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Abstract

The crew scheduling problem with attendance rates is highly relevant for regional
passenger rail transport in Germany. Its major characteristic is that only a certain
percentage of trains have to be covered by crew members or conductors, causing a sig-
nificant increase in complexity. Despite being commonly found in regional transport
networks, discussions regarding this issue remain relatively rare in the literature. We
propose a novel hybrid column generation approach for a real-world problem in rail-
way passenger transport. To the best of our knowledge, several realistic requirements
that are necessary for successful application of generated schedules in practice have
been integrated for the first time in this study. A mixed integer programming model
is used to solve the master problem, whereas a genetic algorithm is applied for the
pricing problem. Several improvement strategies are applied to accelerate the solution
process; these strategies are analyzed in detail and are exemplified. The effectiveness
of the proposed algorithm is proven by a comprehensive computational study using
real-world instances, which are made publicly available. Further we provide real
optimality gaps on average less than 10% based on lower bounds generated by solving
an arc flow formulation. The developed approach is successfully used in practice by
DB Regio AG.
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1. Introduction

In Germany, federal states or subsidiary transport associations are responsible for
organizing and implementing regional passenger rail transport. Thus, they define
lines and timetables for the regional railway networks. Furthermore, specific require-
ments are detailed, such as the type of vehicles and pricing systems. These conditions
have to be met by railway companies that apply for network operation. The liberal-
ization of German regional passenger rail transport has led to increasing competition
between the tendering processes of different railway companies. As a result of high
cost pressure, efficient deployment of personnel, vehicles, and resources by the railway
companies is crucial for their success. This holds true across all levels of the planning
process in regional passenger rail transport. Based on the conditions that are estab-
lished by the transport association, rolling stock scheduling, maintenance planning,
and crew scheduling have to be carried out by the railway company before the gener-
ated schedules are assigned to specific vehicles and personnel (rostering) (Hoffmann
et al., 2017). In particular, crew scheduling has a substantial influence on total costs.
It is a part of tactical planning and results in an anonymous crew schedule, i.e., a set
of duties that have not been assigned to particular employees. A crew on a train con-
sists of a train driver and one or several conductors who are responsible for checking
tickets, customer service, and certain operational tasks.

A special challenge in the crew scheduling of conductors is the common require-
ment of attendance rates, which means that only a defined rate of trains needs to
be covered. Attendance rates are set by superordinate transport associations and
were introduced to save costs. If attendance rates are not met by the employed crew
schedule, the liable railway company must pay a contractual penalty. For the under-
lying planning problem, attendance rates result in an additional degree of freedom
compared to the crew scheduling problem (CSP), i.e., in addition to the assignment
of conductors to trains, the trains that are attended have to be selected first.

The crew scheduling problem with attendance rates (CSPAR) has rarely been
studied in the literature to date, and research has been limited to one conductor
per trip at most (Heil et al., 2020). Nevertheless, it constitutes a major planning
challenge for practical crew scheduling. Thus, the goal of our work is to present a
novel hybrid column generation approach for solving the CSPAR that was developed
and implemented as a client-server program during a long-term project with DB Regio
AG (Neufeld, 2019).

In this paper, we provide four major contributions. First, several real-world speci-
fications, such as multi-manning and part-time employees, are considered for the first
time. Although these specifications have not been considered in the literature to date,
they are required by transport associations and planners and are therefore vital for a
successful application in practice. To bridge this gap, we present a new overlapping
multi-period railway crew scheduling problem with attendance rates (OMCSPAR)
that can be extended by various restrictions.

Second, based on the problem description and basic algorithm from the literature,
sophisticated methodological enhancements are presented to enable a solution of prac-
tical instances within a reasonable time. This includes a novel three-phase solution
procedure for generating initial solutions. Additionally, we quicken the subsequent
column generation process by integrating various improvements. Our algorithmic
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contributions are analyzed using several real examples that are based on 14 German
regional railway networks. We show that these improvements allow us to solve many
previously intractable instances and provide decision support for considerably large
networks for the first time. Moreover, we demonstrate that the presented approach
is able to generate optimal solutions for small real-world instances and we provide
lower bounds for larger networks based on solving an arc flow formulation.

Third, we discuss the cost effects of attendance rates and some other requirements
established by federal states or subsidiary transport associations in the tender process.
Thus, we not only consider the perspective of railway planners but also provide some
managerial insights for decision makers in federal states and transport associations.

Finally, we make the considered real-world instances publicly available in a xml-
based file format. In addition, we have provided and published a test script that
contains all considered rules for the duty generation. It can be used to easily check
feasibility of a newly generated schedule and serves as explicit definition of the con-
sidered requirements. This allows reproducibility of our results as well as comparison
of different crew scheduling approaches. The provided instances can also be used for
testing other crew scheduling approaches without attendance rates.

The remainder of the paper is structured as follows: Section 2 gives an overview
of the relevant literature on railway crew scheduling. The studied problem is de-
fined in detail in Section 3, and various practical requirements are described. These
requirements form the basis for the mixed integer programming formulation of the
OMCSPAR. The applied hybrid column generation approach is presented in Section
4. Special attention is paid to the initial solution, which has a substantial influence
on the performance of the algorithms, and to the genetic algorithm for solving the
pricing problem. A comprehensive computational study based on several German
real-world instances is presented in Section 5. Managerial insights into the effects of
attendance rates are provided in Section 6. Section 7 closes with concluding remarks
and constructive directions for future research.

2. Related Literature

The CSP first arose in the airline and bus industries (Arabeyre et al., 1969;
Carraresi and Gallo, 1984; Van den Bergh et al., 2013; Ibarra-Rojas et al., 2015;
Kasirzadeh et al., 2017). Since then, it has been applied to other transportation
sectors; in particular, several approaches in the railway sector were published af-
ter 1995. For detailed overviews of models and methods for the various planning
tasks in the railway industry, we refer to Caprara et al. (2007); Huisman et al. (2005);
Narayanaswami and Rangaraj (2011); Teodorović and Janić (2017); Heil et al. (2020).
Usually, crew scheduling models have been proposed for practical problems; conse-
quently, such models often comprise specific characteristics and challenges (Barnhart
et al., 2003). At the same time, a common property is that large-scale problems have
to be solved.

Two prevalent modeling approaches have evolved (Suyabatmaz and Şahin, 2015):
network flow models and set covering or set partitioning formulations. All in all,
network flow models are seldom used (e.g., Şahin and Yüceoğlu (2011); Vaidyanathan
et al. (2007); Fuentes et al. (2019)), whereas set covering/partitioning approaches form
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the majority of publications. Column generation, in particular, has been proven to be
suitable for solving practical instances by exerting a reasonable computational effort
(Caprara et al., 1997, 2007; Ernst et al., 2001; Jütte et al., 2011; Shen and Chen,
2014). Bengtsson et al. (2007) present an algorithm for a problem similar to the
one discussed herein but without attendance rates. A column generation approach
is applied to solve the pricing problem through the k-shortest path enumeration.
Nishi et al. (2011) present dual inequalities that accelerate column generation and
reduce the number of iterations. Given the NP-hard nature of the CSP (Kwan,
2011), metaheuristics have also been developed. Among these are tabu search and
genetic algorithms (Shen et al., 2013). Yaghini et al. (2015) propose a train driver
CSP through a combined metaheuristic and mathematical programming approach.
Recently, decomposition techniques were applied to CSPs in rail freight transport as
well, leading to considerably promising results (Jütte and Thonemann, 2012, 2015).
Janacek et al. (2017) use a column generation approach to generate periodic crew
schedules.

Furthermore, the literature has also discussed integrated crew-scheduling approaches
combined with timetabling (Bach et al., 2016) or vehicle scheduling (Dauzère-Pérès
et al., 2015; Steinzen et al., 2009) as well as rescheduling problems (Veelenturf et al.,
2014) in recent years. To the best of our knowledge, attendance rates have only been
considered by Hoffmann et al. (2017) and Hoffmann and Buscher (2019). Such an
approach is elaborated upon in the following text in greater detail.

3. Problem Definition

3.1. Problem Description and Practical Requirements

To generate crew schedules that are applicable in real-world railway networks,
various restrictions and practical requirements must be considered. The objective is
to find a schedule that satisfies these requirements with minimal costs. Scientifically
developed algorithms may lead to very good solutions regarding a defined objective
function; nevertheless, at the same time, the generated schedules are not satisfactory
from a planner’s view or are not viable at all. The application of the proposed solution
approach in practice showed that the consideration of the following requirements is
crucial for fulfilling regionally differing conditions in regional transport. However,
several of these requirements have not been mentioned in the existing literature. In
the following section, we address the differences in the literature in a more detailed
manner. All the requirements described by Jütte et al. (2011) and Hoffmann et al.
(2017) are taken into consideration.

3.1.1. Operating Conditions

Operating conditions specify the general structure of duties and guarantee a
trouble-free realization. A duty is defined as a combination of consecutive trips cov-
ered by a certain conductor on a given day. Each trip is characterized by a designated
departure time, departure station, arrival time, and arrival station and represents the
smallest planning entity. On a superordinate level, a train can consist of several trips.
Because a change of trains is not possible at every stop, a limited number of stations,
so-called relief points, is usually defined at which changeovers are possible.

4



Apart from relief points, crew bases are important nodes in regional railway trans-
port networks. A crew base is associated with a certain station, and each duty of a
conductor has to start and end at the same crew base. Hence, conductors are as-
signed to crew bases; each crew base can only have a maximum number of employees
assigned to it. In contrast to Hoffmann et al. (2017), we support the separation
between full-time employees and part-time employees, who usually perform shorter
duties. This distinction is important for planners because not all current conductors
are full-time employees. In addition, recruiting new conductors for regional railway
companies is difficult, and working part-time is an appealing option for prospective
conductors.

Duties are usually created on a daily basis, i.e., a time period from the start of
the first trip in the morning until the end of operations at night is considered. In
particular, for city trains in larger urban regions and during weekends, there is often
no end of operations. Thus, extending the considered time span for generating duties
is inevitable to ensure that trips at night can be integrated into valid duties. As a
result, duties may consist of trips of two consecutive days; therefore, we must consider
overlapping duties similar to Abbink et al. (2011) in the pricing problem.

