
Date: April, 2023
Version: 1.0
Type: A tutorial for self-study

Dominik Grzelak
Software Technology Group
Technische Universität Dresden

A Bigraphical Vending Machine as a Webservice
From Specification and Analysis to Implementation
using the Bigraph Toolkit Suite

(CC BY 4.0)

Folie 2

Abstract

A bigraph-driven vending machine* is implemented.
The application is realized as a Spring-based
webservice. Actions can be initiated by REST
endpoints.

The system follows a rule-based architecture**,
where possible operations are grounded on a rule
set. Bigraphical Reactive Systems are used for the
specification and execution.

The actual state of the application is a bigraph stored
in a database, which can be viewed and altered
directly in the DB. A history of states is kept – the
application can be transferred to any prior state.

The application can be updated or extended by
merely changing the bigraphical database model.

* The VM allows a user to order coffee or tea
using coins.

** A rule-based system in computer science is a system that uses a
set of rules to make decisions or solves problems. It relies on a set of
if-then statements that can be used to process information and arrive
at a conclusion.

Acknowledgement

This research project is funded by the German Research Foundation
(DFG, Deutsche Forschungsgemeinschaft) as part of Germany's
Excellence Strategy - EXC 2050/1 - Project ID 390696704 - Cluster of
Excellence "Centre for Tactile Internet with Human-in-the-Loop" (CeTI)
of Technische Universität Dresden.

From Specification, Analysis to Implementation
A Bigraphical Approach

Folie 3

Contents

First Part

We specify and analyse a system of a vending
machine using BDSL. This concerns the static and
dynamic aspects of the machine.

Second Part

The analysis results are re-used for the
implementation using Bigraph Framework.
The application is realized as a webservice that is
built using the Spring framework.

Underlying Theme

Throughout this tutorial relations are established
between LTSs, BRSs and rule-based systems.

Remark
BTS is under continuous development and should be
considered as provisional experimental toolkit in the
sense that it has not been thoroughly tested. Beware of
— Breaking API changes
— Documentation may lack behind the implementation

Requirements
This tutorial requires basic knowledge about bigraphs,
the Bigraph Framework and BDSL, and graph rewriting
in general.

Tool Version

Bigraph Framework 0.9.6-SNAPSHOT

BDSL Grammar 1.0.0-SNAPSHOT

BDSL Interpreter 1.0.0-SNAPSHOT

Spring Data CDO 0.5.0-SNAPSHOT

A Spring-based webservice is built
that implements a bigraph-driven
vending machine.

Folie 4

Background
Requirements, Field of Work and Related Topics

Folie 5

The Vending Machine Example

In the field of formal methods and software engineering,
the vending machine example is commonly used in
academic textbooks to demonstrate how to formally
specify, verify, and implement a system using various
formal methods.

The system is typically specified using a formal
specification language, which is then formally verified
using a theorem prover. Finally, the system is
implemented in an actual programming language.

This example is often used to demonstrate the
usefulness of formal methods in software engineering,
and to show how a system can be specified, verified,
and implemented in a systematic fashion.

The Vending Machine
A Pedagogic Textbook Example

Works using the Vending Machine Example

— [Gorr17] Gorrieri, Roberto: Labeled Transition Systems.
In: Gorrieri, R. (Hrsg.): Process Algebras for Petri Nets:
The Alphabetization of Distributed Systems,
Monographs in Theoretical Computer Science. An
EATCS Series. Cham : Springer International Publishing,
2017 — ISBN 978-3-319-55559-1, S. 15–34

— [AILS07] Aceto, Luca ; Ingólfsdóttir, Anna ; Larsen, Kim
Guldstrand ; Srba, Jiri: The language CCS. In: Reactive
systems: Modelling, specification and verification :
Cambridge University Press, 2007, S. 7–30

— https://p-org.github.io/P/

— https://www.site.uottawa.ca/~bochmann/SEG-2106-
2506/Notes/M1-2-StateMachines/State-machines-
2010/index.html

Folie 6

Getting Started with the Bigraph Toolkit Suite
Artifact- and Code-Repositories, and Documentation

— Some instructions concerning the usage and development are provided
on the bigraph website

— Every repository contains a more or less complete README
— Code is documented whenever possible, Javadoc API documentation

available for each project
— A lot of unit tests to learn from in each project

Artifactory
https://stgroup.jfrog.io/

Dependency storage

GitLab
https://git-st.inf.tu-dresden.de/bigraphs/

Source code repository

Minimum Requirements
JDK 11 + Maven

www.bigraphs.org

https://www.bigraphs.org/
https://stgroup.jfrog.io/
https://git-st.inf.tu-dresden.de/bigraphs/

Folie 7

Getting the Source Code

— The implementation based on this slide set can be found here:

https://github.com/bigraph-toolkit-suite/bigraphs-by-examples.bigraph-vendingmachine-webservice

https://github.com/bigraph-toolkit-suite/bigraphs-by-examples.bigraph-vendingmachine-webservice

