new vertices.
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4.7 Conway's Game of Life

As a second example of a non-canonical particle method, we formulate John H. Conway's
solitary game ``life"" [32] using our definition. The game ``life"" is based on a two-dimensional
cellular automaton. Cellular automata [64, 65] can be interpreted as abstract parallel
processing computers [59, 70], where all cells change their state simultaneously in each
step. A cell's change is only influenced by its own state and the state of its neighbors.
One-dimensional cellular automata became famous for the complex patterns they are able
to generate, despite their extremely simple mechanics. Thus, they build the starting point
for the ``computational universe"" of Stephen Wolfram [91].

In Conway's game of life, the cells are, in theory, on a two-dimensional infinite lattice.
Each cell can either be ``dead"" or ``alive"". To determine if a cell is ``dead"" or ``alive"" in
the next iteration, the Moore neighborhood (all eight adjacent cells) of each cell and the
following three rules are considered.

1. An alive cell dies if four or more neighbors are alive or if just one or no neighbor is
alive.

2. An alive cell stays alive if two or three neighbors are alive.

3. A dead cell gets alive if exactly three neighbors are alive. In all other cases, a dead
cell stays dead.

We translate this into a particle method by identifying each cell as a particle. Then we
sum up all alive neighbors and transform each cell according to the rules. The particle
method reads as follows.

\itp := (l, \ita ,\itn ) \in \itP := N2 \times \{ 0, 1\} \times \{ 0, 1, ..., 8\} , (4.80)

\itg := (\itt \ite \itn \itd , \itt ) \in \itG := N\times N, (4.81)

\itu ([\itg ,p], \itj ) := (\itk \in (1, ..., | p| ) : | l\itk  - l\itj | \infty \leq 1) , (4.82)

\itf (\itg ) := (\itt > \itt \ite \itn \itd ) , (4.83)

\iti (\itg , \itp \itj , \itp \itk ) :=

\Biggl\{ 
((l, \ita ,\itn + 1), \itp \itk ) if \ita \itk = 1

(\itp \itj , \itp \itk ) else
, (4.84)

\ite (\itg , \itp \itj , \itp \itk ) :=

\Biggl\{ 
(\itg , ((l, 1, 0))) if \itn \itj = 3 \vee (\itn \itj = 2 \wedge \ita \itj + 1)

(\itg , ((l, 0, 0))) else
, (4.85)

\r \ite (\itg ) := (\itt \ite \itn \itd , \itt + 1) (4.86)

In this example, a particle consists of the two-dimensional index l, the aliveness flag \ita ,
and the counter for the alive neighbors \itn . The global variable consists of the number of



47

steps \itt \ite \itn \itd and the step counter \itt . Hence, the stop function \itf is true if the counter exceeds
the number of steps. The neighborhood function \itu returns the indices of the particle that
are in the Moore neighborhood of a particle. The interact function \iti counts the alive
neighbors by increasing the counter \itn by one for each interaction with an alive particle.
The particles are set to their new aliveness in the evolve function \ite , where also the counter
is set back to zero. At last, the evolve function of the global variable increases the step
counter \itt by one.

The instance of this particle method realizes the Gosper glider gun [4] on a lattice of 50
times 35 cells for 100 iterations. This leads to the instance with a global variable of

\itg 1 := (\itt , \itt \ite \itn \itd ) (4.87)

\itt \ite \itn \itd := 100 number of iteration (4.88)

\itt := 1 current iteration, (4.89)

and the initial particle tuple of

p1 :=
\bigl( 
\itp 11 , ..., \itp 

1
1850

\bigr) 
initial particles (4.90)

\itp 11 =

\biggl( \biggl( 
0

0

\biggr) 
\underbrace{}  \underbrace{}  
\bfl 11

, \ita 1
1 , 0\underbrace{}  \underbrace{}  

\itn 1
1

\biggr) 
(4.91)

\itp 12 =

\biggl( \biggl( 
1

0

\biggr) 
, \ita 1

2 , 0

\biggr) 
(4.92)

...

\itp 150 =

\biggl( \biggl( 
49

0

\biggr) 
, \ita 1

50, 0

\biggr) 
(4.93)

\itp 151 =

\biggl( \biggl( 
0

1

\biggr) 
, \ita 1

51, 0

\biggr) 
(4.94)

...

\itp 11850 =

\biggl( \biggl( 
49

34

\biggr) 
, \ita 1

1850, 0

\biggr) 
. (4.95)

The alive cells are the ones with an index l \in \itL with

\itL :=

\Biggl\{ \biggl( 
1

5

\biggr) 
,

\biggl( 
1

6

\biggr) 
,

\biggl( 
2

5

\biggr) 
,

\biggl( 
2

6

\biggr) 
,

\biggl( 
11

5

\biggr) 
,

\biggl( 
11

6

\biggr) 
,

\biggl( 
11

7

\biggr) 
,

\biggl( 
12

4

\biggr) 
,

\biggl( 
12

8

\biggr) 
,

\biggl( 
13

3

\biggr) 
,

\biggl( 
13

9

\biggr) 
,\biggl( 

14

3

\biggr) 
,

\biggl( 
14

9

\biggr) 
,

\biggl( 
15

6

\biggr) 
,

\biggl( 
16

4

\biggr) 
,

\biggl( 
16

8

\biggr) 
,

\biggl( 
17

5

\biggr) 
,

\biggl( 
17

6

\biggr) 
,

\biggl( 
17

7

\biggr) 
,

\biggl( 
18

6

\biggr) 
,

\biggl( 
21

3

\biggr) 
,\biggl( 

21

4

\biggr) 
,

\biggl( 
21

5

\biggr) 
,

\biggl( 
22

3

\biggr) 
,

\biggl( 
22

4

\biggr) 
,

\biggl( 
22

5

\biggr) 
,

\biggl( 
23

2

\biggr) 
,

\biggl( 
23

6

\biggr) 
,

\biggl( 
25

1

\biggr) 
,

\biggl( 
25

2

\biggr) 
,

\biggl( 
25

6

\biggr) 
,\biggl( 

25

7

\biggr) 
,

\biggl( 
35

3

\biggr) 
,

\biggl( 
35

4

\biggr) 
,

\biggl( 
36

3

\biggr) 
,

\biggl( 
36

4

\biggr) \biggr\} 
. (4.96)
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Hence,

\ita 1
\itj =

\Biggl\{ 
1 if l1\itj \in \itL 

0 else
. (4.97)

The result of executing this is shown in figure 4.7.

(a) Initial state of the cell lattice at \itt = 1. (b) Final state of the cell lattice at \itt = 100.

Figure 4.7: Simulation of the Gosper glider gun (visualized using ParaView [85]).

4.8 Gaussian Elimination

As a third example of a non-canonical particle method, we formulate the classic Gaussian
elimination algorithm in the framework of our definition. Gaussian elimination is a classic
algorithm to invert a matrix or solve a linear system of equations. It requires a cubic
number of computation operations with the linear dimension of the matrix.

In our example, we use Gaussian elimination to solve systems of \itN linear equations
with \itN unknowns. Each row of the resulting \itN \times \itN matrix represents one equation's
coefficients. The right-hand side values are concatenated to the right of the matrix, as
shown below.

Gaussian elimination uses three operations: swapping two rows, multiplying all entries
in a row with a non-zero number, and adding one row to another. These operations are
combined in the following steps to reduce the matrix to a reduced-row echelon form, i.e.,
an upper triangular matrix where the first non-zero entry in each row is 1, and no other
entry in any leading-1 column is non-zero:

1. Start with the entry in the first row and the first column.

2. If the entry is 0, find the first row with a non-zero entry in the same column and
swap the rows. If there is no non-zero entry, proceed to the next column but stay
in the same row and start this step over. If the entry is non-zero, make all other
entries below it in the same column zero by adding corresponding multiples of the
row to the other rows. Finally, multiply the row with a non-zero number such that
its leading element becomes 1.

3. Proceed to the next row and column and repeat step 2. This results in an upper
triangular matrix with leading ones once they arrive at the last column.
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4. Finally, start from the bottom row and add multiples of the current row to the other
rows to get 0 entries in all columns containing a leading 1. This scheme results in
the reduced row echelon form of the linear equation system.

In our particle method implementation of this algorithm, a particle represents a row
(equation) of the linear equation system. Interactions between particles (rows) change the
entries in the rows, such as to create the upper triangular matrix and then the reduced
row echelon form. The evolve function normalizes the rows to have leading ones. In the
language of our formal definition, this can be expressed as:

\itg := (\itN ,\itm ,\itn ) for \itg \in N\times N\times N, (4.98)

\itp :=

\biggl( \Bigl( 
\itl \ita 

\Bigr) \itN 

\itl =1
, \itb , \mu 

\biggr) 
for \itp \in \itP := R\itN \times R\times R, (4.99)

\itu ([\itg ,p], \itj ) :=

\left\{     
(\itN , ..., \itn + 1) if \itj = \itn , \itm \leq \itN 

(1, ..., \itn  - 1) if \itj = \itn , \itm > \itN 

() else,

(4.100)

\itf (\itg ) := (\itn = 1 \wedge \itm > \itN ) , (4.101)

\iti (\itg , \itp \itj , \itp \itk ) :=

\left\{                                   

\left(     \itp \itj ,

\left(     
\left(    

\Bigl( 
\itl \ita \itk  - \itl \ita \itj 

\itm \ita \itk 
\itm \ita \itj 

\Bigr) \itN 

\itl =\itm 

\itb \itk  - \itb \itj 
\itm \ita \itk 
\itm \ita \itj 

\mu \itk 

\right)    
\bfT 
\right)     
\right)     if

\itm \leq \itN ,
\itm \ita \itj \not = 0

(\itp \itk , \itp \itj ) if \itm \leq \itN , \itm \ita \itj = 0, \itm \ita \itk \not = 0

(\itp \itj , \itp \itk ) if \itm \leq \itN , \itm \ita \itj = 0, \itm \ita \itk = 0\left(    \itp \itj ,

\left(    
\left(    

\bigl( 
\itl \ita \itk  - \mu \itj \ita \itk 

\itl \ita \itj 
\bigr) \itN 
\itl =\mu \itj 

\itb \itk  - \mu \itj \ita \itk \itb \itj 

\mu \itk 

\right)    
\bfT \right)    

\right)    else,

(4.102)

\ite (\itg , \itp \itj ) :=

\left(     
\left(   \itN ,\itm ,

\left\{     
\itn + 1 if \itj = \itn , \itm < \itN , \itm \ita \itj \not = 0

\itn  - 1 if \itj = \itn , \itm = \itN , \itm \ita \itj = 0

\itn else

\right)   ,

\left(  \left\{   
\biggl( \Bigl( 

\itl \ita \itj 
\itm \ita \itj 

\Bigr) \itN 

\itl =\itm 
,

\itb \itj 
\itm \ita \itj 

,\itm 

\biggr) 
if \itj = \itn , \itm \leq \itN , \itm \ita \itj \not = 0

\itp \itj else

\right)  
\right)     ,

(4.103)

\r \ite (\itg ) :=

\Biggl( 
\itN ,\itm + 1,

\Biggl\{ 
\itn  - 1 if \itm > \itN 

\itn else

\Biggr) 
. (4.104)

Here, the global variable \itg is a collection of three natural numbers: the number of rows
and columns \itN of the square matrix, the index of the current column \itm (\itm > \itN indicates
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that the algorithm is in step 4), and the index of the current row \itn . Each particle stores

the matrix entries in the row represented by the particle in a vector
\bigl( 

\itl \ita 
\bigr) \itN 
\itl =1

with \itb the
corresponding right-hand side of the linear equation system. For simplicity, the column
index of the leading 1 is saved in a separate property \mu .

The neighborhood function \itu ensures that only the current row (\itj = \itn ) has neighbors.
Therefore, only this one row will participate in the pivoting process. As long as \itm \leq \itN ,
the neighbor particles are the rows below in reverse order. The reverse order ensures that
if there is a zero row, it will be sorted to the end by the interaction function \iti . For step 4
of the algorithm (\itm > \itN ), the order of the neighbor particles is irrelevant as the neighbor
particles are then all the rows above. The stopping condition \itf is true (\top ) if the current
row is the top row again (\itn = 1) and the algorithm is in step 4 (\itm > \itN ).

The first three cases in the interact function \iti are for steps 1 to 3 of the algorithm,
the last case for step 4. The first case is the addition of a suitable multiple of the current
row to a neighboring row to create zeros in the \itm -th column. The second case handles
the swapping of two rows if the \itm -th entry of the current row \itp \itj is zero but that of the
neighbor row \itp \itk is non-zero. If the \itm -th entry of both interacting rows, \itp \itj and \itp \itk , is zero,
nothing happens (third case). The fourth case creates zeros in the \mu \itj -th (leading 1 entry)
column of the interacting rows \itp \itk .

The evolve function \ite is only active as long as \itm \leq \itN and only if the evolving particle
is the current row of \itj = \itn . Otherwise, it amounts to the identity map. In the non-trivial
case, it normalizes the leading entry \itm \ita \itj of the current particle (row) to 1 by dividing all
non-zero coefficients with \itm \ita \itj . It also saves the index of the leading 1, \itm , in the particle
property \mu \itj . The global variable \itg is changed, incrementing the index of the current row \itn 
if the current column is not the last one (\itm < \itN ) and if the \itm -th coefficient of the row is
not zero (\itm \ita \itj \not = 0). The turning point of the algorithm, where it switches from iterating
downward through the rows to iterating back up again, is when \itm = \itN . At this point,
the index of the current row \itn remains unchanged unless the last entry is zero (\itm \ita \itj = 0)
because then the row is completely zero and hence has no leading one. In this case, the
algorithm can already go to the row above (\itn  - 1).

The evolve function of the global variable \r \ite increments the current column \itm by one
so that the algorithm proceeds one column to the right in each iteration. During step 4,
\itm increments beyond \itN , which is irrelevant. Then, however, \itn is decremented by one in
each iteration to move up one row at a time.
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An instance of this particle method is defined by specifying the linear system's coef-
ficients as the initial set of particles and the size of the system. The property \mu can be
arbitrarily initialized, as it is overwritten before being used. As an example, we consider
the instance for the 3\times 3 equation system:\left[  1 2 5

1  - 1  - 4
2 6 16

\right]  \vec{}\itx =

\left[  2
 - 4
8

\right]  
with unknown variable \vec{}\itx . For this example, \itN = 3, and the particle method instance is:

\itg := (\itN ,\itm ,\itn ) initial global variable

\itN :=3 number of rows and columns

\itm :=1 start from the first column

\itn :=1 start from the first row

p1 :=(\itp 1, \itp 2, \itp 3) initial particle tuple

\itp :=((0\ita , 1\ita , 2\ita ), \itb , \mu ) particle prototype

\itp 1 := ((1, 2, 5), 2, 0) particle 1 (first row)

\itp 2 := ((1, - 1, - 4), - 4, 0) particle 2 (second row)

\itp 3 := ((2, 6, 16), 8, 0) particle 3 (third row)

Executing the algorithm for this instance produces four iterations:\left[  1 2 5 2
1  - 1  - 4  - 4
2 6 16 8

\right]  \rightarrow 
\left[  1 2 5 2

0  - 3  - 9  - 6
0 2 6 4

\right]  \rightarrow 
\left[  1 2 5 2

0  - 3  - 9  - 6
0 0 0 0

\right]  

\rightarrow 

\left[  1 2 5 2
0 1 3 2
0 0 0 0

\right]  \rightarrow 
\left[  1 0  - 1  - 2

0 1 3 2
0 0 0 0

\right]  .
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4.9 Conclusion

Our definition of particle methods is designed for a broad range of algorithms. Even
though our definition of particle methods is derived from the formulation and practical
implementation of various classic particle methods, its applicability to such algorithms
needs to be shown.

The presented definition unifies particle methods and allows the formulation of particle
methods for non-canonical algorithms. We showcased that by formulating classic particle
methods and algorithms generally not recognized as particle methods. We chose SPH,
PSE, MD, and DEM as examples of classic particle methods. As examples of non-canonical
algorithms, we considered triangulation refinement, Conway's game of life, and Gaussian
elimination.

Even though the presented definition is general and easily applicable to, e.g., SPH,
MD, and PSE, an algorithm formulated according to our particle method definition could
potentially have a worse time and space complexity than a non-particle algorithm, espe-
cially for non-canonical problems. Additionally, not all algorithms are naturally fitting
into the definition. For example, Gaussian elimination turned out to be challenging to
translate into our definition and is less efficient since most particles are inactive through-
out the interaction and evolution phase even though the time complexity is the same
(\scrO (\itn 3) for \itn being the number of unknowns) since the difference is only in the prefactor.
The triangulation refinement fits well into the structure, but its formulation was also not
straightforward. Conway's game of life, on the other hand, fits perfectly into our defini-
tion. Further, our definition is limited by its monolithic nature. An algorithm composed
of smaller algorithms could become very large and complex with several nested cases when
explicitly formulated in our definition. This tendency is already visible in the SPH exam-
ple. Notwithstanding these limitations, the present applications cover a broad range of
algorithms.

Future work could expand the application of the definition into further non-canonical
fields to clarify the practical abilities and limitations of the presented definition. Also,
multiple different formulations of the same classic particle methods in our definition can
help to identify advantageous properties of specific formulation strategies.

Overall, the presented applications show the unifying nature of our formal particle
methods definition and its applicability which is not limited to classic particle methods.
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Chapter 5

Parallelizability of Particle
Methods

5.1 Introduction

High-performance computing (HPC) is becoming increasingly important in research, es-
pecially in the life sciences [88, 49], where many physical experiments are not feasible
due to ethical reasons or technical limitations in control and observation. At the same
time, the power of computer hardware is increasing, mainly due to parallelization. This
computing power enables the simulation of increasingly complex models but demands
elaborate code, which typically incurs long development times. Therefore, generic soft-
ware frameworks are actively developed to bridge the gap between accessible programming
and heterogeneous-hardware parallelization [76]. At the foundation of these frameworks
are generic and parallelizable numerical algorithms such as particle methods. Even though
the frameworks are generic, the conditions when an algorithm is parallelizable are derived
application-wise.

Our mathematical definition of particle methods (chapter 3) enables their formal study
across applications. Leveraging this mathematical definition, it is possible to prove the
parallelizability of particle methods on shared- and distributed-memory systems under
certain conditions independent of applications.

Here, we provide the conditions and proofs of the equivalents of the parallelized particle
methods to their sequential counterparts, i.e., in the sense that they compute the same
results for any possible input. Our study is independent of a specific application or a
specific numerical method. The proof covers a broad class of particle-based algorithms.
Moreover, the parallelization schemes we use and analyze are well-known and commonly
used in practical implementations.

The considered parallelization scheme for shared-memory systems is based on one-sided
interactions, and the scheme for distributed-memory systems is based on the classic cell-list
algorithm [41] and a checkerboard-like domain decomposition. We formalize the schemes in
mathematical equations as well as Nassi-Shneiderman diagrams. We then provide for each
scheme an exhaustive list of conditions a particle method must fulfill for the schemes to be
correct. Under these conditions, we prove the equivalence of the presented parallelization
schemes to the underlying sequential particle method. Furthermore, we use the presented
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formal analysis to infer the scheme's time complexity and parallel scalability bounds.

5.2 Particle Methods on Shared Memory Systems

We consider the parallelization of particle methods on shared-memory computers. For
the parallelization on shared-memory systems, we assume that parallel reading from one
storage location is possible but not parallel writing.

5.2.1 Parallelization Scheme

Conditions

We need to ensure that the calculations can be done in parallel and that we do not have
race conditions or other conflicts while writing. Therefore, we need the five conditions:
condition one, pull-interaction

\iti (\itg , \itp \itj , \itp \itk ) = (\itp \itj , \itp \itk ), (5.1)

where the first particle \itp \itj is changed while the second \itp \itk stays the same.
Condition two, interaction independence of previous interactions

1\iti \itg (\itp \itj , 1\iti \itg (\itp \itk , \itp \itk \prime )) = 1\iti \itg (\itp \itj , \itp \itk ) for 1\iti \itg (\itp \itj , \itp \itk ) := \langle \iti (\itg , \itp \itj , \itp \itk )\rangle 1, (5.2)

condition three, neighborhood independence of previous interactions

\itu ([\itg ,p], \itj ) = \itu ([\itg ,p \ast \iota \mathrm{I}
(\itg ,\itk \prime )

(\itk \prime \prime )], \itj ), (5.3)

condition four, constant number of particles

\ite (\itg , \itp ) = (\itg , (\itp )), (5.4)

condition five, global variable independence of particles

\ite (\itg , \itp ) = (\itg ,q). (5.5)
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Scheme as Nassi-Shneiderman diagram

These conditions are used to construct a parallelization scheme for particle methods on
shared-memory systems. The Nassi-Shneiderman diagram provides a visual overview of
how the state transition function \itS (3.16) is parallelized.

1 [\itg ,p]\leftarrow [\itg 1,p1]

2 while \itf (\itg ) = \bot 

3 k1 \leftarrow \itu ([\itg ,p], 1) k\itj \leftarrow \itu ([\itg ,p], \itj ) k| \bfp | \leftarrow \itu ([\itg ,p], | p| )

4
... ... for \itl \itj \leftarrow 1..| k\itj | ...

...
5 \itp \itj \leftarrow 1\iti \itg (\itp \itj , \itp \itk \itj ,\itl \itj )

6 \itp 1 \leftarrow \langle 2\ite (\itg , \itp 1)\rangle 1 ... \itp \itj \leftarrow \langle 2\ite (\itg , \itp \itj )\rangle 1 ... \itp | \bfp | \leftarrow 
\bigl\langle 
2\ite (\itg , \itp | \bfp | )

\bigr\rangle 
1

7 \itg \leftarrow \r \ite (\itg )

Figure 5.1: Nassi-Shneiderman diagram of the parallelized state transition function for
shared memory systems. The dashed lines enclose the parallel part.

The scheme proceeds like the standard state transition function (fig. 3.1) except for
the two loops over all particles for the iteration and evolution. These loops are replaced
by parallel execution.

Scheme in Formulas

The parallel sections of the Nassi-Shneiderman diagram (fig. 5.1), hence the difference to
the sequential state transition (fig. 3.1) can be translated to formulas step by step. The
entry [k\itj \leftarrow \itu ([\itg ,p], \itj )] (line 3) translates to

k\itj = \itu ([\itg ,p], \itj ), (5.6)

and [for \itl \itj \leftarrow 1..| k\itj | ] together with
\Bigl[ 
\itp \itj \leftarrow 1\iti \itg (\itp \itj , \itp \itk \itj ,\itl \itj )

\Bigr] 
(lines 4, 5) to

\itp \itj = \itp \itj \ast 1\iti \itg 
\Bigl( 
\itp \langle \bfk \itj \rangle 1 , ..., \itp \langle \bfk \itj \rangle | \bfk \itj | 

\Bigr) 
. (5.7)

Combining (5.6) with (5.7) for all particles results in the tuple\bigl( 
\itp 1 \ast 1\iti \itg \langle p\rangle \itu (\itg ,\bfp ,1), ..., \itp | \bfp | \ast 1\iti \itg \langle p\rangle \itu (\itg ,\bfp ,| \bfp | )

\bigr) 
. (5.8)

All particles are constantly overwritten at this interaction part of the scheme. Also the
evolution part [\itp 1 \leftarrow \langle 2\ite (\itg , \itp 1)\rangle 1] (line 6) overwrites each particle. Hence, inside these
parts are potential writing conflicts, but not between them because they are executed
after each other. Therefore, we can take them together as follows\Bigl( \Bigl\langle 

2\ite 
\Bigl( 
\itp 1 \ast 1\iti \itg \langle p\rangle \itu (\itg ,\bfp ,1)

\Bigr) \Bigr\rangle 
1
, ...,

\Bigl\langle 
2\ite 

\Bigl( 
\itp | \bfp | \ast 1\iti \itg \langle p\rangle \itu (\itg ,\bfp ,| \bfp | )

\Bigr) \Bigr\rangle 
1

\Bigr) 
. (5.9)
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Adding to this, the evolution of the global variable function results in a parallelized step
of the particle method state transition function.

\~\its ([\itg ,p]) =

\biggl[ 
\circ 
\ite (\itg ),

\Bigl( \Bigl\langle 
2\ite 

\Bigl( 
\itp 1 \ast 1\iti \itg \langle p\rangle \itu (\itg ,\bfp ,1)

\Bigr) \Bigr\rangle 
1
, ...,

\Bigl\langle 
2\ite 

\Bigl( 
\itp | \bfp | \ast 1\iti \itg \langle p\rangle \itu (\itg ,\bfp ,| \bfp | )

\Bigr) \Bigr\rangle 
1

\Bigr) \biggr] 
. (5.10)

The rest of the state transition is identical to the sequential state transition. Hence, it is

\~\itS ([\itg 1,p1]) := [\itg \itT ,p\itT ] \Leftarrow \Rightarrow 
\itf (\itg \itT ) = \top \wedge \forall \itt \in \{ 2, ...,\itT \} : [\itg \itt ,p\itt ] = \~\its 

\bigl( 
[\itg \itt  - 1,p\itt  - 1]

\bigr) 
\wedge \itf (\itg \itt  - 1) = \bot . (5.11)

5.2.2 Lemmata

We need five intermediate results to prove the equivalence of the parallel state transition
and the sequential one.

Lemma 1. \itI \itf \itt \ith \ite \iti \itn \itt \ite \itr \ita \itc \itt \iti \ito \itn \iti \its \ita \itp \itu \itl \itl \iti \itn \itt \ite \itr \ita \itc \itt \iti \ito \itn , \ita \itl \itl \itp \ita \itr \itt \iti \itc \itl \ite \iti \itn \itt \ite \itr \ita \itc \itt \iti \ito \itn \its \itw \iti \itt \ith \iti \itt \its \itn \ite \iti \itg \ith -
\itb \ito \itr \its \itd \ito \itn \ito \itt \itc \ith \ita \itn \itg \ite \ita \itn \ity \itp \ita \itr \itt \iti \itc \itl \ite \itb \ite \its \iti \itd \ite \its \itt \ith \ite \itp \ita \itr \itt \iti \itc \itl \ite \iti \itt \its \ite \itl \itf .

\forall \itp \itj , \itp \itk \in \itP , \itg \in \itG : \iti (\itg , \itp \itj , \itp \itk ) = (\itp \itj , \itp \itk )

=\Rightarrow p \ast \iota \mathrm{I}
(\itg ,\itj )

(\itk 1, ..., \itk \itn ) =
\bigl( 
\itp 1, ..., \itp \itj \ast 1\iti \itg (\itp \itk 1 , ..., \itp \itk \itn ) , ..., \itp | \bfp | 

\bigr) 
, (5.12)

Proof .

\forall \itp \itj , \itp \itk \in \itP , \itg \in \itG : \iti (\itg , \itp \itj , \itp \itk ) = (\itp \itj , \itp \itk ) (5.13)

=\Rightarrow 
p \ast \iota \mathrm{I}

(\itg ,\itj )
(\itk 1, ..., \itk \itn ) (5.14)

=
\bigl( 
\itp 1, ..., 1\iti (\itg , \itp \itj , \itp \itk 1), ..., \itp | \bfp | 

\bigr) 
\ast \iota \mathrm{I}

(\itg ,\itj )
(\itk 2, ..., \itk \itn ) (5.15)

=
\bigl( 
\itp 1, ..., 1\iti \itg 

\bigl( 
1\iti \itg (\itp \itj , \itp \itk 1), \itp \itk 2

\bigr) 
, ..., \itp | \bfp | 

\bigr) 
\ast \iota \mathrm{I}

(\itg ,\itj )
(\itk 3, ..., \itk \itn ) (5.16)

=
\bigl( 
\itp 1, ..., \itp \itj \ast 1\iti \itg (\itp \itk 1 , \itp \itk 2) , ..., \itp | \bfp | 

\bigr) 
\ast \iota \mathrm{I}

(\itg ,\itj )
(\itk 3, ..., \itk \itn ) (5.17)

=
\bigl( 
\itp 1, ..., \itp \itj \ast 1\iti \itg (\itp \itk 1 , ..., \itp \itk \itn ) , ..., \itp | \bfp | 

\bigr) 
\ast \iota \mathrm{I}

(\itg ,\itj )
() (5.18)

=
\bigl( 
\itp 1, ..., \itp \itj \ast 1\iti \itg (\itp \itk 1 , ..., \itp \itk \itn ) , ..., \itp | \bfp | 

\bigr) 
. (5.19)
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Lemma 2. \itI \itf \itt \ith \ite \itr \ite \its \itu \itl \itt \ito \itf \itt \ith \ite \iti \itn \itt \ite \itr \ita \itc \itt \itf \itu \itn \itc \itt \iti \ito \itn \iti \its \iti \itn \itd \ite \itp \ite \itn \itd \ite \itn \itt \ito \itf \ita \itn \iti \itn \itt \ite \itr \ita \itc \itt \iti \ito \itn \ito \itf \itt \ith \ite 
\its \ite \itc \ito \itn \itd \itp \ita \itr \itt \iti \itc \itl \ite , \itt \ith \ite \itn \iti \itt \iti \its \iti \itn \itd \ite \itp \ite \itn \itd \ite \itn \itt \ito \itf \ita \itl \itl \iti \itt \its \itp \itr \ite \itv \iti \ito \itu \its \iti \itn \itt \ite \itr \ita \itc \itt \iti \ito \itn \its .

\forall \itp \itj , \itp \itk , \itp \itk \prime \in \itP , \itg \in \itG : 1\iti \itg (\itp \itj , 1\iti \itg (\itp \itk , \itp \itk \prime )) = 1\iti \itg (\itp \itj , \itp \itk )

=\Rightarrow 1\iti \itg 

\Bigl( 
\itp \itj , \itp \itk \ast 1\iti \itg (\itp \itk \prime 

1
, ..., \itp \itk \prime 

\itn 
)
\Bigr) 
= 1\iti \itg (\itp \itj , \itp \itk ) (5.20)

Proof .

\forall \itp \itj , \itp \itk ,\itp \itk \prime \in \itP , \itg \in \itG : 1\iti \itg (\itp \itj , 1\iti \itg (\itp \itk , \itp \itk \prime )) = 1\iti \itg (\itp \itj , \itp \itk ) (5.21)

=\Rightarrow 1\iti \itg 

\Bigl( 
\itp \itj , \itp \itk \ast 1\iti \itg (\itp \itk \prime 

1
, ..., \itp \itk \prime 

\itn 
)
\Bigr) 

(5.22)

= 1\iti \itg 
\bigl( 
\itp \itj ,

\bigl( 
\itp \itk \ast 1\iti \itg (\itp \itk \prime 

1
, ..., \itp \itk \prime 

\itn  - 1
)
\bigr) 
\ast 1\iti \itg (\itp \itk \prime 

\itn 
)
\bigr) 

(5.23)

= 1\iti \itg 
\bigl( 
\itp \itj , 1\iti \itg 

\bigl( 
\itp \itk \ast 1\iti \itg (\itp \itk \prime 

1
, ..., \itp \itk \prime 

\itn  - 1
), \itp \itk \prime 

\itn 

\bigr) \bigr) 
(5.24)

= 1\iti \itg 
\bigl( 
\itp \itj , \itp \itk \ast 1\iti \itg (\itp \itk \prime 

1
, ..., \itp \itk \prime 

\itn  - 1
)
\bigr) 

(5.25)

...

= 1\iti \itg 
\bigl( 
\itp \itj , \itp \itk \ast 1\iti \itg ()

\bigr) 
(5.26)

= 1\iti \itg (\itp \itj , \itp \itk ). (5.27)

Lemma 3. \itI \itf \itt \ith \ite \itr \ite \its \itu \itl \itt \ito \itf \itt \ith \ite \itn \ite \iti \itg \ith \itb \ito \itr \ith \ito \ito \itd \itf \itu \itn \itc \itt \iti \ito \itn \iti \its \iti \itn \itd \ite \itp \ite \itn \itd \ite \itn \itt \ito \itf \ita \itp \itr \ite \itv \iti \ito \itu \its \iti \itn \itt \ite \itr -
\ita \itc \itt \iti \ito \itn \iti \itt \iti \its \iti \itn \itd \ite \itp \ite \itn \itd \ite \itn \itt \ito \itf \ita \itl \itl \itp \itr \ite \itv \iti \ito \itu \its \iti \itn \itt \ite \itr \ita \itc \itt \iti \ito \itn \its .

\forall \itj , \itk \prime , \itk \prime \prime \in \{ 1, ..., | p| \} , [\itg ,p] \in [\itG \times \itP \ast ] : \itu ([\itg ,p], \itj ) = \itu ([\itg ,p \ast \iota \mathrm{I}
(\itg ,\itk \prime )

(\itk \prime \prime )], \itj ) =\Rightarrow 

\itu ([\itg ,p \ast \iota \mathrm{I}
(\itg ,\itl 1)

(\itk 1,1, ..., \itk 1,\itn 1) \ast \iota \mathrm{I}
(\itg ,\itl 2)

... \ast \iota \mathrm{I}
(\itg ,\itl \itm )

(\itk \itm ,1, ..., \itk \itm ,\itn 1)], \itj ) = \itu ([\itg ,p], \itj ) (5.28)

Proof .

\forall \itj , \itk \prime , \itk \prime \in \{ 1, ..., | p| \} , [\itg ,p] \in [\itG \times \itP \ast ] :

\itu ([\itg ,p], \itj ) = \itu ([\itg ,p \ast \iota \mathrm{I}
(\itg ,\itk \prime )

(\itk \prime \prime )], \itj ) =\Rightarrow 

\itu ([\itg ,p \ast \iota \mathrm{I}
(\itg ,\itl 1)

(\itk 1,1, ..., \itk 1,\itn 1) \ast \iota \mathrm{I}
(\itg ,\itl 2)

...\underbrace{}  \underbrace{}  
=:\bfq 

\ast \iota \mathrm{I}
(\itg ,\itl \itm )

(\itk \itm ,1, ..., \itk \itm ,\itn 1)], \itj ) (5.29)

= \itu ([\itg ,q \ast \iota \mathrm{I}
(\itg ,\itl \itm )

(\itk \itm ,1, ...,\underbrace{}  \underbrace{}  
=:\bfq 

\itk \itm ,\itn 1)], \itj ) (5.30)

= \itu ([\itg ,q \ast \iota \mathrm{I}
(\itg ,\itl \itm )

(\itk \itm ,\itn 1)], \itj ) (5.31)

= \itu ([\itg ,p], \itj ). (5.32)
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Lemma 4. \itU \itn \itd \ite \itr \itt \ith \ite \itc \ito \itn \its \itt \itr \ita \iti \itn \itt \its \itt \ith \ita \itt \itt \ith \ite \iti \itn \itt \ite \itr \ita \itc \itt \itf \itu \itn \itc \itt \iti \ito \itn \iti \iti \its \ita \itp \itu \itl \itl -\iti \itn \itt \ite \itr \ita \itc \itt \iti \ito \itn (5.1)
\ita \itn \itd \iti \its \iti \itn \itd \ite \itp \ite \itn \itd \ite \itn \itt \ito \itf \itt \ith \ite \itp \itr \ite \itv \iti \ito \itu \its \iti \itn \itt \ite \itr \ita \itc \itt \iti \ito \itn \its (5.2) \ita \itn \itd \itt \ith \ite \itn \ite \iti \itg \ith \itb \ito \itr \ith \ito \ito \itd \iti \its \iti \itn \itd \ite \itp \ite \itn \itd \ite \itn \itt 
\ito \itf \itp \itr \ite \itv \iti \ito \itu \its \iti \itn \itt \ite \itr \ita \itc \itt \iti \ito \itn \its (5.3), \itt \ith \ite \ito \itu \itt \ite \itr \iti \itn \itt \ite \itr \ita \itc \itt \iti \ito \itn \itl \ito \ito \itp \iti \its \itp \ita \itr \ita \itl \itl \ite \itl \iti \itz \ita \itb \itl \ite . \itI \itn \ito \itu \itr \itn \ito \itt \ita \itt \iti \ito \itn :

\forall [\itg ,p] \in [\itG ,\itP \ast ] : \iota \mathrm{N}\times \mathrm{U} ([\itg ,p]) =
\Bigl( 
\itp 1 \ast 1\iti \itg \langle p\rangle \itu (\itg ,\bfp ,1), ..., \itp | \bfp | \ast 1\iti \itg \langle p\rangle \itu (\itg ,\bfp ,| \bfp | )

\Bigr) 
. (5.33)

Proof .

\iota \mathrm{N}\times \mathrm{U} ([\itg ,p]) (5.34)

=p \ast \iota \mathrm{I}\times \mathrm{U}
\itg 

(1, ..., | p| ) (5.35)

=
\Bigl( 
p \ast \iota \mathrm{I}

(\itg ,1)
\itu (\itg ,p, 1)

\Bigr) 
\ast \iota \mathrm{I}\times \mathrm{U}

\itg 
(2, ..., | p| ) (5.36)

\mathrm{L}\mathrm{e}\mathrm{m}\mathrm{m}\mathrm{a} 1
=

\Bigl( 
\itp 1 \ast 1\iti \itg \langle p\rangle \itu (\itg ,\bfp ,1)\underbrace{}  \underbrace{}  

\itp 1

, \itp 2, ..., \itp | \bfp | 

\Bigr) 
\underbrace{}  \underbrace{}  

=: 1\bfp 

\ast \iota \mathrm{I}\times \mathrm{U}
\itg 

(2, ..., | p| ) (5.37)

=
\bigl( 
1p \ast \iota \mathrm{I}

(\itg ,2)
\itu (\itg , 1p, 2)

\bigr) 
\ast \iota \mathrm{I}\times \mathrm{U}

\itg 
(3, ..., | p| ) (5.38)

\mathrm{L}\mathrm{e}\mathrm{m}\mathrm{m}\mathrm{a} 1
=

\bigl( 
\itp 1, \itp 2 \ast 1\iti \itg \langle 1p\rangle \itu (\itg ,1\bfp ,2)\underbrace{}  \underbrace{}  

\itp 2

, \itp 3, ..., \itp | \bfp | 
\bigr) 

\underbrace{}  \underbrace{}  
=: 2\bfp 

\ast \iota \mathrm{I}\times \mathrm{U}
\itg 

(3, ..., | p| ) (5.39)

...

=
\bigl( 
\itj  - 1p \ast \iota \mathrm{I}

(\itg ,\itj )
\itu (\itg , \itj  - 1p, \itj )

\bigr) 
\ast \iota \mathrm{I}\times \mathrm{U}

\itg 
(\itj + 1, ..., | p| ) (5.40)

\mathrm{L}\mathrm{e}\mathrm{m}\mathrm{m}\mathrm{a} 1
=

\bigl( 
\itp 1, \itp 2, ..., \itp \itj \ast 1\iti \itg \langle \itj  - 1p\rangle \itu (\itg , \itj  - 1\bfp ,\itj ), ..., \itp | \bfp | 

\bigr) 
\ast \iota \mathrm{I}\times \mathrm{U}

\itg 
(\itj + 1, ..., | p| ) (5.41)

\mathrm{L}\mathrm{e}\mathrm{m}\mathrm{m}\mathrm{a} 3
=

\bigl( 
\itp 1, \itp 2, ..., \itp \itj \ast 1\iti \itg \langle \itj  - 1p\rangle \itu (\itg ,\bfp ,\itj ), ..., \itp | \bfp | 

\bigr) 
\ast \iota \mathrm{I}\times \mathrm{U}

\itg 
(\itj + 1, ..., | p| ) (5.42)

\mathrm{L}\mathrm{e}\mathrm{m}\mathrm{m}\mathrm{a} 2
=

\bigl( 
\itp 1, \itp 2, ..., \itp \itj \ast 1\iti \itg \langle p\rangle \itu (\itg ,\bfp ,\itj ), ..., \itp | \bfp | 

\bigr) 
\ast \iota \mathrm{I}\times \mathrm{U}

\itg 
(\itj + 1, ..., | p| ) (5.43)

=
\bigl( 
\itp 1 \ast 1\iti \itg \langle p\rangle \itu (\itg ,\bfp ,1), \itp 2 \ast 1\iti \itg \langle p\rangle \itu (\itg ,\bfp ,2), ..., (5.44)

\itp \itj \ast 1\iti \itg \langle p\rangle \itu (\itg ,\bfp ,\itj ), ..., \itp | \bfp | 
\bigr) 
\ast \iota \mathrm{I}\times \mathrm{U}

\itg 
(\itj + 1, ..., | p| ) (5.45)

=
\bigl( 
\itp 1 \ast 1\iti \itg \langle p\rangle \itu (\itg ,\bfp ,1), ... , \itp | \bfp | \ast 1\iti \itg \langle p\rangle \itu (\itg ,\bfp ,| \bfp | )

\bigr) 
(5.46)
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Lemma 5. \itU \itn \itd \ite \itr \itt \ith \ite \itc \ito \itn \its \itt \itr \ita \iti \itn \itt \its \itt \ith \ita \itt \itt \ith \ite \itn \itu \itm \itb \ite \itr \ito \itf \itp \ita \itr \itt \iti \itc \itl \ite \its \its \itt \ita \ity \its \itc \ito \itn \its \itt \ita \itn \itt (5.4) \ita \itn \itd 
\itt \ith \ite \itg \itl \ito \itb \ita \itl \itv \ita \itr \iti \ita \itb \itl \ite \iti \its \iti \itn \itd \ite \itp \ite \itn \itd \ite \itn \itt \ito \itf \ita \itl \itl \itp \ita \itr \itt \iti \itc \itl \ite \its (5.5), \itt \ith \ite \ite \itv \ito \itl \itv \ite \itl \ito \ito \itp \iti \its \itp \ita \itr \ita \itl \itl \ite \itl \iti \itz \ita \itb \itl \ite . \itI \itn 
\ito \itu \itr \itn \ito \itt \ita \itt \iti \ito \itn :

\epsilon \mathrm{N} ([\itg ,p]) =
\Bigl[ 
\itg ,

\Bigl( 
\langle 2\ite (\itp 1)\rangle 1 , ...,

\bigl\langle 
2\ite (\itp | \bfp | )

\bigr\rangle 
1

\Bigr) \Bigr] 
(5.47)

Proof .
Under the constraints (5.4) and (5.5), we can rewrite the first evolution sub-function (3.13)
to

\ite \itI ([\itg ,p],q, \itj ) =
\bigl[ 
\itg ,q \circ 

\bigl( 
\langle 2\ite (\itg , \itp \itj )\rangle 1

\bigr) \bigr] 
. (5.48)

Using this result, we can rewrite the second evolution sub-function (3.14) to

\epsilon \mathrm{N}
\bigl( 
[\itg ,p]

\bigr) 
(5.49)

=
\bigl[ 
\itg , ()

\bigr] 
\ast \epsilon \mathrm{I}\bfp (1, .., | p| ) (5.50)

= \epsilon \mathrm{I} ([\itg ,p], (), 1) \ast \epsilon \mathrm{I}\bfp (2, ..., | p| ) (5.51)

= [\itg , () \circ (\langle 2\ite (\itg , \itp 1)\rangle 1)] \ast \epsilon \mathrm{I}\bfp (2, ..., | p| ) (5.52)

= \epsilon \mathrm{I} ([\itg ,p], (\langle 2\ite (\itg , \itp 1)\rangle 1) , 2) \ast \epsilon \mathrm{I}\bfp (3, ..., | p| ) (5.53)

= [\itg , (\langle 2\ite (\itg , \itp 1)\rangle 1) \circ (\langle 2\ite (\itg , \itp 2)\rangle 1)] \ast \epsilon \mathrm{I}\bfp (3, ..., | p| ) (5.54)

= [\itg , (\langle 2\ite (\itg , \itp 1)\rangle 1 , \langle 2\ite (\itg , \itp 2)\rangle 1)] \ast \epsilon \mathrm{I}\bfp (3, ..., | p| ) (5.55)

...

=
\Bigl[ 
\itg ,

\Bigl( 
\langle 2\ite (\itp 1)\rangle 1 , ...,

\bigl\langle 
2\ite (\itp | \bfp | )

\bigr\rangle 
1

\Bigr) \Bigr] 
(5.56)

5.2.3 Parallelizability

Theorem 1 (Parallelizability of particle methods on shared-memory computers). \itT \ith \ite 
\itp \ita \itr \ita \itl \itl \ite \itl \iti \itz \ite \itd \its \itt \ita \itt \ite \itt \itr \ita \itn \its \iti \itt \iti \ito \itn \itf \itu \itn \itc \itt \iti \ito \itn \~\itS \itr \ite \itt \itu \itr \itn \its \itt \ith \ite \its \ita \itm \ite \itr \ite \its \itu \itl \itt \ita \its \itt \ith \ite \its \ite \itq \itu \ite \itn \itt \iti \ita \itl \its \itt \ita \itt \ite \itt \itr \ita \itn -
\its \iti \itt \iti \ito \itn \itf \itu \itn \itc \itt \iti \ito \itn \itS \itu \itn \itd \ite \itr \itt \ith \ite fi\itv \ite \itc \ito \itn \itd \iti \itt \iti \ito \itn \its (5.1) \itt \ito (5.5).

\forall [\itg ,p] \in [\itG ,\itP \ast ] : \itS ([\itg ,p]) = \~\itS ([\itg ,p]) . (5.57)

Proof .
The parallelized state transition function \~\itS and sequential state transition function \itS 
differ only in their state transition step. Hence, it is sufficient to prove that

\its ([\itg ,p]) = \~\its ([\itg ,p]) . (5.58)

Using the lemmata 1 to 5, we can prove parallelized and sequential state transition
function are equivalent, i.e., they produce identical results. We use Lemma 4 and Lemma
5 to prove it. We insert

\epsilon \mathrm{N} ([\itg ,p]) =
\Bigl[ 
\itg ,

\Bigl( 
\langle 2\ite (\itp 1)\rangle 1 , ...,

\bigl\langle 
2\ite (\itp | \bfp | )

\bigr\rangle 
1

\Bigr) \Bigr] 
, (5.47)
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and
\iota \mathrm{N}\times \mathrm{U} ([\itg ,p]) =

\bigl( 
\itp 1 \ast 1\iti \itg \langle p\rangle \itu (\itg ,\bfp ,1), ..., \itp | \bfp | \ast 1\iti \itg \langle p\rangle \itu (\itg ,\bfp ,| \bfp | )

\bigr) 
(5.33)

into
\its ([\itg ,p]) :=

\bigl[ 
\r \ite (\itg ), p

\bigr] 
for [\itg ,p] := \epsilon \mathrm{N}

\bigl( 
[\itg , \iota \mathrm{N}\times \mathrm{U}([\itg ,p])]

\bigr) 
. (3.15)

and get

\its ([\itg ,p]) =

\biggl[ 
\circ 
\ite (\itg ),

\Bigl( \Bigl\langle 
2\ite 

\Bigl( 
\itp 1 \ast 1\iti \itg \langle p\rangle \itu (\itg ,\bfp ,1)

\Bigr) \Bigr\rangle 
1
, ...,

\Bigl\langle 
2\ite 

\Bigl( 
\itp | \bfp | \ast 1\iti \itg \langle p\rangle \itu (\itg ,\bfp ,| \bfp | )

\Bigr) \Bigr\rangle 
1

\Bigr) \biggr] 
(5.10)

= \~\its ([\itg ,p]). (5.59)

From this, we can conclude

\forall [\itg ,p] \in [\itG ,\itP \ast ] : \itS ([\itg ,p]) = \~\itS ([\itg ,p]) . (5.60)

Therefore, the parallelized state transition function \~\itS returns the same result as the se-
quential state transition function \itS under the five conditions (5.1) to (5.5).

