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Abstract

The complexity of computer networks has been rising over the last decades. Increasing
interconnectivity between multiple devices, growing complexity of performed tasks and a
strong collaboration between nodes are drivers for this phenomenon. An example is rep-
resented by Internet-of-Things devices, whose relevance has been rising in recent years. The
increasing number of devices requiring updates and supervisionmakesmaintenancemore
dicult. Human interaction, in this case, is costly and requires a lot of time. To overcome
this, self-adaptive software systems (SAS) can be used. SAS are a subset of autonomous
systems which can monitor themselves and their environment to adapt to changes with-
out human interaction. In the literature, dierent approaches for engineering SAS were
proposed, including techniques for executing adaptations on multiple devices based on
generated plans for reacting to changes. Among those solutions, also decentralised ap-
proaches can be found. To the best of our knowledge, no approach for engineering a SAS
exists which tolerates errors during the execution of adaptation in a decentralised setting.
While some approaches for role-based execution reset the application in case of a single
failure during the adaptation process, others do not make assumptions about errors or
do not consider an erroneous environment. In a real-world environment, errors will likely
occur during run-time, and the adaptation process could be disturbed.

This work aims to perform adaptations in a decentralised way on role-based systems
with a relaxed consistency constraint, i.e., errors during the adaptation phase are tolerated.
This increases the availability of nodes since no rollbacks are required in case of a failure.
Moreover, a subset of applications, such as drone swarms, would benet from an approach
with a relaxed consistency model since parts of the system that adapted successfully can
already operate in an adapted conguration instead of waiting for other peers to apply the
changes in a later iteration. Moreover, if we eliminate the need for an atomic adaptation
execution, asynchronous execution of adaptation would be possible. In that case, we can
supervise the adaptation process for a long time and ensure that every peer takes the
planned actions as soon as the internal task execution allows it.

To allow for a relaxed consistent way of adaptation execution, we develop a decentralised
adaptation execution protocol, which supports the notion of eventual consistency. As soon
as devices reconnect after network congestion or restore their internal state after local fail-
ures, our protocol can coordinate the recovery process amongmultiple devices to attempt
recovery of a globally consistent state after errors occur. By superseding the need for a
central instance, every peer who received information about failing peers can start the re-
covery process. The developed approach can restore a consistent global conguration if
almost all peers fail. Moreover, the approach supports asynchronous adaptations, i.e., the
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peers can execute planned adaptations as soon as they are ready, which increases overall
availability in case of delayed adaptation of single nodes.

The developed protocol is evaluated with the help of a proof-of-concept implementation.
The approach was run in ve dierent experiments with thousands of iterations to show
the applicability and reliability of this novel approach. The time for execution of the proto-
col and the number of exchanged messages has been measured to compare the protocol
for dierent error cases and system sizes, as well as to show the scalability of the approach.
The developed solution has been compared to a blocking approach to show the feasibility
compared to an atomic approach. The applicability in a real-world scenario has been de-
scribed in an empirical study using an example of a re-extinguishing drone swarm. The
results show that an optimistic approach to adaptation is suitable and specic scenarios
can benet from the improved availability since no rollbacks are required. Systems can
continue their work regardless of the failures of participating nodes in large-scale systems.





Contents

Abstract VI

1. Introduction 1
1.1. Motivational Use-Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2. Problem Denition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3. Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4. Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.5. Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.6. Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2. Foundation 7
2.1. Role Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2. Self-Adaptive Software Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3. Terminology for Role-Based Self-Adaptation . . . . . . . . . . . . . . . . . . . . 15
2.4. Consistency Preservation and Consistency Models . . . . . . . . . . . . . . . . 17
2.5. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3. Related Work 21
3.1. Role-Based Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2. Actor Model of Computation and Akka . . . . . . . . . . . . . . . . . . . . . . . 23
3.3. Adaptation Execution in Self-Adaptive Software Systems . . . . . . . . . . . . . 24
3.4. Change Consistency in Distributed Systems . . . . . . . . . . . . . . . . . . . . 33
3.5. Comparison of the Evaluated Approaches . . . . . . . . . . . . . . . . . . . . . 40

4. The Decentralised Consistency Compensation Protocol 43
4.1. System and Error Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.2. Requirements to the Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.3. The Usage of Roles in Adaptations . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.4. Protocol Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.5. Protocol Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.6. Protocol Corner- and Error Cases . . . . . . . . . . . . . . . . . . . . . . . . . . 64

IX



Contents

4.7. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5. Prototypical Implementation 67
5.1. Technology Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.2. Reused Artifacts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.3. Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.4. Setup of the Prototypical Implementation . . . . . . . . . . . . . . . . . . . . . 76
5.5. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6. Evaluation 79
6.1. Evaluation Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.2. Evaluation Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
6.3. Experiment Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
6.4. Default Case: Successful Adaptation . . . . . . . . . . . . . . . . . . . . . . . . . 84
6.5. Compensation on Disconnection of Peers . . . . . . . . . . . . . . . . . . . . . 85
6.6. Recovery from Failed Adaptation . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
6.7. Impact of Early Activation of Adaptations . . . . . . . . . . . . . . . . . . . . . . 91
6.8. Comparison with a Blocking Approach . . . . . . . . . . . . . . . . . . . . . . . 92
6.9. Empirical Study: Fire Extinguishing Drones . . . . . . . . . . . . . . . . . . . . . 95
6.10.Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

7. Conclusion and Future Work 99
7.1. Recap of the Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . 99
7.2. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
7.3. Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

A. Protocol Buer Denition 103

Acronyms 108

Bibliography 109

X



1. Introduction

The complexity of computer networks and systems has been increasing in the last decades.
This is not solely a result of the rising dimensions of the tasks to be solved but also of the
interconnection of computing devices and the resulting collaboration of machines. For ex-
ample, in recent years, the relevance of Internet-of-Things (IoT) has risen drastically1. They
span large networks of (independent) devices connected to full specic tasks. Those de-
vices can be encountered daily at home, such as ‘smart devices’. Those IoT devices could
potentially build networks up to millions or billions of devices, leading to the supervision
problem of such a large number of nodes. Due to the increasing number of units, main-
tenance is becoming more dicult. This frequent maintenance usually requires human
interaction. Nonetheless, human resources are costly and time-consuming. Autonomous
systems aim to tackle this problem. So-called Self-Adaptive Software Systems (SASs) can
be seen as such [57]. SAS are closed-loop systems that can monitor their environment by
themselves and context and adapt to changing circumstances without human interference.
SAS derive information from the monitored context and environmental data and thus gen-
erate plans for overcoming potential issues. Desirably, there would be no need to shut
those devices down and perform autonomous adaptations during run-time. Machines are
interrupted for a minimum amount of time and can continue executing their current tasks.
The concept of roles is a possible driver for the run-time adaptation of SAS because they are
context-dependent, and the behaviour of role-based applications can be adapted during
runtime. In the literature, a few approaches exist for the run-time adaptation of systems,
especially for decentralised adaptation. With decentralisation, a single point of failure can
be eliminated, and nodes are not reliant on a central entity, making them more robust in
case of network outages or if the central instance is unreachable. Still, they do not t all our
demands regarding the stability of the adaptation process in unstable environments and
error handling to ensure the system’s availability. This thesis aims to tackle open challenges
in the run-time adaptation of role-based applications.

1https://www.statista.com/statistics/764026/number-of-iot-devices-in-use-worldwide/,
accessed: 06.12.2022
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1. Introduction

1.1. Motivational Use-Case

For a better understanding of the problem denition and existing challenges in this eld,
as well as the validation and evaluation of the protocol to solve the problem of reliable
adaptation execution in unstable environments, we rely on two use cases to show the
applicability of the developed approach. Since the rst use-case is rather abstract and is
used for technical evaluation, it is presented later in this work in Subsection 5.2. At this
point, we introduce the scenario of a drone swarm with the task of monitoring woods in
seasons of extreme heat to prevent large wood res.

1.1.1. Fire Extinguishing Drone Swarms

The second use case is used to evaluate the eventual consistent approach with an empir-
ical study and to illustrate this work’s motivation. Woods-surveying drones are patrolling
in swarms around large areas in seasons of extreme heat, each covering a large zone with
sensors and cameras. They work fully autonomously and decentralised and sense heat
with thermal cameras. Besides that, they can make pictures to send to the base of a re
department or ranger. Every drone operates in dierent modes, depending on the cur-
rent situation. The surveillance-mode is activated on regular surveillance. Every drone is a
member of a specic (sub-)swarm and knows the other drones in its cluster. Moreover, the
drones could have a master drone in a cluster, making decisions about the area to be sur-
veyed. In case a drone detects an anomaly, i.e., a blaze or re, the analysis mode is issued
immediately. The node which detected an anomaly contacts the other drones in its swarm,
which listen to the commands of the observer on how to proceed. If a forest re or smaller
blaze is detected, the nearest active swarm enters the forest re mode and approaches
the re as fast as possible to extinguish the small ame with extinguishing powder. This
is benecial because the re department is buying time to approach with helicopters and
trucks, and on the other side, that surveillance is a preventive measure to detect re in an
early stage.

Figure 1.1.: Fire extinguishing drones observing woods
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1.2. Problem Denition

To achieve those changes in behaviour depending on the current situation, self-adaptivity
is an important characteristic. By designing the drone swarm as a self-adaptive system, it
can monitor itself and the context, i.e., the current situation. Based on this knowledge,
drones can adapt without human interference. Nonetheless, coordination is required to
monitor and execute the changes based on the current situation. In general, all swarm
participants should adapt their behaviour to the new situation consistently to achieve the
best result, e.g., to extinguish a present re as fast as possible, as this requires a fast re-
action. Nonetheless, failures could occur during the adaptation process of the drones,
such as network errors or byzantine errors [48]. So an adaptation towards the analysis
mode could be planned, and all participants of the drone swarm are up to perform the
changes. Unfortunately, one of the drones cannot communicate due to network failures
and does not receive the information that it switches its behavioural mode. In this case, the
remaining drones enter the analysismode to ensure a fast reaction. We refer to this as an
inconsistent conguration (or inconsistency) because we aimed for a specic conguration of
the drones, but some parts remained in the old state. Hence, an inconsistency regarding
the global conguration is present. Nevertheless, the possibly disconnected drone should
also join the others, so repair actions regarding the adaptation process must be taken as
soon as the drone can be contacted again. In this case, drones noticing the failure of the
other swarm member should spread this information to all other drones in the swarm so
that this information is redundant in the system and recovery is performed reliably. As
soon as the failing drone reconnects, it contacts its swarm and receives the information
that it missed a required adaptation, which leads to an immediate recovery to the required
behaviour, i.e., consistency is restored.

Besides failures due to disconnection, a dronemight be busy surveying another area sus-
pected to be dangerous, but it is requested to adapt to the analysis-mode. This requires
an asynchronous adaptation among the drone swarm members since the busy drone de-
lays the adaptation process. In this case, the busy drone informs the others that it is not
yet ready to join the other swarm members but will adapt later. As a result, an inconsis-
tent conguration is present. Hence, the remaining swarm members already approach the
potential blaze and react accordingly, and the busy drone adapts as soon as it is ready
to help the others. After the drone nishes surveying the suspicious area, it is ready to
adapt according to the specied adaptation actions and switches its behaviour to recover
a consistent conguration.

We discuss how the developed protocol can be applied to this scenario during the eval-
uation in section 6.9.

1.2. Problem Denition

By surveying the existing literature, we can identify a few approaches for the execution
of adaptations in decentralised SAS. Nevertheless, compared to other aspects of self-ad-
aptation, the eld of adaptation execution is still comparably unexplored [32, 25, 36] and
has open questions regarding robustness and failure tolerance of the adaptation process.

3



1. Introduction

Some works only consider errors regarding the run application itself and do not address
potential failures of the adaptation process [52]. To this point, strict transactional and
proprietary approaches for adaptation exist [53, 44, 43, 5]. Still, many works assume an
ideal environment and do not consider errors during the adaptation execution phase, such
as crash, omission, timing, or Byzantine failures [48]. The works that recognise that errors
can occur especially caused by connection losses or omission failures, solve this problem
by applying an atomic approach which performs a rollback of all intermediate changes,
despite nodes successfully adapting [53, 44, 43]. Although this might be crucial for safety-
critical systems, a subset of applications exists which could benet from a procedure that
allows for temporary global inconsistencies during the execution of adaptations onmultiple
nodes. In this thesis, we assume that errors during the adaptation processmight occur due
to disconnection or local execution failures, leading to those inconsistencies. As already
outlined in the use-case of re-extinguishing drones (cf. Figure 1.1), adapting only parts
of the system, although some parts failed to adapt, could be benecial since parts of the
system might already continue working towards extinguishing potential res. Moreover, in
a setup of hundreds of devices executing their current task depending on the application,
it could happen that the adaptation execution process cannot be started at the moment
when other peers would demand it. This behaviour was explained in Figure 1.1. Using a
transactional approach, other devices would be blocked, waiting for one peer to prepare
for adaptation. Especially self-optimising systems could benet from our approach since
a subset of successfully adapted nodes could prot from optimised behaviour, and the
system can already benet from intermediate changes.

1.3. Objectives

This thesis aims to provide an optimistic adaptation approach, i.e., failures and the resulting
inconsistencies during the adaptation process are tolerated, but the system must recover
from those errors shortly. First, an overview of the existing research body must be gained.
Based on that knowledge, the overall objective will be to examine how this optimistic ap-
proach, i.e., by introducing eventual consistency, can be realised for multiple nodes in a SAS.
Eventual Consistency is a concept which is well known in the distributed systems domain.
This work investigates how this concept can be brought into the domain of SAS. With this
approach, we want to increase the overall availability of nodes. To increase the overall
availability and to ensure that adaptation is still executable during network failures and
resulting partitioning, consistency must be sacriced according to the CAP-theorem [13]
(cf. subsection 2.4.1). Compared to an atomic approach, which has the characteristic of
ACID-transactions (see section 2.4), our goal is to develop a non-blocking technique for de-
centralised self-adaptation. A variety of reasons can cause adaptation failures. In case a
device disconnects or messages are lost during transmission, we have to ensure that the
information which is supposed to be sent to a specic device gets transmitted as soon as
possible. Furthermore, during our drone use case presentation, we identied the problem
of possibly delayed adaptations because devices are not ready to perform the changes
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1.4. Research Questions

yet. Hence, a solution to overcome the blocking state of transactional approaches dur-
ing waiting for other peers must be developed, i.e., asynchronous adaptation behaviour is
required. During the introduction of the problem, we pointed out that a decentralised ap-
proach can eliminate a single point of failure and continue operating even if nodes go down.
With a decentralised approach, we do not have to rely on a central instance, which is ben-
ecial regarding robustness. Therefore, the methodology developed to solve the problem
should work in a decentralised way and recover a consistent system conguration without
relying upon a single instance.

1.4. Research Questions

From the problem denitions and objectives addressed in this thesis, three main research
questions can be derived, which will be answered in this thesis.

[RQ1] What is a suitable approach to reliably distribute information about failed adap-
tations in role-based self-adaptive systems after an adaptation failure for at least
one node?

[RQ2] How can a globally consistent state be recovered after an adaptation failed for at
least one node while tolerating a certain degree of inconsistency to increase the
overall availability?

[RQ3] How can we delay adaptations if devices are not yet ready to allow asynchronous
execution of adaptations and consequently keep an (eventually) consistent cong-
uration of the overall system?

1.5. Contributions

In this thesis, we provide multiple contributions to solve the identied problems and to an-
swer the research questions. First, a literature overview of current approaches in the do-
main of role-based adaptation is given. Moreover, we conceptualised and developed a de-
centralised adaptation protocol which is capable of dealing with intermediate failures and
recovering inconsistencies in the conguration in case of errors occurring during the adap-
tation process. Although eventual consistency is an idea that originated from distributed
data replication [50] and is generally located in the database domain, we brought this ap-
proach to the SAS domain. Finally, an extensive evaluation by measuring execution time
and the number of exchanged messages was performed. By evaluating the number of
messages exchanged, we analyzed the scalability of the concept because of decentralisa-
tion. Additionally, we applied that approach to our empirical study of re-extinguishing
drones to show the real-world applicability of the developed concept.

This thesis does not aim to develop a new consistency model among the variety of ex-
isting approaches, such as transactional approaches with the two-phase commit protocol,
eventual consistency, weak consistency and causal consistency. We rather apply those

5



1. Introduction

existing models to our approach and strongly focus on role-based adaptation in a decen-
tralised way, with an optimistic approach regarding potential errors during the adaptation
process. Our system model assumes that peers can recover from those failures after a
certain time.

1.6. Outline

This thesis is outlined as follows. In the next chapter, we explain the necessary founda-
tion to understand the work’s concept, beginning with the basics of role-based and self-
adaptive software systems. Afterwards, related approaches in the self-adaptive software
and database domains are presented to emphasise the necessity of our research. Chap-
ter 4 explains our concept for a decentralised consistency compensation protocol for adap-
tation execution in role-based software systems. In that chapter, we will dene the term
inconsistency for our context. Next, details about the implementation are presented. Af-
ter discussing the implementation, the evaluation, both technical evaluation and empirical
analysis with the example of re-extinguishing drones are discussed in the subsequent
chapter. The last chapter concludes this thesis by discussing potential improvements and
future work.

6



2. Foundation

In the previous chapter, we introduced the problem of a missing approach for fault toler-
ance during the adaptation process, along with the shortcomings. Based on the identied
objectives to solve those issues, and the resulting research questions, this chapter presents
a theoretical foundation for this topic. We start by discussing the role concept, an essential
element for our adaptation process. Therefore, we present the foundation, the existing
role runtimes, and their properties. Afterwards, the basics about SAS follow. Finally, we
present a variety of consistency models to categorize our approach in the existing eld. In
the next section, we continue by discussing the foundation of roles.

2.1. Role Concept

Objects in object-oriented programming do not capture their context-specic parts. With
the help of the role concept [2], we can easily dene basic functionality provided by the sys-
tem independently of the current situation and dynamic functionality executed depending
on the current context [26]. In role-based systems [27], we consider natural objects, or
players, as the static part of the system, which has an inherent identity and does not de-
pend on the current context of the system. They are responsible for executing the basic
functionality of our decentralised SAS. The natural objects or players play roles. They may
start and stop playing roles dynamically, introducing context-specic behaviour and rela-
tions to other roles.

Bachmann et al. [2] rst mentioned roles in the literature in the context of data mod-
elling. Nevertheless, no real standard has been established since then, and many works
have rened the concept. Therefore, inconsistencies regarding the terminology exist in
the literature. Most of the approaches have players in the system, also called naturals. Also,
most works use one or more roles in their systems. In the next subsections, we explain our
understanding of the role model based on the works of Steimann [41] and especially on
the work of Kuhn [26].

7



2. Foundation

2.1.1. Foundation of Roles

The role concept dened by [27] can be divided into four general parts.

• Naturals/Players have a unique identity and are characterized as rigid, i.e., they have
properties which hold throughout the whole life-cycle of a model or application. Nat-
urals can play roles. They have basic functionality and attributes.

• Roles do not have their own identity but derive it from the naturals playing the roles.
Roles are dependent on the context they are in. Roles are played by naturals and
modify their behaviour depending on the current context. By playing a role, a natural
is usually extended in its functionality and properties.

• Compartments have a unique identity and represent the context in our role-based
applications.

• Relationships are relationships between two distinct roles.

Roles have a behavioural nature because they change the behaviour of a player. More-
over, they have a relational nature due to the relations between roles and a context-de-
pendent nature [27]. The latter means that roles can change their behaviour depending
on the current context. Additionally, responsibilities can be modelled by roles.

In our work with a le system application [33], we introduced an example of an applica-
tion with a client-server architecture, which is depicted in Figure 2.1. With responsibilities,
a dependency is brought into the system. A server cannot act as a server without a client,
and vice versa. The gure shows three clients which can either play the role plain or en-
crypted. Depending on the current role, sent messages are encrypted or decrypted. In
addition, the server can send compressed or uncompressed messages depending on the
current connection speed by playing the respective role and changing its behaviour.

ServerServer

ClientClient Client

PlainEncrypted PlainEncrypted PlainEncrypted

<<plays>> <<plays>> <<plays>>

C

U

E

P

C

U

E

P

C: Compressed
U: Uncompressed

E: Encrypted
P: Plain Text

<< data transfer>>

<< adaptation control messages>>

<<plays>> <<plays>>

Figure 2.1.: Client-Server role application example from [33]

Using the role model, we can express context-dependent behaviour, opposite to the
plain object-oriented model. This context is captured during the system’s runtime, but
context switches can already be pre-dened bymodelling them before running the system.
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2.1. Role Concept

The application’s structure can change during runtime as a reaction to changing context by
adapting the current role conguration and roles played by the dierent players. Moreover,
approaches for dynamic instance binding exist for role-based applications, which allow
loading new roles during run-time to load new behaviour, which was not intended during
the design-time of the system. That approach is presented in subsection 3.3.7.

2.1.2. The Compartment Role Object Model

The understanding of roles as dened by Kuhn et al. [26], as well as its formal model, is
called Compartment Role Object Model (CROM). CROM is a formalised tuple which con-
sists of naturals, roles, compartments, role-playing and relationships between roles. The
resulting role model can be expressed in a graphical notation. It consists of dierent enti-
ties such as data types, natural types, compartment types, role types and the relations among
themselves. We created a graphical representation of the CROM of our re-extinguishing
drone example, which is presented in Figure 2.2. We will explain the CROM with the help
of the example. Three naturals are depicted at the bottom of the gure, represented by
three drones. Every drone has an id, knows how much extinguishing powder is loaded,
and has basic ight functionality. As soon as a drone plays one of the roles, it is a swarm
member and has a list of ‘swarmMembers’. In addition, the drone swarm could be divided
into multiple sub-swarms. Each of the clusters has one master drone responsible for co-
ordinating the surveillance and extinguishing process, as well as associated slave drones,
listening to commands of the guiding drone. Master and slave drones depend on each
other and therefore represent a relationship. We dened three contexts for the scenario,
represented by three compartments: surveillance, a present anomaly and a forest re. In
case of an anomaly, drones can also play the roles ‘observer, listener’, which are also re-
lated to each other, or ‘extinguishing’, dependent if there is a re or not. A drone is not
limited to playing only one role, which is dened by the role features from Steimann [41]
and [27]. Drones can be swarm members and play the master or slave drones. In case of
danger, also the remaining roles could be played. In the following, the properties for roles
and compartments will be presented.

2.1.3. Features of Roles

Steimann [41] rst dened a feature set which describes the properties of roles at design
and run-time. Please note that we put check marks to the features which are supported
by the concept of this thesis. Unchecked features are not supported explicitly.
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Figure 2.2.: CROM model of the re extinguishing drones

1 ✓ A role comes with its properties and behaviour
2 Roles depend on relationships
3 ✓ An object may play dierent roles simultaneously
4 ✓ An object may play the same role several times, simultaneously
5 ✓ An object may acquire and abandon roles dynamically

6 ✓
The sequence in which roles may be acquired and relinquished can be
subject to restrictions

7 ✓ Objects of unrelated types can play the same role
8 Roles can play roles
9 A role can be transferred from one object to another
10 The state of an object can be role-specic
11 Features of an object can be role-specic
12 Roles restrict access
13 Dierent roles may share structure and behaviour
14 An object and its roles share the identity
15 ✓ An object and its roles have dierent identities

This feature model was extended by Kuhn et al. [27] by the following features:
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16 ✓ Relationships between roles can be constrained
17 There may be constraints between relationships
18 Roles can be grouped and constrained together
19 ✓ Roles depend on compartments
20 Compartments have properties and behaviours
21 ✓ A role can be part of several compartments
22 Compartments may play roles like objects
23 Compartments may play roles which are part of themselves
24 Compartments can contain other compartments
25 Dierent compartments may share structure and behaviour
26 ✓ Compartments have their own identity

Kuhn et al. [27] added a signicant feature to the role features - the compartment. Com-
partments are objectied hierarchical contexts, and a player could play dierent roles in
separate compartments, depending on the current context. A person, an instance of a
natural type, can be, e.g., a father in the compartment family or a lecturer in the compart-
ment university. Depending on the current context and compartment, dierent behaviour
is loaded by the player. A key driver for using roles in this thesis is enabling run-time recon-
guration, which is benecial for run-time adaptations.

It is very important to note that a role-based application can full multiple of those fea-
tures but is not obligated to. For this thesis, this explicitly holds for feature 2 in the list. In
our understanding, especially with the work from Kuhn et al. [27] in mind, roles are not
necessarily dependent on relationships but can also depend on compartments, as dened
with feature 19. Figure 2.2 depicts possible relations between roles, such as a master-slave
relationship in smaller clusters of drones. Those two roles depend on each other, whereas
the role ‘SwarmMember’ is dependent on its compartment ‘Surveillance’. Steimann [41]
pointed out that some features could even be conicting if all were applied.

In subsection 2.1.3, we marked the features which apply to our understanding of roles
in this thesis. Feature two is supported but not necessarily required since, in our under-
standing, roles can also exist in the context of a compartment, enabling specic behaviour
in dened contexts.

2.1.4. Role Adaptation Interface

Next, we explain how role-based applications and self-adaptive systems go together by
introducing the adaptation interface for local adaptations.

