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Abstract

Recent research in the field of Description Logic (DL) investigated the complexity of the satisfi-
ability problem for description logics that are obtained by enriching the well-known DLALCQ
with more complex set and cardinality constraints over role successors. The algorithms that have
been proposed so far, despite providing worst-case optimal decision procedures for the concept
satisfiability problem (both without and with a terminology) lack the efficiency needed to obtain
usable implementations. In particular, the algorithm for the case without terminology is non-
deterministic and the one for the case with a terminology is also best-case exponential. The goal
of this thesis is to use well-established techniques from the field of numerical optimization, such as
column generation, in order to obtain more practical algorithms. As a starting point, efficient ap-
proaches for dealing with counting quantifiers over unary predicates based on SAT-based column
generation should be considered.
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1 Introduction

Description Logics (DLs) [4] are a class of logic-based formalisms for knowledge representation.
They are used as specification languages for ontologies in several areas of application, for example
in medicine [18]. The information defined in a DL about a particular domain of discourse is built
upon predicates that describe classes of features with concept names and relationships between
elements in the ontology using role names. A description of an element is then obtained as a
Boolean combination of these predicates, resulting in a formal concept.

For example, the concept of a pizza that has at least a topping that is a vegetable and has no
pineapple on it can be formalized by the concept description

Pizza ⊓ ∃topping.Vegetable ⊓ ∀ingredient.¬Pineapple,

which uses the concept names Pizza, Vegetable and Pineapple and the role names topping and
ingredient, together with the concept constructors conjunction (⊓), negation (¬), existential re-
striction (∃r.C) and value restriction (∀r.C).

Qualified number restrictions, introduced in the well-studied DLALCQ [4], enable the spec-
ification of quantitative characteristics in a DL. In their simplest form, these restrictions convey
information about the number of role successors of an individual, together with the description
that captures those successors. For instance, the concept of a light and tasty pizza, intended as a
pizza with at least three ingredients but at most two meat-based ingredients, can be formalized as

Pizza ⊓ (≥ 3 ingredient. ⊤) ⊓ (≤ 2 ingredient. Meat)

The class of constraints over role successors that are expressible in the logic QFBAPA [15], en-
compassing the ones expressible in ALCQ, has been first introduced in the field of Description
Logics with the DLALCSCC [2]. In this setting, the constraints are generalized and defined us-
ing arbitrary Boolean combinations of role and concept names; inALCQ, the number restrictions
have a clear syntactic form that, for instance, prevents one from encoding information about the
relationships between different role names. An example of a concept that can be expressed using
the constructors ofALCSCC is

Pizza ⊓ succ(preparedBy ⊆ ¬eatenBy) ⊓ succ(|topping ∩ Vegetable| = |topping ∩ Meat|)

which states that every pizza described by this concept is not eaten by any person that prepared it
and that it has the same number of meat-based and plant-based toppings.

The complexity of reasoning in the DL ALCSCC has been studied in [2]. In particular, the
problem of concept satisfiability — checking whether there are individuals that can be categorized
using a given concept description — has been thoroughly analyzed. The case where concept satis-
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1 Introduction

fiability is tested without a supporting terminological knowledge base (also called TBox) has been
classified as a PSpace-complete problem. This is a positive result, because it shows that although
the DLALCSCC is more expressive thanALCQ, the reasoning complexity remains unchanged
— ALCQ concept satisfiability without a TBox is also PSpace-complete [4]. However, the al-
gorithm devised in [2] is not suitable for practical purposes. One reason is that its specification
employs several forms of non-deterministic guessing during its execution.

The idea of applying efficient and proven methods to deploy quantitative reasoning in DLs
with quantified number restrictions is not a novel one and has already been investigated using dif-
ferent methodologies. Promising solutions involve resorting to SAT/SMT solvers to optimize the
search phase of the reasoner [12] or to use well-established techniques from the field of Integer Lin-
ear Programming (ILP) [7] in order to generate solutions to the given satisfiability problem [14].

A prominent technique used to solve problems in ILP is column generation [6], a method for
solving large integer linear systems by restricting the focus on a small subset of the columns of the
original coefficient matrix and incrementally adding columns by means of an oracle, halting when
an optimal solution is found. This technique has been successfully applied to reasoning services
for several logics; among these logics is the first-order fragment of counting quantifiers over unary

predicates [11], where satisfiability of a formula has been shown to be equivalent to find an integral
and non-negative solution to a linear system of inequalities over a 0/1 coefficient matrix.

We reference [2] and [11] as the works that sparked interest in the topics developed in this the-
sis; most of the references that are cited throughout this work originate from these publications.
Starting from the DL ALCSCC defined in [2] and the application of column generation tech-
nique to the problem of CQU formula satisfiability illustrated in [11], the goal of this thesis is to
come up with an algorithm to decide concept satisfiability in a variant ofALCSCC, replacing the
theoretically correct but practically inefficient algorithm given in [2] with a decision procedure
that is efficient for practical purposes, employing the column generation technique.

Outline. In Chapter 2 we define some elementary notions and terminology, mainly related to
Description Logics and Integer Linear Programming, to establish a background to develop upon
in the next chapters. In particular, we take a look at two existing DLs,ALCQ andALCSCC, that
enable quantitative reasoning over role successors and enunciate some of their relevant properties.

In Chapter 3 we introduce a new DL, calledALCCQU , initially defined as a syntactic restric-
tion ofALCSCC. Throughout the chapter, we define a bisimulation that characterizes concept
descriptions of a DL that is equivalent to ALCCQU , called ALCQt, to then provide a model-
theoretic characterization ofALCQt as a first-order fragment that is invariant under the newly-
defined bisimulation. After that, we classify the DLsALCQ,ALCCQU andALCSCC according
to their relative expressive power. Finally, we show thatALCCQU possesses a precise characteri-
zation as the first-order fragment ofALCSCC, completing our inquiry into the theoretical prop-
erties ofALCCQU .

In Chapter 4 we present the first-order fragment CQU [11] and we describe how the column
generation technique is employed to solve a linear system of inequalities. After that, we propose an
algorithm forALCCQU concept satisfiability that combines column generation with the branch-
and-bound method for linear programming, adapting the approach taken in [11]. We show that
the algorithm that we propose is correct and terminating. We briefly conclude by delving into
complexity-related considerations for the designed decision procedure.
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2 Preliminaries

Before defining the logic ALCCQU , we provide some preliminary knowledge that is going to
be used throughout Chapter 3 and Chapter 4. We begin by setting the terminology regarding
first-order logic and ILP [7]. For first-order logic, we also mention the class of ω-saturated inter-
pretations [8], subject of Section 3.3. After that, we provide the definition of the DLALCQ [4],
together with the notion of counting bisimulation [16] that can be used to prove properties about
the expressive power of extensions ofALCQ. Finally, we present the DLALCSCC that strictly
extendsALCQwith expressive role successor constraints [2] and we mention results related to the
complexity of reasoning in this setting and the relative expressive power with respect toALCQ.

2.1 First-order logic

We assume a basic knowledge of the following concepts: propositional formula, truth assignment,
first-order formula, interpretation, variable assignment, model, satisfiability, tautology. Other-
wise, the reader is referred to any introductory textbook on propositional and first-order logic,
such as [9]. In this section, we introduce definitions and results that are relevant in further sec-
tions and that are not considered as background knowledge.

IfF is a propositional formula, we denote with µ a truth assignment and with µ |= F the fact
thatµ is a model ofF . Similarly,φ stands for a first-order formula — we omit the variables, where
unnecessary —, I = ⟨∆I , ·I⟩ for a first-order interpretation, {x1/d1, . . . , xn/dn} for the truth
assignment that maps the variable xi to di ∈ ∆I for i = 1, . . . , n and I, {x/d} |= φ(x) if I is
a model of φ(x) under the truth assignment {x/d}.

In Section 3.3 we prove that the newly-introduced DLALCCQU defined in Chapter 3 has a
precise characterization as a fragment of first-order logic. To do so, we rely on some fundamental
results, mentioned here.

Theorem 1 (Compactness theorem). A set of first-order formulae Γ is satisfiable if and only if

every finite subset of Γ is satisfiable.

Definition 1. An interpretation I is ω-saturated if for every set of first-order formulae Γ where
only finitely many individuals from ∆I appear as constants,

if every finite subset of Γ is realizable, then Γ is realizable.

Theorem 2 ([8]). For every interpretation I there exists an interpretation I ′ that is ω-saturated

and satisfies the same first-order sentences as I .
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2 Preliminaries

2.2 Linear Programming

The branch of mathematical optimization called Integer Linear Programming (ILP) [7] studies
methods and algorithms that are used to find optimal solutions to problems in linear algebra.
Here, we set the basic terminology used in Chapter 4 in the development of an algorithm to decide
ALCCQU concept satisfiability.

The linear programming problem. Given a cost vector c = (c1, . . . , cn), a sequencex =
(x1, . . . , xn) of decision variables and a set of linear inequalities over x1, . . . , xn represented by
the linear system Ax ▷◁ b with b = (b1, . . . , bm) and A a m × n matrix, the associated linear
programming problem — also called primal problem — is

minimize c′ · x
subject to A · x ▷◁ b and x ≥ 0

(2.1)

where c′x =
∑︁n

i=1 cixi is the cost function of the problem. If the vector x satisfies all the con-
straints of the problem it is called a feasible solution; the set of all feasible solutions is called feasible

set. A feasible solution that minimizes the cost function is called a optimal solution. Given the vec-
tor ▷◁ of m inequalities where ▷◁i∈ {≤,≥} for i = 1, . . . ,m, we denote with ▷◁−1 the vector
obtained by switching the inequalities contained in ▷◁.

The dual problem associated toA, b and c is

maximize z′ · b
subject to z′ ·A ≤ c′ and z ▷◁−1 0

(2.2)

where z = (z1, . . . , zm) is the vector of price variables; a vector z satisfying the constraints
of (2.2) is called adual solution of (2.1).

If we additionally require that x is a vector of integers, (2.1) becomes an instance of an Integer

Linear Programming (ILP) problem. Given an ILP problem, a vector x is a relaxed solution if it
satisfies all the constraints but some of its values are non-integral.

Solving a linear program. There are many well-established techniques to solve integer lin-
ear programs, in both settings where feasibility or optimality of a solution are required. In Sec-
tion 4.2 we take a look at column generation [6], a method used in solving integer linear programs
that focuses only on a small subset of the problem, in order to generate optimal solutions. The
explanation of other techniques, such as the simplex method, can be found in [7].

2.3 The description logicALCQ

The description logicALCQ [4] is an extension of the well-known DLALC with qualified num-

ber restrictions, that allow to state basic quantitative knowledge about the role successors of a given
individual.
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2.3 The description logicALCQ

Example 1. In ALCQ, it is possible to state that an individual that is a parent has at least two
daughters and at most one son. The syntactic expression that defines such a concept is

Parent ⊓ (≥ 2 hasChild. Female) ⊓ (≤ 1 hasChild. Male).

We briefly introduce the syntax of ALCQ together with its semantics. After that, we cite a
result from [16] stating that two individuals that can be related by means of a binary relation
called counting bisimulation [16] are equivalent under ALCQ, that is, they are described by the
same concepts. We can use this equivalence relation to relate the expressive power of ALCQ to
that of other DLs.

Syntax and semantics ofALCQ. Given disjoint finite setsNC andNR of concept names
and role names, respectively, the set ofALCQ concept descriptions is defined inductively:

• Every concept name inNC is aALCQ concept description;

• If C , D are ALCQ concept descriptions, r is a role name in NR and n ≥ 0 is a natural
number, then ¬C (negation), C ⊔ D (disjunction), C ⊓ D (conjunction), (≥ n r. C)
and (≤ n r. C) (qualified number restrictions) areALCQ concept descriptions.

We define the semantics ofALCQ using the notion of an interpretation. An interpretation I
consists of a non-empty set ∆I called domain and a function ·I that maps every concept nameA
to a set AI ⊆ ∆I and every role name r to a binary relation rI ⊆ ∆I ×∆I . This function is
then extended toALCQ concept descriptions as follows:

• (¬C)I := ∆I \ CI , (C ⊔D)I := CI ∪DI and (C ⊓D)I := CI ∩DI ;

• (≥ n r. C)I := {x ∈ ∆I |
⃓⃓
{y ∈ ∆I | (x, y) ∈ rI}

⃓⃓
≥ n}

• (≤ n r. C)I := {x ∈ ∆I |
⃓⃓
{y ∈ ∆I | (x, y) ∈ rI}

⃓⃓
≤ n}

Given aALCQ concept descriptionC , we say thatC is satisfiable if there exists an interpretationI
such thatCI ̸= ∅— notation I |= C . TwoALCQ concept descriptionsC andD are equivalent

— notationC ≡ D — ifCI = DI holds for every interpretation I .

Counting bisimulation. As mentioned before, it is possible to state results about the ex-
pressive power ofALCQ with respect to another description logic by means of counting bisimu-

lation [16]. In particular, we are going to use the results of this paragraph to show that the DL
ALCCQU , introduced in Chapter 3, is more expressive thanALCQ, in Section 3.4.

Definition 2. Let I1 and I2 be interpretations. The relation ρ ⊆ ∆I1 × ∆I2 is a counting

bisimulation between I1 and I2 if

1. d1 ρ d2 implies

d1 ∈ AI1 if and only if d2 ∈ AI2

5



2 Preliminaries

for all d1 ∈ ∆I1 , d2 ∈ ∆I2 andA ∈ NC .

2. if d1 ρ d2 andD1 ⊆ rI1(d1) is finite for r ∈ NR, then there is a setD2 ⊆ rI2(d2) such
that ρ contains a bijection betweenD1 andD2.

3. if d1 ρ d2 andD2 ⊆ rI2(d2) is finite for r ∈ NR, then there is a setD1 ⊆ rI1(d1) such
that ρ contains a bijection betweenD1 andD2.

The individuals d1 ∈ ∆I1 and d2 ∈ ∆I2 are ALCQ-bisimilar — notation (I1, d1) ∼ALCQ
(I2, d2)— if there is a counting bisimulation ρ betweenI1 andI2 such that d1 ρ d2 andALCQ-

equivalent — notation (I1, d1) ≡ALCQ (I2, d2) — if for all ALCQ concept descriptions C ,
d1 ∈ CI1 if and only if d2 ∈ CI2 .

Theorem 3. If (I1, d1) ∼ALCQ (I2, d2) then (I1, d1) ≡ALCQ (I2, d2).

Proof. Omitted. For details, refer to [16].

2.4 ExtendingALCQwith expressive role successor
constraints

The DL ALCSCC has been first presented in [2] as an extension of ALCQ that allows to ex-
press constraints over role successors of an individual using formulae in the logic fragment QF-
BAPA [15] with structural restrictions. We briefly introduce the logic QFBAPA and the DL
ALCSCC, together with relevant results forALCSCC concept satisfiability proved in [2].

2.4.1 The logic QFBAPA

The role successor constraints of ALCSCC are expressible in a syntactic restriction of the logic
fragment of Quantifier-Free Boolean Algebra with Presburger Arithmetic (QFBAPA) that allows
one to build set terms as Boolean combinations over a finite set of symbols and to impose set and
cardinality constraints expressed in Presburger arithmetics over these terms.

Set and cardinality terms. Given a finite set of symbols T with {∅,U} ∩ T = ∅, the set

terms over T are inductively defined as follows:

1. ∅ (empty set) and U (universe) are set terms over T ;

2. all the symbols in T are set terms over T ;

3. if s, t are set terms over T then s∪ t (union), s∩ t (intersection) and sc (complement) are
set terms over T .

The cardinality terms (or Presburger expressions) over T are inductively defined as follows:

1. every element of N is a cardinality term;

2. if s is a set term over T then |s| is a cardinality term over T ;

3. if k, ℓ are cardinality terms over T then k+ ℓ (sum) andN · ℓ (multiplication by constant)
are cardinality terms over T , withN ∈ N a natural number.

6



2.4 ExtendingALCQ with expressive role successor constraints

Constraints and solutions. Set constraints over T are assertions of the form s ⊆ t, s = t
or their negation for set terms s, t overT . Cardinality constraints overT are assertions of the form
k = ℓ, k > ℓ, k ≥ ℓ and their negation orNdvdk — which expresses the fact that k is a multiple
of N — for cardinality terms k, ℓ and N a natural number. A QFBAPA formula consists of a
Boolean combination of set and cardinality constraints.

