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Andrew F. Hay 
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Wright-Patterson AFB, Ohio 

Memory analysis has become a critical capability in digital forensics 
because it provides insight into system state that cannot be fully 
represented through traditional media analysis. The volafox open source 
project has begun the work of structured memory analysis for OS X with 
support for a limited set of kernel structures. This paper addresses one 
memory analysis deficiency on OS X with the introduction of a new 
volafox module for parsing file handles associated with running processes. 
The developed module outputs information comparable to the UNIX 
lsof (list open files) command, which is used to validate the results. 

Keywords: forensics; memory analysis; Apple OS X; volafox; file handle 

1. Introduction 

This paper describes implementation of a new forensic capability for parsing open file 

information from OS X memory captures. When open files are mapped to a process, the forensic 

examiner learns which resources the process is accessing on disk. This listing is useful in 

determining what information may have been the target for exfilitration or modification on a 

compromised system. File handles may also help identify a suspicious process when unexpected 

file access or modifications are observed. Carvey further describes how a list of open files can 

compliment disk analysis to identify files of interest during an investigation1. Because open files 

can help characterize process activity and highlight misuse of a computer, it is highly desirable to 

recover this information from memory. 

To support the extraction of file handles from raw memory two research objectives are 

defined. These include the design recovery of kernel data structures responsible for handling 

open files, and development of a flexible process for programmatically handling structures 

defined for different kernel architectures and operating system (OS) versions. This necessitates 

extensible software design resilient to changes in future versions of OS X. 
                                                 
1 Carvey, Harlan. 2009. Windows forensic analysis DVD toolkit (2nd ed.). Burlington: Syngress. 
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Project volafox offers an open source memory analysis solution for OS X and FreeBSD 

written in Python2. Revision 52 of the source code has support for a limited set of kernel 

structures to parse hardware information, system build number, process listing, socket 

connections, loaded kernel extensions, and the syscall table. The project is extended by this 

research with the design recovery, structure template process, and new volafox module for 

parsing file handles presented in Section 3. 

To validate the handles module, the UNIX command line tool lsof (list open files) is 

used to baseline the state of open files for comparison. Testing was accomplished in a controlled 

environment using four virtual installations of OS X across two OS versions (10.6 Snow 

Leopard, 10.7 Lion) and two kernel architectures (i386, x86_64). Output from the lsof 

command is compared with the handles module using an automated script that classifies 

differences according to a taxonomy in order to filter the results for further analysis. 

2. Background 

The memory forensics process consists of two parts. First, a copy of the target’s memory 

called an image is written to external media. This requires a toolkit consisting of software to 

perform the capture and a USB device or network connection to preserve the image. Second, the 

image is analyzed on a forensic workstation using tools to extract human-interpretable 

information. 

2.1. Mac Memory Acquisition 

Two imaging methods for OS X are considered in this research. First, the memory 

backup file saved by the host system of an OS X virtual machine (VM) during suspension can be 

copied to image the guest memory3. However, due to tight hardware-software integration on the 

Mac it would be rare to encounter such an installation in the field, thereby limiting its usefulness 

to the forensic investigator. 

                                                 
2 Lee, Kyeongsik. 2012. “volafox: Memory analyzer for Mac OS X & BSD.” Accessed 24 May. 

https://code.google.com/p/volafox/ 
3 Ligh, Michael, Steven Adair, Blake Hartstein, and Matthew Richard. 2011. Malware analyst’s cookbook and 

DVD: Tools and techniques for fighting malicious code. Indianapolis: Wiley. 
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Suiche4 demonstrates a second method using emulation of /dev/mem to dump RAM 

after retrieving critical symbols needed to build a kernel memory manager. This capability is 

available as an OS X kernel extension with the Mac Memory Reader tool5. There are several 

disadvantages to this form of acquisition. First, loading the kernel module needed to browse full 

memory address space requires administrator privileges. Second, output from such a tool could 

be corrupted by the presence of memory forensic countermeasures 6  or advent of a rootkit 

explicitly designed to subvert collection. “Fortunately, unless the subversion mechanism is very 

deeply embedded in the OS, a substantial amount of overhead may be incurred to prevent 

acquisition, potentially revealing the presence of a malicious agent”7. Finally, because software 

must be executed on the target to perform the capture, its use alters system state. Despite the 

disadvantages, availability of this robust acquisition capability for the Mac encourages additional 

research and emphasis on analytic capabilities for the platform. 

2.2. Project Volafox 

This file handle parsing research adds a module to the existing open source volafox 

project8. Figure1 shows a summary of the source files from the volafox package relevant to OS 

X memory analysis with public classes in bold. Connections represent file dependencies, which 

are labeled with the public function names. The new open files module (lsof.py) is shown but 

not discussed until Section 3. 

The project main() and volafox class found in volafox.py are responsible for 

marshaling the remaining files and classes to perform memory analysis. This source file 

interfaces with the new file handles module (lsof.py), and a number of other files indirectly 

related to its functionality.  

                                                 
4 Suiche, M. 2010. Mac OS X physical memory analysis. Black Hat DC. http://www.blackhat.com/presentations/bh-

ds-10/Suiche_Matthieu/Blackhat-DC-2010-Advanced-Max-OS-X-Physical-Memory-Analysis-wp.pdf 
5 Architecture Technology Corporation. 2011. “Mac Memory Reader.” Accessed 24 May. http:// 

cybermarshal.com/index.php/cyber-marshal-utilities/mac-memory-reader 
6 Haruyama, Takahiro, and Hiroshi Suziki. 2012. “One-byte Modifications for Breaking Memory Forensic 

Analysis.” Slides presented at Black Hat Europe, Amsterdam, Netherlands, March 14-16. 
https://media.blackhat.com/bh-eu-12/Haruyama/bh-eu-12-Haruyama-Memory_ Forensic-Slides.pdf 

7 Case, Andrew, Andrew Cristina, Lodovico Marziale, Golden Richard, Vassil Roussev. 2008. “FACE: Automated 
digital evidence discovery and correlation.” Digital Investigation 5(Supplement): S65-S75. 

