
Air Force Institute of Technology Air Force Institute of Technology 

AFIT Scholar AFIT Scholar 

Faculty Publications 

10-2014 

Machine Learning Nuclear Detonation Features Machine Learning Nuclear Detonation Features 

Daniel T. Schmitt 

Gilbert L. Peterson 
Air Force Institute of Technology 

Follow this and additional works at: https://scholar.afit.edu/facpub 

 Part of the Artificial Intelligence and Robotics Commons, and the Signal Processing Commons 

Recommended Citation Recommended Citation 
Schmitt, D. T., & Peterson, G. L. (2014). Machine learning nuclear detonation features. 2014 IEEE Applied 
Imagery Pattern Recognition Workshop (AIPR), 1–7. https://doi.org/10.1109/AIPR.2014.7041936 

This Conference Proceeding is brought to you for free and open access by AFIT Scholar. It has been accepted for 
inclusion in Faculty Publications by an authorized administrator of AFIT Scholar. For more information, please 
contact richard.mansfield@afit.edu. 

https://scholar.afit.edu/
https://scholar.afit.edu/facpub
https://scholar.afit.edu/facpub?utm_source=scholar.afit.edu%2Ffacpub%2F1215&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/143?utm_source=scholar.afit.edu%2Ffacpub%2F1215&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/275?utm_source=scholar.afit.edu%2Ffacpub%2F1215&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:richard.mansfield@afit.edu


MACHINE LEARNING NUCLEAR DETONATION FEATURES
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ABSTRACT

Nuclear explosion yield estimation equations based on a 3D
model of the explosion volume will have a lower uncertainty
than radius based estimation. To accurately collect data for
a volume model of atmospheric explosions requires building
a 3D representation from 2D images. The majority of 3D
reconstruction algorithms use the SIFT (scale-invariant fea-
ture transform) feature detection algorithm which works best
on feature-rich objects with continuous angular collections.
These assumptions are different from the archive of nuclear
explosions that have only 3 points of view. This paper reduces
300 dimensions derived from an image based on Fourier anal-
ysis and five edge detection algorithms to a manageable num-
ber to detect hotspots that may be used to correlate videos of
different viewpoints for 3D reconstruction. Furthermore, ex-
periments test whether histogram equalization improves de-
tection of these features using four kernel sizes passed over
these features. Dimension reduction using principal compo-
nents analysis (PCA), forward subset selection, ReliefF, and
FCBF (Fast Correlation-Based Filter) are combined with a
Mahalanobis distance classifiers to find the best combination
of dimensions, kernel size, and filtering to detect the hotspots.
Results indicate that hotspots can be detected with hit rates of
90% and false alarms ¡ 1%.

Index Terms— Dimensionality Reduction, Feature De-
tection, Classification

1. INTRODUCTION

During the 1950s and 1960s, the United States conducted and
filmed over 200 atmospheric nuclear tests. In the past few
years, for preservation purposes, these films are being digi-
tized [1] by the Lawrence Livermore National Labs, allowing
physicists and computer vision professionals the opportunity
to revalidate fundamental nuclear explosion models. One goal
of the community is to reduce the error in estimating the yield.

∗The views expressed in this paper are those of the authors, and do not
reflect the official policy or position of the United States Air Force, Depart-
ment of Defense, or the U.S. Government. This document has been approved
for public release. U.S. Government work not protected by U.S. copyright.

The error can be reduced significantly by transitioning from a
radius-based model to a volume-based model. Unfortunately,
no 3D representations exist for atmospheric nuclear detona-
tions, and their testing is now prohibited by treaty. The aim
of this paper is to explore a method that could be applied to
the past nuclear detonations recorded in the early nuclear age,
then 3D representations could be built and yield models im-
proved.

3D reconstruction is a used in computer vision to build
3D models from 2D representations. 3D reconstructions have
been built from large collections of photographs [2]. 3D mod-
els have also been built from continuous video of a structure
using a technique know as structure from motion [3]. Both of
these models use scale-invariant feature transform (SIFT) [4]
as their method for feature detection. SIFT has become the
defacto-standard for image features however, to work well it
needs continuous angular coverage. Large gaps in coverage
make it difficult and sometimes impossible for features to cor-
relate from different viewpoints. Such is the case with the nu-
clear detonation (NUDET) videos. Videos are separated by
70-80 degrees in some collections extending beyond the ca-
pabilities of SIFT feature matching. As set of features needs
to be defined for the NUDETs that can be repeated and used
for all stages of the explosion, and correlate between wide
angular collections of 70-85 degrees.

