
Air Force Institute of Technology Air Force Institute of Technology

AFIT Scholar AFIT Scholar

Faculty Publications

2012

Acquiring OS X File Handles through Forensic Memory Analysis Acquiring OS X File Handles through Forensic Memory Analysis

Andrew F. Hay
Center for Cyberspace Research, Air Force Institute of Technology

Gilbert L. Peterson
Air Force Institute of Technology

Follow this and additional works at: https://scholar.afit.edu/facpub

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Hay, A., & Peterson, G. L. (2012). Acquiring OS X File Handles through Forensic Memory Analysis.
UNESCO Systematic Approaches to Digital Forensics, 2012, 1–8.

This Conference Proceeding is brought to you for free and open access by AFIT Scholar. It has been accepted for
inclusion in Faculty Publications by an authorized administrator of AFIT Scholar. For more information, please
contact richard.mansfield@afit.edu.

https://scholar.afit.edu/
https://scholar.afit.edu/facpub
https://scholar.afit.edu/facpub?utm_source=scholar.afit.edu%2Ffacpub%2F1206&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=scholar.afit.edu%2Ffacpub%2F1206&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:richard.mansfield@afit.edu

 1

Acquiring OS X File Handles Through Forensic Memory Analysis

Andrew F. Hay
ahay@ieee.org

Gilbert L. Peterson
gilbert.peterson@afit.edu

Center for Cyberspace Research
Air Force Institute of Technology

Wright-Patterson AFB, Ohio

Memory analysis has become a critical capability in digital forensics
because it provides insight into system state that cannot be fully
represented through traditional media analysis. The volafox open source
project has begun the work of structured memory analysis for OS X with
support for a limited set of kernel structures. This paper addresses one
memory analysis deficiency on OS X with the introduction of a new
volafox module for parsing file handles associated with running processes.
The developed module outputs information comparable to the UNIX
lsof (list open files) command, which is used to validate the results.

Keywords: forensics; memory analysis; Apple OS X; volafox; file handle

1. Introduction

This paper describes implementation of a new forensic capability for parsing open file

information from OS X memory captures. When open files are mapped to a process, the forensic

examiner learns which resources the process is accessing on disk. This listing is useful in

determining what information may have been the target for exfilitration or modification on a

compromised system. File handles may also help identify a suspicious process when unexpected

file access or modifications are observed. Carvey further describes how a list of open files can

compliment disk analysis to identify files of interest during an investigation1. Because open files

can help characterize process activity and highlight misuse of a computer, it is highly desirable to

recover this information from memory.

To support the extraction of file handles from raw memory two research objectives are

defined. These include the design recovery of kernel data structures responsible for handling

open files, and development of a flexible process for programmatically handling structures

defined for different kernel architectures and operating system (OS) versions. This necessitates

extensible software design resilient to changes in future versions of OS X.

1 Carvey, Harlan. 2009. Windows forensic analysis DVD toolkit (2nd ed.). Burlington: Syngress.

 2

Project volafox offers an open source memory analysis solution for OS X and FreeBSD

written in Python2. Revision 52 of the source code has support for a limited set of kernel

structures to parse hardware information, system build number, process listing, socket

connections, loaded kernel extensions, and the syscall table. The project is extended by this

research with the design recovery, structure template process, and new volafox module for

parsing file handles presented in Section 3.

To validate the handles module, the UNIX command line tool lsof (list open files) is

used to baseline the state of open files for comparison. Testing was accomplished in a controlled

environment using four virtual installations of OS X across two OS versions (10.6 Snow

Leopard, 10.7 Lion) and two kernel architectures (i386, x86_64). Output from the lsof

command is compared with the handles module using an automated script that classifies

differences according to a taxonomy in order to filter the results for further analysis.

2. Background

The memory forensics process consists of two parts. First, a copy of the target’s memory

called an image is written to external media. This requires a toolkit consisting of software to

perform the capture and a USB device or network connection to preserve the image. Second, the

image is analyzed on a forensic workstation using tools to extract human-interpretable

information.

2.1. Mac Memory Acquisition

Two imaging methods for OS X are considered in this research. First, the memory

backup file saved by the host system of an OS X virtual machine (VM) during suspension can be

copied to image the guest memory3. However, due to tight hardware-software integration on the

Mac it would be rare to encounter such an installation in the field, thereby limiting its usefulness

to the forensic investigator.

2 Lee, Kyeongsik. 2012. “volafox: Memory analyzer for Mac OS X & BSD.” Accessed 24 May.

https://code.google.com/p/volafox/
3 Ligh, Michael, Steven Adair, Blake Hartstein, and Matthew Richard. 2011. Malware analyst’s cookbook and

DVD: Tools and techniques for fighting malicious code. Indianapolis: Wiley.

 3

Suiche4 demonstrates a second method using emulation of /dev/mem to dump RAM

after retrieving critical symbols needed to build a kernel memory manager. This capability is

available as an OS X kernel extension with the Mac Memory Reader tool5. There are several

disadvantages to this form of acquisition. First, loading the kernel module needed to browse full

memory address space requires administrator privileges. Second, output from such a tool could

be corrupted by the presence of memory forensic countermeasures 6 or advent of a rootkit

explicitly designed to subvert collection. “Fortunately, unless the subversion mechanism is very

deeply embedded in the OS, a substantial amount of overhead may be incurred to prevent

acquisition, potentially revealing the presence of a malicious agent”7. Finally, because software

must be executed on the target to perform the capture, its use alters system state. Despite the

disadvantages, availability of this robust acquisition capability for the Mac encourages additional

research and emphasis on analytic capabilities for the platform.

2.2. Project Volafox

This file handle parsing research adds a module to the existing open source volafox

project8. Figure1 shows a summary of the source files from the volafox package relevant to OS

X memory analysis with public classes in bold. Connections represent file dependencies, which

are labeled with the public function names. The new open files module (lsof.py) is shown but

not discussed until Section 3.

The project main() and volafox class found in volafox.py are responsible for

marshaling the remaining files and classes to perform memory analysis. This source file

interfaces with the new file handles module (lsof.py), and a number of other files indirectly

related to its functionality.