An interpretationI = (∆I , ·I) overT consists of a non-empty domain set∆I and a mapping
·I that assigns the set ∅I = ∅ to the symbol ∅, a finite setUI ⊆ ∆I to the symbolU and a subset
σI ⊆ UI to each set symbol σ in T . We extend this mapping to set terms and cardinality terms
as follows:

1. (s ∪ t)I = sI ∪ tI , (s ∩ t)I = sI ∩ tI and (sc)I = UI \ sI ,

2. |s|I =
⃓⃓
sI
⃓⃓
,

3. (k + ℓ)I = kI + ℓI and (N · ℓ)I = N · ℓI .

The mapping ·I satisfies:

1. the set constraint s ⊆ t if sI ⊆ tI and its negation if sI ̸⊆ tI ;

2. the set constraint s = t if sI = tI and its negation if sI ̸= tI ;

3. the cardinality constraint k ≤ ℓ if kI ≤ ℓI and its negation if kI > ℓI ;

4. the cardinality constraint k < ℓ if kI < ℓI and its negation if kI ≥ ℓI ;

5. the cardinality constraint k = ℓ if kI = ℓI and its negation if kI ̸= ℓI ;

6. the divisibility constraint Ndvdk if there exists a natural number M ≥ 0 such that kI =
N ·M .

The interpretation I satisfies the QFBAPA formula φ if it satisfies the Boolean combination
of set and cardinality constraints contained in it.

As we are going to show in the next subsection, inALCSCC one can express constraints over
role successors as a finite conjunction of QFBAPA set and cardinality constraints over a set of
symbols related to role and concept names.

2.4.2 The description logicALCSCC

We give a definition of the DLALCSCC diverging from the original given in [2] for some aspects.
The original definition allowed divisibility constraints, whereas the one reported here is restricting
to set and cardinality comparison constraints. On the other hand, we allow infinite cardinalities in
the semantics of non-constant cardinality terms. In a later paragraph, we show how the interaction
between divisibility constraints and infinity raises issues, related to the ability of specifying the
very strong property that an individual has only finitely many role successors. Finally, we lift the
assumption that every individual in the domain of an interpretation must have only finitely many
successors.

7



2 Preliminaries

Syntax ofALCSCC. Given a countable setNC of concept names and a finite setNR of role
names that are disjoint, the set ofALCSCC concept descriptions over the signature (NC , NR) is
inductively defined as follows:

1. every concept name inNC is anALCSCC concept description;

2. ifC ,D areALCSCC concept descriptions, then so areC ⊓D,C ⊔D and ¬C ;

3. if c is a set or cardinality constraint, different from a divisibility constraint, over a finite set
of symbols containing role names andALCSCC concept descriptions, then succ(c) is an
ALCSCC concept description.

The symbols⊤ (top) and⊥ (bottom) are introduced as abbreviations forA ⊔ ¬A andA ⊓ ¬A,
withA ∈ NC .
Example 2. InALCSCC we can describe an individual that is a parent and has the same number
of sons and daughters, by using the concept description

C := Parent ⊓ succ(|hasChild ∩ Male| = |hasChild ∩ Female|).

Differently from the definition of ALCSCC given in [2], we do not assume that the set of
concept names is finite. However, we still require that the set of role namesNR is finite, in order
to be able to specify the semantics ofALCSCC as intended.

Natural numbers and infinity. We are not interested in distinguishing cardinalities of
infinite sets from one another. Therefore, we consider the set N∞ := N ∪ {∞} of natural
numbers extended with the infinity∞, which satisfies the following axiom schemata, for all n ∈
N:

n+∞ =∞+ n =∞, n · ∞ =∞ · n =∞,
∞+∞ =∞ ·∞ =∞, n <∞.

Hereafter, we assume that the cardinality mapping |·|maps set terms to values in N∞.

Semantics of ALCSCC. An interpretation I of NC and NR consist of a non-empty set
∆Icalled domain and a mapping ·I that maps every concept name A ∈ NC to a set AI ⊆ ∆I

and every role name r ∈ NR to a binary relation rI over ∆I . For a given individual d ∈ ∆I , we
denote the set of its r-successors in ∆I by rI(d).

The mapping ·I is inductively extended toALCSCC concept descriptions as follows:

• (C ⊓D)I := CI ∩DI , (C ⊔D)I := CI ∪DI and (¬C)I := ∆I \ CI ;

• succ(c)I := {d ∈ ∆I | Id satisfies c}, where Id is an interpretation over set terms such
that

∅Id := ∅, ∆Id = UId :=
⋃︂
r∈NR

rI(d), CId := CI ∩ UId , rId := rI(d)

for allALCSCC concept descriptionsC and role names r occurring in c.

8



2.4 ExtendingALCQ with expressive role successor constraints

The interpretation Id is well-defined: indeed, we can assume by induction that CI is already
defined for every concept description C occurring in c. For every interpretation I , it holds that
⊤I = ∆I and⊥I = ∅I . Differently from [2], the set UId is not guaranteed to be finite.

Divisibility constraint and infinity. The definition of the DLALCSCC in [2] allows
to specify divisibility successor constraints of the form

succ(N dvd k)

where N is a natural number and k is a cardinality term; such a term is satisfied by I if kI is
divisible by N . The extension of natural numbers with infinity poses a substantial issue: is the
infinity odd, even, both or neither? We can surely exclude that∞ has a specific parity: if∞ was
even (resp. odd), then∞ + 1 would be odd (resp. even), but∞ = ∞ + 1, therefore∞ would
also be odd (resp. even). If∞ was assumed to be both odd and even, we would be able to state
that a concept description has only finitely many role successors using

finite := ¬ succ(2 dvd |U|) ⊔ ¬ succ(3 dvd |U|)

as an additional conjunct. Similarly, if∞ was assumed to be neither odd nor even, the concept
description

finite := succ(2 dvd |U|) ⊔ succ(3 dvd |U|)

would enforce every individual in every interpretation of finite to have only finitely many role
successors.

Expressive power. The ability to state constraints over role successors using QFBAPA for-
mulae strictly increases the expressive power ofALCSCC with respect toALCQ. This is proved
in [2], showing that the concept description succ(|r| = |s|) has no equivalentALCQ concept.
In Section 3.4, we provide a proof based on the use of counting bisimulation to show that both
the DLsALCSCC andALCCQU (defined in Chapter 3) are strictly more expressive thanALCQ.

Concept satisfiability inALCSCC The complexity of the concept satisfiability problem
inALCSCC without a TBox has been exactly determined in [2].

Theorem 4. The problem of checking satisfiability ofALCSCC concept satisfiability is PSpace-

complete.

Proof. Omitted. For details, refer to [2].

The proof given in [2] relies on the assumption that the setUI is finite for every interpretation
I of a QFBAPA formula; this condition is met in the original definition of ALCSCC. Under
this hypothesis, one can leverage the following result about the Venn regions over the variables of
a QFBAPA formula φ — if X1, . . . , Xk are the variables occurring in φ, a Venn region is a set
term of the formXp1

1 ∩ · · · ∩X
pk
k , whereXpi

i is eitherXi orXc
i .
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2 Preliminaries

Lemma 1. For every QFBAPA formulaφ, one can compute in polynomial time a numberN whose

value is polynomial in the size of φ such that if σ is a solution of φ, then there exists a solution σ′ of

φ satisfying ⃓⃓
{v | v Venn region, σ′(v) ̸= 0}

⃓⃓
≤ N,

{v | v Venn region, σ′(v) ̸= 0} ⊆ {v | v Venn region, σ(v) ̸= 0}.

The condition of applicability of Lemma 1 is not met in our definition ofALCSCC: the uni-
verse set UId of role successors of an individual d under an interpretation I is not required to be
finite, whereas the semantics of QFBAPA requires that the universe is mapped to a finite set under
every interpretation. We recall that if restrict the attention to models with a finite domain, this
condition is trivially verified.

Practical reasoning in ALCSCC. While the algorithm proposed in [2] establishes im-
portant complexity results and provides a worst-case optimal decision procedure for ALCSCC
concept satisfiability without a knowledge base, it lacks the practical efficiency that is desirable in
order to obtain a usable implementation. In particular, the algorithm relies on non-deterministic
operations, such as guessing a truth assignment and guessing the polynomial number of Venn
regions mentioned in Lemma 1.

In the next chapter, we restrict our attention to a sublogic of ALCSCC, called ALCCQU ,
where the only cardinality constraints that can be used in role successor constraints are those of
the form k ≤ N , k = N and k ≥ N (or their negation) with k a complex cardinality term and
N ≥ 0 a natural number. We develop a model-theoretic characterization ofALCCQU as a spe-
cific fragment of first-order logic and we show that its expressive power is placed betweenALCQ
andALCSCC. Finally, we show thatALCCQU can be characterized as a particular fragment of
ALCSCC, namely, the fragment ofALCSCC that is within first-order logic.

10



3 The description logicALCCQU
In this chapter, we focus our attention to a restriction ofALCSCC calledALCCQU . As explained
at the end of Chapter 2, the DLALCCQU is obtained by restricting the form of the admissible
role successor constraints. Throughout the chapter, we are going to show that such a restriction
provides some interesting properties; the most interesting one is that ALCCQU can be embed-
ded into first-order logic using an appropriate translation, whereas there are ALCSCC concept
descriptions that are beyond first-order logic. At the end of this chapter, we show thatALCCQU
has an exact characterization as the first-order fragment ofALCSCC.

Syntax and semantics of ALCCQU . Given a countable set NC of concept names and a
finite set NR of role names that are disjoint, the set of ALCCQU concept descriptions over the
signature (NC , NR) is inductively defined as follows:

1. every concept name inNC is anALCCQU concept description;

2. if C , D are ALCCQU concept descriptions, then so are C ⊓ D (conjunction), C ⊔ D
(disjunction) and¬C (negation);

3. if c is a set constraint or a cardinality constraint of the form k = N , k > N or k ≥ N or
their negation, with k a cardinality term over a finite set of symbols containing role names
andALCCQU concept descriptions andN ∈ N, then succ(c) (role successor constraint)
is anALCCQU concept description.

Hereafter, where the context makes it clear, we refer to the set terms defined over role names and
ALCCQU concept descriptions simply as set terms.
Example 3. InALCCQU we can describe an individual that is a parent and whose children are
not living with their parents, using the concept description

C := succ(|hasChild ∩ livesWith| = 0).

In Section 3.4 we show (using different role names) that this concept description cannot be ex-
pressed inALCQ.

The semantics of ALCCQU in terms of an interpretation I is defined in the same way as
the semantics of ALCSCC in Section 2.4, restricted to the cardinality constraints appearing in
ALCCQU .

3.1 A normal form forALCCQU
In this section, we define a method to reduceALCCQU role successor constraints to a specific syn-
tactic form, that is, we prove that every set and cardinality constraint can be equivalently expressed

11
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using only cardinality constraints of the form |s| ≥ N or |s| ≤ N where s is a set term andN a
natural number. This transformation can be used to restrict our algorithm forALCCQU concept
satisfiability, introduced in Chapter 4, to only deal with role successor constraints containing car-
dinality constraints of the form mentioned above. Moreover, we can push the negation symbols
in the input concept description so that they only appear in front of atomic concept names. IfC
is the concept description of interest, the concept nf(C) obtained by applying exhaustively these
transformations is called itsALCCQU -normal form.

Definition 3. AALCCQU concept descriptionC is inALCCQU -normal form if negation sym-
bols only appear in front of concept names occurring inC and each role successor constraint oc-
curring inC contains a cardinality constraint of the form |s| ≤ N or |s| ≥ N withN a natural
number and s a set term.

BringingALCCQU concepts to normal form. It is possible to replace everyALCCQU
role successor constraint with a restricted form, as suggested at the beginning of this section.

Set constraints can be replaced by cardinality constraints using the rules induced by the follow-
ing equivalences:

succ(s ⊆ t) ≡ succ(|s ∩ tc| = 0), (3.1)
succ(s = t) ≡ succ(s ⊆ t) ⊓ succ(t ⊆ s). (3.2)

We adopt the following replacement rules to convert general cardinality constraints to expres-
sions of the form k ≥ N or k ≤ N :

succ(k > N)⇝ succ(k ≥ N + 1) (3.3)
succ(k < N)⇝ succ(k ≤ N − 1) (3.4)
succ(k = N)⇝ succ(k ≥ N) ⊓ succ(k ≤ N) (3.5)
succ(k ̸= N)⇝ succ(k ≥ N + 1) ⊔ succ(k ≤ N − 1) (3.6)

succ(
∑︁M

i=1ki ▷◁ N)⇝
⨆︂
{
dM
i=1 succ(ki ▷◁ Ni) |

∑︁M
i=1Ni = N} (3.7)

succ(M · k ▷◁ N)⇝ succ(
∑︁M

i=1k ▷◁ N) with ▷◁ ∈{≤,≥} (3.8)

Finally, we employ the following rules to ensure that the negation symbol only appears in front
of concept names:

¬(C ⊓D)⇝ ¬C ⊔ ¬D, ¬(C ⊔D)⇝ ¬C ⊓ ¬D, ¬¬C ⇝ C (3.9)
¬ succ(k ≤ N)⇝ succ(k ≥ N + 1), ¬ succ(k ≥ N)⇝ succ(k ≤ N − 1) (3.10)
succ(k ≤ −1)⇝ ⊥ (3.11)

The process where we first apply the rules induced by (3.1)– (3.2) to get rid of set constraints
and then we exhaustively apply rules (3.3)– (3.11) is guaranteed to terminate: the nesting level
of role successor constraints within one another in the input concept description C is finite and
every rule generates at most exponentially many new role successor constraints where the nesting
level is decreased.

12



3.2 ALCQt as an equivalent formulation ofALCCQU

Theorem 5. For every ALCCQU concept description C there exists a ALCCQU -normal form

nf(C) obtained fromC in exponential time such thatC ≡ nf(C).

Proof. We show that the application of rule (3.3) yields an equivalent concept description; the
cases (3.4)–(3.6) and (3.10) can be proved analogously. For every interpretation I ,

succ(k > N)I = {d ∈ ∆I | kI > N}
= {d ∈ ∆I | kI ≥ N + 1} = succ(k ≥ N + 1)I .

To prove that (3.7) yields an equivalent concept, we notice that the inequalitya1+· · ·+aM ≥ N
is equivalent to the set of inequalities

ai ≥ Ni, i = 1, . . . ,M ∧N1 + · · ·+NM = N.

The number of possible assignments of natural values toN1, . . . , NM such that
∑︁M

i=1Ni = N
is equal to the number of partitions ofN into exactlyM parts, defined by the recurrence relation

P (N,M) = P (N − 1,M − 1) + P (N −M,M).

This means that each application of (3.7) producesP (N,M) ·M new role successor constraints.
The function pM (N) := P (N,M) has an asymptotic exponential growth [1], thus it generates
at most exponentially many new role successor constraints. Finally, (3.8) naturally follows from
the definition of arithmetic multiplication. The last equivalence for (3.11) follows from the fact
that cardinality terms can only assume non-negative values.

To conclude this section, we observe that (3.8) could be replaced with the rules

succ(M · k ≥ N)⇝ succ(k ≥
⌈︃
N

M

⌉︃
)

succ(M · k ≤ N)⇝ succ(k ≤
⌊︃
N

M

⌋︃
)

that still yield equivalent concept descriptions and avoid the exponential blowup caused by the
conversion of multiplication into addition in (3.8).

Now that we have detailed the process to obtain aALCCQU -normal form, we proceed by look-
ing for a characterization of ALCCQU that comes with a deeper nature than a simple syntactic
restriction. In the next section, we show thatALCCQU is equivalent to another description logic
that is obtained by generalizingALCQ qualified number restrictions to include more expressive
role expressions than just role names. We then investigate how this DL, called ALCQt, can be
characterized as a specific fragment of first-order logic.

3.2 ALCQt as an equivalent formulation ofALCCQU
In this section, we define an extension of the DL ALCQ where qualified number restrictions
are defined on role types instead of roles, called ALCQt. This DL can be seen as a special case
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3 The description logicALCCQU

of the DL ALCQIb [20] where the following conditions hold: 1. inverse roles are not allowed,
2. disjunction is not allowed in role expressions, 3. the set NR is finite. The DLsALCCQU and
ALCQt turn out to be equivalent — as shown further in this section — although the encoding of
ALCCQU concept descriptions intoALCQt ones is a very expensive operation, thus ruling out
the possibility of reducingALCCQU concept satisfiability toALCQt concept satisfiability. On
the other hand, this equivalence is handy because it allows to interchangeably use ALCQt and
ALCCQU to show properties regarding their expressive power with respect to other logics.

