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Problem

Operating a modern windturbine requires control systems that adjust the wind 
turbine parameters to the operating situation. The load controller is a particularly 
complex control system, as it adjusts the large, inert rotor and generator to the 
dynamics of the incoming wind situation with split-second accuracy. Load 
controllers for wind turbines are typically based on a PID-controller or an 
equivalent linear mechanism. Currently, load controllers typically operate with 4 
output signals (3 blade pitches, generator torque) and 4 input signals (blade 
bending moments, rotor speed). However, current research in wind turbines 
requires a higher number of outputs through the integration of active flow 
control elements on the wing and a higher number of inputs through integration 
of advanced sensors such as LIDAR [1]. Designing linear control systems for such 
a high dimensional task is difficult, thus adopting a more powerful framework for 
control becomes relevant. Reinforcement learning has proven capable at solving 
high-dimensional control problems, which potentially makes it a suitable 
candidate for the next generation of wind turbine load controllers.

Results

In the steady wind, a control policy similar to the 1p-2p-3p controller [4] emerges 
from the training, which beats both baseline controllers in terms of blade fatigue 
loads measured in DEL. Also in the turbulent wind, blade fatigue- and extreme 
loads are lower across the entire operating range for load controllers. In both 
scenarios, WINDL exhibits higher pitch bearing fatigue loads and shows a slight 
asymmetry between the blades.

Method

We present WINDL, a method for training a model-free reinforcement agent as a 
load-controller. In our work, we use the algorithm SAC [2] adjusted with a 
smoothness regularizer to learn an assistive control policy for the wind turbine 
simulated in QBlade [3]. As large-scale grid-searching was required, we develop a 
distribution framework tailored to the requirements of the expensive simulation 
and the Lise HPC. By Coleman-transforming the inputs and outputs, the controller 
can learn a rotation-invariant policy. Further transformations, normalizations 
and a novel frame-stacking technique are used to satisfy environment 
requirements of the algorithm. To aid training, we employ a surrogate reward
function that is dense, more convex and closely related to the true optimization 
goals of fatigue- and extreme-load reductions.

Aim

Evaluate the use of reinforcement learning to train a wind turbine load controller
• in an idealized steady wind situation
• in a turbulent wind situation
Compared to two baselines
• Collective Pitch Controller (CPC)
• Individual Pitch Controller (IPC)

Conclusion

We show that reinforcement-learning can match or exceed the performance of 
traditional control systems. It can easily balance between multiple optimization 
goals and scale to more inputs and outputs than traditional control. Combining this 
work with safety guarantees likely yields a capable and industry-ready control 
framework for future generations of wind turbine load controllers and follow-up 
work in this topic is recommendable.
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Figure 2: Closed-loop control with WINDL includes the QBlade simulation, Coleman-transforming 
preprocessor, a smooth reinforcement learning agent and Coleman-backtransforming postprocessing

Figure 1: Schema of a wind-turbine with named components

Figure 4: Both in turbulent wind and in steady wind, WINDL exhibits lower blade fatigue loads than 
baselines

Figure 4.1: Blade DELs in turbulent wind, lower 
is better

Figure 4.2: Blade DELs in steady wind, lower is 
better

Figure 3: In the steady wind, a 1p-2p-3p controller emerges from the training.  

Figure 3.1: PSD-plot of WINDL and IPC pitch activity Figure 3.2: PSD-plot of 1p-2p-3p and 1p IPC pitch 
activity from [4]
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