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Momentum Space Orthogonal Polynomial

Projection Quantization

C. R. Handy1, D. Vrinceanu1, C. B. Marth2 and R. Gupta3

1Department of Physics, Texas Southern University, Houston, Texas 77004
2Dulles High School, Sugar Land, Texas 77459
3Science Department, Lawrence E. Elkins High School, Missouri City, Texas 77459

E-mail: handycr@tsu.edu

Abstract. The Orthogonal Polynomial Projection Quantization (OPPQ) is an

algebraic method for solving Schrödinger’s equation by representing the wave function

as an expansion Ψ(x) =
∑

n ΩnPn(x)R(x) in terms of polynomials Pn(x) orthogonal

with respect to a suitable reference function R(x), which decays asymptotically not

faster than the bound state wave function. The expansion coefficients Ωn are obtained

as linear combinations of power moments µp =
∫
xpΨ(x) dx. In turn, the µp’s are

generated by a linear recursion relation derived from Schrödinger’s equation from an

initial set of low order moments. It can be readily argued that for square integrable

wave functions representing physical states limn→∞ Ωn = 0. Rapidly converging

discrete energies are obtained by setting Ω coefficients to zero at arbitrarily high

order. This paper intruduces an extention of OPPQ in momentum space by using

the representation Φ(k) =
∑

n ΞnQn(k)T (k), where Qn(k) are polynomials orthogonal

with respect to a suitable reference function T (k). The advantage of this new

representation is that it can help solving problems for which there is no coordinate

space moment equation. This is because the power moments in momentum space are

the Taylor expansion coefficients, which are recursively calculated via Schrödinger’s

equation. We show the convergence of this new method for the sextic anharmonic

oscillator and an algebraic treatment of Gross-Pitaevskii nonlinear equation.

Submitted to: J. Phys. A: Math. Gen.

PACS numbers: 03.65.Ge, 02.30.Hq, 03.65.Fd

1. Introduction

The Hill Determinant Quantization (HDQ) ansatz studied by Banerjee [1], and

more recently by Killingbeck and Grosjean [2], represents bound state solutions of

Schrödinger’s equation in terms of a non-orthogonal basis,

Ψ(x) =
∑
n

anx
nR(x), (1)

where the positive reference function R(x) should match the asymptotic behavior of the

wave function. The coefficients an are obtained recursively as polynomials in the energy
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Momentum Space Orthogonal Polynomial Projection Quantization 2

parameter and bound state energies are obtained algebraically from the truncation of

the HDQ series (1) at a finite order N .

It was pointed out [3] that although this approach produces the correct local

representation of the wave function at the origin, it fails in certain cases to provide a

global representation because it can not easily discriminate between the bound (physical)

and the un-bounded (non-physical) linearly independent solutions. This is because the

forward recursion for an picks up the dominant solution, and not the subdominant

solution.

The failure of HDQ was studied by Tater and Turbiner [4] in the context of the

sextic anharmonic oscillator with potential energy V (x) = gx6 + bx4 +mx2. They show

that when the reference function R(x) = e−
√
gx4/4 coincides with the leading asymptotic

form of the wave function for a bound state, HDQ does not converge, or converges to

the wrong answer, for certain potential energy parameters.

These difficulties are addressed through the Orthogonal Polynomial Projection

Quantization (OPPQ) method proposed by Handy and Vrinceanu [5]. This original

OPPQ formulation (in contrast to the alternative formulation presented in this work)

depends on a momentum space local analysis as defined by the power moments of the

configuration space solution. For the class of systems considered, the power moments in

turn are generated through a moment equation, recursion relation which filters out

un-bounded wave functions that have infinite power moments. As such, OPPQ is

predisposed to only generate the discrete state solutions. This OPPQ formulation

generates the exact local expansion in momentum space. Empirical evidence [6] also

suggests that it leads to a very good local approximation (i.e. pointwise convergence)

in the configuration space.