Syntax of ALCQt. Let NC and NR be respectively a countable set of concept names and a
finite set of role names that are disjoint. A role literal overNR is either a role name r or its negation
¬r. AALCQt-role type ω over NR is a finite conjunction of role literals where every element of
NR occurs exactly in one role literal. A role type overNR is safe if it contains at least one positive
literal. The set ofALCQt concept descriptions overNR andNC is inductively defined as follows:

1. every concept nameA ∈ NC is aALCQt concept description;

2. ifC,D areALCQt concept descriptions, then so areC ⊓D (conjunction),C ⊔D (inter-
section) and¬C (negation);

3. if ω is a safe role type overNR,C is aALCQt concept description andN ≥ 0 is a natural
number, then (≥ N ω. C) and (≤ N ω. C) (qualified number restrictions) are also
ALCQt concept descriptions.

Example 4. IfNR = {r, s, t}, then the expression r⊓s⊓ t is a safe role type, while¬r⊓¬s⊓¬t
is not a safe role type. The expression s ⊓ t is not a role type because r is not occurring in any
literal role, while r ⊓ ¬r ⊓ s ⊓ t is not a role type because r appears in more than one role literal.

Semantics of ALCQt. The semantics of ALCQt in terms of an interpretation I is defined
similarly to the semantics ofALCQ shown in Section 2.3. We extend that definition to include
role types and qualified number restrictions over role types:

• (¬r)I := ∆I ×∆I \ rI and (ω1 ⊓ ω2)
I := ωI

1 ∩ ωI
2 with ω1 and ω2 role types;

• For qualified number restrictions over role types,

(≥ N ω. C)I := {d ∈ ∆I |
⃓⃓
{(d, e) ∈ ωI | e ∈ CI}

⃓⃓
≥ N},

(≤ N ω. C)I := {d ∈ ∆I |
⃓⃓
{(d, e) ∈ ωI | e ∈ CI}

⃓⃓
≤ N}.

The following lemma shows that the negation symbol can be absorbed by a qualified number
restrictions.

Lemma 2. Given anALCQt concept descriptionC , a safe role type ω andN ∈ N,

(≤ N ω. C) ≡ ¬(≥ N + 1 ω. C). (3.12)
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3.2 ALCQt as an equivalent formulation ofALCCQU

3.2.1 ALCQt is a sublogic ofALCCQU

The DLALCQt has a straightforward encoding inALCCQU that is shown in the next lemma.
This yields a translation ofALCQt toALCCQU in linear time with respect to the number of role
successor constraints occurring in the input concept.

Lemma 3. For each interpretation I and safe role ω,

(≥ N ω. C)I = succ(
⃓⃓⃓
ω ∩ C♯

⃓⃓⃓
≥ N)I ,

(≤ N ω. C)I = succ(
⃓⃓⃓
ω ∩ C♯

⃓⃓⃓
≤ N)I

whereC♯ is theALCCQU concept description equivalent toC .

Proof. Given d ∈ ∆I , let ωI(d) := {e ∈ ∆I | (d, e) ∈ ωI}. Then,

(≥ N ω. C)I = {d ∈ ∆I | ♯{(d, e) ∈ ωI | e ∈ CI} ≥ N}
= {d ∈ ∆I |

⃓⃓
ωI(d) ∩ CId

⃓⃓
≥ N}

because ω is a safe role — thus e ∈ UId — and finally

= {d ∈ ∆I | |ω ∩ C|Id ≥ N} = succ(|ω ∩ C| ≥ N)I .

The second identity can be proved analogously.

3.2.2 ALCCQU is a sublogic ofALCQt

In Lemma 3 we showed thatALCQt is a sublogic ofALCCQU . The goal of this subsection is to
prove that the converse holds as well, thus obtaining the equivalence of the two DLs.

The first result that we prove is that we can replace every set term that spans over ALCCQU
concept descriptions with a uniqueALCCQU concept, yielding an equivalent constraint.

Lemma 4. Let I be an interpretation and d ∈ ∆I
a fixed individual. For allALCCQU concept

descriptionsC andD:

1. (¬C)Id = (Cc)Id ,

2. (C ⊓D)Id = (C ∩D)Id and (C ⊔D)Id = (C ∪D)Id

3. ⊤Id = UId and⊥Id = ∅Id .

Proof. We first show the equality in (1), by using the semantics of ALCCQU concept descrip-
tions for the interpretation I and the semantics ofALCCQU set terms for Id. Moreover, we use
known equalities from set theory, such as the De Morgan laws and distributivity of intersection
over union. We obtain the following chain of equalities, where (†) follows from the set-theoretic
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3 The description logicALCCQU

identity A \ (B ∩ C) = (A \ B) ∩ (A \ C) and (‡) from A ∩ (B \ C) = (A ∩ B) \ C and
UId ⊆ ∆I (which also means that UId = UId ∩∆I ).

(Cc)Id = UId \ CId = UId \ (UId ∩ CI)
†
= (UId \ UId) ∩ (UId \ CI) =

= UId \ CI = (UId ∩∆I) \ CI ‡
= UId ∩ (∆I \ CI) =

= UId ∩ (¬C)I = (¬C)Id .

The equalities in (2) are derived in a similar way; here, the equality (†) follows from the identity
UId ∩ UId = UId . We only show the case for intersection, since the case for disjunction can be
proved analogously:

(C ⊓D)Id = UId ∩ (C ⊓D)I = UId ∩ (CI ∩DI) =

†
= (UId ∩ CI) ∩ (UId ∩ CI) = CId ∩DId = (C ∩D)Id .

The equalities in (3) are consequences of⊤Id = ⊤I ∩ UId = UId and⊥Id = ⊥I ∩ UId =
∅.

Using Lemma 4, we can perform a further decomposition of each set term appearing in a
ALCCQU role successor constraint into a disjoint union of set terms that have a structure that is
similar to qualified number restrictions inALCQt.

Lemma 5. If s is a set term over role names in NR and ALCCQU concept descriptions, then s is

equivalent to a disjoint union

N⋃︂
i=1

ωi ∩ Ci (3.13)

where ωi is a safe role type overNR andCi is aALCCQU concept description.

Proof. Let I be a ALCCQU interpretation and d ∈ ∆I . According to ALCCQU semantics,
the inclusion sId ⊆ UId =

⋃︁
r∈NR r

I(d) holds. Hence, we can replace the set term s with the
equivalent set term s′ := s ∩

⋃︁
r∈NR r.

By transforming s′ into its set-theoretical disjunctive normal form dnf(s′), we obtain an equiv-
alent set term of the form

N ′⋃︂
i=1

mi⋂︂
j=1

sj

such that t :=
⋂︁mi
j=1 sj contains at least one positive occurrence of a role name in NR — this is

a consequence of the distributivity law for set unions over set intersections. Since t is a set term
over role names andALCCQU concept descriptions, we can assume that t = tR ∩ tC with tR a
set intersection containing only role names (or their complement) and tC a set intersection over
ALCCQU concept descriptions (or their negation).

If tR contains both r and rc for some r ∈ NR, we replace t with⊥: for every interpretation
I and d ∈ ∆I , it holds that tId ⊆ (r ∩ rc)Id = ∅ = ⊥Id . Otherwise, tR corresponds to a
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3.2 ALCQt as an equivalent formulation ofALCCQU

union of disjoint and safe role types
⋃︁ki
j=1 ωj — this is true, because there is at least one positive

occurrence of a role name r.
Thanks to Lemma 4, it is possible to replace tC with aALCCQU concept descriptionCi such

that tIdC = CId
i . This yields the equivalence

t = tR ∩ tC ≡
ki⋃︂
j=1

ωj ∩ Ci.

Let s′′ be the set term where each term
⋂︁mi
j=1 sj is replaced with an equivalent term

⋃︁ki
j=1 ωj∩Ci.

If s′′ contains two termsω ∩C andω ∩D withC ̸= D, we replace them with the equivalent set
term ω ∩ (C ⊔D). Finally, we obtain that s is equivalent to a disjoint union of the form

s′′ ≡
N⋃︂
i=1

(ωi ∩ Ci).

The decomposition described in Lemma 5 is worst-case exponential: if |NR| = k, the disjoint
union might contain 2k − 1 disjoint set terms in the worst case, one for each safe role type over
NR; moreover, the transformation to the set-theoretic disjunctive normal form is also worst-case
exponential.

Example 5. If NR = {r, s}, applying the encoding described in Lemma 5 to the set term A ∪
(rc ∩B) yields the disjoint union

(r ∩ s ∩A) ∪ (r ∩ sc ∩A) ∪ (rc ∩ s ∩ (A ⊔B)).

Theorem 6. Every role successor constraint inALCCQU of the form succ(|s| ≥ N) or succ(|s| ≤
N) is equivalent to someALCQt concept description.

Proof. Let succ(|s| ≥ N) be a role successor constraint. As a consequence of Lemma 5 and the
fact that the cardinality of a disjoint union of sets is equal to the sum of the cardinalities of each
disjunct, it follows that

succ(|s| ≥ N) ≡ succ(
⃓⃓⃓⋃︁M

i=1(ωi ∩ Ci)
⃓⃓⃓
≥ N) ≡ succ(

M∑︂
i=1

|ωi ∩ Ci| ≥ N).

Applying the replacement rule (3.7) we obtain that

succ(

M∑︂
i=1

|ωi ∩ Ci| ≥ N) ≡
⨆︂
{
dM
i=1 succ(|ωi ∩ Ci| ≥ Ni) |

∑︁M
i=1Ni = N}.

Every role successor constraint generated by the replacement is of the form succ(|ω ∩ C| ≥ N);
thus, we can apply Lemma 3 and obtain the equivalentALCQt concept description⨆︂

{
dM ′

i=1(≥ Ni ωi. C
♯
i ) |

∑︁M ′

i=1Ni = N}
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whereC♯i denotes the recursive replacement of anyALCCQU role successor constraint occurring
inCi with its equivalentALCQt concept description. The transformation is guaranteed to termi-
nate, because in each recursive application the nesting level ofALCCQU role successor constraint
is strictly decreasing and the nesting level is bounded by the nesting level of succ(|s| ≥ N), which
is finite. We can show that succ(|s| ≤ N) can be encoded inALCQt in a similar way.

The encoding that we describe in the proof of Theorem 6 is worst-case double exponential
in the size of the set term s and the value N appearing in the input role successor constraint.
The first exponent is given by the conversion to set-theoretical disjunctive normal form described
in Lemma 5, while the second exponent is caused by the application of (3.7) which, as described
in Theorem 5, could yield exponentially many new role successor constraints. This encoding is
inefficient from a practical point of view and does not constitute a convenient way to useALCQt
reasoning services to decide concept satisfiability inALCCQU reasoning services toALCQt ones,
but it is useful to characterizeALCCQU as a sublogic ofALCQt.
Example 6. TheALCCQU role successor constraint succ(|A ∪ (rc ∩B)| ≥ 2) is equivalent to
theALCQt concept description⨆︂

N1+N2+N3=2

((≥ N1 (r ⊓ s). A) ⊓ (≥ N2 (r ⊓ ¬s). A) ⊓ (≥ N3 (¬r ⊓ s). A ⊔B)).

Combining the results obtained so far in Lemma 3, Theorem 5 and Theorem 6, we finally
obtain the desired corollary.

Corollary 1. The description logicsALCCQU andALCQt are equivalent.

Using this property, we proceed by showing a characterization ofALCQt concept descriptions
as a specific fragment of first-order logic that can be transferred to ALCCQU , thanks to their
equivalence as logics.

3.3 Model-theoretic characterization ofALCQt
By using the theoretical framework presented in [16], we are able to provide a specific character-
ization ofALCQt concept descriptions. In order to achieve this goal, we first define a notion of
ALCQt-bisimulation that generalizes the counting bisimulation introduced in Section 2.3 by re-
placing role names with safe role types. We proceed by proving thatALCQt-bisimilarity implies
ALCQt-equivalence for individuals in different interpretations; for the class ofω-saturated inter-
pretations introduced in Chapter 2 we show that the converse is also true. Lastly, we prove that
ALCQt— thus, ALCCQU— concept descriptions are characterized as the first-order fragment
that is invariant underALCQt-bisimulation.

The proofs shown in this section are based on the work shown in the extended version of [16].

3.3.1 ALCQt-bisimulation and invariance forALCQt
We define a bisimulation forALCQt as a generalization of the counting bisimulation introduced
in [16] and previously mentioned in Section 2.3.
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ALCQt-bisimulation. Given two interpretations I1 and I2, the relation ρ ⊆ ∆I1 ×∆I2 is
aALCQt-bisimulation between I1 and I2 if the following conditions are satisfied:

Atomic d1 ρ d2 implies

d1 ∈ AI1 if and only if d2 ∈ AI2

for all d1 ∈ ∆I1 , d2 ∈ ∆I2 andA ∈ NC .

Forth if d1 ρ d2 and D1 ⊆ ωI1(d1) is finite for a safe role type ω over NR, then there is a set
D2 ⊆ ωI2(d2) such that ρ contains a bijection betweenD1 andD2.

Back if d1 ρ d2 and D2 ⊆ ωI2(d2) is finite for a safe role type ω over NR, then there is a set
D1 ⊆ ωI1(d1) such that ρ contains a bijection betweenD1 andD2.

The individuals d1 ∈ ∆I1 and d2 ∈ ∆I2 are: ALCQt-bisimilar — notation (I1, d1) ∼ALCQt
(I2, d2) — if there is aALCQt-bisimulation ρ between I1 and I2 such that d1 ρ d2; ALCQt-
equivalent — notation (I1, d1) ≡ALCQt (I2, d2) — if for allALCQt concept descriptions C ,
d1 ∈ CI1 if and only if d2 ∈ CI2 .

The first property to prove is that two individuals that are related by a ALCQt-bisimulation
areALCQt-equivalent.

Theorem 7. If (I1, d1) ∼ALCQt (I2, d2) then (I1, d1) ≡ALCQt (I2, d2).

Proof. Due to (I1, d1) ∼ALCQt (I2, d2), there exists aALCQt-bisimulation ρ ⊆ ∆I1 ×∆I2

satisfying d1 ρ d2. We prove that for allALCQt concept descriptionsC and (e1, e2) ∈ ρ,

e1 ∈ CI1 if and only if e2 ∈ CI2 (3.14)

by structural induction overC .

Concept names IfC = A ∈ NC then (3.14) follows immediately fromd1 ρ d2, sinceρ satisfies
the atomic condition for anALCQt-bisimulation.

Inductive Hypothesis Assume that, given aALCQt concept descriptionC , (3.14) holds for all
proper subconceptsD ofC .

Negation LetC = ¬D. Then, d1 ∈ CI1 iff d1 ∈ ∆I1 and d1 /∈ DI1 ; since (3.14) holds forD
by inductive hypothesis, d1 /∈ DI1 iff d2 /∈ DI2 . Thus, d2 ∈ ∆I2 and d2 /∈ DI2 , which
is equivalent to d2 ∈ CI2 .

Conjunction Let C = D ⊓ E. Then, d1 ∈ CI1 iff d1 ∈ DI1 and d1 ∈ EI1 . By inductive
hypothesis, (3.14) holds for both D and E; thus, d1 ∈ DI1 and d1 ∈ EI1 iff d2 ∈ DI2

and d2 ∈ EI2 , hence d2 ∈ CI2 . Thanks to the semantic equivalenceD ⊔E ≡ ¬(¬D ⊓
¬E) it follows that (3.14) also holds forC = D ⊔ E.
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Qualified number restriction Assume that C = (≥ N ω. E), with N ≥ 0 and d1 ∈ CI1 .
LetE1 := ωI1(d1) ∩ EI1 ; then, |E1| ≥ N . Let D1 ⊆ E1 be a subset of cardinalityN .
Since D1 ⊆ ωI1(d1) is finite, d1 ρ d2 and ρ satisfies the forth condition for a ALCQt-
bisimulation there exists a setD2 ⊆ ωI2(d2) in bijection withD1 under ρ. SinceD2 is the
image ofD1 under ρ and every element ofD1 belongs toEI1 , by inductive hypothesis we
deduce thatD2 ∈ EI2 , thusD2 ⊆ ωI2(d2)∩EI2 . We can then conclude that d2 ∈ CI2 ,
since

⃓⃓
ωI2(d2) ∩ EI2

⃓⃓
≥ |D2| = N . Using the back condition and a similar argument,

we can prove that if d2 ∈ CI2 , then d1 ∈ CI1 . Thanks to the semantic equivalence
(≤ N ω. E) ≡ ¬(≥ N + 1 ω. E), we obtain that (3.14) holds forC = (≤ N ω. E) as
well.

