Air Force Institute of Technology

AFIT Scholar

Faculty Publications

9-2006

Fuzzy State Aggregation and Policy Hill Climbing for Stochastic
Environments

Dean C. Wardell
Air Force Institute of Technology

Gilbert L. Peterson
Air Force Institute of Technology

Follow this and additional works at: https://scholar.afit.edu/facpub

6‘ Part of the Computer Sciences Commons

Recommended Citation

Wardell, D. C., & Peterson, G. L. (2006). Fuzzy State Aggregation and Policy Hill Climbing for Stochastic
Environments. International Journal of Computational Intelligence & Applications, 6(3), 413-428.
https://doi.org/10.1142/S1469026806001903

This Article is brought to you for free and open access by AFIT Scholar. It has been accepted for inclusion in
Faculty Publications by an authorized administrator of AFIT Scholar. For more information, please contact
richard.mansfield@afit.edu.

https://scholar.afit.edu/
https://scholar.afit.edu/facpub
https://scholar.afit.edu/facpub?utm_source=scholar.afit.edu%2Ffacpub%2F1170&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=scholar.afit.edu%2Ffacpub%2F1170&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:richard.mansfield@afit.edu

March 16, 2006 10:26 WSPC/157-1JCIA ijciapaper

International Journal of Computational Intelligence and Applications
© World Scientific Publishing Company

FUZZY STATE AGGREGATION AND POLICY HILL
CLIMBING FOR STOCHASTIC ENVIRONMENTS

Dean C. Wardell and Gilbert L. Peterson

Department of Electrical and Computer Engineering, Air Force Institute of Technology, 2950
Hobson Way
Wright-Patterson AFB, OH, 45433, United States

Received (received date)
Revised (revised date)

Reinforcement learning is one of the more attractive machine learning technologies, due
to its unsupervised learning structure and ability to continually learn even as the oper-
ating environment changes. Additionally, by applying reinforcement learning to multiple
cooperative software agents (a multi-agent system) not only allows each individual agent
to learn from its own experience, but also opens up the opportunity for the individual
agents to learn from the other agents in the system, thus accelerating the rate of learning.
This research presents the novel use of fuzzy state aggregation, as the means of function
approximation, combined with the fastest policy hill climbing methods of Win or Lose
Fast (WoLF) and policy-dynamics based WoLF (PD-WoLF). The combination of fast
policy hill climbing and fuzzy state aggregation function approximation is tested in two
stochastic environments; Tileworld and the simulated robot soccer domain, RoboCup.
The Tileworld results demonstrate that a single agent using the combination of FSA
and PHC learns quicker and performs better than combined fuzzy state aggregation and
Q-learning reinforcement learning alone. Results from the multi-agent RoboCup domain
again illustrate that the policy hill climbing algorithms perform better than Q-learning
alone in a multi-agent environment. The learning is further enhanced by allowing the
agents to share their experience through weighted strategy sharing.

Keywords: Reinforcement Learning, Policy Hill-Climbing, Fuzzy State Aggregation,
Stochastic Environment.

1. Introduction

As researchers in the field of machine learning tackle more and more complex prob-
lems, the obstacle of ever increasing state-space sizes is a constant challenge. Simply
improving the speed of the algorithms frequently cannot overcome the enormity of
the state-space and provide useful results in a timely manner.

Using a state generalization architecture to limit the size of the state space and
approximate the learned policy has been presented in several previous efforts.’2?
Specifically, Berenji and Vengerov*® use fuzzy state aggregation (FSA) as a means
of effectively limiting the state space in a Q-learning experiment.

One method of improving the speed of Q-learning consists of adding the use
of a separate policy table to track the probability of selecting an action from a

March 16, 2006 10:26 WSPC/157-1JCIA ijciapaper

2 Wardell and Peterson

given state. The off-policy reinforcement learning algorithm, policy hill climbing,
yields improved empirical results over on-policy methods.! Bowling and Veloso®
showed continued improvement over policy hill climbing (PHC) by separating the
delta update value into two values, one which updates when winning and one for
loosing hence the name of Win or Lose Fast (WoLF) policy hill climbing algorithm.
Banjeree and Peng extend WoLF, introducing a policy dynamics based version of
WoLF (PDWoLF), further improving results.”