5.2.4 Time Complexity

The time complexity of an algorithm describes the asymptotic behavior of the run-time as
a function of the input size. In the case of the state transition function, the input size is
the length of the initial particle tuple p1, assuming that a constant bounds the size of the
global variable and the particles. The condition that the evolve function does not change
the number of particles (5.4) restricts the number of particles to be constant over all state
transition steps

\forall \itt \in \{ 1, ...,\itT \} :
\bigm| \bigm| p\itt 

\bigm| \bigm| = \bigm| \bigm| p1
\bigm| \bigm| . (5.61)

We assume a maximum time complexity \tau for each function for all state transition steps.
We indicate the corresponding function with a subscript, \tau \iti , \tau \ite , \tau \circ \ite , \tau \itf , \tau \itu . We also assume
a maximum size of the neighborhood \varsigma \itu for each particle and all steps. We assume further
that the maximum time complexities are independent of the particle method instance
[\itg 1,p1] except for the neighborhood. This is true for many canonical particle methods.
We indicate the neighborhood function's possible dependency on p1 with a superscript.
Using these maxima of the time complexities, we can derive an upper bound for the time
complexity of the sequential state transition function

\tau \itS ([\itg 1,\bfp 1]) \leq \itT 
\Bigl( \bigm| \bigm| p1

\bigm| \bigm| (\varsigma \bfp 1

\itu \tau \iti + \tau \bfp 
1

\itu + \tau \ite ) + \tau \itf + \tau \circ 
\ite 

\Bigr) 
, (5.62)

and for the parallelized state transition function on one processor (CPU)

\tau \~\itS ([\itg 1,\bfp 1])(1) \leq \itT 
\Bigl( \bigm| \bigm| p1

\bigm| \bigm| (\varsigma \bfp 1

\itu \tau \iti + \tau \bfp 
1

\itu + \tau \ite ) + \tau \itf + \tau \circ 
\ite 

\Bigr) 
, (5.63)

and for the time complexity of the parallelized state transition function on \itn \mathrm{C}\mathrm{P}\mathrm{U} processors,
where all processors share the same memory

\tau \~\itS ([\itg 1,\bfp 1])(\itn \itC \itP \itU ) \leq \itT 
\Bigl( 
\Xi 
\bigl( 
| p1| ,\itn \itC \itP \itU 

\bigr) 
(\varsigma \bfp 

1

\itu \tau \iti +\tau 
\bfp 1

\itu +\tau \ite ) +\tau \itf + \tau \circ 
\ite 

\Bigr) 
, (5.64)
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where

\Xi (\itn \itp \ita \itr \itt \iti \itc \itl \ite ,\itn \itC \itP \itU ) :=

\biggl\lceil 
\itn \itp \ita \itr \itt \iti \itc \itl \ite 
\itn \itC \itP \itU 

\biggr\rceil 
. (5.65)

We use ceil
\Bigl\lceil 
\itn \itp \ita \itr \itt \iti \itc \itl \ite 

\itn \itC \itP \itU 

\Bigr\rceil 
to account for the atomic nature of the computation of one particle.

In general, it can not be split across processors. Note that we define a processor here as
a single sequential processing unit that shares its memory with all other processors.

These upper bounds on the time complexities allow us to derive closed-form expressions
for the bounds on the speed-ups for both strong scaling according to Amdahl's law [3] and
weak scaling according to Gustafson's law [37].

First, Amdahl's law [3] provides an upper bound on the speed-up of the parallelization
scheme on multiple processors when the problem size is fixed for increasing processors
\itn \mathrm{C}\mathrm{P}\mathrm{U} (strong scaling):

\its \itp \ite \ite \itd \itu \itp \mathrm{A}\mathrm{m}\mathrm{d}\mathrm{a}\mathrm{l}(\itn \itC \itP \itU ) =
\tau \~\itS ([\itg 1,\bfp 1])(1)

\tau \~\itS ([\itg 1,\bfp 1])(\itn \itC \itP \itU )
(5.66)

\approx 
\bigm| \bigm| p1

\bigm| \bigm| (\varsigma \bfp 1

\itu \tau \iti + \tau \bfp 
1

\itu + \tau \ite ) + \tau \itf + \tau \circ 
\ite 

\Xi (| p1| ,\itn \itC \itP \itU ) (\varsigma \bfp 
1

\itu \tau \iti +\tau 
\bfp 1

\itu +\tau \ite ) +\tau \itf + \tau \circ 
\ite 

. (5.67)

In this case, we can increase \itn \mathrm{C}\mathrm{P}\mathrm{U} until we reach the number of particles | p1| . After
that, there will be no further speed-up. But also, until then, we find a step-like behavior
with increasing \itn \mathrm{C}\mathrm{P}\mathrm{U} because particles cannot be split across processors as visualized in
figure 5.2a.

Second, Gustafson's law [37] provides an upper bound on the speed-up of the scheme
on multiple processors when the ratio of problem size to processor number is constant

while increasing the number of processors (weak scaling); | \bfp 1| 
\itn \mathrm{C}\mathrm{P}\mathrm{U}

= const. We achieve this

by setting the initial particle tuple such that the number of particles | p1
\itn \itC \itP \itU 
| = \itn \itC \itP \itU \cdot | p1| ,

where | p1| is constant. For a perfectly fitting processor interconnect network topology, we
predict a linear speed-up on average as visualized in figure 5.2b.

\its \itp \ite \ite \itd \itu \itp \mathrm{G}\mathrm{u}\mathrm{s}\mathrm{t}\mathrm{a}\mathrm{f}\mathrm{s}\mathrm{o}\mathrm{n}(\itn \itC \itP \itU ) =
\tau \~\itS ([\itg 1,\bfp 1

\itn \itC \itP \itU 
])(1)

\tau \~\itS ([\itg 1,\bfp 1
\itn \itC \itP \itU 

])(\itn \itC \itP \itU )
(5.68)

\approx 
\itn \itC \itP \itU 

\bigm| \bigm| p1
\bigm| \bigm| (\varsigma \bfp 1

\itn \itC \itP \itU 
\itu \tau \iti + \tau 

\bfp 1
\itn \itC \itP \itU 

\itu + \tau \ite ) + \tau \itf + \tau \circ 
\ite 

\Xi 
\bigl( 
| p1

\itn \itC \itP \itU 
| ,\itn \itC \itP \itU 

\bigr) 
(\varsigma 

\bfp 1
\itn \itC \itP \itU 

\itu \tau \iti + \tau 
\bfp 1
\itn \itC \itP \itU 

\itu +\tau \ite ) +\tau \itf + \tau \circ 
\ite 

. (5.69)

Overall the scheme behaves as expected for cell-list algorithms.
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(a) Speed-up according to Amdahl's law. The
parameters are chosen to be \tau \itf = \tau \circ 

\ite 
= 1, \tau \iti =

\tau \ite = 3, and \tau \itu = \varsigma \itu = 6.
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(b) Speed-up according to Gustafson's law. The
parameters are chosen to be \tau \itf = 1, \tau \circ 

\ite 
= 1000,

\tau \iti = \tau \ite = 3, and \tau \itu = \varsigma \itu = 2.

Figure 5.2: Theoretical speed-up bounds for the shared-memory parallelization.

Note that we fixed the neighborhood time and space complexity to a constant. We also
used in figure 5.2b an unusually high time complexity for the evolve function of the global
variable to visually demonstrate the influence of the number of particles per processor.
More commonly, we expect for small numbers of particles per processor a more similar
scaling to the higher numbers of particles per processor.
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5.2.5 Application

We can now use the theorem to check if we can parallelize the particle method from
chapter 4.

The three-dimensional diffusion application based on PSE and Euler integration is
formulated with a pull interaction. To change particle properties, the interact function
uses only properties that are not changed by it. Hence, it is impossible to transfer the
result of an interaction through an interaction to another particle. Meaning, the interact
function is independent of previous interactions. The same argumentation holds for the
neighborhood function. The interact function does not change any property used by the
neighborhood function. We formally check these conditions. Independence of the interact
function from previous interactions:

1\iti \itg (\itp \itj ,1 \iti \itg (\itp \itk , \itp \itk \prime )) (5.70)

= 1\iti \itg 

\biggl( 
\itp \itj ,

\biggl( 
\itx \itk , \itw \itk , \Delta \itw \itk +

(\itw \itk \prime  - \itw \itk )\Bigl( 
| \itx \itk \prime  - \itx \itk | 

\epsilon 

\Bigr) 10
+ 1

\biggr) \biggr) 
(5.71)

=

\biggl( 
\itx \itj , \itw \itj , \Delta \itw \itj +

(\itw \itk  - \itw \itj )\Bigl( | \itx \itk  - \itx \itj | 
\epsilon 

\Bigr) 10
+ 1

\biggr) 
(5.72)

=1 \iti \itg (\itp \itj , \itp \itk ) (5.73)

Independence of the neighborhood function from previous interactions.

\itu ([\itg ,p \ast \iota \mathrm{I}
(\itg ,\itk \prime )

(\itk \prime \prime )], \itj ) (5.74)

= \itu ([\itg , (\itp 1, ....,1 \iti \itg (\itp \itk \prime , \itp \itk \prime \prime ), ..., \itp | \bfp | )], \itj ) (5.75)

= \itu 

\left(     
\left[     \itg ,

\left(     \itp 1, ...,
\left(    

\itx \itk \prime 

\itw \itk \prime 

\Delta \itw \itk \prime +
(\itw \itk \prime \prime  - \itw \itk \prime )\biggl( 

| \itx \itk \prime \prime  - \itx \itk \prime | 
\epsilon 

\biggr) 10

+1

\right)    
\bfT 

, ..., \itp | \bfp | 

\right)     
\right]     , \itj 

\right)     (5.76)

= (\itk \in (1, ..., | p| ) : \itp \itk , \itp \itj \in p \wedge 0 < | \itx \itk  - \itx \itj | \leq \itr \itc ) (5.77)

= \itu ([\itg ,p], \itj ) (5.78)

Note that the interaction of particle \itp \itk \prime with \itp \itk \prime \prime does not change the position of \itp \itk \prime .
Hence, the neighborhood function is not influenced by the interaction.

The other two conditions are directly matched by the evolve method. There is a
constant number of particles, and the global variable is independent of all particles.

Therefore, the diffusion example is parallelizable with this shared memory scheme.
But also Conway's game of life (sec. 4.7) fulfills these conditions and others like the

SPH example (sec. 4.4) could be rewritten a bit to fulfill the constraints. For the SPH
example the change would be a simple swap from a symmetric interaction to a pull-
interaction by not changing the second particle anymore in the interact function and
account for this in the neighborhood function by having the full neighborhood instead of
the asymmetric one.
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5.3 Particle Methods on Distributed Memory Systems

We consider here the parallelization of particle methods on distributed-memory computers.
The resulting scheme is valid for particle methods with pull interactions and without global
operations. It is based on cell lists and checkerboard-like domain decomposition, a well-
known approach often used in practical code implementations.

5.3.1 Parallelization Scheme

Conditions

Formally, cell lists require that each particle \itp has a position \itx 

\itp = (. . . , \itx , . . .) \in \itP , (5.79)

and that the neighborhood function \itu is based on a cutoff radius \itr \itc and not directly on
particle indices. This makes it, in some sense, order-independent. Hence, it is restricted
to the form

\itu ([\itg ,p], \itj ) :=
\bigl( 
\itk \in (1, . . . , | p| ) : \itp \itk , \itp \itj \in p \wedge | \itx \itk  - \itx \itj | \leq \itr \itc \wedge \Omega (\itg , \itp \itk , \itp \itj )

\bigr) 
with \Omega : \itG \times \itP \times \itP \rightarrow \{ \top ,\bot \} , (5.80)

where \Omega is an additional constraint for more flexibility, e.g., to avoid self interactions
\Omega (\itg , \itp \itk , \itp \itj ) := (\itp \itk \not = \itp \itj ). The position \itx of a particle is limited to a cuboidal spatial
domain of dimension \itd for all states/times \itt 

\forall \itt \in \{ 1, . . . ,\itT \} \forall \itp \itt \itj \in p\itt : \itx \itt 
\itj \in [\itD \mathrm{m}\mathrm{i}\mathrm{n},\itD \mathrm{m}\mathrm{a}\mathrm{x}) \subset R\itd . (5.81)

This is usually achieved with some boundary conditions, e.g. periodic boundary conditions,
at the edges of the domain. In addition, the position is not allowed to change by more
than a cutoff radius \itr \itc in a single state transition step

\forall \itt \in \{ 1, . . . ,\itT  - 1\} \forall \itp \itt \itj \in p\itt : | \itx \itt 
\itj  - \itx \itt +1

\itj | \leq \itr \itc . (5.82)

This latter condition is, in most cases, not practically limiting since the particle displace-
ments are usually even more strongly restricted by the consistency and stability require-
ments of the numerical method, e.g., MD, PSE, and DEM. Here, we require this restriction
because we will consider the limit of the finest-possible domain decomposition, where each
sub-domain is of the smallest possible edge length \itr \itc . In practice, unless the numerical
scheme requires otherwise, the condition can be relaxed to require that no particle travels
further than one sub-domain per transition step.

Further, the interaction is limited to a pull interaction:

\forall \itp \itj , \itp \itk \in \itP , \itg \in \itG : \iti (\itg , \itp \itj , \itp \itk ) = (\itp \itj , \itp \itk ), (5.83)

independent of previous interactions of the interaction partner to avoid chain dependencies
of interaction results

\forall \itp \itj , \itp \itk , \itp \itk \prime \in \itP , \itg \in \itG : 1\iti \itg (\itp \itj , 1\iti \itg (\itp \itk , \itp \itk \prime )) = 1\iti \itg (\itp \itj , \itp \itk ) (5.84)

for 1\iti \itg (\itp \itj , \itp \itk ) := \langle \iti (\itg , \itp \itj , \itp \itk )\rangle 1, (5.85)
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and be order-independent

\forall \itp \itj , \itp \itk , \itp \itk \prime \in \itP , \itg \in \itG : 1\iti \itg (1\iti \itg (\itp \itj , \itp \itk ), \itp \itk \prime ) = 1\iti \itg (1\iti \itg (\itp \itj , \itp \itk \prime ), \itp \itk ). (5.86)

Order independence is not strictly required, but it is not limiting in practice and avoids
the sorting of particles. The neighborhood function \itu needs to be independent of previous
interactions, so the cell list can be prepared before the interactions happen. Here, \ast \iota \mathrm{I} is
the composition operator defined in definition 7 and used on \iota \mathrm{I}, whereas \iota \mathrm{I} is the first
transition sub-function defined in (3.10).

\forall \itj , \itk \prime , \itk \prime \prime \in \{ 1, . . . , | p| \} , [\itg ,p] \in [\itG \times \itP \ast ] : \itu ([\itg ,p], \itj ) = \itu ([\itg ,p \ast \iota \mathrm{I}
(\itg ,\itk \prime )

(\itk \prime \prime )], \itj ). (5.87)

Finally, we assume that the evolve function \ite does not change the global variable \itg :

\forall \itg \in \itG , \itp \in \itP : \ite (\itg , \itp ) = (\itg ,q), (5.88)

which avoids global operations and their \scrO (log(\itn \itu \itm \itb \ite \itr \ito \itf \itp \itr \ito \itc \ite \its \its \ite \its )) communication
complexity [35].

Scheme in Formulas

These conditions are used to construct a parallelization scheme for particle methods on
distributed-memory systems. The Nassi-Shneiderman diagram provides a visual overview
of how the state transition function \itS (3.16) is parallelized.

Under these constraints on a particle method, we formulate the parallelization of any
particle method onto multiple (distributed-memory) processes. A ``process"" is an indepen-
dent and self-contained unit of computation. Processes can execute in parallel (i.e., at the
same time) and possess their own exclusive memory. This follows the standard model of
a distributed-memory parallel computer [42]. The parallelization scheme is based on the
classic cell-list algorithm [41]. Cell lists require the definition of a cutoff radius \itr \itc to divide
the domain into equal-sized Cartesian cells. The number of cells along each dimension of
the computational domain is represented by the vector

I =

\left(   \itI 1
...
\itI \itd 

\right)   :=
\Bigl\lfloor 

1
\itr \itc 
(\itD \mathrm{m}\mathrm{a}\mathrm{x}  - \itD \mathrm{m}\mathrm{i}\mathrm{n}) + 1

\Bigr\rfloor 
. (5.89)

The total number of cells is

\itN \mathrm{c}\mathrm{e}\mathrm{l}\mathrm{l} :=
\itd \prod 

\itl =1

\itI \itl . (5.90)

The highest degree of parallelism is reached when assigning each cell-list cell to a
separate process. Each process then has to exchange information with its direct (face-,
edge-, and corner-connected) neighbors in the cell-list grid. We assume that each process
can only communicate with one other process simultaneously and that the network behaves
as a fully connected graph. Then, the communications between processes are at risk of
overlapping, potentially leading to processes having to wait for one another. Hence, one
should avoid simultaneous communication with identical partners. The simplest way to
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avoid overlapping communications is if all communicating processes have at least two
inactive processes between them. This results in a checkerboard-like pattern. The number
of active processes/ cells in each dimension is given by the vector

\itk I
\ast 
=

\left(   
\itk \itI \ast 1
...

\itk \itI \ast \itd 

\right)   :=
\Bigl\lfloor 
1
3

\Bigl( 
I - \bfthree \iota (\itk ) + 3

\Bigr) \Bigr\rfloor 
. (5.91)

We have then 3\itd different communicating process configurations \itk \in \{ 1, . . . , 3\itd \} . In total,
the number of communicating processes for each \itk is

\itk \itN \ast 
\mathrm{c}\mathrm{e}\mathrm{l}\mathrm{l} :=

\itd \prod 
\itl =1

\itk \itI \ast \itl . (5.92)

We address the communicating processes for each \itk by

\gamma (\itk , \itj ) := \bfI \iota  - 1
\Bigl( 

\itk \bfI 
\ast 
\iota (\itj ) \cdot 3 + \bfthree \iota (\itk ) - 3

\Bigr) 
. (5.93)

The \itl -th neighbor cell of the \itt -th process is

\beta (\itt , \itl ) := \bfI \iota  - 1
\Bigl( 
\bfI \iota (\itt ) + \bfthree \iota (\itl ) - 2

\Bigr) 
. (5.94)

The result of \beta is undefined unless the result of \bfI \iota  - 1 (def. 14 and (5.89)) is defined.
We note that this checkerboard-like pattern is not how codes are usually implemented in
practice. There, communications would all be launched at once, leaving their scheduling
to the networking sub-system. For the sake of theoretical analysis, however, the two are
interchangeable, and it separates the consideration of the algorithm from the properties
of the interconnect.

We formulate the standard procedure of distributing particles into a cell list according
to figure 5.3 as a condition for the initial particle distribution. Hence, each cell \itk ini-
tially contains a tuple of particles p1

\itk . To ensure no particle is lost, we require that the
concatenation of these particle tuples is a permutation \pi of the initial particle tuple p1

p1
1 \circ . . . \circ p1

\itN \mathrm{c}\mathrm{e}\mathrm{l}\mathrm{l}
= \pi 

\bigl( 
p1

\bigr) 
(5.95)

and that particles are distributed according to their position

\forall \itp 1\itj \in p1 : \itp 1\itj \in p1
\itw with \itw = \bfI \iota  - 1

\biggl( \biggl\lfloor 
1

\itr \itc 
(\itx 1

\itj  - \itD \mathrm{m}\mathrm{i}\mathrm{n})

\biggr\rfloor 
+ 1

\biggr) 
. (5.96)

Each process has its own memory address space, containing its global variable storage \itg 
and its particle storage p. The latter stores the particles within the cell-list cell assigned to
that process and copies of the particles from neighboring cells, as illustrated in figure 5.3.
Therefore, the particle storage of each process is compartmentalized cell-wise:

p =

\left(   
\bigl\langle 
p
\bigr\rangle 
1

...\bigl\langle 
p
\bigr\rangle 
3\itd 

\right)   
\top 

\in (\itP \ast )3
\itd 
, (5.97)
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where the center entry (i.e., location 3\itd +1
2 ) contains the ``real"" particles of the cell assigned

to that process. The other entries contain the copies of the cells from the neighboring
processes in the order corresponding to their position in the cell list. Two processes
are neighbors if the corresponding cells are direct (face-, edge-, and corner-connected)
neighbors in the cell-list grid.

Figure 5.3: Illustrations of a cell list in one dimension (left) and two dimensions (right).
Particle positions in one dimension are shown as solid vertical lines and in two dimensions
as dots. Dotted lines show cell boundaries. Each process is assigned one cell (red) in
the finest possible distribution. It is the center cell in the particle storage of that process
with copies of the particles from the neighboring processes/cells (green) to either side, see
(5.99).

The particle storages of all processes (PROC) together is

\scrP =

\left(   
[\mathrm{P}\mathrm{R}\mathrm{O}\mathrm{C}1]p

...
[\mathrm{P}\mathrm{R}\mathrm{O}\mathrm{C}\itN \mathrm{c}\mathrm{e}\mathrm{l}\mathrm{l}]p

\right)   
\top 

\in 
\Bigl( 
(\itP \ast )3

\itd 
\Bigr) \itN \mathrm{c}\mathrm{e}\mathrm{l}\mathrm{l}

. (5.98)

The initial particle tuples in each process' particle storage are

[\mathrm{P}\mathrm{R}\mathrm{O}\mathrm{C}\itn ]p1 =
\Bigl( 
(), . . . , (), p1

\itn \underbrace{}  \underbrace{}  
3\itd +1
2 -\mathrm{t}\mathrm{h} \mathrm{e}\mathrm{n}\mathrm{t}\mathrm{r}\mathrm{y}

, (), . . . , ()
\Bigr) 
. (5.99)

Then, the initial particle storage of all processes is

\scrP 1 :=

\left(   
[\mathrm{P}\mathrm{R}\mathrm{O}\mathrm{C}1]p1

...
[\mathrm{P}\mathrm{R}\mathrm{O}\mathrm{C}\itN \mathrm{c}\mathrm{e}\mathrm{l}\mathrm{l}]p1

\right)   
\top 

. (5.100)

The global variable storage of all processes is

\scrG 1 := (\itg 1, . . . , \itg 1) \in \itG \itN \mathrm{c}\mathrm{e}\mathrm{l}\mathrm{l} . (5.101)
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We introduce a second global variable \~\itg that contains the cell-list specific parameters
(5.81),(5.89)

\~\itg =
\bigl( 
\itD \mathrm{m}\mathrm{i}\mathrm{n},\itD \mathrm{m}\mathrm{a}\mathrm{x}, \itd , I

\bigr) 
. (5.102)

The function \itc \ito \itp \ity (\~\itg ,\scrP ) copies the center particle storage compartment of a process
[PROC\beta (\itw , \itl )] to the specified compartment \itl in the storage p of another process:

\itc \ito \itp \ity (\~\itg ,\scrP ,\itw )(p, \itl ) :=

\biggl( \bigl\langle 
p
\bigr\rangle 
1
, . . . ,

\bigl\langle 
p
\bigr\rangle 
\itl  - 1

, [\mathrm{P}\mathrm{R}\mathrm{O}\mathrm{C}\beta (\itw ,\itl )]
\bigl\langle 
p
\bigr\rangle 
3\itd +1
2

,
\bigl\langle 
p
\bigr\rangle 
\itl +1

, . . . ,
\bigl\langle 
p
\bigr\rangle 
3\itd 

\biggr) 
.

(5.103)
This coping is done for every \itk -th cell in the checkerboard-like configuration by

\itc \ito \itp \ity \ita \itc \itt \iti \itv \ite \~\itg (\scrP , \itk ) :=

\left(                                   

[\mathrm{P}\mathrm{R}\mathrm{O}\mathrm{C}1]
\bigl\langle 
p
\bigr\rangle 

...
[\mathrm{P}\mathrm{R}\mathrm{O}\mathrm{C}\gamma (\itk ,1) - 1]

\bigl\langle 
p
\bigr\rangle 

[\mathrm{P}\mathrm{R}\mathrm{O}\mathrm{C}\gamma (\itk ,1)]
\bigl\langle 
p
\bigr\rangle 
\ast \itc \ito \itp \ity (\~\itg ,\scrP ,\gamma (\itk ,1))

\bigl( 
1, . . . , 3\itd 

\bigr) 
[\mathrm{P}\mathrm{R}\mathrm{O}\mathrm{C}\gamma (\itk ,1)+1]

\bigl\langle 
p
\bigr\rangle 

...
[\mathrm{P}\mathrm{R}\mathrm{O}\mathrm{C}\gamma (\itk ,\itl ) - 1]

\bigl\langle 
p
\bigr\rangle 

[\mathrm{P}\mathrm{R}\mathrm{O}\mathrm{C}\gamma (\itk ,\itl )]
\bigl\langle 
p
\bigr\rangle 
\ast \itc \ito \itp \ity (\~\itg ,\scrP ,\gamma (\itk ,\itl ))

\bigl( 
1, . . . , 3\itd 

\bigr) 
[\mathrm{P}\mathrm{R}\mathrm{O}\mathrm{C}\gamma (\itk ,\itl )+1]

\bigl\langle 
p
\bigr\rangle 

...
[\mathrm{P}\mathrm{R}\mathrm{O}\mathrm{C}\gamma (\itk ,\itk \itN \ast 

\mathrm{c}\mathrm{e}\mathrm{l}\mathrm{l}) - 1] \bigl\langle p\bigr\rangle 
[\mathrm{P}\mathrm{R}\mathrm{O}\mathrm{C}\gamma (\itk ,\itk \itN \ast 

\mathrm{c}\mathrm{e}\mathrm{l}\mathrm{l})]
\bigl\langle 
p
\bigr\rangle 
\ast \itc \ito \itp \ity (\~\itg ,\scrP ,\gamma (\itk ,\itk \itN \ast 

\mathrm{c}\mathrm{e}\mathrm{l}\mathrm{l}))

\bigl( 
1, . . . , 3\itd 

\bigr) 
[\mathrm{P}\mathrm{R}\mathrm{O}\mathrm{C}\gamma (\itk ,\itk \itN \ast 

\mathrm{c}\mathrm{e}\mathrm{l}\mathrm{l})+1] \bigl\langle p\bigr\rangle 
...

[\mathrm{P}\mathrm{R}\mathrm{O}\mathrm{C}\itN \mathrm{c}\mathrm{e}\mathrm{l}\mathrm{l}]
\bigl\langle 
p
\bigr\rangle 

\right)                                   

\top 

. (5.104)

Doing so for all distinct checkerboard-like configurations results in

\itc \ito \itp \ity \itA \itL \itL 
\~\itg (\scrP ) := \scrP \ast \itc \ito \itp \ity \ita \itc \itt \iti \itv \ite 

\~\itg 

\Bigl( 
1, . . . , 3\itd 

\Bigr) 
. (5.105)

After the function \itc \ito \itp \ity \itA \itL \itL 
\~\itg , each process has (copies of) all particles required to cal-

culate the interactions and evolutions of the particles in its cell without any further inter-
process communication. We define for this scheme the interaction of all particles with
their respective interaction partners by the function

\iti \itn \itt \ite \itr \ita \itc \itt \iti \ito \itn \itg (p) :=

\left(          

\langle q\rangle 1 \ast 1\iti \itg 
\biggl\langle 

3\itd 

#
\itw =1
\langle p\rangle \itw 

\biggr\rangle 
\itu 

\Biggl( \Biggl[ 
\itg ,

3\itd 

#
\itw =1

\langle \bfp \rangle \itw 

\Biggr] 
,\itz +1

\Biggr) 
...

\langle q\rangle | \bfq | \ast 1\iti \itg 
\biggl\langle 

3\itd 

#
\itw =1
\langle p\rangle \itw 

\biggr\rangle 
\itu 

\Biggl( \Biggl[ 
\itg ,

3\itd 

#
\itw =1

\langle \bfp \rangle \itw 

\Biggr] 
,\itz +| \bfq | 

\Biggr) 

\right)          

\top 

, (5.106)
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where \itz =

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
3\itd +1
2  - 1

#
\itw =1

\langle p\rangle \itw 

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| and q =
\bigl\langle 
p
\bigr\rangle 
3\itd +1
2

. The step function \its \itt \ite \itp (\~\itg ,\itg ) uses the function

\iti \itn \itt \ite \itr \ita \itc \itt \iti \ito \itn \itg to compute the state-transition step (mostly simulation time step), including
the evolutions of the particle properties and positions:

\its \itt \ite \itp (\~\itg ,\itg )(p) :=

\left(              

\bigl\langle 
p
\bigr\rangle 
1

...\bigl\langle 
p
\bigr\rangle 
3\itd +1
2  - 1

2\epsilon 
\mathrm{N}
\bigl( \bigl[ 
\itg , \iti \itn \itt \ite \itr \ita \itc \itt \iti \ito \itn \itg 

\bigl( 
p
\bigr) \bigr] \bigr) \bigl\langle 

p
\bigr\rangle 
3\itd +1
2 +1

...\bigl\langle 
p
\bigr\rangle 
3\itd 

\right)              

\top 

. (5.107)

Calculating the state transition step on all processes results in

\its \itt \ite \itp \itA \itL \itL 
(\~\itg ,\scrG )(\scrP ) :=

\Bigl( 
\its \itt \ite \itp (\~\itg , [\mathrm{P}\mathrm{R}\mathrm{O}\mathrm{C}1]\itg )

\Bigl( 
[\mathrm{P}\mathrm{R}\mathrm{O}\mathrm{C}1]p

\Bigr) 
, . . . , \its \itt \ite \itp (\~\itg , [\mathrm{P}\mathrm{R}\mathrm{O}\mathrm{C}| \scrP | ]\itg )

\Bigl( 
[\mathrm{P}\mathrm{R}\mathrm{O}\mathrm{C}| \scrP | ]p

\Bigr) \Bigr) 
,

(5.108)
where [\mathrm{P}\mathrm{R}\mathrm{O}\mathrm{C}\itk ]\itg := \langle \scrG \rangle \itk and [\mathrm{P}\mathrm{R}\mathrm{O}\mathrm{C}\itk ]p := \langle \scrP \rangle \itk .

After the function \its \itt \ite \itp \itA \itL \itL 
(\~\itg ,\scrG ), all particles in the center storage compartments of all

processes have the correct positions and properties. However, they may be in the wrong
cell/ storage compartment after moving. Therefore, the particles in the center storage
compartments must be re-assigned into the compartments and communicated to the new
process if they have moved to another cell/ compartment. Cell/ compartment assignment
of each particle \itq is done by

\itd \iti \its \itt (\~\itg ,\itg ,\itj )(p, \itq ) :=

\left(             

\bigl\langle 
p
\bigr\rangle 
1

...\bigl\langle 
p
\bigr\rangle 
\alpha  - 1\bigl\langle 

p
\bigr\rangle 
\alpha 
\circ (\itq )\bigl\langle 

p
\bigr\rangle 
\alpha +1
...\bigl\langle 

p
\bigr\rangle 
3\itd 

\right)             

\top 

, (5.109)

where

\itq = (. . . , \itx , . . .) \in \itP , \alpha := \bfthree \iota  - 1
\Bigl( \Bigl\lfloor 

1
\itr \itc 
(\itx  - \itD \itm \iti \itn )

\Bigr\rfloor 
 - \bfI \iota (\itj ) + 3

\Bigr) 
. (5.110)

For all particles in a center storage compartment q, redistribution is done by the function

\itd \iti \its \itt \itN (\~\itg ,\itg ,\itj )(q) := ((), . . . , ()) \ast \itd \iti \its \itt (\~\itg ,\itg ,\itj ) q, (5.111)

where ((), . . . , ()) is the tuple of 3\itd empty tuples, representing the empty particle storage
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of a process. For all processes, the redistribution procedure is

\itd \iti \its \itt \itA \itL \itL 
(\~\itg ,\scrG )(\scrP ) :=

\left(       
\itd \iti \its \itt \itN 

(\~\itg , [\mathrm{P}\mathrm{R}\mathrm{O}\mathrm{C}1]\itg ,1)

\biggl( 
[\mathrm{P}\mathrm{R}\mathrm{O}\mathrm{C}1]

\bigl\langle 
p
\bigr\rangle 
3\itd +1
2

\biggr) 
...

\itd \iti \its \itt \itN 
(\~\itg , [\mathrm{P}\mathrm{R}\mathrm{O}\mathrm{C}| \scrP | ]\itg ,| \scrP | )

\biggl( 
[\mathrm{P}\mathrm{R}\mathrm{O}\mathrm{C}| \scrP | ] \bigl\langle p\bigr\rangle 3\itd +1

2

\biggr) 
\right)       
\top 

, (5.112)

where [\mathrm{P}\mathrm{R}\mathrm{O}\mathrm{C}\itk ]\itg := \langle \scrG \rangle \itk and [\mathrm{P}\mathrm{R}\mathrm{O}\mathrm{C}\itk ]p := \langle \scrP \rangle \itk . After the function \itd \iti \its \itt \itA \itL \itL 
(\~\itg ,\scrG ) the particles

on all processes are correctly assigned to their respective storage compartments/cell-list
cells, but those particles may belong to another process now, except for the particles in
the center storage compartment. Therefore, communication between processes is required
for the particles that have moved to a different storage compartment/cell. Collecting
the particles that moved from the \beta (\itw , \itl )-th process to the \itw -th process is done by the
function

\itc \ito \itl \itl \ite \itc \itt (\~\itg ,\scrP ,\itw )(p, \itl ) :=

\left(                

\bigl\langle 
p
\bigr\rangle 
1

...\bigl\langle 
p
\bigr\rangle 
3\itd +1
2  - 1\bigl\langle 

p
\bigr\rangle 
3\itd +1
2

\circ [\mathrm{P}\mathrm{R}\mathrm{O}\mathrm{C}\beta (\itw ,\itl )]
\bigl\langle 
p
\bigr\rangle 
\bfthree \iota  - 1(\bffour  - \bfthree \iota (\itl ))\bigl\langle 

p
\bigr\rangle 
3\itd +1
2 +1

...\bigl\langle 
p
\bigr\rangle 
3\itd 

\right)                
. (5.113)

All processes collecting particles from the other processes simultaneously could lead
to overlapping communications. As discussed above, we aim to prevent this. There-
fore, the collection procedure again follows the checkerboard-like pattern. For the \itk -th
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checkerboard-like pattern, the collection function is

\itc \ito \itl \itl \ite \itc \itt \itN \~\itg (\scrP , \itk ) :=

\left(                                    

[\mathrm{P}\mathrm{R}\mathrm{O}\mathrm{C}1]
\bigl\langle 
p
\bigr\rangle 

...
[\mathrm{P}\mathrm{R}\mathrm{O}\mathrm{C}\gamma (\itk ,1) - 1]

\bigl\langle 
p
\bigr\rangle 

[\mathrm{P}\mathrm{R}\mathrm{O}\mathrm{C}\gamma (\itk ,1)]
\bigl\langle 
p
\bigr\rangle 
\ast \itc \ito \itl \itl \ite \itc \itt (\~\itg ,\scrP ,\gamma (\itk ,1))

\bigl( 
1, . . . , 3\itd 

\bigr) 
[\mathrm{P}\mathrm{R}\mathrm{O}\mathrm{C}\gamma (\itk ,1)+1]

\bigl\langle 
p
\bigr\rangle 

...
[\mathrm{P}\mathrm{R}\mathrm{O}\mathrm{C}\gamma (\itk ,\itl ) - 1]

\bigl\langle 
p
\bigr\rangle 

[\mathrm{P}\mathrm{R}\mathrm{O}\mathrm{C}\gamma (\itk ,\itl )]
\bigl\langle 
p
\bigr\rangle 
\ast \itc \ito \itl \itl \ite \itc \itt (\~\itg ,\scrP ,\gamma (\itk ,\itl ))

\bigl( 
1, . . . , 3\itd 

\bigr) 
[\mathrm{P}\mathrm{R}\mathrm{O}\mathrm{C}\gamma (\itk ,\itl )+1]

\bigl\langle 
p
\bigr\rangle 

...
[\mathrm{P}\mathrm{R}\mathrm{O}\mathrm{C}\gamma (\itk ,\itk \itN \ast 

\mathrm{c}\mathrm{e}\mathrm{l}\mathrm{l}) - 1] \bigl\langle p\bigr\rangle 
[\mathrm{P}\mathrm{R}\mathrm{O}\mathrm{C}\gamma (\itk ,\itk \itN \ast 

\mathrm{c}\mathrm{e}\mathrm{l}\mathrm{l})]
\bigl\langle 
p
\bigr\rangle 
\ast \itc \ito \itl \itl \ite \itc \itt (\~\itg ,\scrP ,\gamma (\itk ,\itk \itN \ast 

\mathrm{c}\mathrm{e}\mathrm{l}\mathrm{l}))

\bigl( 
1, . . . , 3\itd 

\bigr) 
[\mathrm{P}\mathrm{R}\mathrm{O}\mathrm{C}\gamma (\itk ,\itk \itN \ast 

\mathrm{c}\mathrm{e}\mathrm{l}\mathrm{l})+1] \bigl\langle p\bigr\rangle 
...

[\mathrm{P}\mathrm{R}\mathrm{O}\mathrm{C}| \scrP | ] \bigl\langle p\bigr\rangle 

\right)                                    

\top 

, (5.114)

where [\mathrm{P}\mathrm{R}\mathrm{O}\mathrm{C}\itk ]p := \langle \scrP \rangle \itk . The complete collection procedure is sequential over the 3\itd 

checkerboard-like patterns. Hence, it takes 3\itd steps to finish. The complete collection is

\itc \ito \itl \itl \ite \itc \itt \itA \itL \itL 
\~\itg (\scrP ) := \scrP \ast \itc \ito \itl \itl \ite \itc \itt \itN \~\itg 

\Bigl( 
1, . . . , 3\itd 

\Bigr) 
, (5.115)

which results in each central particle storage compartment of all processes containing the
correct particles. The copies from the neighboring processes will then be updated in the
subsequent iteration, again by the function \itc \ito \itp \ity \itA \itL \itL 

\~\itg .
Taking all functions together, the parallelized state-transition step for a distributed-

memory particle method can be formally expressed as:

\~\its \~\itg ([\scrG ,\scrP ]) =

\left[     
\left(    

\circ 
\ite (\langle \scrG \rangle 1)

...
\circ 
\ite 
\Bigl( 
\langle \scrG \rangle \itN \mathrm{c}\mathrm{e}\mathrm{l}\mathrm{l}

\Bigr) 
\right)    
\top 

, \itc \ito \itl \itl \ite \itc \itt \itA \itL \itL 
\~\itg 

\Bigl( 
\itd \iti \its \itt \itA \itL \itL 

(\~\itg ,\scrG )
\bigl( 
\its \itt \ite \itp \itA \itL \itL 

\scrG 
\bigl( 
\itc \ito \itp \ity \itA \itL \itL 

\~\itg (\scrP )
\bigr) \bigr) \Bigr) 

\right]     .
(5.116)

We use this parallel state-transition step \~\its \~\itg to define the parallel state transition function
similar to (3.16)

\~\itS 
\bigl( \bigl[ 
\scrG 1,\scrP 1

\bigr] \bigr) 
:=

\bigl[ 
\scrG \itT ,\scrP \itT 

\bigr] 
\leftarrow \rightarrow 

\itf 
\bigl( \bigl\langle 
\scrG \itT 

\bigr\rangle 
1

\bigr) 
= \top 

\wedge \forall \itt \in \{ 2, . . . ,\itT \} :
\bigl[ 
\scrG \itt ,\scrP \itt 

\bigr] 
= \~\its \~\itg 

\bigl( \bigl[ 
\scrG \itt  - 1,\scrP \itt  - 1

\bigr] \bigr) 
\wedge \itf 

\bigl( \bigl\langle 
\scrG \itt  - 1

\bigr\rangle 
1

\bigr) 
= \bot . (5.117)
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Scheme as Nassi-Shneiderman diagram

The complete parallelization scheme is summarized by the Nassi-Shneiderman diagram in
figure 5.4.

1 [PROC1] . . . [PROC\itj ] . . . [PROC\itN \mathrm{c}\mathrm{e}\mathrm{l}\mathrm{l}]

2 \itg \leftarrow \itg 1 \itg \leftarrow \itg 1 \itg \leftarrow \itg 1

3 \langle p\rangle 3\itd +1
2

\leftarrow p1
1

\langle p\rangle 3\itd +1
2

\leftarrow p1
\itj 

\langle p\rangle 3\itd +1
2

\leftarrow p1
\itN \mathrm{c}\mathrm{e}\mathrm{l}\mathrm{l}

4 while \itf ( [\mathrm{P}\mathrm{R}\mathrm{O}\mathrm{C}1]\itg ) = \bot 
5 for \itk \leftarrow 1..3\itd 

6 [PROC\gamma (\itk , 1)] . . . [PROC\gamma (\itk , \itj )] . . . [PROC\gamma (\itk , \itk \itN \ast 
\mathrm{c}\mathrm{e}\mathrm{l}\mathrm{l})]

7 for \itl \leftarrow 1..3\itd \wedge \itl \not = 3\itd +1

2

8 \langle p\rangle \itl \leftarrow [\mathrm{P}\mathrm{R}\mathrm{O}\mathrm{C}\beta (\gamma (\itk ,\itj ),\itl )]\langle p\rangle 3\itd +1
2

9 [PROC1] . . . [PROC\itj ] . . . [PROC\itN \mathrm{c}\mathrm{e}\mathrm{l}\mathrm{l}]

10 p\leftarrow \its \itt \ite \itp (\~\itg ,\itg )(p)

11 \itg \leftarrow \circ 
\ite (\itg )

12 q\leftarrow \langle p\rangle 3\itd +1
2

13 p\leftarrow 
\Bigl( 
(), . . . , ()

\Bigr) 
14 for \itl \leftarrow 1..| q| 
15 \alpha \leftarrow \bfthree \iota  - 1

\Bigl( \Bigl\lfloor 
1
\itr \itc 
(\itx  - \itD \itm \iti \itn )

\Bigr\rfloor 
 - \bfI \iota (\itj ) + 3

\Bigr) 
16 \langle p\rangle \alpha \leftarrow \langle p\rangle \alpha \circ \langle q\rangle \itl 

17 for \itk \leftarrow 1 . . . 3\itd 

18 [PROC\gamma (\itk , 1)] . . . [PROC\gamma (\itk , \itj )] . . . [PROC\gamma (\itk , \itk \itN \ast 
\mathrm{c}\mathrm{e}\mathrm{l}\mathrm{l})]

19 for \itl \leftarrow 1 . . . 3\itd \wedge \itl \not = 3\itd +1

2

20 q\leftarrow [\mathrm{P}\mathrm{R}\mathrm{O}\mathrm{C}\beta (\gamma (\itk ,\itj ),\itl )]\langle p\rangle 
\bfthree \iota  - 1(\bffour  - \bfthree \iota (\itl ))

21 \langle p\rangle 3\itd +1
2

\leftarrow \langle p\rangle 3\itd +1
2

\circ q

Figure 5.4: Nassi-Shneiderman diagram of the distributed-memory parallelization of the
outer loop of a particle method with pull interactions and without global operations. The
dashed double lines mark parallel sections of the algorithm.

The algorithm starts by initializing the global variable storage (line 2) and the particle
storage (line 3). The global variable storage is filled with the initial global variable, and
the center particle storage compartment is filled with the particles from the corresponding
cell-list cell. The remaining particle storage compartments are filled with copies of the
particles from directly adjacent neighboring cells by copying them from the respective
process (lines 5-8), which is repeated for each state (line 4). Then, each process evaluates
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the state-transition step of the particle method (lines 10, 11), which is only guaranteed to
return the correct result for the particles of the center particle storage compartment. The
results of the remaining particles may be corrupted by missing interactions with particles
outside the process' storage. Therefore, the algorithm proceeds to store the particles
of the center storage compartment in q (line 12) and deletes all other particles in the
particle storage p (line 13). The particles of the center storage compartment, now in q,
are redistributed to the process' particle storage compartments according to their new
positions (lines 14-16). Finally, the algorithm collects for each process all particles that
newly belong to it and which are in the corresponding particle storage compartments on
other processes (lines 17- 21).

5.3.2 Lemmata

We aim to formally prove that the above distributed-memory parallelization of a particle
method is equivalent to the original sequential algorithm. To prepare the proof, we first
derive a couple of lemmata.

Lemma 6. \bfI \iota \ita \itn \itd \bfI \iota  - 1 \ita \itr \ite \itb \iti \itj \ite \itc \itt \iti \ito \itn \its \ita \itn \itd \itm \itu \itt \itu \ita \itl \itf \itu \itn \itc \itt \iti \ito \itn \ita \itl \iti \itn \itv \ite \itr \its \ite \its , \iti .\ite ., (\bfI \iota  - 1) - 1 = \bfI \iota .

Proof .
We need to prove that \bfI \iota and \bfI \iota  - 1 are bijective and their respective inverse function.

