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Chapter 1

EMPIRICAL DYNAMIC MODELING
AS A COMPONENT OF AN
INTRUSION DETECTION SYSTEM

David Crow, Scott Graham, Brett Borghetti, and Patrick Sweeney

Abstract  Modern cyber-physical systems require effective intrusion detection sys-
tems (IDSs) to ensure sufficient critical infrastructure protection. Before
developing such an IDS, one requires an understanding of the behav-
ior of the cyber-physical system and of the causality of its constituent
parts. Such an understanding allows one to characterize normal behav-
ior and, in turn, identify and report anomalous behavior. This research
explores a relatively new time series analysis technique, empirical dy-
namic modeling (EDM), which may contribute to this understanding
of a system. Specifically, we seek to determine whether this technique
can adequately describe the causality in a system and thus give insights
capable of serving as the foundation of a suitable IDS. Current research
efforts aim to develop or improve upon today’s IDSs; other efforts apply
time series analysis techniques to relevant fields or to limited, controlled
network attack scenarios. However, we have not identified in the litera-
ture any attempts to apply EDM to general-purpose IDS development.
Our research seeks to address this gap. Our findings indicate that EDM
may enable the understanding of a system required of an IDS architect.
We thus encourage further research into EDM applications to IDSs and
to cybersecurity in general.

Keywords: Cyber-physical systems, intrusion detection systems, causality,
time series analysis, empirical dynamic modeling

1. Introduction

Intrusion detection systems (IDSs) are one of the most common, mod-
ern methods to defend against cyber-physical system (CPS) attacks and
protect critical infrastructure. These systems monitor computer net-
works and report malicious activity to system administrators. In the
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CPS domain, an IDS can detect attackers attempting to modify or mis-
represent physical processes. Consider an automobile’s CPSs. If an
attacker intends to, say, cause the driver to speed and thus receive a
speeding ticket, the attacker may choose to inject packets detailing a
lower speed, which would in turn cause the speedometer to display in-
correct information. In this case, an effective IDS will notice that the
data for speed does not conform to the expected behavior indicated by
the data for the related physical processes (e.g., engine and wheel rota-
tional velocities, throttle position, fuel efficiency). In other words, the
IDS will notice that the speed readings are anomalous. As another ex-
ample, if an IDS knows that a substantial increase in an automobile’s
brake pressure likely precedes a relative decrease in velocity, the IDS can
assert that no change, a small change, or an increase in velocity (after
significant brake pressure) is anomalous. Of course, this requires an IDS
capable of determining expected behavior and identifying anomalies. To
design a capable IDS for a vulnerable CPS, IDS architects require the
following;:

1 Insight into the dynamics or patterns of a CPS, to include an un-
derstanding of the way in which some current system state enables
predictions concerning a future state;

2 An ample quantity of data obtained under normal operating con-
ditions to establish normal behavior;

3 A process to determine whether new traffic conforms to normal
behavior; and

4 An alert system to report to the administrator the traffic that does
not conform.

IDS architects can achieve (1) by obtaining either significant under-
standing of a CPS or sufficiently powerful computational resources. Of-
ten, the latter is infeasible: many CPSs are computationally limited by
available hardware or by standards and regulations. Modern automo-
biles, for example, utilize small packets and fairly simple hardware. For
this reason, the former is often more attainable. A solid understanding
of a system’s dynamics, like how one signal affects another or how some
current state predicts some future state—causality, in a word—allows
an architect to develop a mechanism to identify anomalous traffic. !
This research thus examines two different techniques to contribute to
an architect’s understanding of a system. The first, Granger causal-
ity, is a well-known, simple method for evaluating the causality between
two time series. The second, empirical dynamic modeling (EDM), is an
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emerging field capable of more sophisticated time series analysis. Our
research attempts to demonstrate a potential ability to use one or both
techniques as the first step towards an IDS.