The basic structure of the one-dimensional OPPQ method is briefly explained

below, although its extension to two-dimensional examples has also yielded very good

results [7, 8]. In this algebraic method the wave function is represented as

Ψ(x) =
∑
n

ΩnPn(x)R(x), (2)

where polynomials Pn(x) are orthogonal with respect to the chosen reference function

R(x). Explicitly

Pn(x) =
n∑
k=0

π
(n)
k xk (3)

and ∫
Pi(x)Pj(x)R(x) dx = Niδij (4)

Such representations fall under the more general heading of “weighted polynomial

expansions” [9]. The expansion coefficients Ωn are calculated from the power moments

of the wave function µp =
∫
xpΨ(x) dx because

NnΩn =
∫
Pn(x)Ψ(x) dx =

n∑
k=0

π
(n)
k µk (5)
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Momentum Space Orthogonal Polynomial Projection Quantization 3

The power moments can be calculated through a linear recursive relation that

is obtained by multiplying Schrödinger’s equation with xp and integrating over the

configuration space coordinate, implicitly assuming a square-integrable bound state

wave function. This moment equation allows calculation of any power moment providing

a small number s of lower moments µ0, µ1, . . . , µs−1 are given. Together with the

energy E parameter, these ”missing” moments form a set of (s + 1) parameters that

completely define a bound state, because each coefficient Ωn is a linear combination of

the ”missing” moments. The un-physical, non-integrable, solutions are automatically

eliminated because their power moments are infinite and do not satisfy the moment

equation.

Schrödinger’s equation does not provide information about the ”missing moments”,

which have to be eliminated by imposing supplementary constrains. In the case of

exactly, or quasi-exactly solvable problems (such as the harmonic oscillator, Coulomb

problem, Morse potential, etc) a simple examination of the consistency of a related

moment equations directly provide the exact energy eigenvalues [10], and the lack of

knowledge of ”missing moments” is irrelevant. More generally, positivity conditions for

the ”missing moments” lead to converging upper and lower bounds for the ground state

energy, as demonstrated by Handy in pioneering results [11, 12, 13].

In OPPQ, the extra constrains that allow elimination of the missing moments are

obtained by observing that if the reference function R(x) is chosen such that∫ |Ψ(x)|2

R(x)
dx =

∑
n

Nn|Ωn|2 <∞ (6)

then it must be true that

lim
n→∞

Ωn = 0. (7)

Equation (6) limits the choice of R(x) to functions that decay no faster that the leading

asymptotic form of the square of the wave function. This includes functions for which

lim|x|→∞ |Ψ(x)|/R(x) < ∞. Clearly, taking R(x) to be the asymptotic form of the

physical wave function is consistent with Eq. (6).

The asymptotic condition Eq. (7) justifies that, given a truncation order N , one

can set ΩN = 0,ΩN+1 = 0, . . .ΩN+s−1 = 0 as a system of s linear equations in the

”missing” moments µ0, µ1, . . . , µs−1. The determinant of this system is a polynomial in

energy E, and its roots converge to the energy eigenvalues in the N → ∞ limit. This

completes the OPPQ analysis, and unlike HDQ, the un-bounded wave functions are

automatically eliminated.

We note that the above formalism works for a large class of problems, and applies

even for non-hermitian (pseudo-hermitian) bound state problems with complex wave

functions [5]. Details about the implementation and numerical examples are in [5].

It is important to note that OPPQ method works differently than the variational

Rayleigh-Ritz (RR) method. In RR the wave function is searched within a target finite

subspace spanned by a basis set Bn(x), with the representation Ψ(x) =
∑
n cnBn(x) and

through minimizing the symmetrical energy functional 〈Ψ|H|Ψ〉. For this reason one
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Momentum Space Orthogonal Polynomial Projection Quantization 4

can chose Bn(x) = P̃n(x)R(x), where the new polynomials P̃n (different from the Pn
polynomials considered in OPPQ) are orthogonal with respect to R(x)2∫

P̃i(x)P̃j(x)R(x)2 dx ∼ δij. (8)

On the other hand, in OPPQ the moment equation is obtained by ”testing”

Schrödinger’s equation HΨ = EΨ with power functions xp, which are not even in

the Hilbert target space,

〈xp|HΨ〉 = E〈xp|Ψ〉 (9)

The target space of solutions consists of functions that have a (given) finite number of

moments, while the test space consist of non-normalizable polynomials. In RR method

the target and the test spaces are both L2.