Furthermore, planners may desire to control the number and daily distribution
of morning, day, evening, and night duties for each crew base. These categories are
dependent on the starting times of the duties and can represent the preferences of
conductors. For example, if morning and night duties are less popular, the distribution
has higher percentages for day and evening duties. However, such patterns can lead
to competing goals, particularly if attendance rates differ by the time of day because
a higher rate at a certain time correlates with a higher number of duties.

3.1.2. Legal Requirements and Labor Contracts Regulations

Labor contracts and legal regulations specify several characteristics of a feasible
duty. According to the German Working Hours Act, three types of working time can
be distinguished. First, duty time is the time from signing on at the beginning of a
duty to signing off at the end of the duty. Second, protected working time is defined
as duty time excluding all breaks, deadhead times, and idle times. Finally, paid
time is specified as the duty time excluding breaks. Because full-time conductors are
supposed to have five workdays (i.e., five duties) per week on average, the average paid
time of all duties must be restricted within certain bounds. For a detailed description
of the legal requirements considered, we refer to Jütte et al. (2011) and Hoffmann
et al. (2017), although the concrete values may vary depending on the context.

3.1.3. Transportation Contract

The third category of conditions is caused by the transportation contract of the
respective transport network, which is announced by the transport associations. From
this contract, attendance rates in particular have a major influence on the arising
CSP. Attendance rates are defined as the percentage of kilometers of all trips with a
common rate that must be covered by conductors. The rates can depend on certain
lines, product types, track sections, train numbers, or the time of the day and usually
range between 0% (i.e., no conductor is necessary) and 100%. The latter indicates
that the trip must always be accompanied by a conductor. If the attendance rate is
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100% for all trips, the considered problem equals the crew scheduling of train drivers
studied in the literature. As an extension of the known literature, we consider rates
higher than 100% that are required in some regional railway networks. Therefore,
multiple conductors must cover the same trip (multi-manning). Multi-manning is
particularly important for rush hour trips in which a solitary conductor cannot control
all the passengers or for the evening to provide a greater sense of security.

Finally, a uniform distribution of the attended trips over the planning period
can be claimed to avoid a predictable or imbalanced appearance of conductors on
trains. The uniform distribution is typically ensured by conducting each trip at least
once within a period of two weeks. In other transport networks, a weaker variant
is demanded, and accompanying at least one trip by each train (i.e., train number)
within the requested period is sufficient. Thus, both definitions of uniform distribution
must be integrated, and a planning horizon of 14 days is usually chosen for the tactical
railway CSP.

To provide a brief summary, Table 1 presents the additional requirements for rail-
way CSPs with attendance rates that are considered in the present research compared
to those considered in the known literature.

Table 1: Comparison of Considered Requirements to the Known Literature on Railway Crew Schedul-
ing Problems with Attendance Rates
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3.2. Mathematical Problem Formulation

3.2.1. Notation for Sets, Parameters, and Decision Variables

In the following section, we extend the multi-period railway crew scheduling model
with variable attendance rates presented in Hoffmann et al. (2017) by the various
aforementioned requirements. We distinguish between the basic OMCSPAR, which
takes the coverage of attendance rates into account, and additional requirements
demanded by the transportation contract or railway planners.

OMCSPAR aims to find a minimal cost combination of duties selected from a set
of feasible duties N . The planning horizon consists of |K| days with K as a set of days
of the week, and each duty j ∈ N begins on a specific day k ∈ K. Thus, we define
set Nk as a set of duties starting on day k. Moreover, a duty covers a subset of trips
i ∈ M , with M representing the set of all trips in the transportation network. Hence,
a duty can be represented by a column in matrix A ∈ {0, 1}|M |×|N | with aij = 1 if
duty j covers trip i and 0 otherwise. A trip i can exist on a single day k ∈ K or on
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several days of the planning horizon K. As a result, Mk can be defined as a subset
of M that contains all the trips i ∈ M that take place on day k. Additionally, the
planner can specify trips that must be checked regardless of their attendance rate.
To this end, we define the set of mandatory trips O and add trip i ∈ M on day k as
pair (i, k) if it is marked by the planner.

Further, creating overlapping duties may be beneficial or even necessary for prac-
tical applications. Figure 1 shows the timespan from which trips are considered for
each day of the planning horizon. A trip i ∈ Mk, which is operated prior to a certain
time limit on day k, may be covered not only by duties starting on day k but also by
duties beginning the day before. For example, if a trip starts on a Tuesday between
the start of day and the time limit (e.g., 12 a.m.), this trip may be integrated in a
duty from Tuesday (k = 1), but also a duty that starts on a Monday (k = 0). In other
words, the days of our planning horizon overlap. In addition, we consider a cyclic
planning horizon (one week or two weeks), as is also shown in Figure 1. Hence, the
day previous to Monday (k = 0) is Sunday (k = 6); consequently, k − 1 is an invalid
general representation of the day before k. Thus, we apply k̄ = (k − 1) mod |K| to
determine the day before k correctly. Note that enabling overlapping duties only on

Monday
k = 0

Tuesday
k = 1

Wednesday
k = 2

Thursday
k = 3

Friday
k = 4

Saturday
k = 5

Sunday
k = 6Start

of day

End
of day

Time
limit

Coverable trips of
duties starting
on day k

Figure 1: Representation of Duties Across Different Days

certain nights (e.g., weekends) is also possible. However, this occurs in the pricing
problem because only the set of available trips for each of the |K| sub-problems (see
Section 4.3) has to be adjusted accordingly.

Furthermore, let G be the set of all attendance rates g ∈ R
+
0 defined in the

transportation contract. We can determine dig as the distance of trip i ∈ M with
attendance rate g ∈ G. Note that index g is necessary because one trip may consist
of several sections with varying attendance rates.

The costs cj of a feasible duty j ∈ N consist of two parts. First, fixed costs
cfix occur for every duty. Second, every minute of the paid working time τj of duty
j is rated with variable costs cvar, yielding cj = cfix + cvar · τj . The paid working
time is calculated in accordance with the operating conditions and legal requirements
described in Section 3.1. If a duty does not meet an operating condition or a legal
requirement, we penalize the use of this duty with costs cpen.

In addition to the sets and parameters described previously, we introduce the
following decision variables. Integer variable xj corresponds to the frequency of duty
j ∈ N in the solution. Owing to potential multi-manning, xj is not always a binary
variable, as it is in most crew scheduling approaches, but an integer variable. For
example, if two conductors are assigned to a duty j, xj = 2, i.e. j is selected two
times in the solution.The maximum frequency of duty j ∈ N is defined by the highest
attendance rate of all trips included in this duty. If a duty would be selected more
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often than this highest attendance rate, at least one of these duties would only increase
costs without improving the stipulated coverage of trips. Hence, the upper bound λu

j

of xj can be determined with λu
j = ⌈maxi∈M,g∈G ({aijg | dig > 0})⌉ . The check for

dig > 0 is necessary because attendance rate g ∈ G only needs to be considered if
trip i ∈ M requires an attendance rate of g. Furthermore, we use integer variables
yik to model the number of conductors attending trip i ∈ M on day k ∈ K in
the solution. Similar to the variable xj , the frequency depends on the attendance
rates of the trip. Therefore, we can define a lower (upper) bound µl

i (µ
u
i ) as follows:

µl
i = ⌊maxg∈G ({g | dig > 0})⌋ , µu

i = ⌈maxg∈G ({g | dig > 0})⌉ . Thus, for example, if
the attendance rate of a trip is 1.5, the trip should comprise at least one duty and at
most two duties.

3.2.2. Basic OMCSPAR set covering model

Using the notation presented earlier, we introduce the basic OMCSPAR as follows.

[OMCSPAR]: min
∑

j∈N

cjxj (1)

s.t.
∑

k∈K

∑

i∈Mk

digyik ≥ g
∑

k∈K

∑

i∈Mk

dig ∀ g ∈ G (2)

∑

j∈Nk̄

aijxj +
∑

j∈Nk

aijxj ≥ yik ∀ k ∈ K, i ∈ Mk (3)

yik = µu
i ∀ (i, k) ∈ O (4)

xj ≤ λu
j ∀ j ∈ N (5)

µl
i ≤ yik ≤ µu

i ∀ k ∈ K, i ∈ Mk (6)

xj ∈ N ∀ j ∈ N (7)

yik ∈ N ∀ k ∈ K, i ∈ Mk (8)

The objective function (1) minimizes the total operating costs. Constraints (2) ensure
compliance with the required attendance rates. This compliance is achieved by forcing
the accumulated distance of the covered trips of each attendance rate in the solution
schedule to be greater than or equal to the requested percentage of the total distance
assigned to this rate. Constraints (3) are linking variables xj and yik. Hence, there
has to be at least µl

i duty j ∈ Nk or j ∈ Nk̄ in the solution schedule covering trip i on
day k if trip i on day k is in the solution. Note that trip i can be covered by a duty
starting on day k or k̄. Furthermore, deadheads are possible because of the inequality
relation. The inclusion of all mandatory trips in the final schedule is modeled by
constraints (4). This constraint has been slightly modified to meet attendance rates
higher than 100%. Finally, constraints (5)–(8) set the aforementioned bounds and
state the domains to enable attendance rates of more than 100%.

In the following section, we present the additional requirements that can be nec-
essary to generate valid and accepted crew schedules.

3.2.3. Average paid time

As explained earlier, balancing the paid working time of duties across the week is
necessary. In our approach, we define that the average paid working time of all duties
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of the planning horizon must be between a lower bound τmin and an upper bound
τmax. Hence, we introduce the following constraints:

∑

j∈N

τjxj ≥ τmin
∑

j∈N

xj (9)

∑

j∈N

τjxj ≤ τmax
∑

j∈N

xj . (10)

Constraints (9) guarantee that the average paid time over all duties in the solution
schedule is either longer than or equal to the permitted lower bound, and constraints
(10) ensure compliance with the upper bound.

3.2.4. Uniform distribution

The uniform distribution should ensure that a variety of trips is checked. We
provide two different approaches to model this requirement. The first variant

∑

k∈K | i∈Mk

yik ≥ 1 ∀ i ∈ M (11)

guarantees that each trip is covered at least once in the planning horizon. Note that
this corresponds to the trip-based uniform distribution in Section 3.1.