To do so, we apply EDM to two distinct datasets. We generate the first
dataset using a simplistic model of the relationship between an automo-
bile’s steering wheel and the relative velocity of its two front wheels. Fur-
thermore, the Air Force Research Laboratory (AFRL) maintains a flight
simulator, the Avionics Vulnerability and Assessment System (AVAS),
which generates the second dataset used in this research. The simula-
tion computes various metrics, like airspeed, angle of attack, position,
heading, and wind angle; this research concerns the airplane’s airspeed,
altitude, and pitch. The steering and AVAS datasets represent a linear
system and a nonlinear one, respectively. The results of the EDM anal-
yses imply a possibility of using the technique to develop sophisticated
IDSs for nonlinear systems. For linear systems, EDM does not appear
to reveal any previously unknown, important dynamics.

The remainder of this report examines the research in detail. Section
2 explains necessary background information. Section 3 describes the
data and the analysis and evaluation tools. Section 4 presents the ex-
perimental results. Section 5 considers the implications of these results
and possible opportunities for future research.

2. Background

This section introduces background information necessary for suffi-
cient understanding of this work. It first describes CPSs and time series
data before explaining causality and discussing EDM, a technique for
nonlinear forecasting and causality analysis. We contend that this tech-
nique has potential as the basis for an effective IDS for CPSs. Finally,
the section examines related work and presents an argument for our
research.

2.1 Cyber-Physical Systems & Time Series Data

The Association for Computing Machinery Transactions on Cyber-
Physical Systems defines CPSs as follows:

“Cyber-Physical Systems ... has emerged as a unifying name for systems
where the cyber parts, i.e., the computing and communication parts,
and the physical parts are tightly integrated, both at the design time and
during operation. Such systems use computations and communication
deeply embedded in and interacting with physical processes to add new
capabilities to physical systems ... There is an emerging consensus that
new methodologies and tools need to be developed to support cyber-
physical systems.” [1]



A CPS can be represented by a model, but this model is typically
difficult to understand or replicate. 2 For this reason, one must analyze
the CPS’s output. Often, the output of CPS monitoring is time series
data representing the value of some process (or processes) over time.
One example of a time series in an aircraft is the propeller’s instan-
taneous revolutions per minute (RPM) over time, as measured by the
aircraft’s sensors. The National Institute of Standards and Technology
(NIST) says the following of time series analysis: “Time series analysis
accounts for the fact that data points taken over time may have an inter-
nal structure (such as autocorrelation, trend or seasonal variation) that
should be accounted for” [9]. Kotu and Deshpande contrast time series
analysis and forecasting: “Time series analysis is the process of extract-
ing meaningful non-trivial information and patterns from time series.
Time series forecasting is the process of predicting the future value of
time series data based on past observations and other inputs” [6]. Most
techniques for both analysis and forecasting require data stationarity
for the time series in question. Says NIST: “A stationary process has
the property that the mean, variance and autocorrelation structure do
not change over time ... a flat looking series, without trend, constant
variance over time, a constant autocorrelation structure over time and
no periodic fluctuations (seasonality)” [9].

Figure 1 presents examples of time series plots; panel (e) represents
a stationary time series. Although these are arbitrary plots, they suc-
cinctly represent a wide array of potential time series. Many of the time
series generated by an aircraft’s CPSs are non-stationary, so techniques
that require stationarity are not usually viable for these data. EDM
allows for non-stationary time series analysis and forecasting.

2.2 Empirical Dynamic Modeling

Floris Takens introduced the delay embedding theorem in 1981 [16].
Takens’ Theorem concerns mathematical attractors, where “an attrac-
tor is the value, or set of values, that a system settles toward over time”
[2]. EDM is an application of Takens’ Theorem. In Sugihara et al.’s
words, the field “is based on the mathematical theory of reconstruct-
ing system attractors from time series data” [15]. In practice, it allows
one to model nonlinear dynamic systems with observational time series
data. Figure 2 provides a summarized visual explanation of the main
ideas in Takens’ Theorem and in EDM. Specifically, panel (A) depicts a
Lorenz attractor® as a model of a dynamic system. As the image shows,
one can identify a time series for a given dimension by recording that
dimension’s observations over time. Panel (B) shows that a univari-
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Figure 1. Examples of time series plots. (a) Google stock price for 200 consecutive
days; (b) Annual number of [labor| strikes in the US; (¢) Annual price of a dozen
eggs in the US (constant dollars); (d) Monthly total of pigs slaughtered in Victoria,
Australia; (e) Annual total of lynx trapped in the McKenzie River district of north-
west Canada; (f) Monthly Australian electricity production. [5]

ate time series can be converted to a higher dimensional representation
by using time-lagged versions of itself as additional dimensions. EDM
calls the resulting manifold a shadow manifold. Takens showed that
the shadow manifold is diffecomorphic (maps one-to-one) to its original
attractor manifold M [16].