Folie 8

Model Checking

— [CHVB18] Clarke, E. M. ; Henzinger, T. A. ; Veith, H. ; Bloem, R. (Hrsg.):
Handbook of Model Checking : Springer International Publishing, 2018
— ISBN 978-3-319-10574-1

– [ClHV18] Clarke, Edmund M. ; Henzinger, Thomas A. ; Veith, Helmut:
Introduction to Model Checking. In: Clarke, E. M. ; Henzinger, T. A. ;
Veith, H. ; Bloem, R. (Hrsg.): Handbook of Model Checking. Cham :
Springer International Publishing, 2018 — ISBN 978-3-319-10575-8, S. 1–
26

– [ClRS18] Cleaveland, Rance ; Roscoe, A. W. ; Smolka, Scott A.: Process
Algebra and Model Checking. In: Clarke, E. M. ; Henzinger, T. A. ; Veith,
H. ; Bloem, R. (Hrsg.): Handbook of Model Checking. Cham : Springer
International Publishing, 2018 — ISBN 978-3-319-10575-8, S. 1149–1195

– [SeST18] Seshia, Sanjit A. ; Sharygina, Natasha ; Tripakis, Stavros:
Modeling for Verification. In: Clarke, E. M. ; Henzinger, T. A. ; Veith, H. ;
Bloem, R. (Hrsg.): Handbook of Model Checking. Cham : Springer
International Publishing, 2018 — ISBN 978-3-319-10575-8, S. 75–105

— [BaKa08] Baier, Christel ; Katoen, Joost-Pieter: Principles of model checking.
Cambridge, Mass : The MIT Press, 2008 — ISBN 978-0-262-02649-9

— [Hoff13] Hoffmann, Dirk W.: Software-Verifikation. In: Hoffmann, D. W.
(Hrsg.): Software-Qualität, eXamen.press. Berlin, Heidelberg : Springer, 2013
— ISBN 978-3-642-35700-8, S. 333–369

Recommended Readings
Model Checking, Process Calculi and Category Theory

Process Algebra

— [Wins93] Winskel, Glynn: The formal semantics of programming
languages - an introduction., Foundation of computing series : MIT Press,
1993 — ISBN 978-0-262-23169-5

— [BaVR07] Baeten, J. ; Van Beek, D. ; Rooda, J.: Process algebra. In: Fishwick,
P. A. (Hrsg.): Handbook of Dynamic System Modeling, Chapman&Hall/CRC
Computer and Information Science Series. Boca Raton : Chapman &
Hall/CRC Press, 2007 — ISBN 978-1-58488-565-8, pages 19.1-19.19

— [AcLI05] Aceto, Luca ; Larsen, Kim G ; Ingolfsdottir, Anna: An Introduction
to Milner’s CCS, 2005

— [Miln09] Milner, Robin: The Space and Motion of Communicating Agents.
1st. Aufl. New York, NY, USA : Cambridge University Press, 2009
— ISBN 978-0-521-73833-0

Category Theory

— [LaSc97] Lawvere, F. William ; Schanuel, Stephen H.: Conceptual
Mathematics: A First Introduction to Categories : Cambridge University
Press, 1997 — ISBN 978-0-521-47817-5

— [Miln09] Milner, Robin: Bigraphical Categories. In: Bravetti, M. ; Zavattaro,
G. (Hrsg.): CONCUR 2009 - Concurrency Theory, Lecture Notes in Computer
Science. Berlin, Heidelberg : Springer, 2009 — ISBN 978-3-642-04081-8,
S. 30–36

Folie 9

— Formal methods are a set of mathematical techniques used to make software more correct and reliable.

— They are based on the strict use of mathematical reasoning in designing and implementing software systems.

— Formal methods make it possible to define and describe the behavior of software systems as well as show that
their design and implementation are correct.

— This lets problems be found and fixed early on in the development process, before they become more expensive
and time-consuming to fix.

— Formal verification techniques can be categorized roughly into three categories (refer to [Hoff13]):

Formal Methods?

Deduction Model Checking Abstract Interpretation

Implementation Formal language
semantics

Kripke structure, LTS Equation systems

Specification State sets
Temporal logics,
Process algebra

Logic calculus

Verification: Does the specification
conform to the implementation?

Model Checking:
Transition System +
Correctness Properties

Folie 10

Reactive Systems
A system that performs some computation by reacting on
stimuli from its environment
Reactive Systems = Interacting Systems, Parallel, and/or
Distributed Systems, Context-aware Systems

What is the most abstract view of a reactive system? [*]
— After T. Hoare and R. Milner: Everything can be regarded

as a process (Black-Box Approach)
● A process that performs some action and becomes

another process
— Concurrency Theory: Theory of reactive systems
— Process Theory: An approach to concurrency theory,

included is process algebra

Reactive Systems?

https://mozdevs.github.io/html5-games-workshop/
en/guides/platformer/the-game-loop/

Every computer game contains a game
loop and is basically a reactive system.

