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CHAPTER 1

INTRODUCTION

Let N denote the set of nonnegative integers. The set of all real-valued functions
whose domain is in N, along with the usual definition of addition of functions and
multiplication of a functions by a real number, is a vector space and is denoted by V.
The elements of the vector space V, are called sequences. If x is an element of V, then
we will use the notation x,, instead of x(n) to denote the general term of the sequence and
use {x,} to represent the sequence xg, X1,X3 ,....

Now consider a given real-valued function f: D — D, where DC R.
Using f, we can construct a first order difference equation by writing

e =Roapen—012, ..

Similarly, a second order difference equation can be constructed by writing
Hwn=Hx, 2. ) 0=012....
where f: DxD—- D
Generally, a difference equation of order k can be constructed by letting
X s X B 002,

where f: D¥ > D



If the function f has the form
f(x)=ax+b
where a and b are any real constants, then we obtain an equation of the form
Xn41=0%Xpn b. 6]
Definition: The general linear difference equation of order 1 is given by
Xnt+1 = AnXpt by ()
where a,, and b,, are sequences. When an initial value of x, is given, a unique solution
exists. An equation of the form:
Xipp=ax, +b (3)
is called a linear equation of the first order with constant coefficients. When b= 0, this
turns the problem into one of the form
Xnt+1 = AXp. 4
Definition: If a linear equation can be written in the form (4), it is described as
homogeneous. Otherwise it is non-homogeneous.
To solve the homogeneous equation
Xn+1 = AXn
we assume X, is an initial value, then
Xy = @Xg
xX;= ax, = a’x,

X3 =ax, =a3x,

X), =0Xx_1 =a* Xy



Theorem:
The general homogeneous equation Xx,,1= ax, has the exact solution x,=a™x, for all
n=> 0 and x; is an initial value.
In the eventthat fis a function of two variables, we can also construct a difference
equation by writing
Xn+1 = X Xn—1)
Note that if
fix,y) = axt+by+c
then our difference equation becomes

Xyt =0X, bR, 1 +c, b= Q. (5)

This is a linear difference equation of order 2. When c= 0, we refer to (5) as
homogeneous and denote it by

Xn+1 = AXp DX (6)
Note that (6) can also be written as

Xn+1 TPXpt QXp—1=0 (7
where p =-a and q = -b.

A difference equation will be called maxi- linear if it has the form

Xn+1 = max{f(x, ), g(Xn-1)}

where f and g are linear functions of a single variable. A difference equation will be

called reciprocal type if it has the form



A
Xn+1 :{ x_n > Xn—1 }
or

1
Xn +1 ={ ; > Axn-—l }

Generally, a solution of a first order difference equation is a sequence of real numbers
generated recursively from an initial value xy. Similarly, solutions of a second order

equation are generated from two initial values x_; and x.



CHAPTER 2

HISTORY AND PRELIMINARY RESULTS

Within the past twenty-five years, the study of difference equations has a new
significance. This came about largely from increased usage of computers and the
formulation and analysis of discrete-time systems. The numerical integration of
differential equations and the study of deterministic chaos also have played a role in
bringing difference equation to the forefront of mathematical analysis.

Preliminary results will focus on the behavior of solutions to homogeneous linear
difference equations of orders one and two that have constant coefficients.

Definition: Bounded sequence, periodic sequence, oscillatory sequence
Definition 2.1: Periodic Sequence: A sequence {x,, } is said to be periodic
with period p if and only if it satisfies x,, =x, for all n and
is said to be eventually periodic if x,,,= x,, for all n= k, for
some k €N
Definition 2.2: Bounded Sequence: A sequence {x,, } is said to be bounded
if and only if there is some K such that |x,| <K for all n.
Definition 2.3 : Oscillatory sequence: A sequence {x, } is said to oscillate
about zero or simply oscillate if the terms x,, are neither

eventually all positive nor eventually all negative



Theorem 2.1:
Consider the equation

Xn+1=0Xn (8)

and let xy be an initial value. Then

(1) If |a| < 1, then all solutions of (8) tend to zero as n— oo

(i1) If | a |=1, then all solutions of (8) are periodic

(111) If |a| > 1, then all nontrivial solutions of (8) are unbounded

(iv) If a < 0, then all nontrivial solutions of (8) oscillate about zero.