Sugihara et al. demonstrated that this diffeomorphic property be-
tween M and its shadow manifolds—one for each dimension—implies
that the shadow manifolds are diffeomorphic with respect to each other.
The opposite is also true. Thus, if two shadow manifolds are shown to be
diffeomorphic with respect to each other, one can assume they belong to
the same dynamic system. One can then use convergent cross-mapping
(CCM), a mathematical technique recently developed by Sugihara et al.,
to identify the presence of and quantify the causality between the two
original time series [14]. In short, CCM seeks to determine whether an
arbitrary point and its nearest neighbors in one shadow manifold can
accurately predict a point and its neighbors in another shadow mani-
fold. Figure 3 summarizes this concept. Sugihara et al. showed that
increasing the sample sizes for the shadow manifolds improves CCM’s
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Figure 2. “Empirical dynamic modeling: (A) Example Lorenz system. The attractor
manifold M is the set of states that the system progresses through time. Projection of
the system state from M to the coordinate axis X generates a time series. (B) Lags of
the time series X are used as coordinate axes to construct the shadow manifold Mx,
which is diffeomorphic (maps 1:1) to the original manifold M. The visual similarity
between Mx and M is apparent.” [15, 7]

predictive power, but they also showed that this predictive power con-
verges to some maximum as the sample sizes increase to infinity [16, 14].

2.3 Related Work

Our investigation of the current literature revealed no research into
EDM applications to automobile- or aircraft-generated time series or to
cybersecurity as a whole. Most applications of the techniques concern
economics or natural sciences; for example, the Sugihara Laboratory,
from which EDM originated, primarily applies the techniques to ecology.
We foresee EDM as a useful contribution to the cybersecurity domain,
and our research thus seeks to link the two in a way not yet found in
the literature.

3. Methodology

We utilize a relatively new statistical analysis tool to develop insights
into a system’s characteristics, including its nonlinearity, deterministic
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(%t Yt 24)

Figure 3. “Convergent cross mapping (CCM) tests for correspondence between
shadow manifolds. This example based on the canonical Lorenz system (a coupled
system in X, Y, and Z ...) shows the attractor manifold for the original system
(M) and two shadow manifolds, Mx and My, constructed using lagged-coordinate
embeddings of X and Y, respectively (lag = 7). Because X and Y are dynamically
coupled, points that are nearby on Mx ... will correspond temporally to points that
are nearby on My ... This enables us to estimate states across manifolds using Y to
estimate the state of X and vice versa using nearest neighbors ... With longer time
series, the shadow manifolds become denser and the neighborhoods (ellipses of nearest
neighbors) shrink, allowing more precise cross-map estimates” [19, 14]. The arrows
between the manifolds represent the diffeomorphic properties of the attractors.

chaos, and causality. This section discusses the nature and origins of the
experimental data. Additionally, the section describes the techniques
used to analyze the data.

3.1 Data

This research utilizes data from two simulated CPSs. The first simu-
lated dataset represents the effect of an automobile’s steering wheel angle
over time on the RPM measurements for the turning wheels. The sec-
ond dataset consists of captured nonlinear data generated by the AVAS,
an AFRL-developed flight simulator that employs real-world physics and
flight dynamics for research purposes. The steering dataset is considered
to be linear because the relationship between each pair of time series is
linear or nearly linear. Specifically, the relationship between the two
wheel RPMs is linear, and the relationships between the steering input
and each wheel RPM are almost linear.? Similarly, the AVAS dataset
is nonlinear because the relationships between the time series are non-
linear. The datasets allow us to evaluate the utility of both Granger
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causality and EDM when used to analyze linear systems and nonlin-
ear systems. Although simpler methods may enable effective analysis of
linear systems, many CPSs of interest are nonlinear.