[*] See also Luca Aceto's lecture slides available
from http://www.ru.is/faculty/luca/IMTCOURSE/

http://www.ru.is/faculty/luca/IMTCOURSE/

Folie 11

— Process algebras are used to simulate the behavior of distributed, concurrent, parallel and multi-agent systems,
i.e., all sorts of reactive systems.

— Process algebras can be regarded as a family of similar formal languages used to describe and evaluate how
systems behave when they are running at the same time.

– It is a form of mathematical language that allows the user to precisely and concisely describe the behavior
of reactive systems.

– What ODEs are to physical simulations, process algebras are to computer systems and their processes.

— Process algebras are used to study and validate concurrent systems, as well as to optimize systems.

Well-known Process Algebras

— Probably most famous: λ-calculus

— By R. Milner: Calculus of Communicating Systems, π-calculus, Bigraphical Reactive Systems

— Others: Mobile Ambients, Algebra of Communicating Processes, Communicating Sequential Processes

Process Algebra? Definition (Process Algebra) (after [BaVR07])
“The study of the behavior of parallel or
distributed systems by algebraic means.”

Folie 12

— A bigraph, as devised by Robin Milner, is a
mathematical structure viewed as the superposition
of two orthogonal sub-structures, called the bigraph's
place and link graph, which only share nodes. The
nodes represent any objects in the system, and the
edges represent the relationships between them.

— The place graph is a forest and is used to model the
locality of a system under consideration; the link
graph is a hypergraph and models the
communication aspect.

— Bigraphs are equipped with interfaces allowing them
to be composed using operators.

— Bigraphs can be used to model a wide range of real-
world systems, such as software components,
building plans, location models, and biological
networks.

Bigraphs?
A bigraph is a superposition of two orthogonal
sub-structures with interfaces, a forest and a
hypergraph, which only share nodes.

Composition of two bigraphs
representing an office environment

Result of the composition

Folie 13

Bigraphs?
Principal Aims of the Theory

The theory is a generic meta-model for ubiquitous systems, global and mobile computing, ...
— The graph structure captures two relevant dimensions explicitly: mobile locality and mobile communication
— Suited for modeling interactions in (semi-/un-) structured physical/virtual environments

It is a unifying meta theory encompassing existing process calculi / computational models / graphs
— pi-calculus, CCS, mobile ambients, spider calculus, spygraphs, interaction nets, ...
— Programming language theory, λ-calculus, term graph rewriting, ...
— Agent-based models, actor-based models, ...
— Petri nets, state machines, ...
— Gs-graphs
— Ranked graphs
— Type graphs
— Forests, Hypergraphs, … (of course)
— ...

Folie 14

— Expert systems and AI-driven software often incorporate some form of rule engine to model knowledge and make
decisions by means of rules.

— Rule-based Programming (RP) is a programming paradigm or programming model in line with Object-oriented
Programming (OOP) or Functional Programming (FP), for instance, where classes or functions, respectively, are the
primary artifacts to program with.

– With respect to RP, rules are first-class citizens.

— Thus, RP provides a different approach to dynamically implement, configure and change the behavior of a system,
application or module in any architecture or software, primarily by means of rules.

— RP is concerned with three main questions (see [Wund06, p. 25]):

– Where is the source of the rules?

– When, how and where do rules change the behavior of the application?

– Which effect has the changed behavior of the application before/whilst/after execution and appliance of the rules?

— A general approach to RP based entirely on graphs represent graph rewriting systems.

Rule-based Programming? Note that model transformation
systems are also related to graph
rewriting systems.

[Wund06] Wunderlich, Lars: Java Rules Engines:
Entwicklung von regelbasierten Systemen. Frankfurt am
Main : Entwickler.press, 2006 — ISBN 978-3-935042-75-8

Folie 15

Part I
System Specification and Analysis

Folie 16

— VM is a system that is used to dispense products such
as snacks and drinks to customers. It typically consists
of two interacting components: a hardware
component and a software component.

— The hardware component is responsible for the
physical act of dispensing the products and includes
the vending machine itself, the coin-acceptor, a
heating for warming up drinks, the product-dispenser
and so forth.

— The software component is responsible for the
control logic and includes, e.g., the product selection
logic, and the payment logic.

— The logic is expressed in formal methods such as
temporal logic, finite state machines, transition
systems and the like, and can be verified to ensure
the correctness of the system.

Vending Machine (VM)
Conceptual Description

Coffee

Tea

Coin slot

Buttons

Front-panel of the VM

The VM from the user-perspective is only
concerned with the logic of the front-
panel. That is, the “user interface” of the
VM.