In the case of multi-agent domains additional progress has been made by allowing
the agents to share information and the benefit of their experience via weighted
strategy sharing (WSS).® Based on the value of their learned information, each
agent’s learning data is weighted and combined to provide each agent the benefit
of information gathered by other agents in the domain.

In this paper we present an application of fuzzy state aggregation combined with
three different policy hill-climbing algorithms comparing the speed and efficacy of
their learning in the highly stochastic Tileworld? environment. The results demon-
strate the improved performance of combining an off-policy reinforcement learning
method with FSA. The Tileworld tests are followed by experiments in the simu-
lated robot soccer domain RoboCup in which multiple soccer playing agents make
up teams and play against each other in a fairly realistic soccer simulation.

In section 2 of this paper we provide an overview of these different methods and
algorithms. Section 3 covers the combinations of the FSA vector with PHC learning.
The TileWorld domain is described in section 4 and the results of applying the PHC
algorithm combined with FSA and WSS in the RoboCup domain comprise the rest
of section 4. Section 5 contains a discussion of the conclusions and recommended
future research areas.

2. Background and Related Work

State aggregation is a type of generalizing function approximation which allows
machine learning to learn in larger environments more quickly. State aggregation
combines the states of a domain into groups with some common value estimate.!
When a state is updated, the entire group is updated. The best known methods
for state aggregation are tile coding (also known as sparse coarse coding)! artificial
neural networks,? and fuzzy state aggregation.*® In the following section, fuzzy
state aggregation is described.

2.1. Fuzzy State Aggregation
Fuzzy state aggregation uses Zadeh’s!® concept of fuzzy sets to represent the en-
vironment with a limited number of “fuzzy states”. Fuzzy sets are sets that allow
elements to be partially in more than one set at a time. The degree to which an
element is a member of a fuzzy set is measured on a scale between 0.0 and 1.0.

Fuzzy state aggregation is a variation of Singh’s soft state aggregation,® which

March 16, 2006 10:26 WSPC/157-1JCIA ijciapaper

Fuzzy State Aggregation and Policy Hill Climbing for Stochastic Environments 3

uses probability values as a measure of the extent to which the current state falls
into the various aggregate (cluster) states.

Like soft state aggregation, fuzzy state aggregation uses a fixed number (K) of
aggregate states to represent the environment and thus minimize the number states
the learning algorithm must deal with. Rather than using probabilities, a crisp state
(s) is represented by its degree of simultaneous membership in each of the K fuzzy
states.

2.2. @Q-Learning

In the realm of reinforcement learning, Q-learning'! is one of the simplest and most
commonly used methods. Q-learning assigns values to state-action pairs @(s,a),
and thus implicitly represents a policy. After the algorithm selects an action, a, the
Q table representing the policy is updated based on the rewards received and the
expected rewards as represented by the Q value of the resultant state, s’ according
to the function:

Qs,0) < Q(s,0) +a [r +ymax Q(s',a') = Q(s,0) M

where « is the learning rate (or step size), between 0 and 1, that controls conver-
gence, and -y is the discount factor, between 0 and 1, that makes rewards r that are
earned later exponentially less valuable.

2.3. Fuzzy Logic and Q-learning

Fuzzy logic has been used to represent continuous state spaces as discrete, thereby
making it possible to implement Q-learning in continuous state spaces. The combi-
nation of FLCs with Q-learning has been proposed as Fuzzy Q-Learning (FQL) for
many single robot applications.*>

When applying Fuzzy Q-Learning to the robot soccer domain it is often in
the context of learning one particular skill or behavior. Gu and Hu'? (and with
Specek!®) present a fuzzy logic controller (FLC) for the implementation of a ball
chasing behavior for Sony Aibo robot. Nakashima, et al. propose a fuzzy Q-learning
method in which an agent tries to intercept a passed ball based on the inference
result by a fuzzy rule based system.'*

Ammerlaan and Wright!® address the question of whether systems based on
fuzzy logic can effectively adapt themselves to dynamic situations. To answer this
question, they design and implement an adaptive fuzzy logic agent for playing
RoboCup soccer. The agent has a FLC for basic behaviors, but a neural network
allows the agent to adapt to the changes in the environment.