3.1.1 Linear Data. To fully assess EDM, we construct a
dataset representative of a linear system. The variables describing the
steering wheel angle and RPMs of the turning wheels in a passenger
vehicle constitute such a system. We generate this time series with
Python 3.7 for a vehicle with the following characteristics: a 30-inch
wheel radius, including the tire; a 72-inch wheelbase; a 60-inch track; a
maximum steering wheel turning angle of 360 degrees; a steering ratio
of 8:1 (and thus a maximum wheel angle of 45 degrees); and a constant
forward speed of 25 miles per hour.

Under these assumptions, a sum of sines function loosely represents
some hypothetical driving scenario. That is, the Steering line in Figure
4 serves as a potential steering wheel angle time series, and we directly
compute the inside and outside wheel RPMs using Equations (1) and
(2), respectively. Note that, if the steering wheel angle § < 0, the left
wheel is the inside wheel; otherwise, the right wheel is to the inside.
Table 1 defines the variables used in the equations.

(=3 <
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Figure 4. Plots of the steering system time series.
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603\/b2 + (k+ btan (90 %))2

—_
r (bsec (90 - g) + \/b2 + (k—l—btan (90— %)) )

RPMoutside =

Table 1. Variable Definitions for the RPM Equations

Variable Meaning Defined Value
r wheel radius 15 inches
b wheelbase 12 inches
k track 60 inches
t steering ratio 8:1
s forward speed 25 miles per hour
0 current steering wheel angle not applicable

This steering system is rather rudimentary—it doesn’t account for
the physical properties of a real system, including the effects of other
relevant variables—but even its simplistic nature may allow us to draw
conclusions concerning EDM’s applications to linear CPSs. The empiri-
cal results shown in Figure 5 confirm that the time series from the model
are fairly linearly related.® The values of the variables cover significantly
different ranges. For this reason, we standardize all variables with R’s
scale function® to ensure each is equally important during analysis.

0 0 10
@ - o
© © ©
z H z
xo =) xo
= 00— - = 00—
£ EN £ N
2 @ B2
[ - [
© © ©
N N N
N 4 T T T T N T T T T N T T T T
226 253 280 308 335 -360 -180 0 180 360 -360 -180 0 180 360
Left RPM Steering Wheel Angle (Degrees) Steering Wheel Angle (Degrees)

Figure 5. Scatter plots demonstrating the relationship between each pair of variables
in the steering system.

3.1.2 Nonlinear Data. To create the second dataset, we
guided an AVAS-simulated aircraft through takeoff, low-altitude cruis-
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ing, and multiple shallow banked turns. Our data collection yielded
7,582 observations from a 14-minute flight. Each observation includes
eight different flying metrics and a timestamp relative to the start of the
simulation. The metrics are roll and pitch (each in radians),” altitude (in
feet), and airspeed, vertical velocity, and velocity in each of the three
coordinate axes (in feet per second). The roll and pitch values range
from -180° to 180°; altitude, airspeed, and the directional velocities are
all floating point values.®

As with the linear dataset, we z-scale the variables prior to analysis.
We then select a subset of the variables—airspeed, altitude, and pitch—
before conducting the analyses. Other subsets of the eight variables
likely exhibit the desired dynamics, but it is expected that these three
variables best demonstrate a tightly coupled system. Figure 6 presents
the three time series, prior to scaling, in one plot. Figure 7 clearly
illustrates that the system is highly nonlinear.

54
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31
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Figure 6. Plots of the selected AVAS time series.

3.2 EDM Techniques

Ye et al. suggest the following sequence of EDM techniques to best
interpret a dataset’s characteristics [19]:

1 Conduct nearest neighbor forecasting via simplex projection to
identify the embedding dimension E which maximizes the predic-
tion skill p [12];

2 Use simplex projection and E to determine whether the system
exhibits deterministic chaos;
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Figure 7. Scatter plots demonstrating the relationship between each pair of variables
in the AVAS data collection.

