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Zusammenfassung 

Das Ziel dieser Masterarbeit ist es, die konkrete Implementierung von Deep Reinforcement 

Learning-Methoden im Bereich des autonomen Fahrens zu erforschen. Der Forscher imple-

mentiert eine autonome Fahrsimulation, indem er ein End-to-End-Policy-Modell auf der 

Grundlage von Deep Reinforcement Learning-Algorithmen in einer virtuellen Umgebung in 

Gym-duckietown trainiert. Die Steuerungsstrategie des Modells besteht darin, den Agenten 

für die Aufgabe der Spurerkennung zu steuern. Die Forscher haben mehrere Reinforcement-

Learning-Algorithmen implementiert und schließlich den SAC-Algorithmus ausgewählt, um 

ein Nicht-End-to-End-Modell auf der Grundlage der vom Umfeld bereitgestellten Informatio-

nen wie Position und Geschwindigkeit als Eingabewerte und ein End-to-End-Modell mit Bil-

dern zu trainieren, die von der Frontkamera des Agenten bereitgestellt werden. In der Arbeit 

vergleicht der Forscher die Vor- und Nachteile der beiden Modelle anhand der kinetischen Pa-

rameter in der Umgebung und führt eine Reihe von Experimenten zur Steuerungsstrategie des 

End-to-End-Modells durch, um die Auswirkungen unterschiedlicher Umgebungsparameter 

oder unterschiedlicher Reward-Funktionen auf die Modelle zu untersuchen. Die Vergleich-

sexperimente wurden durchgeführt, um die Variation der Dynamikparameter der verschiede-

nen Modelle zu untersuchen, aus denen die Leistung des End-to-End-Modells bewertet und 

die Wirksamkeit der trainierten Steuerungsstrategie verifiziert wurde. Die endgültigen Ergeb-

nisse zeigen, dass Faktoren wie die Größe und Komplexität der Umgebung und das Gewicht 

der Reward-Funktion Auswirkungen auf die Leistung des End-to-End-Modells haben können. 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

Abstract 

The goal of this master's thesis is to investigate the implementation of deep reinforcement 

learning methods in the context of autonomous driving. The researcher developed an autono-

mous driving simulation by training an end-to-end policy model using deep reinforcement 

learning algorithms in the Gym-duckietown virtual environment. The control strategy of the 

model was designed for the lane-following task. Several reinforcement learning algorithms 

were implemented and the sac algorithm was chosen to train a non-end-to-end model with the 

information provided by the environment such as position and speed as input values, as well 

as an end-to-end model with images captured by the agent's front camera as input. In this pa-

per, the researcher compared the advantages and disadvantages of the two models using ki-

netic parameters in the environment and conducted a series of experiments on the control 

strategy of the end-to-end model to explore the effects of different environmental parameters 

or reward functions on the models. The comparison experiments were conducted to investi-

gate the variation of the dynamics parameters of the different models, which evaluated the 

performance of the end-to-end model and verified the effectiveness of the trained control 

strategy. The final results revealed that factors such as the size and complexity of the environ-

ment and the reward function's weight can affect the end-to-end model's performance. 
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Chapter 1  Introduction 

1.1 Autonomous Driving Overview 

Autonomous driving, commonly referred to as self-driving cars, is a rapidly evolving tech-

nology with the potential to revolutionize the automotive industry and profoundly impact 

individuals' lifestyles and mobility. The development of autonomous driving technology 

has been underway for several decades, with significant advancements made in recent 

years due to breakthroughs in machine learning, artificial intelligence, and sensor technol-

ogy. 

Autonomous driving technology can be categorized into different levels depending on the 

degree of automation, from Level 0 (no automation) to Level 5 (full automation). Level 0 

and Level 1 mean that the vehicle has partially assisted driving functions. Level 2 and 

Level 3 vehicles have partially automated capabilities but cannot drive fully automatically. 

Level 4 and Level 5 mean that the vehicle can drive fully automatically and does not re-

quire human control. 
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Fig. 1. 1:  Level of vehicle automation. 

The development of autonomous driving technology is not solely the result of rapid ad-

vancements in artificial intelligence and other related technologies but is also motivated by 

the negative impact that the automotive industry has on the environment and road safety. 

Specific data indicate that increasing vehicles have adverse effects on the environment, 

traffic congestion, road safety, economic costs, and time efficiency. 

Road traffic accidents are a global problem faced by countries around the world. In the 

United States, approximately 30,000 individuals die each year in car accidents [1], while in 

China, the number is approximately 260,000 [2]. According to the World Health Organiza-

tion, about 1.24 million individuals die annually in road traffic accidents worldwide [3]. 

Many of these accidents are caused by fatigued or intoxicated drivers, and they can result 

in significant economic losses and seriously jeopardize the safety of those traveling on the 

road. To address this issue, not only must strict traffic rules be established and awareness 

of safe driving be raised, but technological advancements in vehicle technology must also 

be taken into account. The implementation of autonomous driving technology has the po-

tential to greatly reduce traffic accidents by utilizing features such as collision warning, 

lane departure warning, and collision braking, which can effectively prevent traffic acci-

dents. Traffic congestion and parking issues are among the challenges faced by large cities 

worldwide. In Germany, these problems contribute to harmful emissions and result in an 
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annual economic loss of 25 billion euros [4]. To address these challenges, in-vehicle sen-

sors can be integrated with intelligent traffic systems to optimize traffic flow at critical in-

tersections. Furthermore, the parking function that comes with autonomous driving sys-

tems can assist drivers in parking more efficiently, thus saving time and space. 

Air pollution is a critical environmental issue, and the automotive industry is one of the 

major contributors to air pollution. Research findings indicate that autonomous driving 

technology can lead to smoother acceleration and deceleration of vehicles, which improves 

fuel combustion efficiency and reduces harmful emissions such as nitrogen and carbon di-

oxide [1]. It is imperative to note that air pollution can have detrimental effects on human 

health and the environment, including respiratory diseases and climate change. Hence, 

adopting technologies such as autonomous driving can significantly reduce the automotive 

industry's negative impact on the environment. 

Despite its many potential benefits, the deployment of autonomous driving technology is 

constrained by several factors. The biggest challenge is the ability to develop safe and reli-

able autonomous driving systems that can operate in a variety of complex conditions and 

environments. This requires not only advanced hardware but also sophisticated software, 

making it a major challenge. Therefore, more research must be devoted to autonomous 

driving to promote its potential benefits for the environment, economy, and life safety, 

among other factors. 

1.2 Research Questions and Methods 

1.2.1 Research Questions 

The purpose of this research is to investigate the potential of Deep Reinforcement Learning 

(DRL) algorithms for autonomous driving. Given the rapid progress in machine learning 

and artificial intelligence, DRL is an emerging technique that holds great promise for 

achieving autonomous driving capabilities, as it can adapt to various driving scenarios. To 

accomplish this objective, the research will employ deep reinforcement learning algorithms 

in a simulated environment to control a cart and complete specific tasks. The study will 



 

4 

 

Autonomous driving with deep reinforcement learning 

compare and analyze several algorithms, selecting the one with the best training outcomes 

to present the final results. In summary, the study aims to develop a model based on rein-

forcement learning algorithms in a simulated environment that can act as an agent to con-

trol the cart and complete specific tasks. It will also provide insights into the research pro-

cess and suggest directions for future improvements. 

1.2.2 Research Methods 

Autonomous driving can be achieved through the use of a conventional autonomous driv-

ing system, which consists of various subsystems such as perception, prediction, localiza-

tion, and planning control. Each subsystem must meet high standards, and the system as a 

whole is very complex. Autonomous driving can only be achieved when these individual 

systems are perfectly integrated and working together. 

 

Fig. 1. 2: Conventional autonomous driving system. 

With the advancement of Deep Reinforcement Learning, a novel approach to achieving 

end-to-end autonomous driving systems is gaining increasing attention. This approach re-

lies on deep reinforcement learning algorithms that use images or unprocessed data from 

various sensors as input and agents that perform a specific action via a policy function. In 

the continuous driving model, the driver is replaced with a neural network that takes an im-

age as input and outputs a control signal to adjust the vehicle's turning angle and speed. 