4 Suiche, M. 2010. Mac OS X physical memory analysis. Black Hat DC. http://www.blackhat.com/presentations/bh-

ds-10/Suiche_Matthieu/Blackhat-DC-2010-Advanced-Max-OS-X-Physical-Memory-Analysis-wp.pdf
5 Architecture Technology Corporation. 2011. “Mac Memory Reader.” Accessed 24 May. http://

cybermarshal.com/index.php/cyber-marshal-utilities/mac-memory-reader
6 Haruyama, Takahiro, and Hiroshi Suziki. 2012. “One-byte Modifications for Breaking Memory Forensic

Analysis.” Slides presented at Black Hat Europe, Amsterdam, Netherlands, March 14-16.
https://media.blackhat.com/bh-eu-12/Haruyama/bh-eu-12-Haruyama-Memory_ Forensic-Slides.pdf

7 Case, Andrew, Andrew Cristina, Lodovico Marziale, Golden Richard, Vassil Roussev. 2008. “FACE: Automated
digital evidence discovery and correlation.” Digital Investigation 5(Supplement): S65-S75.

8 See 2

 4

The x86.py and ia32_pml4.py files house the address space agnostic classes

IA32PagedMemoryPae and IA32PML4MemoryPae respectively. They are responsible for

performing virtual to physical address translations that can subsequently be converted to file

offsets by FileAddressSpace. All requests for reading raw memory are passed through one

of these two objects. PML4 is a reference to the 4th level page map used by the Intel IA-32e

paging scheme9, meaning ia32_pml4.py is responsible for handling 64-bit images where

x86.py is used for 32-bit.

Kernel architecture is determined using the imageInfo class, which also returns the OS

build version. This number is needed to select the correct overlay file containing the symbol list

for a particular version of OS X. All symbols are read from files in the overlays directory

using the Python pickle library for object serialization. New overlays can be generated from

the kernel executable (mach_kernel) using the overlay_generator.py utility.

Revision 52 of volafox, the version extended for this research, does not natively support

the Mac Memory Reader (MMR) output format. Leat 10 and ATC developer Hajime Inoue

contributed experimental support for MMR which is operational in revisions 23-38 on the project

website. The feature was later removed with the introduction of 64-bit addressing support due to

compatibility problems. A stand-alone flatten.py utility authored by Inoue is still available

to convert MMR files to a linear format, but only works for 32-bit kernel installations. This

utility was employed to analyze the real-world memory captures discussed in Section 4.3.

2.3. Structured Memory Analysis

Most references to memory analysis on OS X discuss context-free techniques such as

string searches, manual hex examination, and file carving11. In order to perform meaningful

analysis of a memory image, an understanding of the composition and location of key kernel

9 Intel Corporation. 2012. “Intel 64 and IA-32 Architectures Software Developer’s Manual.” Accessed 31 March.

http://download.intel.com/products/processor/manual/325462.pdf
10 Leat, Chris. 2011. “Forensic analysis of Mac OS X memory.” Master’s thesis, University of Westminster.\
11 Makinen, Juho. 2008. “Automated OS X Macintosh password retrieval via FireWire.” Last modified February 29.

http://www.juhonkoti.net/2008/02/29/ automated-os-x-macintosh-password-retrieval-via-firewire
 Malard, Arnaud. 2011. “H@CKMacOSX: Tips and tricks for Mac OS X hack.” Last modified August 3.

http://sud0man.blogspot.com/2011/08/hackmacosx-tips-and-tricks-for-mac-os-x.html

 5

structures is required. Because Darwin (Apple’s UNIX core for OS X) is open source, the

composition of kernel structures can be determined from the header files they are defined in.

Locating the structures in memory requires a mapping of identifiers and offsets, or a

kernel symbol table. Suiche notes “[s]ymbols are a key element of volatile memory forensics

Figure 1. volafox release 52 package diagram.

 6

without them an advanced analysis is impossible” 12 . The KPCR structure can be used in

Windows to get the symbols directly from memory13, however in OS X the equivalent “kernel

sections are destroyed as soon as the kernel (mach_kernel) is loaded”14Volatility solves this

problem using a database of overlay files containing the requisite symbol tables for select Linux

distributions and kernel versions15, similar functionality is provided for volafox by Leat16. In

both Linux and OS X therefore, the “easiest way to retrieve kernel symbols is to extract them

from the kernel executable of the hard-drive”17.

Figure 2 shows key features of the mach_kernel executable, located at the root

directory of the OS X file system. Suiche18 describes how knowledge of the file’s structure can

be used to build a symbol table for a particular build of OS X. Figure 3 demonstrates how the

symbol table derived from the mach_kernel executable is used to parse a list of running

processes. Symbol _kernproc provides a static address for the head of the process list,

kernel_task (PID 0), which is unique in its use of static data structures (Singh 2006, 293). The

process ID, parent’s PID, command name and pointer to struct pgrp are members of

struct proc. Associated username information is located in struct session, which is

referenced by struct pgrp. The substructure p_list provides a linked-list that can be

walked to parse the entire running process list.

3. Methodology

12 ibid 4
13 Dolan-Gavitt, Brendan. 2008. “Finding kernel global variables in Windows.” Last modified April 16.

http://moyix.blogspot.com/2008/04/finding-kernel-global-variables-in.html
14 ibid 4
15 Case, Andrew. 2011. “Bringing Linux support to Volatility.” Last modified March 1. http://

dfsforensics.blogspot.com/2011/03/ bringing-linux-support-to-volatility.html
16 ibid 10
17 ibid 4
18 ibid 4

 7

The desired process-to-file handle information is an approximation of output from the

UNIX lsof command for OS X19 (Apple Inc. 2011). Because lsof is included with operating

system, it offers a reliable source of information for comparison. Emulating the output of this

tool provides validation and offers the examiner a familiar interface to interact with. Figure 4

shows sample lsof output and Table 1 describes the information in each column. The new

volafox module for listing file handles includes functionality for parsing the nine default lsof

fields and the mode identifier integrated with the FD column.