Adaptation of Role-Based Applications

Weißbach introduced basic operations, such as adding, removing, migrating, and cloning a
role from or to a player. In the following, the used local operations are introduced [53].
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create( roleType ) Create a role instance in the local role runtime.
remove( roleInstance ) Remove a role instance from the local role runtime. Note that
the role instance must be in its unbound state (cf. subsection 2.3.1).
bind( player, role, compartment ) Establish a relationship between a player, a role
and a compartment.
unbind( player, role, compartment ) Releases a relationship between a player, a role
and a compartment.
activate( roleInstance ) Activates a role which is already bound (cf. subsection 2.3.1).
passivate( roleInstance ) Brings a role into a passive state (cf. subsection 2.3.1), but
the role is still bound.
setState( roleInstance, state ) Set the state of a role instance which is bound but
passivated.
getState( roleInstance, state ) Retrieve the state information of a bound but passi-
vated role instance.

With these operations, we can perform the high-level operations which are part of our
protocol on the underlying role runtime: With the help of the interface, our approach is
interoperable with dierent role runtimes and, therefore, application-independent. Engi-
neers of a SAS are just obligated to dene a role adaptation interface.

2.1.5. Benets of Roles

We rely on roles for our adaptation approach since they support the very nature of self-
adaptation. By having a static and a dynamic part (natural vs role), we can model adaptable
systems intuitively with roles. Other abstractions, such as states, do not explicitly distin-
guish between the static and dynamic parts. Moreover, they do not have a nature of context
dependency. With roles, we can perform adaptations during run-time without restarting or
halting the whole system by changing the role binding between a player and the respective
roles. This allows not only for the adaptation of parameters but also for structural adap-
tation, which changes the conguration of components by adding, removing or modifying
components. The variety of role runtimes supports this approach. Moreover, roles are
context-sensitive and context-dependent. Hence, we can already model during the sys-
tem’s design phase how the components can react to circumstances depending on the
current context, i.e., the compartment since roles are only active in a specic scope. In our
running example, drones can dynamically adapt their behaviour depending on whether a
re is present or regular surveillance is required just by detecting the context. With role
runtimes such as LyRT [42], it is even possible to load new behaviour into the system dur-
ing runtime to react to unanticipated behaviour, which was not foreseen during the design
time of the system. In a system ofmultiple drones, loading new behaviour could be realised
by updates which are loaded without interrupting the system.

We presented the role of naturals, their key properties and our understanding of a role-
based application. Moreover, we introduced the interface which enables the adaptation of
role-based applications. Next, the foundation of SAS is explained.
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2.2. Self-Adaptive Software Systems

According to Oreiziy et al. [34], a SAS is a system which is capable of modifying itself and
its behaviour depending on the current computing environment (context-awareness). The
environment can be inuenced by any external and internal events or context changes
(self-awareness) we can measure by any means, such as using sensors. SAS are related to
autonomic and self-managing systems [20, 36].

Self-Adaptation [36] is the ability of a system to monitor itself autonomically and to per-
form changes based on the gathered information to adapt to a changing environment and
changed circumstances. Subject to change or adaptation can be attributes, variables, or
even whole components which could be exchanged. SAS [36] are used to handle the grow-
ing complexity of software systems, increase the system’s robustness, and allow us to deal
with failures. Adaptations are not necessarily done while halting the system but can be
done during run-time, even without human interaction. A closed-loop mechanism often
realizes Self-Adaptation using sensors and eectors. In [20], the authors describe a con-
cept for a feedback loop for self-adaptive systems using an autonomic manager. Sensors
and eectors monitor and perform changes on the underlying system. This concrete feed-
back loop is described in the following.

2.2.1. The MAPE-K Feedback Loop

The Monitor-Analysis-Planing-Execution-Knowledge Feedback Loop (MAPE-K) loop is not
the only closed-loopmechanism. It is one of the possible concepts for designing a concrete
feedback loop. A general loop of the adaptation process is Monitoring - Detecting - Deciding
- Acting. MAPE-K is a concrete concept for the general loop. The four stages described by
[20] are the monitoring, analysis, planning, and execution stages, with a knowledge com-
ponent containing, e.g., historical data (MAPE-K feedback loop). According to Brun et al. [4],
those steps are needed to allow for autonomic computing. The protocol concept, designed
throughout this thesis, is located in the execution stage of the MAPE-K feedback loop. A
schematic overview of the MAPE-K loop can be found in Figure 2.3. Oreizy et al. [34] dene
the whole loop as the Adaptation Manager (AM) of a SAS. As shown in the gure, the AM
is concerned with the adaptation process for the managed application, i.e., the adaptation
logic is separated from the application logic.

Between sensor and eector endpoints, the following MAPE-K steps are performed in a
loop.

1. Monitoring: Sensor data ows through the monitoring stage, where data is collected
from the environment, the system or the internal state of the node using sensors and
probes. This data is written into the knowledge component for later usage.

2. Analysis: The second step is the analysis component, where the current gathered
and historical data are combined, and conclusions about the present system state
and its conguration are made to reach the system goals.

3. Planning: After that, the diagnosis data is sent to the planning component, which
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Analyze Plan

Monitor ExecuteKnowledge

Adaptation Management

Managed Application

Figure 2.3.: MAPE-K feedback loop [40]

generates adaptation plans based on the knowledge gained by the analysis compo-
nent.

4. Execution: The plans are then sent to the execution component of the MAPE-K loop,
which performs the planned changes on the underlying system [19] using the eec-
tors, i.e. the interfaces to the managed application.

5. The Knowledge component: can theoretically be accessed by each of those compo-
nents to get a view of historical adaptations or to gather an overview of the system if
needed.

2.2.2. Internal vs. External Adaptation

In the previous section, we presented theMAPE-K feedback loop as a concept for the adap-
tation management of a self-adaptive system. In the eld of SAS we distinguish between
two types of adaptive systems. Those are systems with internal self-adaptation on the one
hand, and external self-adaptation on the other hand [36]. Figure 2.4 gives an overview
of the two distinct approaches. We dene both approaches in the following.

Internal self-adaptation combines adaptation and business logic in one applicationwith-
out separation. With that approach, our system can copewith environmental changeswith-
out or with minimal human interaction [56]. Those changes are referred to as uncertainties.
The internal approach handles self-adaptation by employing predened scenarios that can
occur and having them implemented in the application’s source code. Usually, exceptions
and time-outs are used to detect changes in the environment [7]. The internal approach,
along with its predened actions and triggers, imposes the drawback of being inexible.
There is no possibility of reacting appropriately to sudden unforeseen situations. By keep-
ing the adaptation process local to the application, we do not have a view of the overall
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system, which makes it hard to detect context changes in the surrounding environment.
Maintenance is dicult since the adaptation logic is intertwined with the business logic [7].
Also, scalability is limited for this approach [36].

The external self-adaptation, on the other hand, tries to overcome the shortcomings
of the internal approach. By splitting the SAS in an AM and a managed application, we
introduce a separation of concerns, i.e., self-adaptive capabilities are separated from the
application’s business logic. This concept is comparable to the MAPE-K feedback loop pre-
sented in the previous section. Mostly, external approaches are deployed with a middle-
ware which is application-independent [36]. The managing part analyses the environment
and performs necessary changes on the underlying managed application. With the sep-
aration of adaptation and business logic, we could reuse the adaptation logic for other
systems and easily adopt and congure the structures for another application.

Self-Adaptive
Software

Sensing

Effecting

Adaptation
Management

Managed
Application

Sensing Effecting

Self-Adaptive Software

Figure 2.4.: Comparison of internal and external adaptation approaches [36]

2.3. Terminology for Role-Based Self-Adaptation

The previous sections presented the theoretical foundation for role-based systems and
for SAS. In the next section, we will introduce domain-specic terminology for role-based
self-adaptation to better understand the following concepts.

Consistent application conguration: Weißbach et al. [55] dene this term as a state
in which all parts of themanaged application comply with a specic run-timemodel. In
case of the context changes, the planning component derives an adaptation plan from
changing the current conguration from one consistent state to another consistent
state to adhere to the new model adapted to the changed context. Weißbach et al.
[55] refer to the term consistent adaptation. In this thesis, the property of whether
the adaptation is consistently brought from one valid to another valid conguration
is called change consistency.

Inconsistency: In this thesis, the term inconsistency refers to an incorrect global con-
guration resulting from a failed adaptation. Every single node has a valid local con-
guration from a local point of view, but from a global view, the nodes which did not
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adapt according to the planned adaptation plan are in an inconsistent state. In this
case, actions are taken to bring the application back to a consistent state, i.e., the
planned actions must be executed on the previously failed node. During this thesis,
the term compensation is used as a term for the repair actions which re-apply the
intended changes.

Adaptation plan: This is a general plan derived from the planning component to react
to changes in the context. It consists of one or more adaptation transactions.

Adaptation transaction: This structure holds the concrete measures to execute the
modications to a changed context on the decentralised SAS. It consists of multiple
adaptation operations, which are the single adaptation steps executed on local run-
times. Examples of operations are the addition or removal of roles and their (un-
)binding from or to a player. Those actions are performed during run-time [55]. As
the term transaction already suggests, the operations in an adaptation transaction are
performed in a transactional way, i.e., atomically. Either all adaptation operations suc-
ceed, or no change will be performed. This ensures an overall consistent state before
and after the adaptation phase. Adaptation transactions have the nature of the well-
known Two-Phase Commit Protocol (2PC). Instead of a coordinator as in the 2PC, co-
ordination is performed decentralised. Aected parts which will be changed prepare
for the upcoming adaptation. Peers can vote about success and failure, and changes
of an adaptation transaction are committed only if all participants vote for success.

2.3.1. Quiescence: Safe State for Run-Time Adaptation

The goal of SAS is to perform adaptations during run-time. This imposes the problem of
interruptions of ongoing processes since an immediate change of components, e.g. the
removal of an object, would lead to crashes and potential data loss [24]. Therefore, Kramer
et al. [24] introduced the concept of Quiescence. The quiescent state describes a state
during run-time in which we can safely exchange entities without causing errors or data
loss. Furthermore, with that approach, local adaptations will be executed consistently. In
this stable state, aected parts of the adaptation cannot perform any computational task.
In the case of a role-based system, it is not allowed to play the aected role during an
adaptation process, but the unaected parts may continue to work as intended. The stable
state requirement also holds for roles that collaborate with the role subject to be adapted,
since as already described in section 2.1, roles can be in relationships among themselves.

To support the notion of quiescence in role-based systems, Weißbach [53] introduced the
lifecycle for roles (see[53]), according to the concept from [24]. As shown in the Figure 2.5,
a bound role can either be active or passive. In the active state, it is performing its tasks.
During the active state, the role can be idle or processing. At a passivation request, because
an adaptationwill be performed, the role is brought into the passive state. Once in this state,
the role can be unbound and removed afterwards. In an operation involving multiple roles,
data can be safely transferred from one role to another when both roles are passivated.
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ActivePassiveUnbound

Loaded

Installed Uninstalled

Role Instance in Memory

Role Information in Memory
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Figure 2.5.: Lifecycle of roles as developed by [53]

Until now, we have presented the foundation for role-based and self-adaptive systems
and explained how roles could be exchanged consistently during run-time. In the last sec-
tion of this chapter, we want to contemplate dierent consistency models, which could be
applied to the SAS domain.

2.4. Consistency Preservation and Consistency Models

A large variety of consistency models can be found in the literature. With our approach,
we do not aim for a new consistency approach but want to incorporate our concept into
the research body of existing consistency concepts. In this section, we describe dierent
approaches for consistency, starting with one of the most known concepts in distributed
systems: the CAP theorem.

2.4.1. CAP-Theorem

With the problem of keeping consistency inmind among dierent nodes in an environment
of possibly failing nodes, wewant to discuss the CAP-theorem (Consistency, Availability, Par-
tition Tolerance) [13] which serves as a motivation for our work and is well-known in the
distributed systems community. We consider this an important concept for our approach
since the theorem applies to decentralised SAS [46] as they can be grouped into the dis-
tributed system class.

Consistency guarantees that the outcome of the execution of multiple operations onmul-
tiple targeted devices looks as if each of the operations was executed on a single instance
[13]. We can speak of atomic consistency since this requirement guarantees that the op-
eration is executed consistently on all aected nodes. Regarding continuous availability,
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the system must guarantee to always respond to requests by non-failing nodes [13]. In
addition, every request must terminate even when severe network failures occur. Partition
tolerance refers to the ability that the system even operates in the case of a separation of
the distributed system [46]. Network errors, failures of nodes, and other similar circum-
stances could cause this separation.

The CAP theorem claims that only two of those three properties, either Consistency, Avail-
ability, or Partition Tolerance, can hold for a distributed system, and a trade-o between
those three properties has to be made.

Considering the trade-o between consistency and availability, we contemplate two key
concepts - ACID and BASE.

2.4.2. ACID vs. BASE

In the database domain, ACID properties are a prevalent concept for preserving consis-
tency. It is a suitable method for keeping either local or distributed databases in a con-
sistent state. ACID is short for atomicity, isolation, consistency preservation and durability
[51]. With the help of ACID, developers can deal with concurrency, consistency of data,
failures of transaction executions and preserve the correctness of the application.

Atomicity: A transaction is either completed successfully as a whole with all its changes
or no change is performed at all. In case of any error during the transaction, no change is
visible to the outside world.

Consistency preservation: An ACID transaction must ensure that a transaction leads
from one consistent, correct state to a new consistent state. It could be possible that in
between a transaction, a temporary inconsistency occurs, but at the end of a transaction,
consistency must be recovered [51].

Isolation: Concurrent transactions behave as if they were executed sequentially. That
implies that every transaction sees a consistent and committed state and does not inu-
ence other parallel transactions.

Durability: The system ensures that all changes to the system made by a transaction
must survive a hardware or software failure. In case of a crash, the data is persisted and
can be recovered from durable storage.

An ACID-transaction can either commit successfully or abort with a rollback of all inter-
mediate changes. Vossen [51] points out that the ACID-properties could be too strict for
long-running transactions and business processes, where atomicity and isolation are hard
to realise. Generally, this model could not be optimal when the system performs more
than read and write operations, such as structural adaptations in a large system in case of
a SAS, because it is too restrictive.

BASE - Alternative to ACID transactions

The BASE (BAsically available, Soft state, Eventually consistent) concept is an alternative
to the restrictive and blocking ACID-transactions. It is an optimistic approach and accepts
temporary inconsistencies [35]. This approach increases the scalability of systems since
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it is less restrictive and non-blocking. In contrast to ACID, where inconsistencies only oc-
cur during the change process itself, and this inconsistency is not visible to the user, in
systems using the BASE-approach, temporary inconsistencies can be noticed. Under the
non-blocking approach, the availability of the systems is increased since no system has to
wait for the commit messages of other transaction participants.

2.4.3. Types of Consistency

The literature provides a large variety of dierent types of consistency. To classify our ap-
proach and categorize it into one of the approaches, we introduce relevant concepts in the
following.

Strong Consistency

Strong consistency guarantees that any subsequent access to a database or system after
we perform an update will return the new value. The ACID principle can be categorized into
the class of strong consistency algorithms. No intermediate results, i.e., inconsistent states,
are allowed [50]

Weak Consistency

In contrast to strong consistency (e.g. ACID), weak consistency cannot guarantee that the
latest update is accessible when accessing the nodes [50]. If one node can apply the in-
tended updates and another server cannot update, which could be caused due to various
reasons, utilizing that consistency type results in two (or potentially more) versions of a
dataset on dierent nodes. There is a time frame called inconsistency window between the
update and guaranteeing that every node access is adapted to the latest version. Weak
consistency approaches follow the BASE [35] pattern as opposed to ACID as a more pes-
simistic approach, which does not require consistency when a transaction ends. Hence,
temporary inconsistency is accepted and taken as a normal process. In contrast to ACID,
BASE increases the overall availability because the system does not fail when only parts of
the system fail [35].

Eventual Consistency

Referring to Vogels [50], several forms of weak consistency exist, including eventual consis-
tency. This type of consistency guarantees that if no new updates occur after a previous
incomplete update, eventually, all updates will be accessible at all nodes at some time. A
popular example of an eventual consistent implementation is the domain name system
(DNS). Not all clients receive new names instantly, but eventually, all clients will receive the
new names in the system at some point in time [50].

19



2. Foundation

Causal Consistency

Causal consistency is a variation of eventual consistency where the system ensures that de-
pendencies between operations are always satised (e.g., references between objects are
never invalid) [31]. It is a consistency model which increases availability compared to strong
consistency and provides stronger guarantees compared to eventual consistency. Causally
related reads and writes are seen by every node in the system in the same order [50]. This
does not apply for concurrent writes, where the seen write order can dier, since those
writes do not causally relate to each other [45]. This consistency model depends on ‘what
happened before’.

2.5. Summary

In this chapter, we laid the foundation for the upcoming presentation of related work and
our concept for answering the research questions from section 1.4. We introduced the
role concept along with its features and benets. Moreover, we discussed dierent types
of consistency which can be applied to SAS. Especially the concept of BASE along with the
CAP theoremmust be emphasised since our approach relies on those concepts instead of
a transactional, atomic approach. Next, the basics for SAS were presented, along with the-
oretical concepts on how to adapt role-based systems during run-time. Especially the role
lifecycle (cf. subsection 2.3.1) as well as the role adaptation interface (cf. Subsection 2.1.4)
are crucial elements which allow for the run-time adaptation of role-based applications.
Last, we introduced dierent consistency models for distributed systems as the founda-
tion for the necessity of this thesis.
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We continue this thesis with an overview of the related and state-of-the-art approaches.
Since the focus of this thesis overlaps with dierent research areas, relevant related work
from dierent research areas is evaluated. The research areas of interest are:

• Role-based concepts
• Self-adaptive software systems
• Consistency handling concepts
• Distributed software systems

We emphasise that though the research areas overlap, the research focuses mainly on
role-based adaptation. Nonetheless, we examined dierent areas for presenting the cur-
rent state-of-the-art. First, an overview of relevant approaches from the domain of role-
based systems is given since we use the notion of roles for the application, which is adapted
using our protocol. Afterwards, we discuss relevant adaptation concepts from the SAS do-
main, especially those in combination with a role-based approach or considering errors
during the lifecycle of a SAS. Regarding our drone example, this research area is highly
of interest, because our drones should adapt their played roles, depending on the cur-
rent context, even in unstable areas where failures might occur. Next, we discuss engag-
ing technologies from the consistency area. Concepts in that eld are primarily derived
from the database domain and techniques used in microservice architectures but have
the potential to be applied to the domain of SAS. We look at known approaches from the
distributed systems domain, which also inuence an eventual consistent adaptation ap-
proach. Those approaches from the consistency area provide interesting approaches on
how to supervise the consistency of a distributed system, and how to recover potential
inconsistencies. Combined with an potentially erroneous adaptation process, those con-
sistency techniques help us to maintain a global consistent conguration. After presenting
the relevant approaches, we want to distinguish our concept from the existing work and
give an overview of all examined works by presenting an overview of our selection criteria.
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3.1. Role-Based Approaches

We start with an overview of related approaches in the eld of role-based systems. First,
we will present three role runtimes and programming environments for role-based appli-
cations. Afterwards, we discuss combined approaches of self-adaptive systems using a
role-based system as the managed application or roles to perform adaptations.

3.1.1. Role Runtimes and Languages

The role runtimes and programming languages we consider for the related approaches are
ObjectTeams/Java (OT/J) [17], SCROLL [28], and LyRT [42]. OT/J is an approach for bringing
the concept of roles into the world of popular programming languages [17]. It is based on
Java and supports the understanding of roles based on thework of Steimann [41]. Themain
concept is the usage of so-called Teams, which are compound objects containing the par-
ticipating roles of the application. OT/J allows players to play a certain role with the playedBy
keyword. As opposed to the denitions of Steimann [41] and Kuhn et al. [27], players are
called base classes in OT/J. Adaptability is enabled with the role binding in OT/J since dynamic
aspects can get activated or deactivated. Using aspect weaving, this approach allows the
overriding of methods from the players by role bindings. A shortcoming of the OT/J ap-
proach is that it does not support multiple unrelated player types for a role type, which
restricts the modelling and usage of OT/J in some use cases [29].

An alternative approach for developing a role-based application is the domain-specic
language SCROLL [28, 29]. This is a library programmedon top of Scala [37], which supports
a variety of the role features dened by Steimann [41] and Kuhn et al. [27] and can be
run without a specic runtime [38]. With the help of SCROLL, the increased complexity of
software systems and their context dependence, which is one of the key traits or roles, can
be handled. The notion of roles, players and compartments complying with the denition
of [27] is fully supported. The state of the role-playing is stored in a direct acyclic graph
(DAG) [38]. SCROLL allows for expanding objects during run-time with dynamic roles and
puts them into a context, so-called compartments. Compartments allow for hierarchical
contexts due to their structure.

The third alternative for programming role-based applications is LyRT [42]. It allows for
run-time variability by enabling a dynamic instance binding mechanism. This means that
variability is possible at the granularity of single objects, using the Java API [38]. All informa-
tion about players, their role bindings, and their membership in a compartment is stored in
a central RegistryManager, which behaves like a singleton. The bindings of players, roles and
compartments are described as relationships. A benet of LyRT is the possibility to react
to unanticipated changes without an application restart due to the dynamic role dispatch.

In subsection 2.3.1, we introduced the concept of quiescence, which aims to prevent,
e.g. potential data loss and crashes during the adaptation process caused by the run-
time adaptation of components. This thesis aims to perform run-time adaptations of roles.
Thus ensuring a safe state for the adaptation process is crucial. Taing et al. [44] claim
that applying the concept of quiescence (see subsection 2.3.1) is a challenging task at the
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object level. Therefore, they developed the concept of local transactions at the object level
[44] and integrated it into the role runtime LyRT. Those transactions work on top of the
developed instance binding mechanisms. Inspired by the concept of quiescence [24] and
tranquillity [49], those transactions prevent inconsistencies from disruptive behaviour as a
cause of the adaptation process.

For our concept, we will choose LyRT as the underlying role runtime and concept for a
role-based application. This solution allows a dynamic injection of behaviour into a running
system. It already provides a solution for adaptation at run-time without causing inconsis-
tencies, as they support an approach similar to quiescence. Consequently, we do not have
to deal with getting the application into a passive state since the LyRT runtime already pro-
vides a solution.

In the following, we will present related approaches of SAS. We chose techniques that
either focus on coping with the failure of the SAS, enabled decentralisation or rely on the
role concept to perform adaptation.

Next, the actor model of computation along with the ‘Akka’-framework will be discussed.

3.2. Actor Model of Computation and Akka

The actormodel is an approach to building large distributed applications and could be used
to create self-adaptive software systems. It was rst presented by Hewitt et al. [18] in 1973
and was developed as a reference architecture to create articial intelligence software.
The classic actor model is a composition of a hierarchy of actors, which are objects concur-
rent with each other [22]. Actors communicate with each other by passing asynchronous
messages. Each actor has a message queue, where incoming messages are stored and is
addressable by a unique address by dierent actors. Hence, actors are transparently dis-
tributed. Themessages in themessage queue are processed sequentially. According to De
Koster et al., [22], the actor model can be dened by the create, send and become primitives.
Create creates an actor based on a behaviour description and returns the address of the
new (child) actor. Send is used to send a message to another actor based on the address.
Become replaces the behaviour of an actor, which could be interpreted as an adaptation
in our case. It is important to note that an actor can only change its behaviour. Although
it is not classied as a sophisticated SAS, the become primitive has the characteristic of an
adaptation of an actor and could be interpreted as such. Although the become primitive
shows adaptive behaviour, no coordination process among multiple actors to change the
state exists for the classic actor model, i.e., changes are performed independently for each
actor. In addition, actors are not context-sensitive, as opposed to roles, which is crucial for
building SASs.

Akka [1] is an actor library for Scala which implements the actor model and allows de-
velopers to focus on the development of the application instead of dealing with locks and
synchronisation. Additionally, Akka provides basic fault-tolerance mechanisms. The actor
model, including Akka, in its basic form, does not oer complex recovery scenarios besides
restarting (child) actors in case of failure and restoring a previously valid state of the actor.
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Our concept developed during this thesis aims for a more complex, coordinated recov-
ery among multiple peers, aiming for a globally consistent conguration that was targeted
by the adaptation process. In addition, the Akka library provides an approach for eventual
consistency by using Conict-Free Replicated Datatypes (CRDTs). The eventual consistency
approach for CRDTs is discussed in Subsection 3.4.3. Nonetheless, the actor model and
our approach are combinable, as we discussed in our work about role-playing actors [33].
In this work [33], we proposed a concept for a DSL in which actors can start and stop playing
roles dynamically in structured contexts, combining the benets of both approaches.

In conclusion, the actor model is a promising approach for concurrent, distributed ap-
plications. Nonetheless, it does not provide techniques for the resilient execution of adap-
tations, nor does it have native role support to support role-based adaptation. With our
approach of combining actors with roles [33], developing distributed self-adaptive software
could be facilitated, and actors could benet from context-dependence for adapting their
behaviour according to current circumstances. In that case, the protocol developed in this
thesis could be applied to role-playing actors. Note that building an actor-based system is
out of scope in this thesis since the focus lies on developing an optimistic approach for the
adaptation of role-based applications.