The input images are captured by a camera. The end-to-end system is simpler than the con-

ventional self-driving system and does not require a series of operations such as percep-

tion, localization, prediction, etc. Through a trial-and-error mechanism, it can better ex-

plore the environment and achieve good performance. This mechanism continuously ad-

justs the driving strategy, which is beneficial for autonomous vehicles in complex road 

conditions. However, the input is an image, the learning efficiency is reduced, and the 
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computer's computation time increases. The study is conducted in the context of the Gym-

Duckietown simulation platform, which provides a virtual environment for agents to 

achieve autonomous driving [6]. 

 

Fig. 1. 3: Structure of End-to-End System. 

1.3 Paper Structure 

In Chapter 2, the current research and development context of autonomous driving, end-to-

end learning, and DRL will be presented. Additionally, the chapter will provide an intro-

duction to the theoretical foundations of these topics, including machine learning, deep 

learning, and reinforcement learning. 

Chapter 3 is the main focus of this thesis. It provides a detailed description of the research 

process and the steps involved in implementing autonomous driving in an end-to-end 

method. This includes the selection of appropriate algorithms, neural network structure, 

observation space, action space, and reward function. Moreover, this chapter examines the 

feasibility of these research steps to achieve autonomous driving simulation. 

In Chapter 4, the training process based on the method described in Chapter 3 will be pre-

sented. The chapter will be divided into two parts based on the observations used: one-di-

mensional data such as position and velocity, and images. To train a non-end-to-end model 

based on reinforcement learning methods, one-dimensional data obtained after environ-

mental processing will be used as input. On the other hand, images will be used as input to 

train an end-to-end model. The differences in the choice of various parameters between the 
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two types of observations will be discussed and analyzed. The reasons for these differences 

will also be compared and analyzed. 

In Chapter 5, the curve of the reward function change during training will be shown and 

the convergence rate of the two models will be shown. The performance of the end-to-end 

model will be also compared with that of the non-end-to-end model based on the training 

results and discuss the influence of the reward function on the policy. 

In Chapter 6, a comprehensive evaluation of the trained models will be conducted through 

a series of tests. The tests will be carried out in different scenarios, and the number of itera-

tions for each test will vary depending on the test scenario. All models will be tested five 

times, and the agent's velocity, distance from the midline, and angle concerning the midline 

will be recorded during testing. The collected data will be compared among different mod-

els to analyze the differences between the end-to-end model and two baselines and to in-

vestigate the effect of changes in reward function weights on the performance of the end-

to-end model. 

In Chapter 7, the conclusion will be drawn regarding whether an autonomous driving 

model based on an end-to-end approach can accomplish the lane-following task. Addition-

ally, the stability of the model during testing will be analyzed, and the feasibility of imple-

menting this approach from a simulated environment to the real world will be discussed, 

along with the future directions for its improvement. 
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Chapter 2  Research Background 

2.1 Research Status 

In recent years, DRL has made significant progress and has been applied to various fields, 

including autonomous driving research. Pomerleau proposed the first end-to-end driving 

model based on deep learning, which uses images as input to control the vehicle through a 

three-layer fully connected network [7]. Krizhevsky et al combined reinforcement learning 

with deep learning and developed the "Deep Q-Network" (DQN) algorithm, which can 

solve complex problems with unprocessed, high-dimensional inputs [8, 9]. The DQN algo-

rithm can solve the problem of high-dimensional observation space, but it can only deal 

with discrete and low-dimensional action spaces. Xia, Li et al used the DQN algorithm to 

teach vehicles brake control on urban roads, reducing the probability of dangerous acci-

dents under complex road conditions [10]. Jaritz et al implemented an end-to-end lane fol-

lowing policy using the "Asynchronous Advantage Actor-Critic" (A3C) algorithm to train 

an agent in WRC (World Rally Championship) platform [11, 12]. Vitelli et al created a 

DQN agent on the TORCS platform and successfully implemented a vehicle-to-vehicle 

policy in a simulated environment by comparing its performance with several standard 

agents [13]. Kalapos et al chose vision-based end-to-end reinforcement learning to solve 
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the vehicle control problem and used a Proximal Policy Optimization (PPO) strategy to 

train the neural network in a "Duckietown" environment, achieving lane tracking and ob-

stacle avoidance and implement the process from simulation to reality [14]. Huang et al in-

vestigated end-to-end decision-making for continuous action output based on the “Deep 

Deterministic Policy Gradient” (DDPG) algorithm in a TORCS environment and trained a 

superior decision control model by comparing it with the DQN model [15, 16]. In 2018, 

Haarnoja et al proposed the "Soft Actor-Critic" (SAC) algorithm, which softens the Q-

value update and introduces an entropy term, allowing the algorithm to handle the balance 

between exploration and exploitation more flexibly [17]. 

Overall, DRL has made great breakthroughs and has the potential for further development. 

Deep reinforcement learning algorithms will be increasingly used in autonomous driving 

research. 

2.2 Theoretical Basis 

2.2.1 Machine Learning 

Both deep learning and reinforcement learning are subfields of machine learning [18]. Ma-

chine learning involves the improvement and optimization of information processing sys-

tems through the use of appropriate data. These systems can learn from the data to perform 

not explicitly programmed actions. However, while the trained system can perform well on 

the training data, it may not be able to generalize to new, unseen data, resulting in poor 

generalization performance, which is known as overfitting. 

Machine learning encompasses various methods, including supervised, unsupervised, and 

reinforcement learning. Supervised learning involves training a model on labeled data 

where each data point is associated with a corresponding label or target value. The objec-

tive is to predict the labeling of new input data by learning from the patterns observed in 

the training data. On the other hand, unsupervised learning entails training a model on un-

labeled data without predefined labels or target values. The aim is to uncover underlying 

patterns or structures in the data using clustering and dimensionality reduction techniques. 

Reinforcement learning, in contrast, involves training an agent to make decisions based on 
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feedback obtained from its environment. The agent learns by taking actions in the environ-

ment and receiving rewards or penalties in response. The goal is to optimize the cumula-

tive reward over time by learning an optimal strategy. 

 

Fig. 2. 1: Components of Machine Learning. 

2.2.2 Deep Learning 

The artificial neural network is the earliest network model for deep learning. As early as 

1943, American mathematician W. Pitts and psychologist W. McCulloch proposed artifi-

cial neural networks and established a theoretical model of each neuron in the artificial 

neural network through mathematical modeling [19]. Subsequently, psychologist D. 

Olding Hebb proposed a mathematical model of neurons and learning rules for neural net-

works [20]. The perceptron was then introduced as the earliest and structurally simplest 

model of artificial neural networks. In the 1980s, G. Hinton et al. replaced the single-layer 

structure of the perceptron with a deep structure with multiple hidden layers, which be-

came the earliest deep-learning network model [21]. 

Deep learning is a subfield of machine learning that enables computers to process data in a 

similar way to the human brain. Essentially, deep learning is a multi-layer neural network 

that can recognize images, text, sounds, and other types of data to make accurate predic-

tions and classifications. As mentioned previously, single-layer neural networks can also 

make approximate predictions, but additional hidden layers can optimize the network and 

improve recognition accuracy. In essence, a neural network is used to establish a mapping 
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relationship between input and output. Neural networks can reduce the dimensionality of 

data and extract features more effectively. Typically, neural networks are composed of 

many neurons, and these neurons form each layer of the neural network. When a neural 

network is represented as a diagram, as shown in Fig 2.2 (a), the leftmost column usually 

represents the input layer, the middle column is referred to as the hidden layer, and the 

rightmost column is the output layer. 

 

Fig. 2. 2: (a): Artificial neural network architecture, (b): The working principle of a neural 

network. 

Fig 2.2 (b) depicts a single artificial neuron, which effectively illustrates the working prin-

ciple of a neural network. Assuming that the inputs to the neural network are represented 

by x, each input is assigned a corresponding weight value 𝜔. The bias term b is also in-

cluded in the computation, and the resulting values are summed together to obtain the total 

output value through an activation function. 

Equation (1) is the equation corresponding to the Fig. 2.2 (b) [22]. 

𝑦 = 𝑓(∑ 𝜔𝑖𝑥𝑖 + 𝑏𝑖 ) (1) 

Deep Learning utilizes neural networks as function approximators to model complex func-

tional relationships. However, to create complex functions, a nonlinear activation function 

is necessary. The activation function layer, also known as the nonlinear mapping layer, in-

creases the nonlinearity of the function, allowing the network to learn complex data and 

providing Deep Learning with powerful representation capabilities to obtain complex func-

tions. Without an activation function, the input and output of a neural network, regardless 
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of how complex its architecture, would be linear, making it impossible to solve complex 

problems. 