Theorem 2.2:
Consider the equation
Xn+2 T AXpyq THX,=0. ®
Then x,= t", t#0 is a solution to (9) if
t?+at+b=0 (10)
Note: Equation (10) is called the characteristic equation of equation (9).
Theorem 2.3:
If t; and t, are real solutions of (10) and t; # t,, then the general solution of (9) is
xXp=c1t] + c,t5. If t;=t,=t, then the general solution of (9) is

X ottt P a=t" (g o n).



Theorem 2.4:
If t; and t; are non-real solutions of (10), say t; ;= p+iq, then general solution of (9)
is x,=(/pZ+q2) (cicos(nf) + ¢, sin(nd)) where = tan~!(2).
Theorem 2.5:
If ( 10) has a negative root, then (9) has oscillating solutions.
Theorem 2.6:
If (10) has a root whose absolute value is greater than one, then (9) has an unbounded
solution.
Theorem 2.7:
The equations X, + Xp41 + X, =0, X427 +x,=0, and x,,,, -x, =0 have periodic
solutions.
Examples: Consider the following equations
1) Xn+2 = 3%n41 — 4 =0
Let x,, = t", then our equation becomes t™*? — 3t™*1 — 4t™ = 0.
Factoring we obtain
t" (t? —3t—4) =0 and since t# 0, then t2 — 3t — 4 = 0; therefore, the
solutions of our characteristic equation are t; = —1,t; = 4. Letu, = (—1)"
and'p, =4"
Then the general solution is x, = ¢; (—1)" + ¢4" = cyu,, + ¢, v,. When
¢, = 0, the solution is periodic and oscillatory. When ¢, # 0, then solution is
nonoscillatory and unbounded.

i1) Xpy2 — 4Xpp1 +4x, =0



Let x, = t", then our equation becomes t"*2 — 4¢t"*1 + 4t" =0 . This
implies
t" (t* — 4t +4) = 0 and since t# 0, then t? — 4 t + 4 = 0; therefore, the

solutions are t; = t, = 2.
Hence the general solution is x, = ¢; 2" + nc; 2" = 2" (¢ + can).
All nontrivial solutions are unbounded.

ii1) Xppr + %, =0
Let 2, =¢" ,thent"" 2+ t" = @ implics " (1 + 1} = 0.
t?4+1=0, thent=ti

Since i" = 1™ (cos(nf) + sin(nd)) andr=lil =1 ,6 = tan"*(c0) = ’25

then i" = cos (%) - sin(%). Thus the general solution will be
X, = C1 COS (%r) + ¢, sin (%”)
The solution is periodic of period 4.
W) Xy Wit rrx.=10
Againlet x, = t* thent™? — 2rt"* 1 4 r2¢" = 0.
Thus t" (t* — 2rt + 2 ) = 0, since t# 0, then t* — 2r t + 2 = 0. Hence the

solutions are t; = t, = r.Therefore, the general solution is

.= T eymt

When |r| < 1, solutions tend to 0 as n— oo.

When|r| > 1, solutions are unbounded.



When r< 0, solutions are oscillatory.
When r > 0, solutions are nonoscillatory.

Whenr = -1, ¢ # 0, c;= 0, solutions are periodic.



CHAPTER 3

OVERVIEW AND MAIN RESULTS

This study will focus on the behavior of the solutions to the equations

Xng1 = max{x—ln p A ) (11)
and
K= max{l-x, Bx, 1} (12)

where A and B are constants.

The solution behaviors of (11) will be studied under conditions where A< 0 and
A> 0. The solution behaviors of (12) will be considered with the cases where
0<B<1and B>1.

Our main interest in (11) and (12) will be on the periodic properties, boundedness,
and asymptotic properties of solutions.

Multiple theorems and propositions will be generated during the study based on our
findings. The results for (11) will consist of excerpts from [3] while the results for (12)
will be new since equation (12) has not appeared in the literature search.