8 See 2 
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The x86.py and ia32_pml4.py files house the address space agnostic classes 

IA32PagedMemoryPae and IA32PML4MemoryPae respectively. They are responsible for 

performing virtual to physical address translations that can subsequently be converted to file 

offsets by FileAddressSpace. All requests for reading raw memory are passed through one 

of these two objects. PML4 is a reference to the 4th level page map used by the Intel IA-32e 

paging scheme9, meaning ia32_pml4.py is responsible for handling 64-bit images where 

x86.py is used for 32-bit. 

Kernel architecture is determined using the imageInfo class, which also returns the OS 

build version. This number is needed to select the correct overlay file containing the symbol list 

for a particular version of OS X. All symbols are read from files in the overlays directory 

using the Python pickle library for object serialization. New overlays can be generated from 

the kernel executable (mach_kernel) using the overlay_generator.py utility. 

 

Revision 52 of volafox, the version extended for this research, does not natively support 

the Mac Memory Reader (MMR) output format. Leat 10  and ATC developer Hajime Inoue 

contributed experimental support for MMR which is operational in revisions 23-38 on the project 

website. The feature was later removed with the introduction of 64-bit addressing support due to 

compatibility problems. A stand-alone flatten.py utility authored by Inoue is still available 

to convert MMR files to a linear format, but only works for 32-bit kernel installations. This 

utility was employed to analyze the real-world memory captures discussed in Section 4.3. 

2.3. Structured Memory Analysis 

Most references to memory analysis on OS X discuss context-free techniques such as 

string searches, manual hex examination, and file carving11. In order to perform meaningful 

analysis of a memory image, an understanding of the composition and location of key kernel 

                                                 
9 Intel Corporation. 2012. “Intel 64 and IA-32 Architectures Software Developer’s Manual.” Accessed 31 March. 

http://download.intel.com/products/processor/manual/325462.pdf 
10 Leat, Chris. 2011. “Forensic analysis of Mac OS X memory.” Master’s thesis, University of Westminster.\ 
11 Makinen, Juho. 2008. “Automated OS X Macintosh password retrieval via FireWire.” Last modified February 29. 

http://www.juhonkoti.net/2008/02/29/ automated-os-x-macintosh-password-retrieval-via-firewire 
     Malard, Arnaud. 2011. “H@CKMacOSX: Tips and tricks for Mac OS X hack.” Last modified August 3. 

http://sud0man.blogspot.com/2011/08/hackmacosx-tips-and-tricks-for-mac-os-x.html 
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structures is required. Because Darwin (Apple’s UNIX core for OS X) is open source, the 

composition of kernel structures can be determined from the header files they are defined in. 

Locating the structures in memory requires a mapping of identifiers and offsets, or a 

kernel symbol table. Suiche notes “[s]ymbols are a key element of volatile memory forensics 

 

Figure 1. volafox release 52 package diagram. 
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without them an advanced analysis is impossible” 12 . The KPCR structure can be used in 

Windows to get the symbols directly from memory13, however in OS X the equivalent “kernel 

sections are destroyed as soon as the kernel (mach_kernel) is loaded”14Volatility solves this 

problem using a database of overlay files containing the requisite symbol tables for select Linux 

distributions and kernel versions15, similar functionality is provided for volafox by Leat16. In 

both Linux and OS X therefore, the “easiest way to retrieve kernel symbols is to extract them 

from the kernel executable of the hard-drive”17. 

Figure 2 shows key features of the mach_kernel executable, located at the root 

directory of the OS X file system. Suiche18 describes how knowledge of the file’s structure can 

be used to build a symbol table for a particular build of OS X. Figure 3 demonstrates how the 

symbol table derived from the mach_kernel executable is used to parse a list of running 

processes. Symbol _kernproc provides a static address for the head of the process list, 

kernel_task (PID 0), which is unique in its use of static data structures (Singh 2006, 293). The 

process ID, parent’s PID, command name and pointer to struct pgrp are members of 

struct proc. Associated username information is located in struct session, which is 

referenced by struct pgrp. The substructure p_list provides a linked-list that can be 

walked to parse the entire running process list. 

 

3. Methodology 

                                                 
12 ibid 4 
13 Dolan-Gavitt, Brendan. 2008. “Finding kernel global variables in Windows.” Last modified April 16. 

http://moyix.blogspot.com/2008/04/finding-kernel-global-variables-in.html 
14 ibid 4 
15 Case, Andrew. 2011. “Bringing Linux support to Volatility.” Last modified March 1. http:// 

dfsforensics.blogspot.com/2011/03/ bringing-linux-support-to-volatility.html 
16 ibid 10 
17 ibid 4 
18 ibid 4 
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The desired process-to-file handle information is an approximation of output from the 

UNIX lsof command for OS X19 (Apple Inc. 2011). Because lsof is included with operating 

system, it offers a reliable source of information for comparison. Emulating the output of this 

tool provides validation and offers the examiner a familiar interface to interact with. Figure 4 

shows sample lsof output and Table 1 describes the information in each column. The new 

volafox module for listing file handles includes functionality for parsing the nine default lsof 

fields and the mode identifier integrated with the FD column. 

While an ideal implementation would fully duplicate functionality of the lsof 

command, due to the diversity of data structures involved the problem must be scoped for this 

research. Two design decisions bounding the implementation are the subset of handle types 

supported, and the subset of filesystems supported.  

                                                 
19 Apple Inc. 2011. “lsof(8) Mac OS X manual page.” Last modified March 21. http://developer 

.apple.com/library/mac/#documentation/Darwin/Reference/ManPages/man8/lsof.8.html 

 

Figure 2. mach_kernel executable. 
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The volafox open files module supports handle types that subscribe to the virtual node 

(vnode) interface. Excluded types include POSIX semaphores and shared memory files, kernel 

event queue files, pipes, and sockets. These types are reported as part of the file descriptor table, 

but with DEVICE, SIZE/OFF, NODE and NAME fields unsupported. Additionally, the UNIX 

lsof command classifies sockets by a variety of subtypes, which the volafox open files module 

groups together using the generic type description ‘SOCKET’. 