While an ideal implementation would fully duplicate functionality of the lsof

command, due to the diversity of data structures involved the problem must be scoped for this

research. Two design decisions bounding the implementation are the subset of handle types

supported, and the subset of filesystems supported.

19 Apple Inc. 2011. “lsof(8) Mac OS X manual page.” Last modified March 21. http://developer

.apple.com/library/mac/#documentation/Darwin/Reference/ManPages/man8/lsof.8.html

Figure 2. mach_kernel executable.

 8

The volafox open files module supports handle types that subscribe to the virtual node

(vnode) interface. Excluded types include POSIX semaphores and shared memory files, kernel

event queue files, pipes, and sockets. These types are reported as part of the file descriptor table,

but with DEVICE, SIZE/OFF, NODE and NAME fields unsupported. Additionally, the UNIX

lsof command classifies sockets by a variety of subtypes, which the volafox open files module

groups together using the generic type description ‘SOCKET’.

Filesystem support includes HFS+ and DEVFS. HFS+ is the default format for the OS X

boot volume and DEVFS is used to abstract certain devices such as special character files.

Among other uses, special character files describe ttys devices controlling the print streams

stdin, stdout, and stderr for terminal programs. HFS+ and DEVFS account for the

filesystems most commonly encountered during development and testing, but the vnode interface

makes reference to at least 20 other types. One impact of this constraint is that files stored on

network filesystems, FAT32, NTFS and others, do not have volafox support for lsof fields

outside the vnode interface.

3.2. Kernel Design Recovery

Developing the new volafox module for listing open files requires an understanding of 32

unique C data structures from the OS X source code, four of which are described by Suiche20 to

list running processes. These include 26 structure (struct), three enumeration (enum), and three

union definitions. Identifying the data structures containing critical information and the

relationships between them is one of the primary contributions of this research because “the

20 ibid 4

$ lsof –p 109
COMMAND PID USER FD TYPE DEVICE SIZE/OFF NODE NAME
bash 109 6ad cwd DIR 14,2 578 202041 /Users/6ad
bash 109 6ad txt REG 14,2 1346544 262558 /bin/bash
bash 109 6ad txt REG 14,2 1054960 264388 /usr/lib/dyld
bash 109 6ad txt REG 14,2 213385216 466405 /private/var/db/
 dyld/dyld_shared
 _cache_x86_64
bash 109 6ad 0u CHR 16,0 0t369 611 /dev/ttys000
bash 109 6ad 1u CHR 16,0 0t369 611 /dev/ttys000
bash 109 6ad 2u CHR 16,0 0t369 611 /dev/ttys000
bash 109 6ad 255u CHR 16,0 0t369 611 /dev/ttys000

Figure 4. UNIX list open files (lsof) command.

 9

 member associated with each lsof field is shown in Table 2, however a few additional details

are needed to understand the linked data structures and data decoding.

Structure task, as pointed to by proc in Figure 6, provides a link to program text files

(FD txt). Note that each memory object may reference a struct vm_object or recursively

refer to another entry. Memory mapped files are backed by a vnode pager, but the pager may be

located in the shadow object for external memory managers (Singh 2006, 571).

The file descriptor table and current working directory are referenced from struct

filedesc as shown in Figure 7. Member filedesc.fd_ofiles is a pointer to the start of

a fileproc array. Elements of the array that contain a valid fileglob pointer reference a

handle, those that do not are available to hold one. The array index represents the numerical file

identifier used by the FD field of the lsof output. The integer filedesc.fd_lastfile

indexes the last file in the array and provides an iteration bound. The array itself makes up the

file descriptor table, used by a process to reference all open files (ASCII, word processing, logs,

temp, etc.). The file mode, also known as read/write access, is determined from the value of

fileglob.fg_flag using the bitmap definitions in bsd/sys/fcntl.h.

Table 1. UNIX lsof output fields.

COMMAND First nine characters of the UNIX command associated with the process.
PID Process identification number.

USER Login name of the user to whom the process belongs.

FD

File descriptor is a numeral index into the process open handle array optionally followed by a
mode identifier: r (read access), w (write access), or u (both). Two other descriptors
commonly seen are cwd representing the current working directory for the process and txt
used for program text (code and data). These files are of high forensic value because they
include the executable from which the command was launched, linked libraries, and other
memory-mapped files. See the output section of the lsof manpage for a full list of
descriptors used (Apple Inc., 2011).

TYPE
Node type associated with the handle. See the output section of the lsof manpage a partial
type listing (Apple Inc., 2011). Note that numerous undocumented types were encountered in
testing such as FSEVENT.

DEVICE
Major and minor device numbers separated by a comma. The first number describes a class of
hard/software device and the second is a unique identifier for a particular instance of that class.

SIZE/OFF
Size or offset of a file reported in bytes. Offsets are preceded by a leading 0t to distinguish
when the column is mixed.

NODE
The node number for a local file. This unique identifier is filesystem dependent. For example,
files stored on HFS+ report the catalog node identifier (CNID) for this field, whereas DEVFS
files use a UNIX inode number instead.

NAME Mount point and file system on which a file resides, or name of character special device.

 10

Determining the handle device involves additional logic because the values are encoded.

The device identifier parsed from either struct mount or struct specinfo (depending

on the handle filesystem) is decoded using macros in bsd/sys/types.h to return major and

minor device number. Similarly, returning the correct SIZE/OFF value for directories requires

calculation using a count value found in a substructure of struct cnode, the equation:

	 	2 	∗ AVERAGE_HFSDIRENTRY_SIZE

found in bsd/hfs/hfs_vnops.c, and the macro definition from bsd/hfs/hfs.h.

3.3. Structure Templates

Existing volafox modules are not readily extensible and require additional logic

branching for each variant in size or composition of the underlying kernel data structures. This

section documents a solution developed for flexible analysis of multiple kernel architecture and

OS versions. The solution consists of two parts. First, an interface is specified to describe data

structures called templates. Next, a dynamic mechanism using software classes is described for

Figure 6. Memory-mapped files (txt).