2.4. Combining fuzzy state aggregation with Q-learning

In a domain with a large state-space, it is inefficient to learn separate Q-values
for each state-action pair. Therefore, it is not uncommon to see Q-learning used in

March 16, 2006 10:26 WSPC/157-1JCIA ijciapaper

4 Wardell and Peterson

conjunction with some form of state aggregation. When implementing Q-learning
with such an architecture, the term @Q(s,a,r) is used to approximate ((s,a.) Here
r is a vector of the learned parameters. The fundamental parameter updating rule
for each time step ¢ is:*

re 4= 1t + @bt AreQ(se, a, 1) (2)

Where « is the learning rate and ¢, is the Bellman error used for the look-up vector
in this corresponding learning rule:

Q(s1,a) « Q(s1,a) + ady (3)
In discounted Q-learning the Bellman error is calculated as follows:
Ot :g(t)""YmgXQ(StHaa) = Q(st,a) (4)

Where g(t) is the cost of taking the specific action and + is the discount rate.

In this work we have specifically used fuzzy state aggregation as the function
approximation architecture. Using this architecture, the Q-value of action a in state
s is calculated using:

K
Q(s,a) =Y a(k) (s, a) (5)
k=1
Where ¢(k) is the Q-value of the k" fuzzy state and juy (s,a) is the degree of mem-
bership of state s to k with respect to action a.

Replacing Ar; Q(s¢,a,r;) from equation (2) with py (s,a), the equation to update

q(k) becomes:

Vier (k) < q(k) + adip (s, a) (6)

2.5. Policy Hill Climbing

Policy Hill Climbing (PHC) is a simple extension of Q-learning. The algorithm,
performs hill-climbing (seeking the highest global reward) in the space of mixed
policies. As shown in table 1, Q-values are maintained as an estimate of the optimal
policy. In addition to the Q-table, the algorithm maintains the current mixed policy
(policy table). The policy is improved by increasing the probability that it selects
the highest valued action according to a learning rate § € (0,1]. When § = 1 the
algorithm is equivalent to Q-learning, since, with each step, the policy moves to the
greedy policy, always executing the highest valued next step rather than pursuing
the greatest overall reward.

Table 1: Basic Policy Hill Climbing

March 16, 2006 10:26 WSPC/157-1JCIA ijciapaper

Fuzzy State Aggregation and Policy Hill Climbing for Stochastic Environments 5

Input o € (0,1], ¢ € (0,1].
Initialize Q(s, a) < 0 and 7 (s, a) <+ \}T\'
Loop
from state s, select action a according to w(s,a)
Observe r and next state s' and update Q(s,a)
compute
—0sq if a # max, Q(s,a’)

Asq = > dsq otherwise
a'#Aa€A

where 0g, = min (ﬂ'(s, a), A=

Update 7 (s, a) < m(s,a) + As,

2.6. Win or Lose Fast (WoLF-PHC)

The WoLF-PHCS algorithm is a hill climber that also uses a variable learning rate.
The algorithm requires two learning parameters §; > §,,. The parameter that is used
to update the policy depends on whether the agent thinks it is currently winning
or losing. This determination consists of comparing whether the current expected
value is greater than the current expected value of the average policy. If the current
expected value is lower (i.e., the agent is “losing”), then the larger learning rate
d; is used, otherwise d,, is used. The purpose of using the variable learning rate
is to increase the speed at which the algorithm reaches the optimum policy. The
functions shown in table 2 are used to calculate ¢ for the WoLF-PHC algorithm,
and are the only changes to PHC as described in Table 1.

Table 2: Additional functions for WoLF-PHC

7(s,a) < 7(s,a) + (%)

A A
5= 0w if Xa:w(s,a)Q(s,a) > Xa:ﬁ(s,a)Q(s,a)

6, otherwise

2.7. Policy Dynamics based Win or Lose Fast (PDWoLF)

Like WoLF, PDWoLF” uses the variable learning rate parameters &; and &,,. Where
WOoLF checks itself against an average policy to determine if it is winning or losing,
PDWOoLF uses the change in policy from the previous time step A(s,a) with the
change in policy from the current time step A?(s,a), shown below.