We will consider different cases for the constant “A” and the initial values in (11). We
also consider numerous cases for the constant “B” and the initial values in (12). We will
compare the behaviors of the solutions of (12) to those of (11). New theorems

will be derived on (12), and most of the theorems will be proved by induction.

10



Main Results
Excerpts From [3] on x,, 1= max{xi A}

Theorem 3.1.1: Assume A< 0 and let x_4, xy denote initial values.

a) Ifx_1<0,xg>0,and x; = ;1— then
0
G Gt o
n -1 O,xo PEEEY) O,xo,...
b) If Xoig = O, Xo > O, and x1=Ax_1 5 then
1
b

In both (a) and ( b) solutions are eventually 2- periodic.

1
,Ax_l, F—l ,)

() g, %, 50

Proof: Assume x_; < 0 and xg > 0, then
X1 = max {xi ,Ax_1 }>0. Using induction it is easy to see that x,, > 0 for every n=> 0,
0
and consequently
- 1 3
Xn+1 = Max {;T‘l, Axnq}= e, n=> 1.
Hence, if ;.= xl > Ax_,, then every solution is eventually 2- periodic, moreover (x,)
0

can be written as follows:

If x; = Ax_4, then

(n) = (21, Xo , AX_

19 Ax...l it

11

oo RER



Theorem 3.1.2: Consider x,,= max {xi Ax,_1}, where A< 0

Ay Hx_ >0 %<0, x~ xi, and A€ (-0, —1], then

1 A x A x
(xn) = (x—-la xO: x_O’ Axo, %, IO, 5 AO’ )

B a0 x <0, % =;15,andA et 0), then

1 1t
(xn) ( X-1, xO: Aan Axo 'an():A_xO:" )

¢) Ifx_;>0,% <0,x;=Ax_;,and— > Ax_y, then
0

1
xo, A_xo,...).

e
(xn) =(x21, X9, Ax_3, Axy, o
d) Ifx_1>0,x,<0,x=Ax_3, andi0 < A?x_,, then

1

= 2 1
(-0, 2 A7 A% A X1z — ooy AZX_
%X Ax

In all cases solutions are eventually 2- periodic.

Proof: Ifx_; > 0and x, < 0, then x; = max {%, Ax_1 )< 0,

X,= max {i, Axy} = Axg > 0, and x3=max { é, Axy 3> 0 because% > 0.
By induction we obtain x,, > 0, for all n=> 2. Hence

Xnt1 = i for all n> 3. Consequently, in this case, every solution is

eventually 2- periodic .

a): 124 :}13 and A € (—oo,—1],then Ax_; < xl , consequently,
0

12

Xz=max {—;—}=— because A< 1implies A< 2 L and this 1mphes — > — since

Ax b)) A

A x A x
%9 < 0.Hence  (x,)=(x_q, xo, Axo, ;, s IO,..‘).



b) Ifxl——x—0 and A € (-1,0), then x, = Axy and x3 = max {— -

1

Axgy’ xo Axg
since i— < A. Thus
8 (1 .. x Ax . Ay — )
n -1> 07 0572 Axg LXRES) Oanor-' .
= 1 2 A 2
o IKfxi=Ax_, = x—,thenA Y = x—;and1fZ—>A %. 4 , then
0 (0]
= L g2 <
X3 =max { e Ax 1} g S0 that
(X, =(x { x5 Ax ; Ax Lo )
n _1’ 0’ _13 0’ AXO)"'I 0) AxO)"' o
d) ¥ X1 = Ax_1 and A—i‘; = Azx_l : then X3 =A2x_1 and
= Ax_y, Axg, A Ax ., ——
(X)) =(x,. 75 8 . 4, A x 4, o i g
Theorem 3.1.3: Consider x,,, 1= max {xi LAx,_1}, where A< 0
ay Ifx_;.x9 >0, then
> 1 1
(xn) = ( Xiq:X0» ;C—O, ...,xo,g,...).
b) Ifx_y, xo < 0,and —— < Axo, then
=1
1 1
(xn) = (x_l,xO, Ax_l,AxO, Z;C;,. e AxO ,E,. ..).
¢) Ifx_1,xp<0,and ——> Axq, then
=i
i
) —(x ., xO,Ax_l,A CAx g ,Ax_l,Ax_l,...).
All solutions are eventually 2-periodic.
Proof: a)Ifx_q, xg > 0, then x;= xi >(0. By induction we have x,, > 0,
0
for all n> —1 and, consequently, x,,,1 =—, for all n> 0. Thus in this case

it 1
(xn) = ( X2 ,xo,g,...,xo,x— ,)