\bfI \iota and \bfI \iota  - 1 are bijective and their respective inverse function if and only if

\forall \itj \in 

\Biggl\{ 
1, ...,

\itd \prod 
\delta =1

\itI \delta 

\Biggr\} 
: \bfI \iota  - 1

\Bigl( 
\bfI \iota (\itj )

\Bigr) 
= \itj (5.118)

\wedge \forall \itj \in N\itd \cap 
\bigl[ 
1, I

\bigr] 
: \bfI \iota 

\Bigl( 
\bfI \iota  - 1(\itj )

\Bigr) 
= \itj (5.119)

First, we proof (5.118):

\bfI \iota  - 1
\Bigl( 

\bfI \iota (\itj )
\Bigr) 
= 1 +

\biggl( \biggl( 
(\itj  - 1) - 

\biggl\lfloor 
\itj  - 1

\itI 1

\biggr\rfloor 
\itI 1 + 1

\biggr) 
 - 1

\biggr) 
(5.120)

+

\biggl( \biggl( \biggl\lfloor 
\itj  - 1

\itI 1

\biggr\rfloor 
 - 

\biggl\lfloor 
\itj  - 1

\itI 1\itI 2

\biggr\rfloor 
\itI 2 + 1

\biggr) 
 - 1

\biggr) 
\itI 1 (5.121)

+

\biggl( \biggl( \biggl\lfloor 
\itj  - 1

\itI 1\itI 2

\biggr\rfloor 
 - 

\biggl\lfloor 
\itj  - 1

\itI 1\itI 2\itI 3

\biggr\rfloor 
\itI 3 + 1

\biggr) 
 - 1

\biggr) 
\itI 1\itI 2 (5.122)

+ ...+

\Biggl( \Biggl( \Biggl\lfloor 
\itj  - 1\prod \itl  - 1
\itt =1 \itI \itt 

\Biggr\rfloor 
 - 

\Biggl\lfloor 
\itj  - 1\prod \itl 
\itt =1 \itI \itt 

\Biggr\rfloor 
\itI \itl + 1

\Biggr) 
 - 1

\Biggr) 
\itl  - 1\prod 
\itt =1

\itI \itt (5.123)

+

\Biggl( \Biggl( \Biggl\lfloor 
\itj  - 1\prod \itl 
\itt =1 \itI \itt 

\Biggr\rfloor 
 - 

\Biggl\lfloor 
\itj  - 1\prod \itl +1
\itt =1 \itI \itt 

\Biggr\rfloor 
\itI \itl +1 + 1

\Biggr) 
 - 1

\Biggr) 
\itl \prod 

\itt =1

\itI \itt (5.124)

+ ...+

\Biggl( \Biggl( \Biggl\lfloor 
\itj  - 1\prod \itd  - 2
\itt =1 \itI \itt 

\Biggr\rfloor 
 - 

\Biggl\lfloor 
\itj  - 1\prod \itd  - 1
\itt =1 \itI \itt 

\Biggr\rfloor 
\itI \itd  - 1 + 1

\Biggr) 
 - 1

\Biggr) 
\itd  - 2\prod 
\itt =1

\itI \itt (5.125)

+

\Biggl( \Biggl( \Biggl\lfloor 
\itj  - 1\prod \itd  - 1
\itt =1 \itI \itt 

\Biggr\rfloor 
+ 1

\Biggr) 
 - 1

\Biggr) 
\itd  - 1\prod 
\itt =0

\itI \itt (5.126)
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= 1 + (\itj  - 1)  - 
\biggl\lfloor 
\itj  - 1

\itI 1

\biggr\rfloor 
\itI 1 +

\biggl\lfloor 
\itj  - 1

\itI 1

\biggr\rfloor 
\itI 1\underbrace{}  \underbrace{}  

=0

(5.127)

 - 
\biggl\lfloor 
\itj  - 1

\itI 1\itI 2

\biggr\rfloor 
\itI 2\itI 1 +

\biggl\lfloor 
\itj  - 1

\itI 1\itI 2

\biggr\rfloor 
\itI 1\itI 2\underbrace{}  \underbrace{}  

=0

(5.128)

 - 
\biggl\lfloor 
\itj  - 1

\itI 1\itI 2\itI 3

\biggr\rfloor 
\itI 3\itI 1\itI 2 + ...+

\Biggl\lfloor 
\itj  - 1\prod \itl  - 1
\itt =1 \itI \itt 

\Biggr\rfloor 
\itl  - 1\prod 
\itt =1

\itI \itt (5.129)

 - 

\Biggl\lfloor 
\itj  - 1\prod \itl 
\itt =1 \itI \itt 

\Biggr\rfloor 
\itl \prod 

\itt =1

\itI \itt +

\Biggl\lfloor 
\itj  - 1\prod \itl 
\itt =1 \itI \itt 

\Biggr\rfloor 
\itl \prod 

\itt =1

\itI \itt \underbrace{}  \underbrace{}  
=0

(5.130)

 - 

\Biggl\lfloor 
\itj  - 1\prod \itl +1
\itt =1 \itI \itt 

\Biggr\rfloor 
\itl +1\prod 
\itt =1

\itI \itt + ...+

\Biggl\lfloor 
\itj  - 1\prod \itd  - 2
\itt =1 \itI \itt 

\Biggr\rfloor 
\itd  - 2\prod 
\itt =1

\itI \itt (5.131)

 - 

\Biggl\lfloor 
\itj  - 1\prod \itd  - 1
\itt =1 \itI \itt 

\Biggr\rfloor 
\itI \itd  - 1

\itd  - 2\prod 
\itt =1

\itI \itt +

\Biggl\lfloor 
\itj  - 1\prod \itd  - 1
\itt =1 \itI \itt 

\Biggr\rfloor 
\itd  - 1\prod 
\itt =1

\itI \itt \underbrace{}  \underbrace{}  
=0

(5.132)

= \itj (5.133)

Second, we prove (5.119) by subdividing the resulting vector in its entries. Starting
with the first entry

\Bigl\langle 
\bfI \iota 

\Bigl( 
\bfI \iota  - 1( \itj )

\Bigr) \Bigr\rangle 
1
=

\Biggl( \Biggl( 
1 + (\itj 1  - 1) + (\itj 2  - 1)\itI 1 + ...+ (\itj \itd  - 1)

\itd  - 1\prod 
\itt =1

\itI \itt 

\Biggr) 
 - 1

\Biggr) 

 - 

    
\Bigl( 
1 + (\itj 1  - 1) + ...+ (\itj \itd  - 1)

\prod \itd  - 1
\itt =1 \itI \itt 

\Bigr) 
 - 1

\itI 1

    \itI 1 + 1 (5.134)

(\ita \itu \itx \iti \itl \iti \ita \itr \ity \itc \ita \itl \itc \itu \itl \ita \itt \iti \ito \itn \its :)

\left[                   

\biggl\lfloor 
(1+(\itj 1 - 1)+...+(\itj \itd  - 1)

\prod \itd  - 1
\itt =1 \itI \itt ) - 1

\itI 1

\biggr\rfloor 
\itI 1

=

\biggl\lfloor 
\itj 1 - 1
\itI 1

+
(\itj 2 - 1)\itI 1+...+(\itj \itd  - 1)

\prod \itd  - 1
\itt =1 \itI \itt 

\itI 1

\biggr\rfloor 
\itI 1

=

        \itj 1  - 1

\itI 1\underbrace{}  \underbrace{}  
1\leq \itj 1\leq \itI 1

+(\itj 2  - 1) + ...+ (\itj \itd  - 1)
\itd  - 1\prod 
\itt =2

\itI \itt \underbrace{}  \underbrace{}  
\in N0

        \itI 1

=
\Bigl( 
(\itj 2  - 1) + ...+ (\itj \itd  - 1)

\prod \itd  - 1
\itt =2 \itI \itt 

\Bigr) 
\itI 1

= (\itj 2  - 1)\itI 1 + ...+ (\itj \itd  - 1)
\prod \itd  - 1

\itt =1 \itI \itt 

\right]                   

(5.135)
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=(\itj 1  - 1) + (\itj 2  - 1)\itI 1 + ...+ (\itj \itd  - 1)
\itd  - 1\prod 
\itt =1

\itI \itt (5.136)

 - 

\Biggl( 
(\itj 2  - 1)\itI 1 + ...+ (\itj \itd  - 1)

\itd  - 1\prod 
\itt =1

\itI \itt 

\Biggr) 
+ 1 (5.137)

=\itj 1. (5.138)

We proceed with all entries except the first and last entry:

\forall \itl \in \{ 2, ..., \itd  - 1\} :\Bigl\langle 
\bfI \iota 

\Bigl( 
\bfI \iota  - 1( \itj )

\Bigr) \Bigr\rangle 
\itl 
=

    
\Bigl( 
1 + (\itj 1  - 1) + ...+ (\itj \itd  - 1)

\prod \itd  - 1
\itt =1 \itI \itt 

\Bigr) 
 - 1\prod \itl  - 1

\itt =1 \itI \itt 

    
 - 

    
\Bigl( 
1 + (\itj 1  - 1) + ...+ (\itj \itd  - 1)

\prod \itd  - 1
\itt =1 \itI \itt 

\Bigr) 
 - 1\prod \itl 

\itt =1 \itI \itt 

    \itI \itl + 1 (5.139)

\ita \itu \itx \iti \itl \iti \ita \itr \ity \itc \ita \itl \itc \itu \itl \ita \itt \iti \ito \itn \its :\left[                                

\biggl\lfloor 
(1+(\itj 1 - 1)+...+(\itj \itd  - 1)

\prod \itd  - 1
\itt =1 \itI \itt ) - 1\prod \itl  - 1

\itt =1 \itI \itt 

\biggr\rfloor 
=

\biggl\lfloor 
(\itj 1 - 1)+...+(\itj \itl  - 1 - 1)

\prod \itl  - 2
\itt =1 \itI \itt \prod \itl  - 1

\itt =1 \itI \itt 
+

(\itj \itl  - 1)
\prod \itl  - 1

\itt =1 \itI \itt +...+(\itj \itd  - 1)
\prod \itd  - 1

\itt =1 \itI \itt \prod \itl  - 1
\itt =1 \itI \itt 

\biggr\rfloor 
\ita \itu \itx \iti \itl \iti \ita \itr \ity \itc \ita \itl \itc \itu \itl \ita \itt \iti \ito \itn \its :\left[         

0 \leq (\itj 1  - 1)\underbrace{}  \underbrace{}  
1\leq \itj 1\leq \itI 1

+...+ (\itj \itl  - 1  - 1)\underbrace{}  \underbrace{}  
1\leq \itj \itl  - 1\leq \itI \itl  - 1

\prod \itl  - 2
\itt =1 \itI \itt 

\leq \itI 1  - 1 + (\itI 2  - 1)\itI 1 + ...+ (\itI \itl  - 1  - 1)
\prod \itl  - 2

\itt =1 \itI \itt 
= \itI 1  - 1 + \itI 2\itI 1  - \itI 1 + ...+

\prod \itl  - 1
\itt =1 \itI \itt  - 

\prod \itl  - 2
\itt =1 \itI \itt 

=
\prod \itl  - 1

\itt =0 \itI \itt  - 1\prod \itl  - 1
\itt =0 \itI \itt  - 1 <

\prod \itl  - 1
\itt =0 \itI \itt 

\right]         

=

        (\itj 1  - 1) + ...+ (\itj \itl  - 1  - 1)
\prod \itl  - 2

\itt =1 \itI \itt \prod \itl  - 1
\itt =1 \itI \itt \underbrace{}  \underbrace{}  

\geq 0, <1

+(\itj \itl  - 1) + ...+ (\itj \itd  - 1)
\itd  - 1\prod 
\itt =\itl 

\itI \itt \underbrace{}  \underbrace{}  
\in N0

        
= (\itj \itl  - 1) + ...+ (\itj \itd  - 1)

\prod \itd  - 1
\itt =\itl \itI \itt 

\right]                                

(5.140)

=

\Biggl( 
(\itj \itl  - 1) + ...+ (\itj \itd  - 1)

\itd  - 1\prod 
\itt =\itl 

\itI \itt 

\Biggr) 
 - 

\Biggl( 
(\itj \itl +1  - 1) + ...+ (\itj \itd  - 1)

\itd  - 1\prod 
\itt =\itl +1

\itI \itt 

\Biggr) 
\itI \itl + 1 (5.141)

=(\itj \itl  - 1) + (\itj \itl +1  - 1)\itI \itl + ...+ (\itj \itd  - 1)

\itd  - 1\prod 
\itt =\itl 

\itI \itt  - (\itj \itl +1  - 1)\itI \itl  - ... - (\itj \itd  - 1)

\itd  - 1\prod 
\itt =\itl 

\itI \itt + 1

(5.142)

=\itj \itl (5.143)
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We finish with the last entry:

\Bigl\langle 
\bfI \iota 

\Bigl( 
\bfI \iota  - 1( \itj )

\Bigr) \Bigr\rangle 
\itd 
=

    
\Bigl( 
1 + (\itj 1  - 1) + ...+ (\itj \itd  - 1)

\prod \itd  - 1
\itt =1 \itI \itt 

\Bigr) 
 - 1\prod \itd  - 1

\itt =1 \itI \itt 

    + 1 (5.144)

=

       1 + (\itj 1  - 1) + ...+ (\itj \itd  - 1  - 1)
\prod \itd  - 2

\itt =1 \itI \itt \prod \itd  - 1
\itt =1 \itI \itt \underbrace{}  \underbrace{}  
<1

+(\itj \itd  - 1)\underbrace{}  \underbrace{}  
\in N0

       + 1 (5.145)

=\itj \itd . (5.146)

Taking these three results together, we can conclude

\bfI \iota 
\Bigl( 
\bfI \iota  - 1( \itj )

\Bigr) 
=

\left[     
\itj 1
\itj 2
...
\itj \itd 

\right]     (5.147)

= \itj . (5.148)

Hence, \bfI \iota and \bfI \iota  - 1 are bijective and their respective inverse.

Lemma 7. \itO \itr \itd \ite \itr \iti \itn \itd \ite \itp \ite \itn \itd \ite \itn \itc \ite \ito \itf \ita \its \ite \itr \iti \ite \its \ito \itf \iti \itn \itt \ite \itr \ita \itc \itt \iti \ito \itn \its \itf \ito \itl \itl \ito \itw \its \itf \itr \ito \itm \itt \ith \ite \ito \itr \itd \ite \itr \iti \itn \itd \ite \itp \ite \itn -
\itd \ite \itn \itc \ite \ito \itf \itt \ith \ite \iti \itn \itt \ite \itr \ita \itc \itt \itf \itu \itn \itc \itt \iti \ito \itn :

1\iti \itg (1\iti \itg (\itp \itj , \itp \itk ), \itp \itk \prime ) =1 \iti \itg (1\iti \itg (\itp \itj , \itp \itk \prime ), \itp \itk \prime \prime )

\rightarrow \~\itp \ast 1\iti \itg \sigma (\itp 1, . . . , \itp \itn ) = \~\itp \ast 1\iti \itg (\itp 1, . . . , \itp \itn ). (5.149)

Proof .

The proof idea is to use the ``bubble sort"" strategy [31] to go from an arbitrary per-
mutation \sigma of the interacting particles to the original order. Therefore, we prove that the
necessary swap of two consecutive particles does not change the result.

1\iti \itg (1\iti \itg (\itp \itj , \itp \itk ), \itp \itk \prime ) = 1\iti \itg (1\iti \itg (\itp \itj , \itp \itk \prime ), \itp \itk \prime \prime ) (5.150)

\rightarrow \~\itp \ast 1\iti \itg \sigma (\itp 1, ..., \itp \itn ) (5.151)

= \~\itp \ast 1\iti \itg (\sigma (\itp 1), ..., \sigma (\itp \itj  - 1)\underbrace{}  \underbrace{}  
=:\itp \prime 

, \sigma (\itp \itj ), \sigma (\itp \itj +1), ..., \sigma (\itp \itn )) (5.152)

= \itp \prime \ast 1\iti \itg (\sigma (\itp \itj ), \sigma (\itp \itj +1), ..., \sigma (\itp \itn )) (5.153)

= 1\iti \itg (1\iti \itg (\itp 
\prime , \sigma (\itp \itj )), \sigma (\itp \itj +1)) \ast 1\iti \itg (\sigma (\itp \itj +2), ..., \sigma (\itp \itn )) (5.154)

= 1\iti \itg (1\iti \itg (\itp 
\prime , \sigma (\itp \itj +1)), \sigma (\itp \itj )) \ast 1\iti \itg (\sigma (\itp \itj +2), ..., \sigma (\itp \itn )) (5.155)

= \~\itp \ast 1\iti \itg (\sigma (\itp 1), ..., \sigma (\itp \itj  - 1), \sigma (\itp \itj +1), \sigma (\itp \itj ), \sigma (\itp \itj +2), ..., \sigma (\itp \itn )) (5.156)

using bubble sort (5.157)

= \~\itp \ast 1\iti \itg (\itp 1, ..., \itp \itn ) (5.158)
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Lemma 8. \itT \ith \ite \itf \itu \itn \itc \itt \iti \ito \itn \itc \ito \itp \ity \itA \itL \itL 
\~\itg \itd \ito \ite \its \itn \ito \itt \itc \ita \itu \its \ite \ito \itv \ite \itr \itl \ita \itp \itp \iti \itn \itg \itc \ito \itm \itm \itu \itn \iti \itc \ita \itt \iti \ito \itn \its . \itT \ith \iti \its \iti \itm -

\itp \itl \iti \ite \its \itt \ith \ita \itt \itt \itw \ito \itp \itr \ito \itc \ite \its \its \ite \its \itc \ita \itn \ito \itn \itl \ity \itc \ito \itm \itm \itu \itn \iti \itc \ita \itt \ite \itt \ito \itt \ith \ite \its \ita \itm \ite \itt \ith \iti \itr \itd \itp \itr \ito \itc \ite \its \its \ito \itr \ite \ita \itc \ith \ito \itt \ith \ite \itr .

Proof .

Overlapping means that two processes communicate either to the same other third
process or to each other. The potential overlapping communications are avoided by
letting only some processes communicate simultaneously. The communicating processes
are distributed in a checkerboard-like structure. Between two communicating processes
are always two passive processes. Since each process communicates only with its direct
neighbor processes, there can not be overlapping communication. To prove that, we need
to prove

\forall \itk , \itl \prime , \itl \prime \prime \in 
\bigl\{ 
1, ..., 3\itd 

\bigr\} 
\forall \itj \prime , \itj \prime \prime \in 

\bigl\{ 
1, ..., \itk \itN \ast 

\itc \ite \itl \itl 

\bigr\} 
:

\itj \prime \not = \itj \prime \prime \rightarrow \beta (\gamma (\itk , \itj \prime ), \itl \prime ) \not = \beta (\gamma (\itk , \itj \prime \prime ), \itl \prime \prime ) \vee \beta (\gamma (\itk , \itj \prime ), \itl \prime ) = \itu \itn \itd \ite \itf . ,
(5.159)

where \itk is the number of the checkerboard-like pattern, \gamma (\itk , \itj ) (5.93) is an index of a
reading process and \beta (\gamma (\itk , \itj ), \itl ) (5.94) its \itl -th neighbor with it communicates. Hence, two
communicating processes do not have a common process with which they communicate.
If \beta is undefined, there is no process.

Inserting the definition of \gamma into \beta results in

\beta (\gamma (\itk , \itj ), \itl ) = \bfI \iota  - 1
\Bigl( 
\bfI \iota 

\Bigl( 
\bfI \iota  - 1

\Bigl( 
\itk \bfI 

\ast 
\iota (\itj ) \cdot 3 + \bfthree \iota (\itk ) - 3

\Bigr) \Bigr) 
+ \bfthree \iota (\itl ) - 2

\Bigr) 
(5.160)

= \bfI \iota  - 1
\Bigl( 

\itk \bfI 
\ast 
\iota (\itj ) \cdot 3 + \bfthree \iota (\itk ) + \bfthree \iota (\itl ) - 5

\Bigr) 
(5.161)

From here on, we do a proof by contradiction. Therefore, we negate the statement we
want to prove and derive absurdity.

Assuming

\itj \prime \not = \itj \prime \prime \wedge \beta (\gamma (\itk , \itj \prime ), \itl \prime ) = \beta (\gamma (\itk , \itj \prime \prime ), \itl \prime \prime ) \wedge \beta (\gamma (\itk , \itj \prime ), \itl \prime ) \not = \itu \itn \itd \ite \itf . (5.162)

(5.160)\leftarrow  -  -  - \rightarrow 

\itj \prime \not = \itj \prime \prime 

\wedge \bfI \iota  - 1
\Bigl( 

\itk \bfI 
\ast 
\iota (\itj \prime ) \cdot 3 + \bfthree \iota (\itk ) + \bfthree \iota (\itl \prime ) - 5

\Bigr) 
= \bfI \iota  - 1

\Bigl( 
\itk \bfI 

\ast 
\iota (\itj \prime \prime ) \cdot 3 + \bfthree \iota (\itk ) + \bfthree \iota (\itl \prime \prime ) - 5

\Bigr) 
\wedge \bfI \iota  - 1

\Bigl( 
\itk \bfI 

\ast 
\iota (\itj \prime ) \cdot 3 + \bfthree \iota (\itk ) + \bfthree \iota (\itl \prime ) - 5

\Bigr) 
\not = \itu \itn \itd \ite \itf .

(5.163)
\itl \ite \itm \itm \ita 6\leftarrow  -  -  -  - \rightarrow 

\itj \prime \not = \itj \prime \prime 

\wedge 

\Biggl( 
\itk \bfI 

\ast 
\iota (\itj \prime ) \cdot 3 + \bfthree \iota (\itk ) + \bfthree \iota (\itl \prime ) - 5 =

\itk \bfI 
\ast 
\iota (\itj \prime \prime ) \cdot 3 + \bfthree \iota (\itk ) + \bfthree \iota (\itl \prime \prime ) - 5

\vee \bfI \iota  - 1
\Bigl( 

\itk \bfI 
\ast 
\iota (\itj \prime ) \cdot 3 + \bfthree \iota (\itk ) + \bfthree \iota (\itl \prime ) - 5

\Bigr) 
= \itu \itn \itd \ite \itf .

\Biggr) 
\wedge \bfI \iota  - 1

\Bigl( 
\itk \bfI 

\ast 
\iota (\itj \prime ) \cdot 3 + \bfthree \iota (\itk ) + \bfthree \iota (\itl \prime ) - 5

\Bigr) 
\not = \itu \itn \itd \ite \itf .

(5.164)
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\leftarrow \rightarrow 

\itj \prime \not = \itj \prime \prime 

\wedge \itk \bfI 
\ast 
\iota (\itj \prime ) \cdot 3 + \bfthree \iota (\itk ) + \bfthree \iota (\itl \prime ) - 5 =

\itk \bfI 
\ast 
\iota (\itj \prime \prime ) \cdot 3 + \bfthree \iota (\itk ) + \bfthree \iota (\itl \prime \prime ) - 5

\wedge \bfI \iota  - 1
\Bigl( 

\itk \bfI 
\ast 
\iota (\itj \prime ) \cdot 3 + \bfthree \iota (\itk ) + \bfthree \iota (\itl \prime ) - 5

\Bigr) 
\not = \itu \itn \itd \ite \itf .

(5.165)

\itd \ite \itf . 14\leftarrow  -  -  - \rightarrow 
\itj \prime \not = \itj \prime \prime 

\wedge \itk \bfI 
\ast 
\iota (\itj \prime )\underbrace{}  \underbrace{}  
\in N\itd 

1

\cdot 3 + \bfthree \iota (\itl \prime )\underbrace{}  \underbrace{}  
\in [\bfone ,\bfthree ]

=
\itk \bfI 

\ast 
\iota (\itj \prime \prime )\underbrace{}  \underbrace{}  
\in N\itd 

1

\cdot 3 + \bfthree \iota (\itl \prime \prime )\underbrace{}  \underbrace{}  
\in [\bfone ,\bfthree ]

\wedge \itk \bfI 
\ast 
\iota (\itj \prime ) \cdot 3 + \bfthree \iota (\itk ) + \bfthree \iota (\itl \prime ) - 5 \in N\itd 

1 \cap 
\bigl[ 
1, I

\bigr] (5.166)

\leftarrow \rightarrow 
\itj \prime \not = \itj \prime \prime 

\wedge \itk \bfI 
\ast 
\iota (\itj \prime ) - \itk \bfI 

\ast 
\iota (\itj \prime \prime )\underbrace{}  \underbrace{}  

\in Z\itd 

\cdot 3 = \bfthree \iota (\itl \prime \prime ) - \bfthree \iota (\itl \prime )\underbrace{}  \underbrace{}  
\in [ - \bftwo ,\bftwo ]

\wedge \itk \bfI 
\ast 
\iota (\itj \prime ) \cdot 3 + \bfthree \iota (\itk ) + \bfthree \iota (\itl \prime ) - 5 \in N\itd 

1 \cap 
\bigl[ 
1, I

\bigr] (5.167)

\itd \ite \itf . 14\leftarrow  -  -  - \rightarrow 
\itj \prime \not = \itj \prime \prime 

\wedge \itk \bfI 
\ast 
\iota (\itj \prime ) - \itk \bfI 

\ast 
\iota (\itj \prime \prime )\underbrace{}  \underbrace{}  

\in Z\itd 

\cdot 3 = \bfthree \iota (\itl \prime \prime ) - \bfthree \iota (\itl \prime )\underbrace{}  \underbrace{}  
\in [ - \bftwo ,\bftwo ]

= 0

\wedge \itk \bfI 
\ast 
\iota (\itj \prime ) \cdot 3 + \bfthree \iota (\itk ) + \bfthree \iota (\itl \prime ) - 5 \in N\itd 

1 \cap 
\bigl[ 
1, I

\bigr] (5.168)

\itl \ite \itm \itm \ita 6\leftarrow  -  -  -  - \rightarrow 
\itj \prime \not = \itj \prime \prime 

\wedge \itj \prime = \itj \prime \prime \wedge \itl \prime = \itl \prime \prime 

\wedge \itk \bfI 
\ast 
\iota (\itj \prime ) \cdot 3 + \bfthree \iota (\itk ) + \bfthree \iota (\itl \prime ) - 5 \in N\itd 

1 \cap 
\bigl[ 
1, I

\bigr] 
 (contradiction)

(5.169)

 - \rightarrow 

\forall \itk , \itl \prime , \itl \prime \prime \in 
\bigl\{ 
1, ..., 3\itd 

\bigr\} 
\forall \itj \prime , \itj \prime \prime \in 

\bigl\{ 
1, ..., \itk \itN \ast 

\itc \ite \itl \itl 

\bigr\} 
:

\itj \prime \not = \itj \prime \prime \rightarrow \beta (\gamma (\itk , \itj \prime ), \itl \prime ) \not = \beta (\gamma (\itk , \itj \prime \prime ), \itl \prime \prime ) \vee \beta (\gamma (\itk , \itj \prime ), \itl \prime ) = \itu \itn \itd \ite \itf . ,
(5.170)

Lemma 9. \itE \ita \itc \ith \itp \itr \ito \itc \ite \its \its ``\ito \itw \itn \its "" \ito \itn \ite \itd \iti \its \itt \iti \itn \itc \itt \itc \ite \itl \itl -\itl \iti \its \itt \itc \ite \itl \itl . \itT \ith \ite \itc \ito \itp \ity \itA \itL \itL 
\~\itg \itf \itu \itn \itc \itt \iti \ito \itn \itc \ito \itp \iti \ite \its 

\itt \ith \ite \itp \ita \itr \itt \iti \itc \itl \ite \its \itf \itr \ito \itm \ita \itl \itl \itn \ite \iti \itg \ith \itb \ito \itr \itc \ite \itl \itl \its /\itp \itr \ito \itc \ite \its \its \ite \its . \itA \itf \itt \ite \itr \itt \ith \ite \itc \ito \itp \ity \itp \itr \ito \itc \ite \itd \itu \itr \ite , \itt \ith \ite \itp \ita \itr \itt \iti \itc \itl \ite \its \itt \ito \itr \ita \itg \ite 
\itc \ito \itm \itp \ita \itr \itt \itm \ite \itn \itt \its \ito \itf \ita \itl \itl \itp \itr \ito \itc \ite \its \its \ite \its \itc \ito \itn \itt \ita \iti \itn \itt \ith \ite \itp \ita \itr \itt \iti \itc \itl \ite \its \ito \itf \itt \ith \ite \itc \ito \itr \itr \ite \its \itp \ito \itn \itd \iti \itn \itg \itc \ite \itl \itl \ita \itn \itd \itc \ito \itp \iti \ite \its \ito \itf 
\itt \ith \ite \itp \ita \itr \itt \iti \itc \itl \ite \its \itf \itr \ito \itm \ita \itl \itl \itn \ite \iti \itg \ith \itb \ito \itr \iti \itn \itg \itc \ite \itl \itl \its . \itT \ith \ite \itr \ite \itf \ito \itr \ite , \ita \itf \itt \ite \itr \ite \ita \itc \ith \itp \itr \ito \itc \ite \its \its \ith \ita \its \ite \itx \ite \itc \itu \itt \ite \itd \itt \ith \ite 
\itc \ito \itp \ity \itf \itu \itn \itc \itt \iti \ito \itn , \ita \itl \itl \iti \itn \itt \ite \itr \ita \itc \itt \iti \ito \itn \itp \ita \itr \itt \itn \ite \itr \its \ito \itf \ita \itl \itl \itp \ita \itr \itt \iti \itc \itl \ite \its \iti \itn \itt \ith \ite \itc \ite \itn \itt \ite \itr \itc \ite \itl \itl \ita \itr \ite \iti \itn \itp \itr \ito \itc \ite \its \its -\itl \ito \itc \ita \itl 
\itm \ite \itm \ito \itr \ity .

Proof .
We need to prove, after the \itc \ito \itp \ity \itA \itL \itL 

\~\itg function, the storages of all processes contain the
particles of the corresponding cells and all their neighbor particles. Hence, first, we need
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to prove that each process executes the \itc \ito \itp \ity \itA \itL \itL 
\~\itg function and second, that on a process

after the \itc \ito \itp \ity \itA \itL \itL 
\~\itg function all neighbor particles of all particles of the center storage

compartment are in the storage.
To first, the idea is to prove that \gamma (\itk , \itj ) is bijective and the codomain is the set of all

indices of the processes \{ 1, ...,\itN \itc \ite \itl \itl \} ,

\gamma :
\Bigl\{ 
1, ..., 3\itd 

\Bigr\} 
\times 

\Bigl\{ 
1, ..., \itk \itN \ast 

\itc \ite \itl \itl 

\Bigr\} 
\rightarrow \{ 1, ...,\itN \itc \ite \itl \itl \} is bijective. (5.171)

We define a helper function \gamma \ast , prove it is bijective and transform it into \gamma .
We declare

\gamma \ast : \{ 1, ..., 3\} \itd \times N\itd \cap 
\Bigl[ 
1, \itk I

\ast 
\Bigr] 
\rightarrow N\itd \cap 

\bigl[ 
1, I

\bigr] 
(5.172)

and define
\gamma \ast (\itk , \itj ) := \itk + (\itj  - 1) \cdot 3. (5.173)

One element of \gamma \ast is
\bigl\langle 
\gamma \ast (\itk , \itj )

\bigr\rangle 
\itw 
and we can rewrite it by

\bigl\langle 
\gamma \ast (\itk , \itj )

\bigr\rangle 
\itw 
= 1 + (\itk \itw  - 1) + (\itj \itw  - 1) \cdot 3 =

\itk \bfJ \itw \iota  - 1

\biggl( \biggl( 
\itk \itw 
\itj \itw 

\biggr) \biggr) 
\underbrace{}  \underbrace{}  

\mathrm{i}\mathrm{s} \mathrm{b}\mathrm{i}\mathrm{j}\mathrm{e}\mathrm{c}\mathrm{t}\mathrm{i}\mathrm{v}\mathrm{e} (\iota \mathrm{i}\mathrm{s} \mathrm{b}\mathrm{i}\mathrm{j}\mathrm{e}\mathrm{c}\mathrm{t}\mathrm{i}\mathrm{v}\mathrm{e})

(5.174)

where \itk J\itw :=

\biggl( 
3

\itk \itI \ast \itw 

\biggr) 
. The domain of the arguments \itj and \itk depend on each other.

Hence, it is not obvious that \gamma \ast is not leaving the codomain N\itd \cap 
\bigl[ 
1, I

\bigr] 
. \gamma \ast is monotone.

Therefore, it is sufficient to prove that \gamma \ast is in the codomain for the smallest and largest
arguments. The minimal value of \gamma \ast is

\itm \iti \itn 
\Bigl( \bigl\langle 
\gamma \ast (\itk , \itj )

\bigr\rangle 
\itw 

\Bigr) 
= 1 + (1 - 1) \cdot 3 = 1. (5.175)

This is in the codomain. The maximal value of \gamma \ast is

\itm \ita \itx 
\Bigl( \bigl\langle 
\gamma \ast (\itk , \itj )

\bigr\rangle 
\itw 

\Bigr) 
= \itk \itm \ita \itx 

\itw +
\Bigl( 

\itk \itm \ita \itx 
\itI \ast \itw  - 1

\Bigr) 
\cdot 3. (5.176)

Using the definition of \itk \itm \ita \itx I
\ast 
(5.91) leads to

\itm \ita \itx 
\Bigl( \bigl\langle 
\gamma \ast (\itk , \itj )

\bigr\rangle 
\itw 

\Bigr) 
= \itk \itm \ita \itx 

\itw +
\bigl( \bigl\lfloor 

1
3 (\itI \itw  - \itk \itm \ita \itx 

\itw + 3)
\bigr\rfloor 
 - 1

\bigr) 
\cdot 3 (5.177)

We substituted
\itI \itw  - \itk \itm \ita \itx 

\itw + 3 =: \itT \prime \underbrace{}  \underbrace{}  
\in N

\cdot 3 + \itT \prime \prime \underbrace{}  \underbrace{}  
\in \{ 0,1,2\} 

(5.178)

and get

\itm \ita \itx 
\Bigl( \bigl\langle 
\gamma \ast (\itk , \itj )

\bigr\rangle 
\itw 

\Bigr) 
= \itk \itm \ita \itx 

\itw +
\Bigl( \Bigl\lfloor 

3\itT \prime 

3 + \itT \prime \prime 

3

\Bigr\rfloor 
 - 1

\Bigr) 
\cdot 3 (5.179)

= \itk \itm \ita \itx 
\itw + (\itT \prime  - 1) \cdot 3. (5.180)
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We rearrange the substitution to

3\itT \prime = \itI \itw  - \itk \itm \ita \itx 
\itw + 3 - \itT \prime \prime (5.181)

and plug it in

\itm \ita \itx 
\Bigl( \bigl\langle 
\gamma \ast (\itk , \itj )

\bigr\rangle 
\itw 

\Bigr) 
= \itk \itm \ita \itx 

\itw + \itI \itw  - \itk \itm \ita \itx 
\itw + 3 - \itT \prime \prime  - 3 (5.182)

= \itI \itw  - \itT \prime \prime \underbrace{}  \underbrace{}  
\in \{ 0,1,2\} 

. (5.183)

This means
\itm \ita \itx 

\Bigl( \bigl\langle 
\gamma \ast (\itk , \itj )

\bigr\rangle 
\itw 

\Bigr) 
\leq \itI \itw . (5.184)

It remains to be shown that \itI \itw can be reached. This is only possible if \itT \prime \prime = 0. Hence,
we need to prove

\exists \itk \itw \in \{ 1, 2, 3\} : \itT \prime \prime = 0. (5.185)

From \itT \prime \prime = 0 follows that

3\itT \prime + \itT \prime \prime 

3
=

\itI \itw + 3 - \itk \itm \ita \itx 
\itw 

3
= \itn \in N. (5.186)

 - \rightarrow 
\itn +

\itk \itm \ita \itx 
\itw  - 1

3
=

\itI \itw + 2

3
(5.187)

Taking the fl\ito \ito \itr on both sides lead to      \itn +
\itk \itm \ita \itx 
\itw  - 1

3\underbrace{}  \underbrace{}  
\in \{ 0,1,2\} 

      =

\biggl\lfloor 
\itI \itw + 2

3

\biggr\rfloor 
(5.188)

 - \rightarrow 
\itn =

\biggl\lfloor 
\itI \itw + 2

3

\biggr\rfloor 
. (5.189)

Inserting this into (5.187) lead to

\itk \itw = ((\itI \itw + 3) - 1) - 
\Bigl\lfloor 
(\itI \itw +3) - 1

3

\Bigr\rfloor 
\cdot 3 + 1 =

\Bigl\langle 
\bfJ \iota (\itI \itw + 3)

\Bigr\rangle 
1
\in \{ 1, 2, 3\} (5.190)

where J = (3, ...)\bfT . We can follow,

\forall \itw \in \{ 1, ..., \itd \} :
\bigl\langle 
\gamma \ast 

\bigr\rangle 
\itw 

is bijective (5.191)

 - \rightarrow 
\gamma \ast is bijective (5.192)

Now we need to transform \gamma \ast to \gamma . We substitute \itk and \itj by

\itk = \bfthree \iota (\itk ), \itj =
\itk \bfI 

\ast 
\iota (\itj ). (5.193)
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We know that \iota is bijective (lemma 6, def. 14) and therefore

\itk \in \{ 1, ..., 3\itd \} , \itj \in \itN \itd \cap 
\Bigl[ 
1, \itk I

\ast 
\Bigr] 
. (5.194)

We also know \iota  - 1 is bijective. Hence,

\bfI \iota  - 1
\Bigl( 
\gamma \ast 

\Bigl( 
\bfthree \iota (\itk ),

\itk \bfI 
\ast 
\iota (\itj )

\Bigr) \Bigr) 
= \bfI \iota  - 1

\Bigl( 
\bfthree \iota (\itk ) +

\Bigl( 
\itk \bfI 

\ast 
\iota (\itj ) - 1

\Bigr) 
\cdot 3

\Bigr) 
(5.195)

= \gamma (\itk , \itj ) (5.196)

This means \gamma is bijective, and the \itc \ito \itp \ity \itA \itL \itL 
\~\itg function is executed for all processes.

To second, it remains to be proven that the neighbor particles of all particles of the cen-
ter storage compartment are in the storage. The function \itc \ito \itp \ity (\~\itg ,\scrP ,\itw )(p, \itl ) (5.103) copies

the central
\Bigl( 
3\itd +1
2

\Bigr) 
storage compartment form the \beta (\itw , \itl )-th process to the \itl -th storage

compartment on the \itw -th process. We start from the vectorial index view to find the corre-
sponding cell/process where the particles are for the \itl -th storage compartment on the \itw -th

process. The vectorial index of the \itw -th process is \bfI \iota (\itw ) and the vectorial index of the \itl -th

storage compartment is \bfthree \iota (\itl ) \in \{ 1, 2, 3\} . The storage center compartment \itl =
\Bigl( 
3\itd +1
2

\Bigr) 
corresponds to the cell belonging to the process. The rest of the storage compartments
should represent the surrounding cells. Therefore, to account for this, we need to shift
the storage compartment index by  - 2 in all dimensions. Hence, the vectorial index of the
corresponding process for the \itl -th storage compartment of the \itw -th process is

\bfI \iota (\itw ) + \bfthree \iota (\itl ) - 2. (5.197)

Transforming the vectorial index to a scalar index results in

\bfI \iota  - 1
\Bigl( 
\bfI \iota (\itw ) + \bfthree \iota (\itl ) - 2

\Bigr) 
= \beta (\itw , \itl ). (5.198)

Hence, the \beta (\itw , \itl )-th process has the corresponding particles in its center storage compart-
ment. The storage gets the particles from the surrounding cells by the \itc \ito \itp \ity function from
the other processes. With this, we can derive the domain area that the storage covers.
The vectorial indices of the cells that belong to the domain are\Bigl\{ 

\bfI \iota (\beta (\itw , \itl )) : \itl \in \{ 1, ..., 3\itd \} 
\Bigr\} 
=

\Bigl[ 
\bfI \iota (\itw ) - 1, \bfI \iota (\itw ) + 1

\Bigr] 
\cap 
\bigl[ 
1, I

\bigr] 
\cap N\itd . (5.199)

Per definition (5.96) the particle that belong to the \itw -th cell are

\itp \itj = (..., \itx \itj , ...) \in p1
\itw : \bfI \iota (\itw ) =

\biggl\lfloor 
1

\itr \itc 
(\itx \itj  - \itD \itm \iti \itn )

\biggr\rfloor 
+ 1. (5.200)

 - \rightarrow 
\itp \itj \in p1

\itw : \bfI \iota (\itw ) - 1 =

\biggl\lfloor 
1

\itr \itc 
(\itx \itj  - \itD \itm \iti \itn )

\biggr\rfloor 
. (5.201)

 - \rightarrow 
\itp \itj \in p1

\itw :
1

\itr \itc 
(\itx \itj  - \itD \itm \iti \itn ) \in 

\Bigl[ 
\bfI \iota (\itw ) - 1, \bfI \iota (\itw ) - 1+ 1

\Bigr) 
. (5.202)
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 - \rightarrow 

\itp \itj \in p1
\itw : \itx \itj \in 

\Bigl[ \Bigl( 
\bfI \iota (\itw ) - 1

\Bigr) 
\cdot \itr \itc +\itD \itm \iti \itn ,

\bfI \iota (\itw ) \cdot \itr \itc +\itD \itm \iti \itn 

\Bigr) 
. (5.203)

Taking all cells/compartments (5.199) of the storage of the \itw -process leads to

\itp \itj \in 
3\itd 

#
\itl =1
\langle [\mathrm{P}\mathrm{R}\mathrm{O}\mathrm{C}\itw ]p1\rangle \itl :

\itx \itj \in 
\Bigl[ \Bigl( \Bigl( 

\bfI \iota (\itw ) - 1
\Bigr) 
 - 1

\Bigr) 
\cdot \itr \itc +\itD \itm \iti \itn ,

\Bigl( 
\bfI \iota (\itw ) + 1

\Bigr) 
\cdot \itr \itc +\itD \itm \iti \itn 

\Bigr) 
\cap [\itD \itm \iti \itn ,\itD \itm \ita \itx ) , (5.204)

where
\bigl[ 
1, I

\bigr] 
translates to [\itD \itm \iti \itn ,\itD \itm \ita \itx ) (5.89).

 - \rightarrow 

\itp \itj \in 
3\itd 

#
\itl =1
\langle [\mathrm{P}\mathrm{R}\mathrm{O}\mathrm{C}\itw ]p1\rangle \itl :

\itx \itj \in 
\Bigl[ \Bigl( 

\bfI \iota (\itw ) - 2
\Bigr) 
\cdot \itr \itc +\itD \itm \iti \itn ,

\Bigl( 
\bfI \iota (\itw ) + 1

\Bigr) 
\cdot \itr \itc +\itD \itm \iti \itn 

\Bigr) 
\cap [\itD \itm \iti \itn ,\itD \itm \ita \itx ) . (5.205)

It remains to be proven that the neighbor particles of all particles of the central storage
compartment of the \itw -th process are in the storage. Hence, the domain area covered by
the storage includes the area covered by the neighborhood function \itu . Be \itp \itk \in p1 and
\itp \itj \in 

\bigl\langle 
p1

\bigr\rangle 
\itu (\itg ,\bfp 1,\itk )

(5.80) then

| \itx \itk  - \itx \itj | \leq \itr \itc (5.206)

 - \rightarrow 
\itx \itj \in 

\bigl[ 
\itx \itk  - 1 \cdot \itr \itc , \itx \itk + 1 \cdot \itr \itc 

\bigr] 
(5.207)

Be now \itp \itk \in p1
\itw then we know (5.203)

\itx \itk \in 
\Bigl[ \Bigl( 

\bfI \iota (\itw ) - 1
\Bigr) 
\cdot \itr \itc +\itD \itm \iti \itn ,

\bfI \iota (\itw ) \cdot \itr \itc +\itD \itm \iti \itn 

\Bigr) 
. (5.208)

 - \rightarrow 

\itx \itj \in 
\Bigl[ \Bigl( 

\bfI \iota (\itw ) - 1
\Bigr) 
\cdot \itr \itc +\itD \itm \iti \itn  - 1 \cdot \itr \itc , \bfI \iota (\itw ) \cdot \itr \itc +\itD \itm \iti \itn + 1 \cdot \itr \itc 

\Bigr) 
\cap [\itD \itm \iti \itn ,\itD \itm \ita \itx ) . (5.209)

 - \rightarrow 

\itx \itj \in 
\Bigl[ \Bigl( 

\bfI \iota (\itw ) - 2
\Bigr) 
\cdot \itr \itc +\itD \itm \iti \itn ,

\Bigl( 
\bfI \iota (\itw ) + 1

\Bigr) 
\cdot \itr \itc +\itD \itm \iti \itn 

\Bigr) 
\cap [\itD \itm \iti \itn ,\itD \itm \ita \itx ) . (5.210)

This is the same as (5.205), which means that the neighbor particles of all particles of the
center storage compartment of the \itw -th process are all in the storage of the \itw -th process,
and this is true for all processes.
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Lemma 10. \itT \ith \ite \itf \itu \itn \itc \itt \iti \ito \itn \its \itd \iti \its \itt \itA \itL \itL 
(\~\itg ,\scrG 1) \itr \ite \itd \iti \its \itt \itr \iti \itb \itu \itt \ite \its \itp \ita \itr \itt \iti \itc \itl \ite \its \itf \itr \ito \itm \itt \ith \ite \itc \ite \itn \itt \ite \itr \itp \ita \itr \itt \iti \itc \itl \ite \its \itt \ito \itr \ita \itg \ite 

\itc \ito \itm \itp \ita \itr \itt \itm \ite \itn \itt \itt \ito \ito \itn \itl \ity \itt \ith \ite \ito \itt \ith \ite \itr \its \itt \ito \itr \ita \itg \ite \itc \ito \itm \itp \ita \itr \itt \itm \ite \itn \itt \its \ito \itn \itt \ith \ite \its \ita \itm \ite \itp \itr \ito \itc \ite \its \its . \itT \ith \ite \itr \ite \itf \ito \itr \ite , \iti \itt 
\itd \ito \ite \its \itn \ito \itt \itt \itr \ity \itt \ito \itp \itl \ita \itc \ite \itt \ith \ite \itm \iti \itn \itt \ito \itn \ito \itn -\ite \itx \iti \its \itt \iti \itn \itg \its \itt \ito \itr \ita \itg \ite \itc \ito \itm \itp \ita \itr \itt \itm \ite \itn \itt \its . \itH \ite \itn \itc \ite ,

\forall \itw \in \{ 1, . . . ,\itN \itc \ite \itl \itl \} \forall \itp 1\itj \in 
\bigl\langle \bigl\langle 
\scrP 1

\bigr\rangle 
\itw 

\bigr\rangle 
3\itd +1
2

: \itp 2\itj :=

\biggl\langle \Bigl\langle \bigl\langle 
\its \itt \ite \itp \itA \itL \itL 

\scrG 1

\bigl( 
\itc \ito \itp \ity \itA \itL \itL 

\~\itg (\scrP 1)
\bigr) \bigr\rangle 

\itw 

\Bigr\rangle 
3\itd +1
2

\biggr\rangle 
\itj 

 - \rightarrow \alpha = \bfthree \iota  - 1
\Bigl( \Bigl\lfloor 

1
\itr \itc 
(\itx 2

\itj  - \itD \mathrm{m}\mathrm{i}\mathrm{n})
\Bigr\rfloor 
 - \bfI \iota (\itw ) + 3

\Bigr) 
\in \{ 1, . . . , 3\itd \} . (5.211)

Proof .
We need to prove that the functions \itd \iti \its \itt \itA \itL \itL 

(\~\itg ,\scrG 1) places for each process the particles from
the center storage compartments only to the other storage compartments of the same
processes.

All particles have a position \itx \in R\itd , hence, \itp 1\itj = (..., \itx 1
\itj , ...) and \itp 2\itj = (..., \itx 2

\itj , ...). The
condition (5.82) restricts the movement of the particles to be smaller than \itr \itc . Meaning
for \Delta \itx := \itx 2

\itj  - \itx 1
\itj 

| \Delta \itx | \leq \itr \itc . (5.212)

\itd \ite \itf . 5 -  -  -  - \rightarrow 

| \Delta \itx | =

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
\left(   \Delta \itx 1

...
\Delta \itx \itd 

\right)   
\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| =

\sqrt{} 
\Delta \itx 2

1 + ...+\Delta \itx 2
\itd \leq \itr \itc (5.213)

 - \rightarrow 
\forall \itk \in \{ 1, ..., \itd \} : \itr \itc \leq \Delta \itx \itk \leq \itr \itc (5.214)

 - \rightarrow 
\forall \itk \in \{ 1, ..., \itd \} : \Delta \itx \itk \in [ - \itr \itc , \itr \itc ] (5.215)

Using this, we can rewrite \alpha from

\alpha = \bfthree \iota  - 1
\Bigl( \Bigl\lfloor 

1
\itr \itc 
(\itx 2

\itj  - \itD \itm \iti \itn )
\Bigr\rfloor 
 - \bfI \iota (\itw ) + 3

\Bigr) 
(5.216)

to
\alpha = \bfthree \iota  - 1

\Bigl( \Bigl\lfloor 
1
\itr \itc 
(\itx 1

\itj +\Delta \itx  - \itD \itm \iti \itn )
\Bigr\rfloor 
 - \bfI \iota (\itw ) + 3

\Bigr) 
. (5.217)

We put the index for the dimension as pre-sub-script.