3 Employ sequential locally-weights global linear maps (S-maps) to
characterize any nonlinearity present in the data [13]; and

4 Utilize CCM to generate shadow manifolds, evaluate predictive
accuracy, and quantify causality [14].

In essence, “simplex projection is the process of iteratively selecting
[a point] Y; in a shadow manifold and b other points whose histories over
time ¢ are most similar to the currently selected point ... A simplex is
a generalization of a triangle or tetrahedron to an arbitrary number of
dimensions” [12, 11, 7]. One then uses the weighted average of the future
values of the b other points to make predictions about future values of
Y;. The difference between these predictions and the actual future values
gives a forecast skill p. By repeating this process with shadow manifolds
of different dimensionalities, one can identify the embedding dimension
E that optimizes p [3]. The (strong) Whitney embedding theorem says
the following [17]:

THEOREM 1 Any m-manifold of class C® (r > 1 finite or infinite) may
be imbedded [sic] by a reqular C"-map in E*™, and by such a map in a
one-one manner in E*mH1

In simpler terms, the theorem states that the embedding dimension
E for an attractor manifold has an upper bound of 2D + 1, where D is
the true dimension (the number of variables) of the system [11, 3]. One
can thus use simplex projection to definitively identify the optimal F in
a finite amount of time.

S-map projection is another iterative process, but it instead uses all
neighboring points to create linear regression vectors. By aggregating
these regression vectors, one approximates an n-dimensional spline. One
then compares this spline to the shadow manifold attractor to measure p
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[13, 7, 3]. When generating the regression estimates, a nonlinear tuning
parameter 6 weights the neighbors with respect to their distance to the
current focal point Y;. Finally, “if p is maximized when 6 = 0, then the
time series may be assumed to belong to a simple linear system instead
of a dynamic system” [13, 11, 3].

As Stone et al. claim, “This process provides insight into the true
dimensionality of the dynamic system responsible for generating [obser-
vational] data without requiring complete understanding of the system
itself” [11]. Accurate knowledge of E is a prerequisite to effectively ap-
plying CCM to multiple time series to detect causality. Alternatively, a
proper S-map analysis of time series relationships may indicate whether
these relationships belong to a simple linear system. If so, computation-
ally simpler methods, like Granger causality or auto-regressive linear
models, could replace the more complex CCM technique in detecting
causality [19, 13, 4]. Finally, knowledge of the dimensionality of a sys-
tem may assist in creating a high quality model of said system. Such a
model—and the results of a causality analysis—likely enables an effective
IDS for various CPSs.

To conduct this analysis, we use the Sugihara Laboratory’s rEDM
repository on GitHub. This codebase enables EDM analysis using the R
programming language. The codebase includes the following functions
(among others):

m simplex, which corresponds to the first and second EDM tech-
niques;

m s map, which corresponds to the third EDM technique; and

m ccm and ccmmeans, which correspond to the fourth EDM tech-
nique.

These functions, together with a few helper functions, facilitate ef-
fective EDM analysis. Section 4 depicts the results of this analysis and
Section 5 discusses the implications of these results. For the interested
reader, Rennie provides an in-depth description of EDM, to include the
mathematics behind simplex projection, S-map analysis, and CCM [10].

4. Results

This section presents the results of the EDM analyses for the two
datasets. Section 4.1 shows that, for a linear dataset, EDM does not
enable an effective causality analysis. Conversely, for nonlinear data,
Section 4.2 presents a more effective use of EDM.
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4.1 Linear Data

To effectively apply CCM to make predictions and quantify causality,
we require knowledge of the optimal embedding dimension E for each
time series in the system. By iteratively utilizing simplex projection
to quantify predictive accuracy at different values for F, we identify
the optimal value. Figure 8 illustrates the results of this process for
each steering system time series. The plots show that forecast skill, or
p,Y is maximized when E > 1. We thus let E = 2 for the remainder
of the EDM analysis techniques in this section because a lower dimen-
sionality reduces complexity and processing time. To be clear, letting
FE = 2 means the techniques construct a two-dimensional shadow man-
ifold, where each dimension is a time series lagged by some multiple of
7. When predicting steering wheel angle, for example, EDM constructs
a shadow manifold using steering wheel angle and one copy of steering
wheel angle, where the copy is lagged by 7. For this dataset, we let 7
equal one second.