 11

selecting the correct template for a particular memory image based kernel architecture and OS

version at runtime. A method for automated generation of the templates is also presented.

3.3.1 Template Interface.

The following interface is defined for required members of each structure:

template = { MBR_NAME : (MBR_TYPE, OFFSET, SIZE, FIELD,
 SUB_STRUCT), … }

Table 3 lists Python types from the kernel structure template interface, which itself is

implemented as a dictionary. Substructures are defined as those contained within the memory

allocated for a super structure. They share the same dictionary format as regular structures and

their values are referenced recursively. Figure 8 shows the 32-bit Snow Leopard variant of the

struct proc template as an example. To support the test cases described in Section 4.2, three

additional templates for the process structure are defined, one for each combination of OS

version and architecture.

Table 3. Template interface fields.

Variable
Python
Type

Description

template dict template implementing the C stuct interface
MBR_NAME str dictionary key, variable name for a struct member
template[MBR_NAME] tuple dictionary value, a struct member description
MBR_TYPE str C type of the named member
OFFSET int offset in bytes for the member
SIZE int size in bytes for the member type
FIELD str lsof field represented by member
SUB_STRUCT dict recursively defined substructure (optional)

template = {
 'p_list' : ('LIST_ENTRY(proc)', 0, 8, '' , {
 'le_next' : ('struct proc *', 0, 4, ''),
 'le_prev' : ('struct proc **', 4, 4, '')
 }
),
 'p_pid' : ('pid_t', 8, 4, 'PID'),
 'task' : ('void *', 12, 4, ''),
 'p_fd' : ('struct filedesc *', 104, 4, ''),
 'p_textvp' : ('struct vnode *', 388, 4, ''),
 'p_comm' : ('char[]', 420, 17, 'COMMAND'),
 'p_pgrp' : ('struct pgrp *', 472, 4, '')
}

Figure 8. struct proc template, for Mac OS X 10.6 on x86 hardware.

 12

3.3.2 Template Selection.

The second component in the template solution is a Python class initializer that

dynamically selects the correct template for a given subclass based on the OS version and

architecture of the memory image under analysis. Because classes in the open files module

manage fields and methods associated with a particular kernel structure, all inherit from the

abstract superclass in Figure 9.

The first four static variables belong to the abstract class and are shared by all Struct

subclasses. The mem variable is a reference to one of the PAE objects responsible for virtual-to-

physical address translation. Verbose flag ver indicates if all file descriptors should be printed,

including those for types not fully supported by the open files module. The arch and kvers

variables report the kernel architecture and version respectively. The final three fields are virtual

static variables because their assignment is deferred to the subclasses. The constant TEMPLATES

is a nested dictionary from which the static template is assigned the first time the initializer

runs based on value of arch and kvers. The static ssize is subsequently assigned based on

the selected template and determines how many bytes the initializer reads from the address

passed as an argument to provide coverage of all members specified in the structure template.

class Struct(object):

 mem = None
 ver = False
 arch = -1
 kvers = -1

 TEMPLATES = None
 template = None
 ssize = -1

 def __init__(self, addr):

 if self.__class__.template == None:

 self.__class__.template = self.__class__.TEMPLATES[Struct.arch] \
 [Struct.kvers]

 for item in self.__class__.template.values():
 if (item[1] + item[2]) > self.__class__.ssize:
 self.__class__.ssize = item[1] + item[2]

self.smem = Struct.mem.read(addr, self.__class__.ssize);

Figure 9. Simplified abstract class Struct (no error handling).

 13

Combining the structure template interface with an abstract initializer offers a solution

that greatly simplifies program logic needed to support a selection of architectures and OS

versions. The result is also highly extensible because new templates can be added without any

code refactoring as long as the member names remain consistent across versions. Figure 10

shows the concrete subclass corresponding to struct devnode and demonstrates use of the

structure template solution.

3.3.3 Member Offsets and Type Sizing.

While the dictionary constants used to implement structure templates are easy to work

with programmatically, generating their syntax is labor intensive. The new open files module

uses (18 classes * 2 versions * 2 architectures) = 72 structure templates, requiring a great deal of

error-prone coding and debugging if generated by hand. Determining size and offset values for

each member in the template is also very difficult to accomplish manually due to the complexity

of defined types included in the kernel structures. The solution to both of these challenges is an

external C program that dissects kernel structures and automates the generation of the Python

dictionary syntax needed for each template.

The offsets.c program was developed to find the size and offset of each required

structure member and print the results as a structure template for use in lsof.py. Figure 11

shows a function from the program that prints a template for struct _vm_map. The variable

member is a C structure defined in the program to hold the fields described in Table 3 and

class Devnode(Struct):

 TEMPLATES = {
 32:{
 10:{'dn_ino':('ino_t',112,4,'NODE')}
 , 11:{'dn_ino':('ino_t',112,4,'NODE')}
 },
 64:{
 10:{'dn_ino':('ino_t',192,8,'NODE')}
 , 11:{'dn_ino':('ino_t',192,8,'NODE')}
 }
 }

 def __init__(self, addr):
 super(Devnode, self).__init__(addr)

 def getnode(self):
 return unpacktype(self.smem, self.template['dn_ino'], INT)

Figure 10. Concrete class Devnode.

 14

printmember() formats each as a key/value pair for the enclosing Python dictionary. The

argument mh is a function pointer to a substructure that is printed recursively.

The C language sizeof operator is used to find the size of any type, and the

preprocessing macro offsetof defined in stddef.h can return the offset of any member for

a given structure. However, most of the header files defining kernel structures are not available

in the include path for OS X. Sesek (2012) explains the problem and suggests a workaround in a

blog post about kernel debugging:

Structs […] are merely human-friendly offsets into a region of memory. Their
definition and layout can be shamelessly copied from the XNU open source
headers into your kext’s project so that you can access fields in kernel private
structures. As it turns out, virtually ever structure within the kernel is designed to
be opaque to a kext. Apple decided to do this so that they can freely change the
kernel structures, but it also makes writing a debugging tool like this a little
harder. To do so you need to edit the headers so they compile in your project
through a process I call “munging.”