2.2.3 Reinforcement Learning 

Reinforcement learning (RL) involves several important concepts, including agent, envi-

ronment, state, and reward. The agent is an intelligent individual capable of learning and 

reasoning. In the context of this paper, the agent refers to a self-driving car. The environ-

ment provides the agent with a state, and each time the agent performs an action, the envi-

ronment returns a new state. Reinforcement learning involves the process of an agent 

learning how to select the best action in a particular state by gaining experience and max-

imizing the reward value. The higher the reward value, the better the action. 

Reinforcement learning can be thought of as a trial-and-error learning process, where the 

agent makes mistakes and then acquires the correct strategy from experience [25]. The 

learning is delayed because the agent does not receive external feedback or correction after 

each action like in supervised learning. Instead, the agent must achieve its objective ac-

cording to the reward value. The environment presents the agent with various possible 

states and determines the corresponding reward or punishment for taking an action in the 

current state. 

However, reinforcement learning has some limitations. For example, it can require a large 

amount of computation and can be computationally intensive, making it difficult to imple-

ment on mobile devices with limited hardware resources. Additionally, the design of the 

reinforcement learning algorithms and the neural networks can be complex, especially for 

complex tasks, which increases the time and labor cost of developing the models. 
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Fig. 2. 3: Reinforcement Learning. 

Reinforcement learning is commonly modeled as a Markov decision process (MDP) [25]. 

A process that adheres to an MDP has the property that, in a given state, the conditional 

probability distribution of the next state is independent of the previously experienced state 

and depends only on the current state. This implies that, regardless of the number of state 

sequences experienced in reaching the current state, the conditional probability distribution 

of the next state remains the same and is solely determined by the current state. 

In the MDP framework, the reinforcement learning agent aims to maximize the total dis-

counted reward by finding an optimal policy. The current state, action 𝑎, reward 𝑟, and the 

next state 𝑠𝑡+1 constitute a tuple and are represented by the set (𝑠𝑡, 𝑎, 𝑟, 𝑠𝑡+1). The policy 

function π maps states to actions and the expectation of reward can be maximized by opti-

mizing the policy function. Thus, the agent continuously updates the policy function 

through training to maximize the expected reward. 

The value function 𝑉(𝑠) is used to describe the expectation of the sum of the discounted 

rewards obtained by executing a certain strategy in state 𝑠: 

𝑉𝜋(𝑠) = 𝐸[∑ 𝛾𝑖𝑛
𝑖=0 𝑟𝑖+1|𝑠 = 𝑠0] (2) 

In the reinforcement learning process, the discount rate 𝛾 is a key parameter that deter-

mines the weight of future rewards. The value of 𝛾 ranges from 0 to 1, and its value de-

pends on the significance of future rewards. If future rewards are not significant, the value 
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of gamma will be small. Generally, it is necessary to gradually decrease the value of future 

rewards to reduce their influence on the agent's current action choice. 

The action value function Q is defined as the expected cumulative reward obtained by tak-

ing an action in a given state: 

𝑄𝜋(𝑠, 𝑎) = 𝐸[∑ 𝛾𝑖𝑛
𝑖=0 𝑟𝑖+1|𝑠 = 𝑠0, 𝑎 = 𝑎0] (3) 

When the strategy is deterministic, the Q function can be expressed by the Bellman equa-

tion: 

𝑄𝜋(𝑠𝑡, 𝑎𝑡) = 𝐸[𝑟 + 𝛾𝑄𝜋(𝑠𝑡+1, 𝑎𝑡+1)|𝑎𝑡+1 = 𝜋(𝑠𝑡+1)] (4) 

where the optimal policy is the one with the highest Q value for a given state: 

𝜋∗(𝑠𝑡) = 𝑎𝑟𝑔𝑚𝑎𝑥𝑎𝑄𝜋(𝑠𝑡, 𝑎𝑡) (5) 

At the outset, it may not always be possible for the agent to obtain the action correspond-

ing to the highest Q value. Therefore, the agent needs to continuously attempt to search for 

the maximum Q value and the most effective strategy. 

There are two primary types of reinforcement learning methods: value-based RL and pol-

icy-based RL. Value-based reinforcement learning algorithms involve estimating the ex-

pected reward that can be accumulated by following a certain policy in each state. The 

most common algorithms in this category include Q-learning and SARSA [26]. For exam-

ple, in Q-learning, the agent estimates the value of each action A in a state using the Q-ta-

ble. The agent selects the action with the highest expected value and updates the Q-table 

according to the reward received. This iterative process eventually converges the Q-table 

to the optimal policy. Value-based reinforcement learning algorithms are computationally 

efficient and can handle large state spaces. However, in cases where the action space is 

high-dimensional, it may not be possible to discretize the space, making it challenging to 

optimize the Q-function. In such cases, a policy-based reinforcement learning algorithm 

may be necessary. Policy-based reinforcement learning algorithms focus on finding the op-

timal policy that maximizes the expected reward. These algorithms typically use neural 
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networks to approximate the policy and update it based on the reward received. When the 

action space is high-dimensional, policy-based algorithms tend to be more effective than 

value-based algorithms. However, when learning complex policies, policy-based algo-

rithms can be computationally expensive, time-consuming, and unstable. 

2.2.4 Deep Reinforcement Learning 

DRL is an integration of deep learning and reinforcement learning. In DRL, deep neural 

networks are capable of extracting features from high-dimensional, unprocessed state 

spaces, generating policy models through reinforcement learning algorithms, and produc-

ing actions, thereby enabling the processing of high-dimensional input spaces. However, at 

the outset, the policy is random and the agent must engage in continuous trial and error to 

determine the optimal policy. 

DRL has been extensively employed in various fields with favorable outcomes. AlphaGo 

is a notable example of DRL's success, which combined tree search and deep neural net-

works to defeat the Go world champion [27]. DRL algorithms, like RL algorithms, are 

classified into value-based and policy-based approaches. Value-based approaches, such as 

DQN, use deep neural networks to estimate the value that arises from executing an action 

in a given state. This forms the basis for algorithms like "double DQN" (DDQN), which 

employs two networks to evaluate the value and select actions [28]. Policy-based ap-

proaches aim to optimize and determine the optimal policy, such as REINFORCE [29], 

which uses policy gradients to update the policy based on rewards. 

However, deep reinforcement learning has several disadvantages. Since the input consists 

of high-dimensional state spaces or unprocessed images, it takes longer for the computer to 

process the input, which prolongs the learning process and requires additional time to train 

the neural network. Furthermore, the training results are more difficult to converge. De-

spite the widespread use of deep reinforcement learning algorithms, there is a need to im-

prove their learning efficiency and stability. 
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Chapter 3  Method 

In this chapter, the research methodology is presented, which comprises various steps 

based on the MDP. The programming language utilized for this study is Python. Each step 

in the methodology is implemented through Python code for the specific implementation. 

The specific implementation framework is depicted in the following figure: 

 

Fig. 3. 1: Approximate framework. 

The first step involves creating a virtual environment to receive input observations from 

the actual environment. The input is preprocessed and then fed into the neural network, 

with the car acting as the reinforcement learning agent. The neural network extracts feature 
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from the input and map them to action distributions using a linear layer. An action is then 

selected and executed, and the environment returns a reward value to the agent. 

To determine the research platform, the observation space, and input values must first be 

considered based on the structure of the end-to-end system. The onboard camera in the vir-

tual environment provides RGB images to the car in a size of 640 x 480 [6]. Additionally, 

the environment provides information such as position and speed, which can be interpreted 

as obtained from various onboard sensors in the real world. After determining the input, 

preprocessing of the input is required, which is then imported into the neural network for 

feature extraction and output of action values. The selection of the neural network depends 

on the input space selection. The action space is divided into discrete action space and con-

tinuous action space, and the selection of action space depends on the reinforced learning 

algorithm used. The reward function is determined according to the task. 