Table 3: Additional functions used in PDWoLF-PHC

March 16, 2006 10:26 WSPC/157-1JCIA ijciapaper

6 Wardell and Peterson

5= {5w if A(s,a) A%(s,a) <0

0; otherwise

where A% < Ay, — A(s,a), and A(s,a) < Ay,

3. Combining PHC and FSA

The combination of PHC and fuzzy state aggregation begins with the state-space
constrained to K total fuzzy states. We apply three different variants of a Policy
Hill Climbing algorithm; standard PHC, Win or Lose Fast (WoLF) PHC and Pol-
icy Dynamics (PD) WoLF-PHC. The implementations of these algorithms use two
vectors representing the learned parameter data. The g-vector g(k) as described
previously and a policy vector 7 (k).

The g-vector holds the expected reward over time which is iteratively updated
using a common temporal-difference formula. The m-vector holds the probabilities
used to select an action from a given state (the policy). The policy decision of which
action to take next is then based on both the expected reward value (q) and the
policy value (7):

K
(s,a) = Y _ w(k)a(k)px(s,a) (7)
k=1

The vectors g(k) and m(k) are initialized as shown below:

no. of fuzzy labels g
where A is the number of possible actions in the domain. The reason for initializing
7 (k) this way may not be intuitively obvious. Since we are using 3 fuzzy labels, the
initial value of each element of uy (s,a) is 1/3 before learning begins. The elements
of m(k) are initialized so that

A K
S wbun(s,a) =1)

a=1k=1

q(k) < 20 and (k)

Normalizing it with a Boltzmann distribution to ensure (9) remains true, the n-
vector is updated as follows:

Viex 7(k) < w(k)+ [AI?L ,uk(s,a)] (10)

with Aggcalculated as:

—0sq if a # max, Q(s,a’)
Age = > dsq otherwise (11)
a'#a€EA

March 16, 2006 10:26 WSPC/157-1JCIA ijciapaper

Fuzzy State Aggregation and Policy Hill Climbing for Stochastic Environments 7

Where

K
5sa = min <Z W(k),u'k(sa a): |A|5—1> (12)
k=1

In this application ¢ is set in the range (0,1].
Because our intent is to use Ay, to update the entire summation

K

S wun(s,a) = 3 7 (W)pn(s,0) + Ay (13)

k=1 k=1

for a given action a the division used in equation (10) is necessary to scale and
weight A, correctly and prevent it from causing disproportionate growth in the
elements of 7 (k).

3.1. Combining WoLF-PHC and Fuzzy State Aggregation

Unlike the standard PHC algorithm, the WoLF-PHC and PDWoLF-PHC both uti-
lize a dynamic learning rate to increase the speed of convergence over the standard
PHC.

The WoLF-PHC algorithm uses an additional vector to estimate the average
policy value. The average policy vector is initialized like the 7-vector:

no. of fuzzy labels

(k) « AK] (14)
This vector is updated by
Viex @(k) < 7(k)+ (W) (15)

where C' is a counting function which tracks how many times the elements repre-
senting a state have been updated. In this implementation all state elements for the
selected action are updated simultaneously, so C is simply the number of times the
algorithm has looped.

The delta selection for determining the learning rate in WoLF is then calculated
as follows:

K A K A
5= 6w Zf kgl aglﬂ(k)Q(k)uk(sva) > Z 7_r(k)(](k),uk(é”aa‘) (16)

k=1a=1
0; otherwise

where ;> 0, and both fall within the range (0,1]. This value for d is used to
calculate Aggas described in (10) and is derived from the § calculation of WoLF in
equation 16.