Dispenser

General structure of the VM

Folie 17

The Vending Machine
Modeling using Labeled Transition Systems (LTS)

Taking a process-based view, we have 2 interacting
processes
— VM: A vending machine that is willing to receive a

coin, delivers coffee or tea, finally returning to its
initial state.

— PHD: A student that drinks coffee or tea (and
produces papers)

This VM can steal coins!
Some application requirements we may think of later too:
— VM: Return change
— VM: Has a finite amount of products
— PHD: Has a finite amount of coins

The behavioral semantics of this running example is described by this LTS

The LTS shows a simplified view from the user-perspective.
That is, the interaction between the user and the software-
controller of the VM.

Folie 18

State Machines?
Variants

State machines are a semantic model for
concurrent and distributed systems for
describing system behavior.

State Machines

Labeled Transition
System

Finite State Machine Extended FSM

Petri nets

— A LTS mathematically models
system behavior.

— It is a directed graph with states
and action-labeled transitions.

— It provides a way to reason
about a system's behavior and
its outcomes of alternative
sequences of actions.

FSMs
— Checking bismulation on Petri nets or FSM is exponential
— Sophisticated notion of composition missing
— Constraints: Model must be deterministic and complete
— Difficult to specify interleavings

LTSs
— Bisimulation equivalence is easier to define than

on other state machine formalisms and generally
cheaper to verify in O(m log n) time [Gorr18]

— Compositional
— Semantic model for many process algebras

[Gorr17] Gorrieri, Roberto: Labeled Transition Systems. In: Gorrieri, R. (Hrsg.):
Process Algebras for Petri Nets: The Alphabetization of Distributed Systems,
Monographs in Theoretical Computer Science. An EATCS Series. Cham : Springer
International Publishing, 2017 — ISBN 978-3-319-55559-1, S. 15–34

[Gorr18] Gorrieri, Roberto: Verification of finite-state
machines: A distributed approach. In: Journal of Logical
and Algebraic Methods in Programming Bd. 96 (2018), S.
65–80

Folie 19

Operational Semantics?
LTS

LTS incorporate an operational semantic, that defines “how” the
system behaves and not “what” the instructions mean (i.e.,
denotational semantics)

Types

Event-based and State-based

Operational Semantics
— Is a kind of formal semantics that explains what a programming

language means by describing how it works.
— It gives a precise mathematical definition of a language's syntax

and meaning in terms of the steps a computer must take to
evaluate it.

— Is used to define the labels associated with each transition. The
labels provide information about the action associated with that
transition, as well as the conditions under which the transition
can occur.

Operational semantics describe how instructions
are executed, and denotational semantics
describe what the instructions mean.

— The semantics of a program are broken down into
a series of small, discrete steps.

— These steps can be thought of as individual
instructions which, when combined, form a
complete program.

— Each step is analyzed in terms of its effects on the
state of the program.

— This kind of semantics is useful for understanding
the behavior of a program and for debugging and
testing it for correctness.

“A person does not really understand something until after teaching it to a computer, i.e., expressing
it as an algorithm. An attempt to formalize things as algorithms leads to a much deeper
understanding than if we simply try to comprehend things in the traditional way.” Donald Knuth

Folie 20

— Though it is a very fundamental model, we do
not want to model a LTS directly.

— Not user-friendly: Naive modeling practices
not sufficient for some applications. Some
cases may be to cumbersome to define.

— Difficult to manage multiple LTSs for
beginners and experts alike.

Synthesizing an LTS

Why not synthesize a LTS using just a
set of simple rules?

Rules LTS

Folie 21

The behavioral semantics of this running example is
described by a LTS derived from a BRS

— Transition relations are created by applying user-
defined reaction rules.

— What is needed? An initial state q0 and rules defined
over the same signature.

— The result is also called a reaction graph.

Synthesizing an LTS
Bigraphical Reactive Systems (BRS)

— Rules establish relations, they are labels of
the transitions between the nodes of the LTS,
which represent states (bigraphs).

Left-hand side

[BS92] Burkart, Olaf ; Steffen, Bernhard: Model checking for
context-free processes. In: Cleaveland, W. R. (Hrsg.): CONCUR
’92, Lecture Notes in Computer Science. Berlin, Heidelberg :
Springer, 1992 — ISBN 978-3-540-47293-3, S. 123–137

Right-hand side

State after the
reaction

State before the reaction

Folie 22

BRS: Static Aspects
Initial State of the VM (Data)

The entire system is the merge product of the
vending machine and the PhD student, which

places both bigraphs under one root.
That indicates that both are “near to each other”.

Some Application Requirements already
included
— VM: has a finite amount of products
— PHD: has a finite amount of coins*
— Both drinks have the same cost**

(this is explicitly modeled by the rules)

* Opportunity to define many
other PhD students.

