Measurement of NO₂ and analysis of relationship between stratospheric NO₂ and O₃ over Zhongshan Station, Antarctica Guo Song (郭松), Zhou Xiuji (周秀骥), Lu longhua (陆龙骅), Zheng Xiangdong (郑向东) and Gao Xuejie (高学杰) Chinese Academy of Meteorological Science, Beijing 100081, China Received December 30, 1996 **Abstract** We have already continually taken the measurement of total column amount of O_3 , NO_2 as well as stratospheric O_3 , NO_2 over Zhongshan Station, Antarctica. This paper analyzes the seasonal variation of NO_2 and its relationship to O_3 during the Antarctic Ozone Hole in 1993 \sim 1995 and points out that the decrease of atmospheric NO_2 is one of the important reason to the strengthening of Antarctic Ozone Hole. Key words Antarctica, Zhongshan Station, Ozone Hole, nitrogen dioxide. #### 1 Introduction Since the discovery of Antarctic Ozone Hole in 1985 by Farman, through the recognition of the self-catalytic reaction to the destruction of ozone caused by nitrogen and chloride compound, especially the nitrogen dioxide during the Antarctic Ozone Hole period, it has been proved that NO₂ is very important in the equilibrium of ozone layer, especially in the forming and developing of Antarctic Ozone Hole. The stratospheric NO₂ is not only taking part in the self-catalytic reaction to the destruction of stratospheric ozone (the ozone amount is in the direct ratio to the [NO₂]/[NO] ratio), but it also can react with ClO to form ClONO₂, and thus weaken the chloride's destruction to ozone. It has been demonstrated through laboratory experiment, theoretical analysis and field observation that the decrease of stratospheric NO₂ amount is caused by the increase of atmospheric aerosol which is rich of sulphide because of the eruption of Pinatubo volcano. And the decrease of stratospheric NO₂ has sped the destruction of ozone and thus deepened the Antarctic Ozone Hole in the passed few years (Koike *et al.* 1993; Solomon *et al.* 1994). From February, 1993, we have continually taken the measurements of total column amount of O_3 , SO_2 , UV-B radiation as well as the ozone profile through the Umkehr method in Zhongshan Station (69. 22°S,76. 23°E). And we also have taken the measurements of total column amount of NO_2 as well as the stratospheric and tropospheric NO_2 amount by using the visible wavelength range. This paper chiefly analyzes the seasonal variation of NO_2 and the relationship between NO_2 and O_3 during the Antarctic Ozone Hole period. #### 2 Measurement method When taking the measurement of total column amount of NO₂ by the Brewer Ozone Spectrophotometer, we use the wavelength of 431.42 nm, 437.34 nm, 442.82 nm, 448. 10 nm, 453. 22 nm as the measurement wavelength. We also use the direct sunlight, direct moonlight, zenith skylight as the light source to take the measurements. At the same time, we can continually take the measurements of stratospheric and tropospheric NO₂ amount by using the zenith scattering skylight as the light source during the sunrise and sunset period when the solar zenith angle is $75^{\circ} \sim 90^{\circ}$. This is just because that during the sunrise and sunset period the absorption of NO₂ to zenith skylight is chiefly due to the total column amount of NO₂ and its vertical distribution. Along with the changing of solar angle, the NO₂ amount at different height is determined by the ratio of solar light intensity at different wavelength. Through the multi-scattering model for zenith skylight at different height, the distribution of stratospheric and tropospheric NO₂ can be calculated. The method of calculation of the vertical distribution of NO₂ is a little similar but still has great difference to the Umkehr method of getting the ozone vertical distribution. The detailed retrieval method can be referenced to Mckenzie et al. (1991). The measurement methods of ozone and UV-B can be seen in Zhou et al. (1995). For the world standard Brewer instrument, the measurement error of total column amount of ozone is less than 1%, and the measurement error of total column amount of NO₂ is $1\% \sim 2\%$. Each time before taking any kinds of measurements, the instrument automatically do the calibration of wavelength and intensity using the mercury lamp