3

13

QED
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b) Ifx_q, %o < 0,thenx; = Ax_; >0, and x, = max { ;11- Axy }= max {ﬁ_l, Axy }> 0.
Using induction we have x,, > 0, for all n> 1, which implies x,,.1 = for alln > 2.
Therefore, if —-;1: < Ax,,we have

() =4 .4, %0, A%, A%y, ALXO, A AixO )
¢) On the other hand, if t > Ax,, we have

1
(e = ( Xy, Xg, A% Ax_l, e 7 Y QE.D

1,A

Theorem 3.1.4: Consider x, 1= max{xi Ax,. 1}, whete A > 0.
a) Ifx_1<0,xy>0,and A € (0,1], then

1

1
(%) = (x-1, Xo, 7 ...Xo,z, Sk

b) Hx.1<0. x>0, and A > 1, then

A

(%) =(%1, %0, 5, A%, 2, . A7%0, 2, ),

Proof:

a) Letx_; <0, xy > 0, then x1=i > 0 and

X,=max{xg, Axg} = xomax{1,A}> 0.
Hence if A € (0,1], then x,= x(, and x3= max{— —} = That is
(e LT X, %, got oy % ey
b)If A > 1, then x,=Axy and x3= max{— A x1} =max{-— Ax x } == > 0.
By induction we obtain x,,= A" X, Xont1 = i—:for all n> 1, that is,
(o=t S, ot sl x,, 2, ). QED
X0 X0
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Theorem 3.1.5: Consider x,,1= max{xl Ay 1),

ay Hx 1 >0, x5< 0, and A € (01], then

I
—

i
(xn) = ( X1, X0 Ax_l, Z;:‘;,. sy Ax_]_,

b Hx ; >0, %<0 and A> 1 then

= 1 2
( xn) o ( X—1, X0, Ax_l, Zx—_l’ A Xiq, oo P

Proof: a)Ifx_; > 0 and x5 < 0, then x; =Ax_; > 0, x,= Zaj—{ >0, and

= max{%, Ax;}=max{Ax_;,A*x_,} = Ax_;max{1,A}.

Clearly x,, > 0, for all n> 1.

If A€ (0,1], then xz= A%x_; = x; and x, = —

=1

= %, thatis,

1 1
() =€ 21, %, Ax_y, T Ax_q, i ik

n—2

b) If A> 1, then x3=Ax_4 and x,= ;1—- . By induction we obtain that x,,= -
=1

6L i

Xon_1=A"x_1, for all n=> 2. Hence

2 e n+1 4
(Xp)= (x4, Xy, Ax_,, o p Al g e s

QE.D
The case where A > 0 and both x_; and x, are positive will now be considered.
Note that if x,, is a positive solution of (11), then multiplying (11) by x,, and letting
¥,= XnXn_1 transforms (11) into

Yn+1= max {Ay,, 1}, where y, > 0. f1l)
Lemma 3.1: If A € (0, 1], then each solution of (117) is eventually constant, in fact,
either y =1 eventually, or y, =y, eventually.
Remark: Note that v eventually constant implies solutions of (11) are eventually

2-periodic. A dual result to Lemma 3.1 is the following.



Lemma 3.2: Consider the difference equation

16

Y.~ min{ Ay .1} (¥

where y, > 0. Then for A> 1, each solution of (117) is eventually constant.

The proof of Lemma 3.1 and Lemma 3.2 appear in [3].

