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CHAPTERl

INTRODUCTION

Let N denote the set of nonnegative integers. The set of all real-valued functions

whose domain is in N, along with the usual definition of addition of functions and

multiplication of a functions by a real number, is a vector space and is denoted by V00'

The elements of the vector space V00 are called sequences. If x is an element of V00, then

we will use the notation Xn instead ofx(n) to denote the general term of the sequence and

use {xn} to represent the sequence Xo, Xl,XZ , ....

Now consider a given real-valued function f: D ---+ D, where D� R.

Using f, we can construct a first order difference equation by writing

xn+1 = f(xn)' n= 0,1,2, ...

Similarly, a second order difference equation can be constructed by writing

xn+l = f(xn, Xn-l), n= 0,1,2, ...

where f: DxD---7 D

Generally, a difference equation of order k can be constructed by letting

Xn+l =f(xn, Xn-ll "'1 Xn-k+l), n= 0,1,2, ..

where f: Dk ---7 D

1
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If the function fhas the form

f(x) = ax+ b

where a and b are any real constants, then we obtain an equation of the form

Xn+ 1=ax., +b. (1)

Definition: The general linear difference equation of order 1 is given by

(2)

where an and bn are sequences. When an initial value of Xo is given, a unique solution

exists. An equation of the form:

Xn+l = aXn + b (3)

is called a linear equation of the first order with constant coefficients. When b= 0, this

turns the problem into one of the form

Xn+l = ax.; (4)

Definition: If a linear equation can be written in the form (4), it is described as

homogeneous. Otherwise it is non-homogeneous.

To solve the homogeneous equation

we assume Xo is an initial value, then
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Theorem:

The general homogeneous equation xn+1= ax; has the exact solution xn=anxo for all

n2:: 0 and Xo is an initial value.

In the evenrthat f is a function of two variables, we can also construct a difference

equation by writing

Note that if

f(x,y) = ax+ by+ c

then our difference equation becomes

xn+l =ax., +bXn-l +c, b* O. (5)

This is a linear difference equation of order 2. When c= 0, we refer to (5) as

homogeneous and denote it by

Xn+l = ax.; +bx

Note that (6) can also be written as

Xn+l +pxn+ qXn-l= 0

(6)

(7)

where p = -a and q = -b.

A difference equation will be called maxi-linear if it has the form

Xn+l =max{f(xn),g(Xn-l)}

where f and g are linear functions of a single variable. A difference equation will be

called reciprocal type if it has the form
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A
Xn+1 ={ -

, Xn-l }
xn

or

1
Xn+1 ={ -, AXn-l }

Xn

Generally, a solution of a first order difference equation is a sequence of real numbers

generated recursively from an initial value Xo. Similarly, solutions of a second order

equation are generated from two initial values X-l and Xo.



CHAPTER 2

HISTORY AND PRELIMINARY RESULTS

Within the past twenty-five years, the study of difference equations has a new

significance. This came about largely from increased usage of computers and the

formulation and analysis of discrete-time systems. The numerical integration of

differential equations and the study of deterministic chaos also have played a role in

bringing difference equation to the forefront of mathematical analysis.

Preliminary results will focus on the behavior of solutions to homogeneous linear

difference equations of orders one and two that have constant coefficients.

Definition: Bounded sequence, periodic sequence, oscillatory sequence

Definition 2.1: Periodic Sequence: A sequence {xn } is said to be periodic

with period p if and only if it satisfies xn+p =Xn for all nand

is said to be eventually periodic if xn+p= Xn for all n> k, for

some kEN

Definition 2.2: Bounded Sequence: A sequence {xn } is said to be bounded

ifand only if there is some K such that IXnl � K for all n.

Definition 2.3 : Oscillatory sequence: A sequence {xn } is said to oscillate

about zero or simply oscillate if the terms Xn are neither

eventually all positive nor eventually all negative

5
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Theorem 2.1:

Consider the equation

(8)

andlet Xo be an initial value. Then

(i) If lal < 1, then all solutions of (8) tend to zero as n-7 oo

(ii) If I a 1= 1, then all solutions of (8) are periodic

(iii) If lal > 1, then all nontrivial solutions of (8) are unbounded

(iv) If a < 0, then all nontrivial solutions of (8) oscillate about zero.