3.1 Simulation Platform 

The Gym-duckietown is a free and open-source autopilot simulator that is available on the 

GitHub website. It is based on Python programming language and utilizes the OpenAI 

Gym toolkit to construct a virtual environment that closely resembles the real World. It of-

fers a virtual environment that emulates a real-world scenario, enabling researchers to train 

reinforcement learning agents. The platform includes various components, including roads, 

intersections, obstacles, and pedestrians, among others, to replicate a real-world driving ex-

perience, as shown in Fig. 3.2. 
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Fig. 3. 2: Gym-duckietown, includes different scenarios with necessary components such 

as Duckiebot, different roads, intersections, obstacles, pedestrians, etc [30]. 

The agent in the environment is equipped with a front camera that captures image infor-

mation of the environment. These raw images can be used to train an end-to-end model. 

Additionally, the environment offers a comprehensive set of position, velocity, and other 

relevant data that is crucial for evaluating the current dynamics of the cart. This infor-

mation is valuable not only in the virtual environment but also in the real world, where it 

can be collected and analyzed by various sensors. 

3.2 Control Task 

The environment in Gym-duckietown presents a closed-loop scenario with two lanes, 

wherein the reinforcement learning agent must be trained to follow the right lane. Specifi-

cally, the agent travels at variable speeds on the right lane and quickly adjusts its position 

to return to the lane if it deviates from it. The optimal behavior for the agent is to drive 

along the center line of the right lane at the maximum speed, as it yields the highest reward 

value. 
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Fig. 3. 3: Control Task: Right lane-following. 

3.3 Observation Space 

In OpenAI Gym, the observation space defines the set of states that the environment may 

be in, and it specifies the type and shape of observations that the agent receives from the 

environment at each time step. This information is used by the agent to make decisions 

about what action to take in the environment. In the Gym-duckietown environment, the de-

fault observation space is defined as a 640 x 480 observation image that is provided by the 

onboard camera, as described earlier. 

The observations in OpenAI Gym can take various forms depending on the type of envi-

ronment being used. For example, in the Gym-duckietown environment, low-dimensional 

position, velocity, and other relevant data provided by the environment can also be selected 

as observations, in addition to the high-dimensional images that can be defined as observa-

tions. 

 

Listing.  1: Image as observation. 
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The above code is the default observation space in this virtual environment. The observa-

tion is a box space because RGB images are used as observations at this time. 

As explained in the preceding section, the observation space can be either continuous, us-

ing the box space to define a high-dimensional image as input, or a low-dimensional cart 

dynamic variables as input, including information such as vehicle speed and steering angle. 

Therefore, this study will define two different types of observations, images, or infor-

mation as input: 

Tab. 1: Observation spaces. 

Observations Type Dimension Type of model 

Image Box High End-to-end 

Information Box Low Non-End-to-end 

 

The two observations serve as distinct inputs for training the model. The main objective is 

to develop the end-to-end model that can achieve the control task, which involves using the 

image as input, and this is the primary focus of this paper. The non-end-to-end model 

(which uses information as input) is only employed in subsequent tests to evaluate the re-

ward function and for simple comparisons with the end-to-end model. 

3.3.1 Information as Observation (Non-end-to-end) 

As previously mentioned, the agent's main task is to follow the right lane, and therefore the 

observations need to be selected based on this task for the data provided by the environ-

ment. Through several experiments, it was determined that the agent's velocity, distance, 

and angle relative to the right lane centerline was the most useful data for this task.  
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Fig. 3. 4: 1D-observation space. 

 

Listing.  2: Information as observation. 

This code defines the observations used in the environment by creating an observation 

space of shape 3, which represents a one-dimensional array with three elements. These 

three elements are presented in Fig.3.4 as floating-point numbers ranging from -5 to 5. The 

choice of this value range (-5, 5) is dependent on the requirements of the task and the ex-

pected behavior of the agent within the specified range. This range of values is chosen to 

normalize the input values and enhance the stability and convergence rate during the train-

ing process. 

3.3.2 Images as Observation (End-to-end) 

The duckiebot as the agent in Ducktown is equipped with a front camera that captures 

RGB images of size 640 x 480. This study uses the unprocessed image as the input for 

achieving end-to-end learning.  
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Listing.  3: Images as observation after normalization. 

Listing.1 defines the default observation values for the environment, which are the three 

RGB channels of an image in the range [0, 255]. To normalize this range, as shown in List-

ing.3, [0, 255]/255 is converted to [0, 1]. This normalization process ensures the stability 

of the neural network and accelerates the convergence rate during training. 

However, to improve the learning efficiency and reduce the learning difficulty, a scaling 

process is applied to the image before feeding it into the neural network. The image is re-

duced from 640 x 480 to 32 x 32 through preprocessing. After multiple training sessions, it 

has been demonstrated that the preprocessed image can be learned at a faster rate. The im-

ages provided by the camera are shown in Fig 3.5. 

 

Fig. 3. 5: Image observation space. 

Scaling down the image size can improve training efficiency, particularly when using 

larger neural networks or when limited by hardware resources. However, it may also result 

in a loss of information in certain regions of the image, leading to inadequate training out-

comes. Consequently, the selection of an appropriate input image size should be based on 

the specific task requirements and hardware constraints. 
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In summary, when using an image as the observation, the input image is an RGB image of 

size 32 × 32 × 3. 

3.4 Action Space 

In the context of reinforcement learning, the action space refers to the set of all possible ac-

tions that an agent can take in a given environment. The choice of action is typically deter-

mined by a policy that maps the current state of the environment to a distribution over the 

set of possible actions. The policy may be deterministic, meaning that it selects a single ac-

tion with the highest probability, or stochastic, meaning that it selects actions randomly ac-

cording to the probability distribution. 

In the Gym-duckietown environment, the agent under control is a differential-wheeled ro-

bot, and the range of rotation for its two wheels can be interpreted as being within the in-

terval [-1, 1], meaning it can move in either direction at maximum speed. To simplify the 

training process and minimize unnecessary actions, the rotation range for the two wheels 

can be restricted to [0, 1], limiting the agent's motion to forward movement or coming to a 

stop, as shown in the listing. 4.  

Furthermore, the rotation of the steering wheel adds another dimension to the action space, 

allowing the agent to turn. As such, this environment employs a continuous action space 

consisting of two dimensions, with the first representing the agent's speed in the interval 

[0, 1], indicating that the agent's speed can only vary between 0 and maximum speed. The 

second dimension represents the steering angle, defined in the interval [-1, 1], indicating 

the maximum steering angle of the agent, either to the left or to the right, is 45°. 

 

Listing.  4: Action space. 

In summary: two dimensions of a continuous action space. The first dimension is velocity, 

which takes values in the range [0, 1], and the specific velocity values range from 0 to the 
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maximum velocity. The movements that the agent performs backward are truncated to re-

duce the difficulty of the training. The second dimension is the lateral rotation angle of the 

Agent. The range of this value is [-1, 1], meaning that the agent can turn to the left or to the 

right, which corresponds to the actual angle range of [-45°, 45°] in the environment. 

3.5 Algorithm 

The deep reinforcement learning algorithm used in this application is the Soft Actor-Critic 

(SAC) algorithm, which is a model-free, off-policy reinforcement learning algorithm em-

ployed to solve problems with continuous output spaces [17]. The SAC algorithm main-

tains a critical network that estimates the state-action value function (also known as the Q-

function) and an actor-network that maps states to actions. The actor network is updated 

using the gradients of the estimated Q-values concerning the actions, similar to the DDPG 

algorithm. However, SAC also introduces an entropy term into the actor loss function, 

which encourages the policy to be more random and exploratory. 

SAC combines the concepts of maximum entropy reinforcement learning and value-based 

methods to learn a stochastic policy that maximizes the expected long-term reward while 

also maximizing entropy or the degree of randomness in the policy. This encourages explo-

ration and helps to avoid getting stuck in local optima. The entropy in SAC can be inter-

preted as the degree of confusion or randomness, and higher entropy indicates that it con-

tains a larger amount of information [31].  