Theorem 3.1.6: Consider x, 1= max{;l— Ax, 1}

2

ay Hw 102 0,x1=x0 ,and A > 1
= B = o AL
(xn ) —(x"“l > xO: xO ’Ax07 xO, "‘,A xO’ X() > "')'

b) Ifx_l, Xo > 0, Xp— Ax~1 5 and A> 1, then

= 2 2 n n
(xn)_(x—l > X05 Ax—lsAXO:A x—laA x0>"-7A x—laA X0 5---

).

ey Wx g .%>0.x=Ax , and A€ (0.1), then(x,}is

eventually 2- periodic.

1
XO’

d) Ifx_l,xo =4 X1.= and A € ( O,l] 5 then

1
(xn) =5 ( x—l: x07 ;;a ceey XO, T )
Proof:

a) IfA€(1,0),andx; = ;1—0, then we get x,= Axg, x 3= f— and by induction it

b
0
A" .
follows that x,,= A"x,, and X541 = —foralln> 1, that is,
0

A A
T T R

1
(xn)=(x—1’xo,;£,/1xo,x—o,. =

by Mx =4z 1= % and A € [1, 00); therefore,% =%Ax .. Hence K‘: < Xp, and

thus — < Ax,. Thus ~ Ax, because A > 1; therefore,
Xy Ax_y X=q

1 1
x = max{—, Axo} =AXo and x;=max{_~, Ay =A%



By induction we get x5, _1=A"x_1, X2,=A"x,, for all n=> 1. Thus
= d e B, Wox W o )

¢) Follows from remarks after Lemma 3.1, and the proof is similar to (a)

d) Follows from remarks after Lemma 3.1.

Theorem 3.1.7: Consider x,.1= max{xl Ak, 1),

a) B 1,X0<0 X1 = "‘0‘ andAE(Ol] then

A

(xn) =(x_1 ,xo,x—o,AxO,—, ,Anxo,—, L)

X0 X0

b) Ifx_1,x0 <0, % =Ax_;,and A € (0,1], then

17

QED

( xn) = ( X 1 X0 5 Ax~1, AXO, Azx_l, Sy An X0, An+1x~1, . )

¢) Ifx_q,% <0,%x =xio, and A> 1, then
(x,) is eventually 2-periodic.

d) Hx_ 4, Xop< 0; %= Ax_;, and'A > 1, then
(x,) is eventually 2- periodic.

Proof:
a) Ifx_q %, <0, then x, < 0, forall n> —1. If x;= max{% Ax_q)= % and
A€ (0,1], we have x,=max{xg,Axo}=Axq since A < 1 and xy, < 0 and
{— —}— — By induction we have x5, =A"X(, Xon41= for alln> 1,

Axg’xg

that is,

A at

(xn) (x 1,XO, Axo, ,...,Anxo,—,...).

X0

b) The proof is similar to 3.1.7 (a)
c) Apply Lemma 3.2, where x_1,x5 < 0,and A > 1.

d) Apply Lemma 3.2, where x_; ,xo <0, and A> 1.
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New Results on x,,,; = max {1-x,, Bx,,_1}.
We begin our-study of (12) with

Lemma 3.3: If a < 0 and 0< B < 1 and two consecutive terms of a solution of (12) have
the form B*a, 1-B¥a for some k€ N, then the solution continues...,B*""a, 1-B*™"aq,..

Proof is by induction and is omitted.

Theorem 3.2.1: Consider x,,; =max {l-x,, Bx,_1}

a: fx_1<0<1<xp,and0< B <1, and x;=1-x;, then
(x,) = Xx_1,%0, V-2, 29, B(1-xp), 1-B(1-xp),..., B*(1-xg), 1-B"(1-xp),...).
b Kx 1<0<1<xg,and0 <B<1 and x,=Bx_;, and 1-Bx_; > Bux,,
then
()= % %o BF , FBE, B 10, Bv,  B'r,
crHx 1 <0<i<y andB> 1 and2x,-Bx ;. then
(E) =% . % BE ¢, B, .B'% 0. B3, )
d): Ifx_; <0 <1< xg,and B> 1, and assume x;=1-x, then
G0} =1 ¥-1.% bistn: By, Bll-%4) By BU1-25),....B "%, B'(1-70),...).
Proof:

a) Let x_ 1 <0<1<x.,and0< B < 1, ifx, =1-%,, then x,= max{xy, Bxg}=x
because xp > 0 and B < 1. x3=max{1-xg, B(1-x()}= B(1-x) because 1-x5 < 0
and B< 1, x4,= max {1-B(1-xq), Bxo}= 1-B(1-x() because

1-B(1-x,) = 1-B+ Bx, > Bx, since B< 1. Now assume, we have a= 1-x; , and using

Lemma 3.3, then the results follow.