Theorem 2.2:

Consider the equation

Xn+Z + aXn+l +bxn=O.

Then Xn= t", t*O is a solution to (9) if

tZ + a t+ b= °

Note: Equation (10) is called the characteristic equation of equation (9).

Theorem 2.3:

If tl and tz are real solutions of (1 0) and tl * tz, then the general solution of (9) is

(9)

(10)

Xn=Cltl + cztz. Ift1=tz=t, then the general solution of(9) is

Xn= Cltn+ Cz t" n =tn CCl + C2 n).



7

Theorem 2.4:

If tl and tz are non-real solutions of (1 0), say t1,z= p±iq, then general solution of (9)

is xn=(-Jpz + qZ )
n

( Cl cos(n8) + Cz sin(n8» where 8= tan-1(9. ).
- p

Theorem 2.5:

If ( 1 0) �as a negative root, then (9) has oscillating solutions.

Theorem 2.6:

If (10) has a root whose absolute value is greater than one, then (9) has an unbounded

solution.

Theorem 2.7:

The equations Xn+Z + Xn+1 + Xn =0, xn+Z +xn=O, and Xn+Z -Xn =0 have periodic

solutions.

Examples: Consider the following equations

i) Xn+Z - 3xn+1 - 4xn = °

Let x; = t", then our equation becomes tn+2 - 3tn+1 - 4tn = o.

Factoring we obtain

t" (t2 - 3 t - 4) = 0 and since t* 0, then t2 - 3t - 4 = 0; therefore, the

solutions of our characteristic equation are tl = -1, tz = 4. Let u., = (-1)
n

Then the general solution is Xn = Cl (-1t + cz4n = CIUn + C2 Vn. When

Cz = 0, the solution is periodic and oscillatory. When Cz =1= 0, then solution is

nonoscillatory and unbounded.

ii) Xn+Z - 4xn+1 + 4xn = °
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Let Xn = t" , then our equation becomes tn+2 - 4tn+l + 4tn = 0 . This

implies

t" (t2 - 4t + 4) = 0 and since t* 0, then t2 - 4 t + 4 = 0; therefore, the

.-

solutions are tl = t2 = Z.

Hence the general solution is xn = Cl Zn + nC2 Zn = Zn (Cl + C2n).

All nontrivial solutions are unbounded.

iii) xn+2 + Xn = 0

Let xn = t" , then tn+2 + t" = 0 implies t" (t2 + 1) = o.

t2 + 1 = 0 then t=+ iI _

Since in = r" (cos(n8) + sin(n8)) and r=lr] = 1 ,8 = tan-1((0) = � I

then in = cos (�rr) + sin(�rr). Thus the general solution will be

(n rr )
.

(nrr)x.; = Cl cos 2 + C2 SIn 2 .

The solution is periodic of period 4.

iv) xn+2 - ZrXn+l + r2 Xn = 0

Again let Xn = t" then tn+Z - Zrtn+1 + rZ t" = o.

Thus t" (t2 - Zrt + r2 ) = 0, since t* 0, then t2 - Zr t + r2 = O. Hence the

solutions are tl = t2 = r.Therefore, the general solution is

When Irl < 1, solutions tend to 0 as n� 00.

Whenlr] > 1, solutions are unbounded.
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When r< 0, solutions are oscillatory.

When r > 0, solutions are nonoscillatory.

When r = -1, Ci =1= 0, C2= 0, solutions are periodic.



CHAPTER 3

OVERVIEW AND MAIN RESULTS

This study will focus on the behavior of the solutions to the equations

1
Xn+l = max{-, AXn-l }

Xn
(11 )

and

(12)

where A and B are constants.

The solution behaviors of (11) will be studied under conditions where A< 0 and

A> o. The solution behaviors of (12) will be considered with the cases where

0< B:::; 1 and B>1.

Our main interest in (11) and (12) will be on the periodic properties, boundedness,

and asymptotic properties of solutions.

Multiple theorems and propositions will be generated during the study based on our

findings. The results for (11) will consist of excerpts from [3] while the results for (12)

will be new since equation (12) has not appeared in the literature search.