\alpha = \bfthree \iota  - 1

\left(     
\left(     

\Bigl\lfloor 
1
\itr \itc 
(1\itx 

1
\itj + 1\Delta \itx  - 1\itD \itm \iti \itn )

\Bigr\rfloor 
 - 

\Bigl\langle 
\bfI \iota (\itw )

\Bigr\rangle 
1
+ 3

...\Bigl\lfloor 
1
\itr \itc 
(\itd \itx 

1
\itj + \itd \Delta \itx  - \itd \itD \itm \iti \itn )

\Bigr\rfloor 
 - 

\Bigl\langle 
\bfI \iota (\itw )

\Bigr\rangle 
\itd 
+ 3

\right)     
\right)     (5.218)

We know from the condition (5.96) that

\forall \itp 1\itj \in p1 : \itp 1\itj \in p1
\itw with \itw = \bfI \iota  - 1

\biggl( \biggl\lfloor 
1

\itr \itc 
(\itx 1

\itj  - \itD \itm \iti \itn )

\biggr\rfloor 
+ 1

\biggr) 
. (5.219)
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Taking this into \alpha we get

\alpha = \bfthree \iota  - 1

\left(                       

\left(                 

\Bigl\lfloor 
1\itx 1

\itj  - 1\itD \itm \iti \itn 

\itr \itc 
+ 1\Delta \itx 

\itr \itc \underbrace{}  \underbrace{}  
\in [ - 1,1]

\Bigr\rfloor 
\underbrace{}  \underbrace{}  

\in \{ \langle \bfI \iota (\itw )\rangle 
1
 - 2, \langle \bfI \iota (\itw )\rangle 

1
 - 1, \langle \bfI \iota (\itw )\rangle 

1
\} 

 - 
\Bigl\langle 
\bfI \iota (\itw )

\Bigr\rangle 
1
+ 3

...\Bigl\lfloor 
\itd \itx 

1
\itj  - \itd \itD \itm \iti \itn 

\itr \itc 
+ \itd \Delta \itx 

\itr \itc \underbrace{}  \underbrace{}  
\in [ - 1,1]

\Bigr\rfloor 
\underbrace{}  \underbrace{}  

\in \{ \langle \bfI \iota (\itw )\rangle 
\itd 
 - 2, \langle \bfI \iota (\itw )\rangle 

\itd 
 - 1, \langle \bfI \iota (\itw )\rangle 

\itd 
\} 

 - 
\Bigl\langle 
\bfI \iota (\itw )

\Bigr\rangle 
\itd 
+ 3

\right)                 
\underbrace{}  \underbrace{}  

\in N\cap [\bfone ,\bfthree ]

\right)                       

(5.220)

 - \rightarrow 
\alpha \in \{ 1, ..., 3\itd \} (5.221)

Hence, under the condition (5.96), no particle leaves the storage compartments of its
process through the function \itd \iti \its \itt \itA \itL \itL 

(\~\itg ,\scrG 1).

Lemma 11. \itT \ith \ite \itf \itu \itn \itc \itt \iti \ito \itn \itd \iti \its \itt \itA \itL \itL 
(\~\itg ,\scrG 1) \itp \itl \ita \itc \ite \its \itp \ita \itr \itt \iti \itc \itl \ite \its \ito \itn \itl \ity \iti \itn \itt \ito \its \itt \ito \itr \ita \itg \ite \itc \ito \itm \itp \ita \itr \itt \itm \ite \itn \itt \its \itt \ith \ita \itt 

\itr \ite \itp \itr \ite \its \ite \itn \itt \itc \ite \itl \itl \its \iti \itn \its \iti \itd \ite \itt \ith \ite \itc \ito \itm \itp \itu \itt \ita \itt \iti \ito \itn \ita \itl \itd \ito \itm \ita \iti \itn . \itH \ite \itn \itc \ite , \itp \itr \ito \itc \ite \its \its \ite \its \ita \itt \itt \ith \ite \itd \ito \itm \ita \iti \itn \itb \ito \itr \itd \ite \itr 
\itd \ito \itn \ito \itt \ith \ita \itv \ite \itp \ita \itr \itt \iti \itc \itl \ite \its \iti \itn \itt \ith \ite \iti \itr ``\ito \itu \itt \ite \itr "" \its \itt \ito \itr \ita \itg \ite \itc \ito \itm \itp \ita \itr \itt \itm \ite \itn \itt \its . \itB \ite 

\itw = (\itw 1, . . . ,\itw \itd )
\top := \bfI \iota (\itw ) (5.222)

\alpha = (\alpha 1, . . . , \alpha \itd )
\top :=

\Bigl\lfloor 
1
\itr \itc 
(\itx 2

\itj  - \itD \mathrm{m}\mathrm{i}\mathrm{n})
\Bigr\rfloor 
 - \itw + 3, (5.223)

\itt \ith \ite \itn 

\forall \itw \in \{ 1, . . . ,\itN \mathrm{c}\mathrm{e}\mathrm{l}\mathrm{l}\} \forall \itp 2\itj :=

\biggl\langle \Bigl\langle \bigl\langle 
\its \itt \ite \itp \itA \itL \itL 

\scrG 1

\bigl( 
\itc \ito \itp \ity \itA \itL \itL 

\~\itg (\scrP 1)
\bigr) \bigr\rangle 

\itw 

\Bigr\rangle 
3\itd +1
2

\biggr\rangle 
\itj 

:

(\itk \in \{ 1, . . . , \itd \} \wedge \itw \itk = 1) \rightarrow \alpha \itk \in \{ 2, 3\} 
\wedge (\itk \in \{ 1, . . . , \itd \} \wedge \itw \itk = \itI \itk ) \rightarrow \alpha \itk \in \{ 1, 2\} . (5.224)

Proof .

We do a proof by contradiction. First, we prove the statement with \itw \itk = 1. Amusing

\exists \itk \in \{ 1, ..., \itd \} : \itw \itk = 1 \wedge \alpha \itk = 1 (5.225)

then
\alpha \itk = 1 =

\Bigl\lfloor 
1
\itr \itc 
(\itk \itx 

2
\itj  - \itk \itD \itm \iti \itn )

\Bigr\rfloor 
 - 1 + 3. (5.226)

 - \rightarrow 
 - 1 =

\Bigl\lfloor 
1
\itr \itc 
(\itk \itx 

2
\itj  - \itk \itD \itm \iti \itn )

\Bigr\rfloor 
(5.227)
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 - \rightarrow 
1
\itr \itc 
(\itk \itx 

2
\itj  - \itk \itD \itm \iti \itn ) = [ - 1, 0) (5.228)

 - \rightarrow 
\itk \itx 

2
\itj = [ - \itr \itc + \itk \itD \itm \iti \itn , 0)  (5.229)

This contradicts the condition that no particle leaves the domain (5.81). Hence, in this
case \alpha \itk \in \{ 2, 3\} . Now we prove the second statement with \itw \itk = \itI \itk . Amusing

\exists \itk \in \{ 1, ..., \itd \} : \itw \itk = \itI \itk \wedge \alpha \itk = 3 (5.230)

then
\alpha \itk = 3 =

\Bigl\lfloor 
1
\itr \itc 
(\itk \itx 

2
\itj  - \itk \itD \itm \iti \itn )

\Bigr\rfloor 
 - \itI \itk + 3. (5.231)

 - \rightarrow 
\itI \itk =

\Bigl\lfloor 
1
\itr \itc 
(\itk \itx 

2
\itj  - \itk \itD \itm \iti \itn )

\Bigr\rfloor 
(5.232)

 - \rightarrow 
1
\itr \itc 
(\itk \itx 

2
\itj  - \itk \itD \itm \iti \itn ) = [\itI \itk , \itI \itk + 1) (5.233)

 - \rightarrow 
\itk \itx 

2
\itj = [\itI \itk \itr \itc + \itk \itD \itm \iti \itn , \itI \itk \itr \itc + \itk \itD \itm \iti \itn + \itr \itc )  (5.234)

\itd \ite \itf . \bfI (5.89) -  -  -  -  -  -  -  - \rightarrow 
\itk \itx 

2
\itj > \itk \itD \itm \ita \itx )  (5.235)

This contradicts the condition that no particle leaves the domain (5.81). Hence, in this
case \alpha \itk \in \{ 1, 2\} . Taking both cases together, the function \itd \iti \its \itt \itA \itL \itL 

(\~\itg ,\scrG 1) places particles only
inside storage compartments which represent cells inside the domain.

Lemma 12. \scrP 1
:= \its \itt \ite \itp \itA \itL \itL 

\scrG 1

\Bigl( 
\itc \ito \itp \ity \itA \itL \itL 

\~\itg (\scrP 1)
\Bigr) 

\itd \ito \ite \its \itn \ito \itt \itn \ite \itc \ite \its \its \ita \itr \iti \itl \ity \itf \itu \itl fi\itl \itl \itt \ith \ite \itc \ito \itn \itd \iti \itt \iti \ito \itn 

\iti \itn (5.96) \itt \ito \itr \ite \iti \itt \ite \itr \ita \itt \ite \its \itt \ite \itp \itA \itL \itL 
\scrG 2

\Bigl( 
\itc \ito \itp \ity \itA \itL \itL 

\~\itg 

\Bigl( 
\scrP 1

\Bigr) \Bigr) 
. \itT \ito \ita \itv \ito \iti \itd \itt \ith \ita \itt \iti \itn \itt \ite \itr \ita \itc \itt \itg \itm \iti \its \its \ite \its \iti \itn \itt \ite \itr \ita \itc \itt \iti \ito \itn \its 

\itd \itu \ite \itt \ito \iti \itn \itc \ito \itm \itp \itl \ite \itt \ite \itn \ite \iti \itg \ith \itb \ito \itr \ith \ito \ito \itd \its , \itt \ith \ite \itp \ita \itr \itt \iti \itc \itl \ite \its \iti \itn \scrP 1
\itt \ith \ite \itr \ite \itf \ito \itr \ite \itn \ite \ite \itd \itt \ito \itb \ite \itr \ite \itd \iti \its \itt \itr \iti \itb \itu \itt \ite \itd \its \itu \itc \ith 

\itt \ith \ita \itt (5.96) \iti \its \itf \itu \itl fi\itl \itl \ite \itd . \itT \ith \ite \itd \ite \itc \ito \itm \itp \ito \its \iti \itt \iti \ito \itn \ito \itf \itt \ith \ite \iti \itn \iti \itt \iti \ita \itl \itp \ite \itr \itm \itu \itt \ite \itd \itp \ita \itr \itt \iti \itc \itl \ite \itt \itu \itp \itl \ite \iti \its \its \itt \ito \itr \ite \itd 
\iti \itn \itt \ith \ite \itc \ite \itn \itt \ite \itr \its \itt \ito \itr \ita \itg \ite \itc \ito \itm \itp \ita \itr \itt \itm \ite \itn \itt \ito \itf \itt \ith \ite \itp \itr \ito \itc \ite \its \its \ite \its . \itH \ite \itn \itc \ite , (5.96) \itc \ita \itn \itb \ite \itr \ite \itw \itr \iti \itt \itt \ite \itn \itf \ito \itr \ita \itl \itl 
\its \itt \ita \itt \ite \itt \itr \ita \itn \its \iti \itt \iti \ito \itn \its \itt \ite \itp \its \ita \its 

\forall \itp \itt \itj \in 
\itN \mathrm{c}\mathrm{e}\mathrm{l}\mathrm{l}

#
\itv =1

\bigl\langle \bigl\langle 
\scrP \itt 

\bigr\rangle 
\itv 

\bigr\rangle 
3\itd +1
2

: \itp \itt \itj \in 
\bigl\langle \bigl\langle 
\scrP \itt 

\bigr\rangle 
\itw 

\bigr\rangle 
3\itd +1
2

, (5.236)

\itw \ith \ite \itr \ite 

\itw = \bfI \iota  - 1

\biggl( \biggl\lfloor 
1

\itr \itc 
(\itx \itt 

\itj  - \itD \mathrm{m}\mathrm{i}\mathrm{n})

\biggr\rfloor 
+ 1

\biggr) 
. (5.237)

\itT \ith \iti \its \iti \its \ita \itc \ith \iti \ite \itv \ite \itd \itb \ity \itt \ith \ite \itt \itw \ito \itf \itu \itn \itc \itt \iti \ito \itn \its \itd \iti \its \itt \itA \itL \itL 
(\~\itg ,\scrG 1) \ita \itn \itd \itc \ito \itl \itl \ite \itc \itt \itA \itL \itL 

\~\itg .

Proof .
We need to prove that the two functions \itd \iti \its \itt \itA \itL \itL 

(\~\itg ,\scrG 1) and \itc \ito \itl \itl \ite \itc \itt \itA \itL \itL 
\~\itg achieve this.

We prove this by induction. Regarding the base case, we know that the condi-
tion (5.236), (5.237) is true for \scrP 1 by definition (5.96).
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Regarding the induction step, we need to prove that if \scrP \itt fulfills the condi-

tion (5.236), (5.237) then \scrP \itt +1 = \itc \ito \itl \itl \ite \itc \itt \itA \itL \itL 
\~\itg 

\Bigl( 
\itd \iti \its \itt \itA \itL \itL 

(\~\itg ,\scrG 1)

\Bigl( 
\its \itt \ite \itp \itA \itL \itL 

\scrG 1

\Bigl( 
\itc \ito \itp \ity \itA \itL \itL 

\~\itg (\scrP \itt )
\Bigr) \Bigr) \Bigr) 

fulfills

also the condition.
\itd \iti \its \itt \itA \itL \itL 

(\~\itg ,\scrG 1) (5.112) empties all storage compartments except the center storage compart-
ment and then distributes all particles of the center storage compartments according to
their position to the other storage compartments of each process. \alpha gives the index of the
new storage compartment for each particle. It is trivial that it considers all particles and
all processes since it simply iterates over them.

\itc \ito \itl \itl \ite \itc \itt \itA \itL \itL 
\~\itg (5.115) copies for each process its particles from the other processes cor-

responding storage compartments. It uses the same strategy as the function \itc \ito \itp \ity \itA \itL \itL 
\~\itg to

avoid overlapping conditions, hence, lemma 8 is also valid for the \itc \ito \itl \itl \ite \itc \itt \itA \itL \itL 
\~\itg function. The

\itc \ito \itl \itl \ite \itc \itt \itA \itL \itL 
\~\itg function takes the particles from the \bfthree \iota  - 1

\Bigl( 
4 - \bfthree \iota (\itl )

\Bigr) 
-th storage compartment

of the \beta (\itw , \itl )-th process and stores it in the center storage compartment of the \itw -th
process.

We need to prove that a particle from each storage compartment of all processes
ends up in the suitable process's central storage compartment according to the condi-
tion (5.236), (5.237). We choose without restricting generality a particle \itp from the
\bfthree \iota  - 1

\Bigl( 
4 - \bfthree \iota (\itl )

\Bigr) 
-th storage compartment of the \beta (\itw , \itl )-th process. Hence,

\itp = (..., \itx , ...) \in 
\Bigl\langle \bigl\langle 

\its \itt \ite \itp \itA \itL \itL 
\scrG 1

\bigl( 
\itc \ito \itp \ity \itA \itL \itL 

\~\itg (\scrP \itt )
\bigr) \bigr\rangle 
\beta (\itw ,\itl )

\Bigr\rangle 
\bfthree \iota  - 1(\bffour  - \bfthree \iota (\itl ))

. (5.238)

Combining this with the distribution of the \itd \iti \its \itt \itA \itL \itL 
(\~\itg ,\scrG 1) function we get

\alpha \underbrace{}  \underbrace{}  
!
=\bfthree \iota  - 1(\bffour  - \bfthree \iota (\itl ))

:= \bfthree \iota  - 1

\left(    \Bigl\lfloor 
1
\itr \itc 
(\itx  - \itD \itm \iti \itn )

\Bigr\rfloor 
 - \bfI \iota ( \itj \underbrace{}  \underbrace{}  

!
=\beta (\itw ,\itl )

) + 3

\right)    , (5.239)

where \alpha is set to \bfthree \iota  - 1
\Bigl( 
4 - \bfthree \iota (\itl )

\Bigr) 
the index of the storage compartment from that the par-

ticles are collected, and \itj is set to \beta (\itw , \itl ) the index of the process from which is collected.
Hence, our particle is on that storage compartment of that process and gets distributed
by the mechanism of the \itd \iti \its \itt \itA \itL \itL 

(\~\itg ,\scrG 1) function. We put the indices in and transform

\bfthree \iota  - 1
\Bigl( 
4 - \bfthree \iota (\itl )

\Bigr) 
= \bfthree \iota  - 1

\Bigl( \Bigl\lfloor 
1
\itr \itc 
(\itx  - \itD \itm \iti \itn )

\Bigr\rfloor 
 - \bfI \iota (\beta (\itw , \itl )) + 3

\Bigr) 
, (5.240)

\itl \ite \itm \itm \ita 6 -  -  -  -  - \rightarrow 
4 - \bfthree \iota (\itl ) =

\Bigl\lfloor 
1
\itr \itc 
(\itx  - \itD \itm \iti \itn )

\Bigr\rfloor 
 - \bfI \iota (\beta (\itw , \itl )) + 3, (5.241)

\itd \ite \itf . \ito \itf \beta (5.94) -  -  -  -  -  -  -  -  -  - \rightarrow 

4 - \bfthree \iota (\itl ) =
\Bigl\lfloor 

1
\itr \itc 
(\itx  - \itD \itm \iti \itn )

\Bigr\rfloor 
 - \bfI \iota 

\Bigl( 
\bfI \iota  - 1

\Bigl( 
\bfI \iota (\itw ) + \bfthree \iota (\itl ) - 2

\Bigr) \Bigr) 
+ 3, (5.242)

\itl \ite \itm \itm \ita 6 -  -  -  -  - \rightarrow 
4 - \bfthree \iota (\itl ) =

\Bigl\lfloor 
1
\itr \itc 
(\itx  - \itD \itm \iti \itn )

\Bigr\rfloor 
 - \bfI \iota (\itw ) - \bfthree \iota (\itl ) + 2+ 3, (5.243)
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 - \rightarrow 
\bfI \iota (\itw ) =

\Bigl\lfloor 
1
\itr \itc 
(\itx  - \itD \itm \iti \itn )

\Bigr\rfloor 
+ 1, (5.244)

\itl \ite \itm \itm \ita 6 -  -  -  -  - \rightarrow 
\itw = \bfI \iota  - 1

\Bigl( \Bigl\lfloor 
1
\itr \itc 
(\itx  - \itD \itm \iti \itn )

\Bigr\rfloor 
+ 1

\Bigr) 
, (5.245)

The functions \itd \iti \its \itt \itA \itL \itL 
(\~\itg ,\scrG 1) and \itc \ito \itl \itl \ite \itc \itt \itA \itL \itL 

\~\itg put our particle \itp in the central storage compart-
ment of the \itw -th process

\itp \in 
\Bigl\langle \Bigl\langle 

\itc \ito \itl \itl \ite \itc \itt \itA \itL \itL 
\~\itg 

\Bigl( 
\itd \iti \its \itt \itA \itL \itL 

(\~\itg ,\scrG 1)

\bigl( 
\its \itt \ite \itp \itA \itL \itL 

\scrG 1

\bigl( 
\itc \ito \itp \ity \itA \itL \itL 

\~\itg (\scrP \itt )
\bigr) \bigr) \Bigr) \Bigr\rangle 

\itw 

\Bigr\rangle 
3\itd +1
2

. (5.246)

Hence,
\itp \in 

\bigl\langle \bigl\langle 
\scrP \itt +1

\bigr\rangle 
\itw 

\bigr\rangle 
3\itd +1
2

. (5.247)

fulfills the condition (5.236), (5.237).

5.3.3 Parallelizability

Theorem 2 (Parallelizability of particle methods on distributed-memory computers).
\itO \itn \itt \ith \ite \itp \ita \itr \itt \iti \itc \itl \ite \its \its \itt \ito \itr \ite \itd \iti \itn \itt \ith \ite \itc \ite \itn \itt \ite \itr \its \itt \ito \itr \ita \itg \ite \itc \ito \itm \itp \ita \itr \itt \itm \ite \itn \itt \its \ito \itf \itt \ith \ite \itp \itr \ito \itc \ite \its \its \ite \its , \ita \itn \itd \itu \itn \itd \ite \itr \itt \ith \ite 
\ita \its \its \itu \itm \itp \itt \iti \ito \itn \its \its \itt \ita \itt \ite \itd \ita \itt \itt \ith \ite \itb \ite \itg \iti \itn \itn \iti \itn \itg \ito \itf \itt \ith \iti \its \its \ite \itc \itt \iti \ito \itn , \itt \ith \ite \itp \itr \ite \its \ite \itn \itt \ite \itd \itp \ita \itr \ita \itl \itl \ite \itl \iti \itz \ita \itt \iti \ito \itn \its \itc \ith \ite \itm \ite \itf \ito \itr 
\itp \ita \itr \itt \iti \itc \itl \ite \itm \ite \itt \ith \ito \itd \its \ito \itn \itd \iti \its \itt \itr \iti \itb \itu \itt \ite \itd -\itm \ite \itm \ito \itr \ity \itc \ito \itm \itp \itu \itt \ite \itr \its \iti \itn fi\itg \itu \itr \ite 5.4 \itc \ito \itm \itp \itu \itt \ite \its \itt \ith \ite \its \ita \itm \ite \itr \ite \its \itu \itl \itt \its ,
\ite \itx \itc \ite \itp \itt \itf \ito \itr \itp \ita \itr \itt \iti \itc \itl \ite \ito \itr \itd \ite \itr \iti \itn \itg , \ita \its \itt \ith \ite \itu \itn \itd \ite \itr \itl \ity \iti \itn \itg \its \ite \itq \itu \ite \itn \itt \iti \ita \itl \itp \ita \itr \itt \iti \itc \itl \ite \itm \ite \itt \ith \ito \itd \iti \itn fi\itg \itu \itr \ite 3.1.
\itH \ite \itn \itc \ite ,

\itS 
\bigl( \bigl[ 
\itg 1,p1

\bigr] \bigr) 
=

\biggl[ \bigl\langle 
\scrG \itT 

\bigr\rangle 
1
, \sigma \ast 

\biggl( 
\itN \itc \ite \itl \itl 

#
\itw =1

\bigl\langle \bigl\langle 
\scrP \itT 

\bigr\rangle 
\itw 

\bigr\rangle 
3\itd +1
2

\biggr) \biggr] 
(5.248)

\itw \ith \ite \itr \ite \bigl[ 
\scrG \itT ,\scrP \itT 

\bigr] 
= \~\itS 

\bigl( \bigl[ 
\scrG 1,\scrP 1

\bigr] \bigr) 
. (5.249)

Proof .
We prove that each sequential state transition step \its (3.15) is equivalent to each parallel
state transition step \~\its (5.116) and that both algorithms terminate after the same number
of state transitions. The sequential state transition step was defined as follows:

\its ([\itg ,p]) :=
\Bigl[ \circ 
\ite (\itg ),p

\Bigr] 
with [\itg ,p] = \epsilon \mathrm{N}

\bigl( 
\itg , \iota \mathrm{N}\times \mathrm{U} ([\itg ,p])

\bigr) 
. (3.15)

Under the condition the interact function (5.84) and the neighborhood function (5.87) are
independent of previous interactions, we can rewrite the third interact subfunction \iota \mathrm{N}\times \mathrm{U}

for pull interaction particle methods (5.83):

\iota \mathrm{N}\times \mathrm{U} ([\itg ,p]) =
\bigl( 
\itp 1 \ast 1\iti \itg \langle p\rangle \itu (\itg ,\bfp ,1), ..., \itp | \bfp | \ast 1\iti \itg \langle p\rangle \itu (\itg ,\bfp ,| \bfp | )

\bigr) 
(5.33)

We also know that if the evolve function does not change the global variable (5.88), we
can write the state transition step as:

\its ([\itg ,p]) :=

\left[    \circ 
\ite (\itg ), 2\epsilon 

\mathrm{N}

\left(    
\left(   \itp 1 \ast 1\iti \itg \langle p\rangle \itu (\itg ,\bfp ,1)

...
\itp | \bfp | \ast 1\iti \itg \langle p\rangle \itu (\itg ,\bfp ,| \bfp | )

\right)   
\top 
\right)    
\right]    . (5.250)
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We use proof by induction to prove equivalence for the global variable and the particles
separately. We start with the global variable. Following the construction of \scrG 1, we directly
get \left(   \itg 2

...
\itg 2

\right)   
\top 

=

\left(   
\circ 
\ite 
\bigl( 
\itg 1

\bigr) 
...

\circ 
\ite 
\bigl( 
\itg 1

\bigr) 
\right)   
\top 

=

\left(    
\circ 
\ite 
\bigl( \bigl\langle 
\scrG 1

\bigr\rangle 
1

\bigr) 
...

\circ 
\ite 
\Bigl( \bigl\langle 
\scrG 1

\bigr\rangle 
\itN \mathrm{c}\mathrm{e}\mathrm{l}\mathrm{l}

\Bigr) 
\right)    
\top 

=

\left(   
\bigl\langle 
\scrG 2

\bigr\rangle 
1

...\bigl\langle 
\scrG 2

\bigr\rangle 
\itN \mathrm{c}\mathrm{e}\mathrm{l}\mathrm{l}

\right)   
\top 

= \scrG 2. (5.251)

This is the base case for the proof by induction. For the induction step, we start from\left(   \itg \itt 

...
\itg \itt 

\right)   
\top 

= \scrG \itt (5.252)

and get\left(   \itg \itt +1

...
\itg \itt +1

\right)   
\top 

=

\left(   
\circ 
\ite 
\bigl( 
\itg \itt 

\bigr) 
...

\circ 
\ite 
\bigl( 
\itg \itt 

\bigr) 
\right)   
\top 

=

\left(    
\circ 
\ite 
\bigl( \bigl\langle 
\scrG \itt 

\bigr\rangle 
1

\bigr) 
...

\circ 
\ite 
\Bigl( \bigl\langle 
\scrG \itt 

\bigr\rangle 
\itN \mathrm{c}\mathrm{e}\mathrm{l}\mathrm{l}

\Bigr) 
\right)    
\top 

=

\left(   
\bigl\langle 
\scrG \itt +1

\bigr\rangle 
1

...\bigl\langle 
\scrG \itt +1

\bigr\rangle 
\itN \mathrm{c}\mathrm{e}\mathrm{l}\mathrm{l}

\right)   
\top 

= \scrG \itt +1. (5.253)

This completes the part for the global variable.
We now prove that the sequential state transition function \itS and the distributed

memory state transition function \~\itS stop after the same number of states. For the state
transition \itS , the stop function \itf only depends on \itg \itt . For \~\itS , \itf depends only on

\bigl\langle 
\scrG \itt 

\bigr\rangle 
1
.

From this and \itg \itt =
\bigl\langle 
\scrG \itt 

\bigr\rangle 
1
follows

1\itS 
\bigl( \bigl[ 
\itg 1,p1

\bigr] \bigr) 
= \itg \itT =

\bigl\langle 
\scrG \itT 

\bigr\rangle 
1
=

\Bigl\langle 
1
\~\itS 
\bigl( \bigl[ 
\scrG 1,\scrP 1

\bigr] \bigr) \Bigr\rangle 
1
. (5.254)

Since the stop function \itf is for both schemes identical, this proves the both schemes stop
after the same number of states.

We now prove the equivalence of the particle tuple part of the state transitions

2\its 
\bigl( \bigl[ 
\itg 1,p1

\bigr] \bigr) 
= 2\epsilon 

\mathrm{N}

\left(    
\left(   \itp 11 \ast 1\iti \itg 1 \langle p

1\rangle \itu (\itg 1,\bfp 1,1)

...
\itp 1| \bfp 1| \ast 1\iti \itg 1 \langle p

1\rangle \itu (\itg 1,\bfp 1,| \bfp 1| )

\right)   
\top \right)    . (5.255)

The interact function is order-independent (5.86), and the permutation \pi (p1) (5.95) of
the initial particle tuple sorts the particles into cells. The neighborhood function is re-
stricted to not using indices (5.80). Hence, for a permuted particle tuple, the neighborhood
function returns the same result as for the un-permuted particle tuple, with the same per-
mutation also applied to the result. This leads to

2\its 
\bigl( \bigl[ 
\itg 1,p1

\bigr] \bigr) 
= 2\epsilon 

\mathrm{N}

\left(    \pi  - 1

\left(    
\left(   \itp 1\pi (1) \ast 1\iti \itg 1 \langle \pi (p

1)\rangle \itu (\itg 1,\pi (\bfp 1),\pi (1))

...
\itp 1\pi (| \bfp 1| ) \ast 1\iti \itg 1 \langle \pi (p

1)\rangle \itu (\itg 1,\pi (\bfp 1),\pi (| \bfp 1| ))

\right)   
\top \right)    

\right)    . (5.256)
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From the construction of the initial particle storages of all processes \scrP 1 (5.96)-(5.100), as
well as Lemmata 8 and 9, we derive

2\its 
\bigl( \bigl[ 
\itg 1,p1

\bigr] \bigr) 
= 2\epsilon 

\mathrm{N}

\left(    \pi  - 1

\left(    \itN \mathrm{c}\mathrm{e}\mathrm{l}\mathrm{l}

#
\itw =1

\left(   
\itw \itp 11 \ast 1\iti \itg 1

\itw q1
\itu (\itg 1,\itw \bfq 1,\itw \itz +1)

...
\itw \itp 1\itw \itn \ast 1\iti \itg 1

\itw q1
\itu (\itg 1,\itw \bfq 1,\itw \itz +\itw \itn )

\right)   
\top \right)    

\right)    , (5.257)

where the tuple of all particles in the storage of the \itw -th process is

\itw q1 :=
3\itd 

#
\itl =1

\Bigl\langle \bigl\langle 
\itc \ito \itp \ity \itA \itL \itL 

\~\itg (\scrP 1)
\bigr\rangle 
\itw 

\Bigr\rangle 
\itl 
, (5.258)

the number of particles in \itw q1 in front of the particles of the central storage compartment
is

\itw \itz :=

3\itd +1
2  - 1\sum 
\itl =1

\bigm| \bigm| \bigm| \Bigl\langle \bigl\langle \itc \ito \itp \ity \itA \itL \itL 
\~\itg (\scrP 1)

\bigr\rangle 
\itw 

\Bigr\rangle 
\itl 

\bigm| \bigm| \bigm| , (5.259)

the number of particles in the central storage compartment is

\itw \itn =

\bigm| \bigm| \bigm| \bigm| \Bigl\langle \bigl\langle \itc \ito \itp \ity \itA \itL \itL 
\~\itg (\scrP 1)

\bigr\rangle 
\itw 

\Bigr\rangle 
3\itd +1
2

\bigm| \bigm| \bigm| \bigm| , (5.260)

and the particles in the central storage compartment are\bigl( 
\itw \itp 11 , . . . ,

\itw \itp 1\itw \itn 

\bigr) 
=

\Bigl\langle \bigl\langle 
\itc \ito \itp \ity \itA \itL \itL 

\~\itg (\scrP 1)
\bigr\rangle 
\itw 

\Bigr\rangle 
3\itd +1
2

. (5.261)

The interactions of the particles with their neighbors in (5.257) resembles the \iti \itn \itt \ite \itr \ita \itc \itt \iti \ito \itn \itg 
function (5.3.1)

2\its 
\bigl( \bigl[ 
\itg 1,p1

\bigr] \bigr) 
= 2\epsilon 

\mathrm{N}

\biggl( 
\pi  - 1

\biggl( 
\itN \mathrm{c}\mathrm{e}\mathrm{l}\mathrm{l}

#
\itw =1

\iti \itn \itt \ite \itr \ita \itc \itt \iti \ito \itn \itg 1
\Bigl( \bigl\langle 

\itc \ito \itp \ity \itA \itL \itL 
\~\itg (\scrP 1)

\bigr\rangle 
\itw 

\Bigr) \biggr) \biggr) 
. (5.262)

The evolution function cannot change the global variable (condition (5.88)). Hence, the
second evolution subfunction \epsilon \mathrm{N} can also not change the global variable and is, therefore,
independent of the ordering of the particles. Since the evolve function \ite can create or
destroy particles, the permutation \pi  - 1 can not rearrange the result of \epsilon \mathrm{N} to the sequential
state transition result. But the calculation on the particles is identical. Hence, there exists
a permutation \~\pi  - 1 that rearranges the result such that

2\its 
\bigl( \bigl[ 
\itg 1,p1

\bigr] \bigr) 
= \~\pi  - 1

\biggl( 
2\epsilon 

\mathrm{N}

\biggl( 
\itN \mathrm{c}\mathrm{e}\mathrm{l}\mathrm{l}

#
\itw =1

\iti \itn \itt \ite \itr \ita \itc \itt \iti \ito \itn \itg 1
\Bigl( \bigl\langle 

\itc \ito \itp \ity \itA \itL \itL 
\~\itg (\scrP 1)

\bigr\rangle 
\itw 

\Bigr) \biggr) \biggr) 
. (5.263)

All processes calculate the \iti \itn \itt \ite \itr \itc \ita \itt \iti \ito \itn \itg function independently. Hence, the \epsilon \mathrm{N} function
can also be executed on each process independently. This means that

2\its 
\bigl( \bigl[ 
\itg 1,p1

\bigr] \bigr) 
= \~\pi  - 1

\biggl( 
\itN \mathrm{c}\mathrm{e}\mathrm{l}\mathrm{l}

#
\itw =1

2\epsilon 
\mathrm{N}
\Bigl( 
\iti \itn \itt \ite \itr \ita \itc \itt \iti \ito \itn \itg 1

\Bigl( \bigl\langle 
\itc \ito \itp \ity \itA \itL \itL 

\~\itg (\scrP 1)
\bigr\rangle 
\itw 

\Bigr) \Bigr) \biggr) 
. (5.264)
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The combination of 2\epsilon 
\mathrm{N} and \iti \itn \itt \ite \itr \ita \itc \itt \iti \ito \itn \itg is the same as the \its \itt \ite \itp (\~\itg ,\itg ) function (5.107) at

the center storage compartment

2\its 
\bigl( \bigl[ 
\itg 1,p1

\bigr] \bigr) 
= \~\pi  - 1

\biggl( 
\itN \mathrm{c}\mathrm{e}\mathrm{l}\mathrm{l}

#
\itw =1

\Bigl\langle 
\its \itt \ite \itp (\~\itg ,\itg 1)

\Bigl( \bigl\langle 
\itc \ito \itp \ity \itA \itL \itL 

\~\itg (\scrP 1)
\bigr\rangle 
\itw 

\Bigr) \Bigr\rangle 
3\itd +1
2

\biggr) 
. (5.265)

The function \its \itt \ite \itp \itA \itL \itL 
\scrG 1 (5.108) calculates the step for all processes, leading to

2\its 
\bigl( \bigl[ 
\itg 1,p1

\bigr] \bigr) 
= \~\pi  - 1

\biggl( 
\itN \mathrm{c}\mathrm{e}\mathrm{l}\mathrm{l}

#
\itw =1

\Bigl\langle \bigl\langle 
\its \itt \ite \itp \itA \itL \itL 

\scrG 1

\bigl( 
\itc \ito \itp \ity \itA \itL \itL 

\~\itg (\scrP 1)
\bigr) \bigr\rangle 

\itw 

\Bigr\rangle 
3\itd +1
2

\biggr) 
. (5.266)

\scrP 1
:= \its \itt \ite \itp \itA \itL \itL 

\scrG 1

\Bigl( 
\itc \ito \itp \ity \itA \itL \itL 

\~\itg (\scrP 1)
\Bigr) 
does not necessarily fulfill the condition in (5.96) to iterate

\its \itt \ite \itp \itA \itL \itL 
\scrG 2

\Bigl( 
\itc \ito \itp \ity \itA \itL \itL 

\~\itg 

\Bigl( 
\scrP 1

\Bigr) \Bigr) 
. For \iti \itn \itt \ite \itr \ita \itc \itt \itg to not miss interactions due to incomplete neigh-

borhoods, the particles in \scrP 1
need to be redistributed such that the condition in (5.96)

is fulfilled. This is achieved by the functions \itd \iti \its \itt \itA \itL \itL 
(\~\itg ,\scrG 1) (5.112) and \itc \ito \itl \itl \ite \itc \itt \itA \itL \itL 

\~\itg (5.115), as
proven in the Lemmata 10, 11, and 12. Hence,

2\its 
\bigl( \bigl[ 
\itg 1,p1

\bigr] \bigr) 
= \~\pi \prime  - 1

\Biggl( 
\itN \mathrm{c}\mathrm{e}\mathrm{l}\mathrm{l}

#
\itw =1

\Bigl\langle \Bigl\langle 
\itc \ito \itl \itl \ite \itc \itt \itA \itL \itL 

\~\itg 

\Bigl( 
\itd \iti \its \itt \itA \itL \itL 

(\~\itg ,\scrG 1)

\bigl( 
\its \itt \ite \itp \itA \itL \itL 

\scrG 1

\bigl( 
\itc \ito \itp \ity \itA \itL \itL 

\~\itg (\scrP 1)
\bigr) \bigr) \Bigr) \Bigr\rangle 

\itw 

\Bigr\rangle 
3\itd +1
2

\Biggr) 
, (5.267)

where \~\pi \prime  - 1 is a new permutation. We insert the definition of 2\~\its \~\itg to get

2\its 
\bigl( \bigl[ 
\itg 1,p1

\bigr] \bigr) 
= \~\pi \prime  - 1

\left(    \itN \mathrm{c}\mathrm{e}\mathrm{l}\mathrm{l}

#
\itw =1

\Biggl\langle \Biggl\langle 
2\~\its \~\itg 

\bigl( 
[\scrG 1,\scrP 1]

\bigr) \underbrace{}  \underbrace{}  
=:\scrP 2

\Biggr\rangle 
\itw 

\Biggr\rangle 
3\itd +1
2

\right)    , (5.268)

\bigl[ 
\itg 2,p2

\bigr] 
= \~\pi \prime  - 1

\biggl( 
\itN \mathrm{c}\mathrm{e}\mathrm{l}\mathrm{l}

#
\itw =1

\bigl\langle \bigl\langle 
\scrP 2

\bigr\rangle 
\itw 

\bigr\rangle 
3\itd +1
2

\biggr) 
. (5.269)

This is the base case for the proof by induction. For the induction step, we start from\bigl[ 
\itg \itt ,p\itt 

\bigr] 
= \~\pi \prime \prime  - 1

\biggl( 
\itN \mathrm{c}\mathrm{e}\mathrm{l}\mathrm{l}

#
\itw =1

\bigl\langle \bigl\langle 
\scrP \itt 

\bigr\rangle 
\itw 

\bigr\rangle 
3\itd +1
2

\biggr) 
. (5.270)

We can assume that \scrP \itt fulfills the same conditions as \scrP 2 and, hence, also as \scrP 1, especially
the condition in (5.96) (or (5.257), (5.258)). Then, we can define a new particle method
where

\bigl[ 
\itg \itt ,p\itt 

\bigr] 
is the instance and \scrP \itt its corresponding cell-list-based distribution onto

processes. Using Lemmata 10, 11, and 12 we derive that

2\its 
\bigl( \bigl[ 
\itg \itt ,p\itt 

\bigr] \bigr) 
= \~\pi \prime \prime \prime  - 1

\left(    \itN \mathrm{c}\mathrm{e}\mathrm{l}\mathrm{l}

#
\itw =1

\Biggl\langle \Biggl\langle 
2\~\its \~\itg 

\bigl( 
[\scrG \itt ,\scrP \itt ]

\bigr) \underbrace{}  \underbrace{}  
=:\scrP \itt +1

\Biggr\rangle 
\itw 

\Biggr\rangle 
3\itd +1
2

\right)    , (5.271)

hence, \bigl[ 
\itg \itt +1,p\itt +1

\bigr] 
= \~\pi \prime \prime \prime  - 1

\biggl( 
\itN \mathrm{c}\mathrm{e}\mathrm{l}\mathrm{l}

#
\itw =1

\bigl\langle \bigl\langle 
\scrP \itt +1

\bigr\rangle 
\itw 

\bigr\rangle 
3\itd +1
2

\biggr) 
. (5.272)
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We do this now for all \itt until \itf (\itg \itt ) = \top . Together with the derivation of the proof for the
global variable, this leads to

\itS 
\bigl( \bigl[ 
\itg 1,p1

\bigr] \bigr) 
=

\biggl[ \bigl\langle 
\scrG \itT 

\bigr\rangle 
1
, \sigma \ast 

\biggl( 
\itN \mathrm{c}\mathrm{e}\mathrm{l}\mathrm{l}

#
\itw =1

\bigl\langle \bigl\langle 
\scrP \itT 

\bigr\rangle 
\itw 

\bigr\rangle 
3\itd +1
2

\biggr) \biggr] 
, (5.273)

where
\bigl[ 
\scrG \itT ,\scrP \itT 

\bigr] 
= \~\itS 

\bigl( \bigl[ 
\scrG 1,\scrP 1

\bigr] \bigr) 
.

Hence, the present parallelization scheme produces the same result up to a different
ordering of the particles. The particles are permuted by an unknown permutation \sigma \ast . This
proves that the distributed-memory parallelization scheme is correct for order-independent
particle methods.

5.3.4 Bounds on Time Complexity and Parallel Scalability

An algorithm's time complexity describes the runtime required by a machine to execute
that algorithm. It depends on the input size of the algorithm. For a particle method, the
input size is the length of the initial tuple p1. We assume that constants bound the sizes
of the global variable and each particle. We further assume that the algorithm terminates
in a finite time. Hence, an upper bound exists for all functions' time complexities. An
upper bound on the time complexity of the interact function \tau \iti (\itg ,\itp \prime ,\itp \prime \prime ) is

\forall \itg \in \{ \itg 1, . . . , \itg \itT \} , \itp \prime , \itp \prime \prime \in 
\itT 
#

\itw =1
p\itw \exists \~\itg \in \{ \itg 1, . . . , \itg \itT \} , \~\itp \prime , \~\itp \prime \prime \in 

\itT 
#

\itw =1
p\itw :

\tau \iti (\itg ,\itp \prime ,\itp \prime \prime ) \leq \tau \iti (\~\itg ,\~\itp \prime ,\~\itp \prime \prime ) =: \tau \iti . (5.274)

Similarly, an upper bound on the time complexity of the evolve function \tau \ite (\itg ,\itp ) is

\forall \itg \in \{ \itg 1, . . . , \itg \itT \} , \itp \in 
\itT 
#

\itw =1
p\itw \exists \~\itg \in \{ \itg 1, . . . , \itg \itT \} , \~\itp \in 

\itT 
#

\itw =1
p\itw :

\tau \ite (\itg ,\itp ) \leq \tau \ite (\~\itg ,\~\itp ) =: \tau \ite . (5.275)

An upper bound on the time complexity of the evolve function of the global variable \tau \circ 
\ite (\itg )

is
\forall \itg \in \{ \itg 1, . . . , \itg \itT \} \exists \~\itg \in \{ \itg 1, . . . , \itg \itT \} : \tau \circ 

\ite (\itg )
\leq \tau \circ 

\ite (\~\itg )
=: \tau \circ 

\ite 
. (5.276)

An upper bound on the time complexity of the stopping function \tau \itf (\itg ) is

\forall \itg \in \{ \itg 1, . . . , \itg \itT \} \exists \~\itg \in \{ \itg 1, . . . , \itg \itT \} : \tau \itf (\itg ) \leq \tau \itf (\~\itg ) =: \tau \itf . (5.277)

An upper bound on the time complexity of the neighborhood function \tau \itu ([\itg ,\bfp ],\itj ) is

\forall \itg \in \{ \itg 1, . . . , \itg \itT \} ,p \in \{ p1, . . . ,p\itT \} , \itj \in \{ 1, . . . , | p| \} 
\exists \~\itg \in \{ \itg 1, . . . , \itg \itT \} , \~p \in \{ p1, . . . ,p\itT \} ,\~\itj \in \{ 1, . . . , | \~p| \} :

\tau \itu ([\itg ,\bfp ],\itj ) \leq \tau \itu ([\~\itg ,\~\bfp ],\~\itj ) =: \tau \itu . (5.278)
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An upper bound on the size of the neighborhood | \itu ([\itg ,p], \itj )| is

\forall \itg \in \{ \itg 1, . . . , \itg \itT \} ,p \in \{ p1, . . . ,p\itT \} , \itj \in \{ 1, . . . , | p| \} 
\exists \~\itg \in \{ \itg 1, . . . , \itg \itT \} , \~p \in \{ p1, . . . ,p\itT \} ,\~\itj \in \{ 1, . . . , | \~p| \} :

| \itu ([\itg ,p], \itj )| \leq | \itu ([\~\itg , \~p],\~\itj )| =: \varsigma \itu . (5.279)

The time complexity of calculating \bfI \iota and \bfI \iota  - 1 is in \scrO (\itd ). Therefore, the time complexity
of the index transformation functions is bound by \itC \itd , where \itC is a constant. Hence, the
time complexity of \beta , \tau \beta (\itt ,\itl ) is bound by

\forall I \in N\itd 
>0, \forall \itt \in \{ 1, . . . ,\itN \mathrm{c}\mathrm{e}\mathrm{l}\mathrm{l}\} , \itl \in \{ 1, . . . , 3\itd \} \exists \itC \beta \in R : \tau \beta (\itt ,\itl ) \leq \itC \beta \itd . (5.280)

The time complexity of \gamma ,\tau \gamma (\itt ,\itl ), is bound by

\forall I \in N\itd 
>0, \forall \itk \in \{ 1, . . . , 3\itd \} , \itj \in \{ 1, . . . , \itk \itN \ast 

\mathrm{c}\mathrm{e}\mathrm{l}\mathrm{l}\} \exists \itC \gamma \in R : \tau \gamma (\itt ,\itl ) \leq \itC \gamma \itd . (5.281)

The time complexity of computing \alpha is bound by

\forall \itD \mathrm{m}\mathrm{i}\mathrm{n},\itD \mathrm{m}\mathrm{a}\mathrm{x} \in R\itd , \itx \in [\itD \mathrm{m}\mathrm{i}\mathrm{n},\itD \mathrm{m}\mathrm{a}\mathrm{x}] , \forall \itj \in \{ 1, . . . ,\itN \mathrm{c}\mathrm{e}\mathrm{l}\mathrm{l}\} \exists \itC \alpha \in R :

\tau 
\bfthree \iota  - 1

\Bigl( \Bigl\lfloor 
1
\itr \itc 

(\itx  - \itD \mathrm{m}\mathrm{i}\mathrm{n})
\Bigr\rfloor 
 - \bfI \iota (\itj )+\bfthree 

\Bigr) \leq \itC \alpha \itd . (5.282)

The time complexity for computing the index transformation in the \itc \ito \itl \itl \ite \itc \itt function is
bound by

\forall \itl \in \{ 1, . . . , 3\itd \} \exists \itC \itc \in R : \tau \bfthree \iota  - 1(\bffour  - \bfthree \iota (\itl )) \leq \itC \itc \itd . (5.283)

We use these upper bounds to derive bounds on the time complexity of the present paral-
lelization scheme on a sequential computer and on a distributed-memory parallel machine.
In general, an upper bound on the time complexity of the state transition depends on the
instance [\itg 1,p1]. For each instance, we can bound the number of particles by

\forall \itt \in \{ 1, . . . ,\itT \} \exists \itN \mathrm{m}\mathrm{a}\mathrm{x}
\bfp \in N :

\bigm| \bigm| p\itt 
\bigm| \bigm| \leq \itN \mathrm{m}\mathrm{a}\mathrm{x}

\bfp . (5.284)

The time complexity of the sequential state transition \tau \itS is then bound by:

\tau \itS ([\itg 1,\bfp 1]) \leq \itT 
\bigl( 
\itN \mathrm{m}\mathrm{a}\mathrm{x}

\bfp 

\bigl( 
\varsigma \itu 

\bigl( 
\itN \mathrm{m}\mathrm{a}\mathrm{x}

\bfp 

\bigr) 
\tau \iti + \tau \itu 

\bigl( 
\itN \mathrm{m}\mathrm{a}\mathrm{x}

\bfp 

\bigr) 
+ \tau \ite 

\bigr) 
+ \tau \itf + \tau \circ 

\ite 

\bigr) 
, (5.285)

where the neighborhood-related terms \varsigma \itu 
\bigl( 
\itN \mathrm{m}\mathrm{a}\mathrm{x}

\bfp 

\bigr) 
and \tau \itu 

\bigl( 
\itN \mathrm{m}\mathrm{a}\mathrm{x}

\bfp 

\bigr) 
potentially depend on

\itN \mathrm{m}\mathrm{a}\mathrm{x}
\bfp . In the presented cell list-based parallelization scheme, we can further bound the

neighborhood function by exploiting that the neighborhood calculation is done separately
on each process. Hence, only the particles in that process are taken into account. The
number of particles in one cell is bound by

\forall \itt \in \{ 1, . . . ,\itT \} , \itw \in \{ 1, . . . ,\itN \mathrm{c}\mathrm{e}\mathrm{l}\mathrm{l}\} \exists \itn \mathrm{m}\mathrm{a}\mathrm{x} \in N :

\bigm| \bigm| \bigm| \bigm| \bigl\langle \bigl\langle \scrP \itt 
\bigr\rangle 
\itw 

\bigr\rangle 
3\itd +1
2

\bigm| \bigm| \bigm| \bigm| \leq \itn \mathrm{m}\mathrm{a}\mathrm{x}. (5.286)

Then, the number of all particles in one process is bound by

\forall \itt \in \{ 1, . . . ,\itT \} , \itw \in \{ 1, . . . ,\itN \mathrm{c}\mathrm{e}\mathrm{l}\mathrm{l}\} :
\bigm| \bigm| \bigm| \bigm| 3\itd #
\itl =1

\bigl\langle \bigl\langle 
\scrP \itt 

\bigr\rangle 
\itw 

\bigr\rangle 
\itl 

\bigm| \bigm| \bigm| \bigm| \leq 3\itd \itn \mathrm{m}\mathrm{a}\mathrm{x}. (5.287)
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The number of particles is bound, and the neighborhood function checks if a distance is
smaller than \itr \itc and verifies a function \Omega (\itg , \itp \itk , \itp \itj ). We assume

\forall \itg \in \{ \itg 1, . . . , \itg \itT \} ,p \in \{ p1, . . . ,p\itT \} , \itj , \itk \in \{ 1, . . . , | p| \} \exists \itC \itu \in R :

\tau | \itx \itk  - \itx \itj | \leq \itr \itc + \tau \Omega (\itg ,\itp \itk ,\itp \itj ) \leq \itd \itC \itu , (5.288)

then the time complexity and the size of the neighborhood function are bound by

\tau \itu \leq 3\itd \itn \mathrm{m}\mathrm{a}\mathrm{x}\itd \itC \itu , \varsigma \itu \leq 3\itd \itn \mathrm{m}\mathrm{a}\mathrm{x}. (5.289)

The time complexity of sequentially executing the distributed-memory parallel particle
method \tau \~\itS ([\itg 1,\bfp 1])(1) is determined by the time complexity of the functions \itc \ito \itl \itl \ite \itc \itt \itA \itL \itL 

\~\itg ,

\itd \iti \its \itt \itA \itL \itL 
(\~\itg ,\scrG ), \its \itt \ite \itp 

\itA \itL \itL 
\scrG , \itc \ito \itp \ity \itA \itL \itL 

\~\itg , the evolve function of the global variable for each cell, and the
stop function. Then,

\tau \~\itS ([\itg 1,\bfp 1])(1) \leq \itT 

\biggl( 
\tau \itf + \itN \mathrm{c}\mathrm{e}\mathrm{l}\mathrm{l}\tau \circ \ite \underbrace{}  \underbrace{}  

(\itg \itl \ito \itb \ita \itl \itv \ita \itr \iti \ita \itb \itl \ite \ite \itv \ito \itl \itv \ite )

+
\prod 

3\itd 

\itk =1
\itk \itN \ast 

\mathrm{c}\mathrm{e}\mathrm{l}\mathrm{l}

\Bigl( 
\itC \gamma \itd + 3\itd (\itC \beta \itd + \itC \itc \itd + \itn \mathrm{m}\mathrm{a}\mathrm{x})

\Bigr) 
\underbrace{}  \underbrace{}  

(\itc \ito \itl \itl \ite \itc \itt )

+\itN \mathrm{c}\mathrm{e}\mathrm{l}\mathrm{l}\itn \mathrm{m}\mathrm{a}\mathrm{x}(\itC \alpha \itd + 1)\underbrace{}  \underbrace{}  
(\itd \iti \its \itt )

+\itN \mathrm{c}\mathrm{e}\mathrm{l}\mathrm{l}\itn \mathrm{m}\mathrm{a}\mathrm{x}

\Bigl( 
\tau \ite + 3\itd \itn \mathrm{m}\mathrm{a}\mathrm{x}\itC \itu \itd + 3\itd \itn \mathrm{m}\mathrm{a}\mathrm{x}\tau \iti 

\Bigr) 
\underbrace{}  \underbrace{}  

(\its \itt \ite \itp )

+
\prod 

3\itd 

\itk =1
\itk \itN \ast 

\mathrm{c}\mathrm{e}\mathrm{l}\mathrm{l}

\Bigl( 
\itC \gamma \itd + 3\itd (\itC \beta \itd + \itn \mathrm{m}\mathrm{a}\mathrm{x})

\Bigr) 
\underbrace{}  \underbrace{}  

(\itc \ito \itp \ity )

\biggr) 
.