Thanks to Corollary 1, we obtain the following property, where the notion of ALCCQU -
equivalence is defined analogously to that ofALCQt-equivalence.

Corollary 2. If (I1, d1) ∼ALCQt (I2, d2) then (I1, d1) ≡ALCCQU (I2, d2).

It is worth mentioning that the property of invariance underALCQt-bisimulation might hold
for DLs that are more expressive thanALCQt. Indeed, as we are going to explain in Section 3.5,
two individuals that areALCQt-bisimilar are alsoALCSCC-equivalent; the fact thatALCSCC
is strictly more expressive thanALCQt is shown in Section 3.4.

3.3.2 Characterization ofALCQt concept descriptions
To begin this section, we show how to embedALCQt in first-order logic by means of a translation
mapping. This implies that both the logics ALCQt and ALCCQU are fragments of first-order
logic. After that, we prove that for the class of ω-saturated interpretations,ALCQt-equivalence
impliesALCQt-bisimilarity. In this way, we obtain a different but equivalent way to distinguish
individuals in different interpretations, according to the set ofALCQt concepts that they satisfy.

At the end of this section, we show that the DLs ALCQt and ALCCQU can be character-
ized as the first-order fragment that is invariant underALCQt-bisimulation, providing a stronger
definition forALCCQU than a simple syntactic restriction ofALCSCC.

First-ordertranslationofALCQt. We define a first-order role type translationπx,y that
maps role types to first-order formulas with free variables x and y, where r ∈ NR and ω1, ω2 are
safe role types:

πx,y(r) := r(x, y), πx,y(¬r) := ¬r(x, y), πx,y(ω1 ⊓ ω2) := πx,y(ω1) ∧ πx,y(ω2).

We then proceed to define a first-order concept translationπx that mapsALCQt concept descrip-
tions to first-order formulas with free variable x:

πx(A) := A(x) A ∈ NC πx(¬C) := ¬πx(C)
πx(C ⊓D) := πx(C) ∧ πx(D) πx(C ⊔D) := πx(C) ∨ πx(D)

πx((≥ N ω. C)) := ∃x1. · · · ∃xN .
N⋀︂
i=1

N⋀︂
j=i+1

xi ̸= xj ∧
N⋀︂
i=1

(πx,xi(ω) ∧ πxi(C))
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3.3 Model-theoretic characterization ofALCQt

We do not explicitly introduce a first-order translation for (≤ N ω. C), since (≤ N ω. C) ≡
¬(≥ N + 1 ω. C) holds.

Lemma 6. For everyALCQt role type ω and interpretation I

(d, e) ∈ ωI
if and only if I, {x/d, y/e} |= πx,y(ω).

Proof. Holds trivially.

Theorem 8. For everyALCQt concept descriptionC and interpretation I

d ∈ CI
if and only if I, {x/d} |= πx(C).

Proof. By structural induction over theALCQt concept descriptionC .

Concept names Assume that C = A ∈ NC . Then, d ∈ AI iff I, {x/d} |= A(x) follows
from the definition of I as a first-order interpretation.

Inductive Hypothesis Assume that the claim holds for all the proper subconcepts ofC .

Negation Assume that C = ¬D. Then, d ∈ CI iff d /∈ DI iff I, {x/d} ̸|= πx(D) iff
I, {x/d} |= πx(C).

Conjunction Assume thatC = D⊓E. Then, d ∈ CI iff d ∈ DI and d ∈ EI iffI, {x/d} |=
πx(D) and I, {x/d} |= πx(E) iff I, {x/d} |= πx(D) ∧ πx(E). Since D ⊔ E ≡
¬(¬D ⊓ ¬E) and φ ∨ ψ ≡ ¬(¬φ ∧ ¬ψ), this is sufficient to show that the claim holds
for the case of disjunction.

Number restrictions Assume thatd ∈ (≥ N ω. C)I . Then, there existN distinct individuals
d1, . . . , dN ∈ ∆I such that (d, di) ∈ ωI and di ∈ CI for i = 1, . . . , N . Thanks to
Lemma 6 and the inductive hypothesis, it follows that I, {x/d, xi/di} |= πx,xi(ω) and
I, {xi/di} |= CI for i = 1, . . . , N . Moreover, if di ̸= dj , the formula xi ̸= xj is
satisfied by the assignment {xi/di, xj/dj}. Therefore, I, {x/d} |= πx((≥ N ω. C)).
We can show the opposite implication in a similar way. Since (≤ N ω. C) ≡ ¬(≥ N +
1 ω. C), this is sufficient to prove that the claim holds for all possible number restrictions.

N -ary existential quantification inALCQt. It is possible to add toALCQt an addi-
tional construct similar to theN -ary existential quantification introduced in [5], without increas-
ing the expressive power. The intuitive semantics of the construct ∃ω.(C1, . . . , CN ) is that there
areN distinct ω-successors d1, . . . , dN and that di is described byCi for i = 1, . . . , N . We use
this construct to prove that, if we restrict our attention to ω-saturated interpretations from Defi-
nition 1,ALCQt-equivalent individuals areALCQt-bisimilar.
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3 The description logicALCCQU

Let ω be a safe role over NR, N ≥ 1 a natural number and C1, . . . , CN ALCQt concept
description. Then, the semantics of theN -ary existential quantification∃ω.(C1, . . . , CN )under
an interpretation I is defined as

∃ω.(C1, . . . , CN )
I :=

{︃
x ∈ ∆I | ∃y1, . . . , yn ∈ ∆I .(x, yi) ∈ ωI∧

∧ yi ∈ CI
i for i = 1, . . . , N ∧

⋀︂
1≤i<j≤N

yi ̸= yj

}︃
.

(3.15)

The first-order translation of theN -ary existential quantification can be defined as:

πx(∃ω.(C1, . . . , CN )) := ∃x1, . . . , xN .(
N⋀︂
i=1

(πx,xi(ω) ∧ πxi(Ci)) ∧
⋀︂

1≤i<j≤N
xi ̸= xj).

(3.16)
The proof that the N -ary existential quantification can be expressed as a properALCQt con-

cept description relies on the notion of a system of distinct representatives for the setsC1, . . . , CN
— distinct individuals d1, . . . , dN such that di ∈ Ci for i = 1, . . . , N — and the following
characterization by Hall [13].

Theorem 9 (Hall). The sets C1, . . . , CN possess a system of distinct representatives if and only if⃓⃓⃓⋃︁k
j=1Cij

⃓⃓⃓
≥ k for each subset {i1, . . . , ik} ⊆ {1, . . . , N} of distinct indexes i1, . . . , ik .

By using Theorem 9 and adapting the proof shown in [5] to use safe role types instead of role
names, we obtain the following result.

Theorem 10. The N -ary existential quantification constructor can be expressed in ALCQt, in

particular

∃ω.(C1, . . . , CN )
I ≡

l
{(≥ k ω. Ci1 ⊔ · · · ⊔ Cik) | {i1, . . . , ik} ⊆ {1, . . . , N}}. (3.17)

Proof. Omitted. For details, refer to [5].

Using Theorem 10, we show that twoALCQt-equivalent individuals are alsoALCQt-bisimilar.
In the following proof, for every set of first-order formulae Γ we denote with Γ[e2/e1] the set ob-
tained by replacing every occurrence of the constant e2 with e1 in Γ.

Theorem 11. For all ω-saturated interpretations I1, I2,

if (I1, d1) ≡ALCQt (I2, d2) and I1, I2 then (I1, d1) ∼ALCQt (I2, d2).

Proof. We show that the relation

S := {(e1, e2) ∈ ∆I1 ×∆I2 | e1 ≡ALCQt e2}

is aALCQt-bisimulation such that (d1, d2) ∈ S. The atomic condition is trivially satisfied byS,
by definition. To show that the forth condition ofALCQt-bisimulation is satisfied by S, assume
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3.3 Model-theoretic characterization ofALCQt

that (e1, e2) ∈ S and letD1 = {d1, . . . , dN} ⊆ ωI1(d1) be finite, with ω a safe role type over
NR. We introduce a variable xi for every individual di ∈ D1 and consider the set of first-order
formulas Γ := Γ̸= ∪ Γω ∪

⋃︁N
i=1 Ti, where

Γ̸= := {¬(xi, xj) | di, dj ∈ D1 ∧ i ̸= j} (variables are all distinct)
Γω := {ω(e2, xi) | di ∈ D1} (ω-successors of e2)

Ti := {πxi(C) | C is aALCQt concept and di ∈ CI1} (ALCQt-type of d)

The set Γ1 := Γ[e2/e1] is realizable in I1 under the variable assignment {x1/d1, . . . , xN/dN}.
We now prove that Γ is realizable in I2 by using the fact that I2 isω-saturated. LetΓ′ ⊆ Γ be a

finite subset of Γ. Let Γ′
1 := Γ′[e2/e1]; then, Γ′

1 is satisfiable in I1 under the variable assignment
{x1/d1, . . . , xN/dN}, because Γ′

1 ⊆ Γ1. Without loss of generality, we can assume that Γ′
1

contains Γ̸=
1 and Γω1 , since they are both finite. For every variable xi with i = 1, . . . , N let

ti := {C | C is anALCQt concept and πxi(C) ∈ Γ′
1}.

By defining Ci :=
d
{C | C ∈ ti} and noticing that both Γ̸= and Γω1 are in Γ′

1, we obtain
that

I1, {x1/d1, . . . , xN/dN} |= Γ̸= ∧ Γω1 ∧
N⋀︂
i=1

πxi(Ci)

hence I1, {x/e1} |= πx(∃ω.(C1, . . . , CN )).
Thanks to Theorem 8 it follows that e1 ∈ ∃ω.(C1, . . . , CN )

I1 . We assumed that e1 ≡ALCQt
e2, thus e2 ∈ ∃ω.(C1, . . . , CN )

I2 . Using Theorem 8 again, this yields that Γ′ is satisfiable in I2.
The interpretation I2 is ω-saturated by assumption, hence we conclude that Γ is realizable in I2.

Let Z2 be a variable assignment such that I2,Z2 |= Γ and let D2 := {Z2(xi) | di ∈ D1}.
From I2,Z2 |= Ti it follows that di ≡ALCQt Z2(xi); moreover,D2 ⊆ ωI2(d2) since I2,Z2 |=
Γω ; finally, the mapping di ↦→ Z2(xi) is bijection fromD1 toD2, thanks to Γ̸=. Thus, the forth
condition holds for S. Using a similar argument, we can show that the back condition holds
for S. This allows us to conclude that S is aALCQt-bisimulation between I1 and I2 such that
(d1, d2) ∈ S.

In order to characterize ALCQt as the first-order fragment that is invariant under ALCQt-
bisimulation, we make use of Theorem 2, taken from [8], that allows us to consider ω-saturated
models for a set of first-order sentences, without loss of generality.

Theorem 12. Let φ(x) be a first-order formula. The following are equivalent:

1. there exists aALCQt concept descriptionC such that πx(C) ≡ φ(x);

2. φ(x) is invariant under∼ALCQt.

Proof. Assume that there exists aALCQt concept descriptionC such thatπx(C) ≡ φ(x). Then,
di ∈ πx(C)Ii iffdi ∈ φIi for i ∈ {1, 2}. Using Theorem 8 we obtain thatdi ∈ πx(C)Ii iffdi ∈
CIi . Thanks to Theorem 7, we also know that obtain that if (I1, d1) ∼ALCQt (I2, d2), then

23



3 The description logicALCCQU

d1 ∈ CI1 iff d2 ∈ CI2 . Combining all these equivalences, we obtain that if (I1, d1) ∼ALCQt
(I2, d2), then d1 ∈ φI1 iff d2 ∈ φI2 , hence the invariance of φ(x) under∼ALCQt.

Assume now thatφ(x) is invariant under∼ALCQt but that there is noALCQt concept descrip-
tionC such that πx(C) ≡ φ(x). This implies thatφ(x) is satisfiable — sinceφ(x) ̸≡ ⊥— and
that ¬φ(x) is also satisfiable — because φ(x) ̸≡ ⊤. We define the set of first-order translations
ofALCQt concepts that are entailed by φ(x):

Ψ(φ(x)) := {πx(C) | C is aALCQt concept, φ(x) |= πx(C)}

and we show that the set of formulaeΨ(φ(x))∪{¬φ(x)} is satisfiable, using the compactness of
first-order logic. We notice that for each formula ψ(x) ∈ Ψ(φ(x)) there exist an interpretation
Iψ and d ∈ ∆Iψ such that Iψ, {x/d} |= ψ(x) and Iψ, {x/d} |= ¬φ(x), because of our
assumption that πx(C) ̸≡ φ(x) for allALCQt conceptsC .

Every finite subset S of Ψ(φ(x)) is satisfiable, since φ(x) is satisfiable and φ(x) |= Ψ(φ(x)).
Moreover, we can assume that there are IS and d ∈ ∆IS such that IS , {x/d} |= S and
IS , {x/d} |= ¬φ(x), otherwiseφ(x) ≡ πx(

d
C∈S C)would invalidate our assumption. Hence,

every finite subset of Ψ(φ(x))∪{¬φ(x)} is satisfiable. We can conclude, using the compactness
of first-order logic, that the set Ψ(φ(x)) ∪ {¬φ(x)} is satisfiable.

Let I2 be an interpretation satisfying I2, {x/d2} |= Ψ(φ(x))∪{¬φ(x)}; since Ψ(φ(d2))∪
{¬φ(d2)} is a first-order sentence, due to Theorem 2 we can assume that I2 is ω-saturated.

Let T ′ := {πx(C) | C is aALCQt concept, d2 ∈ CI2}. We prove by contradiction that the
set of formulae T := {φ(x)} ∪ T ′ is satisfiable and we prove it by contradiction. If we assume
that T is unsatisfiable, as a consequence of the compactness of first-order logic there is a finite set
ofALCQt concepts Γ such that:

1. d2 ∈ CI2 for allC ∈ Γ,

2. {φ(x)} ∪ {πx(C) | C ∈ Γ} ⊆ T is unsatisfiable.

If we defineD :=
d
C∈ΓC , from the first point follows that d2 ∈ DI2 . From the second point

and the equality
⋀︁
C∈Γ πx(C) = πx(

d
C∈ΓC), we obtain the tautology

|= φ(x)→ πx
(︁
¬

d
C∈ΓC

)︁
.

Using the deduction theorem we reach the conclusion that φ(x) |= πx(¬D), hence πx(¬D) ∈
Ψ(φ(x)). Since I2, {x/d2} |= Ψ(φ(x)) by definition, it follows that for everyALCQt concept
C such that πx(C) ∈ Ψ(φ(x)), d2 ∈ CI2 holds. Hence, Ψ(φ(x)) ⊆ T ′. Since πx(¬D) ∈
Ψ(φ(x)), we deduce that d2 ∈ (¬D)I2 ; this, together with the information that d2 ∈ DI2 , we
reach a contradiction. Therefore, T cannot be unsatisfiable.

Let I1 be a ω-saturated interpretation satisfying I1, {x/d1} |= T . From the definition of
T follows that (I1, d1) ≡ALCQ t(I2, d2); by Theorem 11, this implies that (I1, d1) ∼ALCQt
(I2, d2). Since d1 ∈ φI1 but d2 /∈ φI2 , we reach a contradiction, since φ(x) is invariant un-
der ALCQt-bisimulation by hypothesis. Therefore, there exists a ALCQt concept C such that
πx(C) ≡ φ(x).

We thus proved thatALCQt andALCCQU are characterized as the first-order fragment that
is invariant underALCQt-bisimulation. This property is going to be used in the next section to

24



3.4 Expressive power

show that there areALCSCC concept descriptions that cannot be expressed as first-order formu-
lae. Before that, we classify the DLsALCQ,ALCCQU ,ALCQt andALCSCC according to their
expressive power.

3.4 Expressive power

Thanks to the notions of counting bisimulation and ALCQt-bisimulation, introduced respec-
tively in Section 2.3 and Section 3.3, we can now classify the DLs analyszed so far according to
their expressive power.

3.4.1 Relative expressivity ofALCQ andALCCQU
ALCQ andALCCQU with only one role name are equivalent. WhenNR contains
a unique role name r, the description logicALCQt degenerates toALCQ. In this case, the only
safe role type over {r} is r itself and the onlyALCQt qualified number restrictions that can be
expressed are (≥ N r. C) or (≤ N r. C), which are alsoALCQ qualified number restrictions.
Therefore, thanks to Corollary 1,ALCQ andALCCQU are equivalent when NR contains only
one role name.