We will consider different cases for the constant "A" and the initial values in (11). We

also consider numerous cases for the constant "B" and the initial values in (12). We will

compare the behaviors of the solutions of(12) to those of(11). New theorems

will be derived on (12), and most of the theorems will be proved by induction.

10
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Main Results

1
Excerpts From [3] on xn+1= max{- ,Axn-d

Xn

� Theorem 3.1.1: Assume A< ° and let X-l' Xo denote initial values.

a) If X-l < 0, Xo > 0, and Xl = 2_, then
Xo

1 1
(Xn) = (X-b Xo ,- , ... ,XO ,-, ... )

Xo Xo

b) If X-l < 0, Xo > 0, and Xl=AX-l , then
1 1

(Xn) = (X-l' XO, AX-l' --, ... ,Ax-l' A- , ... ).
AX-l X-l

In both (a) and (b) solutions are eventually 2- periodic.

Proof: Assume X-l < ° and Xo > 0, then

Xl = max {�,AX-l }>o. Using induction it is easy to see that Xn > ° for every n� 0,
Xo

and consequently
1 1

Xn+1 = max {-, A X n-d =

-, n> 1.
Xn Xn

Hence, if Xl = 2_ � AX-l' then every solution is eventually 2- periodic, moreover (xn)
Xo

can be written as follows:

1 1
(Xn) = (X-l' Xo ,- , ... , Xo ,-, ... )

Xo Xo

QED.
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Theorem 3.1.2: Consider Xn+l= max{2_ ,AXn-l}, where A< °
Xn

a) If X-l > 0, Xo < 0, Xl= 2_, and AE (-00, -1], then
Xo

( ) _ (
1

A
A Xo A Xo )x; - X-l, XO, -, XO, -, -A' "" -, -A"" ,

Xo Xo Xo

b) If X-l > 0, Xo < 0, Xl = 2_, and A E (-1, 0), then
Xo

1 2
c) If X-l > 0, Xo < 0, Xl = AX-l , and A- 2:: A X-l' then

Xo

In all cases solutions are eventually 2- periodic,

Proof:
1

If X-l > ° and Xo < 0, then Xl = max {-, AX-l }< 0,
Xo

111
X2= max {-, Axo} = Axo > 0, and X3= max { -, AXl } > ° because - > 0,

Xl Xz Xz

By induction we obtain Xn > 0, for all n> 2. Hence

Xn+l = 2_ for all n> 3. Consequently, in this case, every solution is
Xn

eventually 2- periodic,

1 1

a) If Xl = - and A E (-00, -1], then AX-l � - ,consequently,
Xo . Xo

{
1 A} A

b Ai' n Aid hi' I'
A 1.

X3= max -,
- = - ecause � Imp IeS � -A an t s imp tes - 2:: - smce

Axo Xo Xo Xo Axo

Xo < 0. Hence ( ) _ (
1

A
A Xo A Xo )Xn - X-l, Xo, -, Xo, -, -A' ... , -, -A , ....

Xo Xo Xo



1 1 A 1

b) If Xl = - and A E (-1,0), then X2 = Axo and X3 = max {-, - } =-

Xo Axo Xo Axo

since � < A. Thus

CJ If A >
1

th A2 < A. d if
1

> A2 thXl = X-l _ -, en X-l _ -, an 1 -A _ X-l' en
Xo Xo Xo

1 2 1
X3 = max {-A ,A X-l }= A-' so that

Xo Xo

Theorem 3.1.3: Consider Xn+l= max{I_ ,AXn-l}, where A< °
Xn

a) If X-l,XO > 0, then

1
b) If X-l' Xo < 0, and A- � Axo, then

X-l

1
c) If X-l,XO < 0, and -A > Axo, then

X-l

All solutions are eventually 2-periodic.