3.3. Adaptation Execution in Self-Adaptive Software Systems

The literature provides various solutions for engineering SAS. Approaches for designing
every stage of the MAPE-K feedback loop have been examined, as well as theoretical con-
cepts about the adaptation process. Since the research body of SAS covers various as-
pects, we had to narrow down the problem and identify related approaches that are the
most promising and pertaining to our developed concept. Therefore, wemainly focused on
approaches supporting the idea of roles but also looked at decentralised techniques and
works which deal with failures in SAS. During the literature research, we realised that an ex-
tensive research body for SAS exists, but only a tiny subset of research projects is focused
on the execution of adaptations. This phenomenon was observed even more for poten-
tial failures during the adaptation process since almost all examined approaches assume
a nearly perfect environment and therefore do not consider failures throughout the adap-
tation execution itself. Nonetheless, we present the most relevant work in this research
area.

3.3.1. Interactive Control Loops in Self-Adaptive Systems

The rst approach we want to present is the self-repairing hierarchy-based approach from
Vromant et al. [52]. The authors present a system for self-healing using a trac moni-
toring system use-case, which contains dened repair actions for specic error cases in
self-adaptive systems in case a camera fails. According to Vromant et al., more than a sin-
gle MAPE-K feedback loop in a self-adaptive system is needed concerning possible failures
which can occur. Their approach introduces inter-loop and intra-loop MAPE-K communi-
cation. The former allows coordination of the MAPE-K loops of dierent devices. In their
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use case, dierent local trac cameras can coordinate their MAPE-K processes with each
other. The latter communication approach allows the creation of multiple sub-loops in a
main MAPE-K loop. Their use-case employs the abstraction of roles to dene the tasks of
dierent cameras. A camera can either be a single master, a master with slaves, or a slave.

A coarse overview of the system’s architecture without going into detail about the single
communication interfaces is depicted in Figure 3.1. Two core elements of their approach
are the local trac monitoring system, which follows an agent-based approach, and the
self-healing subsystem. The former contains the domain-specic logic and is responsible for
the trac monitoring process and the cameras. There are two interfaces to the self-healing
subsystem, i.e., one for monitoring the system’s health and another for performing repair
actions on the cameras in case of an error. Both parts are based on shared communication
and host infrastructure. The self-healing subsystem contains repair strategies for specic
error scenarios and a dependency model with themodel of the current components of the
monitoring system, which can be compared to our role-playing graph in a certain way. The
MAPE-Manager and the Self-Healing Controller interact to choose the correct repair strategy
depending on the current system conguration and the current role of the failed camera.
The repair strategies are then executed using the repair interface of the MAPE manager.
Vromant et al. [52] aim to keep a consistent state of the local trac monitoring system by
applying specic repair actions. Those repair actions could be removing slave devices or
electing a new leader in case of an error in themaster node. The system can also reorganise
itself if one or more cameras fail.

The overall goal of the work from Vromant et al. [52] aims to recover consistency in the
system. Hence they aim for the same purpose as we do. Nevertheless, the scenario in
which they perform repair actions diers signicantly from our problem denition. The au-
thors aim to repair a SAS in case of a node failure. On the contrary, we are considering
failures of the adaptation process instead of repairing an erroneous system with the pro-
tocol. Therefore, their approach is not fully satisfying our needs for consistency recovery.
Nevertheless, their approach introduces an approach to asynchronous adaptations, which
is also a goal of our concept. Every component of the MAPE-K feedback loop implements a
message buer from which the single component can read messages as soon as they are
ready.

3.3.2. Patterns for Decentralised Adaptation in SAS

In [58], Weyns et al. introduced a theoretical concept for decentralised adaptation in SAS.
They presented dierent architectural patterns for the distribution of the single MAPE-K
components for decentralised SAS. Those patterns can be seen as blueprints for building
SAS since they do not describe concrete concepts for implementations. Weyns et al. [58]
rather discuss the benets and shortcomings of each decentralisation pattern so that sys-
tem designers can pick a pattern which ts their system most. Note that their overview
over pattern has no guarantee of being a complete collection. In [40], we developed our
pattern, based on the proposals by [58], to t our case study’s requirements. An overview
of the pattern from Weyns et al. [58] is given in Figure 3.2.
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Figure 3.1.: Self-healing architecture from Vromant et al. [52]

The Decentralised Coordination pattern decentralises every single MAPE-K-component of
the feedback loop. The benet of total decentralisation is good scalability. Moreover, we
eliminate a single point of failure with that approach and keep the communication over-
head for local adaptations low since we do not have to consider consensus with a cen-
tralised adaptation unit [58]. Nevertheless, nding an agreement with many other com-
puting nodes can be dicult, which might compromise scalability. Moreover, keeping an
overall system conguration for a large-scale decentralised system in an adequate time
can be dicult, as shown in experiments by Weißbach [53].

Scalability regarding decision-making and communication can be improved using the
Information Sharing Pattern. It is a particular case of the latter pattern since it has less strin-
gent interaction. Only the monitoring aspect of the MAPE-K feedback loop is decentralised,
whereas the remaining components do not need coordination among dierent nodes. Lo-
cal adaptation is improved with that approach, but reaching global goals can be hindered.

The Master/Slave pattern can potentially improve the lack of the information sharing pat-
tern of reaching global goals. In this pattern, the monitoring of the system is delegated
to the slave components, but the adaptation process and decision-making are kept at the
master components. This imposes an advantage in light of adaptations to reach global
goals since master nodes managing multiple slave nodes have a better overview of the
system than local systems. A drawback of this approach is the overhead generated at the
master since all data must be collected here. This could lead to bottlenecks and a single
point of failure in large systems.

The regional planning pattern tries to overcome the drawbacks of scalability for large sys-

26



3.3. Adaptation Execution in Self-Adaptive Software Systems

M A EP

Node1

M A EP

Node2

M A EP

Node1

M A EP

Node2

M

A

E

P

Node1

M E

Node2

M A E

P

Node1

M A E

P

Node2

M A EP

Node1

M A EP

Node2

M A EP

Layer 1

Layer
1_1

Decentralization PatternInformation Sharing Pattern

Regional Planning Pattern Master/Slave Pattern

Hierarchical Pattern
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tems by introducing a separation of concerns. The whole system is divided into multiple
regions; only the planning components are interconnected and exchange their knowledge
and derive adaptation plans in a coordinated way. A shortcoming of that approach is the
missing coordination of the execution phase since the execution components are not con-
nected.

At the hierarchical pattern, the complete adaptation logic is structured in a dierent layer.
This approach tries to manage the increasing complexity of large SAS by introducing a
hierarchy, where bottom layers focus on their adaptations and higher level nodes have
a broader perspective on all devices. Nonetheless, this pattern is hard to realise since
the separation of concerns must be dened beforehand, and it is not guaranteed that an
optimal adaptation solution for all participants will be found [58].

3.3.3. The HELENA Role-Based Approach

Klarl [21] developed a role-based approach for self-adaptation, based on HELENA, which
is ‘an approach for modelling ensemble-based systems’ [16]. Using the notion of roles in a
component-based system, they developed an approach to model ensembles that collabo-
rate to reach a common goal. Unlike this thesis, their approach does not adapt role-based
applications, but they rely on the notion of roles to design the adaptation process itself. It is
a holistic model-driven approach, which utilises so-called hierarchical adaptation automata,
which fulls the purpose of using ‘history states and hierarchical composition of states [for]
complex adaptation behaviour.’ [21]. Also, the automata contain placeholders for the appli-
cation logic. In their development process, self-adaptive components with their attributes
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and behavioural modes and an automaton which describes when and how behavioural
modes are switched are specied. The behavioural modes and behaviours are then encap-
sulated into a role-based model, which is the foundation for self-adaptation. Adaptation
can be performed by changing the current role of a component since behaviour is encapsu-
lated in the roles. Based on that automaton, that switch is done by an AM. From thatmodel,
a role-based architecture with adaptation and application logic is built and implemented
with a Java framework. A benet of their approach is the possibility of formally analysing
the model by a model-checking approach, which leads to potentially correct adaptation re-
sults andmodels. Although their approach with a model-checking possibility is a promising
solution, they do not address the execution process of an adaptation, i.e., the transition
from the old state to the new state. Moreover, they do not address how their approach
works technically in a distributed and decentralised setup and during run-time, and poten-
tial errors during the adaptation process are not addressed.

3.3.4. The MACODO approach

Weyns et al. [60] introduced a middleware for agent-based systems, which allows for de-
signing and managing dynamic organisations. Their approach separates the management
of the organisations from the functionality, making the organised agents’ lifecycle manage-
ment reusable, as we do that with the AM in self-adaptive systems with the external ap-
proach (cf. subsection 2.2.2). The middleware can adapt the organisations and the collab-
orations between the role-playing agents according to the current context. In this analysis
of the MACODO approach, we want to focus on the robustness features of node failures,
which are described in the appendix of their work [59]. Their focus for dealing with failures
is set on silent node failures, i.e., nodes are unresponsive and do not send any incorrect
data. To solve that, Weyns et al. present a way to use a self-healing approach. Similar to
the solution from Vromant et al. [52] shown in subsection 3.3.1, the MACODO approach
uses a Self-Healing Manager to deal with silent failures in the system. This manager imple-
ments a heartbeat generator to monitor the status of the connected nodes. If a failure is
detected, pre-dened repair actions are issued to recover a consistent state in the system.
With the help of the repair actions of the subsystem, operating the remaining system can
be continued in a possibly degraded mode.

According to Weyns et al. [59], in a master/slave organisation as their running example
in their work, nodes depend on each other because of that relationship determined in a
so-called role contract. If no countermeasures in case of silent node failures were applied,
the system would be in an invalid state, and nodes would not be able to function correctly.
Their model dened dependencies between the agents and their roles as explicit proper-
ties to deal with node failures. Their self-healing approach concerning silent node failure
consists of monitoring the dependencies between the nodes and removing or replacing
invalid dependencies if a node failure occurs. Their dependency model and repair actions
are currently specied at design time. The dependency model gets updates as a result of a
repair strategy. MACODO’s repair strategy only supports local repair actions and does not
consider any negotiations among subsystems since the goal is to bring the system back to a

28



3.3. Adaptation Execution in Self-Adaptive Software Systems

consistent state. Even though Weyns et al. presented an approach for self-healing, they did
not address concrete planned adaptations and their potential failure in unstable environ-
ments. Moreover, decentralisation is not addressed as well. Another shortcoming of that
approach is the possibility to specify everything at design time, which limits the possibility
of reacting to unanticipated changes that would disrupt the system unexpectedly.

3.3.5. Self-Adaptive Software with Decentralized Control-Loops

DECIDE [6] is an approach for decentralising the control loops in a distributed SAS by Ca-
linescu et al. According to the author, achieving a certain quality-of-service (QoS) is chal-
lenging in SAS. To solve this problem, Calinescu et al. rely on formal verication methods,
which support them in letting components agree on a QoS and supervise the components
in achieving the agreed goals with changes and failures in mind. Their main contributions
are the decentralisation of control loops to eliminate a single point of failure, which would
be a risk factor for centralised systems, and to improve the overall exibility of SAS. More-
over, they use runtime verication and validation to guarantee QoS compliance of the com-
ponents during the execution of mission-critical SAS. With their approach, overall commu-
nication between the components is kept at a low level since the verication is done locally,
and nodes only communicate with other peers in case a major peer change is necessary,
e.g. due to new or removed peers.

Calinescu et al. [6] showed an interesting approach for decentralising control loops to
build a SAS based on formal verication methods. They considered failure types, including
sensor failures, slower sensor measurement rates and total node failures. With their ap-
proach, they showed how to build a SAS with those failures in mind by using decentralised
control loops and how systems can be recongured to react to those failures. Although
they present a promising approach, coordination between decentralised peers during the
adaptation phase is not addressed, and the process of changing the conguration itself is
not discussed. The communication channel between the decentralised control loops and
the messages exchanged between the nodes still needs to be addressed. This is crucial
for adaptations where single peers must cooperate to share states and data. Moreover,
the authors mainly address parameter adaptation as a reaction to changed circumstances.
Our approach can perform architectural changes by exploiting the notion of roles, allowing
us to inject new behaviour to react to unforeseen situations. Last, the notion of roles is not
supported by DECIDE, which is an essential property for our solution.

3.3.6. Decentralised Adaptation in Collective Adaptive Systems

Bucciarone et al. [5] designed an approach for collective adaptive systems (CAS) which
enables decentralised adaptation. The authors claim that adaptation in a large-scale dis-
tributed service-oriented system must be collective to ensure resilience and that multiple
participants must adapt their behaviour to react to changed circumstances. Therefore,
their approach aims for a collective adaptation in a decentralised way so that changes are
executed collectively to increase robustness. ‘Entities must be able to self-adapt simulta-
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neously while preserving the collaboration and benets of the system (or subsystem) they
are within’ [5]. Their CAS focus on collaboration to full diverse individual goals of each
component concerning the heterogeneity (e.g. roles, goals) of each component of the sys-
tem. According to Bucchiarone et al., their approach diers from other CAS approaches,
which have components (agents, roles, swarms) with a common shared goal and uniform
behaviour. Their adaptation process is based on the MAPE-K feedback loop. The envi-
ronment gets monitored in the monitoring and analysis phase, and the data is analysed
locally. The planning component aims to nd a solution to cope with the current situation.
Hence, a coordination process occurs between peers to nd local and global solutions.
Single nodes can accept or decline solutions to adapt to particular circumstances. During
the planning stage, various commit messages among the peer are exchanged, which cause
local changes to be executed in the execution stage. Their solution of sending commits to
perform changes goes towards the direction of the Two-Phase Commit Protocol [45] but
does not provide a rollback function. Bucchiarone et al. do not consider local failures of
adaptations but give a coarse overview of how the execution process of an adaptation can
be designed in a decentralised way. Potential error cases are not investigated, i.e., they
consider a nearly perfect environment. Moreover, their solution provides no coordination
of the adaptation process itself. They raise the question about applicability during run-time
but do not provide an answer to that question risen. Run-time applicability is a key feature
of our approach.

3.3.7. Consistent Unanticipated Adaptations for Context-Dependent
Applications

Taing et al. [44] present an approach to deal with unanticipated adaptation in context-
dependent applications, e.g., role-based applications. Usually, system designers dene
their adaptations and potential behaviour changes in advance while designing the system
and deal with anticipated adaptation [44]. Nonetheless, this could be disadvantageous in
a dynamic environment, where it is hard to foresee all adaptations. Of course, the system
could be shut down, and the problem could be solved during that time. Nonetheless, this
contradicts the overall goal of performing adaptations during run-time. Their work consists
of a Java-based runtimewhich supports the unanticipated adaptationwithout restarting the
runtime environment and an introduction of transactions at the object level to safely adapt
single entities, similar to the quiescence approach from Kramer et al. [24]. New roles can
be (re)loaded with a Class Reloader and bound during run-time without destroying existing
core objects, which has the advantage of fully preserving application states throughout the
role switch. The approach by Taing et al. provides an excellent possibility to adapt local
roles as an answer to a changing environment. Nevertheless, we cannot apply the con-
cept to perform the adaptations in a decentralised setting since their approach considers
adaptation on a local runtime. However, we can benet from their ndings for the local exe-
cution of the adaptation after the distribution of dierent peers with our approach and use
the alternative to quiescence. Hence we do not have to implement that concept ourselves.
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3.3.8. A Checkpointing Mechanism for Role-Based Adaptation Fallback

As a continuation of their concept for unanticipated adaptation, Taing et al. [43] presented
a rollback mechanism to recover from adaptation failure during run-time in a role-based
environment. Their work is of relevance because they also adapt role-based applications
and consider an erroneous adaptation process. Those failures might be caused by adap-
tation failure or uncaught software bugs during testing and compiling. They dene an ap-
plication conguration as a set of compartments, players and roles with their bindings to
the players. Adaptation is a process of changing this conguration to meet altered re-
quirements with the help of adaptation operations. The goal is to switch from one valid
conguration to the following correct conguration. In their understanding, related opera-
tions are tied into adaptation transactions. During a system’s lifetime, failures could occur
due to an adaptation and just by regular task execution. The work from Taing et al. aims
to cope with these bugs by introducing checkpointing before each adaptation takes place.
This procedure is shown in Figure 3.3. The application is in its rst conguration, AC0 in
the beginning. Then, an adaptation AC1 is planned. To deal with possible failures, a check-
point is created before the execution. In case of a bug, as depicted in Figure 3.3 after the
second adaptation process, a rollback of the current conguration to the checkpoint is per-
formed. A checkpoint contains information about the current application conguration, i.e.,
role bindings, compartments and active players, including all states. The authors assume
that rolling back to the previous checkpoint is a good approach since no bugs occurred
before the checkpoint was created, and therefore the old conguration was stable. The
checkpointing approach includes a human-in-the-loop since, after a rollback, developers
get notied, which can take countermeasures to prevent the bug occurs once again.

They provide an interesting approach for dealing with failures in a (self-)adaptive system
based on the role concept. A shortcoming concerning the applicability of our vision is the
limitation to a single peer and role runtime. Our needs foresee a decentralised setting
spanning multiple nodes with adaptations on multiple role runtimes. Moreover, we aim
to develop an optimistic approach, based on forward recovery, i.e., avoid rollbacks to allow
successful nodes to continue their work. By applying a rollback, intermediate results would
be discarded.

AC0 AC1 AC2

rollback

Time
AC0: Base Configuration
AC1,2 : Application Configuration

Checkpoints

Figure 3.3.: Checkpointing strategy by Taing et al. [43]
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3.3.9. Decentralised Coordination Protocol for Strict-Consistent Adaptation
Execution

A promising approach for the decentralised execution of adaptations in a role-based sys-
tem is the execution coordination protocol by Weißbach [53]. The concept allows run-time
adaptation of underlying role-based systems in a decentralised approach. The approach
relies on the MAPE-K feedback loop and can be seen as a solution for designing the execu-
tion part of the loop [55]. The authors do notmake any assumptions about the architecture
of the remaining components of theMAPE-K feedback loop; only the execution component
is assumed to be decentralised. An overview of the concrete architecture with three nodes
is depicted in Figure 3.4. The execution component of the MAPE-K feedback loop receives
an adaptation plan over the IF_1 interface. This adaptation transaction is shared among all
participating AM via the IF_2 interface. In their case, the AM are monitoring their underlying
role-based applications, which is a LyRT [42] runtime. The received adaptation operations
are executed on the role runtime. Weißbach et al. [53] developed a coordination protocol
which allows a consistent transition from a source role conguration to a target congu-
ration on all participating nodes. That approach can be seen as an atomic approach with
a strong consistency characteristic. Peers which cooperate to perform the adaptations in a
consistent way exchange status information in the shape of reportmessages and activation
messages. The behaviour can be compared to the procedure of the 2PC. If and only if all
participating peers could prepare their adaptation operations, an activation of the changes
gets performed, comparable to the commit in the 2PC. If an error occurs during the execu-
tion of an adaptation, all intermediate changes are reverted, and the source conguration
is restored. This is comparable to the abort of the 2PC. This approach guarantees a safe
adaptation from the source to the target conguration without any inconsistencies.

Adaptation Management

Monitor Analyze Plan

Execution

Adaptation Manager

Role-based Managed
Application
Node 1

IF_3

Adaptation Manager

Role-based Managed
Application
Node 2

Adaptation Manager
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monitor monitor

IF_1

IF_2

Figure 3.4.: Architecture of the execution component from Weißbach et al. [55]

The protocol by Weißbach et al. [54] uses the concept of quiescence [24] (see subsec-
tion 2.3.1) to perform safe adaptation without breaking the application and causing data
loss as a consequence. Therefore their solution relies on the role lifecycle presented in
subsection 2.3.1. Roles are only adapted, i.e., removed or changed in another way, if they
are passive. This means that the role does not perform any actions, and task execution is
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interrupted, which imposes the drawback of blocking behaviour in case of the adaptation
of a large-scale system. Roles get activated when all other peers participating in the adap-
tation transaction succeed and report their success. Therefore, nodes that have already
performed their local changes may wait until all answers are collected and thus do not ex-
ecute their application tasks in that time if the adaptation process for others takes longer.
Another shortcoming of the approach, especially in large-scale systems, is the reaction to
potential failures of single nodes. Due to the atomic behaviour, every participant must
perform the changes successfully. In case any error occurs, all intermediate changes get
reverted, despite the number of already successful adaptations. Although this behaviour
could be benecial for some use cases in a safety-critical domain, we believe that a subset
of applications would benet from a weaker consistency approach, allowing for a temporal
inconsistency.

3.4. Change Consistency in Distributed Systems

We continue this chapter by examining essential approaches to change consistency in dis-
tributed systems. This topic is of interest because an approach is needed for optimistic
adaptation in the presence of failures in the adaptation process. Recap our drone exam-
ple from Figure 1.1. If a failure occurs because e.g. a drone is not reachable and it should
approach a re, the systemmust react adequately to monitor the inconsistency on the one
hand, and to recover from this inconsistency on the other hand, to ensure that the failing
drone approaches the re as soon as possible. We start by discussing the well-known 2PC
and a variation of it, the Three-Phase Commit Protocol (3PC), as two representatives for
approaches with strong consistency. Next, we want to discuss important representatives
of the eventual consistency paradigm, which allows a weak consistent state for a short time
frame. Among those techniques, the database and microservices domain solutions are
discussed.

3.4.1. Two-Phase Commit Protocol

The 2PC is one of the prevalent approaches for changing data consistently at multiple com-
ponents. To coordinate numerous processes on dierent machines to perform operations
in the whole group or none at all, the 2PC is a common approach. This concept relies on
a coordinator steering the entire change process. A schematic overview of a distributed
transaction is depicted in Figure 3.5. First, the vote-request message is sent to all par-
ticipants by the coordinator. The recipient has two possibilities: either a vote-commit is
sent because local operations were successfully prepared, or a vote-abort is replied other-
wise. The coordinator collects all answers from all participants and decides how to proceed
based on the answers. If all participants voted with a vote-commit, a global-commit is sent
to the peers, which causes the changes to be committed locally for each peer. If only one
peer votes to abort, no changes are executed, and the transaction gets aborted. According
to Tanenbaum et al., problems arise when the 2PC is used in an environment where fail-
ures occur. The rst problem addressed is the state where incomingmessages are blocked
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because the system waits for a commit or abort message. Therefore 2PC is considered a
blocking commit protocol. The whole protocol can fail if a process crashes; hence timeout
mechanisms should be applied.

Although the protocol is blocking and can fail if the coordinator fails since the approach
is coordinator-centric, we can categorise it to the strong consistent approaches since no
failures are tolerated even for a single node.
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Figure 3.5.: Scheme of the two-phase commit protocol [45]

While examining the consistent adaptation approach from Weißbach [53] and the 2PC,
we can nd similarities in how changes are executed consistently. The role-based adap-
tation coordination protocol from Weißbach et al. could be classied as a variation or de-
centralised application of the 2PC. The system is guaranteed to be in a consistent state
at all times. Existing decentralised SAS execution approaches [54, 5] apply such a strict
transactional method where consistency takes priority over availability. If we applied the
CAP-theorem to adaptation transactions in this context, the transactions would ensure con-
sistency of the adaptation execution. Therefore, in the case of a separated or partitioned
system with the requirement of global consistency, the condition of being available does
not hold according to CAP. In conclusion, consistencymust be relaxed to ensure node avail-
ability in partitioned SAS. Please note that partitioning and separation of nodes can result
from disconnection and link failures. Especially in environments where connection errors
can occur, ignoring partition tolerance but relying on consistency could lead to problems
since peers of a transaction could become unreachable during the system’s run-time.

3.4.2. Three-Phase Commit Protocol

The three-phase commit (3PC) is an advanced version of the 2PC [45]. After a crash of the
coordinator in the 2PC (cf. subsection 3.4.1), the participants must wait for the recovery of
the coordinator. The 3PC aims to solve the problem of a crashing coordinator and hence
tries to eliminate the resulting blocking state. Similar to the 2PC, the 3PC has a coordinator
and multiple peers which should perform the transaction. The commit scheme is depicted
in Figure 3.6. The signicant dierence between the state machines of 2PC and 3PC is a
precommit state before the actual commit. This additional step is necessary to be non-
blocking. When the coordinator is stuck in the precommit state, after a timeout, it can be
assumed that every participant successfully prepared the transaction because the precom-
mit stage was entered. Consequently, the coordinator can instruct all remaining peers to
commit the change, and the crashed peer will commit the change after it comes up again.
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Also, participants can ask other participants about the current state if they conclude that
the coordinator has failed. If another node is in the precommit or commit state, the asking
peer can also move on to the next state.
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Vote-request
Vote-Commit

Prepare-commit
Ready-commit

Vote-request
Vote-abort

COMMIT

Ready-commit
Global-commit

PRECOMMIT

COMMIT

Global-commit
ACK

Figure 3.6.: Scheme of the three-phase commit protocol [45]

Similar to 2PC, 3PC provides a technique to perform operations in a consistent way using
transactions. It does not allow for inconsistencies due to link failures or other failures which
could occur during run-time, i.e., weak consistency is not supported, which prevents us from
using that approach for our concept. Nonetheless, we found the 3PC worth mentioning
since it copes with node failures during the change process, which is also an aspect of our
work.