and tungsten lamp respectively. # 3 Analysis of measurement results Fig. 1 shows the three years' (1993, 1994, 1995) daily means variation of total column amount of O₃ and NO₂, through the figure we can see that generally speaking the daily mean value in 1993 and 1995 of total column amount of NO₂ is lower than that in 1994 during the springtime Antarctic Ozone Hole period, but for the comparison of NO₂ in 1993 and 1995, it is a little lower in 1995 than in 1993. This changing trend of total column amount of NO_2 is similar to that of total column amount of O_3 . Summarily, the total column amount of ozone in the 1995 Ozone Hole period is apparently lower than that of 1993 and 1994, and the total column amount of ozone in 1993 is a little lower than that in 1994. Through the above analysis, we firstly can see the strengthen trend of Antarctic Ozone Hole in general in the three years and also you can find the bi-oscillate trend of ozone amount along with the bi-oscillate trend of global atmosphere. And, furthermore, for the three year's Antarctic Ozone Hole, not only the lowest value of total column amount of O₃ in 1995 is much lower than that in 1993 and 1994, but also the lasting time of 1995 Antarctic Ozone Hole is much longer than that of 1993 and 1994. For the seasonal variation of total column amount of NO2 in a year, from summer to autumn, the total column amount of NO2 changes from its maximum value to its lowest value. And at the winter polar night time, be- Fig. 1. The daily variation of total column amount of O_3 , NO_2 in 1993~1995. cause of the interchanges among NO, NO₂, NO₃, N₂O₅ and O₃, the total column amount of NO₂ is far more less than that in summer time but a little higher than spring time Antarctic Ozone Hole and early winter time (The measurement values of total column amount of NO₂ and O₃ in winter are from the moonlight measurements). The total column amount of NO₂ reaches its lowest value in a year at spring time Antarctic Ozone Hole period. But through Table 1 and Fig. 2 we can see that there is a good direct ratio relationship between the daily means of total column amount of NO₂ and O₃ (the relative coefficient is 0.868 through the analysis of least square method), this might be because that the stratospheric NO₂ takes part in the heterogeneous reaction occurring on the surface of polar stratospheric cloud. This also shows the significant role of NO₂ amount to the development of Antarctic Ozone Hole. In fact, the decrease of NO₂ amount can not only decrease the trend of the reduction of O₃ caused by the self-catalytic reaction of NO-NO₂ but also can decrease the rates of self-catalytic reaction from ClO to ClONO₂ and Cl to ClNO₂ and thus decrease the re- duction of O₃. From Fig. 2 we also can see that from the happening time of Antarctic Ozone Hole in early August to the most serious time of early October the NO2 amount has a trend of decreasing. And the decrease of NO2 amount reduces the forming rate of O₃. That the consuming of ozone is larger than the forming of ozone is one of the important reason for the development of Antarctic Ozone Hole from its forming to its strengthen. From spring time to early summer time, the NO2 amount has a trend of increasing and along with the close of Ozone Hole, the NO2 amount has a large increase. But in the early December of 1995, along with the decrease of total column amount of ozone after Ozone Hole period (in 1995, the total column amount of O₃ reaches over 320 DU after the close of Ozone Hole in early November, but in early December its value decrease to 220~270 DU again, and thus the value of UV-B goes over its value in Ozone Hole period), the stratospheric NO2 decrease again from 0.4 DU to 0.1 DU and general speaking the NO2 amount reaches its highest value around mid-summer time. We can get the same results from the analysis of NO2 and O3 data in 1993 and 1994 Ozone Hole period, except there exists no decrease in early December. Our measurement results are quiet similar to the measurement results in Mcmurdo Station made by Keys and Johnston (1988) and in Syowa Station made by Kondo et al. (1992). Table 1. The monthly means of total column amount of O₃, NO₂ from August to December in 1993~1995 | Year | Month | ${\rm O_3/DU}$ | $\mathrm{NO_2/DU}$ | Year | Month | ${\rm O_3/DU}$ | $\mathrm{NO}_2/\mathrm{DU}$ | |------|-------|----------------|--------------------|------|-------|----------------|-----------------------------| | 1993 | Aug. | 238.7 | 0.35 | 1994 | Nov. | 360.0 | 0.89 | | 1993 | Sept. | 207.4 | 0.44 | 1994 | Dec. | 318.0 | 0.81 | | 1993 | Oct. | 226.0 | 0.41 | 1995 | Aug. | 213.0 | 0.39 | | 1993 | Nov. | 285.8 | 0.27 | 1995 | Sept. | 205.8 | 0.42 | | 1993 | Dec. | 306.5 | 0.88 | 1995 | Oct. | 177.9 | 0.41 | | 1994 | Aug. | 224.8 | 0.55 | 1995 | Nov. | 314.9 | 0.64 | | 1994 | Sept. | 199.6 | 0.54 | 1995 | Dec. | 255.7 | 0.79 | | 1994 | Oct. | 248.7 | 0.70 | | | | | Table 2. The comparison of total column amount of O₃, NO₂ and stratospheric and tropospheric NO₂ amount in 1995(Unit; DU) | Month | O_3 | $\mathrm{NO}_{\scriptscriptstyle 2}$ | Strato. NO_2 | Trop. NO_2 | Month | O_3 | NO_2 | Strato. NO_2 | Trop. NO_2 | |-------|-------|--------------------------------------|----------------|--------------|-------|-------|--------|----------------|--------------| | Jan. | 315.2 | 0.62 | 0.388 | 0.356 | Sept. | 205.8 | 0.42 | 0.158 | 0.261 | | Feb. | 299.0 | 0.54 | 0.298 | 0.251 | Oct. | 177.9 | 0.41 | 0.206 | 0.218 | | March | 276.3 | 0.37 | 0.181 | 0.185 | Nov. | 314.9 | 0.64 | 0.385 | 0.253 | | April | 283.5 | 0.56 | 0.205 | 0.356 | Dec. | 255.7 | 0.79 | 0.256 | 0.538 | | Aug. | 213.0 | 0.39 | 0.216 | 0.185 | | | | | | Table 2 shows the comparison of monthly means of total column amount of O_3 and NO_2 with the stratospheric and tropospheric NO_2 . Fig. 3 shows the comparison of stratospheric NO_2 amount from morning (AM) and evening (PM) zenith skylight measurements to the total column amount of NO_2 . From Table 2 and Fig. 3, we can see that the stratospheric NO_2 amount from PM measurement is larger than that from AM measurement. The tropospheric column NO_2 amount during and after Antarctic Ozone Hole changes along with the changing of the total column amount of NO_2 and is chiefly determined by the joint effect of the tropospheric photochemical process and Fig. 2. Stratospheric NO₂ amount versus total column amount O₃ during Antarctic Ozone Hole in 1995. the weather condition and pollution near the ground. But for the stratospheric NO_2 amount in and out of Antarctic Ozone Hole period, it changes greatly. The stratospheric NO_2 amount has a better direct ratio relationship to the total column amount of O_3 than the tropospheric ozone. Fig. 3. The comparison of stratospheric and tropospheric NO₂ amount with total column amount of NO₂ during and after Antarctic Ozone Hole in 1995. Fig. 4a. The total column amount of O₃, NO₂ measured by moon light on May 17, 1995. Fig. 4a shows the daily variation of the total column amount of O_3 , NO_2 measured by moon light on May 17,1995. From the figure and the other measurement results during the full moon periods from April to August, we can find that under stable weather condition, the NO_2 amounts increase greatly after sunset and decrease slowly during the night and decrease greatly again before sunrise. Fig. 4b shows daily variation of the total column amount of O_3 , NO_2 measured by sun light on October 10 and 18, 1995. From the two figures and the other O_3 , NO_2 measurement results in the same period, we can find that no matter in the polar night period or the Ozone Hole Fig. 4b. The total column amount of O₃, NO₂ measured by sun light on October 10 and 18, 1995. period, there is a good sensitive relationship between the total column amount of NO_2 and O₃. This shows that although the intensity of sun light is about 10⁵ times larger than that of moon light and there is a little difference of stratospheric temperature in the two periods, the heterogeneous reaction happened on the surface of polar stratospheric cloud in the two periods. The only difference is that the reacting ratio under sun light is much larger than that under moon light (The prerequisite is the existing of low stratospheric temperature). If we further analyzes the daily variation of total column amount of O3 and NO2 in the passed three years and the meteorological sounding data of Davis Station which is about 100 km away from Zhongshan Station, we can find