Proof: a) IfX-l' Xo > 0, then Xl= _2:._ >0. By induction we have Xn > 0,
Xo

. for all n> -1 and, consequently, xn+1 =.2..
, for all n2:: 0. Thus in this case

Xn

13

Q.E.D
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1 1
b) If X-l' Xo < 0, then Xl = AX-l > 0, and X2 = max { -, Axo }= max {-A,Axo}> 0.

xl X-I

Using induction we have Xn > 0, for all n2:: 1, which implies Xn+l =.2.. for all n 2:: 2.
Xn

Therefore, if ,ALI � Axo, we have

c) On the other hand, if-A
1

> Axo, we have
X-I

Q.E.D

Theorem 3.1.4: Consider Xn+l= max{..!.. ,Axn-d, where A> 0.
Xn

a) If X-l < 0, Xo > 0, and A E (0,1], then

1 1
(xn) = ( X-l' xo, -, ... xo, -

, ... ).
Xo Xo

b) If X-l < 0, Xo > 0, and A > 1, then

Proof:

.

1

a) Let X-l < 0, Xo > 0, then Xl= - > ° and
Xo

X2= max{xo, Axo} = xomax{l,A}> 0.

Hence if A E (0,1], then X2= Xo, and X3= max{�, �}=�. That is
Xo Xo Xo

1 1 A A
b)IfA> 1, then X2=AxO and X3= max{-, A Xl} = max { -A,-} = - > 0.

Xz Xo Xo Xo

By induction we obtain X2n= Anxo, X2n+1 =
An

for all n> 1, that is,
Xo

1 A n An
(Xn) = (X-l ,XO, -, AxO, -, ... , A Xo, -, " .).

Xo Xo Xo
Q.E.D
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Theorem 3.1.5: Consider Xn+l= max{2. ,AXn-l},
Xn

a) If X-l > 0, Xo < 0, and A E (0,1], then

b) If X-l > 0, Xo < 0, and A> 1, then

1
Proof: a) If X-l > ° and Xo < 0, then Xl =AX-l > 0, Xz= ALl> 0, and

Clearly Xn > 0, for all n2:: 1.

1 An-2
b) IfA> 1, then x3=Ax-l and X4=-. By induction we obtain that XZn=-,

X-l X-l

XZn-l=AnX_l, for all n> 2. Hence

Q.E.D

The case where A > ° and both X-l and Xo are positive will now be considered.

Note that if Xn is a positive solution of (11), then multiplying (11) by Xn and letting

Yn

= XnXn-l transforms (11) into

Yn+l= max {AYn, I}, where Yo > 0. (11 *)

Lemma 3.1: If A E (0, 1], then each solution of (11 *) is eventually constant, in fact,

either Yn=1 eventually, or Yn
=

Yo eventually.

Remark: Note that Yn eventually constant implies solutions of (11) are eventually

2-periodic. A dual result to Lemma 3.1 is the following.
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Lemma 3.2: Consider the difference equation

( 11**)

where Yo > o: Then for A� 1, each solution of (11") is eventually constant.

The 'proof of Lemma 3.1 and Lemma 3.2 appear in [3].

Theorem 3.1.6: Consider Xn+l= max{_!_, Axn-d
� Xn

a) If X-b Xo > 0, Xl = _!_
, and A > 1

Xo

1 A n An
(Xn) = (X-l , XO, -, AxO, -, ... , A Xo, -, ... ).

Xo Xo Xo

b) If X-l' Xo > 0, Xl = AX-l , and A� 1, then

c) If X-l ,Xo > 0, Xl = A X-l , and A E (0,1), then (xn) is

eventually 2- periodic.

1
d) If X-l'XO > 0, Xl =

-, and A E (0,1] , then
Xo

Proof:

a) If A E (1, (0), and Xl = _!_, then we get X2= Axo, x 3=
�

, and by induction it
Xo Xo

follows that x2n= Anxo, and x2n+i =
An

for all n� 1, that is,
Xo

1 1 1
b) If Xl =AX-l � - and A E [1, (0); therefore, - :::; AX-i· Hence -A :::; Xo, and

Xo Xo X-I

111
thus - � Axo. Thus - � - � Axo because A > 1; therefore,

X-I AX-I X-I
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c) Follows from remarks after Lemma 3.1, and the proof is similar to (a)

d) Follows from remarks after Lemma 3.1. Q.E.D
..