3.4.3. Eventual Consistency

In the next part of this chapter, we want to examine approaches which rely on the paradigm
of weak consistency, and especially eventual consistency [35]. The rst technique we want
to discuss is CRDTs, which is an interesting approach to provide eventual consistency in
data-driven applications. For the following technique, we stay in the database domain and
present the approach of the DynamoDB with its hinted hands-o and a ‘sloppy quorum’.
Last, before moving on to techniques known from web services, we present the Saga ap-
proach from the domain of microservices, which is also a promising approach for weak
consistency.

Conict-Free Replicated Data Types

Recently, CRDTs [39] have been used in an increasing number of approaches that provide
eventual consistency. The overall goal is synchronising distributed node data without any
central unit controlling the synchronisation process. It is based on the paradigm of strong
eventual consistency, i.e., convergence to a common, consistent state is always guaranteed
(as long as peers are available in the future). CRDTs ensures the automatic convergence
to a consistent state by restricting mutations to operations that always lead to the same
outcome avoiding potential conicts. It is amathematically proven concept to alwaysmerge
or resolve concurrent updates without any central entity successfully. A key approach is
to be order-agnostic due to the commutative operations, which causes the updates to be
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delivered in any order regardless of the order of the operations. Therefore we cannot
dene dependencies between actions. We distinguish two types of CRDTs, namely state-
based CRDTs and operation-based CRDTs. The former sends the whole state of data (or
application) to the other clients, which is then merged locally with the recipients’ state. The
latter propagates the operations, which are then applied to the other participants. On
arrival, those operations can be applied in any order.

As we explained in this section, CRDTs represent the current state of the stored data.
Intuitively, CRDTs could be used to express the current role-playing graph, i.e. the current
role conguration of a role-based application containing all compartments, roles and play-
ers. A rst intuition of how to store the role conguration usable by CRDTs is the JSON
le format due to existing technical support for the synchronisation of JSON with CRDTs1.
Note that other textual representations which are supported by CRDTs are thinkable. An
example of a role conguration with JSON is depicted in Listing 3.1.

1 [
2 {
3 "nodes": [
4 {
5 "address": "192.168.0.1",
6 "rolegraph": [
7 {
8 "players": [
9 {

10 "id": "Drone1",
11 "bindings": [
12 {
13 "role": "SwarmMember",
14 "compartment": "Surveillance"
15 }]
16 }]}]
17 },
18 {
19 "address": "192.168.0.2",
20 "rolegraph": [
21 {
22 "players": [
23 {
24 "id": "Drone2",
25 "bindings": [
26 {
27 "role": "SwarmMember",
28 "compartment": "Surveillance"
29 }]
30 }]
31 }]}]
32 }
33 ]

Listing 3.1: Example of a role denition in JSON

1https://github.com/automerge/automerge
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Basically, changes resulting from the adaptation process could be expressed in a new
JSON representation of the new role conguration. Therefore, synchronising the changes,
i.e., the new conguration, to all peers seems convenient. Nevertheless, each role has its
state with application data, which also must be appended to the JSON structure. CRDTs
become very complex if we apply them to our concept regarding complex operations in-
volving more than one node or role. Cloning or migrating application data from one role to
another requires complex coordination schemes, frombringing the application to a passive
state to reasoning about the adaptation progress at other nodes, which is not supported
by the nature of CRDTs. Nonetheless, a coordination process is necessary in addition to a
CRDT structure. Dependencies between roles across nodes would have to be dened, in-
creasing the complexity massively. Moreover, we would need an additional layer to reason
from the CRDT to the run-time model, and the synchronised data structure could dier
from the actual run model. This synchronisation must also be supervised.

CRDTs are a promising approach for enabling eventual consistency in a distributed, de-
centralised setting. Nevertheless, this concept is suitable for simple data transformations.
Although all peers are guaranteed to end up in the same state, the out-of-order recovery
after changes were received is unsuitable for our use case. For our approach, it is impor-
tant to determine the correct outcome of the adaptation process regarding the order of
the single operations, which is not guaranteed with CRDT. The ordering of incoming events
could be resolved with a central instance, but this would violate our demand for a decen-
tralised solution.

The Saga Approach

The Saga [12] approach realises the weak consistency concept and is widely used in mi-
croservices architectures, where multiple services process data step by step instead of
operating in a centralised way. It is designed for long-lived transactions (LLT) to prevent
holding database resources for too long and to manage data consistency. This transaction
accesses many database objects and therefore locks all databases for a very long time if,
e.g. 2PC was used. Hence, due to the high access number of LLTs deadlocks and many
abortions could occur [12], and because of their duration, the failure chance of an LLT
is increased. To solve this issue, transactions are divided into multiple sub-transactions.
However, the whole transaction with its sub-transactions must succeed completely, or no
changesmust be performed. With the approach of dividing a transaction into smaller parts,
resources can be released earlier to subsequent transactions. Consequently, each of the
sub-transactions could fail. To deal with this, each sub-transaction provides a compensa-
tion action which reverts the performed actions from a semantic point of view. It does
not necessarily mean that database entries are removed, but a compensating entry could
have been added with the compensation. Note that the sub-transactions are run in their
intended order. Compared to a 2PC approach, sagas could see the partial results of other
sagas. Hence full atomicity is not provided at a global level. The most common practice
is the backward recovery, which is shown using an example in Figure 3.7. In the exam-
ple, a process of an order in an online shop is shown. All sub-transactions in the gure
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are part of an overall transaction. Only if all steps succeed the transaction ends. Any of
the sub-transactions could fail. This leads to the compensation of all previously performed
transactions with the respective compensation transaction, which is also executed in a trans-
actional way. In the example, we assume that the payment process, transaction number
two, fails. Intermediate payment process changes are reverted, and afterwards, the order
gets cancelled because actions are compensated in reverse chronological order.

Start
Create Order
(Transaction 1)

Process Payment
(Transaction 2)

Update Inventory
(Transaction 3)

Deliver Order
(Transaction 4)

End

Cancel Order Reverse Payment
Reverse Inventory

Update
Cancel Delivery

Start
Create Order
(Transaction 1)

Process Payment
(Transaction 2)

Update Inventory
(Transaction 3)

Transaction
Compensating
Transaction

Figure 3.7.: Example of the Saga approach

Sagas provide an interesting approach for managing the consistency of an LLT in a dis-
tributed system while allowing short inconsistency windows from a global perspective. Our
technique is similar to compensations, but the Saga compensation reverses all previous
actions in case of failure. Anyway, we want to keep already performed changes and com-
pensate so that the failed nodes reach the same state. Moreover, the Saga approach relies
on a Saga Execution Component, a centralised instance managing the whole transaction
process, which does not t our vision of a decentralised compensation protocol.

Amazon DynamoDB and Sloppy Quorum

Next, we want to discuss the approach for eventual consistency in the ‘DynamoDB’ [9], which
is a highly available key-value store. DeCandia et al. identify reliability in large-scale systems
as one of the biggest challenges. In their paper, the authors present an implementation
of a highly available key-value store, which provides an ‘always-on’ experience to its users.
To achieve this, consistency had to be sacriced in certain failure scenarios. By enabling
high availability, scalability can be improved compared to blocking systems which aim for
consistency at all costs. Their systemmodel assumes that of millions of components, there
is always a small but signicant number of failing components. In case of those failures, the
system should normally work as intended without penalties regarding availability and per-
formance. For this thesis, we do not want to examine the whole architecture of DynamoDB
in detail. We rather focus on the behaviour in case an error occurs and how the system
handles failures.

DeCandia et al. do not use traditional quorum approaches for recovery and reasoning
about the latest datasets version. They argue that using traditional techniques, Dynamo
would be unavailable during server failures and partitions. Simple failures would aect the
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durability negatively. To overcome this, they use a sloppy quorum instead, which writes data
on the rstN healthy nodes using a preference list, where data should be stored preferably.
Figure 3.8 depicts the ring topology of the system’s partitions.

The recovery concept in case of a failure is called hinted hando. We explain the concept
using Figure 3.8. Consider that the rst N = 3 nodes in the systemmust store the received
data for replication, and A is temporarily down or unreachable. Usually, data would have
been sent to A, B and C because N = 3. Nonetheless, A went down, so the data is sent
to D instead to guarantee availability and meet the requirements. D, which unexpectedly
received the data, stores this hint in a separate local database. When D detects that A
has recovered, the data is delivered to A. On success, the local hint can be deleted from
the database. This technique ensures that the desired number of replicas is always sat-
ised. This approach ensures that operations can be executed despite node or network
failures. System designers can choose how many nodes must be available and must have
successfully written the key in their local store. The minimum is one node, which provides
the highest availability. The write is accepted if only one node has successfully written the
latest key in its storage. The write operation only fails if the whole system is unavailable.
Setting that value is application-dependent.

A

B

CD

E

Figure 3.8.: Ring key storage in Dynamo DB [9]

DeCandia et al. presented a very interesting approach for eventual consistency for highly
available storage. Although this approach is not tailored for SAS, the core idea with the
hinted hando is promising since we could exploit the concept for failed adaptations. In-
stead of writing data and keys on healthy nodes, messages for oine peers could be stored
as hints on available nodes and sent as soon as the node is available again, desirably in a
decentralised way to increase reliability.

3.4.4. Consistency in Web-Services

The last approaches we want to examine in this chapter are techniques known from web
services. Two main concepts for reaching consistent outcomes of distributed activities are
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present. First, the WS-AtomicTransaction [30] and WS-BusinessActivities [11]. The former
is used to reach consistency among all participants with an All-Or-Nothing property. All par-
ticipants vote about the outcome consistently, or the coordinator aborts the whole transac-
tion if at least one member fails. This approach is related to the adaptation transactions by
[55]. On the other side, web services provide a technique called WS-BusinessActivity. Busi-
nessActivities are a concept for long-running transactions (see Subsection 3.4.3), where
exceptions occurring during the execution of a business process can be handled. In case
of an error in a node or a transaction, compensation actions can be triggered eventually. In
contrast to WS-AtomicTransactions and the approach from Weißbach [55], all actions are
applied immediately and permanently, thus not rolled back. In addition, resources are not
locked as in WS-AtomicTransactions. Those compensation tasks mostly use business logic
to reverse the previously completed task. As in Saga, WS-BusinessActivities dier from our
concept in one signicant point. Both have compensation tasks to reverse already per-
formed changes to the origin state. We aim to keep the change and compensate the still
unchanged entities to a newer version.

3.5. Comparison of the Evaluated Approaches

In this chapter, we presented related approaches in dierent areas of research. During
our literature survey, we categorised the approaches and analysed them for essential cri-
teria for our solution. We want to compare our work with the literature using the dened
criteria in the following. Table 3.1 provides an overview of the examined works and a clas-
sication of our concept. As we can see, not every one of the works supports our essential
requirement, the notion of roles. Nevertheless, they provide essential knowledge for the
development of our concept, especially the implementation of eventual consistency in the
DynamoDB [9] with its ‘sloppy quorum’. This approach allows us to restore the consistency
of an inconsistent conguration of our self-adaptive system even if almost all nodes failed
beforehand. Also, the work of Taing et al. [42] is important since their role runtime al-
lows us for dynamic instance binding during run-time and local transactional execution of
adaptations.

From the examined works, the approaches from Weißbach et al. [55, 54] satisfy our
requirements the most. Nonetheless, no approach satises all our needs, as we can see in
Table 3.1.
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Table 3.1.: Comparison of the related approaches, ●: Full support, ❍: Not supported / Not Ad-
dressed, ◗: Partial Fulllment. R: Roles, SAS: Self-Adaptive Software Systems, CC: Change
Consistency, DS: Distributed Systems, EC: Eventual Consistent
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R Role Support ● ● ● ❍ ◗ ❍ ● ◗ ❍ ❍ ● ● ● ❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍ ●

SA
S

Adaptation Transactions ❍ ❍ ◗ ❍ ❍ ❍ ❍ ❍ ❍ ◗ ◗ ◗ ● ◗ ◗ ❍ ◗ ❍ ◗ ◗ ❍ ●

Link Failure Tolerance ❍ ❍ ❍ ● ● ● ❍ ❍ ❍ ❍ ❍ ❍ ◗ ◗ ◗ ● ● ● ◗ ● ◗ ●

Asynchronous Adaptation ❍ ❍ ◗ ❍ ❍ ❍ ❍ ❍ ❍ ❍ ● ❍ ❍ ❍ ❍ ◗ ◗ ❍ ❍ ◗ ❍ ●

Partitioned Adaptation ❍ ❍ ❍ ❍ ◗ ● ❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍ ◗ ❍ ❍ ❍ ❍ ❍ ◗

EC Adaptation ❍ ❍ ❍ ❍ ◗ ❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍ ●

CC

Weak Consistency ❍ ❍ ❍ ● ◗ ❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍ ● ◗ ● ❍ ◗ ❍ ●

Consistency Recovery ❍ ❍ ◗ ◗ ● ❍ ● ❍ ◗ ❍ ● ● ● ● ● ● ● ● ● ● ❍ ●

In-Order Recovery ❍ ❍ ● ❍ ❍ ❍ ❍ ❍ ❍ ❍ ● ● ● ● ● ❍ ● ◗ ● ● ❍ ●

D
S

Decentralization ❍ ❍ ❍ ● ◗ ● ❍ ◗ ● ● ❍ ❍ ● ❍ ❍ ● ❍ ● ❍ ❍ ◗ ●

Partition-Tolerance ❍ ❍ ❍ ● ◗ ● ❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍ ● ❍ ● ❍ ❍ ◗ ◗

High Availability ❍ ❍ ❍ ● ● ● ❍ ❍ ◗ ◗ ❍ ❍ ❍ ❍ ❍ ● ● ● ❍ ◗ ◗ ●

Based on the foundation explained in chapter 2, along with the ndings in the related
approaches which were presented in this chapter, we will discuss the concept for the op-
timistic adaptation of role-based applications in the next chapter.
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Compensation Protocol

In the previous chapter, we discussed related approaches and promising techniques which
we could consider to design our concept to answer the posed research questions. The
concept chapter is divided into twomain parts. Before starting with the main concepts, the
system and error models are explained to set the constraints for the developed solution.
Next, we explain how SAS and roles are combined in our approach. An overview of the
protocol, including the consistency model, which is applied with the help of the developed
solution, is given. Based on the terms adaptation operation and adaptation transaction, a
new term, adaptation bundle, is introduced, which is a key adaptation driver in the designed
system. Last, the developed protocol and identied corner cases are presented.

4.1. System and Error Model

First, we want to dene the systemmodel and the developed approach’s constraints. Gen-
erally, a weak consistent approach is unsuitable for specic types of adaptation. Therefore,
our protocol does not support safety-critical adaptations and systems that require all com-
puting devices that are part of the decentralised SAS to be in the correct conguration at
every point in time, hence requiring strict consistency. Nevertheless, the adapted system
should behave correctly after the adaptation takes place. Hence the local adaptationsmust
be executed consistently, even if not all nodes have applied the scheduled changes yet.

The main focus of the developed approach is dealing with inconsistencies resulting from
an erroneous adaptation procedure due to certain circumstances. Error cases regarding
the developed approach are discussed in section 4.5.

The problems identied for the protocol usage are manifold. First, network congestion
can occur and thus make nodes inaccessible for communication and adaptation. This can
either happen before the adaptation process and prevent the adaptation plan from reach-
ing the addressed node, or network problems can emerge during the adaptation process,
leading tomissingmessage exchange concerning the adaptationmessages between peers.
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This problem needs to be addressed by sophisticated protocol error handling by complet-
ing the adaptation later as soon as the respective peer reconnects. Another potential prob-
lem requiring a weak consistency approach for adaptation execution is an ongoing task
execution of the current application by the respective node(s). This can lead to diculties
during the adaptation process if the adaptation manager decides that the managed appli-
cation needs time to nish the current task. In that case, the adaptation for the current
node must be delayed for a short time to prevent interruption of the ongoing process.
Nevertheless, the waiting time leads to an overall longer adaptation process. Recap our
drones example from Figure 1.1. In this example, due to a changed context, the drones
should change their roles because a re is present. One of the swarmmembers is still busy
surveying a dangerous area and refuses to adapt for now, delaying the intended adapta-
tion. In the case of a potential transactional approach, this behaviour could lead to the
rollback of intermediate changes and cancellation of the current adaptation transaction.
A further potential problem can be put into the same error class: a long passivation pro-
cess. According to subsection 2.3.1, an application must be brought into a safe state, i.e.,
quiescent state, to guarantee a safe transition from the local source conguration to the
local target conguration. In our drone use case, the gathered video and sensor data in
the surveillance-mode is processed by the data processor. This information is interpreted
afterwards, and conclusions about risks are derived based on this knowledge. That pro-
cess could take longer in some cases, keeping the drone and the played role busy for a
short time. In the meantime, adaptations could be issued that also aect the data process-
ing drone. To adapt, the drone must leave the surveillance mode. Nonetheless, this role
is busy and needs a longer time to passivate and unbind from the drone. Hence, if only
one node takes longer to get into that quiescent state, a strict transactional, pessimistic
approach will block the adaptation process since all AM must wait for each other to nish
the process. In the worst case, the adaptation transaction can be aborted, and a rollback
can be initiated.

Although we aim to recover from an erroneous adaptation process, an error case which
could occur is a recovery process which would not come to an end because a pending node
potentially never reconnects, a peer never recovers from a failed adaptation operation, or
the passivation process fails. In that case, the issued adaptation never succeeds from a
global perspective, although parts were executed correctly. For this thesis, we assume that
the recovery process succeeds because nodes can always reconnect and nodes recover
from an adaptation failure. Nonetheless, we discuss how to solve potential issues in this
regard during the concept presentation.

In the next section, the requirements for our concept are presented.

4.2. Requirements to the Concept

Before starting, we dene the requirements for the solution, which should be fullled by
the developed protocol. These requirements are evaluated, and the results are shown in
chapter 6.
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[REQ1] First of all, the regular adaptation process must work fully decentralised. This en-
sures that we do not need a central adaptation unit to coordinate adaptations, in-
creasing scalability and eliminating a single point of failure. If the central adaptation
unit is unreachable, adaptations could be executed.

[REQ2] We require the recovery of erroneous adaptation bundles (cf. subsection 4.4.2) and
operations (cf. subsection 4.4.3) to work fully decentralised, regardless of a super-
vising authority. Not only should the initiator of the respective adaptation plan be
responsible for recovering consistency, but if the initiating node is unreachable and
thus unable to recover the system, other nodes must take over this task. This de-
centralisation ensures that overall consistency can be recovered reliably.

[REQ3] No information about incomplete or pending adaptation bundlesmust get lost. This
ensures that pending operations are executed on the respective nodes in case they
reconnect or when they are ready to perform the pending operation. Combined
with [REQ1] and [REQ2], this specication requires the information about pending
adaptations to be distributed among all peers in the network to keep this informa-
tion redundant.

In the next sections, we explain the general concepts for our protocol and the usage of
roles to support run-time adaptations in decentralised SAS.

4.3. The Usage of Roles in Adaptations

The goal of our decentralised adaptation protocol with a relaxed consistency approach is to
enable either parameter adaptations or structural adaptations during run-time, depending
on the current context. To support run-time adaptation at the application level, we use
the notion of roles introduced in section 2.1. With roles, we can express context-sensitive
behaviour and adapt to certain circumstances by adding, removing or switching roles in the
managed application depending on the current context and generated adaptation plan by
the planning component of the MAPE-K feedback loop. With roles, we can also express
system updates that we can execute during run-time without halting the whole system.
Those roles can be loaded dynamically into the system by using the dynamic dispatch of
the LyRT role runtime [42].

In our concept, we use the notion of roles to adapt an application during run-time. There-
fore, in conformity with the presented external approach (see subsection 2.2.2), amanaged
application is adapted by our developed AM, which contains the adaptation logic. The even-
tual consistent adaptation execution component, which was developed during this thesis,
is application-independent. Therefore, we do not specify the application itself during the
conception. A schematic overview of a role-based application based on our drone exam-
ple is depicted in Figure 4.1. This gure is extracted from the CROM model depicted in
Figure 2.2. As we can see in the depiction, the role-based application consists of one or
more players (in this extract of one) which are playing certain roles. With the help of the
roles, context-dependent behaviour can be expressed and executed. Using our concept,
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those role bindings can be manipulated to adapt to changed circumstances. As shown
in Figure 4.1, drone1 is playing the role observer in the compartment anomaly present. By
changing the role binding during run-time to extinguishing in the compartment forest re,
because re is present, we can adapt the drone’s behaviour by creating the new role bind-
ing. With the new role, the drone can release the extinguishing powder to mitigate the
re.

Anomaly Present

1..*

1..*

Drone1

Forest Fire

Extinguishing

1..*

id: String
powderLoaded: int

- fly() : void
- releasePowder()

temperature: float

Observer

- useThermalCam()
- notifyListener()

Listener

- prepareExtinguish()

listening

listening

observer: List <<plays>>

<<new binding>>

<<plays>> <<new binding>>
Current role binding, will be deleted New role binding after adaptation

Figure 4.1.: Role bindings in the role-based application (extract of Figure 2.2)

4.3.1. Safe State for Adaptation

During the foundation’s presentation, the concept of quiescence (cf. subsection 2.3.1) by
Kramer et al. [24] was introduced. They presented an approach for performing run-time
changes of active components without breaking an application or causing data loss. Quies-
cence and the role lifecycle were adopted by [53], who dened that a component subject
to be adapted must be in a quiescent or passive state rst.

We chose LyRT [42] over SCROLL [29] and ObjectTeams [17] for two main reasons. First,
the dynamic dispatch allows us to load and play roles which were not included in the ap-
plication during design time, i.e., a system using LyRT can react to unforeseen changes.
Moreover, LyRT provides a transactional approach for local adaptation execution. Due to
this fact, we do not have to implement any sort of quiescence or passivation procedure
ourselves but can rely on consistent local adaptation by using LyRT. We described this ad-
vantage of LyRT over the other runtimes in subsection 3.1.1.

4.3.2. Interaction with the Managed Application

Our concept, which relies on the concept of theMAPE-K feedback loop, separates the adap-
tation logic from the managed application. Therefore, an interface is necessary to perform
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the actions received at the AM to perform the changes on the underlying managed appli-
cation.

Consequently, an additional layer is necessary, translating the high-level adaptation oper-
ations, which are exchanged among the AM into low-level local operations. For our concept,
we rely on the proposed role adaptation interface by Weißbach [53]. Since the focus of this
concept does not rely on the local adaptation operations themselves, we can fully rely on
their proposed operations because they satisfy our requirements. The local operations
were presented in section 2.1.4.

4.4. Protocol Overview

In the following, we present the protocol to handle eventual consistent adaptations of role-
based systems during run-time. First, a coarse overview of the modalities is given. After-
wards, we describe the protocol in detail.

Our approach follows an external adaptation approach ([36]) where the adaptation logic
is separated from the business logic. This introduces a separation of concerns and allows
for the application’s independent adaptation logic re-usability. Every computing unit, called
‘node’, has its AM. Every AM communicates to every other AM on other nodes when a sta-
ble connection is present to coordinate pending or ongoing adaptations and to exchange
messages regarding the adaptation process. The AM uses an adaptation interface of the
managed application to perform the operations on its role runtime.

The protocol is part of the MAPE-K feedback loop, which was introduced in subsec-
tion 2.2.1. We aim to solve the problem of consistency recovery after an incomplete adap-
tation process in the execution part of the feedback loop instead of passing the problem
back to the planning and analysis component again. Before we explain whichmessages be-
tween the peers are exchanged and how the adaptation process works in detail, we briey
summarise the general concept behind the protocol to give an overview of the dierent
parts and phases of the developed approach. In a large-scale system, multiple nodes can
issue adaptations almost simultaneously.

In the work from Weyns et al. [58] (see subsection 3.3.2), the authors present multi-
ple patterns of how the four main components of the MAPE-K feedback loop can be dis-
tributed. We do not make assumptions about the architecture of the monitoring, analysis
and planning (MAP) component and only require the execution component to be present
on a node. Nevertheless, our concept ts the decentralisation pattern the best since we re-
quire the execution components of each node to communicate for performing the changes
in a coordinated way without involving the other parts. The list of the presented patterns
in [58] could be extended by further compositions of the components, as we proposed
in [40] with a hybrid pattern approach. It is conceivable that the execution components
can communicate in a decentralised way, but other components, such as the planning,
need further coordination for potential consensus of certain adaptations regarding poten-
tial partitioning.

Generally, according to the MAPE-K principle, our execution component receives an
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adaptation plan from a planning unit which can either be on the node itself or settled any-
where else in the system. This so-called adaptation plan is then spread among all nodes
to execute the adaptation bundles and operation within the plan. An adaptation plan is a
composition of an arbitrary number of bundles and operations. The plan is spread among
all AM using a gossip approach and executed on all AMs, which are addressed by the adap-
tation bundles and operations. In case of a failure, a compensation mechanism is issued
(see section 4.5). The protocol details and messages are discussed in the next sections.

4.4.1. Applied Consistency Model

In subsection 2.4.3, dierent consistency models were introduced, which can be used to
classify dierent approaches of weak consistency. We introduced the terms weak consis-
tency, eventual consistency and causal consistency. In addition, CRDTs have the nature of
strong eventual consistency, which strengthens the concept of eventual consistency. Strong
eventual consistency guarantees that consistency will be reached.