Filesystem support includes HFS+ and DEVFS. HFS+ is the default format for the OS X 

boot volume and DEVFS is used to abstract certain devices such as special character files. 

Among other uses, special character files describe ttys devices controlling the print streams 

stdin, stdout, and stderr for terminal programs. HFS+ and DEVFS account for the 

filesystems most commonly encountered during development and testing, but the vnode interface 

makes reference to at least 20 other types. One impact of this constraint is that files stored on 

network filesystems, FAT32, NTFS and others, do not have volafox support for lsof fields 

outside the vnode interface. 

3.2. Kernel Design Recovery 

Developing the new volafox module for listing open files requires an understanding of 32 

unique C data structures from the OS X source code, four of which are described by Suiche20 to 

list running processes. These include 26 structure (struct), three enumeration (enum), and three 

union definitions. Identifying the data structures containing critical information and the 

relationships between them is one of the primary contributions of this research because “the 

                                                 
20 ibid 4 

$ lsof –p 109 
COMMAND  PID  USER  FD  TYPE  DEVICE  SIZE/OFF   NODE NAME 
bash     109  6ad  cwd   DIR   14,2        578 202041 /Users/6ad 
bash     109  6ad  txt   REG   14,2    1346544 262558 /bin/bash 
bash     109  6ad  txt   REG   14,2    1054960 264388 /usr/lib/dyld 
bash     109  6ad  txt   REG   14,2  213385216 466405 /private/var/db/ 
                                                       dyld/dyld_shared 
                                                       _cache_x86_64 
bash     109  6ad    0u  CHR   16,0      0t369    611 /dev/ttys000 
bash     109  6ad    1u  CHR   16,0      0t369    611 /dev/ttys000 
bash     109  6ad    2u  CHR   16,0      0t369    611 /dev/ttys000 
bash     109  6ad  255u  CHR   16,0      0t369    611 /dev/ttys000 

Figure 4. UNIX list open files (lsof) command.
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 member associated with each lsof field is shown in Table 2, however a few additional details 

are needed to understand the linked data structures and data decoding. 

Structure task, as pointed to by proc in Figure 6, provides a link to program text files 

(FD txt). Note that each memory object may reference a struct vm_object or recursively 

refer to another entry. Memory mapped files are backed by a vnode pager, but the pager may be 

located in the shadow object for external memory managers (Singh 2006, 571). 

The file descriptor table and current working directory are referenced from struct 

filedesc as shown in Figure 7. Member filedesc.fd_ofiles is a pointer to the start of 

a fileproc array. Elements of the array that contain a valid fileglob pointer reference a 

handle, those that do not are available to hold one. The array index represents the numerical file 

identifier used by the FD field of the lsof output. The integer filedesc.fd_lastfile 

indexes the last file in the array and provides an iteration bound. The array itself makes up the 

file descriptor table, used by a process to reference all open files (ASCII, word processing, logs, 

temp, etc.). The file mode, also known as read/write access, is determined from the value of 

fileglob.fg_flag using the bitmap definitions in bsd/sys/fcntl.h. 

Table 1. UNIX lsof output fields. 

COMMAND First nine characters of the UNIX command associated with the process. 
PID Process identification number. 

USER Login name of the user to whom the process belongs. 

FD 

File descriptor is a numeral index into the process open handle array optionally followed by a 
mode identifier: r (read access), w (write access), or u (both). Two other descriptors 
commonly seen are cwd representing the current working directory for the process and txt 
used for program text (code and data). These files are of high forensic value because they 
include the executable from which the command was launched, linked libraries, and other 
memory-mapped files. See the output section of the lsof manpage for a full list of 
descriptors used (Apple Inc., 2011). 

TYPE 
Node type associated with the handle. See the output section of the lsof manpage a partial 
type listing (Apple Inc., 2011). Note that numerous undocumented types were encountered in 
testing such as FSEVENT. 

DEVICE 
Major and minor device numbers separated by a comma. The first number describes a class of 
hard/software device and the second is a unique identifier for a particular instance of that class. 

SIZE/OFF 
Size or offset of a file reported in bytes. Offsets are preceded by a leading 0t to distinguish 
when the column is mixed. 

NODE 
The node number for a local file. This unique identifier is filesystem dependent. For example, 
files stored on HFS+ report the catalog node identifier (CNID) for this field, whereas DEVFS 
files use a UNIX inode number instead. 

NAME Mount point and file system on which a file resides, or name of character special device. 
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Determining the handle device involves additional logic because the values are encoded. 

The device identifier parsed from either struct mount or struct specinfo (depending 

on the handle filesystem) is decoded using macros in bsd/sys/types.h to return major and 

minor device number. Similarly, returning the correct SIZE/OFF value for directories requires 

calculation using a count value found in a substructure of struct cnode, the equation: 

	 	2 	∗  AVERAGE_HFSDIRENTRY_SIZE 

found in bsd/hfs/hfs_vnops.c, and the macro definition from bsd/hfs/hfs.h. 

3.3. Structure Templates 

Existing volafox modules are not readily extensible and require additional logic 

branching for each variant in size or composition of the underlying kernel data structures. This 

section documents a solution developed for flexible analysis of multiple kernel architecture and 

OS versions. The solution consists of two parts. First, an interface is specified to describe data 

structures called templates. Next, a dynamic mechanism using software classes is described for 

 
 

Figure 6. Memory-mapped files (txt). 
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selecting the correct template for a particular memory image based kernel architecture and OS 

version at runtime. A method for automated generation of the templates is also presented. 

3.3.1 Template Interface. 

The following interface is defined for required members of each structure: 

template = { MBR_NAME : ( MBR_TYPE, OFFSET, SIZE, FIELD, 
                               SUB_STRUCT ), … } 

Table 3 lists Python types from the kernel structure template interface, which itself is 

implemented as a dictionary. Substructures are defined as those contained within the memory 

allocated for a super structure. They share the same dictionary format as regular structures and 

their values are referenced recursively. Figure 8 shows the 32-bit Snow Leopard variant of the 

struct proc template as an example. To support the test cases described in Section 4.2, three 

additional templates for the process structure are defined, one for each combination of OS 

version and architecture. 