. 1
Theorem 3.1.7: Consider Xn+l= max{- ,AXn-l},

Xn

1
a) If X-l , Xo < 0, Xl = - ,and A E (0,1], then

Xo

(xn) = (X-l ,Xo, _!_, Axo,�, ... ,AnxO,
An

, ... ).
Xo Xo Xo

b) If X-l' Xo < 0, Xl = AX-l , and A E (0,1], then

c) If X-l , Xo < 0, Xl = 2.., and A> 1 , then
Xo

(Xn) is eventually 2-periodic.

d) If X-l, Xo < 0, Xl = AX-l' and A > 1, then

(Xn) is eventually 2- periodic.

Proof:

1 1
a) If X-l ,Xo < 0, then Xn < 0, for all n2:: -1. If Xl= max{- ,AX-l}= - and

Xo Xo

AE (0,1], we have Xz= max{xo,Axo}=Axo since A ::; 1 and Xo < ° and

X3= max {-Ai,�}=�. By induction we have XZn =Anxo, XZn+ 1
= An, for all n2:: 1,

Xo Xo Xo Xo

that is,

b) The proof is similar to 3.1.7 (a)

c) Apply Lemma 3.2, where X-l,XO < 0, and A> 1.

d) Apply Lemma 3.2, where X-l ,Xo < 0, and A> 1.
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New Results on Xn+l = max {l-xn, BXn-l}.

We begin our-study of (12) with

Lemma 3.3: If a < 0 and 0< B < 1 and two consecutive terms of a solution of (12) have

the form Bka, l-Bka for some kE N, then the solution continues ... ,Bk+na, l_Bk+na, ..

Proof is by induction and is omitted.

Theorem 3.2.1: Consider Xn+l = max {l-xn' Bx n-l}

a): If X-l < 0 < 1 < xo, and 0< B < 1, and xl=l-xo, then

then

c): If X-l < 0 < 1 < xo, and B > 1, and xl=Bx-l , then

d): IfX-l < 0 < 1 < xo, and B> 1, and assume Xl=l-xo, then

Proof:

a) Let X-l < 0 < 1 < xo, and 0< B < 1, if Xl =l-xo, then Xz= max{xo, Bxo}= Xo

because Xo > 0 and B < 1. X3= max {l-xo, B(l-xo)}= B(1-xo) because l-xo < 0

and B< 1, X4= max {l-B(1-xo), Bxo}= l-B(l-xo) because

1-B(1-xo) = 1-B+ Bxo > Bxo since B< 1. Now assume, we have a= l-xo , and using

Lemma 3.3, then the results follow.
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b) Let X-i < 0 < 1 < xo, 0< B < 1, xi=8x-i, and assume t-Bx... 2:: Bxo, then

XZ= max l l-xj, BXoJ = max l l-Bx.j , Bxo}= l-Bx.i].

At this point we apply the Lemma 3.3 where a= X-i. Thus,

{ I Bn+i Bn+i} Bn+i bxZn+Z= max - X-i, Xo = Xo ecause

I Bn+i Bn Bn+i - BnCl B ) Bn Bn+i H- X-i < - x-i- - X-i:::; Xo < xo. ence

d)Let X-i < 0 < 1 < xo, and B> 1, and assume xi=l-xo, Xz= max l l-xj, Bxo}=

Therefore, X4= max{ l-x3, Bxz}= max{ I-B(l-xo), BZxo}= BZxo, because

I-B(l-xo) < B - B(l - xo) = Bxo< BZxo.By induction we see that XZn= Bnxo,

and XZn-i= Bn-i(1-xo). Therefore

Note: The solutions in (a),(b), and in (c) are oscillating around zero, but the solutions in

(c) and (d) are unbounded.
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Theorem 3.2.2: Consider xn+l = max {I-xn, Bx n-l}

a): If 0< x-1 < 1 < xo, and 0< B< 1, and assume Bxo �I-Bx-l' then

(xn) = (X-l,XO, BX-l, I-Bx-l,Bx-l, I-B X-l'···' BX-h I-Bx-l/' .. ).

b): If 0< x-1 < 1 < xo, and B> 1, then

(xn) = (X-l, Xo, BX-l, BXo, ... J BnX_l, Bnxo/·· .).