If formulated as an RR problem, the coefficients Ωn = 〈Bn|Ψ〉 are obtained

as projection coefficients for the function ψ(x) = Ψ(x)/
√
R(x) with respect to the

orthogonal basis Bn(x) = Pn(x)
√
R(x). If the expansion of ψ is L2 convergent

lim
N→∞

∫
dx|ψ(x)−

N∑
n=0

ΩnBn(x)|2 = 0 (10)

then, because ∫
dx|ψ(x)−

N∑
n=0

ΩnBn(x)|2 ≥ inf
x
{1/R(x)}×

∫
dx|Ψ(x)−

N∑
n=0

ΩnPn(x)R(x)|2(11)

we can conclude that the OPPQ expansion is also L2:

lim
N→∞

∫
dx|Ψ(x)−

N∑
n=0

ΩnPn(x)R(x)|2 = 0. (12)

2. OPPQ in Momentum Space

The configuration space OPPQ method requires that a moment equation can be derived

from Schrödinger’s equation. A way to avoid this requirement is to formulate OPPQ

in the Fourier transformed momentum space. The corresponding power moments in

momentum space are the Taylor expansion coefficients in the coordinate space, and

therefore the momentum space moment equation is the recursion relation for coordinate

space power expansion coefficients.

If Φ(k) = 1/
√

2π
∫
dx e−ikxΨ(x) defines the momentum space wave function, then

the Momentum Space Orthogonal Polynomial Projection Quantization (MSOPPQ)

representation of the momentum wave function becomes

Φ(k) =
∑
n

ΞnQn(k)T (k) (13)

where the polynomials Qn(k) =
∑n
j=0 q

(n)
j kj are orthogonal with respect to the

momentum space reference function T (k), which is chosen in relation to the asymptotic

form of the momentum wave function Φ(k →∞).
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Momentum Space Orthogonal Polynomial Projection Quantization 5

Following a similar formalism as in the configuration space OPPQ analysis,

summarized in the previous section, the expansion coefficients Ξn result from

NnΞn =
∫

Φ(k)Qn(k) dk =
n∑
j=0

q
(n)
j νj (14)

where Nn is the norm of polynomial Qn(k) and νj are the k-space power moments

defined by

νj =
∫

Φ(k)kj dk =
√

2π(−i)j j! cj (15)

involving the power series expansion coefficients of the configuration space wave function

Ψ(x) =
∞∑
j=0

cjx
j. (16)

The power series coefficients satisfy a second order finite difference recursion relation:

cj = M
(0)
j (E)c0 +M

(1)
j (E)c1 (17)

Any coefficient cj is then a linear combination of c0 and c1 with factors M that are

polynomials in energy parmeter E. This is also true for expansion coefficients Ξn because

of equations (14) and (15).

Similar arguments as in the coordinate space OPPQ require that∫ |Φ(k)|2

T (k)
=
∑
n

Nn|Ξn|2 <∞ (18)

so that the expansion (13) can be truncated at a finite order and the two quantization

conditions imposed: ΞN = 0 and ΞN+1 = 0. These two conditions represent a system

of two linear equations in c0 and c1, for which the determinant, a polynomial in energy,

has to be set to zero. The roots of this determinant polynomial converge to energy

eigenvalues in the N →∞ limit.

Once the energy approximations are obtained, the coefficients cj, νj and Ξn can

be calculated and an expression for the coordinate space wave function is obtained by

inverse Fourier transform

Ψ(x) =
N−1∑
n=0

n∑
j=0

Ξnq
(n)
j

1√
2π

∫
eikxkjT (k) dk (19)

For a reference function T (k) with an analytic inverse transform,R(x), one obtains

Ψ(x) =
N−1∑
n=0

ΞnQn(−i d
dx

)nR(x), (20)

where R(x) ≡ 1√
2π

∫
eikxkjT (k).

There has been significant interest in understanding the class of functions whose

Fourier transforms are positive. This also includes cases where both the configuration

space expression and its Fourier transform are both positive, as developed by Giraud

and Peschanski [14]. These studies are of relevance to us, but not exploited here. Also,

as will be shown for the sextic case considered here, the Fourier space weight need not
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Momentum Space Orthogonal Polynomial Projection Quantization 6

be differentiable (at the origin) in order for Eq.(19) to yield good approximants to the

wave function.

Of considerable significance we note that the above configuration space expansion

exactly recovers the power series expansion of Ψ(x). This is because (as in the

configuration space case)
∫
dk kpQn(k)T (k) = 0, for n > p. Accordingly

cp =
ip√
2πp!