that under stable weather condition (little wind in stratosphere and lower temperature than -76° C), there is a direct ratio relationship between the total column amount of NO_2 and O_3 (for example, on October 18, 1995). This might be mainly because of the heterogeneous reaction process. If there is a strong wind in stratosphere and the process of dynamic transportation plays an important role, there is a complicated relationship between the total column amount of NO₂ and O₃, and there is an inverse relationship between the two in general (for example, on October 10, 1995). Fig. 5 shows the variation of the ratio of stratospheric NO_2 by the skylight of sunrise (AM) and sunset (PM) in 1995 over Zhongshan Station. From the figure we can see that the ratio of AM/PM increases from 0.7 in autumn time to 0.9 in winter time gradually (Themain reason for the decrease of difference between AM and PM NO_2 amount is because of the shorter shining time of sun just before polar night). The ratio between the two decreases from 0.8 in early August to 0.65 in early September and then gradually increases to 0.9 in the end of October during the spring time ozone hole period and finally it can reach around 1.0 in summer. The changing of the ratio is chiefly due to the changing of shining time of sun. But in early December, 1995 along with the decrease of total column amount of O_3 after Ozone Hole period, the ratio of AM/PM can reach to $1.5 \sim 2.0$. Solomon (1992) pointed out that this ratio actually reflected the relationship between stratospheric aerosol and its profile with the stratospheric temperature, and thus this ratio plays an important role in the study of Antarctic stratospheric chemical reaction between NO_3 and O_3 . ### 4 Conclusion (1) The seasonal variation of total column amount of NO_2 (especially the stratospheric NO_2 amount) is quiet similar to that of total column amount of O_3 over Zhongshan Station. There is a better direct ratio relationship between the NO_2 and O_3 amount during Antarctic Ozone Hole. (2) From the analysis of the NO_2 and O_3 amount variation in a day, there is a direct ratio relationship between NO_2 and O_3 amount under stable weather condition (little wind in stratosphere and lower temperature than $-76\,\mathrm{C}$), this might be mainly due to the heterogeneous reaction. There is a complicated relationship (generally an inverse proportion) between the NO_2 and O_3 amount if there is a strong wind in the stratosphere and this might be mainly because Fig. 5. The variation of the ratio of stratospheric NO₂ by the skylight of sun rise (AM) and sun set (PM) in the year 1995 over Zhongshan station. of the process of dynamic transportation. (3) The yearly variation of the ratio of stratospheric NO_2 by the skylight of sunrise (AM) and sunset (PM) is very important to the study of Antarctic stratospheric chemical reaction between NO_X and O_3 . ## References Keys J G, Johnston P V (1988): Stratospheric NO₂ column measurements from three Antarctic Sites. Geophysical Research Letter, 15: 898~900. Koike M, Kondo Y, Matthews W A, Johnston P V, Yamazaki K (1993): Decrease of stratospheric NO₂ at 44°N caused by volcanic aerosols. Geophy. Research Letter, 20(18): 1975~1978. Kondo Y, Matthews W A, Johnston P V, Hayushi M, Koike M, Iwasaks Y (1992): Ground based NO₂ and O₃ measurements by visible spectrometer at Syowa Base (69°S), Antarctica. Proceeding of 1992 Quadrennial Ozone Symposium, 573~577. Mckenzie R L, Johnston P V, McElroy C T, Keer J B, Solomon S (1991): Altitude distribution of stratospheric constitutes from ground-based measurements at twilight. Journal of Geophysical Research, 96(D8): 15499~15511. Solomon S (1992): Seasonal variation in Antarctic NO_x chemistry. Journal of Geophysical Research, 97(D8): 7971~7978. Solomon S, Sanders R W, Jakoubek R O, Appag K H, Stephens S L, Keys J G et al. (1994): Reduction of stratospheric NO₂ due to Pinatubo aerosol at Mcmurdo Station, Antarctica. J. geophys. Res., 99 (D2): 3509~3516. Zhou Xiuji, Zheng Xiangdong, Lu Longhua, Guo Song (1995): Ground-based measurements of column abundance of ozone and UV-B radiation over Zhongshan Station, Antarctica in the 1993 "Ozone Hole". Antarctic Research, 6(1): $1\sim11$.