(5.290)

We assume that particles are evenly distributed (i.e., the number of particles in each
cell is approximately the same) and that the density of particles remains constant when
increasing the number of initial particles p1. Therefore, the domain size has to increase
proportionally. Hence, the number of cells \itN \mathrm{c}\mathrm{e}\mathrm{l}\mathrm{l} increases, while \itn \mathrm{m}\mathrm{a}\mathrm{x} stays approximately
the same. Under the assumption that all functions are then bound by constants, since
they do not depend on \itN \mathrm{c}\mathrm{e}\mathrm{l}\mathrm{l}, we can simplify

\tau \~\itS ([\itg 1,\bfp 1])(1) \leq \itT 

\biggl( 
\itC \itf + \itN \mathrm{c}\mathrm{e}\mathrm{l}\mathrm{l}

\bigl( 
\itC \circ 
\ite 
+ \itC \itd \iti \its \itt + \itC \its \itt \ite \itp 

\bigr) 
+

\prod 
3\itd 

\itk =1
\itk \itN \ast 

\mathrm{c}\mathrm{e}\mathrm{l}\mathrm{l} (\itC \itc \ito \itl \itl \ite \itc \itt + \itC \itc \ito \itp \ity )

\biggr) 
. (5.291)

For a single processor we can further simplify by using
\prod 

3\itd 

\itk =1

\itk 
\itN \ast 

\mathrm{c}\mathrm{e}\mathrm{l}\mathrm{l} = \itN \mathrm{c}\mathrm{e}\mathrm{l}\mathrm{l} to

\tau \~\itS ([\itg 1,\bfp 1])(1) \leq \itT 
\bigl( 
\itC \itf + \itN \mathrm{c}\mathrm{e}\mathrm{l}\mathrm{l}(\itC \circ 

\ite 
+ \itC \itc \ito \itl \itl \ite \itc \itt + \itC \itd \iti \its \itt + \itC \its \itt \ite \itp + \itC \itc \ito \itp \ity )

\bigr) 
. (5.292)

When parallelizing it, we need to consider that a process is the smallest computational unit.
The processes are distributed on a number of processors \itn \itC \itP \itU . We define a ``processor""
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(CPU) here as running concurrently and operating on its own separate memory address
space. For convenience we assume \itN \mathrm{c}\mathrm{e}\mathrm{l}\mathrm{l}

3\itd 
\in N. Further, to avoid communication conflicts,

the processes need to be distributed to the processors according to which checkerboard
pattern they belong. All processes of the \itk -th checkerboard pattern are the \gamma (\itk , \itj )-th
processes with \itk fixed and \itj \in \{ 1, . . . , \itk \itN \ast 

\mathrm{c}\mathrm{e}\mathrm{l}\mathrm{l}\} . The processes on one processor must be
either from one checkerboard pattern or the entire checkerboard pattern. We formulate
the time complexity of the parallelized distributed-memory parallel particle method as

\tau \~\itS ([\itg 1,\bfp 1])(\itn \itC \itP \itU ) \leq \itT 

\biggl( 
\itC \itf + \Xi \itc \ita \itl \itc (\itN \mathrm{c}\mathrm{e}\mathrm{l}\mathrm{l},\itn \itC \itP \itU , \itd )(\itC \circ 

\ite 
+ \itC \itd \iti \its \itt + \itC \its \itt \ite \itp )

+ \Xi \itc \ito \itm (\itN \mathrm{c}\mathrm{e}\mathrm{l}\mathrm{l},\itn \itC \itP \itU , \itd )(\itC \itc \ito \itl \itl \ite \itc \itt + \itC \itc \ito \itp \ity )

\biggr) 
, (5.293)

where

\Xi \itc \ita \itl \itc (\itN \mathrm{c}\mathrm{e}\mathrm{l}\mathrm{l},\itn \itC \itP \itU , \itd ) :=

\left\{       
\Bigl\lceil 

3\itd 

\itn \itC \itP \itU 

\Bigr\rceil 
\itN \mathrm{c}\mathrm{e}\mathrm{l}\mathrm{l}

3\itd 
if \itn \itC \itP \itU \in 

\bigl\{ 
1, . . . , 3\itd 

\bigr\} 
\itM 2 if \itn \itC \itP \itU \in 

\bigl\{ 
3\itd , . . . ,\itN \mathrm{c}\mathrm{e}\mathrm{l}\mathrm{l}

\bigr\} 
1 if \itn \itC \itP \itU > \itN \mathrm{c}\mathrm{e}\mathrm{l}\mathrm{l},

(5.294)

and

\Xi \itc \ito \itm (\itN \mathrm{c}\mathrm{e}\mathrm{l}\mathrm{l},\itn \itC \itP \itU , \itd ) :=

\left\{     
\itN \mathrm{c}\mathrm{e}\mathrm{l}\mathrm{l} if \itn \itC \itP \itU \in 

\bigl\{ 
1, . . . , 3\itd 

\bigr\} 
\itn 1\itM 1 + \itn 2\itM 2 if \itn \itC \itP \itU \in 

\bigl\{ 
3\itd , . . . ,\itN \mathrm{c}\mathrm{e}\mathrm{l}\mathrm{l}

\bigr\} 
3\itd if \itn \itC \itP \itU > \itN \mathrm{c}\mathrm{e}\mathrm{l}\mathrm{l}

, (5.295)

where the number of checkerboard patterns that have more processors assigned to them
is

\itn 1 := \itn \itC \itP \itU mod 3\itd , (5.296)

the number of checkerboard patterns that have fewer processors assigned to them is

\itn 2 := 3\itd  - \itn 1, (5.297)

the maximum number of processes per processor is

\itM 1 :=

\Biggl\lceil 
\itN \mathrm{c}\mathrm{e}\mathrm{l}\mathrm{l}

3\itd 
\Bigl\lceil 
\itn \itC \itP \itU 

3\itd 

\Bigr\rceil 
\Biggr\rceil 
, (5.298)

and for checkerboard patterns with fewer processes assigned to them, the maximum num-
ber of processes per processor is

\itM 2 :=

\Biggl\lceil 
\itN \mathrm{c}\mathrm{e}\mathrm{l}\mathrm{l}

3\itd 
\Bigl\lfloor 
\itn \itC \itP \itU 

3\itd 

\Bigr\rfloor 
\Biggr\rceil 
. (5.299)

For \itn \itC \itP \itU \in 
\bigl\{ 
1, . . . , 3\itd 

\bigr\} 
, the number of processors did not reach the number of checker-

board patterns. In this case, each checkerboard pattern is completely on a processor to
avoid communication conflicts. The limiting factor for the calculation (\Xi \itc \ita \itl \itc ) is then the
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maximum number of entire checkerboard patterns on one processor. This is
\Bigl\lceil 

3\itd 

\itn \itC \itP \itU 

\Bigr\rceil 
\itN \mathrm{c}\mathrm{e}\mathrm{l}\mathrm{l}

3\itd 
,

where
\Bigl\lceil 

3\itd 

\itn \itC \itP \itU 

\Bigr\rceil 
is the maximum number of checkerboard pattern on one processor and \itN \mathrm{c}\mathrm{e}\mathrm{l}\mathrm{l}

3\itd 

the number of processes in one checkerboard pattern. The communication (\Xi \itc \ito \itm ) is then
sequential since a processor does the communication of each process sequentially, and the
communication for each checkerboard pattern needs to be done sequentially.

For \itn \itC \itP \itU \in 
\bigl\{ 
3\itd , . . . ,\itN \mathrm{c}\mathrm{e}\mathrm{l}\mathrm{l}

\bigr\} 
, a checkerboard pattern can be distributed on more than

one processor. Therefore the limiting factor for the calculation (\Xi \itc \ita \itl \itc ) is the maximum
number of processes per processor, which is \itM 2. In \itM 2, the term

\itN \mathrm{c}\mathrm{e}\mathrm{l}\mathrm{l}

3\itd 
is again the number

of processes in one checkerboard pattern and
\bigl\lfloor 
\itn \itC \itP \itU 

3\itd 

\bigr\rfloor 
is the minimum number of processors

per checkerboard pattern. The limiting factor for the communication (\Xi \itc \ito \itm ) is more
complex since the communication is carried out for each checkerboard pattern separately,
one after the other. Hence, there is a number (\itn 1) of checkerboard patterns that have one
processor more assigned (

\bigl\lceil 
\itn \itC \itP \itU 

3\itd 

\bigr\rceil 
) to them and a number (\itn 2) of checkerboard pattern with

less (
\bigl\lfloor 
\itn \itC \itP \itU 

3\itd 

\bigr\rfloor 
). The processors for one checkerboard pattern can communicate in parallel

but sequential for the checkerboard pattern. Hence, to sum up the maximum number of
communication per processor for all checkerboard patterns, we calculate \itn 1\itM 1 + \itn 2\itM 2.

Each processor has exactly one process or no process for \itn \itC \itP \itU reaching or exceeding
\itN \mathrm{c}\mathrm{e}\mathrm{l}\mathrm{l}. The calculation (\Xi \itc \ita \itl \itc ) is saturated, and the limiting factor is 1. The communi-
cation (\Xi \itc \ito \itm ) is also saturated, and the limiting factor is the number of checkerboard
patterns 3\itd .

These upper bounds on the time complexities allow us to derive closed-form expressions
for the bounds on the speed-ups for both strong scaling according to Amdahl's law [3] and
weak scaling according to Gustafson's law [37].

First, the speed-up of the cell-list scheme on one processor over the sequential state
transition is:

\its \itp \ite \ite \itd \itu \itp \mathrm{c}\mathrm{e}\mathrm{l}\mathrm{l}
\bigl( 
\itN \mathrm{m}\mathrm{a}\mathrm{x}

\bfp 

\bigr) 
:=

\tau \itS ([\itg 1,\bfp 1])

\tau \~\itS ([\itg 1,\bfp 1])(1)
(5.300)

\approx 
\itN \mathrm{m}\mathrm{a}\mathrm{x}

\bfp 
2\itC \itu \itd + \itN \mathrm{m}\mathrm{a}\mathrm{x}

\bfp 

\bigl( 
3\itd \itn \mathrm{m}\mathrm{a}\mathrm{x}\tau \iti + \tau \ite 

\bigr) 
+ \tau \itf + \tau \circ 

\ite 

\itN \mathrm{m}\mathrm{a}\mathrm{x}
\bfp 

\Bigl( 
3\itd \itn \mathrm{m}\mathrm{a}\mathrm{x}\itC \itu \itd + 3\itd \itn \mathrm{m}\mathrm{a}\mathrm{x}\tau \iti + \tau \ite +

\tau \circ 
\ite 
+\itC \itc \ito \itl \itl \ite \itc \itt +\itC \itd \iti \its \itt +\itC \itc \ito \itp \ity 

\itn \mathrm{m}\mathrm{a}\mathrm{x}

\Bigr) 
+ \tau \itf 

(5.301)

\in 
\scrO 

\bigl( 
\itN \mathrm{m}\mathrm{a}\mathrm{x}

\bfp 
2
\bigr) 

\scrO 
\bigl( 
\itN \mathrm{m}\mathrm{a}\mathrm{x}

\bfp 

\bigr) = \scrO 
\bigl( 
\itN \mathrm{m}\mathrm{a}\mathrm{x}

\bfp 

\bigr) 
. (5.302)

Since particles can move, the neighborhood search function checks each pair of particles
to see if they are neighbors. This has a complexity in \scrO (\itn 2), where \itn is the number of
particles. Fast neighbor list algorithms like cell-lists [41] reduce this to \scrO (\itn ) under the
assumptions made here. We can confirm this by comparing the simplified time complex-
ity of the cell-list-based scheme (5.292) with the time complexity of the sequential state
transition (5.285), where we eliminated the dependency of the time complexity of the
neighborhood function on the particle number. Our cell-list-based scheme scales linearly
with the number of particles (\itN \mathrm{c}\mathrm{e}\mathrm{l}\mathrm{l}\itn \mathrm{m}\mathrm{a}\mathrm{x} \approx \itN \mathrm{m}\mathrm{a}\mathrm{x}

\bfp ) and not quadratically as it would without
the assumption of even and constant particle density. Hence, the speed-up is \scrO 

\bigl( 
\itN \mathrm{m}\mathrm{a}\mathrm{x}

\bfp 

\bigr) 
as derived in (5.302) and visualized in figure 5.5a.
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Second, Amdahl's law [3] provides an upper bound on the speed-up of the cell-list
scheme on multiple processors when the problem size is fixed for increasing processors
\itn \mathrm{C}\mathrm{P}\mathrm{U} (strong scaling):

\its \itp \ite \ite \itd \itu \itp \mathrm{A}\mathrm{m}\mathrm{d}\mathrm{a}\mathrm{l}(\itn \itC \itP \itU ) =
\tau \~\itS ([\itg 1,\bfp 1])(1)

\tau \~\itS ([\itg 1,\bfp 1])(\itn \itC \itP \itU )

\approx 
\itC \itf +\itN \mathrm{c}\mathrm{e}\mathrm{l}\mathrm{l} (\itC \circ 

\ite 
+\itC \itc \ito \itl \itl \ite \itc \itt +\itC \itd \iti \its \itt +\itC \its \itt \ite \itp +\itC \itc \ito \itp \ity )

\itC \itf +\Xi \itc \ita \itl \itc (\itN \mathrm{c}\mathrm{e}\mathrm{l}\mathrm{l},\itn \itC \itP \itU ,\itd )(\itC \circ 
\ite 
+\itC \itd \iti \its \itt +\itC \its \itt \ite \itp )+\Xi \itc \ito \itm (\itN \mathrm{c}\mathrm{e}\mathrm{l}\mathrm{l},\itn \itC \itP \itU ,\itd )(\itC \itc \ito \itl \itl \ite \itc \itt +\itC \itc \ito \itp \ity )

. (5.303)

In this case, we can increase \itn \mathrm{C}\mathrm{P}\mathrm{U} until we reach the number of cells \itN \mathrm{c}\mathrm{e}\mathrm{l}\mathrm{l}. After that,
there will be no further speed-up. But also, until then, we find a step-like behavior with
increasing \itn \mathrm{C}\mathrm{P}\mathrm{U} because cells cannot be split across CPUs as visualized in figure 5.5b.

Third, Gustafson's law [37] provides an upper bound on the speed-up of the cell-list
scheme on multiple processors when the ratio of problem size to process number is constant
while increasing the number of processors (weak scaling); \itN \mathrm{c}\mathrm{e}\mathrm{l}\mathrm{l}

\itn \mathrm{C}\mathrm{P}\mathrm{U}
= const. We achieve this

by setting \itN \mathrm{c}\mathrm{e}\mathrm{l}\mathrm{l} = \itn \itC \itP \itU \cdot \itN 
\prime 
\mathrm{c}\mathrm{e}\mathrm{l}\mathrm{l}, where \itN 

\prime 
\mathrm{c}\mathrm{e}\mathrm{l}\mathrm{l} is constant. For a perfectly fitting processor

interconnect network topology, we predict a linear speed-up on average with steps as
visualized in figure 5.5c.

\its \itp \ite \ite \itd \itu \itp \mathrm{G}\mathrm{u}\mathrm{s}\mathrm{t}\mathrm{a}\mathrm{f}\mathrm{s}\mathrm{o}\mathrm{n}(\itn \itC \itP \itU ) =
\tau \~\itS ([\itg 1,\bfp 1(\itn \itC \itP \itU )])(1)

\tau \~\itS ([\itg 1,\bfp 1(\itn \itC \itP \itU )])(\itn \itC \itP \itU )

\approx 
\itC \itf +\itn \itC \itP \itU \cdot \itN \mathrm{c}\mathrm{e}\mathrm{l}\mathrm{l} (\itC \circ 

\ite 
+\itC \itc \ito \itl \itl \ite \itc \itt +\itC \itd \iti \its \itt +\itC \its \itt \ite \itp +\itC \itc \ito \itp \ity )

\itC \itf +\Xi \itc \ita \itl \itc (\itn \itC \itP \itU \cdot \itN \mathrm{c}\mathrm{e}\mathrm{l}\mathrm{l},\itn \itC \itP \itU ,\itd )(\itC \circ 
\ite 
+\itC \itd \iti \its \itt +\itC \its \itt \ite \itp )+\Xi \itc \ito \itm (\itn \itC \itP \itU \cdot \itN \mathrm{c}\mathrm{e}\mathrm{l}\mathrm{l},\itn \itC \itP \itU ,\itd )(\itC \itc \ito \itl \itl \ite \itc \itt +\itC \itc \ito \itp \ity )

(5.304)

Overall the scheme behaves as expected for cell-list algorithms.
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(a) Speed-up of the cell list algorithm.
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(b) Speed-up according to Amdahl's law.
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(c) Speed-up according to Gustafson's law.

Figure 5.5: Theoretical speed-up bounds. The constants are chosen to be \itd = 2, \itC \itu =
\itC \alpha = \itC \beta = \itC \gamma = 1, \tau \iti = \tau \ite = 3, and \tau \itf = \tau \circ 

\ite 
= 1. For Amdahl's and Gustafson's laws,

\itN \mathrm{c}\mathrm{e}\mathrm{l}\mathrm{l} = 900.

5.4 Conclusion

In high-performance computing, the increasing computational power is made more accessi-
ble by generic software frameworks. They bridge the gap between accessible programming
and heterogeneous-hardware parallelization [76]. Even though the frameworks are generic,
the conditions under which an algorithm is parallelizable, its complexity, and how it scales
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are usually derived application-wise.
Here, we provide a shared- and a distributed-memory parallelization scheme for particle

methods independent of specific applications. We proved the correctness of the presented
parallelization schemes by showing equivalence to the sequential particle methods defini-
tion under certain assumptions, which we also defined here. Finally, we derived upper
bounds on the time complexity of the proposed schemes executed on both sequential and
parallel computers, and we discussed the parallel scalability limits.

The presented parallelization schemes are not novel, and they are, in fact, similar
to what is commonly implemented in software. Therefore, our analysis is of immediate
practical relevance for general-purpose particle methods frameworks, even for critical ap-
plications, as the proofs guarantee correctness. The presented schemes are only a tiny
fraction of possible schemes. Less and more restrictive parallelization schemes with better
time complexity or broader applicability are possible. A limitation of the proposed schemes
is that they assume only pull interactions between the particles. This neglects the poten-
tial runtime benefits and versatility of symmetric interaction evaluations. However, pull
interactions are suitable for more computer architectures, especially in a shared memory
setting, which could allow for combining the distributed scheme with the shared memory
scheme. In the distributed-memory scheme, pull interactions also reduce communication
since only particles in the center cell of a process are changed. They do not need to be
communicated back, as would be the case for push or symmetric interactions, which also
change copies of particles from other processes [77]. We also restricted the neighborhood
function such that the cell-list strategy became applicable. This limits the expressiveness
of the particle method but allows the efficient distribution of moving particles. Further,
the constraint that particles are not allowed to leave the domain keeps domain handling
simple. Otherwise, cells would dynamically need to be added or removed as necessary,
resulting in a much more complex and dynamic mapping of cells to processes. We also
restricted particles to not moving further than the cutoff radius in a single state iteration
or time step of the algorithm. Since the cutoff radius determines the smallest possible
cell size, and individual cells cannot be split across multiple processes, this guarantees
that processes only need to communicate with their immediately adjacent neighbors. In
practice, this constraint can be relaxed, requiring particles to never move further than one
sub-domain per state iteration. Additionally, we restricted the global variable only to be
changed by the evolve function of the global variable and not by the evolve function of any
particle. Therefore, no global operations are allowed where global variable changes require
additional synchronization. Still, global variable changes can be independently computed
locally, keeping them in sync without communication. Finally, the time complexity of the
checkerboard-like communication scheme does not have optimal pre-factor, leaving many
processes inactive. Nevertheless, it scales linearly with the number of processes and ab-
stracts the internal scheduling of the network sub-system, providing at least a bound on
the scalability and permitting correctness proofs.

Notwithstanding these limitations, with their proof of equivalence to the sequential
particle methods definition, the present parallelization schemes stand in contrast with the
mainly algorithm-specific or empirically tested parallelization schemes used so far. The
rigorousness of our analysis paves the way for future research into the theory of parallel
scientific simulation algorithms and the engineering of provably correct parallel software
implementations independent of specific applications.



99

Future theoretical work could optimize the presented schemes for computer architec-
tures with parallel or synchronously clocked communication and computation. Global
operations could also be allowed, and the checkerboard-like communication pattern of the
shared-memory scheme could be relaxed, leading to an improved scalability pre-factor (up
to 27-fold). Also, the network topology of the machine's interconnect could be explicitly
incorporated into the parallelization scheme. Furthermore, proofs for push, symmetric,
and no interaction schemes could be beneficial for specific use cases, as well as combining
parallelization schemes for shared and distributed memory to better match the heteroge-
neous architecture of modern supercomputers. On the software engineering side, future
work could leverage the presented parallelization schemes and proofs to design a new gen-
eration of theoretically founded software frameworks. They would potentially be more
predictable, suitable for security- and safety-critical applications and more maintainable
and understandable as they are based on a common formal framework [76].

Overall, the presented proven parallelization schemes provide a way to parallelize
classes of particle methods on shared- and distributed-memory systems with full knowl-
edge of their validity, performance, and assumptions. We proved that they compute the
same result as the underlying sequential particle method. Therefore, using them in a gen-
eral framework for particle methods is suitable, even for critical computations, since the
proofs guarantee that the parallelizations do not change the results. Therefore it marks the
starting point of a well-founded discussion about the parallelization of particle methods
independent of specific applications.
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Chapter 6

Turing Powerfulness and Halting
Decidability

6.1 Introduction

Our definition of particle methods is practically universal. It can be applied to various
fields, including discrete element methods (sec. 4.2), diffusion simulations (sec. 4.3), fluid
dynamics (sec. 4.4), molecular dynamics (sec. 4.5), triangulation refinement (sec. 4.6),
Conway's game of life (sec. 4.7), and solving linear equation systems (sec. 4.8). Despite
this broad applicability, the theoretical limits of our particle methods definition are unclear.

Automata theory provides the means to investigate these theoretical limits. Automata
theory is the study of abstract machines (automata) and the problems that these machines
can solve. Two of the challenges in automata theory are, first, to classify a formalism or
automaton in terms of its powerfulness and second, the ability to decide whether it halts
or runs forever.

The powerfulness is measured in the formal languages an automaton can accept. This
relates the automata theory to formal languages and grammars, hence, to the Chomsky
hierarchy [16]. According to this hierarchy, the most powerful automaton is the Turing
machine [84]. Turing machines resemble the concept on which most modern computers
are built. Therefore, it is often said a Turing machine can compute everything a modern
computer can and vice versa. From a practical perspective, this might be almost always
true. Still, a Turing machine is, in theory, more powerful since it has an infinitely long
tape (memory) in contrast to modern computers, which have huge but finite memory.

The ability to decide whether an algorithm on an automaton halts or runs forever
is called halting decidability. For Turing machines, it is generally not decidable if an
algorithm halts [84]. Therefore, halting decidable automata are less powerful than Turing
machines.

Particle methods can be interpreted as automata. Therefore, we address these two
problems, powerfulness and halting decidability, in this chapter. Particle methods are
Turing powerful. This can be seen in the application of Conway's game of life (sec. 4.7),
which is proven to be Turing powerful [74, 73] or in the simple reduction, where a whole
Turing machine is implemented in the evolve function of the global variable. More inter-
esting is the question of how much we can restrict particle methods such that they are
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still Turing powerful, which we address with two sets of restrictions, where one is not the
subset of the other. For halting decidability, the question is the opposite. Here we ask:
How less can we restrict particle methods such that they are still halting decidable? We
address this with one set of restrictions and prove that the halting problem is decidable
under these restrictions.

6.2 Turing Machine

Turing machines [84] are the most general and powerful automata so far.
There exist many equivalently powerful formulations of Turing machines. We chose to

follow the formulation of Kozen [52]. A Turing machine consists of a semi-finite tape and a
read-write head, and it is in a state. The tape consists of cells. Each cell carries a symbol
from the tape alphabet \Gamma . The most left cell contains the left end-marker \vdash . At the start,
a finite string of input symbols from \Sigma stands on the right of the end-marker. The tape's
infinite rest is filled with blank symbols . The read-write head points exactly on one
cell. At the start, it points at the most left cell (first cell). Depending on the symbol
of the pointed-to cell and the current state of the Turing machine, the head changes the
state of the Turing machine, the symbol of the cell, and moves right (1) or left ( - 1). The
transition function \delta determines this.

In formal terms, the here used notion of Turing machines is defined as follows.

Definition 18. This definition is taken from Kozen [52].
A deterministic one tape Turing machine is a tuple

(\itQ ,\Sigma ,\Gamma ,\vdash , , \delta , start,accept, reject) (6.1)

such that:

\itQ is a finite set of states, (6.2)

\Sigma is a finite input alphabet, (6.3)

\Gamma is a finite tape alphabet with \Sigma \subseteq \Gamma , (6.4)

\vdash is the left end-marker with \vdash \in \Gamma \setminus \Sigma , (6.5)

is the blank symbol with \in \Gamma \setminus \Sigma , (6.6)

\delta is the transition function with \delta : \itQ \times \Gamma \rightarrow \itQ \times \Gamma \times \{  - 1, 1\} , (6.7)

start is the start state, (6.8)

accept is the accept state, (6.9)

reject is the reject state with reject \not = accept. (6.10)

To prevent the head from overwriting the left end marker and leaving the tape on the left
side, the following is required for the transition function \delta .

\forall \itq \in \itQ \exists \itq \in \itQ : \delta (\itq ,\vdash ) = (\itq ,\vdash , 1) (6.11)

Additionally, if the Turing machine enters the accept or reject state, it must stay in that
state.

\forall \itb \in \Gamma \exists \itc , \itc \in \Gamma \wedge \itd , \itd \in \{  - 1, 1\} : \delta (accept, \itb ) = (accept, \itc , \itd ) (6.12)

\wedge \delta (reject, \itb ) = (reject, \itc , \itd ) (6.13)
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Definition 19. This definition is taken from Kozen [52].
A configuration of a Turing machine is a tuple:

(\itq ,\vdash x \omega ,\itn ) \in \itC := \itQ \times \{ \vdash x \omega : x \in \Gamma \ast \} \times N, (6.14)

where

\itq is the state, (6.15)

\vdash x \omega is the semi finite string on the tape, and (6.16)

\itn is the head's position on the tape. (6.17)

A configuration contains all relevant information about a Turing machine's state at a time
point.

The semi-finite string \vdash x \omega contains the left end-marker \vdash , a finite string x \in \Gamma \ast and
the semi-finite string \omega where \omega is the smallest ordinal number.

The start configuration of a Turing machine is:

(start,x1 \omega , 1) with x1 = \vdash y and y \in \Sigma \ast , (6.18)

where y is the finite input string of the Turing machine and 1 means that the head is
scanning \vdash and is most left.

Definition 20. This definition is taken from [52].
Be \itx \itn the \itn -th symbol of the string x, where \itx 1 is the most left symbol, and be \its \itn \itb (x)
the string where the \itn -th symbol of x is replaced by \itb . Then the next configuration

relation
1 - \rightarrow 
\itM 

of a Turing machine is defined by:

1 - \rightarrow 
\itM 
\subseteq \itC \times \itC (6.19)

\Bigl( 
(\itq ,x,\itn ), (\itq \prime ,x\prime ,\itn \prime )

\Bigr) 
\in 1 - \rightarrow 

\itM 

\leftarrow \rightarrow (\itq \prime ,x\prime ,\itn \prime ) = (\itq , \its \itn \itb (x),\itn + \itd ) for \delta (\itq , \itx \itn ) = (\itq , \itb , \itd ) (6.20)

Since this is a deterministic Turing machine,
1 - \rightarrow 
\itM 

is a function.

6.3 Turing Powerfulness of Particle Methods Under a First
Set of Constraints

Theorem 3 (Turing Powerfulness of particle methods under a first set of constraints).
\itP \ita \itr \itt \iti \itc \itl \ite \itm \ite \itt \ith \ito \itd \its \ita \itr \ite \itT \itu \itr \iti \itn \itg \itp \ito \itw \ite \itr \itf \itu \itl \itu \itn \itd \ite \itr \itt \ith \ite \itc \ito \itn \its \itt \itr \ita \iti \itn \itt \its :

\itI \itt \ith \ita \its \ita \itn \ite \itm \itp \itt \ity \itn \ite \iti \itg \ith \itb \ito \itr \ith \ito \ito \itd 

\itu ([\itg ,p], \itj ) = (), (6.21)
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\itt \ith \ite \iti \itn \itt \ite \itr \ita \itc \itt \itf \itu \itn \itc \itt \iti \ito \itn \iti \its \itt \ith \ite \iti \itd \ite \itn \itt \iti \itt \ity 

\iti (\itg , \itp \itj , \itp \itk ) = (\itp \itj , \itp \itk ) , (6.22)

\itt \ith \ite \ite \itv \ito \itl \itv \ite \itf \itu \itn \itc \itt \iti \ito \itn \iti \its \ito \itr \itd \ite \itr -\iti \itn \itd \ite \itp \ite \itn \itd \ite \itn \itt \itr \ite \itg \ita \itr \itd \iti \itn \itg \itg 

1\ite 
\bigl( 
1\ite 

\bigl( 
\itg , \itp \prime 

\bigr) 
, \itp \prime \prime 

\bigr) 
= 1\ite 

\bigl( 
1\ite 

\bigl( 
\itg , \itp \prime \prime 

\bigr) 
, \itp \prime 

\bigr) 
, (6.23)

\ita \itn \itd \iti \itn \itd \ite \itp \ite \itn \itd \ite \itn \itt \ito \itf \itp \itr \ite \itv \iti \ito \itu \its \ite \itv \ito \itl \itu \itt \iti \ito \itn \its \itr \ite \itg \ita \itr \itd \iti \itn \itg \itp 

2\ite 
\bigl( 
\itg , \itp \prime 

\bigr) 
= 2\ite 

\bigl( 
1\ite 

\bigl( 
\itg , \itp \prime \prime 

\bigr) 
, \itp \prime 

\bigr) 
, (6.24)

\ita \itn \itd \itt \ith \ite \its \iti \itz \ite \ito \itf \itt \ith \ite \itg \itl \ito \itb \ita \itl \itv \ita \itr \iti \ita \itb \itl \ite \varsigma \itg , \itt \ith \ite \its \iti \itz \ite \ito \itf \ite \ita \itc \ith \itp \ita \itr \itt \iti \itc \itl \ite \varsigma \itp , \itt \ith \ite \itt \iti \itm \ite \itc \ito \itm \itp \itl \ite \itx \iti \itt \ity 
\ito \itf \itt \ith \ite \its \itt \ito \itp \itf \itu \itn \itc \itt \iti \ito \itn \tau \itf , \ito \itf \itt \ith \ite \ite \itv \ito \itl \itv \ite \itf \itu \itn \itc \itt \iti \ito \itn \tau \ite \ita \itn \itd \ito \itf \itt \ith \ite \ite \itv \ito \itl \itv \ite \itf \itu \itn \itc \itt \iti \ito \itn \ito \itf \itt \ith \ite \itg \itl \ito \itb \ita \itl 
\itv \ita \itr \iti \ita \itb \itl \ite \tau \circ 

\ite 
\ita \itr \ite \iti \itn \scrO (log(| p\itt | )).

\varsigma \itg \itt , \varsigma \itp \itt 
\itj 
, \tau \itf , \tau \ite , \tau \circ \ite \in \scrO 

\bigl( 
log(| p\itt | )

\bigr) 
. (6.25)

Proof .
For the proof, we use the overbar notation

(q, z, d) := \delta (q, \itz ) (6.26)

for the results of the transition function. Without loss of generality, we assume a strict
total order < on the set of states \itQ of the Turing machine, where

\forall \itq \in \itQ \setminus \{ start\} : start < \itq (6.27)

We construct a particle method that fulfills the constraints and emulates an arbitrary
Turing machine as defined in section 6.2. Then we prove that this is the case.

Constructed Particle Method for a Turing Machine

The constructed particle method that resembles a Turing machine and fulfills the con-
straints (6.21) to (6.25) is:

\itp := (k, z) for \itp \in \itP := N>0 \times \Gamma (6.28)

\itg := (q,\Delta q, d,m,M) for \itp \in \itP := \itQ 2 \times \{  - 1, 1\} \times N>0
2 (6.29)

\itu ([\itg ,p], \itj ) := () (6.30)

\itf (\itg ) := (q = reject \vee q = accept\} ) (6.31)

\iti (\itg , \itp \itj , \itp \itk ) := (\itp \itj , \itp \itk ) (6.32)

\ite (\itg , \itp \itj ) :=

\left\{             

\bigl( \bigl( 
q,max(\Delta q, q),max(d, d),m,M

\bigr) 
, ((k\itj , z))

\bigr) 
if k\itj = m \wedge m+ d \leq M\Bigl( \bigl( 

q,max(\Delta q, q),max(d, d),m,M
\bigr) 
, if k\itj = m \wedge m+ d >M

((k\itj , z), (k\itj + 1, - ))
\Bigr) 

(\itg , (\itp \itj )) else

(6.33)

\circ 
\ite (\itg ) :=

\Biggl\{ 
(\Delta q, start, - 1,m+ d,M+ 1) if m+ d >M

(\Delta q, start, - 1,max(1,m+ d),M) else
(6.34)
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This particle method resembles an arbitrary Turing machine regarding the definition of
Kozen (sec. 6.2). Each particle mimics one cell of the tape. It contains the cell index
k and symbol z. The global variable represents the Turing machine's read-write head
and contains the properties for orchestrating the creation of new particles (tape cell).
Therefore, it contains the state of the Turing machine q, an accumulator for the state
\Delta q, the movement direction of the head d, the position (index) of the head m, and the
number of particles M. The accumulator \Delta q is necessary for the order-independence of
the evolve function. The neighborhood is empty. Hence, there are no interactions. The
evolve function is only different from the identity for the particle to which the head points
(\itp m). In this case, the transition function \delta is calculated, and the results are stored in
the global variable and the particle accordingly. q is not directly overwritten to make
the evolve function, in general, independent of previous evolutions. The max function for
overwriting the accumulator \Delta q and the direction d generally makes the evolve function
order-independent. For a Turing-machine-related particle methods instance, both do not
have an influence. If the head points, in the following particle methods state, to a non-
existing particle/ empty cell m+ d > M this particle is created with the blank symbol

by the evolve function. The evolve function of the global variable
\circ 
\ite changes the position of

the head m according to the head movement d, adds 1 to the number of particles if a new
particle was created, and resets the accumulator \Delta q and the direction d to the smallest
values, i.e., start and  - 1.

Particle Method for Turing Machine Fulfills Constrains

We prove that the constraints are fulfilled by the particle method. The fulfillment of the
constraints (6.21) and (6.22) are directly visible in the definition of the particle method
algorithm (6.30) and (6.32).

To prove that the evolve function is order-independent regarding \itg (6.23), we have to
distinguish between four cases.

First, k\prime = k\prime \prime = m

1\ite 
\bigl( 
1\ite 

\bigl( 
\itg , \itp \prime 

\bigr) 
, \itp \prime \prime 

\bigr) 
(6.35)

= 1\ite 
\Bigl( \Bigl( 

q,max(\Delta q, q\prime ),max(d, d
\prime 
),m,M

\Bigr) 
, \itp \prime \prime 

\Bigr) 
(6.36)

=
\Bigl( 
q,max

\bigl( 
max(\Delta q, q\prime ), q\prime \prime 

\bigr) 
,max

\Bigl( 
max(d, d

\prime 
), d

\prime \prime 
\Bigr) 
,m,M

\Bigr) 
(6.37)

=
\Bigl( 
q,max

\bigl( 
\Delta q, q\prime , q\prime \prime 

\bigr) 
,max

\Bigl( 
d, d

\prime 
, d

\prime \prime 
\Bigr) 
,m,M

\Bigr) 
(6.38)

=
\Bigl( 
q,max

\bigl( 
max(\Delta q, q\prime \prime ), q\prime 

\bigr) 
,max

\Bigl( 
max(d, d

\prime \prime 
), d

\prime 
\Bigr) 
,m,M

\Bigr) 
(6.39)

= 1\ite 
\Bigl( \Bigl( 

q,max(\Delta q, q\prime \prime ),max(d, d
\prime \prime 
),m,M

\Bigr) 
, \itp \prime 

\Bigr) 
(6.40)

= 1\ite 
\bigl( 
1\ite 

\bigl( 
\itg , \itp \prime \prime 

\bigr) 
, \itp \prime 

\bigr) 
. (6.41)

Second, k\prime = m and k\prime \prime \not = m, then we set \~\itg := 1\ite (\itg , \itp 
\prime ) and know \itg = 1\ite (\itg , \itp 

\prime \prime ). From
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this follows

1\ite 
\bigl( 
1\ite 

\bigl( 
\itg , \itp \prime 

\bigr) 
, \itp \prime \prime 

\bigr) 
(6.42)

= 1\ite 
\bigl( 
\~\itg , \itp \prime \prime 

\bigr) 
(6.43)

= \~\itg (6.44)

= 1\ite 
\bigl( 
\itg , \itp \prime 

\bigr) 
(6.45)

= 1\ite 
\bigl( 
1\ite 

\bigl( 
\itg , \itp \prime \prime 

\bigr) 
, \itp \prime 

\bigr) 
. (6.46)

Third, k\prime \not = m and k\prime \prime = m, then we know \itg = 1\ite (\itg , \itp 
\prime ) and set \~\itg := 1\ite (\itg , \itp 

\prime \prime ). From
this follows

1\ite 
\bigl( 
1\ite 

\bigl( 
\itg , \itp \prime 

\bigr) 
, \itp \prime \prime 

\bigr) 
(6.47)

= 1\ite 
\bigl( 
\itg , \itp \prime \prime 

\bigr) 
(6.48)

= \~\itg (6.49)

= 1\ite 
\bigl( 
\~\itg , \itp \prime 

\bigr) 
(6.50)

= 1\ite 
\bigl( 
1\ite 

\bigl( 
\itg , \itp \prime \prime 

\bigr) 
, \itp \prime 

\bigr) 
. (6.51)

Fourth, k\prime \not = m and k\prime \prime \not = m, then we know \itg = 1\ite (\itg , \itp 
\prime ) = 1\ite (\itg , \itp 

\prime \prime ). Hence,

1\ite 
\bigl( 
1\ite 

\bigl( 
\itg , \itp \prime 

\bigr) 
, \itp \prime \prime 

\bigr) 
(6.52)

= 1\ite 
\bigl( 
\itg , \itp \prime \prime 

\bigr) 
(6.53)

= \itg (6.54)

= 1\ite 
\bigl( 
\itg , \itp \prime 

\bigr) 
(6.55)

= 1\ite 
\bigl( 
1\ite 

\bigl( 
\itg , \itp \prime \prime 

\bigr) 
, \itp \prime 

\bigr) 
. (6.56)

Next, we prove the condition that the evolve function is independent of previous evo-
lutions regarding \itp (6.24). We have to distinguish between two cases.

First, k\prime \prime = m, for the evolve function, only the global variable's properties q, m, and
M are relevant. The evolve function does not change these properties. Hence,

2\ite 
\bigl( 
1\ite 

\bigl( 
\itg , \itp \prime \prime 

\bigr) 
, \itp \prime 

\bigr) 
(6.57)

= 2\ite 
\Bigl( \Bigl( 

q,max
\bigl( 
\Delta q, q\prime \prime 

\bigr) 
,max

\Bigl( 
d, d

\prime \prime 
\Bigr) 
,m,M

\Bigr) 
, \itp \prime 

\Bigr) 
(6.58)

= 2\ite 
\bigl( 
(q,\Delta q, d,m,M) , \itp \prime 

\bigr) 
(6.59)

= 2\ite 
\bigl( 
\itg , \itp \prime 

\bigr) 
. (6.60)

Second, k\prime \prime \not = m, then we know \itg = 1\ite (\itg , \itp 
\prime \prime ). Hence,

2\ite 
\bigl( 
1\ite 

\bigl( 
\itg , \itp \prime \prime 

\bigr) 
, \itp \prime 

\bigr) 
(6.61)

= 2\ite 
\bigl( 
\itg , \itp \prime 

\bigr) 
. (6.62)

The last constraint we prove is that the size of the global variable \varsigma \itg and each particle
\varsigma \itp , the time complexity of the stop function \tau \itf , of the evolve function \tau \ite and of the
evolve function of the global variable \tau \circ 

\ite 
are in \scrO (log(| p\itt | )). The only potentially growing

properties are the cell index k of the particles, the head position m, and the number of
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particles M. All three numbers only increase if a new particle is created, hence when the
number of particles increases. This happens for m + d > M in the evolve function and

in the evolve function \ite of the global variable
\circ 
\ite . In theory, more than one particle could

be created per step, but the properties would still be only advanced by one. Therefore,
\varsigma \itg , \varsigma \itp \in \scrO 

\bigl( 
log(| p\itt | )

\bigr) 
. For a particle methods instance for a Turing machine, as defined in

section 6.2, the creation of multiple particles per step would not happen. The operations

in \itf , \ite ,
\circ 
\ite are only comparisons, additions, and replacements. If we assume these operations

are done digit-vise and we know that the numbers are in \scrO 
\bigl( 
log(| p\itt | )

\bigr) 
, we can follow the

time complexity of the functions \itf , \ite ,
\circ 
\ite are also in \scrO 

\bigl( 
log(| p\itt | )

\bigr) 
. Hence,

\varsigma \itg \itt , \varsigma \itp \itt 
\itj 
, \tau \itf , \tau \ite , \tau \circ \ite \in \scrO 

\bigl( 
log(| p\itt | )

\bigr) 
. (6.63)

Therefore the particle method fulfills all constraints from (6.21) to (6.25).

Particle Method Emulates Arbitrary Turing Machine

To prove that the particle method emulates an arbitrary Turing machine, we need to
translate the start configuration of a Turing machine (6.18) into a particle methods
instance. Then we prove for all states of the particle method that the back translation is
the corresponding configuration of the Turing machine. The last step is to show that the
particle method stops when the Turing machine reaches an accept or reject state.

We define for this particle method the translation function as

\psi ((\itq ,x \omega ,\itn )) := [(\itq , start, - 1,\itn , | x| ), ((1, \itx 1), (2, \itx 2), ..., (| x| , \itx | \bfx | ))], (6.64)

and the back translation as

\psi  - 1
\bigl( \bigl[ 
(q,\Delta q, d,m,M) , ((k1, z1), (k2, z2), ..., (k| \bfp | , z| \bfp | ))

\bigr] \bigr) 
:=

\bigl( 
q, z1z2 \cdot \cdot \cdot z| \bfp | \omega ,m

\bigr) 
. (6.65)

We see these translation functions are only copying values. The only part which might
be a calculation is the length of the finite input string | x| . Therefore, the translations do
not carry any calculation of the Turing machine.