Sesek’s method was modified to access the kernel definitions needed for offsets.c using

local headers.

Three out of 18 template functions written for offsets.c are known to produce

incorrect member offsets for 64-bit kernel architecture. The problem is believed to be a complex

definition conflict for some low-level types. Several C types are defined for userspace with

standard libraries such as stdio.h. However, the kernel sometime uses different sizes for these

same types and forced redefinition yields a compilation error. When the offsetof macro

int vm_map() {

 member m;
 int (*mh)(unsigned long int offset) = &vm_map_header;

 printf("struct_vmmap = {");

 m.var_name = "hdr";
 m.var_type = "struct vm_map_header";
 m.offset = offsetof(struct _vm_map, hdr);
 m.size = sizeof(struct vm_map_header);
 m.field = "";
 printmember(m, mh);

 printf("}\n");
 return 0;
}

Figure 11. Template generation function.

 15

measures a userspace definition the result is an error for some architectures. Manual offset

calculation and hex analysis are used to resolve the problem for affected templates, resulting in

adjustment made to the TEMPLATES constant of the equivalent structure class in lsof.py.

A wrapper for offsets.c called printstructs.py is written to verify the output

dictionary as executable Python code, print the structure members in a human-readable format

for debugging, and handle compilation flags related to architecture. Dictionary output from

printstructs.py was then pasted into the TEMPLATES constant of each class in lsof.py

to complete the definition.

3.4. Open Issues

There are two outstanding problems with the research module developed: reporting the

correct user associated with a process, and determining size of the /dev directory.

The manpage for the UNIX lsof command describes output of the USER field as “the

user ID number or login name of the user to whom the process belongs, usually the same as

reported by ps(1)”. However, output from the volafox open files module is known to

incorrectly report the process login name as shown in Figures 12-13.

The difference shown is not consistent across all processes of a full file listing. In many

cases the expected USER value is reflected in the output, but not always. This problem is not

unique to the volafox open files implementation as it is also present in the volafox process listing

module and the original work on which it was based (Suiche 2010). Kernel structure analysis of

the source headers could not identify an issue with Suiche’s methodology, but all tests indicate

that struct session cannot consistently return the username for any of the user-related

$./volafox.py –i 10.6.8x86.vmem –o lsof –p 15
COMMAND PID USER FD TYPE […]
distnoted 15 root cwd DIR […]
distnoted 15 root txt REG […]
distnoted 15 root txt REG […]
distnoted 15 root txt REG […]
distnoted 15 root 0r CHR […]
distnoted 15 root 1 PIPE […]
distnoted 15 root 2 PIPE […]
distnoted 15 root 3u KQUEUE […]
distnoted 15 root 56u SOCKET […]

Figure 12. volafox user output.

lsof –p 15
COMMAND PID USER […]
distnoted 15 daemon […]
distnoted 15 daemon […]
distnoted 15 daemon […]
distnoted 15 daemon […]
distnoted 15 daemon […]
distnoted 15 daemon […]
distnoted 15 daemon […]
distnoted 15 daemon […]
distnoted 15 daemon […]

Figure 13. lsof user output.

 16

keywords available for ps. There is also no known method to determine when the session

structure returns the correct value.

A second problem identified during development is an inability to correctly report the

SIZE/OFF field for certain directories. The /dev directory is typed DTYPE_VNODE in

fileglob.fg_type and VDIR in vnode.v_type. However, it has a tag of VT_DEVFS

from vnode.v_tag rather than the VT_HFS seen for most other directories. Figure 14 shows

an example of /dev as reported by the UNIX lsof command.

Note that 4495	mod	34	 	0, and therefore sizing by the entry count as described in

Section 3.2 is not valid for this directory. Error! Reference source not found.2 includes three

alternate locations for the size applicable to other file types, but none were found to be effective

in this case. Fortunately, due to the unique combination of tag and type for /dev, the failure is

possible to detect. Since the location of the size is unknown, the volafox open files module prints

-1 for the size of /dev to indicate the field is unsupported.

4. Testing

Testing effectiveness of the volafox module for listing OS X file handles involves

comparing its output with that of lsof. A successful implementation of the system must

accurately report all file handles, adjusted for stated constraints and known deficiencies. Testing

is conducted on controlled test cases and on captures from real user’s machines.

The complex nature of a modern operating system like OS X guarantees changes to the

system state between the time when the lsof command is run and the memory dump occurs21.

Some allowance is necessary to account for volatility of the handles list during this interval. A

successful implementation therefore becomes one that can be validated against the UNIX lsof

command, adjusted for stated constraints, known deficiencies, and accuracy of the validation

method.

21 Hay, Brian, Kara Nance, and Matt Bishop. 2009. “Live analysis: Process and challenges.” IEEE Security &

Privacy 7(2): 30-37.

lsof +d /dev
COMMAND PID USER FD TYPE DEVICE SIZE/OFF NODE NAME
launchd 1 root 8r DIR 20,5853800 4495 305 /dev

Figure 14. /dev directory size.

 17

4.1. Comparison Taxonomy

A formal list of 21 differences across four categories is used to classify reasons output

from lsof and the new volafox handles module may differ. Taxonomic categories consist of

constraints, deficiencies, explained differences, and failures. Enumeration labels are employed

by the script validate.py to describe how similar the volafox output is to its validation data.

4.1.1 Constraints.

Constraints are defined as differences in output that occur due to system design decisions.

The volafox open files module has several limitations with regard to handle type and filesystem

tag that are used to scope the research implementation.

C1. The lsof subtype for socket handles cannot be determined. A value of
DTYPE_SOCKET for the member filglob.fg_type indicates a socket handle. The
lsof command reports a number of subtypes for these handles including: systm,
unix, IPv4, IPv6, rte, key, ndrv, and possibly others that were not observed in
testing. Sockets are assigned the generic type SOCKET in the volafox open files output.