** Other configurations
possible, e.g., tea costs 2 coins
and coffee 3 coins.

Folie 23

BRS: Static Aspects
Configuring the VM (Data)

This composition allows us to “dock” different PhD students to the system
Changing the system specification is easy by just building the product with a different PhD student.
For example, one that has money and one that hasn’t, or one that has a free pass, etc.

We can think of the PHD bigraph as
some kind of “prerequisite” of a
“contract” that the user has to pass to
the webservice later in order for VM to
actually perform work.

Note that the VM doesn’t operate
without a PhD student by design →
subject to the reaction rules.

PhD student
instance can be
easily changed

Folie 24

BRS: Behavioral Aspects
Reaction Rules (Logic)

RR0 (Insert Coin)

Graphical representation of RR0

RR1 (Push Button 1)

RR2 (Push Button 2) analogous to RR1

RR3 (Give Coffee)

RR4 (Give Tea) analogous to RR3

Rule Overview
RR0 (Insert Coin)
RR1 (Push Button 1)
RR2 (Push Button 2)
RR3 (Give Coffee)
RR4 (Give Tea)

Folie 25

Reaction Rules
Detailed Examination

Rules are compact and abstract
They include several different conditions that need to be guaranteed before a rule can be applied:
— A coin can only be inserted when no button is pressed, similarly,
— A button can only be pressed, when at least one coin is inserted and no button was pressed before
— A PhD student with money has to be “near” the VM to insert a coin
— It doesn’t matter which PhD student pushes the button, but one has to be “near” the machine

The operational semantics of a BRS
specification expressed by general rules
convey a great amount of knowledge.

RR0

RR1

(Insert Coin)

(Push Button 1)

Folie 26

Reaction Rules
Detailed Examination

Rules are compact and abstract
Include several different conditions that need to be guaranteed before a rule can be applied:
— If no coins are inserted, no product is released (cost of the product)
— Product is release only by VM when button pressed
— If no item is available no product is released

RR3 (Give Coffee)

Folie 27

Model Checking the BRS
Synthesized Transition System

— A bigraphical graph transformation system BGTS
comprises a set of rules and predicates, and an initial
state.

— Executing the system yields a reaction graph RTS.
— For the execution, a standard directed model

checking algorithm is employed.
— RTS represents the entire behavior of the VM system.

RTSRule Overview
RR0 (Insert Coin)
RR1 (Push Button 1)
RR2 (Push Button 2)
RR3 (Give Coffee)
RR4 (Give Tea)

Folie 28

Model Checking
Reachability Checking Algorithm

Given is a BRS specification containing a rule set,
predicates and an initial state. The result is a
reaction graph.

Online Model Checking Algorithm
— Implements a breadth-first search
— Is used to execute the BRS

specification on-the-fly

Pseude-algorithm after
[Perr13] Perrone, Gian: Domain-Specific Modelling Languages in Bigraphs, IT University of Copenhagen, 2013

Folie 29

Simulation and Verification
General Properties to Check

Invariants: A property of states
under a given rule-set that holds
for all states
— “There are always four people

in the building.”
— “The robot never changes its

place.”

Safety: The program never enters
an undesired state in the sense
that a program becomes non-
operational
— “The robot stops if the human

enters a dangerous zone.”

Liveliness: A desirable state of a
system that shall eventually happen
— “A program does not terminate

unexpectedly.”
— “An exclusive resource can be

used by all processes.”

Reasoning Methods (Logic)
—Hennessy-Milner Logic
—LTL
—CTL/CTL*
—BiLog / simple bigraph predicates
— ...

Model Checking = Transition system + Correctness properties Feedback for the model designer→
Specification Implementation

Folie 30

Simulation and Verification
Bigraphical Predicates

P1 holds for a17

PHD received two Tea
VM’s container has no Tea anymore
VM has received two Coins

Checking States

P0 (Coffee Empty) P1 (Tea Empty)

State a17

Example of a predicate and an action
“Tea container is empty”
→
“Notify the owner of the machine when
tea runs out”

Rule Overview
RR0 (Insert Coin)
RR1 (Push Button 1)
RR2 (Push Button 2)
RR3 (Give Coffee)
RR4 (Give Tea)

Folie 31

Simulation and Verification
Traces

In LTL (i.e., a temporal logic):
φ: IF “coin is inserted” AND
“Button2 is pressed” THEN
EVENTUALLY “tea is delivered”

Checking the Trace
This action sequence faithfully
describes the action of a PhD
student inserting a coin, pushing the
button for tea to receive a tea; is
executed subsequently 2 times

The LTL formula holds 2x, for the
following traces:
{a0, a1, a4, a8}, and {a8, a10, a14, a17}

Rule Overview
RR0 (Insert Coin)
RR1 (Push Button 1)
RR2 (Push Button 2)
RR3 (Give Coffee)
RR4 (Give Tea)

¿

These results are used for the
strategic graph transformation

implementation later

Folie 32

Predicate Formulae with Logical Connectives
Supported in Bigraph Framework

Folie 34

Simulation and Verification
Using BDSL

So far we conducted the analysis with “pencil and paper”
— Specifying these bigraphical state representations (i.e, equations) is convenient in BDSL
— Generally, DSLs are easier to use for model designers and domain experts
— BDSL provides quick results and is convenient to verify initial design
— Analysis can also be done programmatically in Java using Bigraph Framework

The following demonstrates the usage of BDSL.
The results are re-used later for the implementation.