One possible feature that could be used in correlating
images together is known in the community as “hotspots.”
Shown in Fig. 1 they are spots in the explosion that are be-
lieved to be debris of the bomb casing. These hotspots exist
all over the face of the detonation and their size, orientation,
and collective pattern could potentially be used as a feature
used correlate and synthesize multiple frames from the same
or different viewpoints. To detect the hotspots, 300 features
will be defined and data extracted on a collection of pixels
from the image. Four kernel sizes will be tested, along with
image filtering, dimensionality reduction algorithms and a
classifier to learn which features are most effective in de-
tecting hotspots. The top features will then be used on other
images to determine how effective the features and classifier
are in detecting hotspots.



Fig. 1: Tesla explosion [1] with some “hotspots” identified.

The remainder of this paper is organized as follows. Sec. 2
discusses the background of the NUDET films and the dimen-
sionality reduction techniques. Then, Sec. 3 discusses how
the experiment is set up. Sec. 4 presents the results and Sec. 5
is the conclusion and future work.

2. BACKGROUND

2.1. Dimensionality Reduction

Dimensionality reduction is the process of reducing a dataset
to its most important features to detect a specific item or ob-
ject. Generically, when combined with a classifier it can be
used to classify objects in one of several types, however in
its simplest form it can be used to detect the presence or ab-
sence of an object. There are two kinds of dimensionality
reduction, feature selection and feature extraction. Feature
selection is interested in reducing the set of features from an
already given set. Feature extraction is interested in finding a
new set of dimensions through combinations of the old fea-
ture set [5]. Two feature selection techniques, forward subset
selection and ReliefF, and one feature extraction technique,
principal component analysis (PCA), will be used in reducing
dimensionality in detecting the hotspot features.

2.1.1. Forward Subset Selection

Subset selection is focused on finding the best subsets of a set
of features. Forward subset selection does this by incremen-
tally adding features and measuring the amount of error that

is decreased by adding that feature. Each feature is added,
one at a time, and the one that decreases the error the most
is kept for future iterations [5]. The drawbacks of using for-
ward subset selection is that, because of its Greedy nature, it
is not guaranteed to find the optimal subset, only that each
feature that’s added is the next best single feature. It also has
computation time of O(d2) for d dimensions.

2.1.2. ReliefF

ReliefF [6] is a special case of Relief algorithm that is a super-
vised learning feature selection technique that ranks features
for most relevant to least relevant. It does this by randomly
picking points and measuring the nearest in-class and out-of-
class distances. It then calculates a weighting factor for the
features to determine which have the greatest weight. Reli-
efF improves on the Relief algorithm by adding a k-nearest
neighbors to the selection reducing the effect of noise [6].

2.1.3. Principal Components Analysis (PCA)

Principal components analysis is an unsupervised method of
determining which combinations of features accounts for the
greatest variance of data. Different than the last two feature
selection techniques, this feature extraction technique seeks
to project all the features on a new set of features that are de-
signed to capture the greatest amount of variance in the orig-
inal set [5].

2.2. Histogram Equalization

Histogram equalization [7] is a process of transforming an im-
age by spreading out the histogram of the pixel intensities of
the image in order to maximize how diverse the pixel inten-
sities are. It can be used to prepare an image prior to feature
detection to ensure several images meet similar contrast lev-
els. Referring to Fig. 2, the histogram of the original pentagon
image [8] is centered in the middle of the 256 gray-scale spec-
trum. By running a histogram equalization algorithm on the
image, the spectrum is spread wider. The result in the image
is greater contrast in the coloring. A greater contrast in an im-
age is often beneficial in detecting features because it widens
the distance from the pixel values which aids in detecting the
distances between those pixel values. It also standardizes that
images that are input into the detector reducing the error po-
tential caused by overly dark or light images.

3. EXPERIMENTAL DESIGN

The design of the experiment is set up to determine whether
a supervised learning tool like dimensionality reduction is ef-
fective in detecting hotspots in the NUDETs. Furthermore, if
it is effective, the experiment determines what combinations
of parameters and features produce the best results.



Fig. 2: Histogram equalization applied to a sample image [8].