∫
dk kpΦ(k),

=
ip√
2πp!

p∑
n=0

Ξn

∫
dk kpQn(k)T (k),

=
1

p!
(∂x)

p
p∑

n=0

ΞnQn(−i d
dx

)R(x)

∣∣∣∣∣
x=0

. (21)

Thus the Fourier space OPPQ formulation allows us to work with systems not

admitting a moment equation representation, and if one can find a suitable weight that

captures the asymptotic form of the physical states, in the momentum space, then the

representation in Eq. (13) will not only generate the exact local expansion at x = 0 but

also incorporate the desirable physical asymptotic behavior (in x-space as well). These

are the objectives of the original HDQ representation.

3. MSOPPQ for the V (x) = gx6 +mx2 potential

In this section we apply the MSOPPQ method to the sextic anharmonic oscillator

problem described by Schrödinger’s equation

−d
2Ψ

dx2
+ (gx6 +mx2)Ψ(x) = EΨ(x). (22)

The recursion relation for power series coefficients is obtained by using Ψ(x) =
∑
n cnx

n

in Eq. (22) resulting in

(p+ 1)(p+ 2)cp+2 = −Ecp +mcp−2 + gcp−6, (23)

with p ≥ 0 and cj = 0 for j < 0, in terms of the unknown coefficients c0 and c1.

Exploiting the parity symmetry of the potential energy in equation (22) one can select

even and odd states with the choice (c0 = 1, c1 = 0) or (c0 = 0, c1 = 1), respectively.

We choose as a momentum space reference function T (k) = exp(−s|k|4/3). This

choice can be motivated in two ways: by calculating the asymptotic form of the

momentum wave function and by Fourier transforming the coordinate space asymptotic

form.

The momentum space representation of Eq. (22) is obtained by taking the Fourier

transform to get

k2Φ(k)− gd
6Φ

dk6
−md2Φ

dk2
= EΨ, (24)
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Momentum Space Orthogonal Polynomial Projection Quantization 7

for the momentum space wave function Φ(k) = 1/
√

2π
∫
e−ikxΨ(x) dx. A JWKB

analysis is obtained by replacing d/dk → εd/dk to get the expansion Φ(k) =

exp(
∑
j=0 ε

j−1S(j)(k)), and then the leading asymptotic behavior of the solution

g

(
dS(0)

dk

)6

+m

(
dS(0)

dk

)2

− k2 = −E (25)

to get

dS(0)

dk
≈ (k2/g)1/6, (26)

which leads to the result

Φ(k) ∼ exp(e−nπi/3
3

4g1/6
|k|4/3), n = 0, 1, 2, 3, 4, 5 (27)

The choices that lead to exponentially decaying configurations are n = 2, 3, 4, which

corresponds to s = 3/8g1/6 and s = 3/4g1/6.

A better analysis is provided by a stationary phase analysis of the Fourier transform

of the configuration space asymptotic controlling form

I(k) ≡ 1√
2π

∫ +∞

−∞
dx e−ikxexp(−

√
g

4
x4), (28)

resulting in

I(k) ∼ g
1
6

√
2π

3
k−

1
3 exp(− 3

8g1/6
k

4
3 )Re

(
(
√

3− i)× exp(3
√

3i

8g1/6
k

4
3 )).

(29)

This further affirms the choice of s = 3/8g1/6.

The monic orthogonal polynomials Qn(k) for the reference function T (k) =

exp(−s|k|4/3) are constructed using the reccurence Q0(k) = 1, Q1(k) = k and

Qn+1(k) = kQn(k)− ||Qn||2

||Qn−1||2
Qn−1(k), (30)

where the norms of polynomials can be calculated based on the power moments of the

reference function given by

σp =
∫ ∞
−∞

kpT (k) dk = (1 + (−1)p)
3s−3(p+1)/4

4
Γ
(

3

4
(p+ 1)

)
. (31)

As a numerical example we take the potential V (x) = x6−4x2 for which the ground

state energy has been accurately calculated in [5] to be E = −0.523268622. Figure