3.5.1 Mathematical Foundations 

In general, the objective of deep reinforcement learning algorithms is to maximize the ex-

pected value of accumulated rewards, as illustrated in Equation (5). However, in the case 

of maximum entropy reinforcement learning algorithms, the goal is not only to maximize 

the expected value of rewards but also to maximize the entropy of each output action. This 

means that the algorithm aims to encourage exploration by ensuring that the policy pro-

duces a diverse set of actions with a high degree of randomness or uncertainty: 
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𝜋𝑀𝑎𝑥𝐸𝑛𝑡
∗ = 𝑎𝑟𝑔𝑚𝑎𝑥𝜋 ∑ 𝐸(𝑠𝑡,𝑎𝑡)~𝜌𝜋

[𝑟(𝑠𝑡, 𝑎𝑡) + 𝛼𝐻(𝜋(∙ |𝑠𝑡))]

𝑖

 (6) 

By maximizing entropy, the algorithm ensures that the policy does not become too deter-

ministic and explores a wide range of actions. The temperature parameter α controls the 

trade-off between entropy and reward. In information theory, entropy is a measure of the 

amount of uncertainty or randomness in a probability distribution. If we have a random 

variable x with distribution P, then the entropy H(P) of x is given by: 

𝐻(𝑃) = 𝐸𝑥~𝑃[−𝑙𝑜𝑔𝑃(𝑥)] (7) 

Therefore, based on the objective function (6), entropy is introduced to obtain the soft 

value function: 

𝑄𝑠𝑜𝑓𝑡
𝜋 (𝑠, 𝑎) = 𝐸[𝑟(𝑠, 𝑎) + 𝛾 (𝑄𝑠𝑜𝑓𝑡

𝜋 (𝑠′, 𝑎′) + 𝛼𝐻(𝜋(∙ |𝑠′)))] (8) 

And soft V-function: 

𝑉𝑠𝑜𝑓𝑡
𝜋 (𝑠′) = 𝐸[𝑄𝑠𝑜𝑓𝑡

𝜋 (𝑠′, 𝑎′) + 𝛼𝐻(𝜋(∙ |𝑠′))] (9) 

Equation (8) and Equation (9) show that the relationship between the V-function and the 

Q-function can be expressed by the following equation: 

𝑄𝑠𝑜𝑓𝑡
𝜋 (𝑠, 𝑎) = 𝐸[𝑟(𝑠, 𝑎) + 𝛾𝑉𝑠𝑜𝑓𝑡

𝜋 (𝑠′)] (10) 

The policy function, also known as the actor, is a crucial component of the SAC algorithm 

that selects actions to maximize the expected reward. Typically, the policy function is im-

plemented using a neural network that maps states to actions. However, in SAC, the policy 

function is stochastic, meaning that it generates a probability distribution over the action 

space, instead of a deterministic action. This approach enables the algorithm to explore dif-

ferent actions and enhances its robustness to noise in the environment.  
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3.5.2 Policy Iteration 

During policy evaluation in the SAC algorithm, the current policy interacts with the envi-

ronment to generate a batch of transitions (state, action, reward, next state). The Q-values 

are then estimated based on this batch of transitions, which represents the expected cumu-

lative reward for following the current policy from a given state. This is achieved through 

two neural networks: a critic network and a target critic network. The critic network takes a 

state-action pair as input and outputs a scalar value, which is an estimate of the Q-value. 

The target critic network is a copy of the critic network and is updated slowly over time us-

ing a soft update rule. The soft update rule ensures that the target critic network is a mov-

ing average of the critic network and helps to stabilize the learning process. 

Once the Q-values are estimated, the policy update step begins. The goal of policy im-

provement is to maximize the expected cumulative reward and improve the policy accord-

ingly. This is done by taking the gradient of the expected cumulative reward concerning 

the policy parameters and updating the policy parameters in the direction of the gradient. 

 

Fig. 3. 6: SAC algorithm flowchart [31]. 

3.6 Policy Architecture 

The choice of neural network architecture for a given reinforcement learning problem is 

influenced by the nature of the observations and the algorithm being used. In this study, the 
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policy model provided in Stable-Baselines3 (SB3) is employed as the controller [32]. SB3 

policies incorporate multiple networks, including actor, critic, target actor, and target critic, 

to create an optimizer. Each network consists of a feature extractor and a fully connected 

network [32]. The feature extractor primarily comprises a deep neural network, followed 

by a fully connected layer that converts the input feature values into output values. 

 

Fig. 3. 7: Default Network Architecture of SB3. 

The policy network structure in SB3 can be seen in the above figure. The choice of obser-

vation space and algorithm determines the specific network structures used. 

3.6.1 Network Architecture for Non-end-to-end Model 

As mentioned previously, the environment provides information parameters such as the 

agent's specific speed, distance, and angle between the agent and the right lane's center-

line, which are initially input as observations. These observations form a one-dimensional 

input to the neural network. However, due to the low dimensionality of the observation 

space, there is no need to use a deep neural network as a feature extractor. Therefore, a 

simple two-layer fully connected network with 32 units is sufficient [32]. 
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Fig. 3. 8: Actor-Network Architecture for 1D observation space. 

In the SB3 library, the policy network is called 'MlpPolicy' and is a class that defines the 

actor-network structure, as shown in Fig. 3.8 [32]. The input is a one-dimensional set of 3 

elements, which corresponds to the information parameters provided by the environment, 

including the specific speed of the agent, the distance, and the angle between the agent and 

the right lane's centerline. The output 'n_actions' represents the dimension of the action 

space, which is 2 in this case. The number of neurons in the first and second hidden layers 

is 32. After the input of observations, there is a flattened layer that transforms the state var-

iables into a one-dimensional tensor, which is equivalent to the feature extraction layer. 

The activation function of each hidden layer is the Rectified Linear Unit (ReLU) function. 

The output layer is the last, and it uses the hyperbolic tangent (Tanh) function to scale the 

output range between -1 and 1, which is suitable for the continuous action space in this 

problem.  
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Fig. 3. 9: Critic-Network Architecture for 1D observation space. 

The critic network in the 'MlpPolicy' of Stable Baseline3 consists of three fully connected 

layers with 32 neurons, 32 neurons, and 1 neuron respectively, as shown in Fig. 3.9. The 

input layer includes the ConcatLayer, which concatenates the observation and action varia-

bles to form a 5-dimensional vector (3 observations and 2-dimensional action space). The 

final output of the critic network is the estimated Q-value. 

3.6.2 Network Architecture for End-to-end Model 

When the input is an image, a deep neural network is required to serve as the feature ex-

tractor. A two-layer convolutional neural network (CNN) will be selected as the feature ex-

tractor, which can extract high-level features from images. The extracted feature values are 

then passed to a linear layer, which is connected to the corresponding actions or values. 
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Fig. 3. 10: Network Architecture for image observation space, includes two CNN layers for 

feature extraction and three linear layers to map feature vectors to outputs. 

In Stable-Baselines3, policy networks refer to all networks that are useful for training, not 

just those used to predict actions. The SAC algorithm is the off-policy algorithm, so sepa-

rate feature extractors are needed for approximating the actor function and the critic func-

tion, respectively. 

3.7 Reward Shaping 

In reinforcement learning, the reward function is a critical component of the learning pro-

cess that guides an agent to achieve a particular goal. The reward function maps a state-ac-

tion pair to a scalar reward signal that provides feedback to the agent about the quality of 

its actions in a given state, as shown in Fig. 2.5. The agent's goal is to maximize the cumu-

lative sum of these rewards over time, also known as the rate of return. Determining an ap-

propriate reward function is critical to the success of the learning process. A well-designed 

reward function should encourage the agent to take actions that lead to the achievement of 

the desired goal while avoiding undesirable states or actions. The reward function should 

be designed considering the task at hand and the desired behavior of the agent.  

A common approach to defining the reward function is to use a shaping reward that guides 

the agent toward a desired behavior. This can be done by combining multiple reward sig-

nals, each corresponding to a particular aspect of the behavior that the agent is expected to 

exhibit. Another approach is to use sparse rewards that provide feedback to the agent only 
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when a specific goal has been achieved. This can be useful in cases where it is difficult to 

design a shaping reward. 

This simulation aims to train an end-to-end model that can effectively control the agent to 

drive steadily along the right lane. The reward function used in the simulation is composed 

of two main parts. The first part is the speed reward, which incentivizes the agent to move 

with a constant velocity. This component of the reward function encourages the agent to 

maintain a steady speed, which results in a higher reward value. 

The second part is the orientation reward, which is designed to encourage the agent to stay 

close to the centerline of the right lane. This component of the reward function is based on 

the agent's distance and angle to the right lane centerline. The reward value also includes a 

mileage component, which increases as the agent travels further along the right lane. If the 

agent moves out of the right lane, the reward value is 0. This part of the reward function 

encourages the agent to stay within the right lane and move steadily along the center line of 

the right lane to achieve a higher reward value. 

 

Fig. 3. 11: Components of the reward function. 