3.1. Nuclear hotspot Detector

Fig. 3 shows a block diagram for the system that is designed to
detect hotspots in a NUDET image aptly named the NUDET
Hotspot Detector (NHD). Each of the parameters discussed
in this algorithm synopsis is described in detail in Sec. 3.3.
The NHD is broken into two primary parts: the learner, and
the detector. The learner’s function is to use the truth infor-
mation and dimensionality reduction algorithms to determine
which features are best for the detector to use. The learner
takes an image in and applies a filter to the image. Iterating
through each pixel in the image, the feature extractor extracts
300 features (see Sec. 3.5) from the surrounding pixels based
on the kernel size. It then applies a dimensionality reduction
algorithm to the features to determine what the most relevant
features are. Using the most relevant features, a Mahalanobis-
based Classifier determines if the pixel in question is a hotspot
or not. Lastly, the detected pixels are clustered into neighbor-
ing detected pixels to create the list of hotspots with corre-
sponding locations and size. When the learner is complete,
the best features are then used to be the basis of the detector
to detect the hotspots. The detector then runs similar to the
learner without the dimensionality reduction. It uses the di-
mensionality reductions recommended features to determine
which pixels have hotspots in them.

3.2. Inputs

Along the left side of the block diagram (Fig. 3) are the inputs,
which are the subject image and a human interpretation of
where hotspots exist in the image (i.e truth data). The truth
data is used initially in the dimensionality reduction to “learn”
which features are the best features to use in detection. Later,
in validation and testing, it is used to determine whether a
detection is a true positive or false positive.

Fig. 3: Block Diagram for hotspot Detector

Table 1: Kernel sizes tested

Kernel Size Sub Kernel Size Num. Sub Kernels
7x7 1x1 49

15x15 3x3 25
21x21 3x3 49
25x25 5x5 25

3.3. Parameters

Along the top of the block diagram (Fig. 3) are the parame-
ters that will be varied in the experiment. The kernel is the
size of sub image that will be used. In exploration of the
data, it appeared that hotspot size ranged from 5x5 pixels to
14x16 pixels in size. To accommodate the varied size ker-
nels of 7x7, 15x15, 21x21, and 25x25 pixels were defined.
The sub-kernel size defined the size of subsections within the
kernel. Sub-kernel sizes included 1x1 pixels, 3x3 pixel, and
5x5 pixels related to the kernel size. These are shown in Ta-
ble 1. The combination of the kernel and the sub-kernel sizes
creates a patchwork of sub-kernels that are used to define fea-
tures (see Sec. 3.5). The image filter parameter is whether
preprocessing is used to modify the image prior to feature ex-
traction. Images were either preprocessed with a histogram
equalization algorithm or were not filtered. The last parame-
ter is which dimensionality reduction algorithm was used to
select the best features for classification. Four dimensionality
reduction algorithms were tested: principal component anal-
ysis (PCA), forward subset selection, ReliefF, and FCBF(Fast
Correlation-Based Filter).

3.4. Outputs

The outputs of the NSD include whether a detection occurred,
at what X and Y pixel, and the total clustered size of the de-
tection (in pixels).



Table 2: Number of features per method

Method Grouping Number of Features
Avg, Min, Max Pixel Values 43

Entropy 12
Prewitt Edge Detection 38
Sobel Edge Detection 38

Zero-cross Edge Detection 38
Canny Edge Detection 38
Gradient X direction 38
Gradient Y direction 38

2D Fourier Transform 17

3.5. Features

Features were defined based on the pixel intensity within a
kernel-sized patch of pixels. The goal was to use a variety of
methods that would be helpful in detecting hotspots as well as
avoiding false detections. Features were grouped by primary
method of data source to include edge detection algorithms,
the 2D Fourier Transform, entropy, gradient and sub-kernel
pixel intensities. A breakout of the number of features sum-
marized by method is shown in Table 2. Since the algorithm
needed to work in several stages of the detonation, it was be-
lieved that sub-kernel patches would need to be compared to
one another. As a result, a series of differencing schemes were
defined to compare sub-kernel patches within a kernel. An
example of schemes that were used is shown in Fig. 4. Com-
paring Table 2 and Fig. 4 it can be noted that the same 38
schemes are used for different edge detections and gradient
values. Those same 38 schemes are also a subset of the 43
that are used in the average pixel values.

3.6. Workload

Images from the Tesla detonation [1] were used for the work-
load. Images were chosen from 3 different points of view at 3
different stages of the explosion (early, middle, and late). The
first point of view was used to learn, the second to validate
the learning, and the last to test and report results.