  

Table 3. Template interface fields. 

Variable 
Python 
Type 

Description 

template dict template implementing the C stuct interface 
MBR_NAME str dictionary key, variable name for a struct member 
template[MBR_NAME] tuple dictionary value, a struct member description 
MBR_TYPE str C type of the named member 
OFFSET int offset in bytes for the member 
SIZE int size in bytes for the member type 
FIELD str lsof field represented by member 
SUB_STRUCT dict recursively defined substructure (optional) 

template = { 
    'p_list' : ( 'LIST_ENTRY(proc)', 0, 8, '' , { 
        'le_next' : ( 'struct proc *', 0, 4, '' ), 
        'le_prev' : ( 'struct proc **', 4, 4, '' ) 
        } 
    ), 
    'p_pid' : ( 'pid_t', 8, 4, 'PID' ), 
    'task' : ( 'void *', 12, 4, '' ), 
    'p_fd' : ( 'struct filedesc *', 104, 4, '' ), 
    'p_textvp' : ( 'struct vnode *', 388, 4, '' ), 
    'p_comm' : ( 'char[]', 420, 17, 'COMMAND' ), 
    'p_pgrp' : ( 'struct pgrp *', 472, 4, '' ) 
} 

Figure 8. struct proc template, for Mac OS X 10.6 on x86 hardware. 
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3.3.2 Template Selection. 

The second component in the template solution is a Python class initializer that 

dynamically selects the correct template for a given subclass based on the OS version and 

architecture of the memory image under analysis. Because classes in the open files module 

manage fields and methods associated with a particular kernel structure, all inherit from the 

abstract superclass in Figure 9. 

The first four static variables belong to the abstract class and are shared by all Struct 

subclasses. The mem variable is a reference to one of the PAE objects responsible for virtual-to- 

physical address translation. Verbose flag ver indicates if all file descriptors should be printed, 

including those for types not fully supported by the open files module. The arch and kvers 

variables report the kernel architecture and version respectively. The final three fields are virtual 

static variables because their assignment is deferred to the subclasses. The constant TEMPLATES 

is a nested dictionary from which the static template is assigned the first time the initializer 

runs based on value of arch and kvers. The static ssize is subsequently assigned based on 

the selected template and determines how many bytes the initializer reads from the address 

passed as an argument to provide coverage of all members specified in the structure template. 

class Struct(object): 
 

  mem  = None 
  ver  = False 
  arch = -1 
  kvers = -1 
  
  TEMPLATES = None 
  template = None 
  ssize = -1 
  
  def __init__(self, addr): 
  
    if self.__class__.template == None: 
   
      self.__class__.template = self.__class__.TEMPLATES[Struct.arch] \ 
                                                        [Struct.kvers] 
    
      for item in self.__class__.template.values(): 
        if ( item[1] + item[2] ) > self.__class__.ssize: 
          self.__class__.ssize = item[1] + item[2] 
 

self.smem = Struct.mem.read(addr, self.__class__.ssize); 

Figure 9. Simplified abstract class Struct (no error handling). 
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Combining the structure template interface with an abstract initializer offers a solution 

that greatly simplifies program logic needed to support a selection of architectures and OS 

versions. The result is also highly extensible because new templates can be added without any 

code refactoring as long as the member names remain consistent across versions. Figure 10 

shows the concrete subclass corresponding to struct devnode and demonstrates use of the 

structure template solution. 

3.3.3 Member Offsets and Type Sizing. 

While the dictionary constants used to implement structure templates are easy to work 

with programmatically, generating their syntax is labor intensive. The new open files module 

uses (18 classes * 2 versions * 2 architectures) = 72 structure templates, requiring a great deal of 

error-prone coding and debugging if generated by hand. Determining size and offset values for 

each member in the template is also very difficult to accomplish manually due to the complexity 

of defined types included in the kernel structures. The solution to both of these challenges is an 

external C program that dissects kernel structures and automates the generation of the Python 

dictionary syntax needed for each template. 

The offsets.c program was developed to find the size and offset of each required 

structure member and print the results as a structure template for use in lsof.py. Figure 11 

shows a function from the program that prints a template for struct _vm_map. The variable 

member is a C structure defined in the program to hold the fields described in Table 3 and 

class Devnode(Struct): 
 
  TEMPLATES = { 
    32:{ 
      10:{'dn_ino':('ino_t',112,4,'NODE')} 
      , 11:{'dn_ino':('ino_t',112,4,'NODE')} 
    }, 
    64:{ 
      10:{'dn_ino':('ino_t',192,8,'NODE')} 
      , 11:{'dn_ino':('ino_t',192,8,'NODE')} 
    } 
  } 
 
  def __init__(self, addr): 
    super(Devnode, self).__init__(addr) 
   
  def getnode(self): 
    return unpacktype(self.smem, self.template['dn_ino'], INT) 

Figure 10. Concrete class Devnode. 
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printmember() formats each as a key/value pair for the enclosing Python dictionary. The 

argument mh is a function pointer to a substructure that is printed recursively.  

The C language sizeof operator is used to find the size of any type, and the 

preprocessing macro offsetof defined in stddef.h can return the offset of any member for 

a given structure. However, most of the header files defining kernel structures are not available 

in the include path for OS X. Sesek (2012) explains the problem and suggests a workaround in a 

blog post about kernel debugging: 

Structs […] are merely human-friendly offsets into a region of memory. Their 
definition and layout can be shamelessly copied from the XNU open source 
headers into your kext’s project so that you can access fields in kernel private 
structures. As it turns out, virtually ever structure within the kernel is designed to 
be opaque to a kext. Apple decided to do this so that they can freely change the 
kernel structures, but it also makes writing a debugging tool like this a little 
harder. To do so you need to edit the headers so they compile in your project 
through a process I call “munging.” 

Sesek’s method was modified to access the kernel definitions needed for offsets.c using 

local headers. 