The developed protocol in this thesis can be classied as an eventual consistent approach
since consistency can be recovered if no new updates are applied. In the case of an adapta-
tion, this applies if no new adaptations are queued after an inconsistent state. Consistency
will be reached due to compensation tasks. Note that this only holds if role runtimes can
recover from failure or recovery from network failures is possible.

4.4.2. Adaptation Bundles

The concept of adaptation bundles is a key driver for decentralised adaptations with a weak
consistency approach. Those bundles are an additional logical adaptation structure next
to adaptation operations and adaptation transactions. Bundles extend the concept of adap-
tation transactions [53] since they support the behaviour of both strict transactional be-
haviour and a relaxed approach, as indicated by Figure 4.2

Active
Transactional
Adaptation

Eventual Consistent
Adaptation

[adaptationType = atomic]

[adaptationType = optimistic]

Figure 4.2.: State chart with the two operating modes

An adaptation bundle consists of one or multiple adaptation operations. It has two oper-
ating modes: the atomic mode or the eventual consistent mode. Operating in the former
type, a bundle fulls the purpose of an adaptation transaction, so we focus on the latter
operating mode, the eventual consistent mode. The basic structure of an adaptation bundle
is depicted in Figure 4.3. Operations in adaptation bundles are supposed to be executed
together. If executed in parallel with other devices, the system benets the most from the
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performed change since we try to perform those changes as soon as possible. Moreover,
a bundle can contain so-called connected operations, which require the interaction of two
nodes to perform an adaptation. Nevertheless, in case of a failure of single entities dur-
ing the adaptation process, we do not need to roll back all intermediate changes of other
nodes, but already performed changes can be preserved, and the respective roles can get
already activated. The protocol for the recovery of global consistency caused by failures
during the adaptation process is presented in subsection 4.5.2.

BundleID Recipient Sender Initiator OperationList

AdaptationOperation1 AdaptationOperation1...

Figure 4.3.: Basic Structure of an adaptation bundle

The rst parameter of a bundle is its identier. It is supposed to be unique in the whole
decentralised SAS. It can be used as an identier for the recovery process to have a refer-
ence to the originating adaptation bundle. From our understanding of the separation of
concerns of the MAPE-K feedback loop, the planning component should assign a unique
identier, as this component is responsible for generating adaptation bundles with its re-
spective operations. Nonetheless, the protocol demands the identier to be unique in the
system. Hence no identier collisions must occur during the lifetime of the SAS. This is
especially the case in the presence of errors because, as already outlined in section 4.1,
nodes can disconnect and hence possibly do not receive ongoing adaptationmessages. As
a result, a reconnecting node can theoretically issue an adaptation bundle without knowing
about the other ongoing adaptation. The same problem applies to partitioned systems,
where dierent parts can issue adaptations for their own. For the concept of this work,
an identier consisting of an identier for the node, concatenated with a timestamp when
the bundle is issued, is used. This allows us to order the adaptations by their creation
time, and no clashes between nodes will occur as long as every node has its unique iden-
tier. The ordering is based on the property of causal consistency (see section 2.4), i.e.,
that operations depend on each other. This supports the potential need for incremental
updates since we ensure that later adaptations have all dependencies already executed
on the corresponding role runtime.

The second parameter of an AdaptationBundle is the recipient of the bundle, as well as
the sender. Note that this is implementation-dependent. The recipient sends bundle mes-
sages to specic nodes in case of pending compensation. The sender is crucial to acknowl-
edge the receipt of a message to the sender, to be sure that the bundle was received suc-
cessfully. The third parameter is the address or identier of the bundle initiator. Next to
the three parameters, one or more adaptation operations are contained by the adaptation
bundle.

For our example of the drone swarms, an exemplary adaptation bundle could look as
shown in Listing 4.1. Drone2 initiated an adaptation bundle for Drone1. Applied to a real
scenario, network addresses would be used instead of the abstract names of the sender,
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receiver and target to transmit the adaptation information. Next to those parameters, this
adaptation bundle also contains two adaptation operations (cf. subsection 4.4.3). As already
outlined in this section, those two adaptation operations on the two targeted drones should
be executed almost in parallel. If one of those operations failed in a transactional approach,
we would roll back all intermediate changes. Our approach tolerates the failure and aims
to bring the failed node into the new conguration instead.

1 {
2 id = drone2_1674563499,
3 receiver = Drone1,
4 sender = Drone2,
5 initiator = Drone2,
6 OperationList<AdaptationOperationMessage> =
7 { id = 1,
8 type = ADD,
9 order = 1,

10 state = false,
11 targetPlayer = 'Drone1',
12 targetRole = 'Listener',
13 targetCompartment = 'Anomaly Present',
14 targetAddress = Drone1
15 },
16 { id = 2,
17 type = ADD,
18 order = 1,
19 state = false,
20 targetPlayer = 'Drone3',
21 targetRole = 'Listener',
22 targetCompartment = 'Anomaly Present',
23 targetAddress = Drone3
24 }
25 }

Listing 4.1: Exemplary adaptation bundle for drone context switch

The structure of adaptation operations is presented in the following.

4.4.3. Adaptation Operations

Adaptation Operations [53] are the lower-level structure in our concept. They describe the
adaptations which must be performed on the underlying role runtime of the respective
node. They are shared among AM encapsulated in adaptation bundles, as shown in List-
ing 4.1. An operation contains information on which node and role is targeted by an adap-
tation and which action should be performed in the adaptation process.

The basic structure is depicted in Figure 4.4. The operationID is unique for one bundle and
can be used in another. The operationType denes the action which must be performed on
the underlying role runtime. The following operation types are supported by the concept:
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OperationID OperationType State Target Source

Player Role Compartment Address

Figure 4.4.: Structure of an adaptation operation

ADD: Adds a role to a player
REMOVE: Removes a role from a player
MIGRATE: Migrates a role with its internal state from one to another player
CLONE: Clones the role as well as the state

Further parameters of an operation are the denition of a target node, which is the goal
of the adaptation process, and the source node, in case of aMIGRATE or CLONE operation.
The source is not required for an ADD or REMOVE operation since only one node is involved
in that operation type. The target and source parameters include the aected player, role
and compartment, and the aected nodes’ address. The state parameter denotes whether
state information is exchanged in case of a MIGRATE or CLONE adaptation.

Listing 4.2 shows an adaptation operation from the previously introduced bundle. The
exemplary operation has an id unique in the bundle and could be reused in another. This
operation has the goal to ADD the role Listener to the drone Drone1, in the compartment
Anomaly Present. After that operation, Drone1 can execute behaviour which is dened for
the role Listener.

1 { id = 1,
2 type = ADD,
3 order = 1,
4 state = false,
5 targetPlayer = 'Drone1',
6 targetRole = 'Listener',
7 targetCompartment = 'Anomaly Present',
8 targetAddress = Drone1
9 }

Listing 4.2: Exemplary adaptation operation for one drone

4.5. Protocol Description

The following details of the eventual consistent adaptation protocol will be presented. We
introduce the basic structures required for our approach and details regarding the com-
pensation algorithm.
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4.5.1. Regular Adaptation Process

The general idea of an eventually consistent approach for SAS is bringing the concept from
the database domain into the domain of self-adaptivity. Therefore, our approach adopts
the hinted hando from the DynamoDB [9], which was presented in Subsection 3.4.3. Fig-
ure 4.5 shows a coarse overview of the dierent phases of the developed protocol. First,
we try to execute the changes according to the adaptation plan. In case of an error, the
three phases for error compensation start, namely the inconsistency phase, recovery phase
and cleanup phase.

Regular Adaptation
Phase

Inconsistency Phase
[failurePresent = true]

[failurePresent = false]

Recovery Phase

Figure 4.5.: Overview of the protocol phases

As shown in Figure 4.5, the error-handling routine only starts if the adaptation does not
succeed. In our drone example, this could either be a networking error, hence no re-
sponses are received, or that a drone is not ready for adaptation yet or delays the adap-
tation process. Before going into detail about how the three phases for error recovery are
designed, we present the protocol coordination messages to initially execute the adapta-
tion plan issued by the planning component without any error during the execution.

In Figure 4.6 and Figure 4.7, the state machines for the regular adaptation without any
error are depicted. In the former gure, the initiator’s state chart is shown, and in the lat-
ter, the recipients’. The execution component of the initiator receives an adaptation plan
from the planning stage, which is then distributed with multicast to all known peers in the
network. The received adaptation plan, which consists of one or more adaptation bundles
with their operations, is checked if participation in the receiving runtime is required. The
participation check is done for both the initiator and the recipient. The exemplary inter-
action between the initiator of an adaptation and the start of the rst recovery phase is
depicted in Figure 4.9.

On receipt of an AdaptationBundleMessage, the receiving node answers with a BundleAc-
knowledge to the initiating peer. This is done to determine whether all peers received the
upcoming adaptation. Next, participation in the bundle is checked by reading the adap-
tation message. If an adaptation operation contains an operation addressed to the local
runtime of a node, the execution is issued. The initiator is still listening to whether all peers
received the AdaptationBundleMessage and started local execution in both cases. For now,
we focus on the success case. The local execution of the adaptation involves the passivation
of the local runtime, which is done with the transactional approach from the LyRT role run-
time. The local role interface translates our operation messages into low-level adaptation
operations, which can be performed on the managed application (cf. Subsection 2.1.4). A
negative report is issued to the other members in case of an adaptation failure, and the re-
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Figure 4.6.: Regular adaptation process of the initiator

covery process starts. On success, the AMenters a short waiting state and listens for incom-
ing reports from the other participants of an AdaptationBundle. If all reports are received,
implying all are successful reports, the activation state is entered where a BundleActivation
message is multicast to all participants of the adaptation, as well as a BundleSuccess mes-
sage, which indicates that all operations from the current AdaptationBundle are successfully
executed. It could be that some peers receive reports faster than others due to delays be-
cause of processing, etc. Hence, a peer might receive an activation or success message
before all reports are collected. In that case, and if the count of incomplete operations is
zero, the local changes can be activated immediately before all reports are received, and
the bundle execution terminates. The recovery phase will be entered if a negative report
is received in the waiting state. The recovery phase is discussed in subsection 4.5.2.

Generally, we distinguish between local and connected operations. This concept was
introduced by Weißbach [53]. Local operations involve only the local runtime, such as the
addition or removal of a node. On the opposite, connected operations involve two roles
in an adaptation process. A connected operation is divided into two phases [53]. In the
pre-activation phase, the source node brings the aected nodes into a passive state and
retrieves the state information. The target runtime creates a new target role and binds it
to a player without activating it. Then, the state is transferred from the source to the target
node and report messages about success are exchanged. On success, the post-activation
phase starts. The role gets unbound and removed at the source node, and the new role
gets activated at the target node.
The following messages are exchanged for regular adaptation without failures:

AdaptationBundleMessage( bundleID, operation* ) A message with at least one oper-
ation to be executed. May contain several operations.
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Figure 4.7.: Regular adaptation process of the recipient

BundleAcknowledge( bundleID ) A node which received an adaptation bundle from a
remote node sends an ACK message to all nodes.
BundleSuccess( bundleID ) A node reports the successful termination of the operations
contained in a bundle.
BundleActivation( bundleID ) Indicator that the modied roles can be activated on the
underlying role runtime
ReportMessage( bundleID, report ) A message to report the current operation status.
RequestReportMessage( address ) Used to request the current state of processing of a
node. It can determine if another node is not reachable when no response is received.
TransferStateMessage( address, state ) Transfers the state from the source to the target
node.

The recovery state shown in Figure 4.6 and Figure 4.7 is highly dependent on the recog-
nition of a failure. Therefore, time thresholds and triggers must be dened when to issue
recovery and for how long adaptation can be delayed. In the case of a failure during the
execution of an adaptation or a delay of an adaptation because a role is not ready for adap-
tation, the recovery process is initiated by the issued report message. In case of missing
reports and missing acknowledges, the timeout duration has to be dened beforehand.

In the following, the recovery process in case of a failure is discussed in detail.

4.5.2. Two Phases of Compensation

After introducing the overall procedure of decentralised adaptations, if no error occurs
and the messages are exchanged, we want to describe the two phases to recover from
potential failure during the adaptation process. As explained in section 4.1, potential errors
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in a distributed setting are manifold. In that context of potential failures and to implement
an eventually consistent approach, a strict transactional approach as suggested by [55,
24, 15] where the system must be kept in a consistent state at every point in time, is not
suitable.

The consistency compensation protocol for role-based decentralised SAS consists of two
phases, shown in Figure 4.5. In the rst phase, the ‘Inconsistency Phase’, intermediate
changes are activated, hints about incompleteness are shared, and the system is aware of
a pending adaptation in the decentralised SAS. The ‘recovery phase’, which is the second
step, starts right after the failed node is ready for adaptation, and the compensation itself is
processed. It is also responsible for clearing the system’s pending operations on the peers
containing the information.

In the next sections, we will describe themessages exchanged for the respective phases,
the states, transitions and the general concept behind the phases.

4.5.3. Inconsistency Phase

The Inconsistency Phase starts when at least one case of failure (e.g. disconnection, device
not ready yet) is detected (see section 4.1). The detection relies on one of the following
points:

• At least one node does not send an ACK to the adaptation sent
• RequestReport indicates a failed processing state
• At least one node sends a report that the role is not ready
• Timeout of requests to the respective node

If one of those points applies, the incomplete phase starts (see Figure 4.8). The phase
starts by issuing a BundleIncompleteMessage to all known peers with a multicast. This mes-
sage contains information on which peers failed and which operations are still pending.
We refer to this information with the term hint, inspired by the hinted hando in the Dy-
namoDB [9]. Those hints get stored locally on each node in the local hint storage. This
knowledge is stored decentralised. Assume that Drone1 failed its adaptation operation be-
cause the drone was not reachable. In this case, the operation and failure information
is distributed redundant to all other drones. On receipt of this message, the recipients
check their local report storage to see whether all other peers have already succeeded in
the adaptation process. In case all nodes but the failed ones are nished, a BundleActiva-
tion message is sent to the successful participants, and the modied roles get activated,
leading to the execution of the target behaviour. All available nodes are aware of pending
operations, that the system is not fully globally consistent and that compensation actions
are to be taken. The BundleActivation message is issued when a peer receives a positive
report from every peer or has information about failing peers, and the remaining ones did
succeed. If all reports and information are collected, the activation can be sent. A corner
case was identied, which must be dealt with to guarantee correct consistency compen-
sation. A node could miss the BundleIncompleteMessage but receives the BundleActivation
afterwards. In that case, this node would have incomplete knowledge about the overall
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system state. Therefore, the activation message has a ag indicating that pending opera-
tions are missing. If a node has no pending operations in the local hint storage, but the
activation message suggests that there are open adaptations, the peer can request that
information from the sender of the activation message.

Failure Detected

entrypoint:
Recovery/

failureDetected

Hint Distribution
saveHintLocal()

Waiting

sendBundleIncompleteMessage()

[successfulReports <
pendingReports + incompleteCount] /

reportListener()
Activation

reports of active
peers received

Incomplete Phase

ReportTimeout

[timeoutTimer = 0] /
requestReports

allReportsReceived

EmergencyRollback

Figure 4.8.: State chart of the node detecting a failure

Please note that our protocol is responsible for the execution of planned adaptations.
Nevertheless, planners could issue subsequent bundles, and the number of subsequent
adaptations in case we have an inconsistent state is a matter of the planning component of
the MAPE-K feedback loop. Since our protocol is part of the execution component, we do
not inuence if more adaptations will be issued if we still have to compensate for previous
ones. Nevertheless, this calls for dealing with possible subsequent adaptations. This issue
is discussed in section 4.6. At this point, the bundle can be nished until the failed device
reconnects and can nally perform the adaptation.
The following messages are exchanged during the EAP:

BundleAcknowledge( bundleID ) indicates that the adaptation was received and that the
device is ready to perform the operations contained in the bundle.

BundleActivation( bundleID, completionFlag ) This message indicates that the respec-
tive roles that were part of the adaptation can be activated. If the completionFlag has the
value ’0’, all operations which were part of the AdaptationBundle succeeded. In the case
of a ’1’ as the value, pending operations are present.

BundleIncompleteMessage( bundleID, failedOperationsMap, initiator ) This message
is sent via multicast to all known peers if a node faces an adaptation error, regardless
if due to a failed local execution, delayed adaptation or disconnection. This information
gets stored in the local hint storage.

A disconnected peer could reconnect or recover before the completion of the inconsis-
tency phase and before the initially working peers nish their regular adaptation process.
In that case, receiving an incoming ReportMessage starts a check of the local hint storage,
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whether it is a report for a pending operation. If the identier and sender of the ReportMes-
sagematch one of the storage entries, compensation is already nished for the operation.
If the local hint storage does not contain any other entries for the current bundle identier,
the whole bundle succeeded, and a BundleSuccess message can be sent to all peers.

Figure 4.9 depicts the communication between the initiator of an adaptation bundle and
other peers of the SAS. Please note that this sequence chart only presents one possible
sequence of the protocol in the regular adaptation and inconsistency phases since cover-
ing all possible cases would drastically increase this message sequence chart’s complexity.
A more detailed overview of the state transitions is depicted in gures 4.6 to 4.8. Messages
are asynchronously exchanged, and messages could be received in another order than
shown in gure 4.9. The gure shows the interaction of participating nodes of an adap-
tation. Moreover, it is shown how the system deals with the situation in case a report is
missing or a negative report is received and if all expected messages were received. As
already discussed in this chapter, if everything succeeded, changes get activated, and a
BundleSuccessMessage() is distributed among the peers indicating that all planned adapta-
tions succeeded. In case of a failure, intermediate changes get activated, and the protocol
continues in the next phase, the recovery phase, which will be presented in the next sec-
tion.

4.5.4. Recovery Phase

After the BundleIncompleteMessage has been shared with the peers, intermediate adapta-
tions were successfully activated, and the failing peer(s) are ready for compensation, the
recovery phase starts. This phase of the compensation protocol is responsible for recov-
ering a globally consistent state after an erroneous adaptation. By taking dierent repair
actions, the correct role conguration gets restored as requested initially by the rst Adap-
tationBundleMessage.

The recovery cannot start until the failed or pending devices are ready for compensation.
The recovery phase can be divided into two parts. The rst part compensates for recon-
nected peers after a network error. The second technique manages the recovery process
after the device is ready for adaptation or recovered from a failed local execution.

First, the approach in the case of a disconnected node is discussed. The rst step is
detecting that the failed device reconnected after it recovered from a crash or the network
congestion was xed. To achieve this, two ways might be possible. First, the connected
peers could send messages to the failed node to determine if the disconnected device is
ready again. The other possibility is letting the failed device issue an aliveMessage() as a
multicast to all peers so that they get notied that it is ready. The former alternative has
the advantage that reconnection can reliably be detected since those requests can be sent
frequently. Nevertheless, sending frequent messages to check the state of a failed node
induces higher trac and network load, which can be prevented using the latter approach.
Sending an aliveMessage() when a node reconnects to the system reduces the messages
sent and allows all other peers to wait until the node noties them instead of frequently
requesting the state. This approach builds upon a reliable detection of disconnection and
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Figure 4.9.: Exchanged messages between the initiator and other participating peers

re-connection from and to the network. For this concept, we rely on the approach that
the disconnected node detects that it has reconnected to the remaining peers and starts
the recovery process by sending a message to the remaining peers. Since we distributed
the information about incomplete operations in the incomplete phase in a decentralised
manner to all available peers, the information is redundantly spread and can be retrieved
by the node without relying on a single instance.

As the rst step after reconnection, the disconnected peer sends a RequestHintsMessage
to its known peers. The recipients are now aware that the connection could be established
again and that the recovery phase starts. The local hint storage is checked for pending
adaptations for the sender of the RequestHintsMessage, and a RequestHintsResponseMessage
is sent as an answer. This message contains all pending operation identiers and bundle
identiers, which must be compensated by the respective node.

After the list of pending hints was received, the AM of the respective peer can request
the bundle information one by one with the RequestBundle(id) information from one of the
peers which sent the hint. The whole adaptation bundles are not sent initially to keep the
amount of sent data low since on amulticast of the RequestHintsMessage, all contacted peers
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Figure 4.10.: State chart for the failed peer after disconnection

answer with the hint, and duplicates would be sent. Depending on the scenario, this could
create a higher overhead than necessary. With our technique, the AM can request one
bundle after another as soon as it is ready for compensation. Depending on the number
of missed bundles, more than one could be compensated. In this case, the bundle with
the lower timestamp is executed rst. As already mentioned, the planning component
is responsible for creating subsequent adaptations. The hints are sent in a new bundle
referencing the identier of the original bundle. This bundle only contains the pending
operations for the requesting node. After waiting for a short time frame, the compensation
of the rst bundle with the lowest id starts. The local execution is performed using the
regular adaptation protocol without any other peers being involved in this process. The
local runtime is passivated, and the local execution process gets supervised by the AM.
After success, the changes get activated immediately because the node does not need to
wait for other peers to nish. A BundleCompensationCompleted message is sent to all peers
in the network, which indicates that the operations of a bundle for the sending peer were
executed successfully. Upon receipt, the successfully recovered operations are removed
from the local hint storage.

If the success of compensation is reported, the previously successful adaptations were
completed, and no hints are available for the current bundle, the compensation and ex-
ecution of the bundle are nished. In that case, a BundleSuccess message is issued to all
peers, which denotes the success of the bundle and ends the recovery phase. A peer could
receive a BundleSuccess before it reads the BundleCompensationComplete message. In that
case, another peer received positive results from all participating nodes, and the recipient
of the success message derives knowledge that everything was executed as intended. In
that case, the local hint storage can be cleared for the respective bundleID.

The recovery process for the second case, i.e., after a delayed adaptation or local exe-
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Figure 4.11.: Internal state chart of nodes in the recovery phase

cution failure, is performed dierently beforehand. Unlike the rst case, the node already
received the required AdaptationBundleMessage and acknowledged the receipt to the ini-
tiator. As soon as the device is ready, it performs the local adaptation without further
coordination in case of a local adaptation operation. On success, a report message is sent
to all known peers, which checks their local hint storage for the sender address and the
reported operation identier. In case the entries match, those entries get removed, and
BundleCompensationCompletemessages are distributed to indicate that compensation suc-
ceeded. Then, the protocol proceeds, as in the disconnection case.

The communication between the peers in case of recovery of consistency is depicted in
Figure 4.12. In this sequence chart, we depicted the exemplary case that compensation
is required after a node did not receive the adaptation information due to disconnection
in the adaptation phase. The failed peer requests missing adaptation information from
the other peers and request one missed bundle by another. Success gets reported to the
other peers, and as soon as one peer collects success reports from all peers, including the
regular adaptation and recovery phases, a BundleSuccessMessage is multicast to indicate
that the respective AdaptationBundle has nished. Similarly to gure 4.9, this diagram does
not cover all possible cases. Also, due to asynchronous communication of the peers, the
order of incoming messages could dier during protocol usage. A more detailed overview
of the state transitions in the recovery phase is depicted in gures 4.10 and 4.11.

A previously failing node might reconnect right between the activation of the remain-
ing peers and the multicast of the BundleIncompleteMessage. In this case, the reconnecting
peer just missed the execution of the adaptation and did not receive any information about
pending bundles in case a RequestHintsMessage is sent to any peer. In this case, two options
are present. First, the contacted peer could already have the hint for the requesting peer
and therefore answers with the ResponseHintsMessage. Second, the BundleIncompleteMes-
sage is spread right after the connection has been established. Since messages are sent
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Failed Peer Peer_1

sendRequestHintsMessage()

reconnect()

sendResponseHintBundle(hintsAvailable)

checkLocalHintStorage()

analyseHints()

Alt [compensationRequired == true]

Loop [pendingHints > 0]
requestBundleById(hintID)

prepareNewBundle(hintID)
sendCompensationBundle(hintID)

localExecution()/success

bundleCompensationComplete(hintID)

removeHintFromStorge(hintID)

[compensationRequired == false]
bundleCompensationComplete(hintID)

removeHintFromStorge(hintID)

finishCompensation-
Process()

Peer_n

sendRequestHintsMessage()

checkLocalHintStorage()

sendResponseHintBundle(hintsAvailable)

analyseHints()

bundleCompensationComplete(hintID)
removeHintFromStorge(hintID)

bundleCompensationComplete(hintID)

removeHintFromStorge(hintID)

activation()

bundleSuccessMessage()
bundleSuccessMessage()

Figure 4.12.: Exchanged messages between the failed peer and other peers

to all known peers, the failed node also receives the hint, gets the information that a bun-
dle was incomplete, and sees that the own runtime is not in the global consistent state.
Consequently, RequestHintsMessages are issued to recover consistency.
Following additional messages are exchanged during the recovery phase:

RequestHintsMessage( sender ) Request possible hints after reconnection.

ResponseHintsMessage( bundleIdList ) List of bundle identiers of bundles which the
peer might have missed.

RequestBundle( bundleId ) Request an AdaptationBundleMessage with the compensa-
tion operations.

BundleCompensationCompleted( bundleId, sender ) Indicates compensation success
for a peer and bundle.

The following methods are locally executed and crucial for the recovery phase:

checkIncompleteStorage(NodeInformation) Reads the information from the Request-
HintsMessage and checks the internal storage if there are pending operations available
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for the reconnected node.