In addition, we present a new alternative variant called train-based uniform dis-
tribution. For this purpose, we define set Mkz as a set of all trips on day k associated
with train number z ∈ Z, where Z is the set of all train numbers. This definition
enables the train-based uniform distribution to be modeled as follows:

∑

k∈K

∑

i∈Mkz

yik ≥ 1 ∀ z ∈ Z. (12)

Note that one variant can be used at most, i.e., a uniform distribution can also be
deactivated.

3.2.5. Crew base capacity

Another practical requirement introduced in Section 3.1 is the maximum number
of duties starting at a crew base. Let E be the set of all crew bases in the network;
subsequently, parameter bje equals one if duty j starts at crew base e and zero oth-
erwise. The capacity of each crew base e ∈ E may vary depending on the day k ∈ K
and is denoted by Qek. We can now introduce

∑

j∈Nk

bjexj ≤ Qek ∀ e ∈ E, k ∈ K (13)

as crew base capacity constraints.
In some scenarios, however, planners must distinguish between full-time and part-

time employees. For this purpose, the notation will be extended again. First, we define
the maximum number of full-time duties starting at e on day k by QFT

ek . Second, we
set binary parameter wj to one if duty j must be performed by a full-time employee
and to zero otherwise. A duty is considered invalid for a part-time employee if its
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duty time is longer than a predefined but variable threshold. Note that all part-time
duties are included in the general crew base capacity Qek because shorter duties can
be operated by part-time and full-time employees. Hence, considering them separately
is unnecessary, and constraints

∑

j∈Nk

bjewjxj ≤ QFT
ek ∀ e ∈ E, k ∈ K (14)

are used to restrict the maximum number of full-time employees per day for each
crew base.

3.2.6. Daily duty distribution

Finally, we consider the daily distribution of duties as a further requirement that
arises in railway CSPs, which may vary between different crew bases. To this end,
we define a set of daytimes T for categorizing duties as early, day, late, and night
and parameter ljet. This parameter equals one if duty j ∈ N starts at crew base
e ∈ E during daytime t ∈ T and zero otherwise. Hence, only the start time of a
duty is decisive for the daytime category. In addition, each crew base e has a desired
percentage pet of duties starting there at time of day t ∈ T . Note that we cannot
apply a fixed number of duties for each daytime because we do not know how many
duties begin at crew base e.

In most cases, however, meeting this quota exactly is not possible. Therefore, we
introduce continuous variables vet ∈ R and uet ∈ R as the lower and upper deviations
from the desired total number of duties starting at crew base e ∈ E during daytime
t ∈ T and implement the daily duty distribution as the following soft constraints:

∑

j∈N

ljetxj ≥ pet
∑

j∈N

bjexj − vet ∀ e ∈ E, t ∈ T (15)

∑

j∈N

ljetxj ≤ pet
∑

j∈N

bjexj + uet ∀ e ∈ E, t ∈ T. (16)

Constraints (15) allow the number of duties that start during t at base e to remain
under the desired percentage pet of all duties starting at crew base e. Conversely,
constraints (16) permit the number of duties that begin during t at base e to exceed
the desired percentage pet of all duties beginning at base e.

However, variables vet and uet must be penalized to control the extent of deviation.
We evaluate the deviation from the desired number of duties with variable penalty
costs s. Thus, the original objective function (1) must be extended by a penalty term,
and we obtain the following new objective function:

min
∑

j∈N

cjxj + s
∑

e∈E

∑

t∈T

(vet + uet) . (17)

Here, the higher the value of s, the greater the enforced compliance with the daily
duty distribution.
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4. Solution Approach for OMCSPAR

4.1. Column Generation Framework

Set covering problems in large-scale crew-scheduling applications are usually tack-
led by column generation approaches because the set of all feasible duties N is con-
siderably large. Hence, a complete creation of N would be too consuming in terms
of both time and memory. By contrast, column generation operates with a restricted
set of duties N̄ and successively adds new duties in an iterative process. Thus, two
iteratively connected problems, called restricted master problem (RMP) and pricing
problem, are applied herein. The RMP is equivalent to OMCSPAR but with the
restricted set of duties N̄ instead of N . Solving the linear relaxation of the RMP
(rRMP) yields dual values that are used in the pricing problem to generate new
columns with negative reduced costs, i.e., duties that may reduce the objective func-
tion value. Because our planning horizon consists of |K| days, we can decompose
the pricing problem in K independent problems. Thus, we create new duties for a
specific day k ∈ K and solve the rRMP with a new set of duties N̄ in each iteration.
This procedure is adapted from the cyclic generation strategy introduced in Mourgaya
and Vanderbeck (2007) for a multi-period vehicle routing problem. Another approach
might be to generate new duties for the entire planning horizon first and subsequently
solve the rRMP. However, this approach could lead to the generation of many unused
duties, which needlessly inflates the RMP.

The general flow of our column generation procedure is presented in Figure 2.
The procedure will be described in detail below. As with all column generation
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schedule N0

N̄ = N0, l = 0, k = −1
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without capacity

constraints

k = (k+1) mod |K|

Capacity
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Add capacity
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Solve rRMP
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Solve rRMP
(Gurobi Optimizer)

rRMP is
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permanently

Resolve rRMP
(Gurobi Optimizer)

Delete and
reinsert columns

Solve PP for day k
(Genetic Algorithm)

Duties with
c̄j < 0
found?

l = l + 1

Add columns to
RMP and duties to

N̄ , l = 0

Add columns and
duties for days 6= k

if possible

l < |K| or
time limit
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(Gurobi Optimizer)

Yes

No
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No
Dual Values

Dual Values
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Figure 2: Flowchart of the Proposed Multi-Period Column Generation Algorithm
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approaches, our algorithm starts by generating an initial set of duties N0. We apply
different strategies to determine feasible initial solutions within a short processing
time. However, it is important to note that the rRMP should be able to generate
a feasible solution with N0, but N0 itself may contain infeasible duties. We refer to
Section 4.2 for an in-depth description of our approach. Subsequently, the restricted
set of duties N̄ is initialized with N0, and control variables l and k are introduced.
Variable k represents the currently considered day, whereas variable l counts the
number of contiguous iterations without newly found columns. Moreover, the RMP
is initialized. However, if capacity constraints ((13) and (14)) are considered for a
network, these constraints are first omitted because a feasible initial solution is not
guaranteed with tight crew base capacities.

Subsequently, the iterative procedure of generating new duties begins. As de-
scribed previously, we iterate all days of the planning horizon using variable k and
create new columns for each day. Because we omit constraints (13) and (14) dur-
ing initialization, we have to add them manually. To do so, we first check whether
they have been added in a previous iteration. If this is the case, we solve the linear
relaxation of the RMP; if not, we add them temporarily and then solve the linear
relaxation. In the case of a feasible relaxation, the capacity constraints are added
permanently. Otherwise, we solve the rRMP again without the constraints. Thus, in
any case, we achieve a feasible solution of the rRMP and can obtain the dual values
of all constraints related to the variables xj .

Furthermore, if the crew capacity constraints (13) and (14) are already added
permanently, we attempt to remove unnecessary columns from the RMP. This should
accelerate the solution of the rRMP as well as reduce memory consumption. A column
is marked as unnecessary if, first, it is not a basic variable for a number of contiguous
iterations (maxAgefofDuties) and, second, if its positive reduced costs are smaller
than a predefined threshold (reducedCostsThreshold). Moreover, because columns
are solely removed from the RMP but duties from set N̄ are not, we can also reinsert
already deleted columns with the now negative reduced costs. Consequently, favorable
duties are not erroneously excluded from the final solution.

In the next step, we attempt to determine new duties for day k that may improve
the objective function value, i.e., have negative reduced costs. Solving the pricing
problem in an efficient manner is a crucial aspect of every column generation approach.
In contrast to the initial solution procedure, we apply a genetic algorithm that only
generates feasible duties. This solution approach for the pricing problem is explained
in further detail in Section 4.3. If the set of new duties with negative reduced costs is
not empty, we add every new duty j to N̄ and the corresponding new column xj to
the RMP. To quicken the solution process, for all new duties, we also check whether it
is possible and beneficial to add similar duties on other days of the planning horizon.
Because trips do not occur every day, the feasibility of duties on all days is not
guaranteed. Additionally, it is only beneficial to add a duty with negative reduced
costs. If either is true, we add a similar but new duty and column. If no new duties
with negative reduced costs are found by solving the pricing problem, we increase l
by one.

Finally, variable k is updated, and the next iteration starts if no termination cri-
terion is reached. We apply two different termination criteria to stop the generation
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of new columns. First, we use the criterion introduced in Mourgaya and Vanderbeck
(2007). There, the loop stops if i = |K|, meaning that no new duties with reduced
costs were created for K consecutive iterations. However, this approach may lead to
considerably long computing times because we deal with extremely large transporta-
tion networks. Therefore, we apply a time limit as a second termination criterion.

If new columns have stopped being generated, we solve the RMP with all cur-
rent columns in N̄ as a mixed integer linear program to obtain a feasible schedule.
This approach is called restricted master heuristic (Joncour et al., 2010) or price-and-
branch (Desrosiers and Lübbecke, 2011) and leads to good solutions in reasonable
computation times. As mentioned in cite Joncour et al. (2010), the restricted master
heuristic can result in infeasible problems since the generated columns might be fea-
sible for the rRMP, but not for the RMP. However, infeasibility is not an issue here
because the set N̄ is quite large. In contrast, the column generation method could be
integrated into a branch-and-price framework to obtain optimal solutions. Unfortu-
nately, this is not viable for the considered problem sizes as solving one node in the
branch-and-bound tree with column generation could take several hours and many
nodes might have to be processed. Therefore, this approach would exceed reasonable
computation times.

4.2. Initial Solution

4.2.1. General Procedure

Generating an initial solution related to a column generation approach has yet
to be described exhaustively. Chen and Shen (2013) use a vehicle-based approach to
generate sets of potential duties. We will refer to this procedure as a vehicle-based
block generator (VBBG). Hoffmann et al. (2017) describe a trip-based depth-first
search within heuristic limits to create an initial solution. We refer to this procedure
as a block generator (BG). Both procedures are two-stage algorithms consisting of a
creating and a combining stage. For practical applications, a feasible solution that
covers each trip at least once is difficult to find. Therefore, Shen and Chen (2014) use
artificial variables. However, an artificial solution can be assumed to decelerate the
solution process. Finally, Janacek et al. (2017) use shortest path information based on
a frame concept for small problems (less than 100 trips). Generating reasonable-sized
sets of potential duties has not been discussed extensively in the literature for large
scale crew scheduling.