C2. Only handles subscribing to the virtual node (vnode) interface are fully supported. A

value of DTYPE_VNODE for the member fileglob.fg_type indicates the vnode
interface is in use for a particular handle. Full support indicates meaningful output is
reported for all nine lsof command fields. Non-vnode handles show the value ‘-1’ for
DEVICE, SIZE/OFF, NODE, and NAME to indicate these fields are unsupported in the
volafox open files output.

Table 4. Field differences versus file type.

File Type COMMAND PID USER
FD+

mode
TYPE DEVICE

SIZE/
OFF

NODE NAME

cwd ✓ ✓ D1 ✓ ✓ ✓ ✓ ✓ ✓
txt ✓ ✓ D1 ✓ ✓ ✓ ✓ ✓ ✓

REG ✓ ✓ D1 ✓ ✓ ✓ ✓ ✓ ✓
DIR ✓ ✓ D1 ✓ ✓ ✓ D2 ✓ ✓

CHR ✓ ✓ D1 ✓ ✓ ✓ E7 ✓ ✓
LINK ✓ ✓ D1 ✓ E5 ✓ ✓ ✓ ✓
FIFO ✓ ✓ D1 ✓ ✓ E6 ✓ ✓ ✓

VNODE
(other)

✓ ✓ D1 ✓ ✓ C3 C3 C3 ✓

PSXSHM ✓ ✓ D1 ✓ ✓ C2 C2 C2 C2
PSXSEM ✓ ✓ D1 ✓ ✓ C2 C2 C2 C2
KQUEUE ✓ ✓ D1 ✓ ✓ C2 C2 C2 C2

PIPE ✓ ✓ D1 ✓ ✓ C2 C2 C2 C2
FSEVENT ✓ ✓ D1 ✓ ✓ C2 C2 C2 C2
SOCKET ✓ ✓ D1 ✓ C1 C2 C2 C2 C2

 18

C3. Only vnodes tagged HFS+ or DEVFS are fully supported. A value of VT_HFS or

VT_DEVFS for the member vnode.v_tag indicates a supported filesystem. The lsof
command fields DEVICE, SIZE/OFF, and NODE are defined outside struct vnode
and therefore unsupported for other filesystems. Unsupported fields are indicated in the
volafox open files output with an appropriate value from ECODE, a global dictionary
defined for lsof.py.

4.1.2 Deficiencies.

Deficiencies are defined as differences in output that occur due to known implementation

problems. As described in Section 3.4, the volafox open files module has two open issues.

D1. The lsof USER field is not correctly reported for all processes in a full file listing. This
problem is not consistent across all processes and the volafox open files module is not
capable of detecting its occurrence.

D2. Size of the /dev directory cannot be determined. Handles with vnode.v_type of
VDIR and vnode.v_tag of VT_DEVFS such as /dev show the value ‘-1’ in the
SIZE/OFF field.

4.1.3 Explanations.

Explained differences are those in output that occur due to reproducible idiosyncrasies of

the tools used for capture or validation. They are distinct from failures because the explanations

are not speculative, and the differences can be detected using automation. Explanations E4, E5,

and E6 are believed to be bugs in the OS X version of the lsof program.

E1. The UNIX lsof command output always includes the lsof command and its
associated handles, whereas a memory dump does not. For 10.7 only, the dependent
process sudo is present in addition to lsof when executed with administrator
privileges.

E2. Memory captured using the MMR tool includes handles associated with the process

MacMemoryReader and its dependency image, whereas output from the lsof
command does not.

E3. Data collected using capture.py (4.3) does not share the process sh because

MacMemoryReader and lsof are executed in different subprocesses.

 19

E4. OS X duplicates some handles in a full listing using lsof. Duplication occurs at least
once per listing. Figure 15 demonstrates the problem.

In all observed cases, the file descriptor ‘twd’ (the per-thread working directory)
identifies the duplicate, while all other fields remain the same.

E5. OS X reports the type of symbolic links as ‘0012’ instead of ‘LINK’ in the lsof TYPE
field. The keyword ‘LINK’ is specified in the manpage and therefore the volafox handles
module reports symbolic links using that label. The bug has only been observed in the
10.7 version of OS X.

E6. OS X does not report the lsof DEVICE field for FIFO type files. The manpage does not

discuss the omission and the volafox open files module can determine the major and
minor device number for FIFO special files.

E7. Execution of the lsof command causes the offset of its terminal file (ttys) to grow.
For cases where a ttys file is the same used by the lsof command, any offset
difference is classified as E7 rather than F6.

4.1.4 Failures.

Failures are defined as differences in output not already accounted for by constraints,

deficiencies, or explanations that occur due to asynchronous data collection or implementation

artifact. It is important to note that the fault causing failure is undefined by default. Analysis in

Section 4.2 indicates that in most cases failure is a consequence of validation accuracy rather

than an error in the volafox open files module implementation.

F1. Command name mismatch (field: COMMAND). Adjusted for F2.

F2. Missing/extra process (field: PID). Adjusted for E1, E2, and E3.

F3. Missing/extra file descriptor (field: FD). Adjusted for F2 and E4.

F4. File mode mismatch (field: FD). Adjusted for F3.

F5. File type mismatch (field: TYPE). Adjusted for F3, C1 and E5.

F6. Device mismatch (field: DEVICE). Adjusted for F3, C2, C3, and E6.

$ sudo lsof
COMMAND PID USER FD TYPE DEVICE SIZE/OFF NODE NAME
...
mds 29 root cwd DIR 14,2 1088 2 /
mds 29 root twd DIR 14,2 1088 2 /
...

Figure 15. lsof handle duplication.

 20

F7. Size/offset mismatch (field: SIZE/OFF). Adjusted for F3, C2, C3, D2, and E7.

F8. Node identifier mismatch (field: NODE). Adjusted for F3, C2 and C3.

F9. Pathname mismatch (field: NAME). Adjusted for F3, C2.

Username mismatch is classified as D1 and therefore not listed as a failure. It is reported

in the results after adjustment for F2. Reporting failures F2 and F3 also aligns the process and

handle lists of each file respectively for the remaining failure tests. This means, for example, that

F1 does not report command name mismatches that occur due to a missing process because F2

already accounts for it.