Three out of 18 template functions written for offsets.c are known to produce 

incorrect member offsets for 64-bit kernel architecture. The problem is believed to be a complex 

definition conflict for some low-level types. Several C types are defined for userspace with 

standard libraries such as stdio.h. However, the kernel sometime uses different sizes for these 

same types and forced redefinition yields a compilation error. When the offsetof macro 

int vm_map() { 
 
 member m; 
 int (*mh)(unsigned long int offset) = &vm_map_header; 
  
 printf("struct_vmmap = {"); 
  
 m.var_name = "hdr"; 
 m.var_type = "struct vm_map_header"; 
 m.offset = offsetof(struct _vm_map, hdr); 
 m.size = sizeof(struct vm_map_header); 
 m.field = ""; 
 printmember(m, mh); 
  
 printf("}\n"); 
 return 0; 
} 

Figure 11. Template generation function.



 15

measures a userspace definition the result is an error for some architectures. Manual offset 

calculation and hex analysis are used to resolve the problem for affected templates, resulting in 

adjustment made to the TEMPLATES constant of the equivalent structure class in lsof.py. 

A wrapper for offsets.c called printstructs.py is written to verify the output 

dictionary as executable Python code, print the structure members in a human-readable format 

for debugging, and handle compilation flags related to architecture. Dictionary output from 

printstructs.py was then pasted into the TEMPLATES constant of each class in lsof.py 

to complete the definition.  

3.4. Open Issues 

There are two outstanding problems with the research module developed: reporting the 

correct user associated with a process, and determining size of the /dev directory.  

The manpage for the UNIX lsof command describes output of the USER field as “the 

user ID number or login name of the user to whom the process belongs, usually the same as 

reported by ps(1)”. However, output from the volafox open files module is known to 

incorrectly report the process login name as shown in Figures 12-13. 

The difference shown is not consistent across all processes of a full file listing. In many 

cases the expected USER value is reflected in the output, but not always. This problem is not 

unique to the volafox open files implementation as it is also present in the volafox process listing 

module and the original work on which it was based (Suiche 2010). Kernel structure analysis of 

the source headers could not identify an issue with Suiche’s methodology, but all tests indicate 

that struct session cannot consistently return the username for any of the user-related 

 

$ ./volafox.py –i 10.6.8x86.vmem –o lsof –p 15 
COMMAND   PID   USER   FD      TYPE […] 
distnoted  15   root  cwd       DIR […] 
distnoted  15   root  txt       REG […] 
distnoted  15   root  txt       REG […] 
distnoted  15   root  txt       REG […] 
distnoted  15   root    0r      CHR […] 
distnoted  15   root    1      PIPE […] 
distnoted  15   root    2      PIPE […] 
distnoted  15   root    3u   KQUEUE […] 
distnoted  15   root    56u  SOCKET […] 

Figure 12. volafox user output. 

# lsof –p 15 
COMMAND   PID     USER […] 
distnoted  15   daemon […] 
distnoted  15   daemon […] 
distnoted  15   daemon […] 
distnoted  15   daemon […] 
distnoted  15   daemon […] 
distnoted  15   daemon […] 
distnoted  15   daemon […] 
distnoted  15   daemon […] 
distnoted  15   daemon […] 

Figure 13. lsof user output. 
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keywords available for ps. There is also no known method to determine when the session 

structure returns the correct value. 

A second problem identified during development is an inability to correctly report the 

SIZE/OFF field for certain directories. The /dev directory is typed DTYPE_VNODE in 

fileglob.fg_type and VDIR in vnode.v_type. However, it has a tag of VT_DEVFS 

from vnode.v_tag rather than the VT_HFS seen for most other directories. Figure 14 shows 

an example of /dev as reported by the UNIX lsof command. 

Note that 4495	mod	34	 	0, and therefore sizing by the entry count as described in 

Section 3.2 is not valid for this directory. Error! Reference source not found.2 includes three 

alternate locations for the size applicable to other file types, but none were found to be effective 

in this case. Fortunately, due to the unique combination of tag and type for /dev, the failure is 

possible to detect. Since the location of the size is unknown, the volafox open files module prints 

-1 for the size of /dev to indicate the field is unsupported. 

4. Testing 

Testing effectiveness of the volafox module for listing OS X file handles involves 

comparing its output with that of lsof. A successful implementation of the system must 

accurately report all file handles, adjusted for stated constraints and known deficiencies. Testing 

is conducted on controlled test cases and on captures from real user’s machines.  

The complex nature of a modern operating system like OS X guarantees changes to the 

system state between the time when the lsof command is run and the memory dump occurs21. 

Some allowance is necessary to account for volatility of the handles list during this interval. A 

successful implementation therefore becomes one that can be validated against the UNIX lsof 

command, adjusted for stated constraints, known deficiencies, and accuracy of the validation 

method. 

                                                 
21 Hay, Brian, Kara Nance, and Matt Bishop. 2009. “Live analysis: Process and challenges.” IEEE Security & 

Privacy 7(2): 30-37. 
 

# lsof +d /dev 
COMMAND PID USER   FD   TYPE     DEVICE SIZE/OFF NODE NAME 
launchd   1 root    8r   DIR 20,5853800     4495  305 /dev 

Figure 14. /dev directory size. 
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4.1. Comparison Taxonomy 

A formal list of 21 differences across four categories is used to classify reasons output 

from lsof and the new volafox handles module may differ. Taxonomic categories consist of 

constraints, deficiencies, explained differences, and failures. Enumeration labels are employed 

by the script validate.py to describe how similar the volafox output is to its validation data.  

4.1.1 Constraints. 

Constraints are defined as differences in output that occur due to system design decisions. 

The volafox open files module has several limitations with regard to handle type and filesystem 

tag that are used to scope the research implementation. 

C1. The lsof subtype for socket handles cannot be determined. A value of 
DTYPE_SOCKET for the member filglob.fg_type indicates a socket handle. The 
lsof command reports a number of subtypes for these handles including: systm, 
unix, IPv4, IPv6, rte, key, ndrv, and possibly others that were not observed in 
testing. Sockets are assigned the generic type SOCKET in the volafox open files output. 