March 16, 2006 10:26 WSPC/157-1JCIA ijciapaper

8 Wardell and Peterson

3.2. Combining PDWoLF and Fuzzy State Aggregation

The PDWoLF-PHC also uses additional values to change the learning rate. These
are initialized as

A(s,a) < 0 and A*(s,a) + 0 (17)

Where A and A? are changing rates within the policy and are estimates of the
slopes of the decision space. These are respectively updated for the selected action

as
_ K
2%(5,0) ¢ (£ Semlsa)) - Alsa)
I (18)
A(s,a) + <Z %uk(s,a)
E=1
The delta selection then becomes
[bw if A(s,a) A%(s,a) <0
0= {51 otherwise ' (19)

4. The Experimental Domain
4.1. Tileworld

We are interested in developing learning processes for an agent with the ball to
decide which team mate to pass it to, which direction to dribble or where to aim
when making a goal shot. As a preliminary test, the very stochastic Tileworld®
domain is used as a proof of concept.

Specifically, this is the modified Tileworld domain used by Berenji and
Vengerov,*® consisting of a 20 x 20 grid world which contains 5 reward oppor-
tunities and 5 deformations. The reward opportunities each have random value of
20 to 100 points and a random life span of 5 to 15 time steps. Anytime the agent
reaches a reward or the reward expires, it disappears from the domain and another
one is generated elsewhere on the board. The agent can move 1 step each time step.

Each deformation has a random penalty value of -5 to -20 points and, unlike the
rewards, these deformations occasionally drift. At each time step each deformation
has a 10% chance of moving one square in a random direction. Each deformation is
also the center of a potential field that radiates out based on the following equation:

v
P= @t 1)2. (20)
Where v is the value of the deformation and d is the distance from the deformation.
The cost of each square in the domain is the sum of the effects of each potential
field at that point.
Each state in the domain is represented by 4 state variables:

(1) Distance to the reward - calculated as the Euclidean distance

March 16, 2006 10:26 WSPC/157-1JCIA ijciapaper

Fuzzy State Aggregation and Policy Hill Climbing for Stochastic Environments 9

(2) Value of the reward - from the initial generation

(3) Estimated life expectancy of the reward (t) - calculated as L=m-t(r) where m
is the mean life span (m=10 in this example) and #(r) is the number of time
steps that reward r has existed.

(4) Roughness of path to the reward - calculated by constructing a rectangle with
the agent and the reward at opposite corners. The roughness is the average cost
of all the squares in that rectangle.

The value of each of the state variables is described by 3 fuzzy labels Small, Medium
and Large at 0.25, 0.50, and 0.75 respectively.

At each time step the agent must decide which of the reward opportunities to
pursue, based on the state variables described above. Once the decision is made,
the agent moves one square (orthogonally or diagonally) towards that opportunity,
the policy is updated and the process repeats.

With each step, the agent garners a negative reward equivalent to the cost of
the square it moves to. The agent only receives a positive reward upon reaching a
reward opportunity before it expires.

In this experiment the 4 state variables and 3 fuzzy labels result in 81 (3%)
total fuzzy states. For comparison purposes, without fuzzy state aggregation, this
same domain would have 210 possible distance values, 80 possible reward values, 15
different life expectancy values and at least 1000 different roughness values resulting
in 2.52x10° possible states. By limiting the state variable values to only integer
values (which is not the case in our experiment) this number could be reduced to
just over 320,000 states.

At the beginning of each experiment the Q-values are all set to 20. This number
is selected because it is comparable to the maximum Q-values found at the end of
the experiment and starting with this value results in some natural exploration in
the earliest stages of learning. Because the entire g(k) vector and (k) vector are
updated at each time step, learning occurs very quickly and no dedicated exploration
is required.

4.2. Tileworld results

Our experiments were conducted by running multiple games of 200 time-steps each.
The ¢ and w-vectors were reinitialized at the beginning of each game and the same
number of games was run for each algorithm. For these algorithms we used the
following parameter settings: a=0.1, v=0.8, d=0.5, d,=0.2,and §;=0.8 based on
guidance given in reference 6. Figure 2 shows the averaged results of running 2000
games with an on-policy Q-learning algorithm, a basic off-policy hill climbing algo-
rithm, WoLF-PHC and PDWoLF-PHC algorithms. The results of multiple games
are averaged due to the highly stochastic nature of the domain. As expected, the
on-policy Q-learning algorithm performs slightly worse than the policy hill climb-
ing algorithms. Of interest is the fact that all three PHC algorithms consistently
provide similar results.