Steering Wheel Angle Left Wheel RPM Right Wheel RPM
¢ ¢ ¢« ¢ .« ¢ .« < I ¢ ¢ ¢« ¢ e+ ¢ . . I ¢ ¢ e« ¢ e+ ¢ e+ <
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S o =] =
w
o~ o~ o~
o o7l o7l
o] o] =3
=] =) =)
T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T
12 3 4 5 6 7 8 9 10 12 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
Embedding Dimension

Figure 8. Plots illustrating the optimal embedding dimension for each steering sys-
tem time series.

If we keep E constant and vary the time to prediction tp, simplex
projection enables an analysis of a system’s deterministic chaos. Figure
9 shows exactly this. Specifically, the figure shows how p decreases as tp
increases for each of the three time series. In other words, predictions
further in the future are much worse than those closer in time, which
indicates chaotic behavior for the three variables. This is due to the
nature of driving: without knowledge of the route, it is difficult, if not
impossible, to predict a vehicle’s steering wheel angle at a given time.
The simulated data adheres to this interpretation of driving behavior.
However, the difference in values for p at tp = 0 and at tp = 10 is only
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about 0.0008; thus, chaotic behavior in this system is minuscule. EDM
does not enable a deeper analysis of the system’s chaos.
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Figure 9. Plots illustrating the deterministic chaos present in each steering system
time series.

S-map analysis fits local linear maps to the system to describe its non-
linearity. This is different from simplex projection, which analyzes each
point’s nearest neighbors. By varying the nonlinearity tuning parameter
# in the S-map function call and plotting against p, we obtain the plots
shown in Figure 10. When 6 = 0, S-map equally weights all points; as
# increases, the function more heavily weights points close to the point
under analysis. Thus, when @ is higher, the function assumes more non-
linearity in the system. For all three, p is greatest when 6 is high, which
indicates the presence of nonlinearity in each time series, but the range
of y-values is so slim as to make these characteristics negligible. For a
linear system such as this, it seems that EDM’s nonlinearity analysis is
not particularly useful.

EDM also enables next-point predictions. Figure 11 overlays these
predictions on each time series. Clearly, these predictions are extremely
accurate, which indicates that the three variables do not change signifi-
cantly from one observation to the next. Each plot also shows the pre-
diction variance by way of a shaded polygon, but the variance is so low
that the polygons are all-but-invisible. Remember that Figure 9 already
implied this: when tp is small, p is very high. Additionally, we devised
a naive prediction model. This model simply predicts that the point at
time ¢ + 1 has the same value as the point at time ¢. In other words, the
simple model predicts no change for the next value. Figure 12 depicts
the prediction errors (residuals) for both models; the majority of these
errors are small, especially for EDM. Table 2 numerically compares the
root-mean-square error (RMSE) 0 between the naive model and EDM.
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Figure 10. Plots illustrating the nonlinearity of each steering system time series.

As the table illustrates, EDM outperforms the baseline predictor for
each time series. These time series are incapable of large, instantaneous
changes, so accurately predicting the next point is not very impressive
and is not often useful in practical applications. However, it could still
assist in IDSs of sufficiently low complexity. Of course, methods other
than EDM may also suffice for linear systems.
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Figure 11. Plots illustrating the predictions for each steering system time series.

Table 2. Root Mean Squared Error for Each Steering System Time Series
Naive Prediction RMSE EDM Prediction RMSE