 
C2. Only handles subscribing to the virtual node (vnode) interface are fully supported. A 

value of DTYPE_VNODE for the member fileglob.fg_type indicates the vnode 
interface is in use for a particular handle. Full support indicates meaningful output is 
reported for all nine lsof command fields. Non-vnode handles show the value ‘-1’ for 
DEVICE, SIZE/OFF, NODE, and NAME to indicate these fields are unsupported in the 
volafox open files output. 

Table 4. Field differences versus file type. 

File Type COMMAND PID USER 
FD+ 

mode 
TYPE DEVICE

SIZE/ 
OFF 

NODE NAME 

cwd ✓ ✓ D1 ✓ ✓ ✓ ✓ ✓ ✓ 
txt ✓ ✓ D1 ✓ ✓ ✓ ✓ ✓ ✓ 

REG ✓ ✓ D1 ✓ ✓ ✓ ✓ ✓ ✓ 
DIR ✓ ✓ D1 ✓ ✓ ✓ D2 ✓ ✓ 

CHR ✓ ✓ D1 ✓ ✓ ✓ E7 ✓ ✓ 
LINK ✓ ✓ D1 ✓ E5 ✓ ✓ ✓ ✓ 
FIFO ✓ ✓ D1 ✓ ✓ E6 ✓ ✓ ✓ 

VNODE 
(other) 

✓ ✓ D1 ✓ ✓ C3 C3 C3 ✓ 

PSXSHM ✓ ✓ D1 ✓ ✓ C2 C2 C2 C2 
PSXSEM ✓ ✓ D1 ✓ ✓ C2 C2 C2 C2 
KQUEUE ✓ ✓ D1 ✓ ✓ C2 C2 C2 C2 

PIPE ✓ ✓ D1 ✓ ✓ C2 C2 C2 C2 
FSEVENT ✓ ✓ D1 ✓ ✓ C2 C2 C2 C2 
SOCKET ✓ ✓ D1 ✓ C1 C2 C2 C2 C2 
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C3. Only vnodes tagged HFS+ or DEVFS are fully supported. A value of VT_HFS or 

VT_DEVFS for the member vnode.v_tag indicates a supported filesystem. The lsof 
command fields DEVICE, SIZE/OFF, and NODE are defined outside struct vnode 
and therefore unsupported for other filesystems. Unsupported fields are indicated in the 
volafox open files output with an appropriate value from ECODE, a global dictionary 
defined for lsof.py. 

4.1.2 Deficiencies. 

Deficiencies are defined as differences in output that occur due to known implementation 

problems. As described in Section 3.4, the volafox open files module has two open issues. 

D1. The lsof USER field is not correctly reported for all processes in a full file listing. This 
problem is not consistent across all processes and the volafox open files module is not 
capable of detecting its occurrence. 
 

D2. Size of the /dev directory cannot be determined. Handles with vnode.v_type of 
VDIR and vnode.v_tag of VT_DEVFS such as /dev show the value ‘-1’ in the 
SIZE/OFF field. 

4.1.3 Explanations. 

Explained differences are those in output that occur due to reproducible idiosyncrasies of 

the tools used for capture or validation. They are distinct from failures because the explanations 

are not speculative, and the differences can be detected using automation. Explanations E4, E5, 

and E6 are believed to be bugs in the OS X version of the lsof program. 

E1. The UNIX lsof command output always includes the lsof command and its 
associated handles, whereas a memory dump does not. For 10.7 only, the dependent 
process sudo is present in addition to lsof when executed with administrator 
privileges. 

 
E2. Memory captured using the MMR tool includes handles associated with the process 

MacMemoryReader and its dependency image, whereas output from the lsof 
command does not. 

 
E3. Data collected using capture.py (4.3) does not share the process sh because 

MacMemoryReader and lsof are executed in different subprocesses. 
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E4. OS X duplicates some handles in a full listing using lsof. Duplication occurs at least 
once per listing. Figure 15 demonstrates the problem.  

In all observed cases, the file descriptor ‘twd’ (the per-thread working directory) 
identifies the duplicate, while all other fields remain the same. 

E5. OS X reports the type of symbolic links as ‘0012’ instead of ‘LINK’ in the lsof TYPE 
field. The keyword ‘LINK’ is specified in the manpage and therefore the volafox handles 
module reports symbolic links using that label. The bug has only been observed in the 
10.7 version of OS X. 

 
E6. OS X does not report the lsof DEVICE field for FIFO type files. The manpage does not 

discuss the omission and the volafox open files module can determine the major and 
minor device number for FIFO special files. 
 

E7. Execution of the lsof command causes the offset of its terminal file (ttys) to grow. 
For cases where a ttys file is the same used by the lsof command, any offset 
difference is classified as E7 rather than F6. 

4.1.4 Failures. 

Failures are defined as differences in output not already accounted for by constraints, 

deficiencies, or explanations that occur due to asynchronous data collection or implementation 

artifact. It is important to note that the fault causing failure is undefined by default. Analysis in 

Section 4.2 indicates that in most cases failure is a consequence of validation accuracy rather 

than an error in the volafox open files module implementation.  

F1. Command name mismatch (field: COMMAND). Adjusted for F2. 

F2. Missing/extra process (field: PID). Adjusted for E1, E2, and E3. 

F3. Missing/extra file descriptor (field: FD). Adjusted for F2 and E4. 

F4. File mode mismatch (field: FD). Adjusted for F3. 

F5. File type mismatch (field: TYPE). Adjusted for F3, C1 and E5. 

F6. Device mismatch (field: DEVICE). Adjusted for F3, C2, C3, and E6. 

$ sudo lsof 
COMMAND PID   USER    FD    TYPE   DEVICE  SIZE/OFF   NODE NAME 
... 
mds      29   root   cwd     DIR     14,2      1088      2 / 
mds      29   root   twd     DIR     14,2      1088      2 / 
... 

Figure 15. lsof handle duplication. 
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F7. Size/offset mismatch (field: SIZE/OFF). Adjusted for F3, C2, C3, D2, and E7. 