Folie 35

BDSL: Program Code
The syntax of BDSL resembles the algebraic
notation of bigraphs.

Folie 36

BDSL: Program Code
The syntax of BDSL resembles the algebraic
notation of bigraphs.

For convenience, the
rules and predicates
are loaded from the

file-system.

Folie 37

BDSL: Event Listeners

P1 (Tea Empty)

Example of a predicate and an action
“Tea container is empty”

→
“Notify the owner of the machine when

tea runs out”

Folie 38

BDSL: Execution of the Program Code

$ bdsl –main=vendingmachine.bdsl

 ___ _ _ ___ ___ _
 | _) (_) __ _ _ _ __ _ _ __ | |_ | \ / __| | |
 | _ \ | | / _` | | '_| / _` | | '_ \ | ' \ | |) | __ \ | |__
 |___/ |_| __, | |_| __,_| | .__/ |_||_| |___/ |___/ |____|
 |___/ |_|

. . .

Folie 40

Implementation using Bigraphs
A Vending Machine Webservice using
Spring + Eclipse CDO + Bigraph Framework

Folie 41

Spring
— Offers programming and configuration architecture

for enterprise applications.
— Is used to build the RESTful VM web app
— Also includes modules for data access and messaging

Eclipse Connected Data Objects (CDO)
— The CDO Model Repository is a storage and

management system for data models based on the
Eclipse Modeling Framework. It provides a single
point of access to models, allowing to create, store,
manage, and share them. CDO supports
collaborative model development and collaboration
between multiple users, also features for version
control, model comparison, and merging.

— The In-memory representation of the bigraph is
stored in CDO for concurrent edits.

Overview of the Development Tools
Third-party and BTS

Bigraph Framework
— A Java framework for the creation and simulation of

bigraphical reactive systems.

BDSL
— A bigraphical DSL to specify BRSs.
— Includes also a minimal language engineering workbench

(meta-grammar, extensible interpreter, CLI tool).

Spring Data CDO
— Access to CDO is offered by Spring Data CDO, which is based

on the Spring Data framework.
— Implements Spring’s repository pattern, offers dependency

injection, file-based and POJO-based database configuration
etc.

— We can arbitrarily store the bigraph’s parts as we wish and
create resource folders.

— We can listen to changes in the database.

Folie 42

The folder structure of the Spring-based web application is as follows:

/src/main
 /java – Contains all application code (controllers, services, etc.)
 /resources – Contains all the resource files required for the app

/models – Contains all bigraphical models
/config – Contains connection details for the CDO database
/META-INF – Contains auto-configuration and web deployment descriptors
/static – Contains web resources

/css – Contains all the CSS files
/js – Contains all the JavaScript files
/img – Contains all image files

/templates - Contains all the Thymeleaf templates
/src/test – Contains the application’s test code

/java – Contains general unit tests and the formal analysis
/resources – Contains BDSL scripts and other files necessary for the analysis

Vending Machine Web App
Project Structure

Folie 43

User Interface: A Quick Look

The current bigraphical state of the application

Actions on the vending machine can be initiated by
the specially marked areas on the image

Output of rule application is displayed here

Additional actions can be triggered with these
buttons

Folie 44

High-level Architecture
Interactions with the VM

A user can change the application:
— By modifying the model files
— By interacting with a browser
— Within the database explorer

Folie 45

Examples of State Transitions

State changes are persisted continuously in an
in-memory database

RR2 (Push Button 2)

RR4 (Give Tea)

RR0 (Insert Coin)

ai

aj

ak

When a user interacts with the system, rules are fired:

Folie 46

Programming Model: Model-centric and Rule-based
A Database-first approach

Whole application state and behavior is stored in Eclipse CDO and
can be modified at any time to change the data and logic of the VM

subject to the transformation strategies, which are immutable
at run-time.