Older approaches directly discuss the enumeration of all feasible duties, which
is followed by solving the RMP. Alefragis et al. (1998) use a straightforward depth-
first enumeration. Caprara et al. (2001) combine the enumeration with the use of
time-related shortest path information between nodes in the underlying temporal
and spatial network for improving branching strategies. Goumopoulos and Housos
(2004) focus on the efficiency of the feasibility checks needed for an enumeration and
use shortest path-based information to generate bounds as pruning of the branching
tree. Koniorczyk et al. (2015) extend this approach by heuristic limits. Clearly, an
enumeration requires an accurate handling of infeasibility, whereas an initial solution
can handle this more generously. Therefore, we first need to clarify different types of
infeasibility and their impact on the algorithm.
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An initial solution can be infeasible because of three reasons: trip infeasibility,
constraint infeasibility, and duty infeasibility. Trip infeasibility (t-inf) is caused by
missing or uncovered trips. For example, a trip with g ≥ 1 (i.e. it must be attended)
which is not part of any duty in N0 causes t-inf. If an initial solution does not fulfill
constraints (9) and (10) of the rRMP, it falls under constraint infeasibility (c-inf). This
infeasibility is also applicable to constraints (13) and (14), but as described in Section
4.1, we treat these separately in the subsequent column generation process. We do
not consider these for generating the initial solution. The duties of the initial solution
are referred to as blocks. A block represents a symmetrical (i.e., starting and ending
at the same crew base) and ordered list of trips without taking legal requirements
into account, such as maximum working time or other time restrictions. Finally,
duty infeasibility (d-inf) describes blocks that violate one of these restrictions but
could theoretically be attended by a conductor. c-inf and d-inf can be fixed during
the column generation approach, whereas t-inf prevents the start of this, because
constraints (2) and (3) cannot be fulfilled and even the rRMP is infeasible. Thus, we
extend the initial solution approach using a repair procedure (RP). The result is a
three stage procedure consisting of creating, repairing, and combining, as illustrated
in Figure 3.

Create-Stage
(BG, VBBG)

Repair-Stage
(RP)

Combine-Stage
(PP) initial solution

Figure 3: Flowchart of the Proposed Initial Solution Procedure

For the Combine-Stage, we have used a simple pre-processing (PP). A set of blocks
is chosen randomly from the solution pool. For each of these blocks, a matching
downstream block is searched for by requiring a break between both. This strategy
is suitable for the considered problem sizes in regional transport.

4.2.2. Improved Create-Stage

In the first step, we performed several tests for BG described by Hoffmann et al.
(2017) using different settings for the parameters minD, maxD (minimum and max-
imum duration of a block in minutes; generated by the BG), maxT (maximum ac-
cepted transition time between two subsequent trips in a block), and maxS (number
of subsequent trips; limits the number of possible branches at each vertex of the
branching tree). These preliminary tests showed that each network requires a dif-
ferent parameter setting for a suitable initial solution. Determining the appropriate
setting is occasionally very time consuming.

To avoid this, we extend the BG by introducing three levels for the Create-Stage,
i.e. three different search strategies are used for the BG. Therefore, the generator
is called three times for each trip i ∈ ME , using ME ⊆ M , which contains all trips
starting at any crew base. Hoffmann et al. (2017) set several network-specific limits
to reduce the branching tree used for the depth-first search. We use the fixed setting
BGminD−maxD

maxS−maxT = BG120−360
6−120 for each level. Note that using this setting for the

original BG would result in an initial solution that is far too large. To prevent this,
we introduce variables BlockLimit, Depth, and Random, which focus on the branching
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Algorithm 1 Extend(oldBlock, newTrip)
parameters: minD, maxD, maxS, maxT global variables: ct, BlockLimit, Depth, Random

1: currentBlock = Copy(oldBlock);
2: Add newTrip at the end of currentBlock
3: if currentBlock is symmetrical & minD≤Duration(currentBlock)≤maxD then

4: Add currentBlock to N0

5: increment ct by one
6: end if

7: if Duration(currentBlock)≤maxD & ct<BlockLimit & TripCount(currentBlock)<Depth then

8: determine maxS subsequent trips of newtrip with transition time ≤ maxT
9: if Random then

10: for all determined subsequent trips t of newTrip in random order do

11: Extend(currentBlock, t)
12: end for

13: else

14: for all determined subsequent trips t of newTrip sorted by departure time do

15: Extend(currentBlock, t)
16: end for

17: end if

18: end if

tree itself. The BG is implemented recursively and is based on the Extend method
shown in Algorithm 1. On each level, the method is called for the first time for each
trip i ∈ ME with different values for Random and Depth. Variable ct is initialized with
0 for each trip on each level. The first if branch (line 3-6) adds appropriate blocks to
the initial solution N0. The second if branch (line 7-18) is used to recursively extend
the blocks with different strategies for each level. For levels one and two the else
branch (line 13-17) is used. For level three the if-branch is used (line 9-12).

The underlying idea of Depth is quite similar to the maximum distance to the
depot introduced by Koniorczyk et al. (2015). The value of Depth in Level 1 is based
on the average duration of a trip l̄ and is calculated by 360/l̄. For Level 2 and Level
3, the average number of trips in a block as a result of Level 1 is used. To avoid
outliers on certain special networks, the value of Depth in Level 1 is fixed in the range
[10, 25], which is suitable for all the considered networks in this paper. The value of
Random is false for Level 1 and Level 2 but is true for Level 3.

The value for BlockLimit is calculated by |M |·|E|·2
|ME | and is constant for each level.

This equation ensures that the total number of blocks generated by each level of the
generator is controllable and network-specific. In addition, an equal distribution of
blocks over the underlying temporal and spatial network is achieved.

Figure 4 illustrates a branching tree and the explored solution space for each level.
To provide a clear presentation, contrary to the implementation, maxS is set to two.
This setting reduces the tree to a binary structure. We assume a value Depth of
six in Level 1. In approximate terms, maxS limits the width of the branching tree,
and Depth limits the height. Considering maxT and maxD, some branches can be
ignored (dotted arrows). Note that the length of an arrow is not related to the length
of the corresponding trip. Arrows (i.e., trips) leaving a node are sorted from left to
right by increasing order of transition times. Further, we assume a value of seven for
BlockLimit. Finally, each connection between two crew base nodes is assumed to have
a duration that is longer than 120 minutes. For practical instances, minD prevents
the generation of overly short blocks.

The result of Level 1 is a set of seven blocks with an average trip count of five
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Figure 4: Depth-First Branching Trees (BlockLimit = 7, maxS = 2)

(4.857; rounded to the nearest integer), which is why the value of Depth is reduced to
five for the following levels and the upper arrows and nodes become irrelevant (gray).
Since Random is false in Level 1 and Level 2, the explored search space is on the
left side of the tree because subsequent trips are chosen by a minimum transition
time. By contrast, Level 3 is random based, and the exploration space becomes less
organized. For Level 1 and Level 2, the illustrated results are deterministic; for Level
3, the result is merely an example.

4.2.3. Repair-Stage

To ensure the feasibility of the RMP, the solution pool generated by the creating
stage has to be checked for uncovered trips to fulfill constraints (2), (3), (4) and (11)
or (12). For each uncovered trip, finding a single block that includes the trip is suffi-
cient. Avoiding d-inf by creating only feasible duties is unnecessary in this stage; this
is assumed to be achieved by the genetic algorithm (see Section 4.3). As observed by
Caprara et al. (2001) and Goumopoulos and Housos (2004) in relation to their enu-
meration approaches, using the shortest paths is a suitable method for connecting a
sequence of trips to a crew base. Extending this idea, we use the algorithm introduced
by Dijkstra (1959) to find two paths for each uncovered trip. To this end, we use the
underlying space-time network, as shown in Figure 5. Each node represents a distinct
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Figure 5: Spatial and Temporal Network for the Shortest Path Repair Procedure

combination of time and a relief point or a crew base. Trips (change the place) and
transition times (stay in one place) are represented by arcs and are weighted by the
length of the travel or transition time. Thus, all possible paths between two nodes
have the same duration. To avoid t-inf, the path that is chosen by the procedure
does not matter. To obtain productive paths, each transition time longer than one
hour is penalized by high weight. Starting from the arrival node of an uncovered trip,
we search for the shortest path to each crew base node later in time. Analogously,
the departure node of an uncovered trip must be reached from an earlier crew base
node. Therefore, this search is carried out backward in time. Each arc is reversed,
and starting at the departure node of an uncovered trip, we search for the shortest
path to each crew base earlier in time. For each crew base, this process results in two
sets of paths (there and back). One path is chosen randomly from each set for each
crew base, and the resulting block of joining both paths and the uncovered trip is
added to N0. Note that the presented initialization of Janacek et al. (2017) aims at
choosing more than one set from each path. However, the instance sizes considered
in this paper are too large to use this approach.

If at least one set is empty, the trip cannot be covered by a duty beginning at the
concerned crew base; if this applies for all crew bases, the trip is not coverable. For
practical application, this approach provides essential information for crew planners,
e.g., the need for additional deadheads. By using this procedure, the validation of real-
world data is simplified, and identifying critical trips or other issues in the network
is possible.

4.2.4. Preliminary Tests

A suitable initial solution needs to be of a reasonable size and quality and simul-
taneously generated within an acceptable computing time. This trade-off requires
a detailed view of different strategies on the Create-Stage. Furthermore, following
Chen and Shen (2013), we implemented and tested a VBBG. The VBBG creates all
symmetrical blocks without a change in vehicle and a working time lower than the
given maximum. For a detailed description of the used networks, refer to Section 5.