4. RESULTS

Early in testing it was apparent that the 7x7 kernel size was
significantly under-performing with regard to maximizing
true detections and minimizing false detections when com-
pared the other three kernels, as a result it was removed from
testing early on. This makes sense because it is difficult to
detect a 14x16 pixel sized hotspot when only looking at a 7x7
pixel subset of it. Also, FCBF results were discarded. While
the speed of FCBF was fast (several seconds), the result was
only one or two features which was deemed to be too few to
apply to validation and testing data sets.

Fig. 4: Four examples of sub-kernel schemes. The 5x5 grid
represents 25 sub-kernels for a 25x25 or 15x15 kernel. In the
25x25 case, each square represents a 5x5 pixel area, while in
the 15x15 case each square is a 3x3 pixel area. An averaging
feature value example would be, averaging the green pixels
and subtracted them from an average of the blue pixels. A
min/max feature example would take an average of the max
of the green sub-kernels minus an average of the min of the
blue pixels.

4.1. Best Features

Fig. 5 shows the top few features according to the sequen-
tial forward search algorithm. These results are a rough con-
glomerate of a combination of the six kernel-filter combina-
tion results (15x15, 21x21, 25x25 kernels crossed with his-
togram equalization or not). The top four showed commonal-
ity amongst the results identifying the feature in the top two
features in at least two different kernels. These results gen-
erally make sense for the type of object that we’re looking to
detect. We would expect a differencing between the center
and edges to rank high and they did.

The results of the ReliefF feature selection were very dif-
ferent than the forward subset selection. It took until the 5th
feature in sequential forward subset selection with any kernel
to match a feature in any kernel in ReliefF (4th feature). Fig. 6
shows the top features that ReliefF found. Again, different
that the forward subset selection, there was more consensus
amongst the different kernels as to which features were best
according to ReliefF. The top 8 features were repeated 6 to 2
times within the top 4 results of a kernel-filter result set. The
top feature, the center pixel of the 2D Fourier transform was
repeated in the top 3 features of all kernels. Interpreting the
results, the top 5 features make sense because they’re sym-
metric both vertically and horizontally, the next several fea-
tures do not seem to make sense as those particular features



(a) #1:Avg(Green)-
Avg(Blue)

(b) #2:Avg(Green)-
Avg(Blue)

(c) #3:Avg(Green)-
Avg(Blue)

(d) #4:Max(Entropy
sub-kernels)

(e) #5:Avg(Green)-
Avg(Blue)

(f) #6:Avg(Max(Gr.))-
Avg(Min(Bl.))

(g) #7:Avg(Gr.
Ent)-Avg(Bl. Ent)

(h) #8:Avg(Entropy
sub-kernels)

(i) #9:Avg(Gr.
Ent)-Avg(Bl. Ent)

Fig. 5: Overall best features according to sequential forward
subset

were designed to detect other kinds of objects in the image.

4.2. Best Algorithms and Kernels

Fig. 7 shows a summary the hit rate, while Fig. 8 shows a
summary of precision and Fig. 9 shows false alarms for all
algorithms and kernels tested. Hit rate showed a good spread
of capabilities with sequential forward subset (SFS) gener-
ally being on top. False alarm rates were very low because
of a high number of true negative detections influencing the
calculation. ReliefF showed higher precision than most other
algorithms. These numbers alone do not tell the full story
however.

One obstacle that needed to be overcome to evaluate the
effectiveness of the learner and detector was reconciling the
truth data. The truth data was designed with a human pick-
ing out the center pixel of a hotspot, however, the detector
detected the entire hotspot. The results were good and as ex-
pected, but the detections needed to be clustered in order to
accurately calculate detection probabilities. The effect of the
impact of clustering is demonstrated in Fig. 10. In addition,
there are some clusters that are rather large (500-1000 pixel

(a) #1:Center pixel of
2D FFT

(b) #2:Max(Gr.)-
Avg(Min(Bl.)

(c)
#3:Avg(Max(Gr.))-

Avg(Min(Bl.))

(d) #4:Avg(Blue)
(e) #5:Max(Gr.)-
Avg(Min(Bl.))

(f) #6:Avg(Green))-
Avg(Blue)

(g) #7:Avg(Green)-
Avg(Blue)

(h) #8:Avg(Green)-
Avg(Blue)

(i) #9:Avg(Green)-
Avg(Blue)

Fig. 6: Overall best features according to ReliefF

area) that need to be rejected, as well as small hotspots (less
than 5 pixels) that also need to be rejected. This combination
of clustering and rejecting large clusters appears to work best
with SFS.