After consistency recovery, it is important to delete the hints concerning a bundle across
all nodes to reduce overhead if a recently compensated peer contacts a node that still
has old hints. This prevents communication overhead at later stages of the system life-
time since nodes do not erroneously trigger the recovery phase for a node on receiving
a subsequent message from a previously failed node, although it has already recovered a
certain bundle. Wiping the recovery queue, therefore, reduces network trac and poten-
tial overhead. The recovering node broadcasts a BundleCompensationCompleted( bundleID
) message and indicates that the recovery of the bundle with the ID bundleID succeeded.
Every peer receiving this message can safely delete the adaptation from the local storage
from the respective AM since the recovery information is no longer needed. Also, a node
receiving a BundleSuccess before the BundleCompensationCompleted can delete hint infor-
mation since consistency is recovered in that case. It could also happen that a peer misses
a BundleSuccess, which causes a node possibly not to detect that the bundle was completed
successfully. If this node asks for current execution states or sends an erroneous bundle
to compensate to the recovered node, a BundleSuccess is re-transmitted to inform the peer
that consistency has been recovered.

Recovery of Connected Operations

The transactional concept for role-based adaptation byWeißbach et al. [55] introduced so-
called connected operations, i.e., adaptation operations, which require the coordination of
multiple peers. In a connected operation, the source, as well as the target, must be dened.
Our concept also supports those operation types. Nonetheless, the recovery process in
case of an adaptation failure for this operation type is more complex than for simple ADD
or REMOVE operations. When one of the two participants of this operation type fails, the
whole operation fails and needs to be compensated later.

The treatment of the failure of MIGRATE and CLONE operations diers from the local
operations in some points. First, data is stored dierently in the local hint storage. We
store an entry for the failed peer and the operation for local adaptations. In this case, we
store two entries in the local hint storage and inform the available peers about the failed
adaptationOperations. The compensation of this operation requires both participants to be
available at the point of recovery.

The compensation of a connected operation is working as follows. A peer observing a
disconnection of a peer, which should be adapted, saves a hint locally. In a connected op-
eration, two hints are stored, one for the target node and another for the source node.
That two hints are shared among all peers to ensure that recovery can be conducted de-
centralised. After re-connection of at least one of the two members of the respective op-
eration, the disconnected peer(s) request a RequestHintMessage to receive lost Adaptation-
BundleMessages from the other participants via multicast to its known peers. Recipients of
this message check their local storage to see whether a hint is available for the requesting
node. If a hint is available, the type of the pending operation is checked. In the case of a
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MIGRATE or CLONE operation, the respective counterpart for the connected operation is
also determined, i.e., the required second node for the operation. Unlike local operations,
the response that hints are available is sent to two peers now.

Most Nodes Fail or Disconnect

During the system’s lifetime, it could theoretically happen that most nodes will fail or dis-
connect from the component planning the upcoming adaptation. The eventual consistent
adaptation approach supports those error cases by recovering the system even if all nodes
but one went down from the planner’s view or if local execution failed for the moment on
almost every node. For those cases, engineers designing a SAS using our eventual consis-
tent approach can dene a value of how many nodes at least must execute the change
to succeed and start the extended activation phase. Since, in our understanding, this is an
application and domain-dependent issue, we assume that one node is sucient and that
all other participants can be recovered later. In the work from DeCandia et al. [9], the
authors dene a value, W , for their eventual consistent approach in the DynamoDB. This
value, dened by a systems engineer of the respective database system, determines how
many replicas of an update of data must be stored at least for an update to succeed. It
is noteworthy that those updates could even be written on the hinted hand-o (see Sub-
section 3.4.3) since they do not distinguish between the write on the intended database
and a hint [9]. With our approach, we adopt this technique for SAS. When at least N AM
received an AdaptationBundleMessage, with N = 1 as the conguration for our evaluation,
we can continue with the eventual consistent approach. Then, conforming to the protocol
specication, reconnecting peers can request hints from the one peer who succeeded.

Pending Operations are Obsolete

Generally, it is hard to predict when failed or disconnected devices reconnect to a network
to compensate for missed adaptation bundles. That results in potentially long downtimes
and the remaining system evolving further, regardless of the failed peer. Hence, stored
hints across the devices might be obsolete after a particular time if, e.g. operations got
reverted by other operations, or an adaptation is not required any more. To solve this
problem, our concepts support the deletion of adaptation operations or complete bundles
from the hint storage so that compensation is not required anymore. A planner could initi-
ate a AbortOperationMessage( identier ) which causes a deletion of the particular operation
from the local hint storage. As a result, after reconnection, no compensation actions will
be taken. If a device was not ready for adaptation yet and stored the operations for later
execution, receiving the abort message will also lead to the deletion of the operations at
the peer itself.
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4.6. Protocol Corner- and Error Cases

During the execution of the consistency recovery protocol, some corner cases can cause
complicationswhichmust be resolved. This section identies possible pitfalls and describes
how to overcome those issues with our concept.

Loss of Adaptation Messages

An important factor during the adaptation execution is the reliable exchange of adaptation
messages to control the process and exchange status data. Nonetheless, messages might
get lost during transmission, or queued packets can be read late because sockets are busy,
aecting the execution time. Generally, not every message loss would lead to failure of
the process, but some are crucial for the success of the regular adaptation process and
recovery. Therefore a short overview of essential messages is given, and the procedure for
coping with those failures is explained.

Generally, many message types in the system are multicast to reach all systemmembers
quickly without establishing an end-to-end connection between peers. Therefore essential
messages might not be received. To omit that, peers can request certain information they
expect from others or send messages repetitively.

In case of an AdaptationBundleMessage, the sender waits for a BundleAcknowledgement
from the recipient. The bundle message is transmitted again if the acknowledgement is
not received during a specied time frame. Our concept repeats this ve times until the
initiator assumes that the recipient is not connected or unresponsive. If the timeout is
reached, the protocol behaviour in case of disconnection is issued.

ReportMessages can also get lost. Hence every peer can request a report about the cur-
rent state of execution from every other peer with the RequestReportMessage. The same
applies to BundleActivation and BundleSuccess messages, which could be lost and, there-
fore, peer wait until they get the information if an adaptation process is nished. This infor-
mation is also requestable with a RequestReportMessage since the overall execution state is
checked, and if everything succeeded, a BundleSuccess is sent instead of a report.

For missing reports, our concept relies on a proposed but modied three escalation
stages proposed by Weißbach [53]. If an AM is missing a report, the targeted node is con-
tacted to answer with the appropriate execution state. If no answer is provided, a multicast
to the peers participating in the current AdaptationBundle is issued. Those peers will check
their internal report store for the requested node information. A broadcast to all peers is
issued if no answer is provided in the second state. If no information about the targeted
peer is provided, we issue a BundleIncompleteMessage to inform the remaining nodes that
a compensation action must be started according to our protocol.

Coordinating Adaptation Manager Unreachable

An important error case whichmust be addressed is the failure of the initiating node, which
takes the coordinator role in the rst place since it distributes the adaptation and is pri-
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oritised in receiving important control messages. The initiator might become unreachable
for the other peers. Therefore, no control messages can be exchanged with this unit. The
concept can deal with this kind of failure due to its decentralised nature.

During the conceptualisation of the solution, three possibilities came up for the distribu-
tion of the AdaptationBundleMessage and the resulting BundleIncompleteMessage, concern-
ing possible failures of the initiator of the adaptation. Assuming that the initiator can fail,
the compensation process cannot solely rely on that node. Therefore, that knowledgemust
be decentralised.

The following possibilities were identied for the distribution of the AdaptationBundle as
well as the resultant error messages and information about incomplete adaptations.

At the rst option, the AdaptationBundleMessage is just sent to the participants of an adap-
tation because, in theory, other peers which do not participate have no interest in that
information. In case of an error, a BundleError message could be issued by a node. This
message would contain all the information in a bundle about the failed peer(s). The advan-
tage of this approach is the reduced amount of exchanged messages since other peers
only receive the bundle in case of an error, so that information is distributed to allow a
decentralised recovery process. Although that approach is promising due to comparably
low overhead, it requires the initiator and the participating peers to be ‘alive’ when an error
occurs. If an adaptation is issued and the participating peers disconnect from the other
peers, compensation messages never reach the other peers in case of failure since bundle
information is not shared among all peers.

The second option uses the initiator as a central instance for failure information. In case
of a failure, other peers contact the initiator and request information about which actions
failed. The benet of such an approach is the low overhead since information is not shared
beforehand. This approach is the strongest in case no error occurs, but as we already
mentioned, the initiator could disconnect. In this case, failure information is also never
spread among the peers since this approach has the risk of a single point of failure.

The third option ts the decentralised setting the most but has the highest overhead
due to the many messages which are exchanged before the adaptation process. With the
third approach, the bundle is shared among all peers in the system before the adaptation
process. Hence, the initiator is sending it to its known peers via multicast. Even peers which
are not aected by the adaptation receive the bundle and store it locally without processing
it. On the one hand, overhead is high because more messages are sent than necessary in
the rst moment. On the other hand, in case of a failure, every peer in the system can get
contacted and start the recovery process, which is benecial for decentralisation. For our
concept, we decided to apply the third strategy since it is the most resilient of those three
and recovery is possible if the initiator or participating nodes are unreachable.

Overlapping Adaptations

Due to the nature of eventual consistency, inconsistency windows, i.e., the time in which
a global inconsistency is present, can occur during the system’s lifetime. One of the prob-
lems of those approaches is the missing guarantee when consistency will be recovered
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since often we cannot predict when devices will be connected again or when repair actions
succeed. As a result, AdapatationBundles could overlap because an old bundle might not
be nished yet. Hence compensation tasks are pending, and a new AdaptationBundle is
issued by a planning unit of a particular node. This behaviour is depicted schematically
in the Figure 4.13. Consequently, instead of only one bundle that must be nished, two
bundles are executed one by another. This leads to a potentially longer recovery process
since multiple compensation tasks might be pending in case of a longer disconnection or
frequent adaptation during this time. In the unlikely case that one adaptation bundle is
issued after another, leading to one overlap with the next, it would be hard to reach a con-
sistent state since one compensation task after the other is required. Moreover, in case
new adaptation tasks are planned, the SAS must consider the failed node’s current, not
adapted, state and create adaptation operations based on the old model. A larger impact
of overlapping adaptations in case of disconnection is noticeable for distributed operations,
which require two cooperating nodes for a state migration or cloning roles from one node
onto another.

AB1

AB2

time

Regular Adaptation Process Pending Operations

Figure 4.13.: Overlapping adaptations in presence of compensations

Please note that our approach follows the principle of the MAPE-K feedback loop, i.e.,
our protocol is responsible for the execution of an adaptation plan on the managed ap-
plication. Therefore, it is the responsibility of the planning component(s) to issue plans by
keeping the current execution state of ongoing adaptations in mind. Nonetheless, the de-
veloped approach supports multiple active AdaptationBundles and processes them in the
order in which they were issued by the planning component(s). Along with this feature, it
is also possible to remove pending adaptations in case the compensation has not been
started yet, in case of circumstances change, and subsequent adaptations would revert
the changes, or if changes are unnecessary.

4.7. Summary

In this chapter, we presented the concept of performing role-based adaptation with an
optimistic approach. Instead of relying on a strict transactional concept, the proposed
solution can deal with temporal failures during the execution process to increase the sys-
tem’s availability. Basic structures for role-based adaptations were discussed, as well as the
interface of communication between an AM and the underlying role runtime. Moreover,
specic error and corner cases have been investigated during the conception and evalua-
tion phase, and solutions to overcome them were proposed. Please note that we do not
claim the completeness of the error cases. The following chapter provides a description of
the prototypical implementation, which is the basis for the evaluation in chapter six.
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After presenting the concept of allowing inconsistent states in a decentralized self-adaptive
system to resolve that inconsistency as soon as possible, this chapter describes the pro-
totypical implementation, the technologies used, and the current setup for the evaluation
in chapter 6. First, we give an overview of the frameworks and technologies used. Second,
implementation details concerning crucial parts are presented. Last, the general setup
and components still to be implemented, which were not subject to be evaluated, are dis-
cussed.

5.1. Technology Overview

The prototypical implementation was programmed using the Kotlin [23] programming lan-
guage. This language is used primarily for developing on the ‘Android’ platform and for
multi-platform programming and server-side application development. We can run ‘Kotlin’
applications in the Java Virtual Machine (JVM) since they are compiled into bytecode as reg-
ular Java applications. Therefore, interoperability with Java is guaranteed in ‘Kotlin’, which
allows us to natively use LyRT [42] as the underlying role runtime and develop our proto-
type in ‘Kotlin’. To prevent any errors while using LyRT, our prototype supports the Java SDK
8, which was used during the development of LyRT, along with Kotlin version 1.6.0.

Shared Adaptation Framework

Role Interface

LyRT

Role Application Adaptation Manager Evaluation Manager

Figure 5.1.: Components of the prototypical implementation

The prototype consists of the parts which are depicted in Figure 5.1. The shared adap-
tation framework provides all message types and is the basic structure for the adaptation
process. It works as a shared library for all components involved in the adaptation pro-
cess. On top of the framework, the AM, evaluation manager, and role interface are built.
The former is the implementation of the actual coordination unit for the adaptation pro-
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cess between the peers. In our case, the evaluation manager supervises the adaptation
process for evaluation and behaves as the planning component. The role interface is the
actual interface between the AM and the managed application. It is required to ‘translate’
incoming adaptationmessages from the AM to the application. Hence, interoperability and
application independence of the AM is enabled with this component. The role application
is the subject to be adapted and is the managed application in the reference model of the
external adaptation approach. It relies on the role runtime LyRT.

For the message exchange, the implementation uses the standard UDP interface pro-
vided by Java 8. We chose UDP over TCP to allow multicasts and broadcasts of dierent
coordination messages. The format for the messages which are exchanged on the UDP
channels is based on Protocol Buers [14]. They provide standardised serialisation and
deserialisation. This framework allows a language-agnostic and platform-independent ex-
change of messages as long as the framework exists for a particular programming lan-
guage. This language independence enables interoperability among dierent devices and
helps implement a heterogeneous self-adaptive system with dierent types of adaptive
nodes. The message structure is discussed in detail in section 5.3. The compiled .jar-les
of the corresponding parts, which form the proof-of-concept, are executed in a virtualised
and decentralised environment using Docker [10] (details are presented in section 5.4). In
the next section, particularities concerning the implementation are discussed.

5.2. Reused Artifacts

For the proof-of-concept implementation, we reused certain artefacts from the concept
of Weißbach [53] and modied them to our needs. The rst reused building block is the
basic structure of the role interface, which consumes the sent adaptation operations from
our adaptation manager. Next, we reuse the role-based application, which is subject to
be adapted by the operations. Those two components are explained in more detail in the
following.

Role Application

The rst use case for evaluating the thesis concept is an abstract application with nodes,
which we assume to be distributed around the globe. Each node is running a role runtime
with an abstract role-based application which contains abstract roles and players to anal-
yse the performance of the developed protocol in a neutral environment. All nodes are
decentralised and can issue adaptations for the whole system. Therefore, coordination
is necessary to consistently bring the application from the source to the target congura-
tion. As this thesis aims to examine how to perform adaptations in an eventually consistent
manner, we will simulate adaptation failures to compensate for those errors with the novel
protocol.

All adaptation operations issued by the initiator of an AdaptationBundleMessage aim to
adapt the role-based application. The application implements the role interface, which is a
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communication interface between the AM and the application. The role interface with its
server socket is run in a separate thread and receives messages addressed to the appli-
cation. The role-based application provides basic roles, compartments, and players with a
minimalistic implementation. The CROM model of the role-based application and the ini-
tial role bindings and conguration are depicted in Figure 5.2. It consists of three players,
namely PlayerA, PlayerB and PlayerC. Each player can have one or multiple role bindings to
the three present roles. Also, the role binding is dened in the context of one of the com-
partments. This relationship of player, role and compartment is referable with its identier.
The dotted arrows in Figure 5.2 indicate potential reconguration of role bindings caused
by adaptation operations. As shown in the gure, additional bindings can be established, or
role bindings could be removed, all during run-time.

We modied the role application by running an additional evaluation endpoint in its
thread to restore the original role conguration to allow for subsequent evaluation runs.

CompartmentA

RoleA RoleB

RoleC

CompartmentB

RoleA RoleB

RoleC

CompartmentC

RoleA RoleB

RoleC

PlayerA PlayerB PlayerC

1..*

1..*

1..* 1..* 1..*

1..*

1..* 1..*

1..*

Figure 5.2.: CROM model of the role application used in the evaluation

Role Interface

As mentioned in the previous paragraphs, the role interface is used by the role application
to receive adaptation bundles and operations and to exchange bundle activationmessages
and reports. Success or failure reports are sent to the adaptation manager on the local
node. Received adaptation messages are processed locally, and scheduled operations are
executed locally using bind, passivate, unbind, add and remove operations on the role ap-
plication. The role interface is one of the building blocks making the adaptation manager
interoperable with a large variety of nodes and applications since incoming operations, and
activation messages are converted into operations the role application can process.

Since the concept presented in this thesis is not concerned with the local execution pro-
cess itself, we can entirely rely on the correct implementation made by [53] as the focus
does not lie on local operations. The RoleRuntimeEndpoint, which is processing the incom-
ing messages, uses the server socket we implemented in the shared library and checks for
incoming messages sent to the peer. We developed a new messaging system compared
to the one used in the original role interface by Weißbach [53], so we had to modify the
implementation to support our protocol buers.

To support our evaluation approach, we extended the role interface by an Evaluation-
RestartEndpoint, which receives evaluation control messages to restore the initial role con-
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guration for multiple subsequent evaluation iterations. Additionally, we implemented fur-
ther evaluation logging to trace the evaluation process for each adaptation bundle. We
discuss that approach in more detail in chapter 6. Figure 5.3 shows a coarse scheme of
the components of the role-based application with the integrated role interface and the
integrated logging.

RoleRuntimeEndpoint

EM1

EvaluationRestartEndpoint

RI0

Role-Based Application
<logging>

Figure 5.3.: Schematic view of the role interface

5.3. Implementation Details

The following section gives an overview of the shared adaptation framework used by the
dierent adaptation components. The messaging approach using Protocol Buers is ex-
plained. Moreover, concrete details regarding the evaluation implementation and theman-
agement of local hints in the AM are provided.

5.3.1. Shared Adaptation Framework

The adaptation framework on which all other components of our prototypical implemen-
tation rely is also developed in ‘Kotlin’. The framework consists of two main parts: the sock-
ets for communication and the message management, such as creating dierent message
types and their parsing. The networking part of the library provides source code for a
client socket for sending messages and a server socket for receiving messages based on
the DatagramChannel. Message management is realised using protocol buers. We im-
plemented a message wrapper to allow sending a generalised message type and created
a parser to determine the message type of an incoming message. The packed protocol
buer messages are sent and received using the DatagramChannels.

The creation and parsing of protocol buer messages are described next.

Messaging with Protocol Buers

As already mentioned in the introduction of this chapter, the messaging relies on the so-
called Protocol Buers. With their help, we can exchange messages with peers regardless
of their operated platformor programming language. Wemust dene the existingmessage
types in a .proto-le to accomplish this. Every peer needs the denition le beforehand to
deserialise received messages. In the .proto-le, every message that can be sent and their
elds and data types are dened. In Listing 5.1, we explain the structure of the protocol
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buers with an example of an AdaptationBundleMessage and an AdaptationOperation-
Message. As shown in Listing 5.1, two message types for the mentioned messages are
dened. The bundle message consists of a receiver, an id, at least one operation, and an
initiator. The repeated operator indicates that there can be more than one AdaptationOp-
erationMessage in a bundle. The operation consists of an id, the OperationType, which is
one value of the respective enumeration, the order, and the state, such as the source and
target nodes of the operation. Although our prototypical implementation and concept do
not support connected operations such as cloning and migrations, we added those elds
for compatibility with possible future work. The complete protocol buer denition can be
found in Appendix A.

1 syntax = "proto3";
2 package rolaxed.messages;
3 import "google/protobuf/any.proto";
4

5 message AdaptationBundleMessage {
6 string receiver = 1;
7 string id = 2;
8 enum OperationType {
9 ADD = 0;

10 REMOVE = 1;
11 EXCHANGE = 2;
12 }
13 message AdaptationOperationMessage {
14 string id = 1;
15 OperationType type = 2;
16 int32 order = 3;
17 bool state = 4;
18 string targetPlayer = 5;
19 string targetRole = 6;
20 string targetCompartment = 7;
21 string targetAddress = 8;
22 optional string sourcePlayer = 9;
23 optional string sourceRole = 10;
24 optional string sourceCompartment = 11;
25 optional string sourceAddress = 12;
26 }
27 repeated AdaptationOperationMessage operations = 3;
28 string initiator = 4;
29 }

Listing 5.1: Example of a protocol buer denition (cross-language)

As shown in Listing 5.1, we have to dene the data type of each eld of a message. At a
recipient, the respective data type of the utilised programming language is used for dese-
rialization. Although we dened each possible message to be exchanged, in practice, it is
not known upfront whichmessage is incoming next. Unfortunately, protocol buers do not
provide an abstract or genericmessage type fromwhich we can parse themessage type we
received for further processing, nor do they have a native inheritance structure. Therefore
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it was necessary to dene an additional message type which we named WrappedMessage,
able to contain any of the other dened messages. The denition of the wrapper is shown
in Listing 5.2. Each packed message can be assigned a unique id, depending on the im-
plementation. Next, the message’s receiver and the (optional) sender are dened. The
message eld contains the name of the message type, e.g., AdaptationBundleMessage in
case of a bundle message. The details eld contains the serialized message which will be
sent. Then, the whole WrappedMessage will be serialized and prepared to be sent.

1 message WrappedMessage {
2 string messageId = 1;
3 string receiver = 2;
4 optional string sender = 3;
5 string message = 4;
6 google.protobuf.Any details = 5;
7 }

Listing 5.2: WrappedMessage as a generic message type (cross-language)

On receipt of a message, we rst parse the WrappedMessage and check which serialized
message they contain. In case of a received AdaptationBundleMessage, the message type
equals rolaxed.messages.AdaptationBundleMessage. Then, the respective unwrapping pro-
cedure starts, and the deserialized message is returned to the runtime. Listing 5.3 shows
the deserializer and unpacker for a bundle message. The WrappedMessage is passed into
the Unwrapper function, which returns an AdaptationBundleMessage on successful unpack-
ing. Then we check for the class name and return an object with the respective message.

1 fun adaptationBundleMessageUnwrapper(data: Messages.WrappedMessage) :
AdaptationBundleMessage? {

2

3 try {
4 var message : Any = data.getDetails()
5 var className : String = message.typeUrl.split("/")[1]
6 if(className.equals("rolaxed.messages.AdaptationBundleMessage")) {
7 return message.unpack(AdaptationBundleMessage::class.java)
8 }
9 } catch (e: ClassNotFoundException) { }

10

11 return null
12 }

Listing 5.3: Unwrapping an AdaptationBundleMessage (Kotlin)

5.3.2. Evaluation Manager

The evaluationmanager is used throughout the evaluation and can be seen as the planning
component of the MAPE-K feedback loop. More details concerning the evaluation process
are discussed in chapter 6. In the work fromWeißbach [53], the author used the transaction
manager to generate adaptation operations based on the current role conguration of the
role application in the system. A reection message is issued to get the current role con-
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guration of each peer, and thus, operations can be generated on that gained knowledge.
The adaptation operations generation for the proof-of-concept evaluation is also built on
the test generator of the original version of the transaction manager.

With the test generator based on rolemodel reectionmessages received, the evaluation
manager used for this concept and evaluation sends AdaptationBundleMessages to peers
and supervises the adaptation process. RequestDisconnect, RequestConnect, RequestReportE-
valuation and RequestStopReportEvaluationmessages are issued by the evaluation manager
to control the evaluation process for each experiment. Note that those four messages are
not part of the concept but full the purpose of supporting the evaluation. The evaluation
manager receives BundleActivation, BundleSuccess, BundleIncomplete and BundleCompensa-
tionComplete messages. Upon receipt of those messages, the manager can retrace the
current progress of the adaptation and track events for evaluation. Similarly to the role
interface, we extended the evaluation manager by a logging unit for evaluation purposes.

We predened the peers who disconnect during evaluation or return adverse reports
to the evaluation manager. With this approach, we can perform subsequent deterministic
tests and repeat the protocol’s behaviour for many iterations. In Listing 5.4 in lines 3 and
7, dierent evaluation control messages are sent to the peers who are supposed to fail,
depending on the current experiment (see chapter 6). As shown in code lines 2 and 6, we
can get the peers which should fail by accessing a list with getTestPeers().

1 if(isTest()){
2 getTestPeers().stream()
3 .forEach { clientSocket.sendMessage(MessageWrapper.createRequestDisconnect(it,

"172.18.10.10")) }
4 }
5 if(reportTest()){
6 getTestPeers().stream()
7 .forEach { roleRuntimeSocket.sendMessage(MessageWrapper.

createRequestReportEvaluation(it, "172.18.10.10")) }
8 }

Listing 5.4: Starting the valuation procedure (Kotlin)

The RequestDisconnects message modies behaviour in the AM as shown in Listing 5.5.
We simulate a disconnected node ormessage loss during transmission with that approach.
The incoming message is consumed and instantly dropped, so it will not be processed until
a RequestConnect message is received.