ALCQ is a sublogic of ALCCQU . In the general setting, the description logic ALCQ is
a sublogic of ALCCQU . To prove that this claim holds, we show that every qualified number
restriction (≤ N r. C) and (≥ N r. C) can be expressed inALCCQU . In the following lemma,
letC♯ denote theALCCQU translation of theALCQ concept descriptionC .

Lemma 7. For every interpretation I we have

(≥ N r. C)I = succ(
⃓⃓⃓
r ∩ C♯

⃓⃓⃓
≥ N)I and (≤ N r. C)I = succ(

⃓⃓⃓
r ∩ C♯

⃓⃓⃓
≤ N)I .

Proof. Analogous to Lemma 3.

ALCCQU is more expressive thanALCQ. As a consequence of Theorem 3, we can show
that there are ALCCQU concept descriptions that are not expressible in ALCQ by using in-
variance of ALCQ concept descriptions under counting bisimulation. We provide appropriate
counter-examples, highlighting features ofALCCQU that are not expressible inALCQ.

Corollary 3. ALCQ cannot express local role disjointness, that is, there is no ALCQ-concept C
such thatC ≡ succ(|r ∩ s| = 0).

Proof. If aALCQ concept description C such that C ≡ succ(|r ∩ s| = 0) existed, we would
obtain a contradiction. To see this, we consider the interpretationsI0 andI1 shown in Figure 3.1.
The relation

ρ := {(d0, d1), (e0, e1), (e0, f1)}

satisfies the axioms of Definition 2, hence (I0, d0) ∼ALCQ (I1, d1). Since d1 ∈ succ(|r ∩ s| =
0)I1 , it follows that d1 ∈ CI1 ; thanks to Theorem 3, this implies that d0 ∈ CI0 . However,
d0 /∈ succ(|r ∩ s| = 0)I0 ; hence, we would obtain a contradiction.
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Figure 3.1: Two interpretations I0 and I1, depicted as graphs, that areALCQ-bisimilar under ρ— repre-
sented by means of dotted arrows.

Corollary 4. ALCQ cannot express the fact that all the successors of a certain individual belonging

to a concept name A must also be filler for a role name r, that is, there is noALCQ concept C such

thatC ≡ succ(A ⊆ r).

Proof. If aALCQ-concept descriptionC such thatC ≡ succ(A ⊆ r) existed, we would obtain
a contradiction. To see this, we consider the interpretations I0 and I1 shown in Figure 3.1. The
relation

ρ := {(d0, d1), (e0, e1), (e0, f1)}

is an ALCQ bisimulation, thus (I0, d0) ∼ALCQ (I1, d1) and d0 ∈ CI0 iff d1 ∈ CI1 . This
would contradict our hypothesis, since d0 ∈ succ(A ⊆ r)I0 but d1 /∈ succ(A ⊆ r)I1 .

3.4.2 Relative expressivity ofALCCQU andALCSCC
ALCCQU is a sublogic ofALCSCC. The fact thatALCCQU is a sublogic ofALCSCC is
a consequence of the definition of the two logics. Indeed, ALCCQU corresponds to the subset
ofALCSCC where every role successor constraint can only contain a cardinality constraint that
compare a complex cardinality term with a natural number. Since in our setting we only allow
for addition of cardinality terms and we disallow for other arithmetic operations, it is impossi-
ble to reduce a cardinality constraint of the form k = ℓ with both k and ℓ complex cardinality
constraints to a comparison that is acceptable inALCCQU .

ALCSCC is more expressive thanALCCQU . To prove thatALCSCC contains concept
descriptions that cannot be expressed inALCCQU , we first show thatALCSCC is more expres-
sive than ALCQt and then transfer the result to ALCCQU using Corollary 1. The proof is an
extension of the one used in [2] to show thatALCSCC is more expressive thanALCQ. An im-
portant factor to notice is that having just one role name in the setNR is sufficient to discriminate
ALCCQU andALCSCC, while this is not enough to distinguishALCQ andALCCQU .

Theorem 13. There exists aALCSCC concept description C that cannot be expressed inALCQt,
that is, for everyALCQt conceptD there exists an interpretation I such thatCI ̸= DI

.

Proof. Given NR = {r} and A ∈ NC , let C := succ(|r ∩A| = |r ∩ ¬A|). We prove by
contradiction that C is not equivalent to D for every ALCQt concept description D. Assume
that there exists aALCQt concept D0 such that C ≡ALCQt D0; without loss of generality and
using our assumption aboutNR, we can assume that every qualified number restriction appearing
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3.5 ALCCQU as the first-order fragment ofALCSCC

inD0 is of the form (≥ K r. E), since (≤ K r. E) ≡ ¬(≥ K +1 r. E). LetN ′ be the largest
natural number appearing in a role successor constraint in D0 and N := N ′ + 1. Let I be an
interpretation satisfying ∆I = N and the only interpreted concept or role names are

rI = {(0, i) | i = 1, . . . , N}, AI = {1, . . . , N}.

Then, 0 ∈ CI and by assumption of equivalence 0 ∈ DI . We observe that for 1 ≤ i, j ≤
N , (I, i) ∼ALCQt (I, j): this is true because none of these individuals has role successors —
thus the back and forth conditions ofALCQt-bisimulation are vacuously true — and the atomic
condition is trivially satisfied, since i, j ∈ AI and i, j /∈ BI for each concept name B ̸= A. In
a similar way, we can argue that (I, N + i) ∼ALCQt (I, N + j) for 1 ≤ i, j ≤ N . Combining
our observations, we obtain for possible cases:

1. {1, . . . , N} ⊆ EI and {N + 1, . . . , 2N} ⊆ EI

2. {1, . . . , N} ⊆ EI and {N + 1, . . . , 2N} ⊆ (¬E)I

3. {1, . . . , N} ⊆ (¬E)I and {N + 1, . . . , 2N} ⊆ EI

4. {1, . . . , N} ⊆ (¬E)I and {N + 1, . . . , 2N} ⊆ (¬E)I

Let I ′ be the interpretation obtained by extending I as follows:

rI
′
= rI ∪ {(0, 2N + 1)}, AI′

:= AI ∪ {2N + 1}.

We observe that inI ′, (I ′, i) ∼ALCQt (I ′, j) and (I ′, i) ∼ALCQt (I, 2N+1) for1 ≤ i, j ≤ N .
We show that 0 ∈ (≥ K r. E)I if and only if 0 ∈ (≥ K r. E)I

′ , analysing the four possible
cases. In case 1 and 2, we obtain that 0 ∈ (≥ K r. E)I because {1, . . . , N} ⊆ EI ; since
|{1, . . . , N} ∪ {2N + 1}| = N + 1 ≥ K and 2N + 1 ∈ EI (due to ALCQt-bisimilarity)
it follows that 0 ∈ (≥ K r. E)I

′ . In case 3, we obtain that 0 ∈ (≥ K r. E)I because
{N + 1, . . . , 2N} ⊆ EI ; since {N + 1, . . . , 2N} ⊆ EI′ , it follows that 0 ∈ (≥ K r. E)I

′ .
To show that in case 4 our claim holds, we distinguish two additional cases for K . If K = 0,
then (≥ 0 r. E) ≡ ⊤, hence the claim follows trivially. If K ≥ 1, then 0 /∈ (≥ K r. E)I

since rI(0) ∩ EI = ∅. Thanks toALCQt-bisimilarity, it holds that 2N + 1 /∈ EI , therefore
0 /∈ (≥ K r. E)I

′ . We thus proved that 0 ∈ (≥ K r. E)I if and only if 0 ∈ (≥ K r. E)I
′ .

It follows that 0 ∈ DI′
0 . However, we reach a contradiction: since |r ∩A|I

′
= N + 1 and

|r ∩ ¬A|I
′
= N , it follows that 0 /∈ CI′ ; but we assumed that C ≡ D0, hence 0 ∈ CI′

also holds. We therefore conclude thatC cannot be equivalent to aALCQt concept description
D0.

3.5 ALCCQU as the first-order fragment ofALCSCC
Despite having a greater expressive power thanALCCQU ,ALCSCC turns out to be not distin-
guishable from ALCCQU under ALCQt-bisimulation: indeed, in this section we show that all
ALCSCC concepts are invariant underALCQt-bisimulation. This explains why we need to re-
sort to a different argument in order to prove thatALCSCC is more expressive thanALCCQU .
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Using the characterization result provided by Theorem 12, we deduce that ALCSCC contains
concept descriptions that are not expressible in first-order logic.

As announced at the beginning of this section, we can prove that allALCSCC concept descrip-
tions are invariant underALCQt-bisimulation. In showing that this property holds, we use the
decomposition of set terms detailed in Lemma 5.

Theorem 14. If (I1, d1) ∼ALCQt (I2, d2) then (I1, d1) ≡ALCSCC (I2, d2).

Proof. Due to (I1, d1) ∼ALCQt (I2, d2), there exists aALCQt-bisimulation ρ ⊆ ∆I1 ×∆I2

satisfying d1 ρ d2. We prove that, given two complex cardinality terms k and ℓ over role names
andALCSCC concept descriptions and (e1, e2) ∈ ρ,

e1 ∈ succ(k ▷◁ ℓ)I1 if and only if e2 ∈ succ(k ▷◁ ℓ)I2 (3.18)

with ▷◁∈ {≤,=,≥} by structural induction. The other cases forALCSCC are also appearing in
ALCCQU ; thanks to Corollary 2, we already know that the claim holds for them.

We assume the following inductive hypothesis: for everyALCSCC concept descriptionD ap-
pearing in k or ℓ and (e1, e2) ∈ ρ,

e1 ∈ DI1 if and only if e2 ∈ DI2 .

Let d1 ∈ succ(k = ℓ)I1 . Without loss of generality, and adapting Lemma 5 toALCSCC (it can
be proved in the same fashion), we assume that

k =
N∑︂
i=1

Ni · |ωi ∩ Ci|, ℓ =
m∑︂
j=1

N ′
j ·
⃓⃓
ω′
j ∩ C ′

j

⃓⃓
whereωi,ω′

j are safe role types,Ci,C ′
j areALCSCC concept descriptions andNi,N ′

j are natural
numbers.

We show that, under the assumptions made so far,
⃓⃓
ωI1(d1) ∩ CI1

⃓⃓
=
⃓⃓
ωI2(d2) ∩ CI2

⃓⃓
for each term ω ∩ C appearing in k and ℓ. By contradiction, assume that

⃓⃓
ωI1(d1) ∩ CI1

⃓⃓
̸=⃓⃓

ωI2(d2) ∩ CI2
⃓⃓
; without loss of generality, we assume that

⃓⃓
ωI1(d1) ∩ CI1

⃓⃓
<
⃓⃓
ωI2(d2) ∩ CI2

⃓⃓
, with

⃓⃓
ωI1(d1) ∩ CI1

⃓⃓
= N andN ∈ N;

under our previous assumption, this is the only possible case, because
⃓⃓
ωI1(d1) ∩ CI1

⃓⃓
= ∞

would imply
⃓⃓
ωI2(d2) ∩ CI2

⃓⃓
=∞.

LetD2 be a finite subset ofωI2(d2)∩CI2 ⊆ ωI2(d2) satisfying |D2| = N +1. ByALCQt-
bisimilarity ofd1 andd2 and our inductive hypothesis (similar to the argument used in Theorem 7
for qualified number restrictions), it follows that there exists a finite setD1 ⊆ ωI1(d1) ∩CI1 in
bijection withD2. This leads to a contradiction, sinceN + 1 > N .
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3.5 ALCCQU as the first-order fragment ofALCSCC

Thanks to what we have just shown, it follows that

kI1d1 =
N∑︂
i=1

Ni ·
⃓⃓⃓
ωI1
i (d1) ∩ CI1

i

⃓⃓⃓
=

N∑︂
i=1

Ni ·
⃓⃓⃓
ωI2
i (d2) ∩ CI2

i

⃓⃓⃓
= kI2d2 ,

ℓI1d1 =
m∑︂
j=1

N ′
j ·
⃓⃓⃓
ω′
j
I1(d1) ∩ C ′

j
I1
⃓⃓⃓
=

m∑︂
j=1

N ′
j ·
⃓⃓⃓
ω′
j
I2(d2) ∩ C ′

j
I2
⃓⃓⃓
= ℓI2d2

kI2d2 = kI1d1 = ℓI1d1 = ℓI2d2 .

Thus, d2 ∈ succ(k = ℓ)I2 . In a similar way, we can prove that the claim holds for the cases
succ(k ≤ ℓ) and succ(k ≥ ℓ).

In Theorem 13 we showed that the ALCSCC concept description C := succ(|r ∩A| =
|r ∩ ¬A|) is not expressible inALCCQU . However, as a consequence of Theorem 14, the concept
C is invariant under∼ALCQt. Thus,C cannot be expressed as a first-order formula — this is due
to Theorem 12.

Corollary 5. There areALCSCC concept descriptions that cannot be expressed in first-order logic.

This result paves the road for the final result of this chapter, that shows how the DLALCCQU
corresponds to a very specific subset ofALCSCC, that is expressible in first-order logic and that
strengthens its definition.

Theorem 15. ALCCQU is the first-order fragment ofALCSCC.

Proof. LetC be aALCSCC concept description. IfC is not expressible in first-order logic, then
it does not belong toALCCQU : we have shown that ifC is aALCQt concept description (equiv-
alently, aALCCQU concept description), then it is expressible in first-order logic. On the other
hand, ifC is expressible in first-order logic, from Theorem 12 follows that there exists aALCCQU
concept descriptionC ′ that is equivalent toC , thusC is expressible inALCCQU .

We have shown how to ALCCQU can be defined using a logical characterization in terms of
ALCSCC. In the next chapter, we focus on the concept satisfiability problem for ALCCQU
without a TBox and we propose a practical algorithm to implement a decision procedure for this
problem.
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4 Concept satisfiability inALCCQU

We recall that in principle one could adapt the PSpace algorithm forALCSCC concept satisfia-
bility without a TBox shown in [2] to obtain a decision procedure forALCCQU concept satisfia-
bility in PSpaceHowever, we already stressed the fact that the mentioned algorithm is practically
inefficient: indeed, many of its steps involve non-deterministically guessing, for instance in finding
truth assignments for the propositional formula prop(C).

The aim of this chapter is to devise an algorithm to checkALCCQU concept satisfiability that
replaces the non-deterministic guessing of [2] with techniques borrowed from the fields of SAT
solving and ILP.

From ALCCQU concept descriptions to propositional formulae. A subconcept
of aALCCQU concept descriptionC is called anALCCQU -atom if it is either a concept name or a
role successor constraint. Given aALCCQU concept descriptionC , we denote withprop(C) the
propositional formula obtained by replacing everyALCCQU -atom with a propositional variable
and the propositional connectives with the ones ofALCCQU . We can define the mapping prop
in a recursive way, as follows:

prop(A) := xA ifA is aALCCQU -atom prop(¬C) := ¬prop(C)
prop(C ⊓D) := prop(C) ∧ prop(D) prop(C ⊔D) := prop(C) ∨ prop(D).

Proposition 1. If theALCCQU concept descriptionC is satisfiable, then the propositional formula

prop(C) is satisfiable.

Proof. Assume thatC is satisfiable and let I be an interpretation such thatCI ̸= ∅. Let µ be the
truth assignment defined as follows:

µ(xA) := 1 iff AI ̸= ∅ for allALCCQU -atomsA.

Then, the truth assignment µ satisfies µ |= prop(C).

While the encoding ofC into prop(C) yields a complete method to check forALCCQU con-
cept satisfiability, the presence of role successor constraints prevents it from enjoying soundness,
because of the nesting of concept descriptions inside role successor constraints that is not taken
into account. This implies that by itself, converting the ALCCQU concept description C to a
propositional formula prop(C) is not sufficient to check whetherC is satisfiable, as shown in the
next example.

Example 7. Let C := succ(|A ⊓ ¬A| ≥ 1) with A an arbitrary concept name. Let x be the
propositional formula associated with the role successor constraint in C (up to renaming). The
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4 Concept satisfiability inALCCQU

propositional formula prop(C) = x is satisfiable; however, C is not satisfiable, because no role
successor ofC belongs to the interpretation ofA ⊓ ¬A ≡ ⊥.

Proposition 2. Assume that theALCCQU concept descriptionChas no role successor constraint as

a subconcept. The following holds:

if prop(C) is satisfiable, thenC is satisfiable.

Proof. Trivial.