Proof:

a) Let 0< X-l < 1 < xo, and O<B< 1, and assume

Bxo �I-Bx_l,then Xl= max l l-xj, BX-l}= BX-l, Xz = maxj l-x- , Bxo}=

max {l-Bx_l , BXo}=l- BX-l, and X3 = max{ l-xz, Bx.}> max{ BX-l, 8zx_d= BX-l, and

X4 = maxj l-xj, Bxz} = max{l-Bx_l, B(l-Bx-l)} = I-Bx_l. Using induction it is easy to see

that xZn = 1-8x_l' and XZn-l = BX-l for n> 1. Hence

(xn) = (X-l,XO, BX-l, I-Bx-l,Bx-l, I-B X-l'···' BX-l, I-Bx-l I ... ). Therefore, Xn is

eventually 2 periodic.

b) Let 0< X-l < 1 < Xo, B> 1. Then xl=Bx-l and

Xz= max {I-XlI B xo}= max{l-Bx_l' Bxo}= Bxo since I-Bx_l < 1 < B Xo , and X3=

maxj l-x-, BX1}= max {I-Bxo, BZx_d= 8zX_1, and

X4= max{ l-x3J Bxz}= max{1-8zx_l, 8zxo}= 8zxo . By induction we obtain

XZn= Bnxo, and XZn-l= BnX_l for n� 1. Thus

(x n) = (X-l, Xo, BX-l, BXo, ... J BnX_l,8nxO,·· .). Q.E.D.

Note: The solutions in (a) are bounded; however, the solutions in (b) are unbounded.
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Theorem 3.2.3: Consider Xn+l = max {1-xm Bx n-d

a) If 0< x-v Xo < 1, and 0< B < 1, and assume Xl=1-xo, then

(xn) = (X-l, XO, l-xo, ... , l-xo, xo,···)·

b")lfO< x-l,xo < 1,0< B < 1, and xl=Bx-l,and I-Bx-l >Bxo, then

(x n) = (X-l, XO, BX-l, I-Bx_l , ... BX-l, I-Bx-l , ... ).

c ) If 0< X-v Xo < 1, and B> 1, and assume Xl= l-xo, then

(xn) = (X-l,XO,l-xo, Bxo, B(l-xo), B2xo, B2(I-xo), ... ,Bnxo, Bn(l-xo),·· .).

d) If 0< X-l, Xo < 1, and B> 1, and assume Xl= BX-l, then

(xn) = (X-l, Xo, BX-l, BXo,···,Bnx_l,Bnxo,· .. ).

Proof:

a) Let 0< x-vxo < 1, and 0< B < 1, and assume xl=l-xo > 0, then X2=

max{xo, Bxo}= Xo, and X3= max{l-xo, B(I-xo)}= l-xo. Using induction it is easy to see

that Xn > 0 for every n� 0, consequently, X2n= Xo, and X2n-l= l-xo. Thus the solutions

are 2-periodic and can be written as follows,

(xn) = (X-l, Xo, l-xo, ... , l-xo, Xo,·· .).

c) If 0< x-vxo < 1, and 0< B < 1, and assume xl=Bx-l, and I-Bx-l > Bxo, then

X2= max { I-Xl, Bxo}= max { I-Bx-l' Bxo}= I-Bx_l

X3= maxj l-x-, BX1}= max{BX_l, B2x_l} = BX-l

X4 ==max{ l-x3, BX2} = max{ I-Bx-l' B(l-Bx-l)}= I-Bx-l because I-Bx_l > o.

By induction X2n= I-Bx-l' and X2n-l= BX-l. Hence

(xn) = (X-l,XO, BX-l,l- BX-l, BX-l, I-Bx_l , ... BX-l' l-Bx.-, , ... ).

C ) The proof is similar to 3.2.1 (d)
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d) Let 0< X-l'XO < 1 ,B> 1 and xl=Bx-l ; therefore, 1-xo ::;BX-l. Then

X2= max l l-Bx.j , Bxo}= Bxo because l-Bx.-, ::; Xo <Bxo,

{ 8,2 2 2 2 2
X4 = max 1- x_l,B xo}= B Xo because 1-B X-l < 1-Bx-l ::; Xo < B Xo .

Bv inducti h n n

y m uction, we ave X2n-l= B X-l' X2n= B xo. Hence

Q.E.D.

Note: The solutions in (a) and (b) are periodic with period two, but the solutions in (c)

and (d) are unbounded.