ReliefF results differ greatly from SFS. Fig. 11 shows the
unclustered results of ReliefF on a 25x25 kernel with the top
3 features. Fig. 11 shows that the algorithm did not success-
fully detect individual hotspots, instead it detected the outer
region of the explosion. This is also the reason why ReliefF
dominates the precision results (see Fig. 8)

PCA results show an improvement in both hit rate (Fig. 7)
and precision (Fig. 8) as more features are used. This makes
sense for PCA as each additional feature that is added is a
finer tuning of the previous features. Comparing 12 features
with 24 features, while the 24 feature PCA results have higher
hit rate and precision than 12 features, it is possible that it
might fall victim to overtraining when applied in a larger
scale. The results also show that PCA applied to a histogram
equalized 21x21 kernel performs well. A summary of what
is considered to be the top performing algorithms is shown in
Table 3. A summary of the runtime performance is shown in
Table 4.



Fig. 7: A plot of measured hit rate results in detecting hotspots
with all algorithms attempted, kernel size, and increasing num-
ber of features. In general, the SFS algorithms performed best,
with PCA algorithms improving as components were added.

Fig. 8: A plot of measured precision results in detecting
hotspots with all algorithms attempted, kernel size, and increas-
ing number of features.

Table 3: Summary of top performing algorithms

Alg. Kernel feat. Hit Rate Prec. F.A. Rate
SFS 15x15 3 97.3% 3.95% 0.59%
SFS 25x25 3 97.3% 5.5% 0.41%
PCA 25x25 hist 12 86.49% 14.68% 0.11%
PCA 21x21 hist 5 89.19% 10.25% 0.21%
PCA 21x21 hist 25 89.19% 29.73% 0.047%

Fig. 9: A plot of false alarm results in detecting hotspots with
all algorithms attempted, kernel size, and increasing number of
features.

(a) without clustering (b) with clustering

Fig. 10: A comparison of truth clustering effects on the results
of SFS 25x25. Red represents pixels that are true positives.
Light green are pixels that are false positives. Without clus-
tering, the left figure has true positives (red dots) surrounded
by false positives that is corrected in the right figure.

Table 4: Runtime of algorithms

Algorithm Avg. Run time per image
Feature Extraction 5.49 hrs

PCA 63 sec
SFS 8.1 hrs

ReliefF 33.2 hrs
Histogram equalization 17 sec

Weighing all combinations of kernels, histogram equal-
ization and dimension reduction algorithms there is no clear
top performer, but there is a group of good performers and bad
performers. Bad performers include the 7x7 kernel, and the
reliefF algorithm for this domain. Good performers include
15x15 and 25x25 kernels for SFS, and histogram equalization
paired with PCA for 21x21 and 25x25 kernels. Referring to



Fig. 11: Results of detections on for ReliefF, 25x25 kernel,
top 3 features plotted on an image. Red represents pixels that
are true positives (visible inside the light green band). Light
green are pixels that are false positives. Clustering turns all the
false positives into one large true positive around the exterior
of the explosion, and misses true positives in the center of the
explosion.

(a) PCA 12 features (b) PCA 24 features

Fig. 12: A comparison of truth clustering effects on the re-
sults of PCA 25x25 kernel with histogram equalization. Red
represents pixels that are true positives. Light green are pixels
that are false positives.

Table 4, PCA was clearly the fastest algorithm of the dimen-
sion reduction algorithms, with SFS next and finally ReliefF.

5. CONCLUSIONS AND FUTURE WORK

In this paper, several combinations of kernels, histogram
equalization, and dimension reduction techniques were tested
to determine their performance in detecting hotspots in nu-
clear images. Overall, PCA was the fastest while also main-
taining a 86-89% hit rate, 10-30% precision rates, and 0.047-
0.11% false alarm rates by applying a histogram equalization
filter. SFS, while not performing as quickly as PCA also had
97.3% hit rate with a 0.5% false alarm rate.

For future work, it will be investigated whether these re-

sults extend to other features of interest in the explosion like
subspheres and cone-shaped protrusions. The results of this
experiment will be applied to more datasets to determine if
the results are good enough to be a baseline feature detection
to aid in 3D reconstruction. It will also be investigated how
much the runtime for feature extraction improves by reducing
the number of features to just the key features. Lastly, because
the histogram equalization shows some benefits with PCA,
other filters will be considered and tested like the Wiener fil-
ter and median filter.
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