1 override fun messageReceived(message: WrappedMessage) {
2 val parsedMessage = MessageDecoder.parseMessage(message)
3 //...
4 if(parsedMessage is RequestDisconnect){
5 ignoreMessages = true
6 }
7 if(ignoreMessages) return
8 //...
9 }

Listing 5.5: Simulating disconnection (Kotlin)
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To simulate a longer passivation process of a node or a failed adaptation, we send the
RequestReportEvaluation to the role runtime. As presented in code line 2 in Listing 5.6, the
receipt of that message sets the sendNegativeReport variable to true, which causes an inter-
ruption of the local execution of the adaptation and issuing a report that the passivation
process is taking longer, the node is not ready yet or that the adaptation failed, instead.
This behaviour is shown in line 8.

1 if(parsedMessage is RequestReportEvaluation){
2 sendNegativeReport = true
3 }
4 // ...
5 if(!sendNegativeReport){
6 bundleManager.performBundle()
7 } else {
8 bundleManager.sendNegativeReport()
9 }

Listing 5.6: Procedure to send negative report (Kotlin)

At a certain point, the failing peers should work again and are recovered by the Request-
Connect and RequestStopReportEvaluation commands, which enable their normal behaviour.
The realization is shown in code lines 5 and 9 of Listing 5.7. Upon receipt of a RequestCon-
nect message, the peer which returns to its typical behaviour issues a RequestHintMessage
multicast to the other peers in the system and waits for incoming hints about pending
adaptations. Also, the ignoreMessages variable is set to false. In the case of a RequestSto-
pReportEvaluationmessage, the peers who rst sent a negative report continue processing
the adaptation operations locally as intended.

1 if(!evaluationRequested){
2 evaluationRequested = true
3 if(isTest()){
4 sleep(3000)
5 getTestPeers().stream()
6 .forEach { clientEndpointTwo.sendMessage(MessageWrapper.

createRequestConnect(it, "192.168.10.10")) }
7 }
8 if(reportTest()){
9 EvaluationLogger.logCurrentTime("192.168.10.10,${rawmessage.sender},TM:BA",

message.bundleId.split("-", "r")[0])
10 sleep(3000)
11 getTestPeers().stream()
12 .forEach { roleRuntimeEndpoint.sendMessage(MessageWrapper.

createRequestStopReportEvaluation(it, "192.168.10.10",
sendingTransaction.id)) }

13 }
14 }

Listing 5.7: Ending the evaluation procedure (Kotlin)

74



5.3. Implementation Details

5.3.3. Adaptation Manager

The Adaptation Manager component is the implementation of the adaptation coordination
unit, which is responsible for the coordination of eventual consistent adaptations on the
nodes. As well as the other components, it is written in the ‘Kotlin’ programming language.
We can divide the AM into two logic parts. The rst part is the messaging, which uses our
server socket and runs it in a separate thread. It is the communication endpoint between all
other AMs and the underlying role interface. Moreover, in the evaluation setting, the AM re-
ceives messages from the evaluation manager to start and manage the evaluation process.
For evaluation purposes, activation, success, incomplete and bundleCompleted messages are
always sent to the evaluation manager for evaluation observation.

In the next section, a more detailed insight into the management of local hints and their
retrieval in the proof of concept is given.

Local Hint Storage

In subsection 4.5.2, we discussed the local hint storage, where incomplete bundles are
stored across dierent nodes. In case a node fails, information about the pending recovery
is shared among all participants by issuing a message via multicast, regardless of the cause
of an error. During the concept presentation, no assumptions about the type of storage
for that hints were made.

Generally, it would be desirable to store that information durably, e.g., in a log le on
permanent storage of the device or in a lightweight database, depending on the domain
and use case. For the prototypical implementation, information about pending adaptations
is stored locally on each adaptation manager using a ConcurrentHashMap [8] data structure.
For every failed peer, its IP address and the failed operations are stored in the HashMap.

Receipt of Hints by other Peers

In Listing 5.8, we show how an AMprocesses an incoming ResponseHintMessage after having
sent a RequestHintMessage via multicast to the group of present peers. First, we check if any
hint is available, as shown in line 2. If any hints are available, and we have already processed
the bundle that the other peer suggests, we respond with a BundleCompensationComplete-
message (see code line 6). To check this, we save already received AdaptationBundles by
their identier. If a hint was received unknown to the local AM, we would request the rst
pending bundle by the id from a peer who sent the hint to us, shown in line 14.

On receipt of a BundleCompensationComplete-message, the ConcurrentHashMap contain-
ing the local hints is searched for the peer which recently compensated open adaptations,
and successfully restored operations are removed from the hint storage for the concerning
bundle and operation identier.
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1 if(parsedMessage is ResponseHintsMessage) {
2 if(!parsedMessage.isHintAvailable) return
3 for(missedBundle in parsedMessage.missedBundlesList){
4 if(receivedAdaptationBundles.contains(missedBundle)){
5 activeAdaptationBundles.stream().filter { bundle -> bundle.

isProcessingBundle(missedBundle) }
6 .forEach { answerWithBundleComplete(sender, parsedMessage, bundle.

adaptationBundle.id)
7 } } }
8 hintingPeer = sender
9 parsedMessage.missedBundlesList.stream()

10 .forEach { if(!pendingBundles.contains(it) && !receivedAdaptationBundles.
contains(it)) pendingBundles.add(it) }

11 if(pendingBundles.isNotEmpty()){
12 regularClientSocket.sendMessage(MessageWrapper.requestHintByBundle(sender,

NetworkInterfaceManager.getLocalInetAddress(), pendingBundles[0])))
13 } else return
14 }

Listing 5.8: Retrieval of hints at the reconnected peer (Kotlin)

5.4. Setup of the Prototypical Implementation

In the introduction of this chapter, the execution strategy for the compiled artefacts has
already been indicated. The setup for one node consists of a Role Runtime, running a role-
based application and providing an interface for incoming messages. Moreover, it contains
an Adaptation Manager for managing the adaptation process among multiple nodes and
supporting the external adaptation paradigm, thus separating the adapting logic and the
subject to be adapted. A basic setup, including the communication interfaces with two
nodes, is shown in Figure 5.4. Every node contains an AM, which is responsible for the de-
centralized coordination of adaptation bundles among dierent independent nodes. This
AM coordinates the adaptations for the underlying role-based application, which is indi-
cated by the role interface and the role runtime in Figure 5.4. These independent building
blocks share a library containing the dierent message types and protocol buer deni-
tions, as well as client and server socket implementations which can be used by the role
interface and the adaptation manager to rely on a shared basis regarding messages. Infor-
mation about hints is not central knowledge across the system but is only accessible by the
respective adaptation manager. Nonetheless, we can exchange information about stored
hints via messages across dierent nodes.

Generally, as long as a connection is present, every AM can communicate with any AM
on other nodes by using the AM0-interface as shown in Figure 5.4. Hint storages are only
accessible by the local adaptation manager via the HS0-interface. Bundle messages, re-
port messages, report requests, and bundle activations are exchanged between the role
interface, the role runtime, and the AM with the RI0, RI1, RR0, RR1 interfaces, and that infor-
mation is then shared by messages sent on the AM0 interface to coordinate the ongoing
adaptation.
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Figure 5.4.: Overview over the setup and the interfaces with two nodes

5.5. Summary

In this chapter, we discussed the building blocks for running a proof of concept of the
developed eventual consistent adaptation approach. We discussed which artefacts from
Weißbach [53] were reused and discussed our contributions to the proof-of-concept im-
plementation. Last, we described the interaction of each part in detail. In the next chapter,
the conducted experiments and the results are presented.
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After having presented the implementation details of the concept and the remaining open
components, this chapter aims to evaluate the concept to answer the research questions
presented in section 1.4. The evaluation part of the thesis is divided into four main parts.
First, we present the evaluation setup and the experiments performed. Additionally, the
goal of each experiment regarding the research questions is explained. Next, the evalua-
tion methodology is presented.

6.1. Evaluation Methodology

The evaluation of the concept is done in two ways. First, a technical evaluation is per-
formed by measuring the duration of the adaptation process, the impact of failures and
the restoration process. Moreover, the number of messages exchanged is analysed to in-
vestigate the impact of decentralization and the potential number of increasing messages
between peers. To achieve that, every node logs important events along with the times-
tamp of the event’s occurrence. We dened the following events as crucial:

• Receipt of an adaptation bundle
• Start of adaptation processing
• Activation of changes
• Failure of execution
• Success of the adaptation bundle execution
• Requesting, receiving and sending hints
• Finalization of compensation

At the occurrence of those events, the aected node, timestamp and event type are
written into a log le. As already mentioned, we also want to investigate the impact of an
increasing node size on the protocol in a decentralized setting. Therefore, every exchanged
message between peers is also logged for that purpose. With that approach, we can anal-
yse which events have a higher impact on the execution and where we can identify room
for improvement.
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6.2. Evaluation Setup

In the previous section, we discussed the evaluation methodology. Next, we describe the
setup for the tests in detail. An overview of the setup is depicted in Figure 6.1. The im-
age shows a setup with three Docker containers, but note that the container on the right
side is numbered 20. Our cluster of containers spans dierent nodes depending on the
experiment, up to 20. Each container runs the basic Role Runtime with a basic role-based
application consisting of three roles, players and compartments. The CROM model of the
application was presented in Subsection 5.2. Besides that, the container runs a local in-
stance of the AM, which exchanges coordination messages with the other node and the
evaluation manager. The evaluation setup provides four distinct communication interfaces,
each fullling a specic purpose.

AM0 between the AM and the evaluation manager is the regular communication chan-
nel for the coordination and execution of adaptations. On this channel, all message types
which are part of the protocol denition presented in chapter 4 are exchanged. The eval-
uation manager is also part of this communication channel to track the progress of the
adaptation for evaluation purposes. The interface RI0 triggers the received adaptations on
the role-based application. It receives report messages about the current state of adapta-
tion and returns it to the local AM. Moreover, passivated runtimes can be activated using
this interface. The EM0 and EM1 interfaces are for evaluation only. Evaluation control mes-
sages are exchanged on those channels, as described in subsection 5.3.2. Furthermore,
the evaluation manager can restore the initial role conguration at the role-based applica-
tion for subsequent evaluation runs.

Docker Container 1 Docker Container 2 Docker Container 20

Role-based Application
(LyRT)

Role Interface

Adaptation Manager

Role-based Application
(LyRT)

Role Interface

Adaptation Manager

Role-based Application
(LyRT)

Role Interface

Adaptation Manager

Evaluation Manager

AM0 AM0

RI0 RI0 RI0

EM0

EM0

EM0

EM0

EM0

...
EM1AM0

EM1EM1

Figure 6.1.: Evaluation setup with its components and communication interfaces

80



6.3. Experiment Overview

System Size # Adaptation Operations # Nodes Failing
1 1 -
2 2 1
3 3 1, 2
5 5 1, 2, 3, 4
10 10 1, 2, 3, 5, 9
20 20 1, 2, 3, 5, 10, 19

Table 6.1.: Overview over experiment failures

6.3. Experiment Overview

The experimental evaluation part can be divided into ve parts. Four of the experiments
are conducted with technical support, while the last experiment has an empirical nature
because theoretical assumptions are made based on measured results.

The ve experiments are the following:

E1: Successful adaptation in dierent system sizes
E2: Adaptation in case of message loss or disconnection
E3: Adaptation recovery from reported failure or delay
E4: Impact of early activation of changes
E5: Comparison of eventual consistent adaptation with strict atomic adaptation

Each experiment is carried out with dierent system sizes to analyse scalability and the
decentralisation of the concept. E1 is performed for system sizes of 1, 2, 3, 5, 10 and 20. As
decentralised adaptation coordination is not necessary for a system size of one, we omit
that system size in experiments E2 - E5. During the experiments, each node receives its
adaptation operation thatmust be performed, which results in one adaptation at one node,
and 20 adaptation operations in one adaptation bundle for a system size of 20 - one for
each node. E2 and E3 evaluate the protocol behaviour in case of a disconnection or mes-
sage loss and in case of a report that the adaptation did not succeed (yet). Therefore, we
must let some nodes fail to check the recovery mechanism. For each system size between
2 and 20, we conduct measurements for dierent amounts of failing nodes. Depending on
the system size, the number of failing nodes lies between 1 and 19. For experiments, E1 to
E4, in total, 52 executions of the evaluation with dierent settings are started.

Table 6.1 shows the number of failing nodes in experiments E2 and E3 for the dierent
system sizes. We test the protocol with an increasing number of failures for each system
size until a failure rate of all nodes but one. For our experiments, we assume that the initi-
ating node never fails and can perform the adaptations without an error since its planning
component prepared the adaptation.

JVM warm-up impact

Each conguration (experiment) has 100 iterations, from which the measurements of the
rst twenty iterations are dropped and excluded from evaluation. This is done because of
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the JVM warm-up phenomenon [3, 47]. The JVM relies on just-in-time (JIT) compilation, i.e.,
‘hot’ parts of the code are translated to ecient machine code at run-time [3]. This process
takes some time and is considered the ‘warmup-phase’ of virtual machines relying on JIT
[3]. During the rst iterations of the execution of an application in the JVM, the caches are
built, and code execution gets optimised, which could cause a large decrease in execution
time after the rst iterations. This phenomenon is visualised in Figure 6.2 and is based on
the execution of one of our experiments but is representative of every experiment con-
guration. As shown in the chart, the execution time of one whole adaptation process
decreases signicantly at the beginning of an experiment. The orange regression line from
the beginning values shows the trend of decreasing execution time. After the ‘warmup’,
a ‘steady state’ of peak performance is reached. Nonetheless, it is hard to predict when
the warmup phase ends [47] and whether a ‘steady state’ is present. Our implementation
does not aim for performance optimisation regarding the execution time. Hence, we chose
the 20th iteration as the point of the start of experiment measurements since the caches
are built enough not to inuence the results with the anomalous outliers as much as if we
took the whole data set. Compared to the orange line, the black trend line hints at a more
stabilised execution time after a few iterations. Since time measurements in our experi-
ments aim to compare dierent system sizes and settings instead of measuring absolute
performance to achieve the shortest execution time, this procedure is sucient for our
evaluation. Please note that the ‘steady state’ could not have been reached, eventually,
and the application might still be in its ‘warmup’ phase, which could distort the measured
execution time compared to execution in the ‘steady state’.

Figure 6.2.: JVM warm-up at execution

Taking that impact of JVM warm-up into consideration, each experiment with 100 itera-
tions provides us with 80 iterations with results. In total, the evaluation results are based
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on 4160 experiment executions (1040 dropped).

Taking the measurements

For every evaluation run, themetrics (number of messages exchanged and execution time)
are calculated using the arithmetic mean of messages exchanged in each iteration and the
arithmetic mean of the execution time of the iterations. As explained in section 6.1, we use
a logging approach to log events and derive themetrics. The details about the single logging
events are discussed in the following. Generally, the evaluation process for the experiments
E1 to E4 is divided into two parts. The rst phase measures the execution time and the
number of messages exchanged for the available and correctly working nodes. The second
phase is the compensation process in case of failure. The separation of the evaluation is
performed to exclude the waiting time for recovery from the evaluation results. During
the execution protocol, after successful peers have activated their changes, it could take
some time until the remaining peers reconnect or until the local execution is performed
successfully. Since that downtime is domain-specic and application dependent, we aimed
to exclude that intermediate time from our evaluation approach to evaluate our concept
solely.

Please note that the measurement of the execution time has the purpose of comparing
the experiments with each other. The development of the protocol did not have the inten-
tion of reaching the lowest possible execution time, nor is the execution time of relevance
for answering our research questions. We measured the time that passed for complete-
ness and comparability.

The rst phase starts after the initiating node has received an AdaptationBundleMessage
from its planning component, denoted by a logged ABM event along with its timestamp
of occurrence. The mark for ending the rst phase is the TM:BA marker. This is the point
during execution when the activation message from a peer gets received. By receiving that
message, we imply that all intermediate adaptation operations are performed (in case of
an incomplete bundle if an error occurred) and that those entities got activated already
and continued working with the new conguration. With the receipt of the TM:BAmark, we
measure the rst phase - the activation of correct working nodes.

At a later point, failing nodes reconnect, or processing continues. That event - the start
of phase two - is marked with a ReqH-r event in the logs, which means that a previously
disconnected node requested a RequestHintsMessage to receive information about ongo-
ing and missed adaptations. In case of a previously erroneous adaptation with a negative
report, the begin of the recovery is tracked with the rst successful report message at the
evaluation manager. When all participants of an adaptation operation have nished and
compensations were performed, a peer which received all positive reports from all peers
and received information about the success of potential compensation tasks, a BundleSuc-
cess-message is multicast to all peers in the system, as well as to the evaluation manager.
This TM:BS event marks the end of our adaptation process and phase two in case of com-
pensation. A timestamp for that event is extracted.

The evaluation manager always knows about incomplete bundles and failures in the sys-
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tem. Therefore, with the help of the logging events, we could keep track of whether Bundle-
Activation-messages were only sent correctly, i.e., all available nodes reported the success
of the local execution. The same applies to the BundleSuccess-message, which is supposed
to be sent after all compensations and all regular adaptations are nished. If an activation
or success message were sent too early, a TM:err event would have been logged. Through-
out all 5200 experiment executions, not a single TM:err event was tracked, from which we
can conclude that activation and success events are noticed correctly.

After explaining how the evaluation is performed, we present the rst experiment’s re-
sults, E1.

6.4. Default Case: Successful Adaptation

The rst experiment, E1, aims to evaluate a basic adaptation process without any errors
during the execution. We executed the tests for system sizes from 1 to 20 and measured
the exchanged messages and the overall execution time. As mentioned in the previous
section, the measured execution time serves for the comparison between dierent system
sizes and experiments. For a better comparison with a linear increase in the messages
exchanged and the execution time due to the jumps in system size, two dotted lines were
added to indicate the linear progress of those values. The messages exchanged are shown
as the blue dotted line, and the linear progression of the execution time is in green.

Figure 6.3.: Default case measurements

The results from E1 are shown in Figure 6.3. As expected, the number of execution
times and messages exchanged is low for one node since no coordination among multiple
nodes is necessary. The result of 5,64ms of execution after the receipt of the Adaptation-
BundleMessage contains the communication time for the interface RI0 (see Figure 6.1), the
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local passivation and binding process, the report to the adaptation manager and the trans-
mission of the success message to the evaluation manager.

As expected, the execution time and the number of exchanged messages increased lin-
early for the rst three system sizes tested. We have a rst perceptible deviation of the
measured results when testing with ve nodes. As shown in Figure 6.3, the graph for the
execution time drifts away from a linear progression. The time needed for adaptation is
lower than expected, which is explainable due to the parallel processing of received mes-
sages and sending since the endpoints are executed in separate threads. The number of
exchanged messages at ve nodes is slightly higher than a linear progression. More signif-
icant dierences between a linear increase and the actual measurements were observed
for larger system sizes of 10 or 20. We observed a large increase in the number of ex-
changed messages from a system size of 10 to a size of 20, which is above the curve of
a linear increase. That behaviour is expected and can be explained due to the decentral-
isation requirement of the system. Every peer is multicasting report messages about the
ongoing adaptation process to each other peer to ensure that this knowledge is shared
reliably with every peer. Also, BundleActivation messages are sent via multicast to all other
peers. This behaviour leads to many sent messages for increasing system sizes. Contrary
behaviour can be observed for the execution time. Although a large increase in the execu-
tion time from a system size from 5 to 10 and from 10 to 20 is noticeable, execution time
remained lower than a linear increase.

The rst experiment’s results are the foundation for the experiments E4 and E5.

6.5. Compensation on Disconnection of Peers

In this section, we present and discuss the results of E2, i.e., the failure of at least one node.
The system sizes for this experiment were presented in Table 6.1. The evaluation process
for this experiment is built of three blocks. In a real-world scenario, if a nodewent down due
to a failure, it could take some time until the erroneous node reconnects and can recover
from its failure. For the experiment, we do not want to measure the downtime which was
added in the experiment but measure the metrics of the net protocol time without the
disconnected phase included. Of course, disconnected peers could reconnect during the
adaptation phase of the remaining peers. This would be the case if messages were not
received successfully because of a short network outage or other circumstances. In this
case, the recovery process and the actual adaptation process would overlap, preventing
the measurement of each phase. Therefore this experiment consists of three parts. In the
rst part, the regular protocol behaviour of the peers which did not disconnect is examined.
After a BundleActivationMessage is issued to the EvaluationManager, i.e., every available peer
executes its local changes and reports it to the peers, the second phase starts. During this
phase, the failed peer reconnects and executes the recovery protocol. The third part of
the experiment combines both results, and the overall behaviour is analysed.

First, we look at the metrics in case one node fails due to a disconnection. The initia-
tor tries to send the AdaptationBundle to all peers, but one does not respond because it
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is not connected. In Figure 6.4, the time measured and messages exchanged when only
one node fails is depicted for dierent system sizes from 2 to 20. As expected, the total
time to adapt is increasing with the growing system size. The time is growing moderately
for the system sizes from two to ve. For ten nodes, the time is also just slightly above
linear behaviour. The adaptation time increases signicantly for a system size of 20. As we
can see in Figure 6.4, the overall execution time is mainly caused by the Time Phase 1, the
regular adaptation phase, because all adaptations but one is performed in the system. The
remaining peers, e.g. 19 in the case of a system size of 20, perform the regular adaptation
process, and the system needs to deal with only one failed node. In the left chart, we can
observe that the time passed in phase 2, the recovery phase, does not dier drastically for
the single system sizes. The execution time of this phase varies from 6.22ms to 8.15ms,
which results in a standard deviation of 0.8544ms, which is negligible. These dierences
can be caused by external inuences, e.g. system interrupts, or that a BundleCompensa-
tionComplete-message was received insignicantly faster by a peer.

Figure 6.4.: Time passed and messages exchanged in E2 for one failing node

Similar behaviour can be observed for the number of exchanged messages depicted on
the right side of Figure 6.4. For the rst phase, the number of exchanged messages rises
signicantly, but all nodes in the systemexcept one are adapted. In the case of the recovery,
Message Phase 2, the number of exchanged messages for coordination of the recovery is
rising with the system size. This is the expected behaviour. RequestHintMessages are sent
by the failed peer via multicast to receive all lost AdaptationBundleMessages. The number
of exchanged messages could be lower if the node had a reliable peer which could be
contacted in case of a failure. In that case, only one RequestHintMessage and an answer
would be sent, resulting in a shorter recovery time and a lower number of messages sent.

In Figure 6.5, the charts for two and three failing nodes are shown. Note that we did
not conduct the experiments for two failing nodes for a system size of two and the exper-
iments for three failing nodes for a system size of three since the whole system would be
unresponsive in that case, which is not the target of the concept. This gure shows that
the protocol behaves as expected for those experiments, similar to Figure 6.4.

Next, we want to analyse the protocol behaviour by comparing dierent amounts of
failed nodes for system sizes 20 and 10. The experiments were also conducted for system
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(a) 2 failed nodes time (b) 2 failed nodes messages

(c) 3 failed nodes time (d) 3 failed nodes messages

Figure 6.5.: Time passed and messages exchanged in E2

sizes 2, 3 and 5, but we demonstrate the behaviour with the help of the larger systems
since, for lower system sizes, the amount of failed nodes is decreased.

In Figure 6.6, the protocol behaviour for 20 and 10 nodes, for dierent numbers of failing
nodes, is depicted. We can observe that the total time and number of exchangedmessages
are not increasing with a growing number of non-responsive nodes, as shownwith the help
of the yellow graph. For some ticks, the graph is even increasing and decreasing. However,
a rst intuition would let us assume that those metrics would only increase due to a larger
number of nodes to recover. That behaviour is explainable by two factors. First, with an
increasing amount of failing nodes, the amount of necessary adaptation coordination of
remaining peers, which are still connected, is decreasing. In the case of one remaining
node which receives an AdaptationBundleMessage, the remaining node does not need to
wait for the others to nish their adaptations, as for now. Therefore, the phase 1 time and
requiredmessages are decreasing. On the other hand, with an increasing number of failed
nodes, more messages are necessary to recover a globally consistent state regarding the
role conguration. The total time of adaptation, depicted by the yellow graph, is the sum
of the red and blue graphs, i.e., the sum of phase 1 and phase 2. Therefore, depending
on the current duration or number of exchanged messages, the total varies frequently. As
a consequence, we can observe in Figure 6.6 that the total duration and message count
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are mainly caused by phase 1 for one failing node and caused by phase 2 when almost all
nodes fail.

(a) Time for 20 nodes (b) Messages for 20 nodes

(c) Time for 10 nodes (d) Messages for 10 nodes

Figure 6.6.: Time passed and messages exchanged in E2 for 10 and 20 nodes

6.6. Recovery from Failed Adaptation

We continue our evaluation with experiment E3, which aims for an analysis of the behaviour
of the protocol in case of a local execution failure or a delayed adaptation because a role
runtime might still be processing its task or the passivation process is taking longer than
expected. Similarly to E2we did not test the experiment for a system size of one node since
no coordination among dierent nodes is necessary in the case of a single node. The test
is conducted similarly as E2. To measure the net time of the recovery procedure, we rst
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let the succeeding nodes nish their adaptation until those changes get activated. After
all report messages were collected and a BundleActivation message was sent, we start the
recovery. In the recovery, the node simulates behaviour that it recovered from a previous
adaptation failure or is ready for adaptation now. The scheduled AdaptationOperation from
the bundle is executed locally, and a ReportMessage is issued. We executed the experiments
for the system sizes between 2 and 20, and let 1 to 19 nodes fail, depending on the current
system size.