Table 2 provides the results of different initial solution procedures. The first
column indicates the used procedure and parameter in the Create-Stage and the
additional stages that were carried out. Because the Create-Stage is essential, the
table is structured in groups of three rows that used the same creating parameters.
In the first row of a group, only the Create-Stage was used. In the second and third
row, RP was additionally carried out. PP was only used as an additional step in the
last row (all three stages are carried out). The computing time required to solve the
RMP first, t0, is a suitable indicator for the expected time needed for one iteration of
the following column generation approach and increases proportionally with the size
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(i.e. column size in Table 2) of the initial solution N0. The corresponding objective
value obj0 equals the total costs of the crew schedule. In the first group of rows, the
BG setting of Hoffmann et al. (2017) is used. The second group shows the results
for using the VBBG as the Create-Stage. Note that for the first two groups in each
case, only the approach used in the first line is identical to the literature. In the third
group (1lvlBG), only Level 1 is used. In the fourth group (2lvlBG), Level 1 and Level
2 are carried out. In the last group (3lvlBG), all three levels are used.

Table 2: Computational Results for different Initial Solution procedures (14 Days)

Network Network Network

N0 I I* N0 II II* N0 III III*

size t t0 obj0 t0 obj0 size t t0 obj0 t0 obj0 size t t0 obj0 t0 obj0

BG
120−180
4−60

0.1 2 c-inf t-inf 0.3 3 c-inf c-inf 0.2 3 t-inf t-inf

+RP 0.1 4 2 73.2 3 85.3 0.3 6 c-inf c-inf 0.2 15 3 93.4 5 109.7

+RP+PP 0.2 34 4 8.8 8 10.3 0.3 92 4 45.2 6 45.2 0.2 68 6 41.8 13 51.5

VBBG 6.3 28 267 5.7 t-inf 3.5 17 97 3.1 t-inf 0.9 6 t-inf t-inf

+RP 6.3 176 216 5.5 255 9.5 3.5 75 120 3.1 146 15.0 0.9 32 30 6.7 34 15.5

+RP+PP 6.3 312 254 5.5 283 9.4 3.5 131 98 3.1 96 11.0 1.0 45 32 6.7 38 15.5

1lvlBG 0.2 7 c-inf t-inf 0.1 3 t-inf t-inf 0.1 26 t-inf t-inf

+RP 0.2 9 c-inf c-inf 0.1 5 c-inf c-inf 0.1 31 2 6.0 4 12.1

+RP+PP 0.2 53 14 5.3 28 6.1 0.1 11 4 11.5 13.6 0.1 46 7 3.9 8 8.8

2lvlBG 0.3 9 c-inf t-inf 0.1 4 t-inf t-inf 0.1 42 t-inf t-inf

+RP 0.3 13 c-inf c-inf 0.1 6 c-inf c-inf 0.1 49 3 6.3 5 12.0

+RP+PP 0.3 103 25 5.3 54 6.6 0.1 14 5 11.4 10 13.5 0.1 57 9 3.9 11 8.3

3lvlBG 0.4 12 c-inf c-inf 0.2 5 c-inf t-inf 0.2 63 t-inf t-inf

+RP 0.4 18 c-inf c-inf 0.2 7 c-inf c-inf 0.2 68 6 16.4 10 19.7

+RP+PP 0.4 104 27 5.3 42 5.6 0.2 19 7 4.8 11 5.5 0.2 108 13 3.9 18 4.6

Notation: BGminD - maxD
maxS - maxT ; size: # duties in millions; t: CPU time in sec.; t0: CPU time first rRMP in

sec.; obj0: objective value in millions

The function of each stage can be seen exemplarily for row-group 1lvlBG on net-
work II. Applying RP avoids t-inf and ensures usability for real-world applications.
Analogously, the need for PP to avoid c-inf can be acknowledged. Note that the
computing time of RP and PP depends on the result of the first stage. The process
of searching uncovered trips (RP) and choosing suitable blocks (PP) slows down with
increasing block number as a result of stage one.

Certainly, using all three levels of the BG yields the best results and outperforms
all procedures presented in Table 2 on networks I, I*, II*, III, and III*. On the one
hand, the objective value is adequate for each network. On the other hand, the size of
N0 and the time needed for the complete three-stage-approach are reasonably small
for creating an initial solution. The best objective values for network II are achieved
by VBBG. However, by considering t and particularly t0 in combination with the
related size of N0, the setting 3lvlBG evidently deals best with the underlying trade-
off among feasibility, quality, and size (computing time). Hence, this setting is used for
all the considered networks in this paper. The used parameter values are apparently
suitable for a wide range of networks. Based on these improvements, the following
column generation approach can be assumed to be accelerated by this as well (see
Section 5.2).
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4.3. Solving the Pricing Problem

Solving the pricing problem is one of the most challenging aspects of every column
generation approach. As described in Section 4.1, |K| different problems have to be
solved during the algorithm. Based on Hoffmann et al. (2017) and the additional
constraints introduced in Section 3.2, the reduced costs for a duty j that starts on
day k are given by

c̄j = cj −
∑

i∈Mk

aijπik −
∑

i∈Mk′

aijπik′ +
∑

e∈E

bjeσek +
∑

e∈E

bjewjσ
FT
ek

− (τj − τmin) · ρmin − (τmax − τj) · ρ
max

−
∑

e∈E

∑

t∈T

[

(ljet − bjepet) · γ
l
et + (bjepet − ljet) · γ

u
et

]

(18)

using k′ = (k + 1) mod |K| as the day after k, πik as the dual value of constraints
(3), ρmin and ρmax of (9) and (10), σek of (13), σFT

ek of (14), and γl
et as well as γ

u
et of

(15) and (16). Finding duties with negative reduced costs under consideration of all
requirements described in Section 3.1 represents the complete pricing problem.

In general, the pricing problem can be modeled as a resource constrained shortest
path problem (RCSPP). Irnich and Desaulniers (2005) provide a detailed overview
on several solution approaches for this issue. Because this problem is already an
NP-hard optimization problem, a solution might be considerably time consuming.
Furthermore, they note that an optimal RCSPP solution is merely required in the
last pricing step. Based on the results of Albers (2009) summarized by Hoffmann et al.
(2017) in the context of railway crew scheduling, dynamic programming as a common
exact solution method yields its limits within the single-digit range of trips in a feasible
duty. Chen and Shen (2013) introduce the notion of ignoring the RCSPP by choosing
duties with negative reduced costs from a reasonably large and pre-compiled pool of
promising productive duties. Moreover, a heuristic solution approach simplifies the
integration of newly arising practical requirements. Therefore, we use an improved
genetic algorithm (GA) based on the description of Hoffmann et al. (2017).

Some enhancements to the proposed algorithm are implemented. To achieve some
kind of variation, the initial population consists of 4

5 ·popSize best and 1
5 ·popSize

randomly selected individuals from the duty pool. The value of popSize is equals
|M |, which makes a reference to the considered network. Liu et al. (2010) note
the termination of the GA (in each CG-iteration) when a fixed number of feasible
individuals is created. Because we are only interested in feasible duties with negative
reduced costs, our GA stops immediately if more than 100 new duties (c̄j < 0) have
been found. This slows down the growth of the duty pool in the first iterations, in
particular, and ensures the use of proper dual values. We also vary the number of
iterations made in the recombination phase for each k, depending on the number of
new duties that are generated in previous iterations for k of the column generation
approach.

Requiring symmetrical duties in combination with the exclusive use of an OPC
leads to the fact that only duties with the same crew base can be used for each
recombination step. This may result in the unlikely case that trips are permanently
assigned to a single crew base, which happens if a trip is covered only by duties that
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start at the same crew base. To avoid this situation, a two point crossover (TPC)
is suitable for breaking up such assignments. The OPC itself is already a complex
procedure under consideration of all temporal and spatial requirements.

Parent 1

Parent 2

7 8 9 10 11 12 13 14 15 16 17

A B C D E E D C H I HC C B A

J C H I HC J J CH I HC J

cp1

cp2

inf-Offspring 1

inf-Offspring 2

7 8 9 10 11 12 13 14 15 16 17

A B C H I HC J J C H I HC J

J C D E E D C H I HC B A

cp3

cp4
7 8 9 10 11 12 13 14 15 16 17

A B C H I HC J J C H I HC C B A

J C D E E D C H I HC J

Offspring 1

Offspring 2

Figure 6: Two Point Crossover

Therefore, we implemented the TPC by calling the OPC twice. As shown in Figure
6, duties can be recombined with different crew bases in compliance with conditions
time(cp1) < time(cp3) and time(cp2) < time(cp4) for the associated times of the
cutting points cp1, cp2, cp3, and cp4. By using the TPC, an exhaustive exploration
of the solution space is ensured. Preliminary tests show that calling OPC with a
probability of 50% and TPC with 30% is a suitable setting. For the remaining
20%, a mutation is done only on a randomly selected individual. Further, if the
OPC was not successful, the TPC is then called. A mutation for a new individual
created by a crossover happens with a probability of 10%. The mutation operator
itself replaces a randomly selected trip of a duty with another suitable one. We also
tested roulette selection and tournament selection as variants for choosing individuals
for recombination, but no improvements could be seen for both when compared to
random selection.

5. Computational Analysis

5.1. Experimental Design

Real-world decision support is only guaranteed if a number of different crew-
scheduling planners benefit from such a system. Therefore, the entire solution ap-
proach has been embedded in a client-server architecture. The generated schedules
are directly transformable into action or can be used for a realistic evaluation of
different scenarios. The algorithm itself was implemented in C#, and all tests were
run on an Intel(R) Xenon(R) CPU E5-4627 with a 3.3 GHz clock speed and 768 GB
RAM. RMP and rRMP were solved using Gurobi 7.5. Commonly, rRMP during CG
is solved using a dual simplex algorithm. However, Gurobi also provides the barrier
method (interior point method, e.g., Bixby et al. (1992)). Rousseau et al. (2007) show

20



a clear improvement in computing time when using an interior point within column
generation for a vehicle routing problem with time windows. The same is true for
our instances of the OMCSPAR. Hence, the barrier method was employed in these
tests. The maximum of parallel threads used by Gurobi was limited to four, whereas
the GA was run on a single core. For each run, we limited the computation time
to reasonable values for a tactical decision support system. Column generation was
terminated after six hours, and solving RMP was limited to three hours. Because the
GA is a probabilistic approach, each test was run 10 times. Table 3 summarizes all
the parameter values used in the presented solution approach.