Models@run.time
— Recall that model execution is based on

these analyzable models and is very generic.
— Just strategic model transformations (based

on graph rewriting) formally verified and
generated in the analysis phase at design-
time.

mailto:Models@run.time

Folie 47

Class Hierarchy
Vending Machine Web App

Folie 48

Implementation Aspects
Configuration Classes

EnableCdoRepositories
— Registers CDO-specific Spring-powered repositories annotated with

@EnableCdoRepositories
— It implements org.springframework.context.annotation.ImportBeanDefinition-

Registrar that is responsible to register additional bean definitions when
@Configuration classes are processed

CDOServerConfig: A Configuration class for the CDO server and repository
— This class spawns a standalone CDO server instance in another thread with an

in-memory store
— The database configuration is specified by /resources/config/cdo-server.xml

and contains all the properties of the CDO database

CdoTemplate
— Is a bean implementing all basic CDO operations (from Spring Data CDO, part

of BTS)
— It is not often directly used by the user but a useful option for extensibility and

testability (can be easily mocked)
— A Spring Data CDO repository provides advanced CRUD functionality for the

entity class

@Configuration

Folie 49

Implementation Aspects
CDO Repository Class Hierarchy

Folie 50

Implementation Aspects
Configuration Classes

A spring-powered configuration class annotated with
@Configuration

— This configuration class' primary purpose is to be a
source of bean definitions

— It provides the required beans for the bigraphical
vending machine web app

— These beans represent bigraphical objects:
● The signature
● The vending machine system and a change

listener
● The rules and a change listener

@Configuration

Folie 51

Implementation Aspects
VMSyntax

VMSyntax is a Java class that defines the syntax for the bigraphical
VM model.
— It is used by the vending machine and rule beans

The signature consists a list of controls such as Coin, VM, Button1,
Button2, Pressed, Coffee, Container, Tea, PHD, Wallet, and Tresor.
These controls can be used to create a bigraph model.

The class defines several static fields:
— NSURI which is a constant string representing the namespace

URI of the bigraph model.
It defines the location in the model registry, where the
metamodel is stored.

— It also defines an EMetaModelData object which is used to set
the name, namespace prefix, and namespace URI of the Ecore
model.

— It provides BIGRAPH_META_MODEL, the Ecore metamodel of
type EPackage for all bigraphical objects

Folie 52

Implementation Aspects
VendingMachineObject

VendingMachineObject
— This class represents a "storeable" object for a CDO repository.
— It acts as a wrapper for an Ecore instance model of a standard

PureBigraph object, additionally providing the necessary information
for the VMRepository.

— It attaches a database listener of type VendingMachineListener to
react on changes from the CDO database side.

— The changes from the database are propagates back to the fields of
this class via the functionality of the standard Java
PropertyChangeListener interface that this class implements.

VendingMachineListener
— Is a CDO-specific change listener for the vending machine object, i.e.,

the agent of the VM system.
— It implements the interface CdoNewObjectsActionDelegate from the

Spring Data CDO framework
— Actions registered here, are populated back to the respective object

via a property change listener

Folie 53

Implementation Aspects
VMRuleSet

VMRuleSet
— A bean that contains all the rules describing the possible behavior

of the system
— Rules are generated by the analysis and loaded here from the

filesystem. After, they are stored in the database.
— Implements the interface PropertyChangeListener

VMRuleListener
— This class is a generic CDO change listener for all rules of the VM

system
— Its constructor takes a VMSyntax and CdoTemplate as parameters
— It implements CdoNewObjectsActionDelegate from the Spring Data

CDO framework. It is used to listen for new objects that are created
in a repository path containing “rules”.

— The class implements the perform() function of
CdoNewObjectsActionDelegate that is called when new objects are
created in the specified repository path. It creates a PureBigraph
object from the new objects and notifies any listeners that have
been added with the new PureBigraph object

Folie 54

Implementation Aspects
VMReactiveSystem

VMReactiveSystem
— This class represents a reactive system
— It contains the current agent and rules to be evaluated
— Further, it defines some rewriting strategies that conform to the

analysis results
— It extends the class PureReactiveSystem from Bigraph Framework

so that it can be directly used by the bigraphical model checker

Folie 55

Formal Analysis and Test-driven Development
Interplay of two Approaches

Analysis results are re-used
— Bigraphs, rules, predicates, traces, ...
— Can be exported in the BDSL script via export() to Eclipse

EMF Ecore files (*.ecore and *.xmi for the metamodel
and instance model)

— The formal analysis is performed as part of a Java unit
test.

 → These results represent an integral part of the actual
implementation.

— Then it is ensured that at least the specification of the VM
system meets the previously defined requirements for
the application logic of the VM.

— Only then it is “safe” (in a mathematical sense) to run the
application.

— Errors introduced while using Spring are not covered by
the analysis.