Figure 6.7.: Time passed and messages exchanged in E3 for one failing node

First, we analyze the duration, and the number of messages exchanged for one adap-
tation failure, tested on dierent system sizes. The experiment results are shown in Fig-
ure 6.7. Each diagram is divided into three parts: phase one is the time until the successful
adaptation of the peers, which did not fail. Phase two is the recovery of the failed peer(s),
and the total time is the duration of the whole adaptation process, hence the regular adap-
tation behaviour plus the recovery. The left chart shows the time that passed for each
phase, for one which did not perform the adaptation. As expected, the execution time is
increasing for increasing system size, with a large increase from 10 to 20 nodes. This be-
haviour is explainable due to the high amount of shared ReportMessages to report success
to the other peers and the distribution of BundleIncompleteMessages to inform other peers
about the failure of one node. In phase 2, we can observe that the recovery of one node
is taking a similar amount of time since no additional coordination is necessary because
the failed node already received the AdaptationBundleMessage in an earlier stage. In phase
2, jumps between the single system sizes are recognisable. Nonetheless, the observations
have a standard deviation of 1.15 ms, which is negligible and could be caused by external
factors. Similar behaviour can be observed on the right side in Figure 6.7. An increase in
the messages exchanged in phases 1 and 2 leads to an expected trend of the total mes-
sages exchanged for adaptation in case of one node failure. For the graph of the number of
exchanged messages, it can be observed that the number of exchanged messages during
the recovery process is growing for increasing system size. The recovered node informs its
known peers about the success, and a BundleSuccess is distributed among all peers.

Figure 6.8 shows the results of the experiment E3 for two and three failing nodes. For
those failure numbers, we can observe similar behaviour as for one failed node, as already
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(a) 2 failed nodes time (b) 2 failed nodes messages

(c) 3 failed nodes time (d) 3 failed nodes messages

Figure 6.8.: Time passed and messages exchanged in E3

explained for Figure 6.7.

In the following, the protocol’s behaviour for 20 and 10 nodes, with dierent numbers
of failed adaptations, is analysed. Graph a) in Figure 6.9 shows the time to complete the
adaptation in the presence of an increasing failure number. As expected, the processing
time of the successful adaptations is not changing signicantly. That is because, compared
to a failure due to disconnection, those peers respond with a ReportMessage to the other
peers, despite a successful or failed adaptation. This behaviour can also be observed in
graph b), where the number of exchangedmessages is depicted. In phase one, the number
of messages is increasing for a rising number of failures because additional BundleIncom-
pleteMessages are sent to all peers to inform every participant about a pending adaptation,
in addition to multicasted ReportMessages. The dotted line shows the execution time and
exchanged messages for the recovery phase. Also, the observation of this test is as ex-
pected since for an increasing number of failed or delayed adaptations, more BundleCom-
pensationCompleted, BundleSuccess and reports are sent. Graphs c) and d), i.e. a system size
of 10 nodes, behave similarly to a) and b). Therefore, the results for both charts are not
discussed in detail.
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(a) Time for 20 nodes (b) Messages for 20 nodes

(c) Time for 10 nodes (d) Messages for 10 nodes

Figure 6.9.: Time passed and messages exchanged in E3 for 20 and 10 nodes

6.7. Impact of Early Activation of Adaptations

We continue the evaluation of the proof-of-concept with the next experiment, E4. With this
experiment, we want to analyse the impact of nodes waiting for all other nodes to nish
their adaptations. A subset of operations exists that does not require waiting for other
peers and can be activated as soon as the adaptation is executed locally with success.

We want to analyse this experiment based on the results from successful adaptations.
Note that the results of this experiment also apply to cases where an error occurs in phase
1 when the remaining peers perform their regular adaptation process. Figure 6.10 com-
pares the time and number of exchanged messages on the one hand between the ac-
tivation itself, i.e. when all peers nished their adaptation, and at least one node in the

91



6. Evaluation

system gathers that knowledge, and on the other hand, after the rst peer reported that
the adaptation had been nished successfully. In an approach where peers wait for others
to nish until their task execution can be continued, early nishing nodes wait a long time
until they can continue working, as shown in both charts. This approach would not work for
connected operations, such as cloning and migration, where two nodes are involved. This
experiment shows that the overall time until activation of early nished adaptations can
be drastically decreased with a step-wise activation as soon as a node has already nished
local execution.

We can observe that the impact of a waiting state until all available nodes nish is in-
creasing with the growing system size. A signicant increase can be observed at the jump
from 10 to 20 system nodes, where execution time and the exchanged messages increase
drastically.

Figure 6.10.: Messages exchanged and time passed in E4

6.8. Comparison with a Blocking Approach

This thesis aims for an eventually consistent approach to decentralised adaptation execu-
tion. A comparison with a blocking approach is performed to show the potential benets
of this approach. To conduct this experiment, we include the results from E1 as a base-
line for the duration of a successful blocking approach, relying on AdaptationTransactions,
which have an atomic nature. The comparison between a blocking approach with atomic-
ity, requiring a rollback at failure, and an eventually consistent approach highly depends on
the timing when the failure is detected. In the case of a transactional approach, a failure
could, e.g. be detected at the beginning of an adaptation process. This would result in an
early rollback, and other peers could abort their pending adaptation operations in an early
stage of the process. On the other hand, a failure could be detected if almost all peers
nished their adaptation, and only the last peer would be left. Therefore, we perform this
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experiment in two ways. First, a ‘worst case’ scenario, where an adaptation failure is de-
tected in a late stage of the adaptation process, i.e., when all remaining nodes are already
nished, and the nodes wait for the others to complete. Second, a ‘best case’ scenario,
where failures are detected early, leading to an early rollback. Each of our charts which are
presented in the following, contains four graphs. The baseline, i.e. the conduction of the
adaptation without any error, the transactional approach, the result from E2 and the result
from E3. The experiment is performed for the system sizes 2, 3, 5, 10 and 20.

We determine the duration of a transactional approach facing a failure by approximating
two values. For theworst-case experiment, we gure out the time until all but the last nodes
nish their adaptations based on the results from E1. Using a transactional approach sim-
ilar to [53], a rollback would be issued now to restore the original conguration. Since we
do not know how long the rollback process takes, we neglect this time frame and continue
with the retried AdaptationTransaction. The time from the beginning until the success of the
second try is our second value. Then, we add those two values and take this as a baseline
for the adaptation duration of a transactional approach in case of failure. For the best case,
we interpret the rst report of a peer as a negative report, which would cause a rollback.
To this value, the overall duration of the adaptation process is added.

For comparison with an eventual consistent approach, the observations from E2 and E3
are considered. For the best case, in E2 and E3, one failure is considered. In the worst
case, all but one node fail during the adaptation process. Note that for this experiment, we
assume that the subsequent execution of the adaptation transaction results in a successful
adaptation. The results are shown in Figure 6.11.

For the best case, we can observe that all approaches behave similarly, i.e., the execution
time until the system is in its desired target conguration and the required messages to
achieve this are nearly the same. In both charts, the recovery from a failed adaptation takes
longer than the recovery due to a disconnection. This is expected behaviour since a failed
node communicates with its remaining peers and sends negative reports. Conversely, dis-
connected peers do not react to communication, so fewer messages are exchanged. In
the worst case, we can observe the graphs diverging. For system sizes from 2 to 5, the
blocking approach takes the longest to recover from the failure, although the rollback time
is not included. For 10 and 20 nodes, the execution time grows signicantly, with the cop-
ing of a negative report taking the longest of all approaches. It is interesting to observe
that for a system size of 20 in graph c), the compensation of disconnected nodes is shorter
than the baseline. Although this behaviour might appear odd, this happens because of
20 nodes, 19 fail, and only one adaptation is performed in the regular coordinated way.
The remaining 19 compensations are happening without further coordination, i.e., this is
similar behaviour as we explained during experiment 4, where nodes started working as
soon as they executed their local adaptation. The baseline approach waits until one of the
nodes collects all reports about success, which takes longer. Nonetheless, the dierence
is only about 26ms, which could also be inuenced by later received messages or a busy
socket at the moment of receipt. This trend is also shown in graph d), where the amount
of exchanged messages is compared. The number of exchanged messages after compen-
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(a) Recovery time in the best case (b) Messages exchanged in the best case

(c) Recovery time in the worst case (d) Messages exchanged in the worst case

Figure 6.11.: Comparison of an eventual consistent approach with a transactional approach

sation for negative reports is much higher than every other approach. After disconnection,
the protocol needs slightly more messages to recover a consistent state than the baseline
approach if no error occurs.

From this experiment, we can conclude that our developed protocol behaves better for
the compensation of disconnected nodes than for recovery from a failed adaptation pro-
cess because a negative report was received. Although way more messages are required
to recover consistency after negative reports in the worst case, i.e., almost all nodes failed,
it is application dependent whether after a failure rate of 95%, in our case, a rollback should
be issued, or the one successful node should already work in its new conguration.

In the previous sections, we performed the technical evaluation of our proof-of-concept
implementation concerning the execution time and the exchange messages. Next, an em-
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pirical study is conducted based on the introduced re extinguishing drones scenario.

6.9. Empirical Study: Fire Extinguishing Drones

In this chapter, we want to apply the developed concept to our introduced use case from
subsection 1.1.1. In the introduction, we presented the use-case of re-extinguishing drones
which survey a particular area and precautionary react to little res during heatwaves.

At the beginning of the empiric study, every drone plays the role ‘SwarmMember’ in the
compartment ‘Surveillance’. All drones know the other members of the swarm and have a
direct connectionwith each other drone. In the beginning, every drone is observing its area.
Due to technical restrictions, every drone has a particular area it can inspect. Therefore,
drones need to cooperate to cover the whole area.

Figure 6.12.: Initial situation of the re extinguishing drones

At a later point in time, one of the drones senses a small re in its surveilled area, which
requires a quick change of the behaviour of the drones to prevent the re from spreading
across a wider area. Due to the notion of roles, which allows for dynamic behaviour as
a response to changing context, without restarting the nodes or changing the behaviour
manually, the operating mode can be switched during run-time by performing adaptation.
The planning and analysis component of the sensing drone creates a plan for how to react
to this situation. As a quick reaction, the ‘Extinguishing’ role should be played to extinguish
the re as fast as possible since the drones are equipped with a minimum amount of extin-
guishing powder. Therefore, all available drones should join the drone which sensed the
anomaly. An AdaptationBundleMessage with AdaptationOperations for each drone is sent,
as shown in Listing 6.1. Note that the AdaptationBundleMessage contains an operation for
every drone. For space reasons, we just added one, but the remaining are similar to the
one shown in the code.
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1 {
2 receiver = 192.168.0.10,
3 initiator = 192.168.0.11,
4 sender = 192.168.0.11,
5 id = 1,
6 List<AdaptationOperationMessage> =
7 { id = 1,
8 type = ADD,
9 order = 1,

10 state = false,
11 targetPlayer = 'Drone1',
12 targetRole = 'Extinguishing',
13 targetCompartment = 'Forest Fire',
14 targetAddress = '192.168.0.12'
15 } ...
16 }

Listing 6.1: AdapationBundleMessage for the drone adaptation

The AdaptionBundleMessage is sent via multicast to all swarm members so that every
drone can adapt to the changed context, i.e., a potential forest re. The goal is to en-
able the target role of every peer. In our use case, one drone disconnected during the
phase in which another swarmmember detected a small re in the woods. This scenario is
depicted on the left in Figure 6.13. All swarm members, besides the one, receive the adap-
tation, which leads to the initiation of the adaptation process. The initiator, which does
not receive any acknowledgement of the received message from the one drone, tries to
re-transmit it ve times. After ve seconds, the initiating peer assumes that the node is
not reachable. Therefore, it initiates a BundleIncompleteMessage to inform the other mem-
bers about the failed peer. In the meantime, the remaining peers attempt to apply the role
switch according to the received adaptation operations. Nonetheless, one of the peers is
busy with internal processing, and the adaptation process is taking longer than expected.
The other peers request the current status, but the adaptation is still processing. Therefore,
this AdaptationOperation is also marked as incomplete, which results in two open opera-
tions whichmust be resolved as soon as possible. Since a small re should be extinguished
as soon as possible, there is no time to wait for the remaining nodes. Therefore, the re-
maining four drones activate the changes, i.e. commit them, to react as fast as possible
and approach the re to extinguish it.

In the meantime, the drone which disconnected reconnects to the network and asks the
remaining peers about lost adaptations by sending a RequestHintsMessage via multicast.
That behaviour is shown in Figure 6.13. As a response, the peers send a new Adapta-
tionBundleMessage with the remaining operations, along with the information that another
drone is still pending. After receipt, the adaptation is executed locally, and success is sent
to all available peers by issuing a BundleCompensationCompleted-message. Hence every re-
cipient can remove the pending operation for that peer from the local hint storage. Due to
the success of the local adaptation, the drone joins the remaining peers in extinguishing
the re. In the meantime, the re was successfully extinguished. As a result, the pending
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(a) One drone disconnected from the system (b) Partly adapted nodes

Figure 6.13.: Partly adaptation of the drones due to disconnection and delayed adaptation

operation of the remaining drone, which is still not ready for adaptation, is unnecessary.
The pending operation is removed from the pending local operations by issuing an Abort-
OperationMessage, and the hints are removed from the local hint storage. Since all pending
operations have been removed from the local hint storage, either by compensation or due
to changed plans, and the other available peers succeeded earlier, a BundleSuccess is mul-
ticast to all peers so that recovery will not be reissued.

6.10. Summary

In this chapter, we presented the results of ve experiments conducted on our proof-of-
concept from chapter 4. With the experiments, the feasibility of an eventually consistent
approach for the execution of self-adaptation was shown. Especially with the observations
in E5, the comparison with a transactional approach, it was shown that allowing temporal
inconsistencies could be benecial. Instead of keeping a strict, consistent conguration
with a weak consistent approach, task execution can be continued without any shortcom-
ings regarding the overall adaptation time and amount of communication. With the help
of the experiment E4, the potential regarding early activation of already performed adap-
tation operations was shown. In a setting without the necessity for concurrent activation
of all peers, single nodes can benet from an early activation instead of waiting for the
remaining peers.

In the last chapter, we want to conclude our results, answer our research questions
which we posed in section 1.4 and present identied future work, to improve the developed
concept in its eciency.
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In this thesis, a novel approach for the execution of adaptation for role-based systems has
been introduced. We started by analysing the problems and continued with the objectives
which were necessary to solve the problems. Afterwards, the important foundation was
introduced, and we identied relevant related approaches from several domains. Not only
the domain of SAS was considered during the literature research, but also techniques from
the database domain and, of course, role-based approaches were examined. Based on the
literature analysis, we identied research gaps targeted by the developed approach. Our
approach makes it possible to perform adaptations in an error-prone environment where
connections between peers could be unstable, or adaptation tasks could take longer than
expected. Instead of aborting those adaptations as would be the case in transactional
approaches, compensation tasks are executed to recover a globally consistent state of the
decentralised, role-based system. The developed approach can manage the inconsistent
global state after erroneous adaptations in a decentralised way, i.e., the protocol does not
rely on a central instance and can recover from failure even if most peers fail as soon
as they reconnect to the system or recover from their internal failures. The concept to
achieve those goals was introduced in chapter 4, and its prototypical implementation has
been described afterwards. We evaluated the approach using local adaptation operations
and compared the approach with a strict, blocking transactional technique. Our results
showed that increasing the availability of nodes and performing changes in an eventually
consistent manner has potential since, compared to blocking approaches, the number of
exchanged messages and the time passed is competitive.

In the following sections, the stated research questions from section 1.4 are recapped,
and answers to the questions are provided. Moreover, remaining open issues are dis-
cussed, and future work for potential improvement is suggested.

7.1. Recap of the Research Questions

After having outlined the problem denition in the introduction of this thesis, we raised
three research questions to ll the gap of adaptation execution with a relaxed consistency
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constraint. Based on the developed protocol and the observed results from the evaluation,
we approach to answer the questions from section 1.4.

[RQ1]What is a suitable approach to reliably distribute information about failed adaptations
in role-based self-adaptive systems after an adaptation failure for at least one node?

The rst research question concerned the reliable distribution of the information that
any of the peers failed the adaptation process. To solve this problem, the concept of hints
along with local hint storage has been introduced. Hints are a data structure containing
information about which adaptation operation failed and which peer is erroneous. For re-
liability and the elimination of a single point of failure, those hints are stored decentralised
on all peers which are reachable to other participants. Additionally, messages to share
those hints were introduced (see subsection 4.5.2) since not every node might notice a
failure immediately.

[RQ2] How can a globally consistent state be recovered after an adaptation failed for at least
one node while tolerating a certain degree of inconsistency to increase the overall availability?

Based on the results obtained to answer [RQ1], global consistency can be recovered us-
ing shared knowledge. Various reasons can cause adaptation errors. After nodes recover
from internal failure or disconnection because of network congestion, recovery can be
started using the decentralised hints throughout the system. The recovering peer contacts
all known peers, requests pending adaptations, and receives information about missed
and ongoing adaptations. Based on this knowledge, further adaptation details can be re-
quested based on the requested hints, and the missed adaptations are caught up. The
protocol does even allow for recovery if almost all nodes fail, i.e., it is sucient that only
one node receives the necessary adaptation bundle to recover the global consistency.

[RQ3] How can we delay adaptations if devices are not yet ready to allow asynchronous ex-
ecution of adaptations and consequently keep an (eventually) consistent conguration of the
overall system?

One issue we identied throughout the analysis of the current state of research is the
missing possibility of executing adaptations asynchronously. By relying on a weaker con-
sistency constraint, there is no need to execute all changes simultaneously if a device is not
ready for adaptation. A participant of an AdaptationBundle can actively delay the execution
of an operation which is supposed to be performed. To do so, a specic ReportMessage is
sent, indicating to its recipients that adaptation will be executed delayed but as soon as
the device is ready. With that approach, abrupt interruptions of the task execution are not
necessary, and nodes can nish essential tasks and execute the changes afterwards. On
receipt of a report with delay information, the node is treated equally as nodes that failed
to ensure recovery if a failure occurred. The enabled asynchronous adaptation execution
also allows for overlapping adaptations, as discussed in section 4.6.
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7.2. Discussion

Although the concept covered a lot of corner and error cases during the eventual consis-
tent adaptation phase, such as failing coordinators or failure of a majority of nodes, we
identied open issues that would improve the overall procedure’s stability. The following
discusses potential threats due to possibly never reaching consistency and never recover-
ing nodes. In the foundations’ chapter (see chapter 2), the term eventual consistency was
dened as a consistency model, that if no new updates occur after a previous incomplete
update, eventually all updates will be available at all nodes at the same time. The keyword
eventually implies that cases exist where global consistency might never be reached be-
cause, e.g. running role runtimes cannot recover from a failure or network congestion can-
not be xed. In this case, our protocol cannot recover the consistent global state because
the failing nodes remain unresponsive due to present exceptions or missing connectivity.
One possibility would be restoring the previous conguration via a hard rollback or per-
forming reverse compensation tasks as done in the Saga approach [12] for microservices.
This is strongly application-dependent and could be a solution if no other measures for
recovery succeed. Another open issue is the reaction to complex failure scenarios, which
an erroneous recovery could also cause after adaptation failures. During the lifetime of a
SAS the system might be divided into one or more partitions. That could happen due to
network congestion, unreliable messaging channels, etc. Due to the nature of SAS, each
of those partitions could take its own adaptation decisions. This leads to an inconsistent
global state since every partition could have decided independently. Therefore we need to
synchronise those partitions and restore a consistent global state. Generally, this problem
would require a consensusmechanism to determine the overall plan for every one of those
partitions, which involves the planning component of the MAPE-K feedback loop for nal
state resolution.

7.3. Future Work

The developed adaptation protocol could be improved by further investigating the check-
pointing mechanism for local role runtimes, as presented by [43]. As already pointed out in
chapter 3, the approach from Taing et al. faces adaptation failures on local runtimes with a
checkpointing approach. Before an adaptation is executed, local checkpoints are created
to reset the application in case of a local execution failure. In our opinion, bringing the idea
of a distributed checkpointing mechanism as a rollback technique in case no other means
would work is an interesting approach. Generally, rollbacks in case of eventual consistency
is a complex task since some of the peers in our SAS could have started to work already.
Another way to bring the application to the previous global consistent state is compen-
sation tasks with a characteristic of sagas [12]. With a compensation approach, a hard
rollback would not be required. A consensus mechanism in the case of partitions could
also be benecial. The CAP theorem [13] claims that of the three properties, namely con-
sistency, availability and partition tolerance, only two can get satised at once. By loosening
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the consistency constraint, our approach could deal with partitioned systems. Nonethe-
less, the planning component of the MAPE-K feedback loop must generate compensation
operations.
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1

2 syntax = "proto3";
3 package rolaxed.messages;
4 import "google/protobuf/any.proto";
5

6 message AdaptationBundleMessage {
7 string receiver = 1;
8 string id = 2;
9

10 enum OperationType {
11 ADD = 0;
12 REMOVE = 1;
13 EXCHANGE = 2;
14 }
15

16 message AdaptationOperationMessage {
17 string id = 1;
18 OperationType type = 2;
19 int32 order = 3;
20 bool state = 4;
21 string targetPlayer = 5;
22 string targetRole = 6;
23 string targetCompartment = 7;
24 string targetAddress = 8;
25 optional string sourcePlayer = 9;
26 optional string sourceRole = 10;
27 optional string sourceCompartment = 11;
28 optional string sourceAddress = 12;
29 }
30

31 repeated AdaptationOperationMessage operations = 3;
32 string initiator = 4;
33 }
34

35 message ReportMessage {
36 string receiver = 1;
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37 optional string sender = 2;
38 string bundleId = 3;
39

40 message Report {
41 optional string sender = 1;
42 string adaptationOperationId = 2;
43

44 enum ReportState {
45 TRUE = 0;
46 FALSE = 1;
47 ONGOING = 2;
48 INVALID = 3;
49 }
50

51 ReportState state = 3;
52 }
53

54 repeated Report reports = 4;
55 }
56

57 message BundleActivation {
58 string receiver = 1;
59 string bundleId = 2;
60 }
61

62 message BundleAcknowledge {
63 string receiver = 1;
64 optional string sender = 2;
65 string bundleId = 3;
66 }
67

68 message RecoverySuccess {
69 string bundleId= 1;
70 }
71

72 message BundleSuccess {
73 string bundleId = 1;
74 }
75

76 message RequestReport {
77 string receiver = 1;
78 optional string sender = 2;
79 string bundleId = 3;
80 repeated string operationId = 4;
81 }
82

83 message BundleError {
84 string failedPeer = 1;
85 string bundleId = 2;
86 repeated string operationId = 3;
87 string errorType = 4;
88 }
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90 message WrappedMessage {
91 string messageId = 1;
92 string receiver = 2;
93 optional string sender = 3;
94 string message = 4;
95 google.protobuf.Any details = 5;
96 }
97

98 message RequestReflection {
99 optional string receiver = 1;

100 optional string sender = 2;
101 }
102

103 message ReflectionMessage {
104 optional string receiver = 1;
105 optional string sender = 2;
106 optional string transactionid = 3;
107 string reflectionModel = 4;
108 }
109

110 message RequestRestartMessage {
111 optional string receiver = 1;
112 optional string bundleId = 2;
113 }
114

115 message ResponseRestartMessage {
116 bool successState = 1;
117 optional string receiver = 2;
118 optional string bundleId = 3;
119 }
120

121 message BundleIncompleteMessage {
122 string bundleId = 1;
123 // repeated string operationId = 2;
124

125 message MapFieldEntry {
126 string key = 1;
127 repeated string operationId = 2;
128 }
129

130 repeated MapFieldEntry failedOperations = 2;
131 string initiator = 4;
132 }
133

134 message RequestHintsMessage {
135 string sender = 1;
136 }
137

138 message ResponseHintsMessage {
139 bool isHintAvailable = 1;
140 repeated string missedBundles = 2;
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141 }
142

143 message RequestHintByBundle {
144 string receiver = 1;
145 string sender = 2;
146 string bundleId = 3;
147 }
148

149 message BundleCompensationCompleted {
150 string receiver = 1;
151 string peer = 2;
152 string bundleId = 3;
153 }
154

155 message RequestDisconnect {
156 string receiver = 1;
157 }
158

159 message RequestConnect {
160 string receiver = 1;
161 }
162

163 message RequestReportEvaluation {
164 string receiver = 1;
165 }
166

167 message RequestStopReportEvaluation {
168 string receiver = 1;
169 string id = 2;
170 }

Listing A.1: Complete protocol buer denition (protocol buers, neutral language)
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Acronyms

2PC Two-Phase Commit Protocol.

AM Adaptation Manager.

CRDT Conict-Free Replicated Datatype.

CROM Compartment Role Object Model.

IoT Internet-of-Things.

JVM Java Virtual Machine.

MAPE-K Monitor-Analysis-Planing-Execution-Knowledge Feedback Loop.

OT/J ObjectTeams/Java.

SAS Self-Adaptive Software System.
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