March 16, 2006 10:26 WSPC/157-1JCIA ijciapaper

10 Wardell and Peterson

Q-learning, PHC, WolLF & PDWoLF w/ Fuzzy State Aggregation (2000 Games)
T T T T

Reward per N steps
.
T

2r / i [--- Q-leamw/FSA 1
— PHC w/FSA
—— WolLF w/FSA
PDWoLF w/FSA
1 1 1 Il Il L Il

1 1 1
0 2 4 6 8 10 12 14 16 18 20
Steps per game (N=10)

Fig. 1. Results of PHC vs. on-Policy Q-Learning

The generalization of the crisp states into a fuzzy state approximation vector
smoothes the landscape of the policy table to the extent that the use of the variable
learning rate has little effect. The use of the variable learning rate in more chaotic
policy landscapes is the key to the improved performance previously demonstrated
by the WoLF-PHC and PDWoLF-PHC algorithms.

4.3. RoboCup Multi-Agent Experiments

In the RoboCup domain, each agent learns a good policy for which action to take
when it has possession of the ball. The decision space consists of three possible
actions; shoot for a goal, pass the ball or dribble it. This decision is based on which
of these actions has the highest expected reward for the current state of the game.
The expected value for each of these actions is calculated using FSA and a standard
PHC algorithm.

Passing the Ball - To calculate the expected reward for passing the ball, the
agent with the ball considers each teammate (except the goalie) that is visible and
to which the agent has a clear line of sight. For each teammate, the state variables
the agent uses are

e How many opponents are around the teammate
e How far away is the teammate

March 16, 2006 10:26 WSPC/157-1JCIA ijciapaper

Fuzzy State Aggregation and Policy Hill Climbing for Stochastic Environments 11

e How much closer to, or further from, the opponent’s goal is that teammate

The number of Opponents around the teammate is calculated by projecting a 45°
cone from the agent to the teammate and counting the number of opponent players
located inside that cone.

The distance to the teammate is the Euclidean distance, and the relative close-
ness to the opponent goal is the difference between the players’ X positions.

As in the tile world experiment, fuzzy state aggregation constrains the number
of states in the domain. There are three fuzzy labels (sets) for each state variable
resulting in 3% or 27 total fuzzy states used for passing the ball. Since the RoboCup
domain is continuous, the actual number of states is incalculable.

Dribble the Ball - In calculating the expected reward of dribbling the ball, the
agent considers dribbling in each of eight different directions. The eight directions
are 45° apart in a complete circle around the agent, beginning with the -Y direction.
For each possible direction the agent uses two state variables

e Number of opponents in that direction
e Degrees away from a direct path to the goal

The number of opponents in the direction is calculated by projecting a 45°cone to
a point 10 meters away in that direction and counting the opponents within that
cone. The second state variable value is simply the difference between the direction
in question and the angle to the goal. Using fuzzy state aggregation with three fuzzy
labels and these two state variables the domain consists of nine (3?) fuzzy states for
dribbling the ball.

Shots on Goal - To calculate the expected reward of shooting the ball, the agent
considers shooting at each of seven different points in the goal. The seven points are
all along the back of goal, starting at dead center (55, 0) and working out 2 meters
at a time. For each possible target point the agent uses three state variables

e Number of opponents along the path to the target point
e Distance between the target point and the opposing goalie
¢ Distance to that point

The number of opponents near the path to the target point is calculated by pro-
jecting a 15° cone from the agent to the target point and counting the number
of opponent players located inside that cone, as shown in figure 3.9. The distance
between the goalie and the target point is simply the difference in Y value of the
goalie’s location compared to the Y value of the target point. The distance to the
target point is a simple Euclidean distance.

Using fuzzy state aggregation with three fuzzy labels and these two state vari-
ables the domain is constrained to 27 (3%) fuzzy states for shots on goal.

After making the decision, the agent receives feedback in the form of a penalty
or reward based on the outcome of that decision. This feedback is used to update
the policy for that action.