The design of the algorithm forALCCQU concept satisfiability proposed in this chapter ab-
stracts from the implementational details of the invoked SAT solver. We only require that the em-
ployed SAT-solver provides a correct decision procedure for propositional satisfiability and that if
the input formula is satisfiable the solver returns a model for it. Hereafter, we introduce the pro-
cedure GetSATModel(φ, S) that calls the chosen SAT solver to decide whether the propositional
formula φ is satisfiable; if there is a model µ of φ that is not included in S, the routine returns µ,
otherwise it returns NIL.

To overcome the issue shown in Example 7, we need to devise a procedure that considers the
content of the role successor constraints appearing inC . To this end, we resort to a decidable first-
order fragment that admits counting quantifiers, called CQU [11], and we show how to transform
role successor constraints into a set of formulae of CQU. In this way, we can then use known
techniques to check that such an instance is satisfiable, therefore solving the problem posed by
nestedALCCQU concept descriptions.

4.1 The first-order fragment CQU

In this section, we introduce the syntax and the semantics of a function-free, first-order fragment
called counting quantifiers over unary predicates (CQU) and first presented in [11]. After that,
we illustrate an approach to reduceALCCQU concept satisfiability to CQU formula satisfiability
with additional checks

Syntax and semantics of CQU. Given a countable setR1 of unary predicate symbols, a
counting sentence is a formula of the form ∃≤Nx.φ(x) or ∃≥Nx.φ(x), where N ∈ N and φ(x)
is a Boolean combination of symbols of R1; a universal sentence has the form ∀x.φ(x), where
φ(x) is restricted as in the case of counting sentences. We say that ψ is a formula in the language
of counting quantifiers over unary predicates (CQU) if it is a finite conjunction of counting and
universal sentences; ifQ and U are the sets of counting and universal sentences appearing in ψ,
respectively, we use the notation ψ = ⟨Q,U⟩.
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4.1 The first-order fragment CQU

An interpretation ∆I consists of a non-empty set ∆I and a mapping ·I that maps each unary
predicate p to a set pI ⊆ ∆I . We denote the variable assignment of x to the value d ∈ ∆I with
{x/d}We define the satisfiability of a CQU formula under an interpretation I as follows:

I, {x/d} |= p(x) iff xI ∈ pI

I, {x/d} |= ¬ψ iff I, {x/d} ̸|= ψ

I, {x/d} |= ψ1 ∧ ψ2 iff I, {x/d} |= ψ1 and I, {x/d} |= ψ2

I |= ∃≥Nx.φ iff
⃓⃓
{d ∈ ∆I | I, {x/d} |= φ}

⃓⃓
≥ N

I |= ∃≤Nx.φ iff
⃓⃓
{d ∈ ∆I | I, {x/d} |= φ}

⃓⃓
≤ N

I |= ∀x.φ iff I, {x/d} |= φ for all d ∈ ∆I .

We omit the cases for the other Boolean connectives ∨,→,↔ that are defined as usual. A CQU
formulaψ is satisfiable if there exists an interpretationI such thatI |= ψ. A set of CQU formulae
Γ is satisfiable, if there is an interpretation I such that I |= γ for each γ ∈ Γ.

Semantic equivalences in CQU. As a result of the definition of CQU semantics, there
are constructors that are not explicitly mentioned in the language syntax but that can be used in
building CQU formulae. In particular, the following semantic equivalences hold in CQU:

∃x.ψ ≡ ∃≥0x.ψ (4.1)
∃≤Nx.ψ ≡ ¬∃≥N+1x.ψ (4.2)
∃=Nx.ψ ≡ ∃≥Nx.ψ ∧ ∃≤Nx.ψ (4.3)
∀x.ψ ≡ ∃≤0x.¬ψ (4.4)

A normal form for CQU. Let ψ = ⟨Q,U⟩ be a CQU formula. We say that ψ is in normal

form if every counting sequence inQ is of the form ∃≤Nx.p(x) or ∃≥Nx.p(x) with p an atomic
unary predicate.

The next lemma shows that it is always possible to reason about the normal form of a CQU
formula. Indeed, every CQU formula has an equisatisfiable CQU normal form; the two formu-
las, however, are not equivalent because the transformation adds fresh predicate symbols that are
absent in the original CQU formula.

Lemma 8. For every CQU formula ψ = ⟨Q,U⟩ there exists a CQU formula ψ′ = ⟨Q′,U ′⟩ that

is equisatisfiable and in normal form. Such a formula can be obtained fromψ in polynomial time.

Proof. The proof is adapted from [11]. We start by adding all the universal sentences of ψ to ψ′.
Let ∃▷◁Nx.φ(x) be a counting sentence inQ. We replace φ(x) with

∃▷◁Nx.p′(x) and ∀x.(p′(x)↔ φ(x))

in ψ′, where p′ is a fresh unary predicate symbol. Clearly, if ∃▷◁Nx.φ(x) is satisfiable under I ,
then ∃▷◁Nx.p′(x) and ∀x.(p′(x) ↔ φ(x)) are both satisfiable under I ′, where ∆I′

= ∆I and
p′I

′
= φI . Similarly, if ∃▷◁Nx.p′(x) and ∀x.(p′(x) ↔ φ(x)) are satisfiable under I , then so is
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4 Concept satisfiability inALCCQU

∃▷◁Nx.φ(x). The resulting formulaψ′ is in normal form and has at most twice as many sentences
as ψ.

Example 8. Letψ := ⟨{∃≥4x.p(x)∧ q(x), ∃≤3x.¬p(x)}, ∅⟩ be a CQU formula. Applying the
transformation described in the proof of Lemma 8, we obtain its CQU normal form

ψ′ = ⟨{∃≥4x.p1(x), ,∃≤3x.p2(x)}, {∀x.p1(x)↔ p(x) ∧ q(x),∀x.p2(x)↔ ¬p(x)}⟩.

Let ψ = ⟨Q,U⟩ be a CQU formula in normal form. Then, assuming that |Q| = k, there
are k unary predicates p1, . . . , pk that are quantified inQ (not necessarily distinct). An elemen-

tary term over Q has the form e(x) :=
⋀︁k
i=1 λi(x), where λi(x) corresponds either to pi(x)

or ¬pi(x). An elementary term e(x) is coherent if the set of CQU formulae {∃x.e(x)} ∪ U is
satisfiable.

Example 9. Letψ′ = ⟨Q,U⟩ be the CQU formula in normal form obtained in Example 8. Then,
the elementary term e(x) := p1(x) ∧ p2(x) is not coherent, since {∃x.e(x)} ∪ U entails the
formula ∃x.p(x) ∧ q(x) ∧ ¬p(x). On the other hand, the elementary term e′(x) := ¬p1(x) ∧
p2(x) is coherent: given the interpretation I where pI = {d} and qI = {e}, it holds that
I, {x/d} |= {∃x.e′(x)} ∪ U .

Since any interpretation that satisfies a formulaψ = ⟨Q,U⟩ in CQU normal form must satisfy
U , it follows that in every model ofψ only coherent elementary terms are interpreted as non-empty
subsets of I . If we assumed that a model ofψ also satisfied a non-coherent term, we would obtain
a contradiction: if the non-coherent term e is assigned to a non-empty interpretation, it is implied,
by definition of coherent terms, that U is unsatisfiable.

From CQU satisfiability to Linear Algebra. Given an ordering over the sentences of
Q, we can encode each elementary term e(x) overQ as a binary vector v = (v1, . . . , vk) where
vi = 1 if λi = pi and vi = 0 if λi = ¬pi. Let km ≤ 2k be the number of coherent elementary
terms overQ. We encode all the coherent elementary terms in a matrix A of size k × km of the
form

A =
[︂
v(1) | · · · | v(km)

]︂
=

⎡⎢⎣v
(1)
1 · · · v

(km)
1

... . . . ...
v
(1)
k · · · v

(km)
k

⎤⎥⎦
where the i-th row ai ofA represents the i-th counting sequence ∃▷◁ibix.pi(x) inQ and the j-th
column Aj = v(j) a coherent elementary term over Q. If we let b := (b1, . . . , bk)

′ then the
linear system

A · x ▷◁ b
x ≥ 0 and x = (x1, . . . , xkm) is an integer vector

(4.5)

represents a reduction of the original CQU formula to solving a linear system.

34



4.2 Column generation with SAT oracle

Example 10. Let ψ′ be the CQU formula in normal form obtained in Example 8. Then, the
associated linear system corresponds to

[︃
1 0 0
0 1 0

]︃⎡⎣x1x2
x3

⎤⎦≥
≤

[︃
4
3

]︃

with feasible solution x1 = 4, x2 = 3 and x3 = 0. We define an interpretation I such that
pI1 = {d1, d2, d3, d4} and pI2 = {d5, d6, d7}. Then, I |= ψ′.

The example above shows that, given a solution to the linear system associated to a CQU for-
mula in normal form, it is possible to instantiate a satisfying interpretation for the formula. In-
deed, the following result holds.

Theorem 16. A formula ψ = ⟨Q,U⟩ in CQU normal form is satisfiable if and only if the corre-

sponding linear system (4.5) has a solution.

Proof. Omitted. The proof can be found in [11].

4.2 Column generationwith SAT oracle

In this section, we show how to integrate a technique commonly employed in integer linear pro-
gramming called column generation [6] in order to decide satisfiability of a CQU formula as done
in [11]. Our goal is to use this approach the replace the non-deterministic guessing of the poly-
nomially many Venn regions that should be interpreted as non-empty used in in the algorithm
proposed in [2]. Additional information and details about the column generation technique can
be found in [6, 10, 17].

In fact, the linear system (4.5) can be seen as an instance of an integer linear program (2.1),
where we lift the optimality condition for the solution and we look just for feasibility. Let ψ =
⟨Q,U⟩ be a CQU formula in normal form. The matrix A obtained in (4.5) contains all the
columns associated to coherent elementary terms over the unary predicate p1, . . . , pk occurring
inQ.

A possible way to generate these columns is to transform each universal sentence U into a con-
junction of propositional formulae prop(U) by deleting the universal quantifiers and replacing
each unary predicate p(x) in u with a propositional variable p. Using a SAT solver, we can then
enumerate all the models of prop(U) and extract from each of these a column v containing the
values µ(p1), . . . , µ(pk) that corresponds to a coherent elementary term. A column of A ob-
tained in this way is called U -satisfying.
Example 11. Letψ′ = ⟨Q,U⟩ be the CQU formula in normal form shown in Example 8. In this
case,

prop(U) = (p1 ↔ p ∧ q) ∧ (p2 ↔ ¬p).

The column (1, 1) is not U -satisfying: if µ was a valuation of prop(U) such that µ(p1) =
µ(p2) = 1, then both µ(p) = 1 and µ(p) = 0 would hold. All the other columns are U -
satisfying: for example, (1, 0) can be obtained with the truth assignment µ satisfying µ(p) =
µ(q) = 1.
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4 Concept satisfiability inALCCQU

Lemma 9. An elementary term e over Q is coherent if and only if the corresponding vector v is

U -satisfying.

Proof. Trivial.

Each step of the generation ofA requires invoking a SAT solver; moreover, with each step the
input given to the solver increases, since we need to keep track of which columns have already been
generated. Finally, A can be exponentially large in the size of Q, since the number of coherent
elementary terms overQ can be 2k in the worst case, thus creating a very large linear system that
needs to be solved.

The intuition behind column generation [10] is that it is not always the case that we need all the
information contained inA in order to solve our problem; we can rather focus on a subset of the
elementary terms, forming a restricted problem and adding new coherent elementary terms in an
incremental fashion.

4.2.1 Column generation and CQU

Given a CQU formulaψ = ⟨Q,U⟩ in normal form and using (4.5), the master problem associated
with ψ is a primal problem

minimize c′ · x
subject to A · x ▷◁ b and x ≥ 0

(4.6)

where A is a k × 2k matrix containing all the possible valuations of propositional formulae in-
duced by the elementary terms corresponding toQ and the cost vector c is given by the following
function: for j = 1, . . . , km, cj = 0 if and only if the columnAj is U -satisfying.

Example 12. The master problem generated by the formula ψ′ obtained in Example 8 is

minimize x1

subject to
[︃
1 1 0 0
1 0 1 0

]︃
·

⎡⎢⎢⎣
x1
x2
x3
x4

⎤⎥⎥⎦≥≤
[︃
4
3

]︃
xi ≥ 0, i = 1, . . . , 4.

We notice that c′ · x ≥ 0, since both c and x are non-negative vectors. Columns ofA that are
not U -satisfying should be interpreted as empty sets under each model of ψ: therefore, if Aj is
notU -satisfying, we search for solutions that satisfyxj = 0. Thus, we only seek feasible solutions
for the problem ⎧⎪⎨⎪⎩

c′ · x = 0

A · x ▷◁ b
x ≥ 0

(4.7)

36



4.2 Column generation with SAT oracle

To avoid the explicit generation of the whole matrixA unless needed, we start the search for a
solution by focusing on a restricted master problem

minimize c′r · xr
subject to Ar · xr ▷◁ b and xr ≥ 0

(4.8)

where Ar is a matrix extracted from A with the same number of rows — adhering to [11] we set
Ar := Ik — and cr is computed over the columns ofAr as described above. If (4.8) is unfeasible,
then the master problem (4.7) is unfeasible as well. Assume that (4.8) has a feasible solution xr.
If c′r · xr = 0, then the vector x where every variable not appearing in xr is set to 0 is a solution
for (4.7). Otherwise, we search if it is possible to decrease the objective function of (4.8) by adding
a column ofA toAr.

Example 13. The restricted problem obtained from the master problem in Example 12 is

minimize 0

subject to
[︃
1 0
0 1

]︃
·
[︃
x2
x3

]︃
≥
≤

[︃
4
3

]︃
x2, x3 ≥ 0.

In this case, the objective function has the constant value 0. Therefore, any integral solution to
the restricted master problem yields a solution to the original problem. For example, the solution
x2 = 4 and x3 = 3 can be extended to a solution of the master problem in Example 12 by setting
x1 = x4 = 0.

In column generation, the condition for searching for columns ofA to be added toAr is bor-
rowed from the one used in the simplex method [7] and requires the presence of a dual solution
to (4.8). If the restricted problem has no dual solution, the column generation procedure fails.
Assume that (4.8) has a feasible dual solution zr. The problem of choosing a column from A
that decreases the objective function of (4.8) when added toAr can be stated by introducing the
reduced cost function of adding the j-th column ofA toAr, which is

c⋆j := cj − zr ·Aj . (4.9)

A known result from the field of linear optimization is that if c⋆j ≥ 0 for all columnsAj , then the
solution x is optimal for both problems (4.6) and (4.8) [10]. Therefore, choosing a column from
A that added toAr decreases c′r · xr amounts fo find a feasible solution to the linear inequality

cj − z′r ·Aj < 0.

We are interested in feasibility of the master problem, rather than in finding an optimal solution;
thus, we aim only at obtaining a non-increasing value of the objective function. Hence, we can
adapt the linear inequality to obtain

cj − z′r ·Aj ≤ 0.
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4 Concept satisfiability inALCCQU

We are only interested adding columns ofA that areU -satisfying — this implies that cj = 0holds.
Thus, we are looking for a solution to the linear inequality

− zr · v ≤ 0, v ∈ {0, 1}n. (4.10)

If (4.10) has no solution, then the objective function of (4.6) cannot be decreased any further. If
a feasible solution v for (4.10) exists, then adding it as a column toAr might decrease the value of
the objective function or maintain its value, but not increasing it.

By appending the column v to Ar and 0 to cr, we obtain another instance of the restricted
problem (4.8) with smaller or equal objective function. We can then reiterate the procedure of
column generation until one of the possible outcomes is obtained:

1. we obtain a primal solution of (4.8) that satisfies c′r · xr = 0;

2. either the primal/dual solutions of (4.8) or the solution of (4.10) are not available; in this
case, problem (4.7) is unfeasible;

3. all the columns ofA have been added, and we check whether c′r · xr = c′ · x = 0.

Since A is a finite matrix, the column generation algorithm is exact [10]. However, to ensure
termination, we need to check that the generated column is not already appearing in Ar: this is
a consequence of relaxing the inequality (4.10) to be non-strict. Indeed, in the strict case, every
column Aj of A is added to Ar at most once, since no variable in an optimal restricted master
problem has negative reduced cost c⋆j [10].