3.7.1 Calculation of Speed-based Reward Function 

In the autonomous driving simulation, the initial task involves assigning a speed to the car. 

To accomplish this, a maximum speed must be established within the environment, which 

also serves as the target speed for the agent. The reward function assigns a higher value to 

the agent when its current speed closely approximates the target speed. Thus, the greater 

the proximity of the agent's current speed to the target speed, the higher the reward value. 
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𝑟𝑣 =
𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑠𝑝𝑒𝑒𝑑

𝑡𝑎𝑟𝑔𝑒𝑡 𝑠𝑝𝑒𝑒𝑑
 (11) 

The aforementioned formula presents the calculation method for the bonus value corre-

sponding to the speed component. As previously stated, the target speed is the upper limit 

speed specified by the environment, thus remaining constant throughout the task. Mean-

while, the current speed of the cart varies with each time step and is capped at the target 

speed. Consequently, the reward value of the speed part increases only as the current speed 

gets closer to the target speed. 

3.7.2 Calculation of the reward function based on the position of the 

agent relative to the right lane 

To successfully achieve the lane-following task, it is essential to have accurate information 

on the agent's distance and angle relative to the centerline of the right lane. The environ-

ment defines the position of the right lane, and this parameter is utilized in the formulation 

of this aspect of the reward function: 

𝑟𝜓 = 𝑒−(5∙𝑟𝑖𝑔ℎ𝑡_𝑑𝑖𝑠𝑡) + 𝑇𝑟𝑎𝑣𝑒𝑙 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (12) 

  

Fig. 3. 12: (a) shows that the reward value decreases when the relative distance and the 

relative angle become larger. (b) shows the distance and the angle between the agent and 

right lane’s centerline [14]. 

The function 'right_dist' in the equation above is a variable that is set based on the right 

lane position in the environment, as illustrated in Fig. 3.12. It describes the distance and 

angle between the agent and the centerline of the right lane. When translated into code, the 
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absolute value of the variable is utilized to ensure that the reward function is always posi-

tive and that it decreases as the absolute value of the variable increases. This function is di-

rectly used to evaluate the reward value of the localization component. As the agent ap-

proaches the centerline of the lane, the angle between the agent and the centerline de-

creases, increasing the reward value. A factor of 5 is added in front of this variable to am-

plify the effect of the relative distance and clamping angle on the reward value. 

Another variable, 'Travel Distance', defines the distance traveled by the agent in the right 

lane. With each frame update, the agent changes its position in the environment, and the 

distance between these two positions is calculated as the bonus value for that turn. How-

ever, a condition needs to be set for this reward value to be valid, i.e., the agent must travel 

in the right lane; otherwise, the distance and the reward value are both zero. 

The reward value for this component of the function is designed to encourage the agent to 

adopt a strategy of driving steadily along the centerline of the right lane for as long as pos-

sible. 

The total reward function equation is: 

𝑅 = 𝜔𝑣𝑟𝑣 + 𝜔𝜓𝑟𝜓(𝑑, Ψ) (13) 

The variable 𝜔 represents the weight assigned to each component of the reward function. 

Modifying the weight value can impact the training outcome of the agent. Increasing the 

weight value for a particular component amplifies its influence on the final training out-

come. 
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Chapter 4  Training Process 

During the training process, the agent continuously interacts with the environment, gaining 

experience and using it to update its policy and value function. As training progresses, the 

agent gradually learns to choose the optimal action based on the state to maximize the de-

sired return. 

To initialize the environment, the state space, action space, reward function, and other pa-

rameters are defined, and before any strategy network has been established, the agent will 

randomly sample from the action distribution for training purposes. The next step in the 

training process is the initialization of the agent's state. The agent will randomly appear at a 

location in the environment, and since no policy network has been formed yet, training will 

involve random sampling from the action distribution. As the training progresses, the agent 

gradually learns to select actions based on the current state and the existing policy and re-

ceives the next state and the corresponding reward value from the environment. This pro-

cess continues until the maximum number of training steps is reached. The state, action, 

reward value, and next state are stored in an experienced pool, and a random batch of expe-

riences is used to update the policy and value function. This process is repeated until the 

maximum number of training steps is reached. 
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In the previous chapter, it was introduced that the observations used in this study include 

position and velocity information provided by the environment and image data as input 

values. Therefore, in this chapter, these two cases will be presented separately. 

4.1 Training Process of Non-end-to-end Model 

The loop-empty map in the Gym-duckietown environment was selected as the optimal 

training scenario due to its circular shape and two additional 45-degree turns, which facili-

tate the adaptation of the agent to the state during turns.  

 

Fig. 4. 1: Larger-scale, relatively complex scenarios are used as training maps. 

The multilayer perceptron strategy implemented in stable-baseline3 is utilized for this ex-

periment due to the one-dimensional tensor input values, allowing for the use of a simple 

fully connected network. The architecture of the network is illustrated in Fig. 3.8 and Fig. 

3.9. 

To ensure the effectiveness of the training, meticulous consideration was given to the defi-

nition of both environment and network parameters. In this experiment, the learning rate is 

set to 0.0003, which controls the step size of the optimization process. The experience re-

play buffer size is set to 1000000, which stores the experiences of the agent for training. 

The sampling batch size is set to 256, which specifies the number of samples drawn from 

the experience buffer in each training iteration. The update frequency of the target network 

is set to 0.005, which controls the rate of updating the target network using the main 
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network. The discount factor is set to 0.99, which controls the discount rate of the rewards. 

Finally, we set the maximum number of steps to 3000000, which specifies the length of the 

training process.  

Tab. 2: Parameters for MlpPolicy. 

Name Value 

Policy MlpPolicy 

Learning rate 0.0003 

Buffer size 1000000 

Batch size 256 

Update frequency 0.005 

Discount factor 0.99 

Maximum time steps 3000000 

 

Although the training process may extend over several hours, the computational speed is 

not significantly affected due to the one-dimensional tensor observations employed. 

In the first training, the reward function equation is: 

𝑅 = 𝑟𝑣 + 𝑟𝜓(𝑑, Ψ) (14) 

At present, each component of the reward function has an equal weight of 1. 

4.2 Training Process of End-to-end Model 

The second experiment involves the adaptation of one-dimensional observations into im-

ages, and training the model in the same scenario, as illustrated in Fig. 4.1. This process 

entails modifying not only the strategy and network structure but also entails longer 



 

36 

 

Autonomous driving with deep reinforcement learning 

training times. As previously mentioned, for this experiment, the "CnnPolicy" in Stable-

Baseline3 was chosen as the optimal network structure and was trained using the sac algo-

rithm [32]. 

"CnnPolicy" and "MlpPolicy" are two distinct policy networks within Stable-Baselines3, 

with differences in both their input values and network structures. The "MlpPolicy" is a 

multilayer perceptron neural network that can only accept one-dimensional data as input, 

processing it through fully connected layers. On the other hand, the "CnnPolicy" is a con-

volutional neural network that is capable of processing high-dimensional input data, such 

as images, using convolutional and pooling layers. Given these differences, the "CnnPol-

icy" policy network model is the more appropriate choice in this case. 

Tab. 3: Parameters for Cnnpolicy. 

Name Value 

Policy CnnPolicy 

Learning rate 0.0003 

Buffer size 1000000 

Batch size 256 

Update frequency 0.005 

Discount factor 0.99 

Maximum time steps 3000000 

 

During the initial stages of training, the carts execute random actions without employing 

any specific strategy, which leads to a high error rate. As a result, the carts frequently veer 

off the lane and travel only a few steps before encountering errors, resulting in a low bonus 

value. However, as the training progresses, the carts accumulate experience and 
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continuously improve the updated model and driving strategy. Eventually, the agent be-

comes more proficient at completing the task and is capable of maximizing the reward 

function in the environment. 

In the second training, the reward function equation is: 

𝑅 = 𝑟𝑣 + 𝑟𝜓(𝑑, Ψ) (15) 

At present, each component of the reward function has an equal weight of 1. 
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Chapter 5  Result 

To visualize the training progress, it is important to record the reward value change curve 

throughout the training process. Ideally, as the number of training iterations increases, the 

reward value should converge to a maximum value, indicating that the agent has learned an 

optimal strategy through accumulated experience that maximizes the reward value for a 

given state. The maximum number of time steps for training is set to three million, with a 

maximum of 500 steps within each episode. Therefore, according to the reward function 

formula, it can be calculated that the theoretical maximum reward value per episode is 

1075. 
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Fig. 5. 1: a: Reward function curve when trained a non-end-to-end model; b: Reward func-

tion curve when trained an end-to-end model. Due to the instability of the end-to-end 

model, a greater degree of smoothing was applied to (b) for better visualization. 