Table 3: Parameter Values

Costs Initial Solution Master Problem Pricing Problem

cfix = 2,000 minD = 120min maxAgeOfDuties = 7 P (OPC) = 0.5
cvar = 50 maxD = 360min reducedCostThreshold = 1000 P (TPC) = 0.3
cpen = 500,000 maxT = 120min P (Mutation only) = 0.2
s = 500 maxS = 6 P (Mutation additional) = 0.1

10 ≤Depth≤ 25

To demonstrate practical applicability, we consider 18 real-world instances with a
planning horizon of two weeks. Table 4 provides the relevant data and the specific
requirements for each network, with set B containing all relief points. Because

Table 4: Considered Networks

# trips per attendance rates Constraints
n |B| |E| 0% 10% 25% 30% 50% 67% 90% 100% 150% od (11) (12) (13) (14)
I 18 10 972 7,560 1,304
I* 18 10 972 7,560 1,304 •
II 13 4 184 6,312 1,038
II* 13 4 184 6,312 1,038 •
III 15 4 300 6,396 1,566
III* 15 4 300 6,396 1,566 •
IV 11 5 156 3,794 4,326
V 21 6 12,300 340 4,338 •
VI 17 7 174 848 8,614 2,966 •
VII 18 6 1,260 15,034 •
VIII 12 5 716 5,292 1,528 • • •
IX 14 11 182 8,556 1,982 2,172 • •
X 43 10 1,044 13,114 7,704
X* 43 10 1,044 13,114 7,704 •
XI 77 13 1,628 34,208 1,076 3,350

XII 3 2 68 768
XIII 4 2 450 994
XIV 8 3 256 1376

Notation: n: network; |B|: # of relief point; |E|: # of crew bases; od: overlapping duties; (11): uniform
distribution trips; (12): uniform distribution trains; (13): crew base capacity; (14): part-time employees

schedules are created at the tactical level, distinguishing requirements that charac-
terize the instance itself, such as sets B, E, and M as well as the attendance rates, is
essential. Based on our experience in hands-on cooperation with DB Regio AG, the
requirements given on the right side of the table are commonly scenario dependent
and can be assumed as changeable at the tactical level. Therefore the table shows
both 14 networks and 18 instances. To restrict the amount of testing within reason-
able limits, we have chosen this representative set of instances. Note that instances
I, II, III, and X are each listed twice. Because Hoffmann et al. (2017) indicate that
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constraints (11) make solving considerably more difficult(an additional constraint for
each trip), we consider all four networks with and without this requirement. A star
(*) indicates that the instance requires uniform distribution for each trip. The table
also includes three classic instances with only 100% trips, which equals CSPs for train
drivers (XII-XIV).

All instances are made publicly available at: https://bit.ly/3dzlWvF. We also
provide a script, which contains the relevant requirements for the duty generation
and can serve to validate generated schedules.

For an evaluation of the improvements of the column generation approach pro-
posed in Section 4, using the approach of Hoffmann et al. (2017) as a benchmark is
appropriate in Section 5.2.1. This is followed by the presentation of the results for
all 14 networks in Section 5.2.2. Because the pricing problem is solved heuristically,
we have no information regarding optimality gaps. However, by removing all limits
used in Section 4.2 from the BG, we can generate all feasible duties for networks
XII, XIII, and XIV in a reasonable amount of time. Subsequently, solving the un-
restricted master problem (URMP) results in the optimal solution. Hence, we can
compare the column generation approach to the optimal solution for these small in-
stances. For larger instances, we use a productivity value φ (see, e.g., Gopalakrishnan
and Johnson (2005); Jütte et al. (2011)), which is also commonly used in practice.
This value is based on the ratio of protected working time and paid time, each of
which is accumulated over all duties of the final schedule and given by

φ = 1−
cumulated paid time− cumulated protected working time

cumulated paid time
. (19)

Nevertheless, it is merely an auxiliary value to obtain an idea of the solution quality
because productivity is highly dependent on the network’s characteristics. Therefore
we use a reduced version of the arc flow formulation for the complete planning problem
introduced by Hoffmann and Buscher (2019) expanded to a multi-periodic approach
for generating valid lower bounds. This reduced version considers all requirements
presented above, except the average paid time requirements (see RMP, constraints (9)
and (10)), two rules for positioning breaks during a duty and the integrity constraints.
These minor simplifications help to speed up the calculation of the bound significantly.
A detailed description is available in the Appendix A. In the following we will refer
to this as break relaxation (BR).

5.2. Evaluation and Comparison of Algorithms

5.2.1. Comparison with Hoffmann et al. (2017)

Table 5 summarizes the improvements made by the actual approach (A). All
values are the averages of 10 runs. For each instance, two groups of columns exist: on
the one hand, relevant values concerning the column generation steps are displayed
(CG); on the other hand, key values for solving the RMP are given (RMP). The basic
approach of Hoffmann et al. (2017) (H) is used as a basis for evaluating the gained
improvements.

First, it should be noted that only the actual approach is able to solve all in-
stances. For instances where a comparison is possible, this approach also provides
better results. Only network II* is solved by A and H with almost the same quality.

22

https://bit.ly/3dzlWvF


Table 5: Comparison with Hoffmann et al. (2017)

network approach
CG RMP

t it |Nit| |N̂it| t OBJ STD δ LBBR GAPBR

I
H 4.1 846 256 256 2.9 4.861 0.25 0.0

4.358
10.15

A 6.0 2,239 510 53 1.8 4.738 0.05 -2.3 8.04

I*
H - - - - - - - -

4.700
-

A 6.0 1,846 826 75 3.0 5.121 0.09 −∞ 8.23

II
H 4.7 978 726 726 1.5 2.739 0.16 0.0

2.563
6.42

A 6.0 2,887 500 160 0.4 2.719 0.17 -0.8 5.58

II*
H 6.0 12 727 727 3.0 3.258 2.35 0.0

2.688
17.49

A 0.6 281 283 46 3.0 3.069 0.55 -5.8 12.14

III
H - - - - - - - -

3.160
-

A 6.0 3,732 529 97 0.6 3.374 0.27 −∞ 6.35

III*
H - - - - - - - -

3.465
-

A 6.0 1,812 723 144 3.0 3.758 0.32 −∞ 7.81

Notation: H: Hoffmann et al. (2017); A: Actual Approach; t: CPU time in h; it: # of iterations;

|Nit|: total # of generated duties in thousand; |N̂it|: # of used duties in RMP in thousand; OBJ:
objective function value in millions; STD: standard deviation in %; δ: rel. improvement of A compared
to H; LBBR: lower bound in millions generated by BR; GAPBR: optimality gap in % based on LBBR

The number of iterations is increased for A by removing columns (Section 4.1). This
means that after seven iterations (reducedCostThreshold), the problem size decreases
considerably (|Nit| ≫ |N̂it|). If more iterations can be performed, the objective value
decreases. Only network I is an exception because a much larger solution pool was
created in the same time. Furthermore, computational effort was shifted from rRMP
to GA, indicating that more time is used to explore the solution space (creating
columns). This also suggests that the solution space is searched in a more structured
manner because similar or better objective values are achieved. Furthermore, it is
evident that the solution quality could be significantly improved, particularly for in-
stances with uniform distribution (constraints (11)). An average gap of 8.09 % was
achieved across all 6 instances. Note that the uniform distribution is a very weak
constraint for BR. This explains the higher gaps when it is required. Considering the
instance size and the fact that the lower bound is based on a relaxation, the solution
quality can be assessed as very good.

Finally, it should be mentioned that the instances for this test were chosen in
such a way that a comparison with the literature is possible. On the one hand, only
requirements that were also taken into account are included (see Section 3.1). On
the other hand, the size and complexity is sufficiently small that the algorithm of
Hoffmann et al. (2017) has a chance to solve it (i.e. is at least able to generate a
solution). A detailed analysis of the impact of the different proposed improvements
of our column generation approach can be found in the Appendix.

5.2.2. Real-world Instances

Table 6 shows the results for Networks I–XI using the actual approach. On average,
we achieve a productivity φ of 83.7% for all networks. In practice, φ > 80% are
assessed considerably positively by crew-scheduling planners. However, productivity
does not represent an explicit measure for solution quality in each case. In particular,
the minimum paid working time and the average paid time are input parameters
that can distort the resulting values of φ. If these parameters are too high, long and
unproductive duties might be generated to fit these values.
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Table 6: Results for Considered Real-World Networks I–XI

tCG tRMP OBJ STD LBBR GAPBR φ 1st

I 6.0 1.8 4.738 0.05 4.358 8.04 89.1
I* 6.0 3.0 5.121 0.09 4.700 8.23 87.5 •
II 6.0 4.2 2.718 0.17 2.563 5.68 88.3
II* 0.6 3.0 3.069 0.55 2.688 12.41 83.2
III 6.0 0.6 3.374 0.27 3.160 6.35 82.7 •
III* 6.0 3.0 3.758 0.32 3.465 7.81 79.4 •
IV 6.0 3.0 5.973 0.14 5.583 6.53 89.2 •
V 6.0 0.3 9.703 0.23 8.780 9.65 65.5 •
VI 6.0 3.0 10.099 0.72 8.830 12.61 88.8 •
VII 6.0 3.0 14.816 0.81 12.687 14.37 85.9 •
VIII 6.0 3.0 5.458 0.11 5.061 7.27 82.3 •
IX 6.0 3.0 14.087 5.83 12.168 13.62 88.7 •
X 6.0 3.0 19.693 0.70 - - 79.1 •
X* 6.0 3.0 21.338 0.70 - - 77.4 •
XI 6.0 3.0 12.205 0.61 - - 89.1 •

Notation: tCG: CPU time column generation in h; tRMP: CPU time RMP in h; OBJ: objective
function value in millions; STD: standard deviation in %; φ(%): productivity of solution from eq.