Time Series

Steering wheel angle 0.009424 0.003351
Left wheel RPM 0.005742 0.003893
Right wheel RPM 0.005742 0.003893
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Figure 13 depicts inter-variable dynamics within the system. The
figure plots cross-map skill p!! against library size—the number of points
used to compute p—for each pair of variables. Each plot contains two
lines, one for X xmap Y and one for Y xmap X. Here, X xmap Y refers
to the CCM analysis technique which uses the shadow manifold of X to
forecast the shadow manifold of Y. For a given library size, the resulting
value for p indicates this predictive capability. The three plots show that
p is equivalent across library sizes and in both directions for every pair
of time series. This means that steering information is encoded in the
RPM data and that RPM information is similarly encoded in the steering
data, which in turn implies an expected causal effect in both directions.
Unfortunately, it appears that EDM does not enable insight concerning
pairwise causality for this dataset.
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Figure 12. Plots illustrating the causality between each pair of steering system time
series.
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Finally, Figure 14 depicts the system’s causality through time. The
lines again represent the results of using X to forecast Y, but we now
plot p against tp. As previous Sugihara Lab researcher Hao Ye writes,
“Note here that negative values of tp ... indicate that past values of Y are
best cross-mapped from the reconstructed state of X. This suggests a
dynamical signal that appears first in Y and later in X, and is consistent
with Y causing X” [18]. When tp is positive, the opposite holds. For this
system, regardless of ¢p and of the variables in question, p &~ 1. Thus,
according to EDM, each variable has a strong causal effect on every
other variable regardless of the time to prediction. This is unlikely, and
it supports the claim that EDM does not appear to enable sophisticated
analysis of the system’s causality.

Y causes X X causes Y
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Figure 13. Plots illustrating predictive capability by analyzing the causality between
each pair of selected steering system time series.

4.2 Nonlinear Data

For each of the three AVAS time series, Figure 15 presents the forecast
skill p for various embedding dimensions F. Visually, differences in p are
minuscule, but the optimal embedding dimension is two for each series.
We thus let £ = 2 for the remainder of the EDM analysis techniques
in this section. Additionally, we again let 7 equal the time between two
observations in a given time series: one second.

Figure 16 plots the forecast skill p against the time to prediction tp
to illustrate the system’s deterministic chaos. For each time series, the
figure shows that predictions further in the future are much less accurate
than earlier predictions. The respective y-scales show that this effect is
strongest for pitch and weakest for altitude. Regardless, this is evidence
of chaotic behavior for all three variables.
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Figure 15. Plots illustrating the deterministic chaos present in each selected AVAS
time series.

As before, we plot p against 0 to characterize each variable’s nonlin-
earity. Figure 17 shows these plots. For airspeed and pitch, the figure
shows that p is greatest when the function assumes the most nonlin-
earity; this is itself indicative of nonlinear dynamics. For altitude, the
S-map analysis implies the absence of nonlinear dynamics in the time
series, but it is important to note that the change in p—for all three
plots—is extremely slight regardless of . For this reason, we cannot
definitively claim the presence or absence of nonlinear dynamics.

Figure 18 presents the next-point predictions given by EDM for each
time series. Unsurprisingly, the variance in the predictions—as shown
by the nearly imperceptible shaded polygon—is slight. As Figure 16
strongly indicated, none of the variables change significantly between a
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Figure 16. Plots illustrating the nonlinearity of each selected AVAS time series.

pair of observations. Figure 19, which depicts the prediction errors, con-
firms that EDM’s predictions are highly accurate, and it also confirms
that EDM again outperforms the simple model. Table 3 presents the
RMSEs for both models. It is clear that EDM vastly outperforms the
baseline model for two of the three time series; although the simple pre-
dictor performs better for pitch, the difference in RMSEs is insignificant.
It is once again possible that even these short-term predictions could as-
sist in IDS development. However, it is important to note an obvious
limitation of EDM predictions: the technique cannot foresee values not
contained in the library. This explains the large outlier predictions.
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Figure 17. Plots illustrating the predictions for each selected AVAS time series.

Figure 20 depicts cross-map skill for each pair of time series. The
leftmost plot shows that airspeed’s manifold can effectively forecast al-
titude’s but that the opposite relationship is noticeably weaker. The
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Figure 18. Plots illustrating the prediction error for each selected AVAS time series
for both the EDM predictor and the naive predictor.