(xn) = ( X-1,X0, 1'x09 X0, B(l"XO), I_B(l_x())a'“; Bn(l-XO)a l'Bn(l-xO)s"')'
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b) Let x_; <0<1<xp, 0<B<1,x;=Bx_;, and assume 1-Bx_; = Bx, then

x,=max{1-x1, Bxg} = max{1-Bx_;, Bxy}=1-Bx_;.
At this point we apply the Lemma 3.3 where a= x_4. Thus,

(Z Nl ny B iy 1B, B2 s 1. By, B x4, 1-B"x_4,..).
¢ ) Assume for n=0,1,2,..., x3,_1=B"x_q,and x5,= B"xg, thenx, = Bx_,
implies 1-xy <Bx_,, and thus 1-Bx_; < x; . Then x3,41 = max{1-B"x,, B"*1x_,}=
B™1x_, because 1-B™x, < B"-B"xy = B™(1 — xo) < B"'x_y,
#5 o=lmax{ 1B 1xi, B g)= By, becaise
BRSBTS e B, BT, e
(=0 . % B 1, By B B %)
d)Let x_; <0< 1 < xp, and B> 1, and assume x;=1-xq, x,= max{1-x1, Bxp}=
max{xy, Bxy}= Bxy, then x3= max{1-x,, Bx; }= max{ 1-Bxy, B-Bxy}= B(1-xy).
Therefore, x,= max{ 1-x3, Bx;}= max{ 1-B(1-xy), B2x0}= Bzxo, because
1-B(1-x,) < B — B(1 — x,) = Bxo< B%x,.By induction we see that x,,= B"xo,
and x,,_1= B" }(1-x,). Therefore
. )—Cx o bm B, Bll-xg). B, Bll-%),. .. B %, B"(1-%5)....). QED

Note: The solutions in (a),(b), and in (c) are oscillating around zero, but the solutions in

(¢) and (d) are unbounded.
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Theorem 3.2.2: Consider x,,; =max {1-x,, Bx,_1}

a): f0<x_; <1< xp,and 0<B< 1, and assume Bxy <1-Bx_;, then
() =6 720 B . 1-Bx 3. B3 1B x ..., Bx. 1, 1-Bx_4,...).
BEHO<x .. <1 < x5, a0d B> Jthen
(5 =8 0, %5 Baiy, By ox B x 5B x50
Proof:
a)Let0< x_; <1< xp, and 0<B< 1, and assume
Bxy <1-Bx_q,then x;= max{1-x,, Bx_4}= Bx_, x, = max{1-x;, Bxy}=
max {1-Bx_, , Bxy}=1- Bx_4, and x3 = max{ 1-x,, Bx; }= max{ Bx_,, B?x_,}=Bx_,, and
x4 =max{1l-x3, Bx,} = max{1-Bx_,, B(1-Bx_;)} = 1-Bx_;. Using induction it is easy to see
that x,, = 1-Bx_,, and x5,,_; = Bx_; for n=> 1. Hence
(X0) = (X 325, Bx 15 1-BX_sBx 4. BB 100 B 1:1-Bx., 5. ) Therefore, x. 18
eventually 2 periodic.
by Let O<.x . =1 < x...B>1 Then x;=Bx_; and
x,= max{1l-xq, B Xo}=max{1-Bx_,, Bxy}=Bx, since 1-Bx_; <1 < Bx,, and x3=
max{1-x,, Bx;}=max {1-Bxo, B%x_;}=B2x_,, and
x4= max{ 1-x3, Bx,}= max{1-B%x_,, B%x,}= B2x, . By induction we obtain
X9n= B"x, and x3,_1= B"x_; for n=> 1. Thus
(X, )=k 05 Bx_s. Brg,...B'x 1, B"%....) Q.E.D.