March 16, 2006 10:26 WSPC/157-1JCIA ijciapaper

12 Wardell and Peterson

4.4, Weighted Strategy Sharing

Because each agent runs this algorithm independently of its teammates, each agent
learns a different policy based on its individual experience. Weighted Strategy Shar-
ing (WSS) allows the agents to benefit from their teammates’ experiences and de-
velop more refined policies. The communication available between agents during
game play is limited in range, constrained in its content size and not completely
reliable. For all of these reasons, and the fact that RoboCup rules prohibit any
inter-agent communication outside the simulator, the WSS occurs off-line at the
end of each game.

At the conclusion of the game, each agent stores their respective Q-vector and
total reward for each of the three activities using reinforcement learning (passing,
dribbling and shooting). The WSS algorithm accesses these files and creates a single
updated vector using the “Learning From All” ® weight assignment mechanism in
which agent j is weighted by agent 7 using the equation:

: €j
Wij = 57— (21)

> ek

k=1

Where n is the total number of agents and e is the amount of the expertness
of agent k. The individual expertness value for each agent is calculated using the
absolute value of the algebraic sum of the reinforcement signals (r;).

eiz‘g T

The updated Q vector is used as the initial vector for the next game, and is calcu-
lated as follows:

(22)

QP > (Wi; + Q). (23)
j=1

4.5. RoboCup Experimental Results

To obtain a quick snapshot of how well the algorithm works in the RoboCup soccer
domain, the team using FSA and a PHC play against a “Dummy” team. The
Dummy team is simply an earlier version of the experimental team which uses
conventional if—else statements in selecting the action taken.

From the perspective of the learning agent, opponent players are treated as part
of the environment. The Dummy team generally performs poorly, but provides a
good stochastic environment in which to measure the performance of the experi-
mental team. The parameter settings are; a=0.1, y=0.3, §=0.5. Figure 3 shows the
evaluation of the learning ability of the experimental team using Q-learning with
FSA, and PHC with FSA against the Dummy team. These results are the average
reinforcement points collected by the team each time the agents had control of the
ball. Each curve is a collective average over five runs of 10 games each. The average

March 16, 2006 10:26 WSPC/157-1JCIA ijciapaper

Fuzzy State Aggregation and Policy Hill Climbing for Stochastic Environments 13

PHC w/FSA and Q-learning w/FSA Team Averages vs. Dummy Team (10 Games)
2 T T T T

TN

N\
AT
£ .8

Averaged Reward Points Earned

--+ Q-Learnavg o Q-Learn data
— PHC avg * PHC data

1 1
5 10 15 20 25
Team Possesions - N=4

Fig. 2. Q-learning with FSA and PHC with FSA Performance vs.the Dummy Team

lines plotted through the data points are based on the average value of the team’s
reward points at that time.

Consistent with results from the Tileworld experiment, the PHC algorithm
demonstrates a better learning ability over the Q-learning algorithm, despite the
fact that both algorithms use the exact same FSA method.

4.6. Results using Weighted Strategy Sharing

Because multiple agents are learning in the environment simultaneously, it is bene-
ficial for them to share what they learn. The inclusion of WSS implemented at the
end of the game provides each agent with a new Q-vector for the next game based
on the inputs of the other team members.

The results in Figure 4 are a comparison of the evaluated learning ability of the
experimental team with and without weighted strategy sharing. As anticipated, the
experimental team shows an increased learning ability using WSS over the course
of these games.

Clearly, the use of weighted strategy sharing increases the rate of learning over
that of agents independently learning at their own rate.

March 16, 2006 10:26 WSPC/157-1JCIA ijciapaper

14 Wardell and Peterson

PHC w/FSA with and without WSS (10 Games)
2 T

— = PHC with WSS avg o PHC with WSS data
—— PHC without WSS avg * PHC without WSS data

Averaged Reward Points Earned

2+ .

14 I 1 | 1 1 1 I I 1
0 2 4 6 8 10 12 14 16 18 20

Team Possesions - N=5

Fig. 3. PHC with FSA Games With and Without WSS

5. Conclusion and Future Work

This work demonstrates the improvement of combining fuzzy state aggregation
(FSA) with each of three different PHC algorithms over standard Q-Learning. Both
in terms of speed to convergence and the convergence value itself. The resulting
increase in performance clearly shows the benefit of applying the off-policy hill
climbing algorithm to the FSA in this highly stochastic environment. Unlike the
results of using the WoLF-PHC and PDWoLF-PHC algorithms in a crisp environ-
ment, these two algorithms showed no improved performance over the common PHC
algorithm.