(19) in %; LBBR: lower bound in millions generated by BR; GAPBR: optimality gap in % based on

LBBR; 1st: a (heuristic) solution is obtained for the first time

If overlapping duties are required, these can also lead to distortion of the pro-
ductivity. Because only few trains run at night, avoiding longer interruptions by an
efficient change of trains is not always possible. For example, both factors apply to
network V. Nevertheless, high values of φ are indicators for good solutions. Addition-
ally, for each run of all instances, the over-fulfillment of attendance rates was lower
than 1%, which also proves the high efficiency of the gained solutions. Within a
time limit of 5 days and the use of up to 24 threads we were able to generate 12 of 15
valid lower bounds by solving BR for the instances shown in Table 6.1 Again the gap
is higher than 10% for three instances with uniform distribution (VI, VII and IX).
However, very high productivity values φ are achieved for these instances, so that it
can be guessed that the large gaps are caused by the rather weak lower bound.

Table 7 shows the results for the smaller networks XII–XIV. The actual approach
was able to find the same solutions as those gained by solving the URMP for each
instance, indicating that the optimal solution can be determined. If necessary, the
column generation approach was limited to the time used of the exact approach. The
gap based on BR (GAPBR) is in a similar range compared to Instances I-XI. Therefore
it can be expected that even for the very large instances results are obtained which
are closer to the optimal solution than the gap suggests. Note, that the presented
approach is also able to solve small instances to optimality with attendance rates less
than 100% as well (see Section 6.1).

In conclusion, it can be said that the presented approach finds optimal solutions
for small instances and performs very well for large instances, taking several practical
requirements into account. All tests presented in this section required an accumulated
net computing time of longer than two months.

1Note the very large problem sizes. BR(X): 48,127,462 variables; 6,610,369 constraints. BR(X*):
51,333,382 variables; 7,051,711 constraints. BR(XI): 49,835,222 variables; 6,489,146 constraints.
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Table 7: Results for Considered Real-World Networks XII-XIV

t OBJRMP LBURMP GAPURMP LBBR GAPBR

XII 0.4 1.620 1.620 0.00 1.490 7.99
XIII 0.2 3.101 3.101 0.00 2.997 3.38
XIV 1.1 2.324 2.324 0.00 2.193 5.60

Notation: t: CPU time of the presented approach in h; OBJRMP: objective value after solving
RMP in millions; LBURMP: lower bound after solving URMP in millions; GAPURMP: optimality
gap based on LBURMP; LBBR: lower bound after solving BR in millions; GAPBR: optimality gap
based on LBBR

6. Managerial insights for decision makers in the tender process

6.1. Cost effects of varying attendance rates

In this and in the following section, we discuss the effects that arise from the
consideration of attendance rates. The objective is to provide better insights into
the concept of attendance rates. Note that this section is interesting for different
stakeholders, including not only railway companies but also principals (i.e., federal
states or subsidiary transport associations). The latter defines the general conditions
(including attendance rates and uniform distribution) for the tendering process. Thus,
both sides can better estimate cost changes owing to modified conditions. First, we
analyze the influence of attendance rates on the total costs of the final schedule.

For the analyses, we manipulate the attendance rates of instances I–III and XII–
XIV. This manipulation is necessary because statements regarding the influence of
attendance rates can only be made if the same network is solved with different rates.
If several attendance rates occur, we unify them. This simplifies the interpretation of
the results immensely.

For the first issue, we start with the small instances XII–XIV because we can solve
these optimally. Figure 7 indicates the relation between costs and attendance rates
for these networks. The horizontal axis indicates the attendance rates. The vertical
axis shows the proportional costs in relation to the solution with attendance rates of
100% (g = 1).
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Figure 7: Progression of Objective Values with increasing Attendance Rates (small instances)

25



In the left graph, attendance rates less than 100% clearly lead to disproportionate
cost saving. For example, a halving of the attendance rate (100% to 50%) enables
cost savings of more than 50% because unproductive trips or trip combinations can
be avoided. In other words, those duties that meet the required attendance rates at
the lowest costs can be selected from the set of all possible duties.

In the right graph of Figure 7, this effect can also be clearly observed for attendance
rates higher than 100%. Thus, for example, a rate of 175% leads to less than 175%
of the cost compared to the 100% solution. In addition, the question arises as to
whether the solutions can be added, i.e., for example, whether the schedule of the
125% solution corresponds to the combination of the 100% solution and 25% solution.
Intuitively, such a combination would be expected, but the results allow for other
conclusions to be drawn. Because this is difficult to recognize in Figure 7, Figure
8 shows the results for the same test on networks I–III. The shape of the curves
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Figure 8: Progression of Objective Values with increasing Attendance Rates (large instances)

is analogous to Figure 7, but the bulge is more pronounced. Note that these are
heuristic solutions. The differences between the two sides become much clearer for
these instances. Based on the objective values, the 125% solution is clearly not the
addition of the 100% and the 25% solution. The final schedules show that this is due
to deadheads. Figure 9 gives an illustrative example.

7 8 9 10 11 12 13 14 15 16

A B E D A

F C B E F

Attended trip

Deadhead

Figure 9: Deadhead Example for g > 100%

Assuming the two duties shown are part of the 100% solution, then the second
one contains a deadhead. Note that it costs the same regardless of whether or not
the third trip is a deadhead (paid time does not change). For a solution with a rate
higher than 100% we can change this trip from deadhead to attended trip within
the same costs. Therefore, the value of the corresponding y-variable for this trip
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changes from one to two. However, the value of the left side of constraint (2) increases
automatically (

∑

k∈K

∑

i∈Mk
digyik). Thus, for the 125% example only less than

25% of the kilometers must be additionally attended. Consequently, less than 25%
of additional costs are incurred.

Additional cost-saving potential results from the fact that with rates higher than
100% duty combinations can also be chosen, which have mutually excluded themselves
with 100% because of the resulting deadheads.

6.2. Cost effects of less predictable schedules

In the second step, we conduct a more precise investigation on the influence of
the two definitions of uniform distribution. In general, it should be noted that both
variants only affect the solution at attendance rates less than 100%. For rates greater
than or equal to 100% every trip is still attended.
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Figure 10: Progression of Objective Values depending on Uniform Distribution

For the analysis, we solved networks I–III and XII–XIV with and without uniform
distributions for different attendance rates. Figure 10 shows the results. The illus-
tration on the left side are similar to those in Figure 7. However, the values are not
shown individually for each instance; instead, the average value was calculated. In
contrast to the previous figures, no structural differences that depend on the instance
size could be found here. Compared to the 100% solution, the impact on costs seems
small and only relevant for low rates. However, this presentation does not present the
interrelations with sufficient clarity.

The right side shows the results in relation to the solution without uniform dis-
tribution but at the same rate. In the range between 25% and 100%, cost increases
because of both types of uniform distribution are relatively moderate. Nevertheless,
absolute values correspond to considerable additional costs and must not be ignored
in practice. The lower the rate, the more extreme is the relative cost increase. The
variant in which each trip must be attended at least once always creates more costs
than the train-based rule. For example, one train contains an average of 2.7 trips
for the networks I–III. The trip-based rule forces each trip to be attended. For the
train-based rule, only one of each train is sufficient. The differences between both
variants increase with decreasing rates.
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At rates of 5%, the additional costs correspond to almost the same (train) or
double (trip) the original costs. At rates of 0%, the optimal solution without uniform
distribution is an empty schedule (no constraint requires an attended trip). Therefore,
the cost increase caused by uniform distribution is infinite.

Finally, in addition to the cost increases, uniform distribution represents a con-
siderable challenge for planners in practice. In an appropriate form, this can only
be dealt with through automated planning support, as is possible with the approach
presented.

7. Conclusions and Further Research

In this paper, we presented a highly sophisticated column generation approach for
solving multi-period CSPs, which is integrated into a running software and used by
DB Regio AG in practice. Further, we focused on the integration of several necessary
real-world requirements. To the best of our knowledge, these conditions have been
presented for the first time.

Moreover, the algorithm itself was accelerated by several adjustments. A holistic
consideration of the complete algorithm enabled us to achieve a better solution quality
within reasonable computation times at the tactical planning level. In addition, we
were able to solve some instances for the first time.

In the context of column generation, we also considered aspects in detail that have
rarely been discussed in the literature to date, such as creating an initial solution,
choosing a suitable setting for solving the rRMP, and distinct optimality gaps. The
proposed algorithm was exemplarily proven to be able to solve 24 real-world problems
in regional rail transport and is used successfully in practice. Additionally, small
instances were proven to be optimally solvable.

Finally, we provided valuable managerial insights into the mode of action of at-
tendance rates. Disproportionate cost savings were shown to be achievable with a
smaller attendance rate.

Nevertheless, several interesting directions remain for future research. First, as-
sessing the quality of the solution in terms of optimality for large instances would be
worthwhile. Because introducing and determining lower bounds (for large instances)
end in a complex optimization problem itself, implementing an exact approach for
solving the pricing problem is necessary. By disregarding the used time limits, an op-
timal solution may be obtained through this exact approach if the GA does not create
new duties anymore. Clearly, this approach would be considerably time consuming
and only for scientific interest.

For practical applications, the identification of a better termination criterion for
the column generation could be helpful. Specifically, convergence-based criteria seem
suitable. Furthermore, a detailed discussion on solving the RMP must be carried
out. In particular, heuristic solution approaches have to be investigated. Finally,
the proposed algorithm should be tested for larger networks or for a combination of
several networks. If necessary, integration into a decomposition approach is possible.
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Appendix A. Reduced multi periodic arc flow formulation

Generating a lower bound for crew scheduling problems is a very hard optimization
problem itself. Since the GA still generates new duties even after several days of
computing time in column generation, it seems to be impossible to reach a regular
end and get a lower bound this way. Therefore we solve a relaxation of the complete
problem modeled as multi-periodic arc flow formulation. The formulation is adapted
from Hoffmann and Buscher (2019) and extended to the multi-periodic approach by
generating a graph for each day of the planning horizon. Figure A.11 shows the
graphs for two consecutive days enabling overlapping duties. The trip arcs between
the gray marked nodes A and C represent the same trip which can be covered in both
graphs (i.e. by both days; black: previous day; gray: next day). Beside this we refer
to Hoffmann and Buscher (2019) for a detailed explanation of the graph.
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Figure A.11: Example graph with trip, source, sink, waiting and sink-source arcs

Further, Table A.8 shows the used notation. Again this is very similar to Hoffmann
and Buscher (2019). For generating lower bounds we can omit the node-related
resources.