Note: The solutions in (a) are bounded; however, the solutions in (b) are unbounded.
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Theorem 3.2.3: Consider x,,q = max {1-x,, Bx,_1}

a) [f0< x_4,xy < 1, and 0< B < 1, and assume x;=1-x, then
Ctn) =5 g, Yol D20 95.5. 9
B If0< x_4,x0 <1, 0<B<1,and x;=Bx_;,and 1-Bx_; >Bx,, then
)= (X85 By 1Bx B2 4, 1-Bx 4 ,... )
c)If 0< x_q1,x9 <1, and B> 1, and assume x;= 1-x, then
(e y= € dipang Vg Bags B@lexs)s Blag BAbxi)s. 5B 2, BL-%p)s.. ).
d)If 0< x_4,x9 <1, and B> 1, and assume x,= Bx_,, then
0 ={x v 25 Bx-£ Byg,.... B x_,.B"x,,...).
Proof:
a) Let 0< x_4,xy < 1, and 0< B < 1, and assume x;=1-x3 > 0, then x,=
max {xg, Bxy}= X, and x3= max{1-x,, B(1-x¢)}= 1-x4. Using induction it is easy to see
that x,, > 0 for every n> 0, consequently, x,,= X, and x,,_1= 1-xy. Thus the solutions
are 2-periodic and can be written as follows,
(G (X125 Bke, v s boXg, %o

c) If0< x_4,xp <1,and 0< B < 1, and assume x;=Bx_4, and 1-Bx_; > Bx,, then
x,= max{1-xq, Bxg}=max{1-Bx_q, Bxg}= 1-Bx_;
x3= max{1-x,, Bx;}= max{Bx_,, Bzx_l} =Bx_;
x, =max{ 1-x3, Bx;} = max{ 1-Bx_;, B(1-Bx_;)}= 1-Bx_; because 1-Bx_; > 0.

By induction x,,= 1-Bx_1, and x,,_1= Bx_;. Hence
() =2 1.0 Bx 1 1-Bx 4, Bx_,, 1-Bx 4 ,...Bx_;, 1-Bx_4....).

¢ ) The proof is similar to 3.2.1 (d)
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&) Let 0<% 15051 5 B>+ 1. and %1=Bx_ . therefore, 1-xy =Bx._4. FThen
x;= max{1-Bx_, Bxg}= Bx, because 1-Bx_; < x7 <Bx,,
x3=max{ 1-Bx, ,Bzx_1}= Bzx_l because 1-Bxy <1 —x5 <Bx_; < Bl
Xy = max{l-B’Zx_l,Bsz}= B?x, because l-Bzx_jL <i-DBx 155« Bzxo :
By induction, we have x;,_1= B"x_1, x2,= B"x,. Hence

) = x_ %5, By, Bgei, B"x_1,B"xp,...). GED.
Note: The solutions in (a) and (b) are periodic with period two, but the solutions in (c)
and (d) are unbounded.

Theorem 3.2.4: Consider x,,,; = max{ 1-x,,, Bx,_{}

a) “%iq0p <Oydnd 0B < 1, then
e =50 %, B, BB E BT, By, ).
b) x4, % <0,and B> 1 then
Cx)=Cxh 00 T . B™(1-x), B®xy, ...).
Proof:
a) Letx_; <xp<0,and 0< B < 1, then x;=max {1-xp, Bx_;}=1-x, , and
x,=max{1-x;, Bxy}=max{xq, Bxy}= Bxg, and
x3= max{1-x;, Bx;}= max{1-Bxy,B-Bx(}= 1-Bx,, and
x4= max{ 1-x3, Bx;}= max{ Bx,, B2x0}= Bzxo. Using induction it is easy to see that
Xop 1 =1-B" kg %2~ B xp. Henee
G0 L% -5 By, 1By 0¥ BY M xp, Bxp, ...).
b) Ifx_; <x9<0,and B> 1, then x;= max{1-xy, Bx_;}=1-x,
X,= max{xg, Bxo}= x¢, and x3= max{1-xy, B(1-x¢)}=B(1-xp), and