1 shows the convergence of the ground state energy obtained by using the MSOPPQ

method as a function of the truncation order 20 ≤ N ≤ 160 for three choices of reference

function T (k) = e−3/4|k|
4/3

, T (k) = e−3/8|k|
4/3

and T (k) = e−k
2/2. The fastest convergence

is obtained for s = 3/4, and not the s = 3/8 predicted as the one consistent with the true

asymptotic form in momentum space. As expected, the harmonic oscillator choice e−k
2/2

does not give convergent results at all. This figure also demonstrate the exponential

convergence of MSOPPQ. Other conventional methods, such as Rayleigh-Ritz, finite

element, etc, have a slower power-like ∼ 1/Nk (with k = 2 ∼ 3) convergence as a
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Momentum Space Orthogonal Polynomial Projection Quantization 8

20 40 60 80 100 120 140 160
truncation order N

1e-10

1e-08

1e-06

0.0001

0.01

1
er

ro
r (

%
)

R(k) = e-3/4 |k|4/3

R(k) = e-3/8 |k| 4/3

R(k) = e-k2/2

Figure 1. Relative error in calculation the ground state energy of the sextic

anharmonic oscillator V (x) = x6 − 4x2, obtained by using the MSOPPQ method, as

a function of truncation order and for three choices of the momentum space reference

function. The ”exact” value E = −0.523268622 is calculated by using the coordinate

space OPPQ with N = 60.

function of truncation order. It is worth noting a recent publication [15] that reports

remarkably accurate results obtained for the sextic anharmonic problem Eq.(22), by

using similar algebraic methods.

4. MSOPPQ for Non-linear Schrödinger Equation

A gas of weakly interacting bosons at low temperature can be successfully described by

a mean-field theory provided most of the particles occupy the condensate mode. This

mode is a solution of a nonlinear Schödinger equation known as the Gross-Pitaevskii

equation (GPE):

− h̄2

2m
∇2Ψ + VΨ +

4πh̄2as
m
|Ψ|2Ψ = µΨ. (32)

This is the stationary form of (GPE), with eigenvalue µ being the chemical potential,

and the number of particles given by

N =
∫
|Ψ(r)|2 dr. (33)

The (positive) scattering length as specifies the interparticle interactions at the mean

field level and provides the magnitude of the non-linear density dependent term, and
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Momentum Space Orthogonal Polynomial Projection Quantization 9

V = V (r) is an external potential in which the condensate is trapped. In an elongated,

quasi-one-dimensional harmonic trap, as is replaced by an effective interaction strength

that depends on the scattering length and the transverse confinement. The 1D GPE

takes a simpler form, after appropriate scaling,

−d
2Ψ

dx2
+ x2Ψ + g|Ψ|2Ψ = EΨ with

∫
|Ψ(x)|2 dx = 1. (34)

These equations can only be solved numerically since no analytical solutions are known

[16]. For a detailed discussion about existence and stability of solutions for Eq.(34)

please see [17] and references therein. Considerable efforts have been made to find

appropriate approximations for this problem, see for example recent works [18, 19]. The

configuration space OPPQ approach will not work here because there is no moment

equation that can be derived for Eq. (34). However, MSOPPQ can be employed to give

an algebraic solution to Eq. (34) as shown below.

The recursions for coordinate space expansion Ψ(x) =
∑
j=0 cjx

j coefficients is

cj+2 = (cj−2 − Ecj + g
∑

j1+j2+j3=j

cj1cj2cj3)/[(j + 1)(j + 2)] (35)

with j ≥ 2 and c−2 = c−1 = 0. The triple summation is over all weak compositions

(j1,2,3 ≥ 0) of j into 3 parts.

The power moments of the Fourier space wave function Φ(k) can be obtained in

terms of Taylor expansion coefficients of Ψ(x) as

νp =
∫ ∞
−∞

Φ(k)kp dk =
√

2π(−i)pp!cp. (36)

In the limit of a gas on non-interacting particles, when g = 0, GPE is the equation

of a simple harmonic oscillator which motivates the choice of the reference function

T (k) = e−k
2/2, for which the orthogonal polynomials are determined by the Hermite

polynomials as

Qn(k) = 2−n/2Hn(k/
√

2). (37)

On the other hand, for strongly interacting gases the kinetic energy term in the

GPE can be ignored and the Thomas-Fermi ground state solution is obtained as

ΨTF (x) =

√
E − x2
g

, (38)

and corresponds to Fourier space Thomas-Fermi solution

ΦTF (k) =

√
πE

g

J1(k
√
E)

k
(39)

where J1 is Bessel function of index 1.