The instance of the particle method is defined by translating the start configuration
\alpha 1 = (start,x1 \omega , 1). Hence,

[\itg 1,p1] := \psi (\alpha 1). (6.66)

We need additional criteria to be fulfilled by each particle methods step so that the particle
method works. In total, the following criteria are needed:

\psi  - 1
\bigl( \bigl[ 
\itg \itt ,p\itt 

\bigr] \bigr) 
= \alpha \itt 

\wedge M\itt = | p\itt | 
\wedge m\itt \leq M\itt 

\wedge d\itt =  - 1
\wedge \Delta q\itt = start
\wedge \forall \itp \itt \itj \in p\itt : k\itt \itj = \itj .

(6.67)

We prove through induction that the back translation of all particle method states is
the Turing machine's corresponding configuration and that the criteria (6.67) are fulfilled.
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The base case regards the instance and the start configuration.

\psi  - 1
\bigl( 
[\itg 1,p1]

\bigr) 
(6.68)

= \psi  - 1
\bigl( 
\psi 
\bigl( \bigl( 
start,x1 \omega , 1

\bigr) \bigr) \bigr) 
(6.69)

= \psi  - 1([(start, start, - 1, 1, | x1| ), ((1,\vdash ), (2, \itx 1
2 ), ..., (| x1| , \itx 1

| \bfx 1| ))]) (6.70)

=
\Bigl( 
start,\vdash \itx 1

2 \cdot \cdot \cdot \itx 1
| \bfx 1| 

\omega , 1
\Bigr) 

(6.71)

=
\bigl( 
start,x1 \omega , 1

\bigr) 
(6.72)

= \alpha 1. (6.73)

The rest of the criteria (6.67) follow directly from (6.70).
For the induction step, we need to prove that under the condition that the criteria

(6.67) are fulfilled by
\bigl[ 
\itg \itt ,p\itt 

\bigr] 
follows that the criteria (6.67) are fulfilled by

\bigl[ 
\itg \itt +1,p\itt +1

\bigr] 
.

We start by calculation
\bigl[ 
\itg \itt +1,p\itt +1

\bigr] 
= \its 

\bigl( \bigl[ 
\itg \itt ,p\itt 

\bigr] \bigr) 
. Since the neighborhood is empty,

there is no interaction. Hence, the state transition step is the evolve function \ite and the

evolve function of the global variable
\circ 
\ite . Therefore, we can rewrite \its to

\its 
\bigl( \bigl[ 
\itg \itt ,p\itt 

\bigr] \bigr) 
=

\Bigl[ \circ 
\ite 
\Bigl( 
\itg \ast 1\ite 

\Bigl( 
\itp \itt 1, ..., \itp 

\itt 
| \bfp \itt | 

\Bigr) \Bigr) 
, 2\ite 

\bigl( 
\itp \itt 1

\bigr) 
\circ ... \circ 2\ite 

\Bigl( 
\itp \itt | \bfp \itt | 

\Bigr) \Bigr] 
. (6.74)

We calculate the part of the global variable separately from that of the particle tuple. The
evolve function is different from the identity just for \itn \itt = k\itj . This is only the case for the
particle \itp \itn \itt . Hence,

\itg \ast 1\ite 
\Bigl( 
\itp \itt 1, ..., \itp 

\itt 
| \bfp \itt | 

\Bigr) 
(6.75)

= \itg \ast 1\ite 
\Bigl( 
\itp \itt 1, ..., \itp 

\itt 
\itn \itt  - 1, \itp 

\itt 
\itn \itt , \itp \itt \itn \itt +1, ..., \itp 

\itt 
| \bfp \itt | 

\Bigr) 
(6.76)

= \itg \ast 1\ite 
\Bigl( 
\itp \itt \itn \itt , \itp \itt \itn \itt +1, ..., \itp 

\itt 
| \bfp \itt | 

\Bigr) 
(6.77)

=
\Bigl( 
\itq \itt ,max(start, q\itt ),max( - 1, d\itt ),\itn \itt , | p\itt | 

\Bigr) 
\ast 1\ite 

\Bigl( 
, \itp \itt \itn \itt +1, ..., \itp 

\itt 
| \bfp \itt | 

\Bigr) 
(6.78)

=
\Bigl( 
\itq \itt , q\itt , d

\itt 
,\itn \itt , | p\itt | 

\Bigr) 
\ast 1\ite 

\Bigl( 
, \itp \itt \itn \itt +1, ..., \itp 

\itt 
| \bfp \itt | 

\Bigr) 
(6.79)

=
\Bigl( 
\itq \itt , q\itt , d

\itt 
,\itn \itt , | p\itt | 

\Bigr) 
(6.80)

=
\Bigl( 
\itq \itt , \itq \itt +1, d

\itt 
,\itn \itt , | p\itt | 

\Bigr) 
(6.81)

The evolve function of the global variable
\circ 
\ite has two cases. First, m+ d > M in this case

this means \itn \itt + d\itt > | p\itt | . Hence,

\circ 
\ite 
\Bigl( 
\itg \ast 1\ite 

\Bigl( 
\itp \itt 1, ..., \itp 

\itt 
| \bfp \itt | 

\Bigr) \Bigr) 
=

\circ 
\ite 
\bigl( \bigl( 
\itq \itt , \itq \itt +1, d\itt ,\itn \itt , | p\itt | 

\bigr) \bigr) 
(6.82)

=
\bigl( 
\itq \itt +1, start, - 1,\itn \itt + d\itt , | p\itt | + 1

\bigr) 
(6.83)

=
\bigl( 
\itq \itt +1, start, - 1,\itn \itt +1, | p\itt | + 1

\bigr) 
. (6.84)
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Second, else. Hence,

\circ 
\ite 
\Bigl( 
\itg \ast 1\ite 

\Bigl( 
\itp \itt 1, ..., \itp 

\itt 
| \bfp \itt | 

\Bigr) \Bigr) 
(6.85)

=
\circ 
\ite 
\bigl( \bigl( 
\itq \itt , \itq \itt +1, d\itt ,\itn \itt , | p\itt | 

\bigr) \bigr) 
(6.86)

=
\bigl( 
\itq \itt +1, start, - 1,max

\bigl( 
1,\itn \itt + d\itt 

\bigr) 
, | p\itt | 

\bigr) 
(6.87)

We know \itn \itt \geq 1, \itp \itt 1 = (1,\vdash ), and \delta (\itq ,\vdash ) = (\itq ,\vdash , 1). Therefore, if \itn \itt = 1, then d\itt = 1.
Hence,

=
\bigl( 
\itq \itt +1, start, - 1,\itn \itt + d\itt , | p\itt | 

\bigr) 
(6.88)

=
\bigl( 
\itq \itt +1, start, - 1,\itn \itt +1, | p\itt | 

\bigr) 
. (6.89)

The global variable is finished. Next is the particle tuple. We know the evolve function
differs from the identity for \itn \itt = k\itj . This is the case only for the particle \itp \itn \itt . We need to
distinguish two cases.
First, when m+ d > M in this case \itn \itt + d

\itt 
> | p\itt | . Additionally, we know that \itn \itt \leq | p\itt | 

and d
\itt \in \{  - 1, 1\} . This implies that \itn \itt = | p\itt | and d

\itt 
= 1. Hence,

2\ite 
\bigl( 
\itp \itt 1

\bigr) 
\circ ... \circ 2\ite 

\Bigl( 
\itp \itt | \bfp \itt | 

\Bigr) 
(6.90)

=
\bigl( 
\itp \itt 1

\bigr) 
\circ ... \circ 

\Bigl( 
\itp \itt | \bfp \itt |  - 1

\Bigr) 
\circ 
\bigl( \bigl( 
| p\itt | , z\itt 

\bigr) 
,
\bigl( 
| p\itt | + 1, - 

\bigr) \bigr) 
(6.91)

=
\Bigl( 
\itp \itt 1, ..., \itp 

\itt 
| \bfp \itt |  - 1,

\bigl( 
| p\itt | , z\itt 

\bigr) 
,
\bigl( 
| p\itt | + 1, - 

\bigr) \Bigr) 
(6.92)

Second, in the case \itn \itt + d
\itt \leq | p\itt | , we get

2\ite 
\bigl( 
\itp \itt 1

\bigr) 
\circ ... \circ 2\ite 

\Bigl( 
\itp \itt | \bfp \itt | 

\Bigr) 
(6.93)

=
\bigl( 
\itp \itt 1

\bigr) 
\circ ... \circ 

\bigl( 
\itp \itt \itn \itt  - 1

\bigr) 
\circ 
\bigl( \bigl( 
\itn \itt , z\itt 

\bigr) \bigr) 
\circ 
\bigl( 
\itp \itt \itn \itt +1

\bigr) 
\circ ... \circ 

\Bigl( 
\itp \itt | \bfp \itt | 

\Bigr) 
(6.94)

=
\Bigl( 
\itp \itt 1, ..., \itp 

\itt 
\itn \itt  - 1,

\bigl( 
\itn \itt , z\itt 

\bigr) 
, \itp \itt \itn \itt +1, ..., \itp 

\itt 
| \bfp \itt | 

\Bigr) 
. (6.95)

Using these results, we prove that the criteria (6.67) hold. First, for \itn \itt + d
\itt \geq | p\itt | .

\psi  - 1
\Bigl( \Bigl[ \bigl( 

\itq \itt +1, start, - 1,\itn \itt +1, | p\itt | + 1
\bigr) 
,
\Bigl( 
\itp \itt 1, ..., \itp 

\itt 
| \bfp \itt |  - 1,

\bigl( 
| p\itt | , z\itt 

\bigr) 
,
\bigl( 
| p\itt | + 1, - 

\bigr) \Bigr) \Bigr] \Bigr) 
(6.96)

=
\Bigl( 
\itq \itt +1, \itx \itt 

1\itx 
\itt 
2 \cdot \cdot \cdot \itx \itt 

| \bfp \itt |  - 1z
\itt 
 -  - 

\omega ,\itn \itt +1
\Bigr) 

(6.97)

=
\Bigl( 
\itq \itt +1, \itx \itt 

1\itx 
\itt 
2 \cdot \cdot \cdot \itx \itt 

| \bfp \itt |  - 1z
\itt 
 - 
\omega +1,\itn \itt +1

\Bigr) 
(6.98)

=
\Bigl( 
\itq \itt +1, \itx \itt 

1\itx 
\itt 
2 \cdot \cdot \cdot \itx \itt 

| \bfp \itt |  - 1z
\itt 
 - 
\omega ,\itn \itt +1

\Bigr) 
(6.99)

= \alpha \itt +1 (6.100)

There was a particle added to p\itt . The length increased by one, and so did

M\itt +1 = | p\itt | + 1= | p\itt +1| . (6.101)
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From d
\itt 
= 1, m\itt \leq M\itt we can follow

m\itt \leq M\itt (6.102)

\rightarrow \itn \itt \leq | p\itt | (6.103)

\rightarrow \itn \itt + 1 \leq | p\itt | + 1 (6.104)

\rightarrow \itn \itt +1 \leq | p\itt +1| (6.105)

\rightarrow m\itt +1\leq M\itt +1. (6.106)

We directly see that
d\itt +1 =  - 1, \Delta q\itt +1 = start. (6.107)

The particles are not change except for the particle \itp | \bfp \itt | , where the symbol z| \bfp \itt | changed
and the index k| \bfp \itt | stayed the same. But a new particle was added at the end, i.e., at the
index | p\itt | + 1, and it got the index k| \bfp \itt | +1 = | p\itt | + 1. Hence, we can follow

\forall \itp \itt +1
\itj \in p\itt +1 : k\itt +1

\itj = \itj . (6.108)

Second for \itn \itt + d
\itt \leq | p\itt | :

\psi  - 1
\Bigl( \Bigl[ \bigl( 

\itq \itt +1, start, - 1,\itn \itt +1, | p\itt | 
\bigr) 
,
\Bigl( 
\itp \itt 1, ..., \itp 

\itt 
\itn \itt  - 1,

\bigl( 
\itn \itt , z\itt 

\bigr) 
, \itp \itt \itn \itt +1, ..., \itp 

\itt 
| \bfp \itt | 

\Bigr) \Bigr] \Bigr) 
(6.109)

=
\Bigl( 
\itq \itt +1, \itx \itt 

1\itx 
\itt 
2 \cdot \cdot \cdot \itx \itt 

\itn \itt  - 1z
\itt \itx \itt 

\itn \itt +1 \cdot \cdot \cdot \itx 
\itt 
| \bfp \itt |  - 

\omega ,\itn \itt +1
\Bigr) 

(6.110)

=
\bigl( 
\itq \itt +1,x\itt +1

 - 
\omega ,\itn \itt +1

\bigr) 
(6.111)

= \alpha \itt +1. (6.112)

Since there was no particle added to p\itt , the length stays the same

M\itt +1 = M\itt = | p\itt | = | p\itt +1| . (6.113)

We can also follow

m\itt +1 = \itn \itt +1 = \itn \itt + d
\itt \leq | p\itt | = | p\itt +1| = M\itt +1, (6.114)

and directly see that
d\itt +1 =  - 1, \Delta q\itt +1 = start. (6.115)

The particles are not changed except for the particle \itp \itn \itt , and the index k\itn \itt was not
changed. Hence,

\forall \itp \itt \itj \in p\itt : k\itt \itj = \itj \rightarrow \forall \itp \itt +1
\itj \in p\itt +1 : k\itt +1

\itj = \itj . (6.116)

This completes the induction step.
The last part to prove is that the particle method stops if and only if the Turing

machine holds.
\itf (\itg \itt ) = \top \updownarrow \itq \itt \in \{ accept, reject\} (6.117)

This is proven by

\itf 
\bigl( 
\itg \itt 

\bigr) 
= \top (6.118)

\updownarrow q\itt \in \{ accept, reject\} (6.119)

\psi  - 1([\itg \itt ,\bfp \itt ])=\alpha \itt 

\leftarrow  -  -  -  -  -  -  -  -  - \rightarrow \itq \itt \in \{ accept, reject\} . (6.120)
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6.4 Turing Powerfulness of Particle Methods Under a Sec-
ond Set of Constraints

Theorem 4 (Turing powerfulness of particle methods under a second set of constraints).
\itP \ita \itr \itt \iti \itc \itl \ite \itm \ite \itt \ith \ito \itd \its \ita \itr \ite \itT \itu \itr \iti \itn \itg \itp \ito \itw \ite \itr \itf \itu \itl \itu \itn \itd \ite \itr \itt \ith \ite \itc \ito \itn \its \itt \itr \ita \iti \itn \itt \its :

1. \itP \ita \itn \itd \itG \ita \itr \ite fi\itn \iti \itt \ite 
| \itP | <\infty , | \itG | <\infty , (6.121)

2. \itt \ith \ite \iti \itn \itt \ite \itr \ita \itc \itt \itf \itu \itn \itc \itt \iti \ito \itn \iti \iti \its \ita \itp \itu \itl \itl \iti \itn \itt \ite \itr \ita \itc \itt \iti \ito \itn (\itj \itu \its \itt \itt \ith \ite fi\itr \its \itt \itp \ita \itr \itt \iti \itc \itl \ite \itp \itj \iti \its \itc \ith \ita \itn \itg \ite \itd )

\iti (\itg , \itp \itj , \itp \itk ) =
\bigl( 
\itp \itj , \itp \itk 

\bigr) 
, (6.122)

3. \iti \iti \its \iti \itn \itd \ite \itp \ite \itn \itd \ite \itn \itt \ito \itf \itp \itr \ite \itv \iti \ito \itu \its \iti \itn \itt \ite \itr \ita \itc \itt \iti \ito \itn \its 

1\iti \itg (\itp \itj , 1\iti \itg (\itp \itk , \itp \itk \prime )) = 1\iti \itg (\itp \itj , \itp \itk ), (6.123)

4. \iti \iti \its \ito \itr \itd \ite \itr \iti \itn \itd \ite \itp \ite \itn \itd \ite \itn \itt 

1\iti \itg (1\iti \itg (\itp \itj , \itp \itk ), \itp \itk \prime ) = 1\iti \itg (1\iti \itg (\itp \itj , \itp \itk \prime ), \itp \itk ), (6.124)

5. \itt \ith \ite \ite \itv \ito \itl \itv \ite \itf \itu \itn \itc \itt \iti \ito \itn \ite \iti \its \ito \itr \itd \ite \itr -\iti \itn \itd \ite \itp \ite \itn \itd \ite \itn \itt \itr \ite \itg \ita \itr \itd \iti \itn \itg \itg 

1\ite 
\bigl( 
1\ite 

\bigl( 
\itg , \itp \prime 

\bigr) 
, \itp \prime \prime 

\bigr) 
= 1\ite 

\bigl( 
1\ite 

\bigl( 
\itg , \itp \prime \prime 

\bigr) 
, \itp \prime 

\bigr) 
, (6.125)

6. \ite \iti \its \iti \itn \itd \ite \itp \ite \itn \itd \ite \itn \itt \ito \itf \itp \itr \ite \itv \iti \ito \itu \its \ite \itv \ito \itl \itu \itt \iti \ito \itn \its \itr \ite \itg \ita \itr \itd \iti \itn \itg \itp 

2\ite 
\bigl( 
\itg , \itp \prime 

\bigr) 
= 2\ite 

\bigl( 
1\ite 

\bigl( 
\itg , \itp \prime \prime 

\bigr) 
, \itp \prime 

\bigr) 
, (6.126)

7. \itu \iti \its \iti \itn \itd \ite \itp \ite \itn \itd \ite \itn \itt \ito \itf \itg \ita \itn \itd \itt \ith \ite \itv \ita \itl \itu \ite \its \ito \itf \itp \itj \in p

\itu ([\itg ,p], \itj ) = (\itk \in \{ 1, ..., | p| \} : \Omega (\itj , \itk ) = \top ), (6.127)

8. \itu \iti \its \iti \itn \itd \ite \itp \ite \itn \itd \ite \itn \itt \ito \itf \itp \itr \ite \itv \iti \ito \itu \its \iti \itn \itt \ite \itr \ita \itc \itt \iti \ito \itn \its 

\itu ([\itg ,p], \itj ) = \itu ([\itg ,p \ast \iota \itI 
(\itg ,\itk \prime )

(\itk \prime \prime )], \itj ), (6.128)

9. \ite , \iti , \itf ,
\circ 
\ite \ith \ita \itv \ite \ita \itt \iti \itm \ite \itc \ito \itm \itp \itl \ite \itx \iti \itt \ity \itb \ito \itu \itn \itd \itb \ity \ita \itc \ito \itn \its \itt \ita \itn \itt ,

\tau \ite , \tau \iti , \tau \itu , \tau \itf , \tau \circ \ite \in \scrO (1), (6.129)

\ita \itn \itd 

10. \ite , \iti , \itu , \itf ,
\circ 
\ite \ith \ita \itv \ite \ita \its \itp \ita \itc \ite \itc \ito \itm \itp \itl \ite \itx \iti \itt \ity \itb \ito \itu \itn \itd \itb \ity \ita \itc \ito \itn \its \itt \ita \itn \itt ,

\varsigma \ite , \varsigma \iti , \varsigma \itu , \varsigma \itf , \varsigma \circ \ite \in \scrO (1). (6.130)
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Proof .
For the proof, we use the overbar notation

(q\itj , z\itj , d\itj ) := \delta (q, z\itj ) (6.131)

for the results of the transition function. Without loss of generality, we assume a strict
total order < on the set of states \itQ of the Turing machine, where

\forall \itq \in \itQ \setminus \{ start\} : start < \itq (6.132)

We construct a particle method that fulfills the constraints and emulates an arbitrary
Turing machine as defined in section 6.2. Then we prove that this is the case.

Constructed Particle Method for a Turing Machine

The constructed particle method that resembles a Turing machine and fulfills the con-
straints (6.121) to (6.130) is:

\itp := (z, h,\Delta h, o,\Delta o, a) for \itp \in \itP := \Gamma \underbrace{}  \underbrace{}  
z \in 

\times \{  - 1, 0, 1\} \underbrace{}  \underbrace{}  
h \in 

\times \{ 0, 1\} \underbrace{}  \underbrace{}  
\Delta h \in 

\times \{  - 1, 1\} \underbrace{}  \underbrace{}  
o, \Delta o \in 

2\times \{ 0, 1\} \underbrace{}  \underbrace{}  
a \in 

(6.133)

\itg := (q,\Delta q) for \itg \in \itG := \itQ \times \itQ (6.134)

\itu ([\itg ,p], \itj ) := (\itk \in (1, ..., | p| ) : \itk = \itj  - 1 \vee \itk = \itj + 1) (6.135)

\itf (\itg ) := (q = reject \vee q = accept\} ) (6.136)

\iti (\itg , \itp \itj , \itp \itk ) := (6.137)\left\{                   

\biggl( \Bigl( 
z\itj , h\itj , 1\underbrace{}  \underbrace{}  

\Delta h\itj 

, o\itj ,max(\Delta o\itj , d\itk )\underbrace{}  \underbrace{}  
\Delta o\itj 

, a\itj 

\Bigr) 
, \itp \itk 

\biggr) 
if h\itk = 1 \wedge ((h\itj =  - 1\wedge d\itk \not = o\itk )

\vee (h\itj = 0\wedge d\itk = o\itk ))\biggl( \Bigl( 
z\itj , h\itj ,\Delta h\itj , o\itj ,\Delta o\itj , 1\underbrace{}  \underbrace{}  

a\itj 

\Bigr) 
, \itp \itk 

\biggr) 
if h\itj = 1 \wedge ((h\itk =  - 1\wedge d\itj \not = o\itj )

\vee (h\itk = 0\wedge d\itj = o\itj ))

(\itp \itj , \itp \itk ) else

(6.138)
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\ite (\itg , \itp \itj ) :=\left\{                                                       

\Biggl( 
\itg ,

\biggl( \Bigl( 
zj, 1\underbrace{}  \underbrace{}  

h\itj 

, 0\underbrace{}  \underbrace{}  
\Delta h\itj 

,\Delta o\itj \underbrace{}  \underbrace{}  
o\itj 

,  - 1\underbrace{}  \underbrace{}  
\Delta o\itj 

, 0\underbrace{}  \underbrace{}  
a\itj 

\Bigr) \biggr) \Biggr) 
if \Delta h\itj = 1

\Bigl( 
\itg ,

\Bigl( \Bigl( 
z\itj , 0\underbrace{}  \underbrace{}  

h\itj 

, 0\underbrace{}  \underbrace{}  
\Delta h\itj 

,  - 1\underbrace{}  \underbrace{}  
o\itj 

,  - 1\underbrace{}  \underbrace{}  
\Delta o\itj 

, 0\underbrace{}  \underbrace{}  
a\itj 

\Bigr) \Bigr) \Bigr) 
if \Delta h\itj = 0 \wedge h\itj =  - 1\Biggl( \biggl( 

q,max(\Delta q, q\itj )\underbrace{}  \underbrace{}  
\Delta q

\biggr) 
,

\biggl( \Bigl( 
z\itj \underbrace{}  \underbrace{}  
z\itj 

,  - 1\underbrace{}  \underbrace{}  
h\itj 

, 0\underbrace{}  \underbrace{}  
\Delta h\itj 

,  - 1\underbrace{}  \underbrace{}  
o\itj 

,  - 1\underbrace{}  \underbrace{}  
\Delta o\itj 

, 0\underbrace{}  \underbrace{}  
a\itj 

\Bigr) \biggr) \Biggr) 
if \Delta h\itj = 0 \wedge h\itj = 1 \wedge a\itj = 1

\Biggl( \biggl( 
q,max(\Delta q, q\itj )\underbrace{}  \underbrace{}  

\Delta q

\biggr) 
,

\biggl( \Bigl( 
z\itj \underbrace{}  \underbrace{}  
z\itj 

,  - 1\underbrace{}  \underbrace{}  
h\itj 

, 0\underbrace{}  \underbrace{}  
\Delta h\itj 

,  - 1\underbrace{}  \underbrace{}  
o\itj 

,  - 1\underbrace{}  \underbrace{}  
\Delta o\itj 

, 0\underbrace{}  \underbrace{}  
a\itj 

\Bigr) 
, if \Delta h\itj = 0 \wedge h\itj = 1 \wedge a\itj = 0

\Bigl( \underbrace{}  \underbrace{}  
z

, 1\underbrace{}  \underbrace{}  
h

, 0\underbrace{}  \underbrace{}  
\Delta h

, d\itj \underbrace{}  \underbrace{}  
o

, 0\underbrace{}  \underbrace{}  
\Delta o

, 0\underbrace{}  \underbrace{}  
a

\Bigr) \biggr) \Biggr) 
\Bigl( 
\itg , (\itp \itj )

\Bigr) 
else

(6.139)

\circ 
\ite (\itg ) :=

\Bigl( 
\Delta q\underbrace{}  \underbrace{}  
q

, start\underbrace{}  \underbrace{}  
\Delta q

\Bigr) 
(6.140)

This particle method resembles an arbitrary Turing machine regarding the definition of
Kozen (sec. 6.2). Each particle mimics one cell of the tape. One particle carries the
information where the read-write head of the Turing machine is, and the global variable
holds the state of the Turing machine. A constant time complexity limits all functions
except the neighborhood function. Hence, it is not possible to do calculations with indices.
Indices are growing with the number of particles. To circumvent indices, we use the
information where the read-write head was in the particle methods state before and in
which direction it went. The information where the head was and is, is stored in the
particle property h. If h = 1, then there is the head. If h =  - 1, then there was the head in
the particle methods state before, and h = 0 else. The property \Delta h stores new information
about the position of the head to render the interact function \iti independent of previous
interactions. This information is only on one particle. The direction where the head went
is stored in o of the particle with h =  - 1. If o =  - 1, the head went left. If o = 1, it went
right. The property \Delta o stores the information where the head goes. This information is
only on the particle where the head will be next. The property \Delta o helps to render the
interact function independent of previous interactions.

The interact function \iti is responsible for exchanging information about the read-write
head. Hence, the interaction is not the identity only if the particle with the head h = 1
interacts with the particle where the head goes. The information about where the head
was and is and where it went helps to determine if it goes back where it came from or
if it moves on without knowing the indices. Suppose the head tries to move on beyond
the particle tuple, then the flag a stays 0 for the particle with the head h = 1. This
information is then used in the evolve function to create a new particle. The max function
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for determining the property \Delta o keeps the interact-function order-independent in general.
For a Turing-machine-related particle methods instance, the max function has no influence.

The evolve function \ite is responsible for computing all properties for the new state.
Hence, it sets the particle that has as next the head \Delta h = 1 to having the head h = 1, a
particle that had the head before and did not get it back \Delta h = 0, h =  - 1 to a standard
particle without head information, a particle that has the head and was able to hand it
to the next particle \Delta h = 0, h = 1, a = 1 to a particle that had the head, a particle that
has the head and was not able to hand it to the next particle \Delta h = 0, h = 1, a = 0 to
a particle that had the head and creates a new particle that has the head, and the rest
of the particles stay the same. The evolve function also changes the global variable state
storage \Delta q to the new state of the Turing machine h and the symbol of the particle z,
both happen just if the particle has the head. The storage \Delta q renders the evolve function
independent of previous evolutions regarding \itp , and the max function guarantees the order
independence regarding \itg . For a Turing-machine-related particle methods instance, both
do not have an influence.

Finally, the evolve function of the global variable tests the state of the Turing machine
q to the value of the storage \Delta q and resets the storage \Delta q to the minimal value start.

Particle Method of Turing Machine Fulfills Constrains

We prove that the particle method fulfills all constraints from (6.121) to (6.130).
The condition that \itP and \itG are finite (6.121) is fulfilled since the Cartesian product

of two finite sets is a finite set. All sets are finite, inducing \Gamma and \itQ . Hence, | \itP | <\infty and
| \itG | <\infty .

The interact function \iti is defined so that the second particle stays the same for each
case. Therefore it is a pull interaction (6.122).

The interact function \iti can only change \Delta h,\Delta o, a and only depends on z, h, o from
the second particle, i.e., it depends only on properties that are not changed during the
interactions. Hence,

1\iti \itg (\itp \itj , 1\iti \itg (\itp \itk , \itp \itk \prime )) = 1\iti \itg (\itp \itj , (z\itk , h\itk ,\Delta h\prime \itk , o\itk ,\Delta o\prime \itk , a
\prime 
\itk )) (6.141)

= 1\iti \itg (\itp \itj , (z\itk , h\itk ,\Delta h\itk , o\itk ,\Delta o\itk , a\itk )) (6.142)

= 1\iti \itg (\itp \itj , \itp \itk ). (6.143)

Therefore, \iti is independent of previous interactions (6.123).
We know that the interact function \iti does not change any property of \itp \itj and \itp \itk 

that is used to change properties in the interact function \iti . Therefore, it is sufficient to
focus on how the properties are changed to prove the order independence of \iti (6.124).
For readability, we leaf out the conditions they can be handled similarly as in (6.151) to



114

(6.157).

1\iti (1\iti (\itg , \itp \itj , \itp \itk ), \itp \itk \prime ) (6.144)

= 1\iti 

\Biggl( \Biggl( 
z\itj , h\itj ,

\Biggl\{ 
\Delta h\itj 

1
,\Delta h\itj , o\itj ,

\Biggl\{ 
\Delta o\itj 

max(\Delta o\itj , d\itk )
,

\Biggl\{ 
o\itj 

1

\Biggr) 
, \itp \itk \prime 

\Biggr) 
(6.145)

=

\left(      z\itj , h\itj ,

\left\{     
\Biggl\{ 
\Delta h\itj 

1

1

,\Delta h\itj , o\itj ,

\left\{           

\Biggl\{ 
\Delta o\itj 

max(\Delta o\itj , d\itk )

max

\Biggl( \Biggl\{ 
\Delta o\itj 

max(\Delta o\itj , d\itk )
, d\itk \prime 

\Biggr) ,

\left\{     
\Biggl\{ 
o\itj 

1

1

\right)      (6.146)

=

\left(      z\itj , h\itj ,

\left\{     
\Biggl\{ 
\Delta h\itj 

1

1

,\Delta h\itj , o\itj ,

\left\{           
\Delta o\itj 

max(\Delta o\itj , d\itk )

max(\Delta o\itj , d\itk \prime )

max(\Delta o\itj , d\itk , d\itk \prime )

,

\left\{     
\Biggl\{ 
o\itj 

1

1

\right)      (6.147)

=

\left(      z\itj , h\itj ,

\left\{     
\Biggl\{ 
\Delta h\itj 

1

1

,\Delta h\itj , o\itj ,

\left\{           

\Biggl\{ 
\Delta o\itj 

max(\Delta o\itj , d\itk \prime )

max

\Biggl( \Biggl\{ 
\Delta o\itj 

max(\Delta o\itj , d\itk \prime )
, d\itk 

\Biggr) ,

\left\{     
\Biggl\{ 
o\itj 

1

1

\right)      (6.148)

= 1\iti 

\Biggl( \Biggl( 
z\itj , h\itj ,

\Biggl\{ 
\Delta h\itj 

1
,\Delta h\itj , o\itj ,

\Biggl\{ 
\Delta o\itj 

max(\Delta o\itj , d\itk \prime )
,

\Biggl\{ 
o\itj 

1

\Biggr) 
, \itp \itk 

\Biggr) 
(6.149)

= 1\iti (1\iti (\itg , \itp \itj , \itp \itk \prime ), \itp \itk ) (6.150)
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We prove that the evolve function \ite is order-independent regarding \itg (6.125) by

1\ite (1\ite (\itg , \itp 
\prime ), \itp \prime \prime ) (6.151)

= 1\ite 

\Biggl( \Biggl\{ 
(q,max(\Delta q, q\prime )) if h\prime = 1

\itg else
, \itp \prime \prime 

\Biggr) 
(6.152)

=

\left\{           

\Biggl\{ 
(q,max(max(\Delta q, q\prime ), q\prime \prime ) if h\prime = 1

(q,max(\Delta q, q\prime \prime )) else
if h\prime \prime = 1\Biggl\{ 

(q,max(\Delta q, q\prime )) if h\prime = 1

\itg else
else

(6.153)

=

\left\{           
(q,max(\Delta q, q\prime , q\prime \prime ) if h\prime = 1 \wedge h\prime \prime = 1

(q,max(\Delta q, q\prime \prime )) if h\prime \not = 1 \wedge h\prime \prime = 1

(q,max(\Delta q, q\prime )) if h\prime = 1 \wedge h\prime \prime \not = 1

\itg else

(6.154)

=

\left\{           

\Biggl\{ 
(q,max(max(\Delta q, q\prime ), q\prime \prime ) if h\prime \prime = 1

(q,max(\Delta q, q\prime )) else
if h\prime = 1\Biggl\{ 

(q,max(\Delta q, q\prime \prime )) if h\prime \prime = 1

\itg else
else

(6.155)

= 1\ite 

\Biggl( \Biggl\{ 
(q,max(\Delta q, q\prime \prime )) if h\prime \prime = 1

\itg else
, \itp \prime 

\Biggr) 
(6.156)

= 1\ite (1\ite (\itg , \itp 
\prime \prime ), \itp \prime ). (6.157)

The evolve function changes only \Delta q in the global variable, but changes by the evolve
function only depend on the property q of the global variable, i.e., in the series of evolutions
only properties are changed that do not influence the change of following evolutions, hence
the evolve function is independent of previous evolutions (6.126)

2\ite (1\ite (\itg , \itp 
\prime \prime ), \itp \prime ) = 2\ite ((q,\Delta q\prime \prime ), \itp \prime ) (6.158)

= 2\ite ((q,\Delta q), \itp \prime ) (6.159)

= 2\ite (\itg , \itp 
\prime ). (6.160)

The neighborhood function \itu only uses | p| and \itj to determine the neighbor indices \itk .
Hence,

\itu ([\itg ,p], \itj ) = (\itk \in \{ 1, ..., | p| \} : \Omega (\itj , \itk ) = \top ) (6.161)

with
\Omega (\itj , \itk ) := (\itk = \itj  - 1 \vee \itk = \itj + 1). (6.162)

Therefore, \itu is independent of \itg and the values of \itp \itj \in p (6.127).
The interact function can not add or destroy particles. Therefore it can not change

the number of particles in a tuple | p \ast \iota \itI 
(\itg ,\itk \prime )

(\itk \prime \prime )| = | p| . Hence,

\itu ([\itg ,p \ast \iota \itI 
(\itg ,\itk \prime )

(\itk \prime \prime )], \itj ) = \itu ([\itg ,p], \itj ). (6.163)
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Therefore, \itu is independent of previous interactions (6.128).

The functions \ite , \iti , \itf ,
\circ 
\ite consist of evaluations of basic comparisons, max-functions and

the transition function of the Turing machine \delta \subseteq \itQ \times \Gamma \times \itQ \times \Gamma \times \{  - 1, 1\} . There are
no loops or equivalent. Since \itG , \itP , \itQ , and \Gamma are finite so is \delta and with it the time

complexities of \ite , \iti , \itf ,
\circ 
\ite (6.129)

\tau \ite , \tau \iti , \tau \itf , \tau \circ \ite \in \scrO (1), (6.164)

and the space complexities of \ite , \iti , \itu , \itf ,
\circ 
\ite (6.130)

\varsigma \ite , \varsigma \iti , \varsigma \itu , \varsigma \itf , \varsigma \circ \ite \in \scrO (1). (6.165)

The time complexity of the neighborhood function \tau \itu is in \scrO (\itl \ito \itg (| p\itt | )) if one considers
| p\itt | to be known.

Particle Method Emulates Arbitrary Turing Machine

To prove that the particle method emulates an arbitrary Turing machine, we need to
translate the start configuration of a Turing machine (6.18) into a particle methods in-
stance. Then we prove for all states of the particle method that the back translation is
the corresponding configuration of the Turing machine. The last step is to show that the
particle method stops when the Turing machine reaches an accept or reject state.
We define for this particle method the translation function as

\psi ((\itq ,x \omega ,\itn )) (6.166)

:=

\left[               
( \itq \underbrace{}  \underbrace{}  

q

, \its \itt \ita \itr \itt \underbrace{}  \underbrace{}  
\Delta q

),

\left(              

( \itx 1\underbrace{}  \underbrace{}  
z

, 0\underbrace{}  \underbrace{}  
h

, 0\underbrace{}  \underbrace{}  
\Delta h

,  - 1\underbrace{}  \underbrace{}  
o

,  - 1\underbrace{}  \underbrace{}  
\Delta o

, 0\underbrace{}  \underbrace{}  
a

)

...
(\itx \itn  - 1, 0, 0,  - 1,  - 1, 0)
(\itx \itn , 1, 0,  - 1,  - 1, 0)
(\itx \itn +1,  - 1, 0,  - 1,  - 1, 0)

...
(\itx | \bfx | 0, 0,  - 1,  - 1, 0)

\right)              

\bfT 
\right]               
, (6.167)

and the back translation as

\psi  - 1([(q,\Delta q), (\itp 1, ..., \itp | \bfp | )]) :=
\bigl( 
q, z1z2 \cdot \cdot \cdot z| \bfp | \omega , \itj : h\itj = 1

\bigr) 
(6.168)

We see these translation functions are only copying values. Therefore, the translations do
not carry any calculation of the Turing machine.

The instance of the particle method is defined by translating the start configuration
\alpha 1 = (start,x1 \omega , 1). Hence,

[\itg 1,p1] := \psi (\alpha 1). (6.169)
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We need additional criteria to be fulfilled by each particle methods step so that the particle
method works. In total, the following criteria are needed:

\psi  - 1
\bigl( \bigl[ 
\itg \itt ,p\itt 

\bigr] \bigr) 
= \alpha \itt =

\bigl( 
\itq \itt ,x\itt \omega ,\itn \itt 

\bigr) 
\wedge h\itt \itn \itt = 1 \wedge h\itt 

\itn \itt  - o\itt 
\itn \itt 

=  - 1

\wedge \forall \itj \in 
\bigl\{ 
1, ..., | p\itt | 

\bigr\} 
\setminus 
\bigl\{ 
\itn \itt ,\itn \itt  - o\itt \itn \itt 

\bigr\} 
: h\itt \itj = 0

\wedge \forall \itj \in 
\bigl\{ 
1, ..., | p\itt | 

\bigr\} 
: \Delta h\itt \itj = 0 \wedge \Delta o\itt \itj =  - 1 \wedge a\itt \itj = 0

\wedge \Delta \itq \itt = start.

(6.170)

We prove through induction that the back translation of all particle method states is
the Turing machine's corresponding configuration and that the criteria (6.170) are fulfilled.

The base case is for the particle method instance and the start configuration.

\psi  - 1
\bigl( 
[\itg 1,p1]

\bigr) 
(6.171)

= \psi  - 1
\bigl( 
\psi 
\bigl( \bigl( 
start,x1 \omega , 1

\bigr) \bigr) \bigr) 
(6.172)

= \psi  - 1

\left(          

\left[          
(start\underbrace{}  \underbrace{}  

q

, start\underbrace{}  \underbrace{}  
\Delta q

),

\left(         

( \vdash \underbrace{}  \underbrace{}  
z

, 1\underbrace{}  \underbrace{}  
h

, 0\underbrace{}  \underbrace{}  
\Delta h

,  - 1\underbrace{}  \underbrace{}  
o

,  - 1\underbrace{}  \underbrace{}  
\Delta o

, 0\underbrace{}  \underbrace{}  
a

)

(\itx 1
2 ,  - 1, 0,  - 1,  - 1, 0)

(\itx 1
3 , 0, 0,  - 1,  - 1, 0)
...

(\itx 1
| \bfx 1| 0, 0,  - 1,  - 1, 0)

\right)         

\bfT 
\right]          

\right)          
(6.173)

=
\Bigl( 
start,\vdash \itx 1

2 \cdot \cdot \cdot \itx 1
| \bfx 1| 

\omega , 1
\Bigr) 

(6.174)

=
\bigl( 
start,x1 \omega , 1

\bigr) 
(6.175)

= \alpha 1. (6.176)

The rest of the criteria (6.170) follow directly from (6.173).
For the induction step, we need to prove that if the criteria (6.170) are valid for

[\itg \itt ,p\itt ], it is also true for [\itg \itt +1,p\itt +1] = \its ([\itg \itt ,p\itt ]). We divide the induction step into six
cases.

First, we prove it for the case that the head is on the first cell/ particle, h\itt 1 = 1. We
use the criteria (6.170) to set up [\itg \itt ,p\itt ] and calculate from it [\itg \itt +1,p\itt +1]. Since \itp \itt 0 does
not exist, h\itt 

2 =  - 1 and o\itt 1 =  - 1. From this and the definition of the Turing machine
especially (6.11) follows that

\forall \itt \in \{ 1, ...,\itT \} : \delta (q\itt , z\itt 1) = \delta (q\itt ,\vdash ) = (q,\vdash , 1) =: (q\itt , z\itt 1, d
\itt 
1). (6.177)

We calculate the interaction of \itp \itt 1 with its neighbors

\~p\itt :=\iota \mathrm{I}\times \mathrm{U}
\itg (p\itt , 1) (6.178)

=p\itt \ast \iota \mathrm{I}
(\itg \itt ,1)

\itu ([\itg \itt ,p\itt ], 1) (6.179)

=p\itt \ast \iota \mathrm{I}
(\itg \itt ,1)

(2) (6.180)

=

\biggl( \Bigl( 
\vdash \underbrace{}  \underbrace{}  
z

, 1\underbrace{}  \underbrace{}  
h

, 0\underbrace{}  \underbrace{}  
\Delta h

,  - 1\underbrace{}  \underbrace{}  
o

,  - 1\underbrace{}  \underbrace{}  
\Delta o

, 1\underbrace{}  \underbrace{}  
a

\Bigr) 
, \itp \itt 2, ..., \itp 

\itt 
| \bfp \itt | 

\biggr) 
. (6.181)
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and the interactions of \itp \itt 2 with its neighbors

\~\~p\itt :=\iota \mathrm{I}\times \mathrm{U}
\itg (\~p\itt , 2) (6.182)

=\~p\itt \ast \iota \mathrm{I}
(\itg \itt ,2)

\itu ([\itg \itt ,p\itt ], 2) (6.183)

=\~p\itt \ast \iota \mathrm{I}
(\itg \itt ,2)

(1, 3). (6.184)

The particle \itp 1 is the only particle with h\itt 1 = 1 and \itp 2 with h\itt 2 =  - 1. Hence, h\itt 3 = 0 and
the interact function is for \itp 2 with \itp 3 the identity (\iti (\itg , \itp 2, \itp 3) = (\itp 2, \itp 3)). Therefore,

\~\~p\itt =

\biggl( \Bigl( 
\vdash \underbrace{}  \underbrace{}  
z

, 1\underbrace{}  \underbrace{}  
h

, 0\underbrace{}  \underbrace{}  
\Delta h

,  - 1\underbrace{}  \underbrace{}  
o

,  - 1\underbrace{}  \underbrace{}  
\Delta o

, 1\underbrace{}  \underbrace{}  
a

\Bigr) 
,

\Bigl( 
\itx \itt 
2\underbrace{}  \underbrace{}  
z

,  - 1\underbrace{}  \underbrace{}  
h

, 1\underbrace{}  \underbrace{}  
\Delta h

, o2,max
\Bigl( 
 - 1, d\itt 1

\Bigr) 
\underbrace{}  \underbrace{}  

\Delta o

, 0\underbrace{}  \underbrace{}  
a

\Bigr) 
, \itp \itt 3, ..., \itp 

\itt 
| \bfp \itt | 

\biggr) 
(6.185)

=

\biggl( \Bigl( 
\vdash \underbrace{}  \underbrace{}  
z

, 1\underbrace{}  \underbrace{}  
h

, 0\underbrace{}  \underbrace{}  
\Delta h

,  - 1\underbrace{}  \underbrace{}  
o

,  - 1\underbrace{}  \underbrace{}  
\Delta o

, 1\underbrace{}  \underbrace{}  
a

\Bigr) 
,

\Bigl( 
\itx \itt 
2\underbrace{}  \underbrace{}  
z

,  - 1\underbrace{}  \underbrace{}  
h

, 1\underbrace{}  \underbrace{}  
\Delta h

, o2, 1\underbrace{}  \underbrace{}  
\Delta o

, 0\underbrace{}  \underbrace{}  
a

\Bigr) 
, \itp \itt 3, ..., \itp 

\itt 
| \bfp \itt | 

\biggr) 
(6.186)

For all other particles, the interact function is the identity, only h\itt 1 = 1 and \forall \itj \in 
\{ 3, ..., | p\itt | \} : 1 /\in \itu ([\itg \itt ,p\itt ], \itj ). Hence,

\iota \mathrm{N}\times \mathrm{U}([\itg \itt ,p\itt ]) = \~\~p\itt . (6.187)

Next is the evolution step. The evolve function \ite is the identity for the particles except if
h = 1 this is only true for \itp \itt 1 or if \Delta h = 1 this is only true for \itp \itt 2 or if h =  - 1 only true
for \itp \itt 2. \ite is also the identity for the global variable except if h = 1. Hence, we can reduce
\epsilon \mathrm{N} to

\epsilon \mathrm{N}([\itg \itt , \~\~p\itt ]) =
\Bigl[ 
1\ite (\itg 

\itt , \itp \itt 1), 2\ite (\itg , \itp 
\itt 
1) \circ 2\ite (\itg , \itp 

\itt 
2) \circ (\itp \itt 3, ..., \itp \itt | \bfp \itt | )

\Bigr] 
(6.188)

=

\Biggl[ \Bigl( 
q\itt ,max

\bigl( 
start, q\itt 1

\bigr) \underbrace{}  \underbrace{}  
\Delta q

\Bigr) 
,

\biggl( \Bigl( 
\vdash \underbrace{}  \underbrace{}  
z

,  - 1\underbrace{}  \underbrace{}  
h

, 0\underbrace{}  \underbrace{}  
\Delta h

,  - 1\underbrace{}  \underbrace{}  
o

,  - 1\underbrace{}  \underbrace{}  
\Delta o

, 0\underbrace{}  \underbrace{}  
a

\Bigr) \biggr) 

\circ 
\biggl( \Bigl( 

\itx \itt 
2\underbrace{}  \underbrace{}  
z

, 1\underbrace{}  \underbrace{}  
h

, 0\underbrace{}  \underbrace{}  
\Delta h

, 1\underbrace{}  \underbrace{}  
o

,  - 1\underbrace{}  \underbrace{}  
\Delta o

, 0\underbrace{}  \underbrace{}  
a

\Bigr) \biggr) 
\circ 
\Bigl( 
\itp \itt 3, ..., \itp 

\itt 
| \bfp \itt | 

\Bigr) \Biggr] 
(6.189)

=

\Biggl[ \bigl( 
q\itt , q\itt 1\underbrace{}  \underbrace{}  

\Delta q

\bigr) 
,

\biggl( \Bigl( 
\vdash \underbrace{}  \underbrace{}  
z

,  - 1\underbrace{}  \underbrace{}  
h

, 0\underbrace{}  \underbrace{}  
\Delta h

,  - 1\underbrace{}  \underbrace{}  
o

,  - 1\underbrace{}  \underbrace{}  
\Delta o

, 0\underbrace{}  \underbrace{}  
a

\Bigr) \biggr) 

\circ 
\biggl( \Bigl( 

\itx \itt 
2\underbrace{}  \underbrace{}  
z

, 1\underbrace{}  \underbrace{}  
h

, 0\underbrace{}  \underbrace{}  
\Delta h

, 1\underbrace{}  \underbrace{}  
o

,  - 1\underbrace{}  \underbrace{}  
\Delta o

, 0\underbrace{}  \underbrace{}  
a

\Bigr) \biggr) 
\circ 
\Bigl( 
\itp \itt 3, ..., \itp 

\itt 
| \bfp \itt | 

\Bigr) \Biggr] 
(6.190)
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The last step for this case is the evolve function of the global variable.