4.2. Controlled Test Cases

Controlled test case results are examined with the goal of identifying previously

unidentified implementation problems. The majority of constraints, deficiencies, and explained

differences are not considered in this analysis as the failures alone describe possible unknown

faults in the tool developed. The validation method conducts software test cases that either pass

or fail. Resulting failures are then addressed individually, or reclassified in the difference

taxonomy. Where an explanation is provided for a failure, the discussion must be viewed as

speculative because all concrete differences identified have been integrated with the analysis

taxonomy.

One design goal for the module developed is to provide coverage for a breadth of OS

versions and kernel architectures. These test cases are intended to demonstrate that coverage by

representing both i386 and x86_64 Intel architectures over the span of minor OS X versions

(10.6.0-8 and 10.7.0-3) within the current and previous releases of the operating system. All tests

are performed on guest installations of OS X running as a VM. This setup offers the linear file

format volafox requires in analyzing 64-bit kernel memory, the contents of which are written to

disk when the VM is suspended. Efforts were made to minimize OS interference with the state of

open files during collection. Specific modifications include: removing network interfaces,

deleting startup items, and disabling the OS X automatic file indexing process known as

Spotlight. The sole installation of OS X Server also had the servermgrd daemon disabled to

eliminate its numerous child processes on startup.

 21

Configurations for the controlled test cases include:

1. OS X version: 10.6.8
Darwin kernel architecture: i386
RAM installed: 1 GB

2. OS X version: 10.6.0 Server
Darwin kernel architecture: x86_64
RAM installed: 1GB

3. OS X version: 10.7.3
Darwin kernel architecture: i386
RAM installed: 2GB

4. OS X version: 10.7.0
Darwin kernel architecture: x86_64
RAM installed: 2GB

 Table 5 summarizes results across the four controlled test cases. After accounting for

constraints, deficiencies, and explained differences listed in the analysis taxonomy (not shown),

this table indicates how similar the volafox open files output is to the lsof approximation.

Failures in the comparison are marked in red and discussed in order from top to bottom of the

table.

The extra process in the volafox output (F2) for the 10.7.x cases is a daemon with the

highest PID in the process list. It therefore appears to have been launched after executing lsof,

explaining its absence in the baseline listing in both instances.

While the username deficiency (D1) is not classified as a failure, it is listed in the table to

emphasize the number of handles affected by this bug.

The additional volafox file descriptors (F3) in the 10.7.3 test case, and three of the four in

the 10.7.0 case belong to launchd. Because the launchd process manages all other daemons

(Singh 2006, 38), it is very active and therefore volatile. For both 10.7.x test cases the lsof and

launchd processes appear to be confounded, though similar problems were not observed in the

10.6.x test cases. These differences are believed to represent normal OS interference with the

state of open files between the time lsof is executed and the VM is frozen.

Table 5. Difference summary for controlled test cases.

Diff Field
10.6.8
i386

10.6.0 Sever
x86_64

10.7.3
i386

10.7.0
x86_64

F1 COMMAND 0 0 0 0
F2 PID 0 0 +1 +1
D1 USER 15% 17% 38% 19%
F3 FD 0 0 +3 +4
F4 mode 0 0 0 0
F5 TYPE 0 0 0 0
F6 DEVICE 0 0 0 0
F7 SIZE/OFF 1 1 1 1
F8 NODE 2 1 1 1
F9 NAME 0 0 0 0

 22

The fourth extra file descriptor (F3) in the 10.7.0 test case appears to be a malformed

vnode. All members within the structure are invalid, and the file name is made up of non-ASCII

characters. This case does call into question the methodology described in Section 3.2 for

determining valid descriptors in the file table. Since the occurrence appears to be isolated, it is

particularly difficult to debug this potential implementation failure. One possible explanation is

that the handle may be an initialized but as-yet-unused vnode in the file descriptor table. Luckily,

the error output is well-handled and therefore a human analyst should be able to make this

determination with ease even if the tool cannot.

In all four test cases, the file size failure (F7) is for the pseudo-tty device opened by

process Terminal. The Terminal application is in the process hierarchy for lsof, which as

explained in E7 is known to modify some ttys device offsets during execution. This

explanation might have led to another explained difference in the taxonomy, but detection could

not be easily automated for this case.

In all four test cases, the node identification failures (F8) belong files related to time zone

opened by the notifyd process. It is unclear why the notification server makes changes to

these files during lsof execution and additional knowledge of OS X internals is needed to

analyze this failure further. However, because the difference in node value is always observed on

regular files but only those associated with time zone and this particular process, it is not

believed to be an implementation fault.

Results from the four controlled test cases yield several important conclusions. First, the

volafox open files module is functional for kernels utilizing both Intel i386 and x86_64

architectures. Second, the tool provides coverage for the OS X 10.6.x Snow Leopard and 10.7.x

Lion operating systems. Third, the username deficiency (D1) results suggest that this field cannot

be trusted in the volafox output. Finally, the low number of unexplained failures suggests the

implementation is successful under the research definition.

4.3. Real-world Data Analysis

In addition to the controlled test cases, the volafox handles module was also tested

against a set of memory collected from physical machines. The script capture.py was

developed to automate collection of memory using the MMR tool and a variety of incident

response data, including lsof, for comparison. These real-world collections are invaluable for

 23

program debugging and revealing edge cases in the handles implementation but are not well

suited for validation for several reasons. First, because failures cannot be replicated it is difficult

to determine if a fault is caused by implementation bug or validation accuracy. Second, the

collection time required by MMR assures that output from lsof is always stale when compared

to the memory capture. Finally, the real-world data available does not cover the breadth of OS

versions and kernel architectures.

Revision 52 of the volafox project does not support the MMR output format directly. As

a result, only i386 captures are analyzed with volafox after conversion to linear format using the

flatten.py utility. Ten qualifying samples were collected from real Mac computers, eight of

these running 10.6.8, one 10.7.0, and one 10.7.2.

Table 6 shows a combined summary of the real-world results. Because the hardware and

software configurations vary greatly between collections, the data points represent different

sample populations that cannot be aggregated to produce valid mean or standard deviation.