By using the representation (13) for the solution in momentum space, MSOPPQ

method requires that for a given truncation order N the expansion coefficient ΞN to be

zero. This condition is sufficient here because the ground state is even and c1 = 0. One

simple way to proceed is to chose a value for E and solve for the corresponding g and

c0 that result from ΞN = 0 and normalization condition.
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It is easy to see that the MSOPPQ condition has the form

ΞN = c0F(gc20) = 0 (40)

where F is a polynomial of order N/2 + 1. ΞN for odd orders is 0. By assuming that

the MSOPPQ series representation is truncated at the order N , then the normalization

condition is ∫ ∞
−∞
|Φ(k)|2 dk =

N−2∑
i,j=0

ΞiΞjΓij = c20Z(gc20) = 1, (41)

where the coefficients Γij =
∫
Qi(k)Qj(k)T 2(k) dk are easily calculated based on the

given set of orthogonal polynomials, and where Z is a polynomial. From this we obtain

that

g = gc20Z(gc20) (42)

Therefore, we can carry the calculation of the polynomial F with the assumption of

c0 = 1, solve for its roots Gk and obtain g as the smallest value of GkZ(Gk). The

corresponding solution for c0 is obtained as

c0 =

√
Gk

g
. (43)

Coefficients Ξn, with n < N , can then be calculated and the wave function in coordinate

space can be obtained after an inverse Fourier transform as:

Ψ(x) ≈ 1

qn

∑
n

Ξn

∑
j

q
(n)
j (−i)j d

jT (x)

dxj
. (44)

When the simple choice of reference function is T (x) = e−x
2/2 then

Ψ(x) =
∑
n

ΞnHn(x/
√

2)e−x
2/2. (45)

Figure 2 shows the ground state of GPE Eq. (34) obtained by using MSOPPQ. The

inset table shows the results of calculations, compared with reference results obtained by

Majorević [20]. The limit case of E = 1 corresponds to the linear case where g = 0. This

is obtained algebraically exact for N = 2. For the other ground state energy considered,

E = 10, 50 and 80, the corresponding non-linearity parameter g increases as expected. In

the same time, the wave function departs considerably from the ideal ground state of the

harmonic oscillator (black solid line), spreading over larger and larger regions due to the

increase of non-linear pressure. As expected, the agreement with semi-classical Thomas-

Fermi approximation becomes better as the non-linear term grows, specially in the center

of the trap, while big differences appear at its borders due to quantum tunneling. The

reported calculation of g could not be improved by increasing the truncation order,

probably, because the reference function does not reproduce correctly the asymptotic

form of the wave function for x → ∞. It is clear that the simple reference function

T (k) = e−k
2/2 decays too fast in comparison with GPE momentum space wave function,

for which an approximation is given by the Fourier transform of the Thomas-Fermi

solution Eq. (39).
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-10 -5 0 5 10
x

0

0.2

0.4

0.6

0.8

Ψ
(x

)

E=1 Thomas-Fermi
E=1 MSOPPQ
E=10 Thomas-Fermi
E=10 MSOPPQ
E=50 Thomas-Fermi
E=50 MSOPPQ
E=80 Thomas-Fermi
E=80 MSOPPQ

N

2

16

52

80

E

1

10

50

80

g

0

42.6252

472.361

953.656

g(ref)

0

41.6008

471.0779

    ----

Figure 2. Ground state solutions of GPE using MSOPPQ (solid lines) compared with

Thomas-Fermi approximation (dashed lines) for the 4 cases presented in the inset table,

where N is the truncation order, E is the energy considered and g is the calculated

value by the present method and g(ref) that was obtain in [20].

5. Conclusions

A new algebraic method MSOPPQ is introduced in momentum space to complement

the coordinate space OPPQ method. This method succeeds to achieve the same goal,

which is to get a representation for the wave function that reproduces exactly the local

analytical structure at the origin and preserve at the same time the required global

properties such as boundedness over the entire x-axis. Also, in keeping with OPPQ,

the computed energy converges exponentially with the truncation order N . However, in

contrast to OPPQ, the new method does not require a moment equation, and therefore it

can be applied for a larger class of problems, such as the non-linear Schrödinger equation.

As with OPPQ, the new method depends crucially on the choice of the reference function

and the knowledge of the leading asymptotic form, which in momentum space, may not

be as easy to obtain as in coordinate space.
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