\circ 
\ite 
\Bigl( \bigl( 

q\itt , q\itt 1\underbrace{}  \underbrace{}  
\Delta q

\bigr) \Bigr) 
:=

\Bigl( 
q\itt 1\underbrace{}  \underbrace{}  
q

, start\underbrace{}  \underbrace{}  
\Delta q

\Bigr) 
=

\Bigl( 
\itq \itt +1\underbrace{}  \underbrace{}  

q

, start\underbrace{}  \underbrace{}  
\Delta q

\Bigr) 
(6.191)

Hence,

\its 
\bigl( \bigl[ 
\itg \itt ,p\itt 

\bigr] \bigr) 
=

\Biggl[ \Bigl( 
\itq \itt +1\underbrace{}  \underbrace{}  

q

, start\underbrace{}  \underbrace{}  
\Delta q

\Bigr) 
,

\biggl( \Bigl( 
\vdash \underbrace{}  \underbrace{}  
z

,  - 1\underbrace{}  \underbrace{}  
h

, 0\underbrace{}  \underbrace{}  
\Delta h

,  - 1\underbrace{}  \underbrace{}  
o

,  - 1\underbrace{}  \underbrace{}  
\Delta o

, 0\underbrace{}  \underbrace{}  
a

\Bigr) \biggr) 

\circ 
\biggl( \Bigl( 

\itx \itt 
2\underbrace{}  \underbrace{}  
z

, 1\underbrace{}  \underbrace{}  
h

, 0\underbrace{}  \underbrace{}  
\Delta h

, 1\underbrace{}  \underbrace{}  
o

,  - 1\underbrace{}  \underbrace{}  
\Delta o

, 0\underbrace{}  \underbrace{}  
a

\Bigr) \biggr) 
\circ 
\Bigl( 
\itp \itt 3, ..., \itp 

\itt 
| \bfp \itt | 

\Bigr) \Biggr] 
(6.192)

=
\bigl[ 
\itg \itt +1,p\itt +1

\bigr] 
(6.193)

We need to prove that the criteria (6.170) are true for
\bigl[ 
\itg \itt +1,p\itt +1

\bigr] 
.

\psi  - 1
\bigl( \bigl[ 
\itg \itt +1,p\itt +1

\bigr] \bigr) 
=

\Bigl( 
\itq \itt +1,\vdash \itx \itt 

2 \cdot \cdot \cdot \itx \itt 
| \bfp \itt | 

\omega , 2
\Bigr) 

=
\bigl( 
\itq \itt +1,x\itt +1 \omega ,\itn \itt +1

\bigr) 
= \alpha \itt +1

(6.194)

The rest of the criteria can be read from the calculated
\bigl[ 
\itg \itt +1,p\itt +1

\bigr] 
h\itt +1
\itn \itt +1 = h\itt +1

2 = 1, (6.195)

h\itt +1

\itn \itt +1 - o\itt +1

\itn \itt +1

= h\itt +1

2 - o\itt +1
2

= h\itt +1
2 - 1 =  - 1, (6.196)

\forall \itj \in 
\bigl\{ 
1, ..., | p\itt +1| 

\bigr\} 
\setminus 
\Bigl\{ 
\itn \itt +1\underbrace{}  \underbrace{}  
=2

,\itn \itt +1  - o\itt +1
\itn \itt +1\underbrace{}  \underbrace{}  

=1

\Bigr\} 
: h\itt +1

\itj = 0, (6.197)

\forall \itj \in 
\bigl\{ 
1, ..., | p\itt +1| 

\bigr\} 
: \Delta h\itt +1

\itj = 0 \wedge \Delta o\itt +1
\itj =  - 1 \wedge a\itt +1

\itj = 0, (6.198)

\Delta \itq \itt +1 = start. (6.199)

Second, we prove it for the case h\itt \itn \itt = 1, h\itt \itn \itt  - 1 =  - 1, and d
\itt 
\itn \itt = 1 where

\itn \itt \in \{ 2, ..., | p\itt |  - 1\} . Using the criteria (6.170) lead to

\bigl[ 
\itg \itt ,p\itt 

\bigr] 
=

\left[                  
( \itq \itt \underbrace{}  \underbrace{}  

q

, start\underbrace{}  \underbrace{}  
\Delta q

),

\left(                 

( \itx \itt 
1\underbrace{}  \underbrace{}  
z

, 0\underbrace{}  \underbrace{}  
h

, 0\underbrace{}  \underbrace{}  
\Delta h

,  - 1\underbrace{}  \underbrace{}  
o

,  - 1\underbrace{}  \underbrace{}  
\Delta o

, 0\underbrace{}  \underbrace{}  
a

)

...
(\itx \itt 

\itn \itt  - 2, 0, 0,  - 1,  - 1, 0)

(\itx \itt 
\itn \itt  - 1,  - 1, 0,  - 1,  - 1, 0)

(\itx \itn \itt , 1, 0, 1,  - 1, 0)
(\itx \itt 

\itn \itt +1, 0, 0,  - 1,  - 1, 0)
...

(\itx \itt 
| \bfx \itt | 0, 0,  - 1,  - 1, 0)

\right)                 

\bfT 
\right]                  

(6.200)
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We use again
\delta (q\itt , z\itt \itn \itt ) =: (q\itt , z\itt \itn \itt , d

\itt 
\itn \itt ). (6.201)

The particle \itp \itn \itt is the only particle with h\itt \itn \itt = 1 and \itp \itn \itt  - 1 with h\itt \itn \itt  - 1 =  - 1. Since

d
\itt 
\itn \itt = 1 and o\itt \itn \itt = 1 the interact function \iti is the identity except for \iti (\itg , \itp \itn \itt , \itp \itn \itt +1) and
\iti (\itg , \itp \itn \itt +1, \itp \itn \itt ). Therefore,

\~p\itt := \iota \mathrm{N}\times \mathrm{U}([\itg \itt ,p\itt ]) (6.202)

=

\biggl( 
\itp \itt 1, ..., \itp 

\itt 
\itn \itt  - 1,

\Bigl( 
\itx \itt 
\itn \itt \underbrace{}  \underbrace{}  
z

1\underbrace{}  \underbrace{}  
h

, 0\underbrace{}  \underbrace{}  
\Delta h

, 1\underbrace{}  \underbrace{}  
o

,  - 1\underbrace{}  \underbrace{}  
\Delta o

, 1\underbrace{}  \underbrace{}  
a

\Bigr) 
,

\Bigl( 
\itx \itt 
\itn \itt +1\underbrace{}  \underbrace{}  
z

0\underbrace{}  \underbrace{}  
h

, 1\underbrace{}  \underbrace{}  
\Delta h

,  - 1\underbrace{}  \underbrace{}  
o

,max( - 1, 1)\underbrace{}  \underbrace{}  
\Delta o

, 0\underbrace{}  \underbrace{}  
a

\Bigr) 
, \itp \itt \itn \itt +2, ..., \itp 

\itt 
| \bfp \itt | 

\biggr) 
(6.203)

=

\biggl( 
\itp \itt 1, ..., \itp 

\itt 
\itn \itt  - 1,

\Bigl( 
\itx \itt 
\itn \itt \underbrace{}  \underbrace{}  
z

1\underbrace{}  \underbrace{}  
h

, 0\underbrace{}  \underbrace{}  
\Delta h

, 1\underbrace{}  \underbrace{}  
o

,  - 1\underbrace{}  \underbrace{}  
\Delta o

, 1\underbrace{}  \underbrace{}  
a

\Bigr) 
,

\Bigl( 
\itx \itt 
\itn \itt +1\underbrace{}  \underbrace{}  
z

0\underbrace{}  \underbrace{}  
h

, 1\underbrace{}  \underbrace{}  
\Delta h

,  - 1\underbrace{}  \underbrace{}  
o

, 1\underbrace{}  \underbrace{}  
\Delta o

, 0\underbrace{}  \underbrace{}  
a

\Bigr) 
, \itp \itt \itn \itt +2, ..., \itp 

\itt 
| \bfp \itt | 

\biggr) 
. (6.204)

The next is the evolution step. The evolve function \ite is the identity for all particles except
if h = 1 this is only true for \~\itp \itt \itn \itt or if \Delta h = 1, only true for \~\itp \itt \itn \itt +1, or if h =  - 1 only true
for \itp \itt \itn \itt  - 1. The evolve function \ite is the identity for the global variable except if h = 1.

Hence, we can reduce \epsilon \mathrm{N} to

\epsilon \mathrm{N}([\itg \itt , \~p\itt ]) = [1\ite (\itg 
\itt , \itp \itt 1), (\itp 

\itt 
1, ..., \itp 

\itt 
\itn \itt  - 2) \circ 2\ite (\itg , \itp 

\itt 
\itn \itt  - 1)

\circ 2\ite (\itg , \~\itp 
\itt 
\itn \itt ) \circ 2\ite (\itg , \~\itp 

\itt 
\itn \itt +1) \circ (\itp 

\itt 
\itn \itt +2, ..., \itp 

\itt 
| \bfp \itt | )] (6.205)

=

\Biggl[ \Bigl( 
q\itt ,max

\bigl( 
start, q\itt \itn \itt 

\bigr) \underbrace{}  \underbrace{}  
\Delta q

\Bigr) 
, (\itp \itt 1, ..., \itp 

\itt 
\itn \itt  - 2)

\circ 
\biggl( \Bigl( 

\itx \itt 
\itn \itt  - 1\underbrace{}  \underbrace{}  
z

0\underbrace{}  \underbrace{}  
h

, 0\underbrace{}  \underbrace{}  
\Delta h

,  - 1\underbrace{}  \underbrace{}  
o

,  - 1\underbrace{}  \underbrace{}  
\Delta o

, 0\underbrace{}  \underbrace{}  
a

\Bigr) \biggr) 

\circ 

\left(   \Bigl( 
z\itt \itn \itt \underbrace{}  \underbrace{}  
z

 - 1\underbrace{}  \underbrace{}  
h

, 0\underbrace{}  \underbrace{}  
\Delta h

,  - 1\underbrace{}  \underbrace{}  
o

,  - 1\underbrace{}  \underbrace{}  
\Delta o

, 0\underbrace{}  \underbrace{}  
a

\Bigr) \right)   
\circ 
\biggl( \Bigl( 

\itx \itt 
\itn \itt +1\underbrace{}  \underbrace{}  
z

1\underbrace{}  \underbrace{}  
h

, 0\underbrace{}  \underbrace{}  
\Delta h

, 1\underbrace{}  \underbrace{}  
o

,  - 1\underbrace{}  \underbrace{}  
\Delta o

, 0\underbrace{}  \underbrace{}  
a

\Bigr) \biggr) 
\circ 
\Bigl( 
\itp \itt \itn \itt +2, ..., \itp 

\itt 
| \bfp \itt | 

\Bigr) \Biggr] 
. (6.206)

The last step for this case is the evolve function of the global variable.

\circ 
\ite 
\Bigl( \bigl( 

q\itt , q\itt \itn \itt \underbrace{}  \underbrace{}  
\Delta q

\bigr) \Bigr) 
:=

\Bigl( 
q\itt \itn \itt \underbrace{}  \underbrace{}  
q

, start\underbrace{}  \underbrace{}  
\Delta q

\Bigr) 
=

\Bigl( 
\itq \itt +1\underbrace{}  \underbrace{}  

q

, start\underbrace{}  \underbrace{}  
\Delta q

\Bigr) 
(6.207)
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Hence,

\its 
\bigl( \bigl[ 
\itg \itt ,p\itt 

\bigr] \bigr) 
=

\bigl[ 
\itg \itt +1,p\itt +1

\bigr] 
(6.208)

=

\Biggl[ \Bigl( 
\itq \itt +1\underbrace{}  \underbrace{}  

q

, start\underbrace{}  \underbrace{}  
\Delta q

\Bigr) 
, (\itp \itt 1, ..., \itp 

\itt 
\itn \itt  - 2)

\circ 
\biggl( \Bigl( 

\itx \itt 
\itn \itt  - 1\underbrace{}  \underbrace{}  
z

0\underbrace{}  \underbrace{}  
h

, 0\underbrace{}  \underbrace{}  
\Delta h

,  - 1\underbrace{}  \underbrace{}  
o

,  - 1\underbrace{}  \underbrace{}  
\Delta o

, 0\underbrace{}  \underbrace{}  
a

\Bigr) \biggr) 

\circ 

\left(   \Bigl( 
z\itt \itn \itt \underbrace{}  \underbrace{}  
z

 - 1\underbrace{}  \underbrace{}  
h

, 0\underbrace{}  \underbrace{}  
\Delta h

,  - 1\underbrace{}  \underbrace{}  
o

,  - 1\underbrace{}  \underbrace{}  
\Delta o

, 0\underbrace{}  \underbrace{}  
a

\Bigr) \right)   
\circ 
\biggl( \Bigl( 

\itx \itt 
\itn \itt +1\underbrace{}  \underbrace{}  
z

1\underbrace{}  \underbrace{}  
h

, 0\underbrace{}  \underbrace{}  
\Delta h

, 1\underbrace{}  \underbrace{}  
o

,  - 1\underbrace{}  \underbrace{}  
\Delta o

, 0\underbrace{}  \underbrace{}  
a

\Bigr) \biggr) 
\circ 
\Bigl( 
\itp \itt \itn \itt +2, ..., \itp 

\itt 
| \bfp \itt | 

\Bigr) \Biggr] 
(6.209)

We need to prove again that the criteria (6.170) is true for
\bigl[ 
\itg \itt +1,p\itt +1

\bigr] 
.

\psi  - 1
\bigl( \bigl[ 
\itg \itt +1,p\itt +1

\bigr] \bigr) 
=

\Bigl( 
\itq \itt +1, \itx \itt 

1 \cdot \cdot \cdot \itx \itt 
\itn \itt  - 1z

\itt 
\itn \itt \itx \itt 

\itn \itt +1 \cdot \cdot \cdot \itx 
\itt 
| \bfp \itt | 

\omega ,\itn \itt + 1
\Bigr) 

=
\bigl( 
\itq \itt +1,x\itt +1 \omega ,\itn \itt +1

\bigr) 
= \alpha \itt +1

(6.210)

The rest of the criteria can be read from the calculated
\bigl[ 
\itg \itt +1,p\itt +1

\bigr] 
h\itt +1
\itn \itt +1 = h\itt +1

\itn \itt +1 = 1, (6.211)

h\itt +1

\itn \itt +1 - o\itt +1

\itn \itt +1

= h\itt +1

\itn \itt +1 - o\itt +1

\itn \itt +1

= h\itt +1
\itn \itt +1 - 1 =  - 1, (6.212)

\forall \itj \in 
\bigl\{ 
1, ..., | p\itt +1| 

\bigr\} 
\setminus 
\Bigl\{ 
\itn \itt +1\underbrace{}  \underbrace{}  
=\itn \itt +1

,\itn \itt +1  - o\itt +1
\itn \itt +1\underbrace{}  \underbrace{}  

=\itn \itt 

\Bigr\} 
: h\itt +1

\itj = 0, (6.213)

\forall \itj \in 
\bigl\{ 
1, ..., | p\itt +1| 

\bigr\} 
: \Delta h\itt +1

\itj = 0 \wedge \Delta o\itt +1
\itj =  - 1 \wedge a\itt +1

\itj = 0, (6.214)

\Delta \itq \itt +1 = start. (6.215)

Third, we prove it for the case h\itt \itn \itt = 1, h\itt \itn \itt  - 1 =  - 1, and \delta (q\itt , z\itt \itn \itt ) =: (q\itt , z\itt \itn \itt , d
\itt 
\itn \itt ) =

(\itq \itt +1, z\itt \itn \itt , - 1) where \itn \itt \in \{ 2, ..., | p\itt | \} . This results in the same state [\itg \itt ,p\itt ] as in (6.200).
The particle \itp \itn \itt is the only particle with h\itt \itn \itt = 1 and \itp \itn \itt  - 1 with h\itt \itn \itt  - 1 =  - 1. Since

d
\itt 
\itn \itt =  - 1 and o\itt \itn \itt = 1, the interact function is the identity except for \iti (\itg , \itp \itn \itt  - 1, \itp \itn \itt ) and
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\iti (\itg , \itp \itn \itt , \itp \itn \itt  - 1). Therefore,

\~p\itt := \iota \mathrm{N}\times \mathrm{U}([\itg \itt ,p\itt ]) (6.216)

=

\biggl( 
\itp \itt 1, ..., \itp 

\itt 
\itn \itt  - 2,

\Bigl( 
\itx \itt 
\itn \itt  - 1\underbrace{}  \underbrace{}  
z

 - 1\underbrace{}  \underbrace{}  
h

, 1\underbrace{}  \underbrace{}  
\Delta h

,  - 1\underbrace{}  \underbrace{}  
o

,max( - 1, - 1)\underbrace{}  \underbrace{}  
\Delta o

, 0\underbrace{}  \underbrace{}  
a

\Bigr) 
,

\Bigl( 
\itx \itt 
\itn \itt \underbrace{}  \underbrace{}  
z

1\underbrace{}  \underbrace{}  
h

, 0\underbrace{}  \underbrace{}  
\Delta h

, 1\underbrace{}  \underbrace{}  
o

,  - 1\underbrace{}  \underbrace{}  
\Delta o

, 1\underbrace{}  \underbrace{}  
a

\Bigr) 
, \itp \itt \itn \itt +1, ..., \itp 

\itt 
| \bfp \itt | 

\biggr) 
(6.217)

=

\biggl( 
\itp \itt 1, ..., \itp 

\itt 
\itn \itt  - 2,

\Bigl( 
\itx \itt 
\itn \itt  - 1\underbrace{}  \underbrace{}  
z

 - 1\underbrace{}  \underbrace{}  
h

, 1\underbrace{}  \underbrace{}  
\Delta h

,  - 1\underbrace{}  \underbrace{}  
o

,  - 1\underbrace{}  \underbrace{}  
\Delta o

, 0\underbrace{}  \underbrace{}  
a

\Bigr) 
,

\Bigl( 
\itx \itt 
\itn \itt \underbrace{}  \underbrace{}  
z

1\underbrace{}  \underbrace{}  
h

, 0\underbrace{}  \underbrace{}  
\Delta h

, 1\underbrace{}  \underbrace{}  
o

,  - 1\underbrace{}  \underbrace{}  
\Delta o

, 1\underbrace{}  \underbrace{}  
a

\Bigr) 
, \itp \itt \itn \itt +1, ..., \itp 

\itt 
| \bfp \itt | 

\biggr) 
. (6.218)

The next is the evolution step. The evolve function \ite is the identity for all particles
except if h = 1 this is only true for \~\itp \itt \itn \itt or if \Delta h = 1,only true for \~\itp \itt \itn \itt  - 1, or if h =  - 1 only
true for \~\itp \itt \itn \itt  - 1, too. The evolve function \ite is the identity for the global variable except if

h = 1. Hence, we can reduce \epsilon \mathrm{N} to

\epsilon \mathrm{N}([\itg \itt , \~p\itt ]) = [1\ite (\itg 
\itt , \itp \itt 1), (\itp 

\itt 
1, ..., \itp 

\itt 
\itn \itt  - 2) \circ 2\ite (\itg , \~\itp 

\itt 
\itn \itt  - 1)

\circ 2\ite (\itg , \~\itp 
\itt 
\itn \itt ) \circ (\itp \itt \itn \itt +1, ..., \itp 

\itt 
| \bfp \itt | )] (6.219)

=

\Biggl[ \Bigl( 
q\itt ,max

\bigl( 
start, q\itt \itn \itt 

\bigr) \underbrace{}  \underbrace{}  
\Delta q

\Bigr) 
, (\itp \itt 1, ..., \itp 

\itt 
\itn \itt  - 2)

\circ 
\biggl( \Bigl( 

\itx \itt 
\itn \itt  - 1\underbrace{}  \underbrace{}  
z

1\underbrace{}  \underbrace{}  
h

, 0\underbrace{}  \underbrace{}  
\Delta h

,  - 1\underbrace{}  \underbrace{}  
o

,  - 1\underbrace{}  \underbrace{}  
\Delta o

, 0\underbrace{}  \underbrace{}  
a

\Bigr) \biggr) 

\circ 

\left(   \Bigl( 
z\itt \itn \itt \underbrace{}  \underbrace{}  
z

 - 1\underbrace{}  \underbrace{}  
h

, 0\underbrace{}  \underbrace{}  
\Delta h

,  - 1\underbrace{}  \underbrace{}  
o

,  - 1\underbrace{}  \underbrace{}  
\Delta o

, 0\underbrace{}  \underbrace{}  
a

\Bigr) \right)   \circ \Bigl( \itp \itt \itn \itt +1, ..., \itp 
\itt 
| \bfp \itt | 

\Bigr) \Biggr] 
. (6.220)

The last step for this case is the evolve function of the global variable.

\circ 
\ite 
\Bigl( \bigl( 

q\itt , q\itt \itn \itt \underbrace{}  \underbrace{}  
\Delta q

\bigr) \Bigr) 
:=

\Bigl( 
q\itt \itn \itt \underbrace{}  \underbrace{}  
q

, start\underbrace{}  \underbrace{}  
\Delta q

\Bigr) 
=

\Bigl( 
\itq \itt +1\underbrace{}  \underbrace{}  

q

, start\underbrace{}  \underbrace{}  
\Delta q

\Bigr) 
(6.221)
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Hence,

\its 
\bigl( \bigl[ 
\itg \itt ,p\itt 

\bigr] \bigr) 
=

\bigl[ 
\itg \itt +1,p\itt +1

\bigr] 
(6.222)

=

\Biggl[ \Bigl( 
\itq \itt +1\underbrace{}  \underbrace{}  

q

, start\underbrace{}  \underbrace{}  
\Delta q

\Bigr) 
, (\itp \itt 1, ..., \itp 

\itt 
\itn \itt  - 2)

\circ 
\biggl( \Bigl( 

\itx \itt 
\itn \itt  - 1\underbrace{}  \underbrace{}  
z

1\underbrace{}  \underbrace{}  
h

, 0\underbrace{}  \underbrace{}  
\Delta h

,  - 1\underbrace{}  \underbrace{}  
o

,  - 1\underbrace{}  \underbrace{}  
\Delta o

, 0\underbrace{}  \underbrace{}  
a

\Bigr) \biggr) 

\circ 

\left(   \Bigl( 
z\itt \itn \itt \underbrace{}  \underbrace{}  
z

 - 1\underbrace{}  \underbrace{}  
h

, 0\underbrace{}  \underbrace{}  
\Delta h

,  - 1\underbrace{}  \underbrace{}  
o

,  - 1\underbrace{}  \underbrace{}  
\Delta o

, 0\underbrace{}  \underbrace{}  
a

\Bigr) \right)   \circ \Bigl( \itp \itt \itn \itt +1, ..., \itp 
\itt 
| \bfp \itt | 

\Bigr) \Biggr] 
. (6.223)

We need to prove again that the criteria (6.170) are true for
\bigl[ 
\itg \itt +1,p\itt +1

\bigr] 
.

\psi  - 1
\bigl( \bigl[ 
\itg \itt +1,p\itt +1

\bigr] \bigr) 
=

\Bigl( 
\itq \itt +1, \itx \itt 

1 \cdot \cdot \cdot \itx \itt 
\itn \itt  - 1z

\itt 
\itn \itt \itx \itt 

\itn \itt +1 \cdot \cdot \cdot \itx 
\itt 
| \bfp \itt | 

\omega ,\itn \itt  - 1
\Bigr) 

=
\bigl( 
\itq \itt +1,x\itt +1 \omega ,\itn \itt +1

\bigr) 
= \alpha \itt +1

(6.224)

The rest of the criteria can be read from the calculated
\bigl[ 
\itg \itt +1,p\itt +1

\bigr] 
h\itt +1
\itn \itt +1 = h\itt +1

\itn \itt  - 1 = 1, (6.225)

h\itt +1

\itn \itt +1 - o\itt +1

\itn \itt +1

= h\itt +1

\itn \itt  - 1 - o\itt +1

\itn \itt  - 1

= h\itt +1
\itn \itt  - 1 - ( - 1) =  - 1, (6.226)

\forall \itj \in 
\bigl\{ 
1, ..., | p\itt +1| 

\bigr\} 
\setminus 
\Bigl\{ 
\itn \itt +1\underbrace{}  \underbrace{}  
=\itn \itt  - 1

,\itn \itt +1  - o\itt +1
\itn \itt +1\underbrace{}  \underbrace{}  

=\itn \itt 

\Bigr\} 
: h\itt +1

\itj = 0, (6.227)

\forall \itj \in 
\bigl\{ 
1, ..., | p\itt +1| 

\bigr\} 
: \Delta h\itt +1

\itj = 0 \wedge \Delta o\itt +1
\itj =  - 1 \wedge a\itt +1

\itj = 0, (6.228)

\Delta \itq \itt +1 = start. (6.229)

Fourth, we prove it for the case h\itt \itn \itt = 1, h\itt \itn \itt +1 =  - 1, and \delta (q\itt , z\itt \itn \itt ) =: (q\itt , z\itt \itn \itt , d
\itt 
\itn \itt ) =

(\itq \itt +1, z\itt \itn \itt , 1) where \itn \itt \in \{ 2, ..., | p\itt |  - 1\} . Using the criteria (6.170) lead to

\bigl[ 
\itg \itt ,p\itt 

\bigr] 
=

\left[                  
( \itq \itt \underbrace{}  \underbrace{}  

q

, start\underbrace{}  \underbrace{}  
\Delta q

),

\left(                 

( \itx \itt 
1\underbrace{}  \underbrace{}  
z

, 0\underbrace{}  \underbrace{}  
h

, 0\underbrace{}  \underbrace{}  
\Delta h

,  - 1\underbrace{}  \underbrace{}  
o

,  - 1\underbrace{}  \underbrace{}  
\Delta o

, 0\underbrace{}  \underbrace{}  
a

)

...
(\itx \itt 

\itn \itt  - 1, 0, 0,  - 1,  - 1, 0)

(\itx \itn \itt , 1, 0,  - 1,  - 1, 0)
(\itx \itt 

\itn \itt +1,  - 1, 0,  - 1,  - 1, 0)

(\itx \itt 
\itn \itt +2, 0, 0,  - 1,  - 1, 0)
...

(\itx \itt 
| \bfx \itt | 0, 0,  - 1,  - 1, 0)

\right)                 

\bfT 
\right]                  

(6.230)
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The particle \itp \itn \itt is the only particle with h\itt \itn \itt = 1 and \itp \itn \itt +1 with h\itt \itn \itt +1 =  - 1. Since

d
\itt 
\itn \itt = 1 and o\itt \itn \itt =  - 1 the interact function is the identity except for \iti (\itg , \itp \itn \itt , \itp \itn \itt +1) and
\iti (\itg , \itp \itn \itt +1, \itp \itn \itt ). Therefore,

\~p\itt := \iota \mathrm{N}\times \mathrm{U}([\itg \itt ,p\itt ]) (6.231)

=

\biggl( 
\itp \itt 1, ..., \itp 

\itt 
\itn \itt  - 1,

\Bigl( 
\itx \itt 
\itn \itt \underbrace{}  \underbrace{}  
z

1\underbrace{}  \underbrace{}  
h

, 0\underbrace{}  \underbrace{}  
\Delta h

,  - 1\underbrace{}  \underbrace{}  
o

,  - 1\underbrace{}  \underbrace{}  
\Delta o

, 1\underbrace{}  \underbrace{}  
a

\Bigr) 
,

\Bigl( 
\itx \itt 
\itn \itt +1\underbrace{}  \underbrace{}  
z

 - 1\underbrace{}  \underbrace{}  
h

, 1\underbrace{}  \underbrace{}  
\Delta h

,  - 1\underbrace{}  \underbrace{}  
o

,max( - 1, 1)\underbrace{}  \underbrace{}  
\Delta o

, 0\underbrace{}  \underbrace{}  
a

\Bigr) 
, \itp \itt \itn \itt +2, ..., \itp 

\itt 
| \bfp \itt | 

\biggr) 
. (6.232)

The next is the evolution step. The evolve function \ite is the identity for all particles
except if h = 1 this is only true for \~\itp \itt \itn \itt or if \Delta h = 1, only true for \~\itp \itt \itn \itt +1, or if h =  - 1 only
true for \~\itp \itt \itn \itt +1, too. \ite is the identity for the global variable except if h = 1. Hence, we can

reduce \epsilon \mathrm{N} to

\epsilon \mathrm{N}([\itg \itt , \~p\itt ]) = [1\ite (\itg 
\itt , \itp \itt 1), (\itp 

\itt 
1, ..., \itp 

\itt 
\itn \itt  - 1) \circ 2 \ite (\itg , \~\itp 

\itt 
\itn \itt )

\circ 2 \ite (\itg , \~\itp \itt \itn \itt +1) \circ (\itp 
\itt 
\itn \itt +2, ..., \itp 

\itt 
| \bfp \itt | )] (6.233)

=

\Biggl[ \Bigl( 
q\itt ,max

\bigl( 
start, q\itt \itn \itt 

\bigr) \underbrace{}  \underbrace{}  
\Delta q

\Bigr) 
, (\itp \itt 1, ..., \itp 

\itt 
\itn \itt  - 1)

\circ 

\left(   \Bigl( 
z\itt \itn \itt \underbrace{}  \underbrace{}  
z

 - 1\underbrace{}  \underbrace{}  
h

, 0\underbrace{}  \underbrace{}  
\Delta h

,  - 1\underbrace{}  \underbrace{}  
o

,  - 1\underbrace{}  \underbrace{}  
\Delta o

, 0\underbrace{}  \underbrace{}  
a

\Bigr) \right)   
\circ 
\biggl( \Bigl( 

\itx \itt 
\itn \itt +1\underbrace{}  \underbrace{}  
z

1\underbrace{}  \underbrace{}  
h

, 0\underbrace{}  \underbrace{}  
\Delta h

, 1\underbrace{}  \underbrace{}  
o

,  - 1\underbrace{}  \underbrace{}  
\Delta o

, 0\underbrace{}  \underbrace{}  
a

\Bigr) \biggr) 
\circ 
\Bigl( 
\itp \itt \itn \itt +2, ..., \itp 

\itt 
| \bfp \itt | 

\Bigr) \Biggr] 
. (6.234)

The last step for this case is the evolve function of the global variable.

\circ 
\ite 
\Bigl( \bigl( 

q\itt , q\itt \itn \itt \underbrace{}  \underbrace{}  
\Delta q

\bigr) \Bigr) 
:=

\Bigl( 
q\itt \itn \itt \underbrace{}  \underbrace{}  
q

, start\underbrace{}  \underbrace{}  
\Delta q

\Bigr) 
=

\Bigl( 
\itq \itt +1\underbrace{}  \underbrace{}  

q

, start\underbrace{}  \underbrace{}  
\Delta q

\Bigr) 
(6.235)

Hence,

\its 
\bigl( \bigl[ 
\itg \itt ,p\itt 

\bigr] \bigr) 
=

\bigl[ 
\itg \itt +1,p\itt +1

\bigr] 
(6.236)

=

\Biggl[ \Bigl( 
\itq \itt +1\underbrace{}  \underbrace{}  

q

, start\underbrace{}  \underbrace{}  
\Delta q

\Bigr) 
, (\itp \itt 1, ..., \itp 

\itt 
\itn \itt  - 1)

\circ 

\left(   \Bigl( 
z\itt \itn \itt \underbrace{}  \underbrace{}  
z

 - 1\underbrace{}  \underbrace{}  
h

, 0\underbrace{}  \underbrace{}  
\Delta h

,  - 1\underbrace{}  \underbrace{}  
o

,  - 1\underbrace{}  \underbrace{}  
\Delta o

, 0\underbrace{}  \underbrace{}  
a

\Bigr) \right)   
\circ 
\biggl( \Bigl( 

\itx \itt 
\itn \itt +1\underbrace{}  \underbrace{}  
z

1\underbrace{}  \underbrace{}  
h

, 0\underbrace{}  \underbrace{}  
\Delta h

, 1\underbrace{}  \underbrace{}  
o

,  - 1\underbrace{}  \underbrace{}  
\Delta o

, 0\underbrace{}  \underbrace{}  
a

\Bigr) \biggr) 
\circ 
\Bigl( 
\itp \itt \itn \itt +2, ..., \itp 

\itt 
| \bfp \itt | 

\Bigr) \Biggr] 
. (6.237)
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We need to prove again that the criteria (6.170) are true for
\bigl[ 
\itg \itt +1,p\itt +1

\bigr] 
.

\psi  - 1
\bigl( \bigl[ 
\itg \itt +1,p\itt +1

\bigr] \bigr) 
=

\Bigl( 
\itq \itt +1, \itx \itt 

1 \cdot \cdot \cdot \itx \itt 
\itn \itt  - 1z

\itt 
\itn \itt \itx \itt 

\itn \itt +1 \cdot \cdot \cdot \itx 
\itt 
| \bfp \itt | 

\omega ,\itn \itt + 1
\Bigr) 

=
\bigl( 
\itq \itt +1,x\itt +1 \omega ,\itn \itt +1

\bigr) 
= \alpha \itt +1

(6.238)

The rest of the criteria can be read from the calculated
\bigl[ 
\itg \itt +1,p\itt +1

\bigr] 
h\itt +1
\itn \itt +1 = h\itt +1

\itn \itt +1 = 1, (6.239)

h\itt +1

\itn \itt +1 - o\itt +1

\itn \itt +1

= h\itt +1

\itn \itt +1 - o\itt +1

\itn \itt +1

= h\itt +1
\itn \itt +1 - 1 =  - 1, (6.240)

\forall \itj \in 
\bigl\{ 
1, ..., | p\itt +1| 

\bigr\} 
\setminus 
\Bigl\{ 
\itn \itt +1\underbrace{}  \underbrace{}  
=\itn \itt +1

,\itn \itt +1  - o\itt +1
\itn \itt +1\underbrace{}  \underbrace{}  

=\itn \itt 

\Bigr\} 
: h\itt +1

\itj = 0, (6.241)

\forall \itj \in 
\bigl\{ 
1, ..., | p\itt +1| 

\bigr\} 
: \Delta h\itt +1

\itj = 0 \wedge \Delta o\itt +1
\itj =  - 1 \wedge a\itt +1

\itj = 0, (6.242)

\Delta \itq \itt +1 = start. (6.243)

Fifth, we prove it for the case h\itt \itn \itt = 1, h\itt \itn \itt +1 =  - 1, and \delta (q\itt , z\itt \itn \itt ) =: (q\itt , z\itt \itn \itt , d
\itt 
\itn \itt ) =

(\itq \itt +1, z\itt \itn \itt , - 1) where \itn \itt \in \{ 2, ..., | p\itt |  - 1\} . This results in the same state [\itg \itt ,p\itt ] as in
(6.230).

The particle \itp \itn \itt is the only particle with h\itt \itn \itt = 1 and \itp \itn \itt +1 with h\itt \itn \itt +1 =  - 1. Since

d
\itt 
\itn \itt =  - 1 and o\itt \itn \itt =  - 1 the interact function is the identity except for \iti (\itg , \itp \itn \itt  - 1, \itp \itn \itt ) and
\iti (\itg , \itp \itn \itt , \itp \itn \itt  - 1). Therefore,

\~p\itt := \iota \mathrm{N}\times \mathrm{U}([\itg \itt ,p\itt ]) (6.244)

=

\biggl( 
\itp \itt 1, ..., \itp 

\itt 
\itn \itt  - 2,

\Bigl( 
\itx \itt 
\itn \itt  - 1\underbrace{}  \underbrace{}  
z

0\underbrace{}  \underbrace{}  
h

, 1\underbrace{}  \underbrace{}  
\Delta h

,  - 1\underbrace{}  \underbrace{}  
o

,max( - 1, - 1)\underbrace{}  \underbrace{}  
\Delta o

, 0\underbrace{}  \underbrace{}  
a

\Bigr) 
,

\Bigl( 
\itx \itt 
\itn \itt \underbrace{}  \underbrace{}  
z

1\underbrace{}  \underbrace{}  
h

, 0\underbrace{}  \underbrace{}  
\Delta h

,  - 1\underbrace{}  \underbrace{}  
o

,  - 1\underbrace{}  \underbrace{}  
\Delta o

, 1\underbrace{}  \underbrace{}  
a

\Bigr) 
, \itp \itt \itn \itt +1, ..., \itp 

\itt 
| \bfp \itt | 

\biggr) 
(6.245)

The next is the evolution step. The evolve function \ite is the identity for all particles
except if h = 1 this is only true for \~\itp \itt \itn \itt or if \Delta h = 1, only true for \~\itp \itt \itn \itt  - 1, or if h =  - 1
only true for \~\itp \itt \itn \itt +1. \ite is the identity for the global variable except if h = 1. Hence, we can



126

reduce \epsilon \mathrm{N} to

\epsilon \mathrm{N}([\itg \itt , \~p\itt ]) = [1\ite (\itg 
\itt , \itp \itt 1), (\itp 

\itt 
1, ..., \itp 

\itt 
\itn \itt  - 2) \circ 2 \ite (\itg , \itp 

\itt 
\itn \itt  - 1)

\circ 2 \ite (\itg , \itp \itt \itn \itt ) \circ 2 \ite (\itg , \itp \itt \itn \itt +1) \circ (\itp 
\itt 
\itn \itt +2, ..., \itp 

\itt 
| \bfp \itt | )] (6.246)

=

\Biggl[ \Bigl( 
q\itt ,max

\bigl( 
start, q\itt \itn \itt 

\bigr) \underbrace{}  \underbrace{}  
\Delta q

\Bigr) 
, (\itp \itt 1, ..., \itp 

\itt 
\itn \itt  - 2)

\circ 
\biggl( \Bigl( 

\itx \itt 
\itn \itt  - 1\underbrace{}  \underbrace{}  
z

1\underbrace{}  \underbrace{}  
h

, 0\underbrace{}  \underbrace{}  
\Delta h

,  - 1\underbrace{}  \underbrace{}  
o

,  - 1\underbrace{}  \underbrace{}  
\Delta o

, 0\underbrace{}  \underbrace{}  
a

\Bigr) \biggr) 

\circ 

\left(   \Bigl( 
z\itt \itn \itt \underbrace{}  \underbrace{}  
z

 - 1\underbrace{}  \underbrace{}  
h

, 0\underbrace{}  \underbrace{}  
\Delta h

,  - 1\underbrace{}  \underbrace{}  
o

,  - 1\underbrace{}  \underbrace{}  
\Delta o

, 0\underbrace{}  \underbrace{}  
a

\Bigr) \right)   
\circ 
\biggl( \Bigl( 

\itx \itt 
\itn \itt +1\underbrace{}  \underbrace{}  
z

0\underbrace{}  \underbrace{}  
h

, 0\underbrace{}  \underbrace{}  
\Delta h

,  - 1\underbrace{}  \underbrace{}  
o

,  - 1\underbrace{}  \underbrace{}  
\Delta o

, 0\underbrace{}  \underbrace{}  
a

\Bigr) \biggr) 
\circ 
\Bigl( 
\itp \itt \itn \itt +2, ..., \itp 

\itt 
| \bfp \itt | 

\Bigr) \Biggr] 
. (6.247)

The last step for this case is the evolve function of the global variable.

\circ 
\ite 
\Bigl( \bigl( 

q\itt , q\itt \itn \itt \underbrace{}  \underbrace{}  
\Delta q

\bigr) \Bigr) 
:=

\Bigl( 
q\itt \itn \itt \underbrace{}  \underbrace{}  
q

, start\underbrace{}  \underbrace{}  
\Delta q

\Bigr) 
=

\Bigl( 
\itq \itt +1\underbrace{}  \underbrace{}  

q

, start\underbrace{}  \underbrace{}  
\Delta q

\Bigr) 
(6.248)

Hence,

\its 
\bigl( \bigl[ 
\itg \itt ,p\itt 

\bigr] \bigr) 
=

\bigl[ 
\itg \itt +1,p\itt +1

\bigr] 
(6.249)

=

\Biggl[ \Bigl( 
\itq \itt +1\underbrace{}  \underbrace{}  

q

, start\underbrace{}  \underbrace{}  
\Delta q

\Bigr) 
, (\itp \itt 1, ..., \itp 

\itt 
\itn \itt  - 2)

\circ 
\biggl( \Bigl( 

\itx \itt 
\itn \itt  - 1\underbrace{}  \underbrace{}  
z

1\underbrace{}  \underbrace{}  
h

, 0\underbrace{}  \underbrace{}  
\Delta h

,  - 1\underbrace{}  \underbrace{}  
o

,  - 1\underbrace{}  \underbrace{}  
\Delta o

, 0\underbrace{}  \underbrace{}  
a

\Bigr) \biggr) 

\circ 

\left(   \Bigl( 
z\itt \itn \itt \underbrace{}  \underbrace{}  
z

 - 1\underbrace{}  \underbrace{}  
h

, 0\underbrace{}  \underbrace{}  
\Delta h

,  - 1\underbrace{}  \underbrace{}  
o

,  - 1\underbrace{}  \underbrace{}  
\Delta o

, 0\underbrace{}  \underbrace{}  
a

\Bigr) \right)   
\circ 
\biggl( \Bigl( 

\itx \itt 
\itn \itt +1\underbrace{}  \underbrace{}  
z

0\underbrace{}  \underbrace{}  
h

, 0\underbrace{}  \underbrace{}  
\Delta h

,  - 1\underbrace{}  \underbrace{}  
o

,  - 1\underbrace{}  \underbrace{}  
\Delta o

, 0\underbrace{}  \underbrace{}  
a

\Bigr) \biggr) 
\circ 
\Bigl( 
\itp \itt \itn \itt +2, ..., \itp 

\itt 
| \bfp \itt | 

\Bigr) \Biggr] 
(6.250)

We need to prove again that the criteria (6.170) are true for
\bigl[ 
\itg \itt +1,p\itt +1

\bigr] 
.

\psi  - 1
\bigl( \bigl[ 
\itg \itt +1,p\itt +1

\bigr] \bigr) 
=

\Bigl( 
\itq \itt +1, \itx \itt 

1 \cdot \cdot \cdot \itx \itt 
\itn \itt  - 1z

\itt 
\itn \itt \itx \itt 

\itn \itt +1 \cdot \cdot \cdot \itx 
\itt 
| \bfp \itt | 

\omega ,\itn \itt  - 1
\Bigr) 

=
\bigl( 
\itq \itt +1,x\itt +1 \omega ,\itn \itt +1

\bigr) 
= \alpha \itt +1

(6.251)
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The rest of the criteria can be read from the calculated
\bigl[ 
\itg \itt +1,p\itt +1

\bigr] 
h\itt +1
\itn \itt +1 = h\itt +1

\itn \itt  - 1 = 1, (6.252)

h\itt +1

\itn \itt +1 - o\itt +1

\itn \itt +1

= h\itt +1

\itn \itt  - 1 - o\itt +1

\itn \itt  - 1

= h\itt +1
\itn \itt  - 1 - ( - 1) =  - 1, (6.253)

\forall \itj \in 
\bigl\{ 
1, ..., | p\itt +1| 

\bigr\} 
\setminus 
\Bigl\{ 
\itn \itt +1\underbrace{}  \underbrace{}  
=\itn \itt  - 1

,\itn \itt +1  - o\itt +1
\itn \itt +1\underbrace{}  \underbrace{}  

=\itn \itt 

\Bigr\} 
: h\itt +1

\itj = 0, (6.254)

\forall \itj \in 
\bigl\{ 
1, ..., | p\itt +1| 

\bigr\} 
: \Delta h\itt +1

\itj = 0 \wedge \Delta o\itt +1
\itj =  - 1 \wedge a\itt +1

\itj = 0, (6.255)

\Delta \itq \itt +1 = start. (6.256)

Sixth and last, we prove it for the case \itn \itt = | p\itt | with h\itt | \bfp \itt | = 1 and \delta (q\itt , z\itt | \bfp \itt | ) =:

(q\itt , z\itt | \bfp \itt | , d
\itt 
| \bfp \itt | ) = (\itq \itt +1, z\itt | \bfp \itt | , 1). From this follows that h\itt | \bfp \itt |  - 1 =  - 1 and o\itt | \bfp \itt | = 1.

Using the criteria (6.170) lead to

\bigl[ 
\itg \itt ,p\itt 

\bigr] 
=

\left[           
( \itq \itt \underbrace{}  \underbrace{}  

q

, start\underbrace{}  \underbrace{}  
\Delta q

),

\left(          

( \itx \itt 
1\underbrace{}  \underbrace{}  
z

, 0\underbrace{}  \underbrace{}  
h

, 0\underbrace{}  \underbrace{}  
\Delta h

,  - 1\underbrace{}  \underbrace{}  
o

,  - 1\underbrace{}  \underbrace{}  
\Delta o

, 0\underbrace{}  \underbrace{}  
a

)

...
(\itx \itt 

| \bfp \itt |  - 2, 0, 0,  - 1,  - 1, 0)

(\itx \itt 
| \bfp \itt |  - 1,  - 1, 0,  - 1,  - 1, 0)

(\itx \itt 
| \bfp \itt | 1, 0, 1,  - 1, 0)

\right)          

\bfT 
\right]           

(6.257)

The particle \itp | \bfp \itt | is the only particle with h\itt | \bfp \itt | = 1 and \itp | \bfp \itt |  - 1 with h\itt | \bfp \itt |  - 1 =  - 1.
Since d

\itt 
\itn \itt = 1 and o\itt \itn \itt = 1 the interact function is the identity for all particle. Therefore,

\~p\itt := \iota \mathrm{N}\times \mathrm{U}([\itg \itt ,p\itt ]) (6.258)

= p\itt . (6.259)

The next is the evolution step. The evolve function \ite is the identity for all particles
except if h = 1 this is only true for \~\itp \itt | \bfp \itt | or if \Delta h = 1, true for no particle, or if h =  - 1
only true for \~\itp \itt | \bfp \itt |  - 1. \ite is the identity for the global variable except if h = 1. The particle
\itp | \bfp \itt | did not interact, so a| \bfp \itt | = 0. The evolve function has a special case for this, where

a new particle is generated. We can write \epsilon \mathrm{N} as

\epsilon \mathrm{N}([\itg \itt , \~p\itt ]) =
\Bigl[ 
1\ite (\itg 

\itt , \itp \itt 1), (\itp 
\itt 
1, ..., \itp 

\itt 
| \bfp \itt |  - 2) \circ 2 \ite (\itg , \itp 

\itt 
| \bfp \itt |  - 1) \circ 2 \ite (\itg , \itp 

\itt 
| \bfp \itt | )

\Bigr] 
(6.260)

=

\Biggl[ \Bigl( 
q\itt ,max

\Bigl( 
start, q\itt | \bfp \itt | 

\Bigr) 
\underbrace{}  \underbrace{}  

\Delta q

\Bigr) 
, (\itp \itt 1, ..., \itp 

\itt 
| \bfp \itt |  - 2)

\circ 
\biggl( \Bigl( 

\itx \itt 
| \bfp \itt |  - 1\underbrace{}  \underbrace{}  

z

0\underbrace{}  \underbrace{}  
h

, 0\underbrace{}  \underbrace{}  
\Delta h

,  - 1\underbrace{}  \underbrace{}  
o

,  - 1\underbrace{}  \underbrace{}  
\Delta o

, 0\underbrace{}  \underbrace{}  
a

\Bigr) \biggr) 

\circ 
\biggl( \Bigl( 

z\itt | \bfp \itt | \underbrace{}  \underbrace{}  
z

 - 1\underbrace{}  \underbrace{}  
h

, 0\underbrace{}  \underbrace{}  
\Delta h

,  - 1\underbrace{}  \underbrace{}  
o

,  - 1\underbrace{}  \underbrace{}  
\Delta o

, 0\underbrace{}  \underbrace{}  
a

\Bigr) 
,
\Bigl( \underbrace{}  \underbrace{}  

z

1\underbrace{}  \underbrace{}  
h

, 0\underbrace{}  \underbrace{}  
\Delta h

, 1\underbrace{}  \underbrace{}  
o

,  - 1\underbrace{}  \underbrace{}  
\Delta o

, 0\underbrace{}  \underbrace{}  
a

\Bigr) \biggr) \Biggr] 
.