Our future work will include applying this same combination to more complex
domains in an effort to determine if the performance potential of the different algo-
rithms maps to the fuzzy set aggregation function approximation method. We also
plan to explore the potential benefit of learning the optimal fuzzy label values for
each state variable as a means of further improving performance.

ACKNOWLEDGMENT

The authors wish to thank representatives of the United States Air Force Re-
search Laboratory (AFRL) for their professional interest and support of this re-
search effort.

The views expressed in this paper are those of the authors and do not endorse,
or reflect the official policy or position of, the United States Air Force, Department

March 16, 2006 10:26 WSPC/157-1JCIA ijciapaper

Fuzzy State Aggregation and Policy Hill Climbing for Stochastic Environments 15

of Defense, or the United States Government.

References

1.

10.

11.

12.

13.

14.

15.

R.S. Sutton and A. G. Barto, Reinforcement learning: an introduction (Cambridge,
Massachusetts, MIT Press, 1998.

S. Lawrence, A.C. Tsoi, and A.D. Back, Function approximation with neural networks
and local methods: bias, variance and smoothness, In: P. Bartlett, A. Burkitt and
R. Williamson (eds), Australian Conference on Neural Networks, Australian National
University, Australian National University, 1996, 16-21.

S. P. Singh, T. Jaakkola, and M. I. Jordan. Reinforcement learning with soft state
aggregation. Advances in Neural Information Processing 7, MIT Press, 1994, 361-368.
H.R. Berenji and D. Vengerov, Cooperation and coordination between fuzzy reinforce-
ment learning agents in continuous state partially observable markov decision processes,
Proceedings of 1999 IEEE International Fuzzy Systems Conference, Seoul, Korea, 1999,
621-627.

H.R. Berenji and D. Vengerov, Advantages of cooperation between reinforcement learn-
ing agents in difficult stochastic problems, Proceedings of the 9th IEEE International
Conference on Fuzzy Systems (FUZZ-IEEE ’00), San Antonio, Tx , 2000, 871-876.

M. Bowling and M. Veloso, Multiagent learning using a variable learning rate, Artificial
Intelligence 136, 2002, 215-250

B. Banjeree and J. Peng, Adaptive policy gradient in multiagent learning. AAMAS
08 International Joint Conference on Autonomous Agent and Multi- Agent Systems,
Melbourne, Australia, 2003

M.E. Pollack and M. Ringuette, Introducing the tileworld: experimentally evaluating
agent architectures, Fighth National Conference on Artificial Intelligence, Menlo Park,
CA, 1990.

L.A. Zadeh, Fuzzy sets. Journal of information and control 8, 1965, 338-353.

C. J. C. H. Watkins, Learning from delayed rewards, Cambridge, UK, Cambridge
University, Ph.D. thesis, 1989.

D. Gu and H. Hu. “Reinforcement Learning of Fuzzy Logic Controllers for Quadruped
Walking Robots,” Proceedings of the 15th IFAC World Congress, Barcelona, Spain, July
21-26, 2002.

D. Gu, H. Hu & L. Spacek. “Learning Fuzzy Logic Controller for Reactive Robot Be-
haviours,” International Conference on Advanced Intelligent Mechatronics (AIM 2003),
Kobe, Japan, July 20-24, 2003.

T. Nakashima, M. Udo, and H. Ishibuchi. “Acquiring the Positioning Skill in a Soc-
cer Game using a Fuzzy Q-Learning,” Proceedings of 2003 IEEE International Sym-
posium on Computational Intelligence in Robotics and Automation, 1488-1491, July
16-20, Kobe, Japan, 2003.

J. Ammerlaan & D. Wright. “Adaptive Cooperative Fuzzy Logic Controller,” Com-
puter Science 2004 Proceedings of the ACS Conferences in Research and Practice in
Information Technology (CRPIT) 26, 2004.

	Fuzzy State Aggregation and Policy Hill Climbing for Stochastic Environments
	Recommended Citation

	Fuzzy State Aggregation and Policy Hill Climbing for Stochastic Environments