Fig. 5.1 illustrates that the reward values of both models eventually converge to the highest 

achievable value. It is evident from the graph that the non-end-to-end model requires less 

training time and converges faster, indicating higher stability and learning efficiency dur-

ing the training process. This is attributed to the fact that the low-dimensional data pro-

vided by the environment can be quickly fed into the neural network, and the model is sta-

ble and efficient to train since the neural network does not require extensive processing of 

the data, and the data can intuitively reflect the current agent state. 

In contrast, the end-to-end model uses images as input to the neural network, which leads 

to longer processing times for the input values. Images alone do not offer an intuitive rep-

resentation of the current agent state, causing the end-to-end model to be slower and less 

stable during training. 

In terms of training time, the non-end-to-end model requires approximately four hours per 

million steps, while the end-to-end model takes sixteen hours for the same number of train-

ing steps.  

In practice, several training attempts were required before achieving a well-trained model. 

The initial training failed due to various factors such as unreasonable reward function val-

ues and hyperparameters. Continuous debugging was performed to adjust the neural 
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network hyperparameters and architecture, which helped to improve the learning efficiency 

and convergence rate. Additionally, the images were standardized by preprocessing them 

from their initial size of 480×640 to 32×32. The training environment was also adjusted to 

address the problem of unstable reward function curves. 
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Chapter 6  Test and Evaluation 

In the testing phase of the end-to-end autonomous driving simulation based on a deep rein-

forcement learning algorithm, the environment used for testing is not identical to the train-

ing environment. The main change is in the selection of the map, which is intended to test 

the generalization ability of the model, as shown in Fig. 6.1. The pre-trained model is im-

ported into the testing environment for evaluation. Testing is performed mainly for the 

end-to-end model, and the non-end-to-end model is used only for comparison. 

The end-to-end model will undergo testing in two distinct scenarios, and each test will be 

initiated with the agent at a random location within the environment. After executing the 

maximum number of steps, the test will conclude, and the environment will record the spe-

cific data obtained during the test. The recorded data includes speed, the relative distance 

(lateral deviation), and the relative angle (orientation deviation) between the agent and the 

right lane's centerline. These data will be averaged, and the average will be printed out. 

The entire testing process will be repeated five times, and the results from each test will be 

aggregated for comparison. These tests aim to assess the model's performance such as 

adaptability and stability, and ability to maximize the reward value. 



 

42 

 

Autonomous driving with deep reinforcement learning 

 

Fig. 6. 1:a shows the ‘loop_empty’ map, b shows the ‘small_loop’ map. 

During the testing phase, the number of steps in each test iteration needs to be adjusted 

based on the scenario being tested. In this study, to comprehensively evaluate the perfor-

mance of the trained model, 1000 steps are set per test iteration for map (a). For map b, 

which is smaller in size, 800 steps are used per test iteration. The purpose of this adjust-

ment is to ensure that the model is tested thoroughly and accurately under different scenar-

ios. 

Tab. 4: Environmental parameters in both scenarios. 

Name Loop_empty (a) Small_loop (b) 

Scope large small 

Number of tests 5 5 

Number of iterations per test 1000 800 

Start position of the agent Randomization Randomization 

Maximum speed [m/s] 0.65 0.65 
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6.1 Evaluation of End-to-end Model 

As mentioned previously, during the evaluation process, the trained model will undergo 

testing five times, with 1000 iterations in map (a) and 800 iterations the map (b) for each 

test, environmental parameters are shown in Tab. 4. Several important parameters will be 

recorded during testing, including speed, the relative distance, and the relative angle be-

tween the agent and the right lane’s centerline, to evaluate the performance of the model. 

6.1.1 Speed Tests in Two Scenarios 

 

Fig. 6. 2: Speed variation of different scenarios. 

In different scenarios, the speed of the agent converges to a value that is as close as possi-

ble to the maximum speed limit for that environment. As discussed in Chapter 4, since the 

weights of all parts of the reward function take a value of 1, the agent needs to consider the 

stability of the right lane following while achieving a higher speed. The figure above 

shows that at the beginning of the test, a large oscillation in speed occurs due to the ran-

domization of the cart's position, causing it to constantly adjust its position and correctly 

drive on the right lane. During this process, the agent needs to accelerate, decelerate or 

slightly steer, which is the primary reason for the oscillation in the speed profile. 
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6.1.2 Lateral Deviation between the Agent and the Right Lane’s Cen-

terline 

 

Fig. 6. 3: Lateral deviation in different scenarios. 

The relative distance between the agent and the centerline of the right lane is a crucial met-

ric in assessing the agent's ability to drive within the designated lane. Recording this data 

during the test facilitates the evaluation of the localization component of the reward func-

tion for agent policy learning. From the above figure, it is evident that in both scenarios, 

the distance between the agent and the lane median converges to the position of 0. This in-

dicates that the cart has learned to drive within the right lane and follows the right lane me-

dian. Since the initial position of the agent for each test is random, the agent spends the be-

ginning of the test searching for the lane median position, which reflects the impact of the 

relative distance of the localization component on the agent's learning of the right lane fol-

lowing strategy. 
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6.1.3 Orientation Deviation between the Agent and the Right Lane’s 

Centerline 

 

Fig. 6. 4: Orientation deviation in different scenarios. 

The relative angle represents the orientation deviation between the agent and the right 

lane's centerline. A smaller relative pinch angle indicates that the agent can more closely 

follow the tangent vector of the right lane median, which is beneficial for the agent to learn 

the right lane following strategy more efficiently. Similarly to the relative distance, the ini-

tialization randomness causes the agent to continually adjust its position during the begin-

ning of the test to minimize the relative pinch angle and maximize the reward value of the 

localization part. This demonstrates the impact of the relative pinch angle on the agent's 

learning of the right lane following strategy. 
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Tab. 5: Mean metrics of each test for two scenarios. 

                  Name 

Test_num 

Mean speed    

[m/s] 

Lateral deviation 

[m] 

Orientation devia-

tion [°] 

 Map a Map b Map a Map b Map a Map b 

1 0.46 0.61 -0.12 0.02 0.69 2.38 

2 0.54 0.52 0.05 -0.02 4.64 -4.65 

3 0.59 0.63 0.07 0.01 0.07 -0.20 

4 0.58 0.63 0.09 -0.02 0.09 3.12 

5 0.64 0.60 0.06 0.01 1.41 3.45 

 

In summary, the end-to-end model takes images as input and learns the correct lane follow-

ing policy to control the agent. For larger-scale maps, the environment becomes more com-

plex, leading to decreased stability of the agent compared to the simpler environment. 

However, the agent is still able to attempt to drive along the runway to avoid mistakes that 

would cause the environment to reset. As a result, the driving speed of the cart may not re-

main stable in some states. 

6.2 Comparison of the End-to-End Model to Two Baselines in 

Simulation 

To evaluate the performance of the end-to-end model, two baselines are compared with the 

model. The first baseline is the non-end-to-end model, which is used as a benchmark to 

compare the performance of the end-to-end model. The second baseline is provided by the 

environment itself and is based on classical control theory using the relative distance and 

angle of the robot to the centerline of the lane. This baseline operates by controlling the ro-

bot to align itself towards a point on its intended path in the future and computing wheel 
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velocities using a proportional-derivative (PD) controller, which is based on the orientation 

error of the robot [14]. Comparing these two baselines will provide a better understanding 

of the effectiveness of the end-to-end model in achieving the lane-following task. 

6.2.1 Comparison with Non-end-to-end Baseline 

The non-end-to-end model takes one-dimensional processed data provided by the environ-

ment as input, and therefore cannot be strictly considered an end-to-end learning method. 

Models trained using this approach exhibit better performance, faster convergence rates, 

and higher learning efficiency. To compare the performance of the end-to-end and non-

end-to-end models, tests are conducted in different environments, with specific monitoring 

data being recorded. To illustrate the differences between the two models, the test is con-

ducted on map (a) and map (b). The environmental parameters are shown in Tab. 6: 

Tab. 6: Environmental parameters 

Name End-to-end model Non-end-to-end model 

Env Map (a), Map (b) 

Number of tests 5 5 

Start position of the agent Randomization Randomization 

Maximum speed [m/s] 0.65 0.65 
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6.2.1.1 Comparison with Non-end-to-end Baseline in the Map (a) 

  

Fig. 6. 5: Comparison of speed variation in the map (a). 