Analysis can be executed via Maven

$ mvn -Dtest=Analysis test

@ExtendWith(InjectionExtension.class)
public class Analysis extends TestSupport {

 @Test
 void perform_01() throws Exception {
 InputStream is =
 getResourceAsStream("vending-machine/script/vendingmachine.bdsl");
 ParserService parser = InterpreterServiceManager.parser();

 BDSLDocument parse = parser.parse(is);

 MainBlockEvalVisitorImpl mev =
 new MainBlockEvalVisitorImpl(new MainStatementEvalVisitorImpl());

 List<BdslStatementInterpreterResult> output = mev.beginVisit(parse.getMain());
 Iterator<BdslStatementInterpreterResult> iterator = output.iterator();
 while (iterator.hasNext()) {
 BdslStatementInterpreterResult next = iterator.next();
 Optional<Object> call = next.getBdslExecutableStatement().call();
 if (call.isPresent()) {
 assertNotNull(call.get());
 }
 }
 }
}

Required Maven/Gradle Dependency:
de.tudresden.inf.st.bigraphs.dsl.interpreter:bdsl-interpreter-core

Interpreter uses the visitor pattern

This unit test shows the low-level access of the
BDSL interpreter.

Folie 56

Formal Analysis and Test-driven Development
Interplay of two Approaches

— The entire code base is built around the analysis results.
— The code base represents mostly boiler-plate code of Spring and Bigraph Framework, that is, the generic

code that is anyway necessary to execute the analysis result.
● This includes, for example: Loading bigraphs and rules, creating REST endpoints, configuring the DB connection, etc.
● The core execution logic is based only on two fundamental operations (bigraph matching and rewriting).

— Conventional functional unit tests are carried out as usual. For example to test REST endpoints, etc.
● This is application-specific

Runtime verification of the software architecture
— The traces are used for controlling the application logic.

They capture all possible valid application states.
— When the application is running, the state-space can be stored in the DB and model checking performed.
— If the architecture is refactored (because software changes over time), the execution can be monitored at

runtime, whether a violation occurs.
— If true, the architecture does not any longer correspond to our initial specification.
— A hint for the developer the re-think a prior refactoring.

Folie 57

Exercises

Folie 58

Exercise
Easy

Simplify the rules of the VM
Currently we have a rule for pressing a specific button, and a related one that releases a specific product.

— Construct generic rules that handle button presses and product delivery for any product.
That is, instead of 4 rules as of now, 2 rules shall be sufficient.
Hint: Introduce “super-type” controls and use a link graph to generalize the rules.

— Build the rules individually for the PHD and VM bigraph.
Compose both components with the same operator as used for the entire VM system.

— Currently the VM still steals money. Refactor the rules and the system so that the user can abort the
process.
Check for liveliness.
Check for deadlocks (the entire system shall never be in a terminal state).

Folie 59

Exercise
Medium - Hard

Model the hardware component of the VM
(Sorted by ascending difficulty.)

— First as single independent BRS – only encode the additional hardware actions as separate BRS.
Think of what inputs and outputs have to be provided.
What is internal to the VM (e.g., the coin acceptor unit, heating up a drink, dispense the product before a
student can take it, etc.)?

— Then, compose the two distinct BRSs (i.e., the front-panel and hardware component of the VM)
Think how to combine both BRSs. Use the revised BRS specification of the front-panel from the previous
exercise.
Use signature composition, agent composition, and rule composition.

— As sub-BRS.
Reuse the previous results and realize the execution of the hardware component as a sub-program.

Folie 60

Exercise
Hard

Allow parallel access to the VM

— Multiple PhD students can insert coins and push buttons at random.
In which way must the bigraphical agent be modified?
How rules have to be changed?
How to handle conflict detection with Eclipse CDO?
Hint: Use the link graph to model references.

Folie 61

Bigraph Toolkit Suite (BTS)
www.bigraphs.org

Folie 63

Image Resources

— Image of a vending machine
https://unsplash.com/photos/GIgO6N2VS1U

— Info graphic elements are from Freepik
https://de.freepik.com/vektoren-kostenlos/handgezeichnete-nuetzliche-elemente-fuer-infografiken_1040577.htm
https://de.freepik.com/vektoren-kostenlos/infographik-elementsammlung_3887447.htm
https://de.freepik.com/vektoren-kostenlos/hand-gezeichnete-infographic-elementsammlung_6189027.htm
https://de.freepik.com/vektoren-kostenlos/teamarbeit-kritzeleien_759871.htm

— The implementation based on this slide set can be found here:

https://github.com/bigraph-toolkit-suite/bigraphs-by-examples.bigraph-vendingmachine-webservice

Implementation

https://unsplash.com/photos/GIgO6N2VS1U
https://de.freepik.com/vektoren-kostenlos/handgezeichnete-nuetzliche-elemente-fuer-infografiken_1040577.htm
https://de.freepik.com/vektoren-kostenlos/infographik-elementsammlung_3887447.htm
https://de.freepik.com/vektoren-kostenlos/hand-gezeichnete-infographic-elementsammlung_6189027.htm
https://de.freepik.com/vektoren-kostenlos/teamarbeit-kritzeleien_759871.htm
https://github.com/bigraph-toolkit-suite/bigraphs-by-examples.bigraph-vendingmachine-webservice