(6.261)
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The last step for this case is the evolve function of the global variable.

\circ 
\ite 
\Bigl( \bigl( 

q\itt , q\itt \itn \itt \underbrace{}  \underbrace{}  
\Delta q

\bigr) \Bigr) 
:=

\Bigl( 
q\itt \itn \itt \underbrace{}  \underbrace{}  
q

, start\underbrace{}  \underbrace{}  
\Delta q

\Bigr) 
=

\Bigl( 
\itq \itt +1\underbrace{}  \underbrace{}  

q

, start\underbrace{}  \underbrace{}  
\Delta q

\Bigr) 
(6.262)

Hence,

\its 
\bigl( \bigl[ 
\itg \itt ,p\itt 

\bigr] \bigr) 
=

\bigl[ 
\itg \itt +1,p\itt +1

\bigr] 
(6.263)

=

\Biggl[ \Bigl( 
\itq \itt +1\underbrace{}  \underbrace{}  

q

, start\underbrace{}  \underbrace{}  
\Delta q

\Bigr) 
, (\itp \itt 1, ..., \itp 

\itt 
| \bfp \itt |  - 2)

\circ 
\biggl( \Bigl( 

\itx \itt 
| \bfp \itt |  - 1\underbrace{}  \underbrace{}  

z

0\underbrace{}  \underbrace{}  
h

, 0\underbrace{}  \underbrace{}  
\Delta h

,  - 1\underbrace{}  \underbrace{}  
o

,  - 1\underbrace{}  \underbrace{}  
\Delta o

, 0\underbrace{}  \underbrace{}  
a

\Bigr) \biggr) 

\circ 
\biggl( \Bigl( 

z\itt | \bfp \itt | \underbrace{}  \underbrace{}  
z

 - 1\underbrace{}  \underbrace{}  
h

, 0\underbrace{}  \underbrace{}  
\Delta h

,  - 1\underbrace{}  \underbrace{}  
o

,  - 1\underbrace{}  \underbrace{}  
\Delta o

, 0\underbrace{}  \underbrace{}  
a

\Bigr) 
,
\Bigl( \underbrace{}  \underbrace{}  

z

1\underbrace{}  \underbrace{}  
h

, 0\underbrace{}  \underbrace{}  
\Delta h

, 1\underbrace{}  \underbrace{}  
o

,  - 1\underbrace{}  \underbrace{}  
\Delta o

, 0\underbrace{}  \underbrace{}  
a

\Bigr) \biggr) \Biggr] 
.

(6.264)

We need to prove again that the criteria (6.170) are true for
\bigl[ 
\itg \itt +1,p\itt +1

\bigr] 
.

\psi  - 1
\bigl( \bigl[ 
\itg \itt +1,p\itt +1

\bigr] \bigr) 
=

\Bigl( 
\itq \itt +1, \itx \itt 

1 \cdot \cdot \cdot \itx \itt 
| \bfp \itt |  - 1z

\itt 
| \bfp \itt | 

\omega , | p\itt | + 1
\Bigr) 

=
\bigl( 
\itq \itt +1,x\itt +1 \omega ,\itn \itt +1

\bigr) 
= \alpha \itt +1

(6.265)

Note that \omega = \omega , because \omega is the smallest ordinal number.
The rest of the criteria can be read from the calculated

\bigl[ 
\itg \itt +1,p\itt +1

\bigr] 
h\itt +1
\itn \itt +1 = h\itt +1

| \bfp \itt | +1 = 1, (6.266)

h\itt +1

\itn \itt +1 - o\itt +1

\itn \itt +1

= h\itt +1

| \bfp \itt | +1 - o\itt +1

| \bfp \itt | +1

= h\itt +1
| \bfp \itt | +1 - 1 =  - 1, (6.267)

\forall \itj \in 
\bigl\{ 
1, ..., | p\itt +1| 

\bigr\} 
\setminus 
\Bigl\{ 

\itn \itt +1\underbrace{}  \underbrace{}  
=| \bfp \itt | +1

,\itn \itt +1  - o\itt +1
\itn \itt +1\underbrace{}  \underbrace{}  

=| \bfp \itt | 

\Bigr\} 
: h\itt +1

\itj = 0, (6.268)

\forall \itj \in 
\bigl\{ 
1, ..., | p\itt +1| 

\bigr\} 
: \Delta h\itt +1

\itj = 0 \wedge \Delta o\itt +1
\itj =  - 1 \wedge a\itt +1

\itj = 0, (6.269)

\Delta \itq \itt +1 = start. (6.270)

With this, we proved for all cases that the particle method can simulate each configuration
transition of the Turing machine. The final part is to prove that the particle method stops
if and only if the Turing machine halts.

\itf (\itg \itt ) = \top \updownarrow \itq \itt \in \{ \ita \itc \itc \ite \itp \itt , \itr \ite \itj \ite \itc \itt \} (6.271)

This is proven by
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\itf 
\bigl( 
\itg \itt 

\bigr) 
= \top (6.272)

\updownarrow q\itt \in \{ \ita \itc \itc \ite \itp \itt , \itr \ite \itj \ite \itc \itt \} (6.273)

\psi  - 1([\itg \itt ,\bfp \itt ])=\alpha \itt 

\leftarrow  -  -  -  -  -  -  -  -  - \rightarrow \itq \itt \in \{ \ita \itc \itc \ite \itp \itt , \itr \ite \itj \ite \itc \itt \} . (6.274)

6.5 Halting Decidability of Particle Methods

The halting problem is the question if algorithms halt for a given input. This question
is generally undecidable for Turing machines [84]. Since particle methods are also Turing
powerful (thms. 3, 4), the halting problem is, in general, also undecidable for particle
methods even if greatly restricted. Here we provide an answer to the question: Under
which conditions is the halting problem for particle methods decidable?

Theorem 5 (Halting decidability of particle methods under certain constraints). \itT \ith \ite 
\ith \ita \itl \itt \iti \itn \itg \itp \itr \ito \itb \itl \ite \itm \iti \its \itd \ite \itc \iti \itd \ita \itb \itl \ite \itf \ito \itr \itp \ita \itr \itt \iti \itc \itl \ite \itm \ite \itt \ith \ito \itd \its \itu \itn \itd \ite \itr \itt \ith \ite \itc \ito \itn \its \itt \itr \ita \iti \itn \itt \its :

\itF \iti \itr \its \itt , \itt \ith \ite \itn \itu \itm \itb \ite \itr \ito \itf \itp \ita \itr \itt \iti \itc \itl \ite \ita \itn \itd \itg \itl \ito \itb \ita \itl \itv \ita \itr \iti \ita \itb \itl \ite \itp \itr \ito \itp \ite \itr \itt \iti \ite \its \ita \itr \ite fi\itn \iti \itt \ite , \ita \itn \itd \ita \itl \itl \itp \itr \ito \itp \ite \itr \itt \iti \ite \its 
\ita \itr \ite \itf \itr \ito \itm fi\itn \iti \itt \ite \its \ite \itt \its . \itH \ite \itn \itc \ite ,

| \itP | <\infty , | \itG | <\infty . (6.275)

\itS \ite \itc \ito \itn \itd ,

\ite , \iti , \itu , \itf ,
\circ 
\ite \ita \itr \ite \itc \ito \itm \itp \itu \itt \ita \itb \itl \ite \itf \itu \itn \itc \itt \iti \ito \itn \its . (6.276)

\itT \ith \iti \itr \itd , \itt \ith \ite \ite \itv \ito \itl \itv \ite \itf \itu \itn \itc \itt \iti \ito \itn \iti \its \itn \ito \itt \ita \itl \itl \ito \itw \ite \itd \itt \ito \itp \itr \ito \itd \itu \itc \ite \itp \ita \itr \itt \iti \itc \itl \ite 

| 2\ite (\itg , \itp \itj )| \leq 1. (6.277)

Proof .
For all the following steps, the conditions that | \itP | and | \itG | are finite (6.275) are essential.

Since the interact function \iti is computable (6.276) and the initial particle tuple p1 is
finite ((3.8), def. 1), the first interact sub-function \iota \mathrm{I} (3.10) is computable.

The second interact sub-function \iota \mathrm{I}\times \mathrm{U} (3.11) is computable because the first interact
sub-function is computable, the neighborhood function is computable (6.276) and the
neighborhood size is finite ((3.3), def. 1).

The third interact sub-function \iota \mathrm{N}\times \mathrm{U} (3.12) is computable because the second interact
sub-function \iota \mathrm{I}\times \mathrm{U} is computable, and the initial particle tuple p1 is finite (3.8).

The first evolve sub-function \epsilon \mathrm{I} (3.13) is computable because the evolve function is
computable.

The second evolve sub-function \epsilon \mathrm{N} (3.14) is computable because the first evolve sub-
function \epsilon \mathrm{I} is computable and the initial particle tuple p1 is finite (3.8).

The step function \its (3.15) is computable because the third interact sub-function \iota \mathrm{N}\times \mathrm{U},

the second evolve function \epsilon \mathrm{N}, and the evolve function of the global variable
\circ 
\ite are com-

putable (6.276). To decide if a particle method state is a final state, the stop function \itf 
is needed. It is also computable (6.276), hence, decidable.
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The initial particle tuple p1 is finite (3.8) with a length of \itm 1 := | p1| and the evolve
function \ite can not produce particles (6.277). It is also the only place where particles can
be produced. Hence, the number of particles of the \itt -th particle methods step is always
smaller or equal to the previous step (\itm \itt +1 \leq \itm \itt ). From this, we can define the set of all
states that can be reached from an instance with \itm 1 = | p1| by

[\itG \times \itP \ast <\itm ] for \itP \ast <\itm :=
\itm \bigcup 
\itj =0

\itP \itj . (6.278)

From \itm 1 <\infty (3.8) and | \itP | and | \itG | are finite (6.275), follows that

\itM :=
\bigm| \bigm| \bigm| [\itG \times ,\itP \ast <\itm ]

\bigm| \bigm| \bigm| <\infty . (6.279)

Hence, there are only a finite set of reachable states. Therefore, after a maximum of \itM 
state transition steps, we know that either the states are repeating or the particle method
stops, i.e., it does not halt or halts. Conclusively, we can decide the halting problem for
particle methods under the conditions (6.275) to (6.277).

6.6 Conclusion

Our definition of particle methods is practically universal, as seen in chapter 4. Despite this
broad applicability, the theoretical limits of our particle methods definition were unclear.

Here we used automata theory to get insights into the theoretical power of particle
methods. We have proven Turing powerfulness under two mutually non-containing sets of
constraints and the halting decidability for one set of constraints.

The result that particle methods are Turing powerful, even if restricted, shows us
the considerable theoretical potential of particle methods. Even though it does not tell
how useful a specific particle method implementation of an algorithm is, we know we can
express any algorithm as a particle method. Showing that particle methods are Turing
powerful for mutually non-containing sets of constraints indicates that there is not one set
of maximal restrictions but multiple ways of restriction of particle methods that can not
be further restricted. The halting decidability gives us an idea under which conditions
particle methods are not anymore Turing powerful. We did not prove that the restrictions
we chose were tight. Hence, there may be more restrictive ones for Turing powerfulness
and less restrictive ones for halting decidability.

Finding more restrictive constraints under which particle methods are still Turing pow-
erful and less restrictive ones where particle methods are still halting decidable are topics
future work could address. For halting decidability, future work could also investigate
more practically relevant constraints. For example, many particle methods use counters
and fixed limits for these counters when to stop. This could be a starting point for more
practically relevant constraints.

Overall, this investigation regarding Turing powerfulness and halting decidability opens
up the discussion of the theoretical abilities and limits of our particle methods definition.
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Chapter 7

Particle Methods as a Basis for
Scientific Software Engineering

7.1 Introduction

We have shown that our definition of particle methods allows the formulation of a wide
range of algorithms (chapter 4) and the classification of particle methods in terms of
their parallelizability (chapter 5) and computational power (chapter 6). These are more
theoretical aspects of using our definition of particle methods. Therefore, they provide
little insight into whether our definition can be used to design and implement scientific
computing software and run algorithms on real computers.

We address this question by using our definition to design and implement a scientific
computing software prototype using the particle method algorithm and instance as an
interface. This allows generic parts of a particle method to be hidden from the user,
such as the search for the neighborhood of each particle and the execution of the state
transition function. We implement fast neighbor search methods for arbitrary-dimensional
meshes and free particles for one-sided and two-sided interactions, as well as the state
transition in its most general and hence, sequential form. We demonstrate the use of our
prototype exemplary for the SPH application (sec. 4.4), PSE application (sec. 4.3), and
the \itn -dimensional perfectly elastic collision algorithm (sec. 4.2), but the prototype is not
limited to these three examples. In addition, we validate the software, particularly the
runtime complexity concerning the fast neighbor access methods and the correctness of
the results.

We want to emphasize this prototype serves the purpose of illustrating the applicabil-
ity of our particle methods definition in software. Therefore, we did not implement the
parallelization schemes but focused on the structure of the software and kept it sequential.
A parallel version can replace the state transition in the future if desired.

The source code is available at:
https://git.mpi-cbg.de/mosaic/prototype-particle-methods-defintion-as-an-interface

https://git.mpi-cbg.de/mosaic/prototype-particle-methods-defintion-as-an-interface
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7.2 Design of the Prototype

Class Structure of the Prototype

The fundamental design of the prototype is illustrated in figure 7.1 as a unified modeling
language (UML) class diagram.

#evolve()
#interact()
#evolveGlobalVariable()
#neighborhood()
#stop()
+run()
-statetransition()

+concentration: T
+accumulator: T

+D: T
+h: T
+epsilon: T
+rc: T
+dt: T
+endT: T
+t: T

GlobalVariable
T: Type

Particle

+position: PM_Point

T: Class
dimension: Integer

Particle_Method

GlobalVariableT: Class
ParticleT: Class
T: Type
dimension: Integer

Base

GlobalVariable
T: Type

Particle

T: Class
dimension: Integer

Particle_Method

#evolve()
#interact()
#evolveGlobalVariable()
#neighborhood()
#stop()

T: Type
dimension: Integer

Diffusion_3D

<<bind>>
<GlobalVariableT → Diffusion_3D::GlobalVariable,

ParticleT → Diffusion_3D::Particle>

-ps: ParticleT[]*
-global: GlobalVariableT*

Figure 7.1: UML Class diagram of the base structure of the \itp \itr \ito \itt \ito \itt \ity \itp \ite and its application
within the three-dimensional diffusion algorithm based on PSE.

We encapsulated the data structures and functions in the namespace Base. The two
templated classes GlobalVariable Method and Particle define the data structures and
are mostly empty except for the position in Particle, which is necessary for the fast
neighbor access algorithms. The templated class Particle Method carries the bare bones
of the five functions of the particle method algorithm and all hidden functionality. The
hidden functionality is orchestrated by the run() method. It calls the appropriate fast
neighbor access methods and chooses the correct state transition implementation. In
addition, the function handles the neighbor search differently, whether ALL particles are
neighbors or just those in a cutoff radius, whether there are free particles or mesh particles.

The uses of this prototype are then done in separate namespaces. We chose as an exam-
ple the three-dimensional diffusion algorithm based on PSE (sec. 4.3). The user must cre-
ate three new classes. These classes are subclasses from the three base classes. In the data
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structure classes, the user adds the necessary properties. In the Particle Method class,
the user has to overwrite the functions evolve(), interact(), evolveGlobalVariable(),
neighborhood(), and stop() precisely as described in the particle method algorithm ex-
cept for neighborhood() due to the neighborhood access optimizations. Suppose the
user decides not to overwrite certain functions. In that case, the prototype accounts for
that and treats them respectively as identity functions, empty neighborhood, or stop after
only one state transition step. The user needs to define the instance in addition to that
separately and executes the particle method by calling the run() method on the instance.

Code examples

We show code examples to highlight our prototype's basic functionality and use. First,
starting from the generic state transition function implementation, going over the user-
defined particle method algorithm code to the user-defined instance of the particle method
algorithm. For demonstration, we use the n-dimensional collision (sec. 4.2).

The generic state transition function is implemented into two functions the run() and the
statetransition() function.

1 void run()--

2 neighborhood(global);

3 if(neighborhoodTyp ==MESH) create\.stencil\.by\.cutoff ();

4 stop(global);

5 if (stopTest)--

6 while (!stop(global))--

7 statetransition ();

8 \H 

9 \H 

10 else --

11 statetransition ();

12 \H 

13 \H 

Listing 7.1: State transition from the initial state to the finale state

The run() function coordinates the statetransition() function. In case the stop()

function is not implemented/ overwritten by the user, the statetransition() function
is called just once.

The function statetransition() calculates one state transition step and reads like
this:

1 void statetransition ()--

2 // interaction loop

3 if (neighborhoodTyp !=NONE) --

4 if (neighborhoodTyp ==FREE) create\.cell\.list ();

5 if (neighborhoodTyp ==FREE ------ neighborhoodTyp ==MESH)--

6 for (index\.I =0; index\.I !`ps.size(); index\.I ++)--

7 fill\.neighborhood(index\.I);

8 for (int j=0; j!`neighbors.size(); j++)--

9 index\.J=neighbors[j];

10 interact (global , ps[index\.I],ps[index\.J ]);
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11 \H 

12 \H 

13 \H 

14 else if (neighborhoodTyp ==ALL)--

15 for (index\.I =0; index\.I !`ps.size(); index\.I ++)--

16 for (index\.J =0; index\.J !`ps.size(); index\.J ++)--

17 interact (global , ps[index\.I],ps[index\.J ]);

18 \H 

19 \H 

20 \H 

21 \H 

22 // evolution Loop

23 if (evolveTest)--

24 for (index\.I =0; index\.I !`ps.size(); index\.I ++)--

25 evolve(global , ps[index\.I ]);

26 \H 

27 \H 

28 // evolution of the global variable

29 evolveGlobalVariable(global);

30 \H 

31 ``texttt--statetransition ()\H 

The statetransition() function handles the transition from one state to the next state
and follows the state transition step definition (def. 17). However, this prototype supports
some acceleration techies for the neighbor search. The function accounts for this and
handles the neighbor search differently, whether ALL particles are neighbors or just the
ones in a cutoff radius are neighbors, whether there are free particles or mesh particles.

The run() and the statetranstion() function are neither seen nor touched by the
user. Instead, the user must define only a particle method and the instance.

The particle method algorithm is implemented, for instance, like this:

1 template !`typename T, int dimension ?`

2 class Particle\.Method : public Base:: Particle\.Method !`

GlobalVariable !`T?`, Particle !`T,dimension ?`, T, dimension ?`--

3 public:

4 using Base:: Particle\.Method !`GlobalVariable !`T?`, Particle !`T,

dimension ?`, T, dimension ?`:: Particle\.Method;

5
6 protected:

7 bool stop(const GlobalVariable !`T?`\& g)override--

8 return (g.endT !`g.t);

9 \H 

10 void neighborhood(const GlobalVariable !`T?`\& g) override--

11 this -?`cutoffRadius=g.rc;

12 this -?`symmetricInteract=true;

13 this -?`neighborhoodTyp=Base::FREE;

14 \H 

15 void interact(const GlobalVariable !`T?`\& g, Particle !`T,dimension

?`\& p, Particle !`T,dimension ?`\& q)override--

16 PM\.Point !`T,dimension ?` diff =q.position -p.position;

17 diff =diff/diff.abs2()*(diff*(q.velocity -p.velocity));

18
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19 p.velocity +=diff;

20 q.velocity -=diff;

21 \H 

22 void evolve(GlobalVariable !`T?`\& g,Particle !`T,dimension ?`\& p)

override--

23 p.position +=g.dt*p.velocity;

24 \H 

25 void evolveGlobalVariable(GlobalVariable !`T?`\& g)override--

26 g.t +=g.dt;

27 \H 

28 \H ;

The Particle Method class is the template for the functions of the particle method al-
gorithm. The global variable and particle structure definition happen in separate classes.
These two classes contain only the respective properties except the position. The posi-
tion is predefined. In the here presented example, the Particle Method class contains
the implementation of all functions for the n-dimensional collision. Except for the neigh-
borhood function, the code resembles exactly the formulation from the section 4.2. For
example, the evolve function \ite adds in the formulation the motion to the position of each
particle (\itx \itj + \Delta \itt \itv \itj ) in the implementation, it is the same and reads like p.position

+=g.dt*p.velocity;, which is essentially identical. In the code, it is not necessary to
mention the not changed properties. The neighborhood function differs due to the neigh-
borhood access optimizations.

7.3 Applications, Comparisons, Convergence Study, and
Run-time Evaluations

We demonstrate the use of our prototype exemplarily for SPH (fig. 7.2a), PSE (fig. 7.2b),
and the \itn -dimensional perfectly elastic collision (fig. 7.2c) algorithms. We have also tested
the software to ensure it works as expected. Therefore we compared our prototype to native
C++ implementations, did a convergence study, and conducted two run-time evaluations.

The demonstration applications are exactly the formulations from chapter 4, i.e., SPH
(sec. 4.4), PSE (sec. 4.3), and \itn -dimensional perfectly elastic collision (sec. 4.2). They
cover both continuous (SPH, PSE) and discrete (elastic collision) models, with free parti-
cles (SPH, elastic collision) and mesh-based (PSE). Hence, they demonstrate the variety
of particle methods and this prototype.
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(a) Fluid dynamics simulation using SPH to solve the standard ``dam break"" test case. Individual
simulation particles are visualized as blue balls, while purple balls make up the walls of the container
(front wall clipped for visualization).

(b) Diffusion simulation of a Gaussian pulse using PSE in
3D (domain clipped to half for better visualization).

(c) Perfectly elastic collision simula-
tion of three hard spheres with ve-
locity vectors shown by black ar-
rows.

Figure 7.2: Experiments with our prototype software (visualized using ParaView [85])

For the comparison to native C++, we implemented the perfectly elastic collision
(sec. 4.2) and the 3D diffusion application in native C++. Then we calculated the
difference to our particle methods implementation. The results are identical. Note that
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we simulated an example with three balls that do not interact simultaneously (i.e., no
three-way collisions). This is to ensure the result is independent of the indexing order of
the particles, which is not preserved in a fast neighbor search algorithm. Since we use
the native C++ implementation to validate the correctness of our implementation, we
deliberately kept it as simple as possible to exclude implementation mistakes. Therefore,
it does not use any fast neighbor search acceleration. The native C++ implementation
without fast neighbor search acceleration also serves as a baseline for the time complexity
test to show that our fast neighbor search implementation accelerates the computation.

For the convergence study, we tested the PSE (sec. 4.3) approximation of the second
derivative of a sine function in 1D using a second-order accurate kernel function. The
analytical solution of the second derivative of sin(\itx ) is  - sin(\itx ). We tested for different
grid (or particle) spacings. Then, using the analytical solution, we plotted the error.
The solution converges with decreasing inter-particle spacing with a second order to the
analytical solution until the errors from finite-precision arithmetic start to dominate at
around 10 - 8, as expected [79].
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(a) Convergence study of PSE with second-order
kernel
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(b) Run-time for PSE in our framework and na-
tive C++ for different numbers of particles.
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(c) Run-time for perfectly elastic collision in our
framework and native C++ for different numbers
of particles.

Figure 7.3: Validation plots.
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The run-time evaluations consider the PSE and the perfectly elastic collision imple-
mentations from our prototype and native C++. We see for the implementation in our
prototype that we have a linear run-time complexity concerning the number of particles,
while it is quadratic for the native C++ implementation without fast neighbor search, as
expected.

All tests can be found in the source code.

7.4 Conclusion

We have shown that our definition of particle methods allows the formulation of a wide
range of algorithms (chapter 4) and the classification of particle methods in terms of
their parallelizability (chapter 5) and computational power (chapter 6). These are more
theoretical aspects of using our definition of particle methods. Therefore, they provide
little insight into whether our definition can be used to design and implement scientific
computing software and run algorithms on real computers.

In this chapter, we address this gap by presenting the design and implementation of a
scientific computing software prototype where the particle method algorithm and instance
are used as an interface. We also showcased its applicability to three applications of
the chapter 4, i.e., perfectly elastic collision (sec. 4.2), PSE (sec. 4.3), and SPH (sec.
4.4). Finally, based on these applications, we tested the prototype against native C++
implementations to compare the results and evaluate the convergence and runtime. With
the result, the prototype behaves as expected.

Since the prototype servers only the purpose of evaluating the practical usability of
our definition in software, we did not optimize the runtime as can be seen in the first
data points in the figure 7.3b and 7.3c before the fast neighbor access made it at some
point faster. If desired, the runtime can be improved by optimizing the state transition
implementation, which impacts all applications. This is possible because the prototype
takes advantage of the structure of our definition and hides more complex algorithms from
the user in the background, e.g., the state transition function and fast neighbor search.
The structure of our definition is based on the principle of the separation of concerns.
This allows for implementing particle methods algorithms directly as they are formulated
with pen and paper. Furthermore, the separation of concerns allows the reuse of the
algorithms for different instances by only swapping the instance. Despite their interest,
we also did not implement the parallelization schemes. However, since already advanced
parallelization libraries exist, like OpenFPM [43], we decided to implement our definition
of particle methods as an interface for one of them in future work.

Future work could also leverage the design of the presented prototype to better struc-
ture software frameworks for particle methods, such as the PPM Library [77], OpenFPM
[43], POOMA [75], or FDPS [44]. This would render them more accessible and main-
tainable, as the formal definition provides a common vocabulary. Furthermore, our defi-
nition enables the classification and comparison of software frameworks concerning their
expressiveness, coverage of the definition, or optimization toward specific classes of par-
ticle methods using the parallelizability results (chapter 5). The separation of concerns
built into the prototype allows extending it to approaches for systems of particle methods,
where multiple particle methods are used to solve or simulate a more extensive applica-
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tion. Further work could use theoretical insights like the constraints for parallelizability to
guide the implementation process in the form of a compiler for a domain-specific language,
which could potentially compile down to a particle methods interface like the one of our
prototype.

In summary, the presented prototype for implementing particle methods is a first step
toward a sound and formal understanding of how generic frameworks can be designed
and implemented for particle methods. It also provides practical software implementation
guidance and enables comparative evaluation regarding performance and readability.
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Chapter 8

Results, Discussion, Outlook, and
Conclusion

8.1 Problem

Mathematical definitions provide a precise, unambiguous way to formulate concepts.
Hence, they provide a common language, thus the basis for a well-founded scientific dis-
cussion. By providing a common language, mathematical definitions help bridge the gap
between different scientific disciplines and allow for deeper insights into the defined subject
based on mathematical theorems. Especially in computer science, mathematical defini-
tions are extremely valuable. For example, they help derive the expected behavior of a
computer program, such as the convergence rate of a numerical solver or an algorithm's
time and space complexity. Together, mathematical definitions form the basis for in-
formed scientific discussions in computer science and help design and implement advanced
algorithms.

One of the classic and widely used classes of algorithms in computational science is
particle methods. They are used in a wide range of fields such as plasma physics [40],
computational fluid dynamics [17, 20], image processing [11, 1], computer graphics [36],
and computational optimization [38, 63]. In addition to their versatility, particle methods
can efficiently be parallelized on shared- and distributed-memory computers [48, 43, 77,
44, 75]. Furthermore, they simplify simulations in complex [78] and time-varying [5]
geometries, as no computational mesh needs to be generated and maintained. Despite the
structural similarities of all these algorithms and methods, there is no consensus on what
constitutes particle methods and if the methods discussed before are all particle methods.
Overall, particle methods are a widely used, parallelizable collection of loosely connected
methods with a rich theory due to decades of advances but lack a unifying mathematical
definition with precisely defined terminology.

8.2 Results

In this thesis, we addressed the lack of a unifying mathematical definition of particle
methods by formulating a mathematical definition of the particle-based class of algorithms.
Thereby, the presented definition unified the so far loosely connected notion under the term
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\itp \ita \itr \itt \iti \itc \itl \ite \itm \ite \itt \ith \ito \itd \its and enabled joint formal investigations across methods.
To this end, we presented a general mathematical definition of particle methods based

on the commonly used terms and their usual way of implementation (chapter 3). Hence,
the proposed definition highlights the algorithmic commonalities across applications, en-
abling a sharp classification of particle methods.

Our definition unifies particle methods and allows the formulation of particle meth-
ods for non-canonical algorithms (chapter 4). We showcased that by formulating classic
particle methods such as SPH, PSE, MD and DEM, and other algorithms not generally
recognized as particle methods. As examples in this regard, we considered triangulation
refinement, Conway's game of life, and Gaussian elimination.

Further, we analyzed the parallelizability of our definition of particle methods for
shared- and distributed-memory parallel computers (chapter 5). We provided a shared-
and a distributed-memory parallelization scheme independent of specific applications. We
proved the correctness of the presented parallelization schemes by showing equivalence to
the sequential particle methods definition under certain assumptions, which we also defined
and listed. Finally, we derived upper bounds on the time complexity of the proposed
schemes executed on both sequential and parallel computers, and we discussed the parallel
scalability limits.

We also investigated the limits of the computational power of our particle methods
definition (chapter 6). Therefore, we have proven Turing powerfulness under two mutually
non-containing sets of constraints. For a more restrictive set of constraints, we proved the
decidability of the halting problem for particle methods and, thus, the loss of Turing
powerfulness.

In addition to the theoretical analysis, we demonstrated the practical applicability of
the definition as an interface for scientific computing software (chapter 7). We designed,
implemented, and tested a running prototype, where our definition serves as an interface.
The prototype hides the generic parts of a particle method from the user, such as finding
the neighborhood and running the state transition function. We showcased its use by
implementing and executing examples from SPH, PSE, and DEM.

8.3 Discussion

We formulated the presented definition in the most general way to encompass everything
that is termed ``particle method"". However, most practical instances do not exploit the
full generality of the definition. We chose the presented formulation for its structural
similarities to practical implementations and its separation of concerns. The most signif-
icant impact on the separation of concerns was the choice to split particle methods into
three constituents, a particle method algorithm, a particle method instance, and a particle
method state transition function.

The particle method algorithm contains all user-defined data structures and functions
to describe an algorithm as a particle method independent of a specific problem. The par-
ticle methods instance defines the specific problem defined by the initial global variable
and the initial particle tuple. The particle method state transition function is the ``engine""
of particle methods. It is not user-defined and, therefore, identical for all particle meth-
ods. It calculates from the particle method instance and algorithm the particle method's
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final state. We designed the particle method state transition function to be sequential
to incorporate as many algorithms as possible. This choice renders the state transition
function most general.

To render the structure of the particle method algorithm to be as general as possible,
we designed it to consist of two data structures and five functions. Not all of these data
structures and functions are strictly necessary, but they all have a purpose.

We now proceed to take a closer look and discuss their purpose. The first data structure
is a particle. The structure of the particle space follows directly from the observation that
in any particle method, the particles are points in some space that carry/store some
properties, like a color, a velocity, an acceleration, a Boolean flag, a position in some
space, etc. Most particle methods treat the position separately from the other properties.
We decided to integrate the position as one possible property because not all particle
methods have a position. If they have a position, it can be from various spaces with
method-dependent treatment. By integrating it as one possible property, our definition
can capture a wider variety of methods.

The second data structure is the global variable. We chose to introduce a global
variable accessible throughout the particle method, despite being unnecessary from the
perspective of the computational power. But it simplifies the formulation of many particle
method algorithms by encapsulating simulation properties that are not specific to a par-
ticle. Hence, the global variable complicates the definition but improves readability and
implementation efficiency.

The first function is the interact function. It is one of the two crucial functions. It is in
some form part of most canonical particle method algorithms. It specifies how two particles
interact, so it is restricted to pairwise interactions. Higher-order interactions, e.g., three-
body interactions, can be realized by multiple pairwise interactions. The interact function
can change both particles. This provides a potential performance advantage in cases of
symmetric interactions. In symmetric interactions, the absolute value of the change of
both particles is identical.

The second function is the neighborhood function. We introduced this function to
reduce computation. Suppose the number of contributing interactions is low compared to
all particles. In that case, the neighborhood function helps reduce the computation by
returning the indices of only those interaction partners contributing to the result. However,
a neighborhood does not need to be defined geometrically but can be an arbitrary set of
particle indices to incorporate all kinds of neighborhoods, like adjacencies in graphs. We
chose that the neighborhood function operates on particle indices instead of particles
directly because an index is an element's unique identifier in a tuple. Besides, indices
provide stable identifiers of particles throughout the whole interaction phase. They remain
the same, while the particle itself may change.

The third function is the evolve function. It is the second crucial function. In most
canonical particle method algorithms, it takes part as ``motion"". But in our definition,
it has a much broader purpose. It changes the properties of a particle due to its own
properties and the global variable. Since it is called after all interactions are done, it
provides a place to update properties that need to stay constant during all interactions or
to reset properties that serve as temporary accumulators during the interactions. It is also
the place to implement autonomous dynamics, i.e., dynamics that do not depend on other
particles' properties. The evolve function can also change the global variable, for instance,
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to implement global reduction operations like summing a property over all particles. The
result of the evolve function consists, besides the global variable, of a tuple of particles.
Hence, it is the only place where particles can be created or destroyed. This behavior is
needed by many methods, e.g., in population dynamics simulations or adaptive-resolution
methods for continuous models [72].

The fourth function is the evolve function of the global variable. It changes the global
variable based only on the current value of the global variable. We chose to have this
function to make changes to the global variable simple. The only other place to change
the global variable is the evolve function of the particles. Without the evolve function of
the global variable, it would be challenging to prevent multiple evolutions of the global
variable.

The fifth and last function is the stopping function. It is designed to only depend
on the global variable. However, this is not limiting since every particle can change the
global variable in the evolve method. Hence, each particle can influence the outcome of
the stopping condition.

Together, the chosen structure of particle methods provides separation of concerns
while keeping its structure similar to classic particle methods implementations.

These similarities are shown by the easy applicability of canonical applications like
DEM (sec. 4.2), SPH (sec. 4.4), MD (sec. 4.5), and PSE (sec. 4.3). Also, Conway's game
of life (sec. 4.7) fits perfectly into our definition. But, not all algorithms naturally fit into
the definition. The formulation of the triangulation refinement (sec. 4.6) as a particle
method was challenging, but by choosing to identify a triangle as a particle instead of
vertices and edges, it fitted well into the structure. Despite these applications, a particle
method could potentially have a worse time- and space-complexity than a non-particle
algorithm, especially for non-canonical problems but also for algorithms where only a part
of the particles are active, like for the treatment of boundary conditions. Also, Gaussian
eliminations (sec. 4.8) tends in this direction. It turned out to be challenging to translate
it into our definition and is less efficient since most particles are inactive throughout the
interaction and evolution phase even though the time complexity is the same (\scrO (\itn 3) for
\itn being the number of unknowns) since the difference is only in the prefactor.

Further, our definition is limited by its monolithic nature. An algorithm composed
of smaller algorithms could become very large and complex with several nested cases
when explicitly formulated in our definition. This tendency is already visible in the SPH
example (sec. 4.4), but it could get worse. For instance, a vortex-method-based solver
for the two-dimensional incompressible Navier-Stokes equation [21] would get huge. If
considering the three terms, material derivative, vertex stretching, and vorticity diffusion
are not zero, then the algorithm would consist of the calculation of the curl of the vorticity,
the calculation of velocity from the curl of the vorticity by a Poisson solver, diffusion of
the vorticity, time integration of the vorticity, advection of the particles, and interpolating
the vorticity back on to the grid. These steps are consecutively calculated and can be
addressed by a variety of algorithms. Even though we did not mention the boundary
treatment between these calculations, it is clearly not desirable to integrate such extensive
algorithms into a single particle method despite it being possible.

Since our definition is not unique, an alternative definition or an extension of our
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definition might handle algorithm compositions more elegantly. Also, more expressive or
compact but equivalent definitions are possible. We chose the presented formulation for
its structural similarities to practical implementations. Notwithstanding these limitations
and alternatives, the presented definition established a rigorous algorithmic class that
contrasts the so far loose and empirical notion of particle methods in practice. This
rigorousness paved the way for further research both in the theoretical and algorithmic
foundations of particle methods and the engineering of their software implementation.
We explored three application areas of the presented definition: its parallelizability,
computational power, and capacity in scientific software engineering.

The presented parallelization schemes (chapter 5) are not novel, and they are, in fact,
similar to what is commonly implemented in software, but in contrast to most other
parallelization schemes, they are formulated such that they are independent of specific ap-
plications. Therefore, our analysis is of immediate practical relevance for general-purpose
particle methods frameworks, even for critical applications, as the proofs guarantee cor-
rectness.

A limitation of the proposed schemes is that they assume only pull interactions be-
tween the particles. This neglects the potential runtime benefits and versatility of sym-
metric interaction evaluations as we used them in the SPH applications (sec. 4.4) and
implementation (chapter 7) to save almost half of the computation compared to a pull
interaction formulation, because the absolute values of the changes in the interaction are
identical for all properties. However, pull interactions are suitable for more computer
architectures, especially in a shared-memory setting, which could allow for combining the
distributed scheme with the shared-memory scheme. In the distributed-memory scheme,
pull interactions also reduce communication since only particles in the center cell of a pro-
cess are changed. They do not need to be communicated back, as would be the case for
push or symmetric interactions, which also change copies of particles from other processes
[77]. We also restricted the neighborhood function such that the cell-list strategy became
applicable. This limits the expressiveness of the particle method but allows the efficient
distribution of moving particles. Further, the constraint that particles are not allowed
to leave the domain keeps domain handling simple. Otherwise, cells would dynamically
need to be added or removed as necessary, resulting in a much more complex and dynamic
mapping of cells to processes. We also restricted particles to not moving further than the
cutoff radius in a single state iteration or time step of the algorithm. Since the cutoff
radius determines the smallest possible cell size, and individual cells cannot be split across
multiple processes, this guarantees that processes only need to communicate with their
immediately adjacent neighbors. In practice, this constraint can be relaxed. Additionally,
we restricted the global variable only to be changed by the evolve function of the global
variable and not by the evolve function of any particle. Therefore, no global operations
are allowed where global variable changes require additional synchronization. Still, global
variable changes can be independently computed locally, keeping them in sync without
communication. Finally, the time complexity of the checkerboard-like communication
scheme does not have an optimal pre-factor, leaving many processes inactive. Neverthe-
less, it scales linearly with the number of processes and abstracts the internal scheduling
of the network sub-system, providing at least a bound on the scalability and permitting
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correctness proofs.
Despite these limitations, with their proof of equivalence to the sequential particle

methods definition, the present parallelization schemes stand in contrast with the mainly
algorithm-specific or empirically tested parallelization schemes used so far. Our formal
analysis shows the way for future research into the theory of parallel scientific simulation
algorithms and the engineering of provably correct parallel software implementations
independent of specific applications.

The result that particle methods are Turing powerful, even if restricted, underscores
the considerable theoretical potential of particle methods. Even though it does not tell how
practical a specific particle method implementation of an algorithm is, we know that we
can express any algorithm as a particle method. Proving that particle methods are Turing
powerful for mutually non-containing sets of constraints shows that there are different ways
of constraining particle methods without losing the Turing powerfulness. This indicates
that the question after the most restricted particle method that is still Turing powerful
might not have a unique answer.

The proof that the halting problem is decidable for particle methods if suitably
restricted unveils the limits of the Turing powerfulness of our particle methods definition.
We did not prove that the restrictions we chose were tight. Hence, there may be more
restrictive ones for the Turing powerfulness and less restrictive ones for the halting
decidability.

The software prototype showcases the potential benefits of a general definition
of particle methods, even though it is a partially developed software. The software
prototype interface is almost identical to the particle method algorithm structure. It has
the two data structures, the five functions, and the separation of instance, algorithm, and
state transition. Therefore, the separation of concerns from the definition structure is
maintained on a high level. The most significant difference in the structure, despite that
the user has to program in C++ instead of writing formulas is that the neighborhood
function contains the general setting for the prototype since these are related to the
neighbor search. Further, the prototype shows how one can take advantage of the
structure of the definition. It hides the more complex generic algorithms from the user,
e.g., the state transition function and fast neighbor search. The implementation of the
prototype is not optimized with respect to performance. As a result, we see a clear
overhead in the runtime comparison tests. Since performance was not the prototype's
scope, we did not invest in its optimization and testing. If desired, the runtime can be
improved by optimizing the state transition implementation, which would directly impact
all applications. Also, we did not implement any parallelization scheme, although we in-
vestigated them (chapter 5). Regardless of these limitations, the prototype shows how our
definition can serve as an interface for a scientific simulation software framework, where
it is almost possible to translate a particle method formulation one to one into the software.
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So far, we have discussed the theoretical results and the practical implementation, pre-
tending there is a simple translation between the two. However, this assumption neglects
that computers work with finite-precision arithmetic, while applications are often designed
with integer, rational, or real numbers. Integer, rational, or real numbers can be infinite
in size and precision. However, their closest relatives in finite-precision arithmetic, the in-
tegers, and floating point numbers, are finite in size and precision, leading to discrepancies
in the laws they follow. For instance, the addition and multiplication for integer, rational,
or real numbers are commutative, associative, and distributive, but we lose the associative
and distributive law in finite-precision arithmetic. This could result in a potential loss of
order independence of the interact function of our definition. Order independence of the
interact function is required in the parallelization scheme for distributed-memory systems
(sec. 5.3), which is, in that case, formally not applicable anymore. But it gets theoreti-
cally worse, while integer and rational numbers are still commutable, this is not true for
all real numbers, for instance, the Chaitin omega number [14]. However, in practice, such
numbers appear almost never.

For our definition of particle methods, this means that the applications have, in theory,
different results than in practice. This is very prominent in chaotic systems, where small
perturbations can result in a vastly different outcome, like the passive double pendulum
[54] or perfectly elastic collision of many balls (sec. 4.2). Using finite-precision arith-
metic effectively rounds values. Hence, it introduces small perturbations. These small
perturbations not only influence chaotic systems but also cause not desired behavior of a
more stable system. For instance, the finite-precision arithmetic induced error can grow
arbitrarily big in PSE. We can see this in the convergence study of PSE (fig. 7.3a), where
the error gets bigger for smaller particle spacing. This error grows with second order
and comes from dividing by the square of the particle spacing related parameter \epsilon . This
scales the almost machine precision small error to approximately \mathrm{m}\mathrm{a}\mathrm{c}\mathrm{h}\mathrm{i}\mathrm{n}\mathrm{e} \mathrm{p}\mathrm{r}\mathrm{e}\mathrm{c}\mathrm{i}\mathrm{s}\mathrm{i}\mathrm{o}\mathrm{n}

\epsilon 2
. Many of

these finite-precision arithmetic induced errors are investigated [61, 27], and some can be
addressed [6, 47]. But the impact of finite precision arithmetic on the particle methods
theory, and whether there can be investigations across particle methods in this regard,
needs to be addressed in future work.

8.4 Outlook

Further, future work could develop a less monolithic definition that would allow modular
combinations of different particle methods. While this could lead to a formulation that can
potentially be exploited directly in software engineering or the design of domain-specific
programming languages for particle methods [48, 50], one would first need to solve some
theoretical problems: How can different types of particles from different methods interact,
e.g., during interpolating stored values from one set of particles to another? How can access
be restricted to a particle subset, e.g., for boundary conditions? Solving these problems
might lead to additional data structures or functions in the presented definition. These
new formulations must be supported by applications leveraging the new data structures
and functions. But also, for the presented definition of particle methods, the applications
could be expanded, especially in the direction of non-canonical fields, to clarify further
the practical abilities and limitations of the presented definition. Also, multiple different
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formulations of the same classical particle method in our definition can help to identify
advantageous properties of specific formulation strategies.

Future theoretical work could optimize the presented schemes for computer architec-
tures with parallel or synchronously clocked communication and computation. Global
operations could also be allowed, and the checkerboard-like communication pattern of the
shared-memory scheme could be relaxed, leading to an improved scalability prefactor (up
to 26-fold in three dimensions). Also, the network topology of the machine's interconnect
could be explicitly incorporated into the parallelization scheme. Furthermore, proofs for
push, symmetric, and no interaction schemes could be beneficial for specific use cases, as
well as combining parallelization schemes for shared and distributed memory to match the
heterogeneous architecture of modern supercomputers better.

For the computational power, future work could find more restrictive constraints under
which particle methods are still Turing powerful and less restrictive ones, where particle
methods are still halting decidable. For halting decidability, future work could also in-
vestigate more practically relevant constraints. For example, many particle methods use
counters and fixed stopping limits for these counters. This could be a starting point for
more practically relevant constraints.

On the software engineering side, future work could leverage the presented paralleliza-
tion schemes and proofs to design a new generation of theoretically founded software
frameworks. As a result, they would potentially be more predictable, suitable for security-
and safety-critical applications, and more maintainable and understandable as they would
be based on a common formal framework [76]. Future work can also leverage the presented
prototype's interface to better structure software frameworks for particle methods, such
as the PPM Library [77], OpenFPM [43], POOMA [75], or FDPS [44]. This would render
them more accessible and maintainable, as the formal definition provides a common vo-
cabulary. Furthermore, the presented definition (chapter 3) enables the classification and
comparison of software frameworks concerning their expressiveness, coverage of the defini-
tion, or optimization towards specific classes of particle methods using the parallelizability
results (chapter 5).

8.5 Conclusion

Formal definitions reveal the concepts upon which a method is founded, and they ren-
der it possible to rationalize the fundamental characteristics of a method. The presented
definition of particle methods is the first necessary step toward a sound and formal under-
standing of what particle methods are, what they can do, and how efficient and powerful
they can be. The present applications show the unifying nature of our formal particle
methods definition and its applicability not only to classical particle methods. Moreover,
these examples broaden the view toward applications for particle methods far beyond the
scope of classic particle methods. Hence, our definition provides a new way of comparing
and relating algorithms from different fields in a common language. On the other hand,
the investigation regarding Turing powerfulness and halting decidability opens up the
discussion of the theoretical abilities and limits of our particle methods definition. This
discussion leads to entire classes of particle methods in terms of their computational power
and provides a means to determine the expressiveness of certain constraints. Another angle
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to classify particle methods is regarding their parallelizability. We presented and proved
parallelization schemes applicable to whole classes of particle methods. These classes are
determined by the restrictions a particle method has to fulfill to be applicable to these
schemes. These schemes parallelize particle methods on shared- and distributed-memory
systems with full knowledge of their validity, performance, and assumptions. Furthermore,
we proved that they compute the same result as the underlying sequential particle method.
Therefore, using them in a general framework for particle methods is suitable, even for
critical computations, since the proofs guarantee that the parallelizations do not change
the results. The parallelization schemes thereby mark the starting point of a well-founded
discussion about the parallelization of particle methods independent of specific applica-
tions. Lastly, we designed and developed a scientific simulation software prototype based
on our particle methods definition. We hid generic elements like the state transition from
the user and used the structure of the definition as an interface for the prototype. This
interface approach renders the translation process from the pen-and-paper formulation of
a particle method into software straightforward and fast. Further, the presented prototype
for implementing particle methods is a first step toward a sound and formal understanding
of how generic frameworks can be designed and implemented for particle methods. It also
provides practical software implementation guidance and enables comparative evaluation
on common grounds.

Ultimately, we formulated in this thesis a mathematical definition of the algorithmic
class of particle methods. This definition unified, for the first time, the so far loosely
connected notion. Thus, it marks the necessary starting point for a broad range of joint
formal investigations and applications across fields.
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