F8. Node identifier mismatch (field: NODE). Adjusted for F3, C2 and C3. 

F9. Pathname mismatch (field: NAME). Adjusted for F3, C2. 

Username mismatch is classified as D1 and therefore not listed as a failure. It is reported 

in the results after adjustment for F2. Reporting failures F2 and F3 also aligns the process and 

handle lists of each file respectively for the remaining failure tests. This means, for example, that 

F1 does not report command name mismatches that occur due to a missing process because F2 

already accounts for it. 

4.2. Controlled Test Cases 

Controlled test case results are examined with the goal of identifying previously 

unidentified implementation problems. The majority of constraints, deficiencies, and explained 

differences are not considered in this analysis as the failures alone describe possible unknown 

faults in the tool developed. The validation method conducts software test cases that either pass 

or fail. Resulting failures are then addressed individually, or reclassified in the difference 

taxonomy. Where an explanation is provided for a failure, the discussion must be viewed as 

speculative because all concrete differences identified have been integrated with the analysis 

taxonomy.  

One design goal for the module developed is to provide coverage for a breadth of OS 

versions and kernel architectures. These test cases are intended to demonstrate that coverage by 

representing both i386 and x86_64 Intel architectures over the span of minor OS X versions 

(10.6.0-8 and 10.7.0-3) within the current and previous releases of the operating system. All tests 

are performed on guest installations of OS X running as a VM. This setup offers the linear file 

format volafox requires in analyzing 64-bit kernel memory, the contents of which are written to 

disk when the VM is suspended. Efforts were made to minimize OS interference with the state of 

open files during collection. Specific modifications include: removing network interfaces, 

deleting startup items, and disabling the OS X automatic file indexing process known as 

Spotlight. The sole installation of OS X Server also had the servermgrd daemon disabled to 

eliminate its numerous child processes on startup. 
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Configurations for the controlled test cases include: 

1. OS X version: 10.6.8 
Darwin kernel architecture: i386 
RAM installed: 1 GB 
 

2. OS X version: 10.6.0 Server 
Darwin kernel architecture: x86_64 
RAM installed: 1GB 
 

3. OS X version: 10.7.3 
Darwin kernel architecture: i386 
RAM installed: 2GB 
 

4. OS X version: 10.7.0 
Darwin kernel architecture: x86_64 
RAM installed: 2GB 

 Table 5 summarizes results across the four controlled test cases. After accounting for 

constraints, deficiencies, and explained differences listed in the analysis taxonomy (not shown), 

this table indicates how similar the volafox open files output is to the lsof approximation. 

Failures in the comparison are marked in red and discussed in order from top to bottom of the 

table. 

The extra process in the volafox output (F2) for the 10.7.x cases is a daemon with the 

highest PID in the process list. It therefore appears to have been launched after executing lsof, 

explaining its absence in the baseline listing in both instances. 

While the username deficiency (D1) is not classified as a failure, it is listed in the table to 

emphasize the number of handles affected by this bug. 

The additional volafox file descriptors (F3) in the 10.7.3 test case, and three of the four in 

the 10.7.0 case belong to launchd. Because the launchd process manages all other daemons 

(Singh 2006, 38), it is very active and therefore volatile. For both 10.7.x test cases the lsof and 

launchd processes appear to be confounded, though similar problems were not observed in the 

10.6.x test cases. These differences are believed to represent normal OS interference with the 

state of open files between the time lsof is executed and the VM is frozen. 

Table 5. Difference summary for controlled test cases. 

Diff Field 
10.6.8 
i386 

10.6.0 Sever 
x86_64 

10.7.3 
i386 

10.7.0 
x86_64 

F1 COMMAND 0 0 0 0 
F2 PID 0 0 +1 +1 
D1 USER 15% 17% 38% 19% 
F3 FD 0 0 +3 +4 
F4 mode 0 0 0 0 
F5 TYPE 0 0 0 0 
F6 DEVICE 0 0 0 0 
F7 SIZE/OFF 1 1 1 1 
F8 NODE 2 1 1 1 
F9 NAME 0 0 0 0 
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The fourth extra file descriptor (F3) in the 10.7.0 test case appears to be a malformed 

vnode. All members within the structure are invalid, and the file name is made up of non-ASCII 

characters. This case does call into question the methodology described in Section 3.2 for 

determining valid descriptors in the file table. Since the occurrence appears to be isolated, it is 

particularly difficult to debug this potential implementation failure. One possible explanation is 

that the handle may be an initialized but as-yet-unused vnode in the file descriptor table. Luckily, 

the error output is well-handled and therefore a human analyst should be able to make this 

determination with ease even if the tool cannot.  

In all four test cases, the file size failure (F7) is for the pseudo-tty device opened by 

process Terminal. The Terminal application is in the process hierarchy for lsof, which as 

explained in E7 is known to modify some ttys device offsets during execution. This 

explanation might have led to another explained difference in the taxonomy, but detection could 

not be easily automated for this case. 

In all four test cases, the node identification failures (F8) belong files related to time zone 

opened by the notifyd process. It is unclear why the notification server makes changes to 

these files during lsof execution and additional knowledge of OS X internals is needed to 

analyze this failure further. However, because the difference in node value is always observed on 

regular files but only those associated with time zone and this particular process, it is not 

believed to be an implementation fault. 

Results from the four controlled test cases yield several important conclusions. First, the 

volafox open files module is functional for kernels utilizing both Intel i386 and x86_64 

architectures. Second, the tool provides coverage for the OS X 10.6.x Snow Leopard and 10.7.x 

Lion operating systems. Third, the username deficiency (D1) results suggest that this field cannot 

be trusted in the volafox output. Finally, the low number of unexplained failures suggests the 

implementation is successful under the research definition. 