Theorem 3.2.4: Consider Xn+l = max{ 1-xn' BXn-l}

a) X-v Xo < 0, and 0< B < 1, then

b) X-ll Xo < 0, and B> 1, then

Proof:

a) Let X-l < Xo < 0, and 0< B < 1, then Xl= max {l-xol Bx_1}= l-xo ,and

X2= maxj l-x., Bxo}= max{xo, Bxo}= Bxo, and

X3= maxj l-x-, BX1}= max{l-Bxo,B-Bxo}= 1-Bxo, and

X4= max{ 1-x3, BX2}= max{ Bxo, B2xo}= B2xo. Using induction it is easy to see that

b) If X-l < Xo < 0, and B> 1, then Xl= max{l-xo, BX-l}=l-xo,

X2= max{xo, Bxo}= Xo, and X3= max{l-xo, B(l-xo)}= B(l-xo), and
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By induction we obtain that X2n = Bn-1xo, and X2n-l= Bn-1(l-xo) for all n2:: 1.

Therefore, the solutions are unbounded. The even subsequences are divergent to negative

infinity ( -(0), and the odd subsequences are divergent to infinity ( (0). Hence it can be

written as follows.

( xn) = ( X-l, XO, 1-xo, xo, ... Bn(l-xo), Bnxo, ... ).

Theorem 3.2.5: Consider xn+1= maxj l-x.; BXn-l}

a) If X-l< 0 < Xo ::; 1, B=l, then

(xn) = ( X-l, XO, 1-xo, xo, 1-xo, xo, ... ,1-xo, xo,··)·

b) If X-l< 0 < 1< xo, B=l, and assume that Xl= 1-xo, then

(xn) = ( X-l, XO, 1-xo, xo, 1-xo, ... ,1-xo, xo,··)·

c) If X-l < 0 < 1< xo, B=l, and assume that Xl= X-l, then

(xn) = (X-l' XO, X-l, XO, ... , X-l, Xo,·· .).

d) If 0 < X-l < 1 < xo, and B =1, then

( xn) = ( X-l, XO, X-l, XO, ... ,X-l, xo,···)·

e) If 0 < X-l ,Xo < 1, and B =1, and assume Xl= 1-xo, then

(xn) = (X-l' XO, 1-xo, xo, 1-xo, ... , 1-xo, xo,··)·

f) If 0 < X-l ,xo < 1, and B =1, and assume Xl= X-l, then

Q.E.D

g) If X-l' Xo < 0 and B =1, then

h) If X-l' Xo > 1, and B =1 , then
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Proof:

a) If X-l < 0 < Xo � 1 and B =1 ,then Xl= max { l-xo, x-d = l-xo,

X4= max{-"I-x3, X2}= xo· By induction, we easily see that X2n-l= l-xo, X2n=XO.

b) The proof is similar to 3.2.1 (a).

c) If X-l < 1 < xo, and B= 1, and assume that X-l > 1 - Xo which implies

X2= max{ I-Xl, Xo} = max{ l-X-l' Xo}= Xo, because

if l-X-l > Xo, then XO+X-l < 1, contradicts our assumption, and

d) The proof is similar to 3 .2.2 (b)
e) The proof is similar to 3.2.3 (a)
f) The proof is similar to 3.2.3 (d)
g) The proof is similar to 3.2.4

h) Assume 1 < X-l' Xo, then Xl= maxj l-x.], X-l}= X-l' X2= maxj l-x., xo}=

max{ l-X-l' xo}= xo· By induction X2n-l= X-l and X2n= Xo· Q.E.D



CHAPTER 4

SUMMARY, CONCLUSION AND RECOMMENDATION

This study is focused on investigating the solutions of reciprocal type difference

equation and max-linear difference equations. The solutions of these difference

equations exhibited various properties, such as periodicity, boundedness,unboundness,

oscillation, and non oscillation. The research also shed light on discrete dynamical system

theory since difference equations are examples of discrete dynamical systems.

The investigation of max-type difference equations has attracted much attention

recently because solutions behaviors can differ greatly from solutions of linear difference

equations.The max-type difference equations of higher order remain to be studied and

will be a source of much research in the future. Additional research with the maximum

operator being replaced with the minimum operator or a median operator may also lead to

new equations to study.
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