Based on this notation we introduce a relaxation for the complete planning prob-
lem given by (A.1)–(A.21). As mentioned in Section 5.1 this corresponds to a reduced
formulation of Hoffmann and Buscher (2019) expanded to a multi-periodic approach.
Because of the strong similarity the following description is very briefly.

[BR]: min
∑

k∈K



cvar ·
∑

c∈C

ptck + cfix ·
∑

c∈C

∑

q∈Qk

∑

j∈Vk

xqjck



 (A.1)
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s.t. ptck ≥
∑

(i,j)∈Ak

tijxijck − (30uck + 15vck) ∀k ∈ K, c ∈ C

(A.2)

ptck ≥ tmin ·
∑

q∈Qk

∑

j∈Vk

xqjck ∀k ∈ K, c ∈ C

(A.3)
∑

k∈K

∑

(i,j)∈Fk

dijgkyijk ≥ g
∑

k∈K

∑

(i,j)∈Fk

dijgk ∀g ∈ D

(A.4)
∑

c∈C

xijck ≥ yijk ∀k ∈ K, (i, j) ∈ Fk

(A.5)

yijk ≥ xijck ∀k ∈ K, (i, j) ∈ Fk, c ∈ C
(A.6)

∑

h∈Vk:(h,i)∈Ak

xhick −
∑

j∈Vk:(i,j)∈Ak

xijck = 0 ∀k ∈ K, i ∈ Vk, c ∈ C

(A.7)
∑

(i,j)∈Rk

xijck ≤ 1 ∀k ∈ K, c ∈ C

(A.8)
∑

(i,j)∈Ak

tijkxijck ≤ tmax ∀k ∈ K, c ∈ C

(A.9)
∑

(i,j)∈Ak

sijkxijck ≤ smax ∀k ∈ K, c ∈ C

(A.10)
∑

(i,j)∈Ak

sijkxijck ≥ 361 · uck ∀k ∈ K, c ∈ C

(A.11)
∑

(i,j)∈Ak

sijkxijck − (smax − 360)uck ≤ 360 ∀k ∈ K, c ∈ C

(A.12)
∑

(i,j)∈Ak

sijkxijck ≥ 541 · vck ∀k ∈ K, c ∈ C

(A.13)
∑

(i,j)∈Ak∈K,

sijkxijck − (smax − 540)vck ≤ 540 ∀k ∈ K, c ∈ C

(A.14)
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∑

(i,j)∈Ak

bijkxijck ≥ 30 · uck ∀k ∈ K, c ∈ C

(A.15)
∑

(i,j)∈Ak

bijkxijck ≥ 45 · vck ∀k ∈ K, c ∈ C

(A.16)

xijck ∈ {0, 1} ∀k ∈ K, (i, j) ∈ Ak, c ∈ C
(A.17)

yijk ∈ {0, 1} ∀k ∈ K, (i, j) ∈ Fk

(A.18)

ptck ∈ R
+ ∀k ∈ K, c ∈ C

(A.19)

uck ∈ {0, 1} ∀k ∈ K, c ∈ C
(A.20)

vck ∈ {0, 1} ∀k ∈ K, c ∈ C.
(A.21)

Objective (A.1) minimizes the total costs of all duties over all days of the planning
horizon. The paid time ptck for each duty is calculated by constraint (A.2). To avoid
very short duties constraints (A.3) set a lower bound for ptck. Constraints (A.4)
ensure the coverage of the attendance rates. Constraints (A.5) and (A.6) are linking
constraints for variables xijck and yijk. The flow conservation for each duty is given
by constraints (A.7). Constraints (A.8) ensure that each conductor returns to the
crew base only once. The duty time and the protected working time are restricted to
the given limits by constraints (A.9) and (A.10). Constraints (A.11) set variable uck

to zero if no break is required. Constraints (A.12) cause the opposite if the protected
working time is bigger than 6 hours. Constraints (A.13) and (A.14) are used for a 45
minute break analogously. If a break is required, constraints (A.15) and (A.16) ensure
that enough time is available. Finally constraints (A.17)–(A.21) state the domains.
Note for generating a lower bound the binary constraints are relaxed and we solve
the linear program only.

The average paid time (see constraints (9) and (10)) and two positioning rules
for breaks during a duty are not considered in this formulation. The first prohibits
breaks within the first and last two hours of a duty. The second requires a break
after no more than 6 hours of protected working without a break. Both are modeled
by Hoffmann and Buscher (2019) in detail. The average paid time constraints link
all x variables in two constraints. The positioning rules require the tracking of accu-
mulated resources variables across all nodes of the graph for each duty. Since both
makes solving of the arc flow formulation considerably more difficult we relax these.
The resulting lower bounds are valid because not considering them leads to a decrease
of the bound (i.e., the minimum required costs are underestimated). Note, that the
consideration of the positioning rules are not mentioned explicitly in Section 3, be-
cause it is only a additional feasibility check in the GA without novelty. Nevertheless
both are considered during the hybrid solution approach.
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The optional constraints for both types of uniform distribution are given by con-
straints (A.22) and (A.23).

∑

(i,j,k)∈Tm

yijk ≥ 1 ∀m ∈ M (A.22)

∑

(i,j,k)∈Tz

yijk ≥ 1 ∀z ∈ Z (A.23)

All other optional constraints described in Section 3.2 (e.g. crew base capacity) are
not considered for generating lower bounds. Obviously a consideration in future ap-
proaches would further improve it. Some networks require a minimum break time of
30 minutes without interruptions. Again this is not mentioned explicitly in Section
3, because it is only a additional feasibility check in the GA without novelty. Never-
theless it is considered during the hybrid solution approach. For generating a lower
bound this can be modeled by constraints (A.24).

∑

(i,j,k)∈Ak:bijk≥30

xijck ≥ uck ∀ ∈ M (A.24)

Finally we adapt three valid inequalities for the multi periodic formulation: sym-
metrie breaking constraints, prohibiting the use of parallel arcs and preassigning 100%
trips to conductors (Constraints (47), (49) and (50) in Hoffmann and Buscher (2019)).
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Table A.8: Sets and parameters

Sets Parameters
K periods (days) dijgk distance of trip arc (i, j) with rate
M trips g on day k

Tm trip arcs of all days of trip m tijk duty time of arc (i, j) on day k

Tz trip arcs of all days of train z sijk protected working time of arc (i, j)
Vk nodes on day k on day k

Qk sources on day k bijk possible break time of arc (i, j)
Sk sinks on day k on day k

Ak arcs on day k tmin minimum paid time
Fk trip arcs on day k tmax maximum duty time
Rk sink-source arcs on day k smax maximum protected working time

C set of conductors cfix fixed costs per duty
D set of attendance rates cvar variable costs per minute

Decision variables

xijck =

{

1, if conductor c uses arc (i, j) on day k,

0, otherwise

yijk =

{

1, if trip arc (i, j) is in solution on day k,

0, otherwise

uck =

{

1, if protected working time of conductor c is > 360 on day k,

0, otherwise

vck =

{

1, if protected working time of conductor c is > 540 on day k,

0, otherwise

ptck paid time for conductor c on day k

Appendix B. Evaluation of Improvements of the Solution Approach

Figure B.12 illustrates the results for testing the extensions of our column genera-
tion approach separately from each other. Setting Ext1 represents the basic approach
of Hoffmann et al. (2017) extended by the general adjustments of the column genera-
tion framework only (see Section 4.1). Settings Ext2 and Ext3 represent this approach
with the adjustments for creating an initial solution (see Section 4.2) and solving the
pricing problem (see Section 4.3). We also consider the proposed approach (a combi-
nation of all extensions). The figure shows extension-wise resulting objective values
of 10 runs for each instance.

The algorithm of Hoffmann et al. (2017) as well as the extensions Ext1 and Ext3
are not able to generate feasible initial solutions for all networks. For networks I*
and III*, not all trips could be scheduled in blocks to meet constraints (11). For
network III, this applies for constraints (2) with g = 100%. These results are marked
with t-inf. This clarifies that the initial solution procedure (Ext2) is essential to be
able to solve real-world networks. In addition, this improves the solution quality for
those instances where a comparison is possible (I, II, II*). The extensions of Section
4.1 (Ext1) seem most effective for solving instances requiring uniform distribution,
see e.g. network II*. Although at this point the statement is only supported by one
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Notation: OBJ : objective function value in millions; t-inf: trip infeasibility, see Section 4.2.1
Note: An outlier was not displayed for Ext1 on instance III* (OBJ = 9.8).

Figure B.12: Comparison of Improvements

instance, we were able to observe this effect for many real-world instances during the
cooperation with DB Regio AG. These adjustments speed up the process of solving
the rRMP, whereby a significant higher number of iterations can be achieved. This
results in lower objective values for instances with uniform distribution. In contrast,
only convergence is accelerated for instances without uniform distribution. Although
the GA improves the solution for several instances significantly (Ext3), it does not
seem to be a stand-alone improvement. This is because the performance of the GA
depends on the quality of the initial solution.

Table B.9 shows the average computing times for each algorithm. It should be
noted that faster computing times can only be observed with the combined consider-
ation of all three extensions. This applies to both column generation and solving the
RMP. The individual extensions accelerate the solution only for individual instances.
In general, the combination of all three extensions achieves the best results for all
networks. At this point, it can be observed that the improvements work very well.
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Table B.9: Average Computing Times - Algorithm Extensions

H Ext1 Ext2 Ext3 A
CPU

CG

CPU

RMP

CPU

CG

CPU

RMP

CPU

CG

CPU

RMP

CPU

CG

CPU

RMP

CPU

CG

CPU

RMP

I 2.6 1.9 2.2 1.8 2.3 0.6 3.7 2.5 2.3 0.8
I* - - - - 6.0 3.0 - - 6.0 3.0
II 4.7 1.5 4.9 1.0 2.6 1.0 5.5 0.9 4.6 0.1
II* 6.5 3.0 3.4 3.0 2.2 3.0 6.3 3.0 0.6 2.8
III - - - - 6.0 0.2 - - 3.9 0.0
III* - - - - 6.0 3.0 - - 6.0 3.0

Notation:
CPU

CG
: CPU time column generation in hours; CPU

RMP
: CPU time

integer RMP in hours; H: Hoffmann et al. (2017); A: Actual Approach.
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