x4= max {1-x3,Bx, }= max{1-B(1-x),Bxo }= Bxg, and x5 = max{1-x,4, Bx3}= Bz(l-xo).
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By induction we obtain that x,,= B" 1x,, and x,,_;=B" *(1-x) for all n> 1.
Therefore, the solutions are unbounded. The even subsequences are divergent to negative
infinity ( —o0), and the odd subsequences are divergent to infinity ( o). Hence it can be
written as follows.
Col Y= Exiing, Voaging, B -x), Blagss. ). QED

Theorem 3.2.5: Consider x,,1= max{1-x,, Bx,_1}

g f x<0<x3<1,B=1 then
(6, =X 1. %y, V-0, %g, 120, %5, . . 1=%p, X5, )
b) If x_1<0<1<xy, B=1, and assume that x;= 1-x, then
Gy U 1, 0, 5xg, &g, x5 120, Xg5.-)
c) W xiy <0< l<uxy; B=1, and assume that x;= x_;, then
Gk ok e d Xy Wy 5 R Xy B
d) If 0<x_;<1<xp,and B=1, then
bk =L En . ok i, Boe v nX 1, Koo )
e) If 0<x_;,x9<1,and B=1, and assume x;= 1-x,, then
(%) =00 s Moullaxouxg. 1%y, ..., 1-%g, Xg,.-).
fy f0<x_;,xy<1,andB =1, and assume x;= x_4, then
e = (X Ng 2, Xge s %))

g} M x4, %<0andB =1, then
() =( x4, %5, 1 -0g, %y, I-2g, ... ,1-%g, Xo.. }
by Hx.., 6 >1 anadB =1, then

( le) = ( x—l: an x—l: an >x—19 xO:"')-
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Proof:

a) Ifx_; <0< x5 <1andB =1 ,then x;=max { 1-xg, x_1} = 1-x,

x2= max{ 1-x1, xo}= max{xg, xo} = X, X3= max{ 1-x,, x1} =1-x, and

x4= max{-1-x3, X, }= xo. By induction, we easily see that x,,_1= 1-Xg, X2,=Xg-
Henece (x,)=( x_1, x5, }-%4, %9, 1-%p, %5, ... F-%, Xp,--)-

b) The proof is similar to 3.2.1 (a).

c) Ifx_; <1< x,and B=1, and assume that x_; > 1 — x which implies
Xo >1—x_4,then x;=max{l-xp, x_1}=x_4,
x,=max{ 1-x1, xo} = max{ 1-x_1, xo}= X, because
if 1-x_1 > xp, then xy+x_; < 1, contradicts our assumption, and

x3= max{ 1-x,, x1 }= max{ 1-xq, x_1 }= x_4. By induction x,,_1= x_1, X2,= Xo. Thus

(=0 g o X e Wy 5o F

d) The proof is similar to 3.2.2 (b)

e) The proofis similar to 3.2.3 (a)

f) The proof is similar to 3.2.3 (d)

g) The proofis similar to 3.2.4

h) Assume 1 <x_,, xg, then x;= max{1-xy, x_1}= x_1, x,= max{1-x1, Xo}=

max{ 1-x_1, Xo}= xo. By induction x, 1= x_; and x,,= x,. QE.D



CHAPTER 4

SUMMARY, CONCLUSION AND RECOMMENDATION

This study is focused on investigating the solutions of reciprocal type difference
equation and max-linear difference equations. The solutions of these difference
equations exhibited various properties, such as periodicity , boundedness,unboundness,
oscillation, and non oscillation. The research also shed light on discrete dynamical system
theory since difference equations are examples of discrete dynamical systems.

The investigation of max-type difference equations has attracted much attention
recently because solutions behaviors can differ greatly from solutions of linear difference
equations.The max-type difference equations of higher order remain to be studied and
will be a source of much research in the future. Additional research with the maximum
operator being replaced with the minimum operator or a median operator may also lead to

new equations to study.
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