Instead, the range of each constraint, deficiency, explained difference, and failure is reported to

offer a general impression of how commonly these differences occur. A few noteworthy

conclusions emerge from this analysis.

1. With up to 10% of processes (F2) and 22% of handles (F3) thrown out for comparison
during alignment, lsof does not approximate the real-world data very closely.

2. The set of non-vnode handles (sockets, pipes, semaphores, etc.) make up a significant
portion of the lsof results (C2). Sockets in particular are of high investigative value and
should therefore be considered in future work.

3. Unsupported file systems (C3) in the real-world data were cross-referenced with the

mount information also collected by the capture.py script to determine which types
should be considered for future support. The results included one instance each of:
msdos (FAT32 external hard drive), cddafs (responsible for reading audio CDs),
ntfs (Apple Bootcamp installation of Windows), and mtmfs (used to implement the
Mobile Time Machine feature).

4. Explained differences (E1-E7) and the /dev sizing deficiency (D2) do not affect a large
number of processes and handles. However, their enumeration is important because it
filters the number of failures that must be considered.

5. For a given handle the size/offset (F7) and node identifier (F8) information can be

particularly volatile, with up to 10 and 8 percent change observed respectively.

 24

6. Upon manual inspection of the failures, high volatility of the name field (F9) was often
linked to two applications: Spotlight and the Microsoft suite. Spotlight is Apple’s indexed
search technology and automatically begins processing external media when mounted.
Because the capture.py script is delivered on external media, the act of collection
increases indexing activity.

The real-world data identifies a number of implementation problems that may not have

been encountered otherwise. For example, the E2, E3, and E7 results include an asterisk because

one of the samples experienced an interesting collection failure. The capture.py script and all

its associated processes (Python, sh, MacMemoryReader, image, etc.) are all absent from

the volafox output for this sample, making it clear the processes list had been truncated. Due to

the high occurrence of invalid pointers observed in the real-world data and several volafox

execution errors, additional exception handling was added to the lsof module to support

debugging. The new code identified several cases where the underlying linked data structures

were broken in the memory image. In a real investigation these occurrences might represent

evidence lost. One recommendation to mitigate this problem is to assure memory capture

Table 6. Combined real-world results (10 samples).

Diff Description Quantity or % Per Sample
C1 SOCKET handles cannot be subtyped 15-22% of handles affected
C2 Non-vnode handles are not fully supported 27-40% of handles affected

C3
Non-HFS+/DEVFS vnodes are not fully
supported

0-4% of handles affected

D1 ∆ USER field 16-54% of usernames misreported
D2 /dev directory cannot be sized 0-1 handles affected
E1 lsof process is not shared 0-1 process removed

E2
MacMemoryReader and image processes
are not shared

0*-2 processes removed

E3 sh process is not shared 0*-1 process removed
E4 Duplicate handles labeled FD: ‘twd’ 2-5 handles removed
E5 LINK handles are mislabeled 0-3 handles affected
E6 FIFO handles do not report device identifier 0-2 handles affected
E7 lsof ttys file size is not shared 0*-13 handles affected
F1 ∆ COMMAND field 0 commands differ
F2 ∆ PID field 0-10% of processes removed
F3 ∆ FD field 4-22% of handles removed
F4 ∆ MODE field 0-2 modes differ
F5 ∆ TYPE field 0-2 types differ
F6 ∆ DEVICE field 0-2 device identifiers differ
F7 ∆ SIZE/OFF field 0-10% of sizes/offsets differ
F8 ∆ NODE field 0-8% of node identifiers differ
F9 ∆ NAME field 0-3% of names differ

 25

proceeds as rapidly as possible. One factor found to affect capture speed in real-world collections

is the type of external media used to store the image. Timing results recorded by capture.py

showed a 16 Mb/s average increase in capture speed when using an external hard drive over flash

storage.

5. Conclusions and Future Work

 This paper presents documentation and implementation of a new capability for parsing

file handles from an OS X memory capture. Initial development of the module required

performing a manual design recovery of the data structures responsible for handling files for OS

X. To alleviate the manual recovery process in future versions of OS X, a novel header-

processing tool programmatically parses structures defined for different kernel architecture and

OS versions and converts these into templates used by the file handle module.

Testing the implementation identified several areas for future work not directly related to

the research goal. First, the open files module does not reliably output the correct user of a

running system process. No fault could be identified in the implementation, nor any problem

with the kernel structure analysis described in prior work. Second, memory captured on physical

hardware suffers from a high number of invalid pointer references, occasionally resulting in

malformed linked-lists. Robust exception handling needs to be implemented throughout volafox

to address this problem in a memory analysis tool.

Finally, several additional modules must be developed to establish volafox as an analysis

tool suited for technical users and forensic examiners. The National Institute of Standards and

Technology (NIST 2006) describes the minimum requirements for volatile collection during

incident response. At present, the volafox tool includes modules for parsing several of these

requirements but is still missing a list of login session, network configuration, and operating

system time.

Acknowledgements

This research was supported by the U.S Air Force Cyberspace Technical Center of

Excellence and the U.S. Air Force Office of Scientific Research (AFOSR/RSL). Views

expressed in this paper are those of the authors and do not reflect the official policy or positions

of the U.S. Air Force, U.S Department of Defense, or the U.S. Government.

 26

Andrew Hay received a M.S. from the Air Force Institute of Technology
and completed a thesis based on the research in this paper. He has a B.S.
in Computer Science from the University of Arizona. Research interests
include mobile device forensics, memory analysis, and network security.

Gilbert L. Peterson is an Associate Professor of Computer Science at the
Air Force Institute of Technology, and Vice-Chair of the IFIP Working
Group 11.9 Digital Forensics. Dr. Peterson received a BS degree in
Architecture, and an MS and Ph.D in Computer Science at the University
of Texas at Arlington. He teaches and conducts research in digital
forensics, and statistical machine learning.

	Acquiring OS X File Handles through Forensic Memory Analysis
	Recommended Citation

	Acquiring OS X File Handles Through Forensic Memory Analysis