 

Fig. 6. 6: Comparison of Lateral deviation in the map (a). 
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Fig. 6. 7: Comparison of orientation deviation in the map (a). 

By analyzing the various metrics of the two models, it was observed that the end-to-end 

model outperforms the non-end-to-end baseline in terms of speed control as well as lateral 

and orientation deviations of the agent. The end-to-end model enables the agent to achieve 

and maintain the desired speed more rapidly and consistently, while the lateral and direc-

tional deviations converge to zero at a faster rate, indicating that the end-to-end model per-

forms better than the non-end-to-end model in the lane following task. 

6.2.1.2 Comparison with Non-end-to-end Baseline in the Map (b) 

 

Fig. 6. 8: Comparison of speed variation in the map (b). 
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Fig. 6. 9: Comparison of Lateral deviation in the map (b). 

 

Fig. 6. 10: Comparison of orientation deviation in the map (b). 

As previously stated, the models are trained on map (a), which is larger and more complex 

than map (b). Models trained on map (a) also tend to perform better on the simpler map 

(b). After changing to map (b), the end-to-end model continues to perform relatively well, 

maximizing its speed while keeping the angle and distance to the right lane centerline close 

to 0. On the other hand, the non-end-to-end model performs very poorly on this new map. 

This indicates that the end-to-end model, trained using an integrated approach, has better 

adaptive capabilities and can perform more consistently even in changing environments. 
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One possible explanation for this issue is the limited input values of the non-end-to-end 

model, which result in an incorrect representation of the current state after changing the 

map, and affect the model's performance due to changes in environmental noise. This leads 

to overfitting of the model to the training map, which can impact the model's robustness in 

testing when the map changes. 

In summary, while the non-end-to-end model may learn more efficiently during training 

and have better stability and effectiveness compared to the end-to-end model, it does not 

perform as well in testing as the end-to-end model. This is because the non-end-to-end 

model is overfitted to the training map. Conversely, the end-to-end model exhibits better 

robustness, as it can perform well even after changing the test environment. Its ability to 

maintain speed stability and perform the lane-following control task more accurately 

demonstrates this point. 

6.2.2 Comparison with PD Baseline 

The PD baseline is a test script provided by the platform itself, which serves as a control 

group for comparison with the end-to-end model. In contrast, the end-to-end model does 

not have direct access to the agent's dynamics parameters from the environment. This al-

lows for a systematic comparison between the two models in an experimental setting. 

 

Fig. 6. 11: Speed test comparing the end-to-end model with PD baseline. 
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Fig. 6. 12: Lateral deviation comparing the end-to-end model with PD baseline. 

 

Fig. 6. 13: Orientation deviation comparing the end-to-end model with PD baseline. 

This set of control experiments will be conducted in the map (a). The PD baseline, which is 

provided by Gym-duckietown, serves as a standard that primarily reflects the cart's state 

when it completes the lane following task under ideal conditions. The PD baseline mainly 

controls the agent's distance and direction from the right lane's centerline, thereby keeping 

the speed constant. The change in relative distance is primarily due to fluctuations caused 

by frequent curves, which require the agent to maintain cornering stability under varying 

conditions. The relative angle is almost zero, which is the ideal state data. 
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By comparing the end-to-end model with the PD baseline, we find that although there are 

differences between the two, the model quickly achieves stability and meets the driving re-

quirements, indicating its good performance. The end-to-end model can also control the 

cart's speed based on different states, leading to more stable driving and avoiding swaying 

from side to side in the lane. 

Tab. 7: Comparison of the end-to-end model to two Baselined in map (a). 

 

6.3 Test the Effect of Different Weights Assignments on the End-

to-end Model. 

The reward function used in this study is formulated by Equation (14), which consists of 

two components: the orientation part and the speed part. This section aims to investigate 

the impact of varying the weights of the localization and velocity components on the per-

formance of the agent. To conduct this investigation, multiple end-to-end models are 

trained, and their performance is analyzed by comparing the changes in velocity, relative 

distance, and relative angle. Therefore, it is necessary to adjust the weights of the reward 

function and evaluate the resulting changes in model behavior through testing and compar-

ison. This approach will provide insights into the impact of reward functions on model 

learning and their ability to achieve the lane-following task. 

The environmental parameters and the reward functions chosen for this experiment are 

listed in the following table: 
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Tab. 8: Choice of reward function for each model and choice of environment 

                Model 

Name 

Larger speed 

weighting model 

General model Larger orientation 

weighting model 

Env Map (b) 

Reward func-

tion formula 

𝑅1 = 2𝑟𝑣 + 𝑟𝜓 𝑅2 = 𝑟𝑣 + 𝑟𝜓 𝑅3 = 𝑟𝑣 + 2𝑟𝜓 

 

Following the same procedure as the previous test, each model was tested five times with a 

maximum of 800 steps per test, and the changes in speed, lateral deviation, and orientation 

deviation were recorded for analysis. 

 

Fig. 6. 14: Speed curves for each model. 

By comparing the speed changes of the three models during testing, it can be observed that 

the model with a higher weight on the speed component exhibits a greater ability to adjust 

the velocity. Specifically, this model can quickly increase the velocity to the maximum 

value after initialization. On the other hand, the other two models took longer to adjust the 

velocity and exhibited lower stability in doing so. Therefore, increasing the weight of the 

speed component can help promote the agent's ability to travel at a more stable and faster 

speed. 
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Fig. 6. 15: Lateral deviation curves of each model. 

 

Fig. 6. 16: Orientation deviation curves of each model. 

Based on the analysis of Fig. 6.15 and Fig. 6.16, it is observed that increasing the weight of 

the positioning component to 2 results in faster and more accurate convergence of the lat-

eral deviation and directional deviation of the agent from the right lane centerline to 0. This 

implies that increasing the weight of the positioning component can enable the agent to 

drive more proficiently along the right lane centerline, thereby enhancing the safety and 

stability of the agent's driving and preventing the agent from driving into the reverse lane 

or swerving out of the lane. 

Table. 9 shows the average value of each metric for different weighting reward functions 

for the five tests. It can be visualized that the change in weights has a subtle effect on the 

model performance: 
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Tab. 9: Mean metrics over 5 tests for 3 models with different reward functions. 

 

Overall, adjusting the weights of the model can have an impact on its performance, but the 

model is still capable of completing the control task, just better at a particular capability.



 

57 

 

Autonomous driving with deep reinforcement learning 

Chapter 7  Conclusion 

This paper investigates the performance of end-to-end and non-end-to-end models trained 

using the sac algorithm for policy networks in a Gym-duckietown environment for the lane 

following task, achieved through a deep reinforcement learning approach for agent control. 

The study demonstrates the sac algorithm's effectiveness for training end-to-end and non-

end-to-end models for this task. 

For the end-to-end model, the observation space is optimized for computational efficiency, 

requiring preprocessing of input images. The action space uses the box in the gym to de-

fine two continuous action outputs, turn angle, and velocity. Selecting the neural network 

and setting the reward function is challenging. In this study, a CNN network is used as the 

feature extractor for the policy network of the end-to-end model, with a linear layer map-

ping feature values to the output values. The reward function is divided into the orientation 

part the and speed part. The orientation and speed parts are crucial for the agent to com-

plete the lane-following task. Specific parameters and weights of each part need to be se-

lected through extensive training and continuous improvement. 

Compared to non-end-to-end models, end-to-end models exhibit better robustness and are 

less prone to overfitting. Since the input to an end-to-end model is an image, adding noise 

helps to prevent overfitting. Furthermore, end-to-end models perform well in dynamic 
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environments. In contrast, the non-end-to-end model trained on one map cannot perform 

the control task properly on another map due to differences in input locations. Although 

the performance of the end-to-end model is comparable to that of the baseline model pro-

vided by the Gym-duckietown platform and even superior in some respects, its stability in 

complex environments needs further improvement. Future research can explore using both 

image and environmental information as inputs to enhance the model's exploration of the 

environment, speed up training time, and improve the model's stability. 
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