4.3. Real-world Data Analysis 

In addition to the controlled test cases, the volafox handles module was also tested 

against a set of memory collected from physical machines. The script capture.py was 

developed to automate collection of memory using the MMR tool and a variety of incident 

response data, including lsof, for comparison. These real-world collections are invaluable for 
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program debugging and revealing edge cases in the handles implementation but are not well 

suited for validation for several reasons. First, because failures cannot be replicated it is difficult 

to determine if a fault is caused by implementation bug or validation accuracy. Second, the 

collection time required by MMR assures that output from lsof is always stale when compared 

to the memory capture. Finally, the real-world data available does not cover the breadth of OS 

versions and kernel architectures. 

Revision 52 of the volafox project does not support the MMR output format directly. As 

a result, only i386 captures are analyzed with volafox after conversion to linear format using the 

flatten.py utility. Ten qualifying samples were collected from real Mac computers, eight of 

these running 10.6.8, one 10.7.0, and one 10.7.2. 

Table 6 shows a combined summary of the real-world results. Because the hardware and 

software configurations vary greatly between collections, the data points represent different 

sample populations that cannot be aggregated to produce valid mean or standard deviation. 

Instead, the range of each constraint, deficiency, explained difference, and failure is reported to 

offer a general impression of how commonly these differences occur. A few noteworthy 

conclusions emerge from this analysis. 

1. With up to 10% of processes (F2) and 22% of handles (F3) thrown out for comparison 
during alignment, lsof does not approximate the real-world data very closely. 
 

2. The set of non-vnode handles (sockets, pipes, semaphores, etc.) make up a significant 
portion of the lsof results (C2). Sockets in particular are of high investigative value and 
should therefore be considered in future work. 

 
3. Unsupported file systems (C3) in the real-world data were cross-referenced with the 

mount information also collected by the capture.py script to determine which types 
should be considered for future support. The results included one instance each of: 
msdos (FAT32 external hard drive), cddafs (responsible for reading audio CDs), 
ntfs (Apple Bootcamp installation of Windows), and mtmfs (used to implement the 
Mobile Time Machine feature). 

4. Explained differences (E1-E7) and the /dev sizing deficiency (D2) do not affect a large 
number of processes and handles. However, their enumeration is important because it 
filters the number of failures that must be considered. 

 
5. For a given handle the size/offset (F7) and node identifier (F8) information can be 

particularly volatile, with up to 10 and 8 percent change observed respectively. 
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6. Upon manual inspection of the failures, high volatility of the name field (F9) was often 
linked to two applications: Spotlight and the Microsoft suite. Spotlight is Apple’s indexed 
search technology and automatically begins processing external media when mounted. 
Because the capture.py script is delivered on external media, the act of collection 
increases indexing activity. 

 
The real-world data identifies a number of implementation problems that may not have 

been encountered otherwise. For example, the E2, E3, and E7 results include an asterisk because 

one of the samples experienced an interesting collection failure. The capture.py script and all 

its associated processes (Python, sh, MacMemoryReader, image, etc.) are all absent from 

the volafox output for this sample, making it clear the processes list had been truncated. Due to 

the high occurrence of invalid pointers observed in the real-world data and several volafox 

execution errors, additional exception handling was added to the lsof module to support 

debugging. The new code identified several cases where the underlying linked data structures 

were broken in the memory image. In a real investigation these occurrences might represent 

evidence lost. One recommendation to mitigate this problem is to assure memory capture 

Table 6. Combined real-world results (10 samples). 

Diff Description Quantity or % Per Sample 
C1 SOCKET handles cannot be subtyped 15-22% of handles affected 
C2 Non-vnode handles are not fully supported 27-40% of handles affected 

C3 
Non-HFS+/DEVFS vnodes are not fully 
supported 

0-4% of handles affected 

D1 ∆ USER field 16-54% of usernames misreported 
D2 /dev directory cannot be sized 0-1 handles affected 
E1 lsof process is not shared 0-1 process removed 

E2 
MacMemoryReader and image processes 
are not shared 

0*-2 processes removed 

E3 sh process is not shared 0*-1 process removed 
E4 Duplicate handles labeled FD: ‘twd’ 2-5 handles removed 
E5 LINK handles are mislabeled 0-3 handles affected 
E6 FIFO handles do not report device identifier 0-2 handles affected 
E7 lsof ttys file size is not shared 0*-13 handles affected 
F1 ∆ COMMAND field 0 commands differ 
F2 ∆ PID field 0-10% of processes removed 
F3 ∆ FD field 4-22% of handles removed 
F4 ∆ MODE field 0-2 modes differ 
F5 ∆ TYPE field 0-2 types differ 
F6 ∆ DEVICE field 0-2 device identifiers differ 
F7 ∆ SIZE/OFF field 0-10% of sizes/offsets differ 
F8 ∆ NODE field 0-8% of node identifiers differ 
F9 ∆ NAME field 0-3% of names differ 

 



 25

proceeds as rapidly as possible. One factor found to affect capture speed in real-world collections 

is the type of external media used to store the image. Timing results recorded by capture.py 

showed a 16 Mb/s average increase in capture speed when using an external hard drive over flash 

storage. 

5. Conclusions and Future Work 

 This paper presents documentation and implementation of a new capability for parsing 

file handles from an OS X memory capture. Initial development of the module required 

performing a manual design recovery of the data structures responsible for handling files for OS 

X. To alleviate the manual recovery process in future versions of OS X, a novel header-

processing tool programmatically parses structures defined for different kernel architecture and 

OS versions and converts these into templates used by the file handle module.  

Testing the implementation identified several areas for future work not directly related to 

the research goal. First, the open files module does not reliably output the correct user of a 

running system process. No fault could be identified in the implementation, nor any problem 

with the kernel structure analysis described in prior work. Second, memory captured on physical 

hardware suffers from a high number of invalid pointer references, occasionally resulting in 

malformed linked-lists. Robust exception handling needs to be implemented throughout volafox 

to address this problem in a memory analysis tool.  

Finally, several additional modules must be developed to establish volafox as an analysis 

tool suited for technical users and forensic examiners. The National Institute of Standards and 

Technology (NIST 2006) describes the minimum requirements for volatile collection during 

incident response. At present, the volafox tool includes modules for parsing several of these 

requirements but is still missing a list of login session, network configuration, and operating 

system time. 
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