Example 14. Let

ψ′ = ⟨{∃≥4x.p1(x), ,∃≤3x.p2(x)}, {∀x.p1(x)↔ p(x) ∧ q(x),∀x.p2(x)↔ p(x)}⟩

be a CQU formula in normal form. The restricted master problem for ψ′ is initialized to

minimize x1

subject to
[︃
1 0
0 1

]︃
·
[︃
x1
x2

]︃
≥
≤

[︃
4
3

]︃
x1, x2 ≥ 0.

A feasible solution for this problem is x1 = 4 and x2 = 3; however, x1 ̸= 0, therefore we try to
reduce the objective function x1 by adding a column. In order to generate a column to be added
to the restricted master problem, if possible, we solve the dual problem

maximize 4z1 + 3z2

subject to
[︁
z1 z2

]︁[︃1 0
0 1

]︃
≤
≤

[︃
1
0

]︃
z1 ≤ 0, z2 ≥ 0.
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which has a feasible and integral solution z1 = z2 = 0 (in this case, it is also optimal). Since the
yielded inequality is 0 ≤ 0, which has all the possible U -satisfying columns as solutions, we add
the column (1, 1) to the restricted master problem:

minimize x1

subject to
[︃
1 0 1
0 1 1

]︃
·

⎡⎣x1x2
x3

⎤⎦≥
≤

[︃
4
3

]︃
x1, x2, x3 ≥ 0.

We obtain a feasible solution x1 = 4, x2 = 3 and x3 = 0 with x1 ̸= 0. The new dual problem

maximize 4z1 + 3z2

subject to
[︁
z1 z2

]︁⎡⎣1 0
0 1
1 1

⎤⎦≤≤
≤

⎡⎣10
0

⎤⎦ z1 ≤ 0, z2 ≥ 0

yields the same solution z1 = z2 = 0 as in the previous iteration, which leads to the inequality
0 ≤ 0. We add to the restricted problem the only remaining column (0, 0), obtaining

minimize x1

subject to
[︃
1 0 1 0
0 1 1 0

]︃
·

⎡⎢⎢⎣
x1
x2
x3
x4

⎤⎥⎥⎦≥≤
[︃
4
3

]︃
x1, x2, x3, x4 ≥ 0.

This problem has no solution such that x1 = 0. Indeed, the formula ψ′ is unsatisfiable.

4.2.2 From linear inequalities to propositional formulae

Each column of A in (4.7) is a binary vector: using this information, we can use a SAT solver
to generate the U -satisfying columns ofA, instead of explicitly enumerating them. This implicit
enumeration is a clear advantage, since we only generate all the columns of A in the worst-case.
In this paragraph, we show how to reduce the problem of finding a feasible solution to (4.10) to
satisfiability of a propositional formula. The reduction that we use is an adaptation of the linear
encoding proposed in [21].

Hereafter, let S(L,U) denote the sum
∑︁U

i=L−zivi, with 1 ≤ L ≤ U ≤ n. Let M :=
⌈log2(z⋆ + 1)⌉ with z⋆ := max1≤i≤n|zi| be the number of bits necessary to represent each
component zi of z in binary notation and Bi the set containing the positions of the binary rep-
resentation of |zi| that are equal to 1. For each component vi of v we introduce a propositional
decision variable xi. To encode the k-th digit of the binary representation of S(L,U), we intro-
duce a propositional variable s(L,U)

k , with 0 ≤ k ≤ MU
L andMU

L := M + log2(U − L + 1);
whenL = U ,MU

L =M holds.
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4 Concept satisfiability inALCCQU

We map the sum S(L,U) to a propositional formula by means of the function σ, recursively
defined as follows:

σ(S(L,U))=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

σ(S(L,

⌊︃
L+ U

2

⌋︃
)) ∧ σ(S(

⌊︃
L+ U

2

⌋︃
+ 1), U) ∧ TΣ(L,U) L < U

⋀︂
k∈BL
zL<0

(s
(L,U)
k ↔ xL) ∧

⋀︂
k∈BL
zL≥0

(s
(L,U)
k ↔ ¬xL) ∧

⋀︂
k/∈BL

¬s(L,U)
k L = U

where the propositional formula TΣ(L,U) encodes the sum of S(L,
⌊︁
L+U
2

⌋︁
) and S(

⌊︁
L+U
2

⌋︁
+

1), U). In the definition of TΣ(L,U) we introduce auxiliary propositional variables c(L,U)
i,i+1 for

1 ≤ i < MU
L encoding the carrying done during the addition:

C
(L,U)
0 :=

(︃
c
(L,U)
0,1 ↔

(︃
s
(L,⌊L+U

2 ⌋)
0 ∧ s(⌊

L+U
2 ⌋+1,U)

0

)︃)︃
C

(L,U)
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(︄
c
(L,U)
j,j+1 ↔

(︃(︃
s
(L,⌊L+U

2 ⌋)
j ∧ s(⌊

L+U
2 ⌋+1,U)

j

)︃
∨

∨
(︃
s
(L,⌊L+U

2 ⌋)
j ∧ c(L,U)

j−1,j

)︃
∨
(︃
s
(⌊L+U

2 ⌋+1,U)
j ∧ c(L,U)

j−1,j

)︃)︃)︄
C

(L,U)

MU
L
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(︂
c
(L,U)

MU
L−1,MU

L

↔ s
(L,U)

MU
L

)︂
D

(L,U)
0 :=

(︃
s
(L,U)
0 ↔

(︃
s
(L,⌊L+U

2 ⌋)
0 ↔ ¬s(⌊

L+U
2 ⌋+1,U)

0

)︃)︃
D

(L,U)
j :=

(︃
s
(L,U)
j ↔

(︃
s
(L,⌊L+U

2 ⌋)
j ↔ ¬s(⌊

L+U
2 ⌋+1,U)

j ↔ c
(L,U)
j−1,j

)︃)︃
TΣ(L,U) =

⋀︁MU
L

j=0

(︂
D

(L,U)
j ∧ C(L,U)

j

)︂
To encode the information that−z · v is non-positive, we add the conjunct

⋀︁n
i=1 ¬s

(1,n)
i .

Theorem 17. The linear inequality−z · v ≥ 0 has a feasible solution that is U -satisfying (up to

matching the decision variables in v with the variables associated to the counting sentences inQ) if

and only if the propositional formula

σ(S(1, n)) ∧
⋀︁n
i=1¬s

(1,n)
i ∧ prop(U) (4.11)

is satisfiable.

Proof. See [21] for the correctness of the reduction. Adding prop(U) to the propositional for-
mula ensures that all of its models yield U -satisfying solutions.
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4.2 Column generation with SAT oracle

Example 15. The encoding of the inequality seen in Example 14 is (up to renaming and simplify-
ing)

2⋀︂
i=0

¬s(1,2)i ∧ ¬s(1,1)i ∧ ¬s(2,2)i ∧
1⋀︂
j=0

¬c(1,2)j,j+1 ∧ (v1 ↔ p ∧ q) ∧ (v2 ↔ p).

The assignment v1 = v2 = 1 and v1 = v2 = 0 can be extracted from models of this formula;
therefore, it is legitimate to add them as columns to the restricted problem in Example 14 during
the column generation phase.

4.2.3 Column generation andALCCQU
In order to use column generation within the context ofALCCQU concept satisfiability, we need
to tackle additional challenges, such as ensuring that a generated U -satisfying column does not
yield an unsatisfiable concept description. After the definition of the encoding ofALCCQU into
CQU, we illustrate how to overcome this issue using an introductory example.

From role successor constraints to CQU formulae. We define a mapping γx from
ALCCQU set terms to unary first-order formulas that maps each role name r to a unary predicate
Rr(x) and eachALCCQU -atomA to a unary predicateQc(x). The mapping γx is extended to
allALCCQU set terms as follows:

γx(C ⊓D) := γx(C) ∧ γx(D) γx(C ⊔D) := γx(C) ∨ γx(D)

γx(¬C) := ¬γx(C) γx(succ(|s| ▷◁ n)) := Qs(x)

γx(∅) :=
⋀︂
r∈NR

¬Rr(x) γx(U) :=
⋁︂
r∈NR

Rr(x)

γx(s ∩ t) := γx(s) ∧ γx(t) γx(s ∪ t) := γx(s) ∨ γx(t)
γx(s

c) := ¬γx(s)

Encoding a role successor constraint of the form succ(|s| ≥ n) or succ(|s| ≤ n) into a CQU
formula ∃≥nx.γx(s) or ∃≤nx.γx(s) seems a promising solution to check ALCCQU concept
satisfiability.

Theorem 18. If theALCCQU role successor constraints succ(|si| ▷◁i ni) are satisfiable for i =
1, . . . ,m, then the CQU instance made by the counting sentences ∃▷◁inix.γx(si) is satisfiable.

Proof. Let I be an interpretation such that d ∈ succ(|si| ▷◁i ni)I for i = 1, . . . ,m. We show
that Id |= ∃▷◁inix.γx(si) for i = 1, . . . ,m. Since d ∈ succ(|si| ▷◁i ni)I , there are individuals
d
(i)
1 , . . . , d

(i)
k ∈ ∆I such that d(i)1 , . . . , d

(i)
ni ∈ sId . Using structural induction over the set

term s, it is possible to show that d(i)j ∈ sId implies d(i)j ∈ γx(s)Id for j = 1, . . . , ni, hence
Id, {x/d

(i)
j } |= γx(si) for j = 1, . . . , ni. This allows us to conclude that Id |= ∃▷◁inix.γx(si)

for i = 1, . . . ,m.

Similarly to what mentioned in [2], we need to take into account the semantics of the role
successor constraints in the reduction to a CQU instance. In particular, as already mentioned
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4 Concept satisfiability inALCCQU

in [2], we must ensure that the fact that every individual implied in a the set universe of a solution
is a proper role successor. In the original algorithm using QFBAPA formulas, that amounted to
adding the set constraints U = Xr1 ∪ · · · ∪ Xrn to the obtained formula. In our setting, we
add the universal sentence ∀x.γx(U) to the CQU formula yielded by the encoding of a given
ALCCQU concept description.

Another problem is that further nesting of role successor constraints within one another — a
feature that is not present in CQU — can yield an unsatisfiable concept description that is deemed
as satisfiable, when encoded into a CQU instance.

Example 16. As an example, letC := succ(|succ(|A ⊓ ¬A| ≥ 1)| ≥ 2) for an arbitrary concept
name A. The resulting CQU formula ∃≥2x.Qsucc(|A⊓¬A|≥1)(x) is clearly satisfiable; however,
C is unsatisfiable.

This shows that we need to take into account that a certain unary predicate encodes a role suc-
cessor constraint, when checking the satisfiability of a CQU instance induced from aALCCQU
concept description. This amounts to ensure that in the linear system (4.5), we interpret as non-
empty predicates only those that are U -satisfying and not yielding unsatisfiable ALCCQU con-
cepts. Hence, we need to make recursive calls to checkALCCQU concept satisfiability. We illus-
trate what this means, using an example.

Example 17. Let C := succ(|succ(|A ⊓ ¬A| ≥ 2) ⊓ ¬A| ≥ 1) ⊓ succ(|r ∩A| ≤ 3). The
normal form of the CQU instance ψ induced byC is

Q := {∃≥1x.p1(x), ∃≤3x.p2(x)},
U := {∀x.p1(x)↔ ¬QA(x) ∧Qsucc(|A⊓¬A|≥2)(x), ∀x.p2(x)↔ Rr(x) ∧QA(x)}.

If we initialized the restricted master problem as

minimize 0

subject to
[︃
1 0
0 1

]︃
·
[︃
x1
x2

]︃
≥
≤

[︃
1
3

]︃
x1, x2 ≥ 0

then x1 = 1 and x2 = 3 would be a solution to the master problem, since the objective function
is always zero. However, p1 — in particular,Qsucc(|A⊓¬A|≥2) — cannot be interpreted as a non-
empty set, because this would imply that there is an individual belonging to the interpretation of
succ(|A ⊓ ¬A| ≥ 2), which is clearly unsatisfiable.

We change the definition of the cost function such that cj = 0 if and only ifAj isU -satisfying
and the concept description yielded by the column Aj is satisfiable. In this case, the restricted
master problem would be

minimize x1

subject to
[︃
1 0
0 1

]︃
·
[︃
x1
x2

]︃
≥
≤

[︃
1
3

]︃
x1, x2 ≥ 0

since (1, 0) is U -satisfying butCv := ¬A ⊓ succ(|A ⊓ ¬A| ≥ 2) is unsatisfiable.
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4.3 Branch-and-Price forALCCQU concept satisfiability

A dual and integral solution to this problem is z = (0, 0). Similarly to Example 14 we can add
any U -satisfying column to the restricted problem. The column (1, 1) is not U -satisfying. The
column (0, 0), on the other hand, is U -satisfying and yields a satisfiable concept description. In
particular, we choose the model µ of prop(U) that satisfies µ(succ(|A ⊓ ¬A| ≥ 2)) = 0 and
µ(A) = 1; this yields the concept description Cv := A ⊓ ¬ succ(|A ⊓ ¬A| ≥ 2), which is
satisfiable. Therefore, we can add the column to the problem and proceed to check if there is a
solution that brings the objective function to 0.

Letψ = ⟨Q,U⟩ be a CQU formula in normal form and let v be a U -satisfying column. Let µ
be a model of prop(U) that yields the column v. If atoms(U) is set ofALCCQU -atoms that are
encoded in U , the concept descriptionCv is defined as

Cv :=
l
{A ∈ atoms(U) | µ(QA) = 1} ⊓

l
{¬A | A ∈ atoms(U) ∧ µ(QA) = 0}.

If we combine column generation to solve the integer linear program (4.7) with a recursive con-
cept satisfiability check for each concept Cv yielded by a candidate column, we obtain a method
that allows us to correctly check forALCCQU concept satisfiability, as shown in the next section.

4.3 Branch-and-Price forALCCQU concept satisfiability

The goal of the concept satisfiability decision procedure forALCCQU is to find whether a given
concept description has a feasible interpretation and not a minimal one. This amounts to find a
feasible solution to the linear system (4.5) that is obtained by first inducing a CQU instance ψ in
normal form from the input concept description C in ALCCQU normal form and then trans-
formingψ into a linear system of inequalities — as we have seen in Section 4.2, we do not explicitly
produce the system, but we obtain a solution to it by using column generation to solve (4.7).

ThealgorithmALCCQU -BB. Given aALCCQU concept descriptionC inALCCQU nor-
mal form, we devise the algorithmALCCQU -BB that performs the following steps:

1. Using a SAT solver, we check whether prop(C) is satisfiable. If so, we get a truth assign-
ment µ for the propositional variables in prop(C); otherwise, we conclude that C is un-
satisfiable — this is true, thanks to Proposition 1.

2. Let S be the set of all the role successor constraints in C whose associated propositional
variable is evaluated as true under µ; we map S into a CQU instance ψ = ⟨Q,U⟩ in nor-
mal form, using the encoding described in Theorem 18 and obtaining the normal form as
explained in Lemma 8. We add the universal sentence ∀x.γx(U) toψ to ensure that all the
considered invididuals are proper role successors.

3. We check whether the linear program (4.7) associated to ψ is satisfiable using the branch-

and-price method [6] — branch-and-bound adapted to the context of CQU [11, 19] with
the aid of column generation — and taking care of the possible issues related toALCCQU
outlined in Section 4.2 If an integral solution is found, then the algorithm returns true;
otherwise, the truth assignment µ obtained in Step 1 is discarded. The algorithm keeps
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4 Concept satisfiability inALCCQU

Algorithm 1ALCCQU -BB:ALCCQU concept satisfiability using branch-and-bound
Input: AALCCQU concept descriptionC in normal form
Output: true ifC is satisfiable, false otherwise.

1: noGoods← ∅
2: while prop(C) has a model not belonging to noGoods do
3: µ← GetSATModel(prop(C), noGoods)
4: if GetConstraints(C, µ) = ∅ then
5: return true
6: else
7: ψ ← SetCQUInstance(GetConstraints(C, µ))
8: PbSet← {ψ}
9: while PbSet ̸= ∅ do

10: current← GetProblem(PbSet)
11: solution← SolveRestrictedRelaxation(current)
12: if solution = NIL then
13: continue
14: else if solution is integer then
15: return true
16: else
17: var← GetBranchVar(solution)
18: PbSet.add(GetBoundedProblems(current, var))
19: end if
20: end while
21: end if
22: noGoods.add(µ)
23: end while
24: return false

track of the truth assignments for prop(C) that yield an unsatisfiable CQU instance by
storing them in the set noGoods, which is initially empty.

A detailed version of theALCCQU -BB algorithm is given in Algorithm 1. Line 3 corresponds to
Step 1; Step 2 is carried out at line 8; the lines 8–20 — highlighted in Algorithm 1 — correspond
to Step 3.