Table 3. Root Mean Squared Error for Each Selected AVAS Time Series
Time Series Naive Prediction RMSE EDM Prediction RMSE

Airspeed 3.907005 0.070161
Altitude 18.192201 0.001535
Pitch 0.013749 0.019748

middle plot shows that the difference in cross-map skill between airspeed
xmap pitch and pitch xmap airspeed decreases as library size increases.
The rightmost plot shows a more extreme case of this: above a certain
library size, cross-map skill. In all cases, the results indicate diminishing
returns in improving p by increasing library size, but it is still possible
that they enable analysis vital to better IDS design.

The last figure, Figure 21, plots cross-map skill against time to pre-
diction. Consider for example airspeed xmap pitch. When tp is slightly
less than zero, p is maximized; this implies that airspeed best predicts
pitch when lagged by about one second. In other words, pitch strongly
affects airspeed after one second. This is an expected behavior. When
tp is positive, p quickly decreases and thus we assert that airspeed does
not have a strong causal effect on pitch. This too is consistent with the
standard interpretation of an airplane’s mechanics.

5. Conclusions

The AVAS, while useful for this research, is limited in scope. Future
researchers who wish to affirm the conclusions found here should gener-
ate data with an extensively tested simulator, or they should obtain real
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Figure 19. Plots illustrating the causality between each pair of selected AVAS time
series.
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Figure 20. Plots illustrating predictive capability by analyzing the causality between
each pair of selected AVAS time series.

data from real aircraft. In the same vein, the simulated linear system is
elementary and wanting for more real-world characteristics. Regardless,
the results presented in Section 4 suggest two primary findings:

1 Although EDM can quantify behaviors present in linear systems,
the results are often limited and so are not likely to aid in the
development of IDSs.

2 For nonlinear systems, EDM is an easy-to-use suite of tools capable
of evoking detailed insights that may assist in IDS design.

Although (1) implies that the analysis techniques explored here are
unsuitable for linear systems, CPSs are often nonlinear. It is impor-
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tant to note, however, that our limited linear system is likely not fully
representative of a real-world linear system. For this reason, future re-
searchers may wish to verify the applicability of the first two conclusions
to a robust linear system.

Concerning (2), we assert that the analysis of a nonlinear system
afforded by EDM successfully enables the understanding required by
the first step towards an IDS. Section 4’s results demonstrate an ability
to effectively quantify a nonlinear system’s causality, and this in turn
enables better system insight for IDS architects. However, note that,
although this research demonstrates the potential of EDM, we cannot
realize its true value without larger, more realistic, and more complex
datasets and without demonstrated success on a wider range of critical
CPSs. Future work should thus address these limitations as well as
the remaining steps towards an IDS—mnamely, obtaining quality data,
identifying whether new traffic conforms to the patterns exhibited by
the data, and creating a system to notify the administrator when the
traffic does not. Still, we believe EDM to be a powerful, emerging tool
relevant to critical infrastructure protection, and we strongly suggest
further research into its applications to IDSs and beyond.

Disclaimer

The views expressed in this document are those of the authors and
do not reflect the official policy or position of the United States Air
Force, the United States Department of Defense, or the United States
Government. This work is approved for public release under case number
88ABW-2020-049.

Notes

1. Assuming the architect has an ample quantity of normal data.

2. EDM attempts to give insight into a CPS’s model.

3. The Lorenz attractor is a set of solutions to the Lorenz system, a system of ordinary
differential equations first studied by Edward Lorenz in 1963 [8].

4. That is, the latter two relationships are linear for steering wheel angles of relatively
small magnitude but grow in nonlinearity as the steering wheel angle’s magnitude increases.

5. The somewhat nonlinear behavior between either wheel and the steering wheel is due
to the mechanics of a standard automobile’s Ackermann steering mechanism.

6. For some time series X, the function z-scales X by subtracting its mean and then
dividing it by its standard deviation.

7. We exclude yaw because, in AVAS, yaw is simply a measurement of the plane’s heading
relative to north. In other words, it is not a characteristic of the plane’s dynamics.

8. Airspeed and altitude are both nonnegative.

9. Forecast skill is a measure of the ability to forecast future values of a given time series.

10. We use RMSE to heavily penalize large mispredictions; such errors would strongly
affect an IDS’s performance.
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11. Cross-map skill quantifies the ability to use one shadow manifold to identify values in
another.
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