Heuristics for branch-and-bound. Once we obtained a CQU instance ψ from S, we
employ the branch-and-bound technique to solve it [19]. We initialize the set of bounded problems
PbSetwith {ψ}. A single iteration of the branch-and-bound method works as follows:

1. The algorithm extracts a problem fromPbSet, according to the following heuristic imple-
mented in GetProblem:

a) if PbSet contains only one problem, the algorithm simply extracts it;
b) if the set contains more than one problem, the algorithm selects the one which cur-

rent solution contains the least number of non-integral components;
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4.3 Branch-and-Price forALCCQU concept satisfiability

c) if there is a tie between problems, the one with the largest number of counting sen-
tences is chosen.

2. The algorithm searches for a relaxed solution to the master problem (4.7) induced from the
chosen CQU instance using column generation.

3. If the chosen problem has no feasible solution, the algorithm discards it and proceeds to the
next iteration; if it has a feasible integral solution, such a solution also satisfies the original
problem, since the solution space of the current problem is always included in that of the
original problem.

4. If the chosen problem has a feasible rational solution, then there is at least one component
xi in the current solution x that is not integral; the branching phase is then deployed by
GetBranchVar and the heuristic employed to choose the branching variable is to select the
component xi of x which non-integral value is closest to either ⌊xi⌋ or ⌈xi⌉.

5. The bounding phase is carried by the procedure GetBoundedProblems that takes the current
CQU instance φ = ⟨Q,U⟩ and adds to PbSet the bounded problems

φ′ := ⟨Q ∪ {∃≤⌊xi⌋x.p
′(x)},U ∪ {∀x.p′(x)↔ ei(x)}⟩ (4.12)

φ′′ := ⟨Q ∪ {∃≥⌈xi⌉x.p
′(x)},U ∪ {∀x.p′(x)↔ ei(x)}⟩ (4.13)

where ei(x) is the elementary term corresponding to the i-th column ofA.

The heuristic implemented in GetProblem is well-defined: in the first iteration of the loop, the set
contains only ψ, so it is extracted with no need for a solution; if two or more problems are in the
set in the i+1-th iteration, they are bounded problems that have been obtained by bounding the
search space of previously considered problems that have a feasible solution.

In choosing a LP solver, the only requirement is that the solver is able to provide, when existing,
feasible primal and dual solutions (not necessarily optimal ones); we make the assumption that the
procedure employed by the solver is correct and terminating — an example of such a procedure
is the simplex method [7]. Hereafter, we denote with GetPrimalSolution(A, ▷◁,b, c) a call to the
chosen LP solver that either returns a feasible relaxed solution to (2.1) or returns NILotherwise; the
procedure GetDualSolution(A, ▷◁,b, c) works analogously for (2.2), with the additional condi-
tion that the dual solution z is integral — otherwise, we would not be able to apply the proposi-
tional encoding described in Section 4.2.

Solving CQU instances and recursive satisfiability. At each stage of the branch-
and-price phase ofALCCQU -BB, we check if the relaxation of the selected CQU instance has a
solution via the SolveRestrictedRelaxationprocedure, described in Algorithm 2. This procedure
encodes the process described in Section 4.2, with additional steps to ensure that the generated
column is not yielding an unsatisfiable ALCCQU concept. Assume that v is a U -satisfying col-
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Algorithm 2 SolveRestrictedRelaxation(ψ)

Input: A CQU formula ψ = ⟨Q,U⟩ in normal form with |Q| = k.
Output: A relaxed solution to ψ if it exists; NIL otherwise.

1: A← Ik and c← SetCost(A,U) and x← b
2: while c′ · x > 0 do
3: z← GetDualSolution(A, ▷◁,b, c)
4: if z′A ≤ c, z ▷◁−1 0 with z integral is unfeasible then
5: return NIL

6: end if
7: v← GenerateColumn(z,U)
8: if v = NIL then
9: return NIL

10: end if
11: if ALCCQU -BB(Cv) then
12: if v is not yet inA then
13: A.append(v); c.append(0)
14: end if
15: else
16: U .add(∀x.¬γx(Cv))
17: end if
18: x← GetPrimalSolution(A, ▷◁,b, c)
19: if Ax ▷◁ b, x ≥ 0 is unfeasible then
20: return NIL

21: end if
22: end while
23: return x

umn obtained as a solution of (4.11) or a column of Ik and letµbe the truth assignment over (4.11)
generated by the SAT solver. TheALCCQU concept description induced by µ is obtained as

Cv :=
l
{A | A is aALCCQU -atom, µ(xA) = 1}⊓

⊓
l
{¬A | A is aALCCQU -atom, µ(xA) = 0}.

(4.14)

Once Cv is obtained, the algorithm makes a recursive call to check that Cv is satisfiable. If Cv is
unsatisfiable andv is a column of Ik, we can assign cost 1 tov and keep it in the generated matrix:
if a solution x with c′ · x = 0 is found, then the value of the variable associated to v must be 0,
thus it is interpreted as an empty set. We denote that procedure that computes the cost function
with this additional feature with SetCost(A,U).

If v is not part of Ik and Cv is unsatisfiable, the algorithm does not add v as a column to A;
instead, the universal sentence ∀x.¬γx(Cv) is added. This is done because of two motivations:
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1. v cannot be added to A as a column that is not U -satisfying; in generating v we assumed
that its associated cost is 0, whereas its cost as a notU -satisfying column would be 1 accord-
ing to the cost function used in the algorithm;

2. v cannot be entirely discarded, because there might be another valuation µ′ that makes v
U -satisfying and that yields a satisfiableALCCQU concept description.

This step is unnecessary in the simpler setting of CQU, because every atomic predicate has no hid-
den semantics, whereasALCCQU -atoms can be nested role successor constraints which meaning
is not taken into account.

4.4 Correctness ofALCCQU -BB
Given a set term s, the set atoms(s) contains exactly the ALCCQU -atoms occurring in s. The
constraint depth of a ALCCQU concept description C in normal form is recursively defined as
follows:

cd(C) :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 C = A ∈ NC

cd(D) C = ¬D
max(cd(D1), cd(D2)) C = D1 ⋆ D2, ⋆ ∈ {⊓,⊔}
1 + max{cd(D) | D ∈ atoms(s)} C = succ(|s| ▷◁ n)

(4.15)

Lemma 10. If cd(C) = 0, then

ALCCQU -BB(C) = true if and only ifC is satisfiable.

Moreover,ALCCQU -BB terminates.

Proof. Assume that cd(C) = 0. It follows that C has no role successor constraint as a subcon-
cept. If the concept C is satisfiable, then µ ̸= NIL, with µ = GetSATModel(prop(C), ∅) a model
of prop(C) — this is a consequence of Proposition 1. Moreover, GetConstraints(C, µ) = ∅,
because of the absence of role successor constraints in C . Therefore, ALCCQU -BB(C) returns
true.

If the conceptC is unsatisfiable, then Proposition 2 yields the unsatisfiability ofprop(C). This
means that GetSATModel(prop(C), ∅) = NIL. Therefore,ALCCQU -BB(C) returns false.

Termination is guaranteed, because GetSATModel is assumed to implement a correct and termi-
nating decision procedure for propositional satisfiability.

We proceed by showing that the subprocedure ofALCCQU -BB that employs branch-and-price
to solve a CQU instance induced from a set of role successor constraints — lines 8–20 — is correct
and terminates. The proof relies on the correctness and termination of the branch-and-bound and
column generation methods (details in [10, 19]).

In particular, column generation terminates and is correct because the matrixA is finite and for
every added column the objective function is not increased — the only additional factor we need to
take care of is to avoid adding columns that are already in the restricted master problem (4.8) [10].
The termination of branch-and-bound is guaranteed when the solution space is bounded, that is,
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when there exist a vector t such that 0 ≤ x ≤ t. In our setting, the upper bound t is not guaran-
teed to exist a priori; however, linear programming ensures that if a solution to the problem (4.7)
exists, then there exists a solution satisfying xj ≤ max{bi | b = (b1, . . . , bk)}, thus we can
impose an artificial upper bound and ensure the termination of the branch and bound [11, 19].

The section ofALCCQU -BB ranging over lines 8–20 is entered only if prop(C) has a model
µ that has not being tested yet and if GetConstraints(C, µ) ̸= ∅. Therefore, we can assume that
cd(C) = n+ 1, with n ≥ 0 a natural number.

Theorem 19. TheALCCQU conceptC in normal form is satisfiable iffALCCQU -BB(C) returns

true. Moreover,ALCCQU -BB terminates.

Proof. By induction on cd(C). The induction base cd(C) = 0 is covered in Lemma 10. We
assume the following inductive hypothesis, for everyALCCQU concept descriptionD:

if cd(D) ≤ n, thenD is satisfiable if and only ifALCCQU -BB(D) = true.

Assume that cd(C) = n+ 1.

Soundness Assume that ALCCQU -BB(C) = true. Then, there exists a truth assignment µ
such that µ |= prop(C). If GetConstraints(C, µ) = ∅, then the interpretation I with
d0 ∈ ∆I defined by

d0 ∈ AI if and only if µ(xA) = 1 for allALCCQU -atomsA inC

is a model forC . Assume now that GetConstraints(C, µ) ̸= ∅ and letψ = ⟨Q,U⟩ be the
CQU formula in normal form obtained from GetConstraints(C, µ). Since we assumed
that ALCCQU -BB(C) returns true, there is an integral solution x = (x1, . . . , xm) to
the master problem (4.7) associated to ψ. Let v = Aj be a column of the matrixA (4.7)
such thatxj ̸= 0. Then,v isU -satisfying and we can assume that there exists a valuationµv
that satisfiesprop(U) and yieldsv. Thanks to our inductive hypothesis, since cd(Cv) ≤ n,
we also know that the concept Cv yielded by v and µ is satisfiable: thus,we can consider
a model Iv of Cv and an individual dv ∈ ∆Iv such that dv ∈ CIv

v . We take xj disjoint
copies of Iv and embed them in the interpretation I by connecting each individual dv to
d0 as follows:

dv ∈ rI(d0) if and only if µv(Rr) = 1.

Since µv |=
⋁︁
r∈NR Rr, there exists at least a role name r such that dv ∈ rI(d0), thus dv

is a proper role successor. Moreover, if |Q| = k, for i = 1, . . . , k we obtain that

dv ∈ s
Id0
i if and only if vi = 1

where si is the set term referenced by the i-th counting sentence inQ. We repeat this pro-
cedure for all the columnsAj such that xj ̸= 0.
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For i = 1, . . . , k, let Si := {xj | v = Aj ∧ vi = 1}. For every counting sequence
∃▷◁iNix.pi(x) in Q representing the successor constraint succ(|si| ▷◁i Ni), we obtain
that

m∑︂
j=1

Aj ixj =

⎛⎜⎜⎝∑︂
xj∈Si
xj ̸=0

xj

⎞⎟⎟⎠ ▷◁i Ni

thus d0 ∈ succ(|si| ▷◁i Ni)
I for i = 1, . . . , k. We conclude that I |= C .

Completeness assume thatC is satisfiable under the interpretation I and that d0 ∈ CI . Let µ
be the truth assignment defined by

µ(xA) = 1 if and only if d0 ∈ AI for allALCCQU -atomsA inC .

Then, µ |= prop(C); since noGoods = ∅, the algorithm ALCCQU -BB proceeds. If
S := GetConstraints(C, µ) = ∅, ALCCQU -BB returns true. Assume that S ̸= ∅.
The CQU formula in normal form ψ obtained from S is satisfiable, thanks to Lemma 8
and Theorem 18. Moreover, from Theorem 16 follows that the master problem (4.7) has a
feasible and integral solution. Since the branch-and-price method is proved to be correct,
an integral solution is found for one of the subproblems generated fromψ, thusALCCQU -
BB returns true.

Termination Both the branch-and-bound and the column generation methods are guaranteed
to terminate [10, 19]. Moreover, every recursive call to ALCCQU -BB comes with a con-
straint depth that is at mostn; hence, by inductive hypothesis, the recursive call terminates.
Finally, the propositional formula prop(C) has a finite number of truth assignments that
are models.

4.4.1 Complexity ofALCCQU -BB
A property that is enjoyed by the original decision procedure forALCSCC concept satisfiability
in [2] is that it can be adapted to use only a polynomial amount of space with respect to the
input concept description. Since we opted to replace non-determinism with other techniques,
our newly-defined decision procedure does not enjoy this property. In particular:

• We store all the models of prop(C) that yield a failing run of the algorithm; in the worst
case, prop(C) might have exponentially many models to test, in the size of the set of its
ALCCQU -atoms.

• Every time we check if a CQU formula is satisfiable inALCCQU -BB, we resort to column
generation. Since we are not guessing a polynomial-sized set of columns as done in [2]
but we are generating as many columns as needed in order to find a satisfying solution, in
the worst case an exponential number of columns in the size of the number of counting
sentences in the CQU formula. Moreover, every call to the SAT oracle to obtain a column
invokes a NP-procedure.
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4 Concept satisfiability inALCCQU

• The algorithm ALCCQU -BB requires that the input concept description C is in normal
form. This means that the normalization preprocessing might already take exponential
time and yield an exponentially larger concept description nf(C).

During the column generation procedure, we have a worst-case exponential number of calls
to a NP subprocedure. This implies that ALCCQU -BB is a NExpTime-algorithm to decide
ALCCQU concept satisfiability. We remark the fact that this is a worst-case complexity result
and that in practice, the execution of ALCCQU -BB might be more efficient. The only way to
find an answer to this question is to provide an implementation ofALCCQU -BB and evaluate its
performance.
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5 Conclusion

Summary. Starting from an existing extension of ALCQ called ALCSCC [2] with known
reasoning complexity and decision procedures for concept satisfiability, we proposed an algo-
rithm that can be efficiently implemented to test concept satisfiability in a restriction ofALCSCC
calledALCCQU , where the only cardinality constraints that are allowed are comparisons of com-
plex cardinality terms against a constant natural number. The algorithm that we presented relies
on a variety of known techniques borrowed from SAT solving and integer linear programming,
applied to a first-order fragment called CQU [11] that we adapted to represent the constraints
over role successors of a given individual. This decision procedure successfully replaces the non-
deterministic steps of the original method to checkALCSCC concept satisfiability proposed in [],
at the cost of losing some complexity-related properties regarding space requirements.

We have also shown that ALCCQU corresponds to the subset of ALCSCC that lies in first-
order logic. This property strengthens our choice of analyzing ALCCQU on the one hand and
shows that the technique illustrated here cannot be applied to the whole DLALCSCC without
restrictions on the other, since there exist ALCSCC concepts that are beyond first-order logic.
To provide an additional argument in favor of studying ALCCQU , we have classified the DLs
ALCQ,ALCCQU andALCSCC according to their expressive power, obtaining a linear order

ALCQ <expr ALCCQU <expr ALCSCC

that shows howALCCQU constitutes a middle ground between the well-known DLALCQ and
the rather expressive DLALCSCC. Moreover, we presented a third characterization ofALCCQU
as the first-order fragment that is invariant under the newly-introduced equivalence relation of
ALCQt-bisimulation.

Futurework. To substantiate the claim that the algorithm proposed in Chapter 4 is efficient
for practical purposes, the different decision procedures forALCSCC andALCCQU ought to be
implemented and evaluated on a subset of instances that can be expressed by both logics. Using the
implementation of CQU-SAT provided in [11] could be a starting point for the implementation
ofALCCQU -BB.

Another interesting task would be to investigate finite-model reasoning over ALCSCC and
ALCCQU . In such a setting, indeed, the set of role successors of an individual is always bounded,
leading to additional guarantees — for instance, Lemma 1 always holds in a finite model. Al-
ternatively, one could investigate the consequences of setting an upper bound to the set of role
successors: in that case, if the bound is known, all possible role successor constraints ofALCSCC
could be translated into first-order logic, due to the finiteness of the numerical domains that are
considered.
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5 Conclusion

The algorithm that we proposed can be extended in a straightforward fashion to acyclic TBoxes,
by unfolding the definitions in the input concept description C . A more interesting question
could be whether we can take a similar approach to reason with respect to general TBoxes, possibly
by employing suitable blocking strategies.

Finally, it would be worth considering the interaction ofALCCQU andALCSCCwith CBoxes
(or their restricted versions) as in [3] and understand if our approach based on linear programming
could be employed in such a setting. A positive outcome would yield an efficient tool to provide
statistical reasoning in a DL, as described in [3].
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