
Air Force Institute of Technology Air Force Institute of Technology

AFIT Scholar AFIT Scholar

Faculty Publications

9-2006

Fuzzy State Aggregation and Policy Hill Climbing for Stochastic Fuzzy State Aggregation and Policy Hill Climbing for Stochastic

Environments Environments

Dean C. Wardell
Air Force Institute of Technology

Gilbert L. Peterson
Air Force Institute of Technology

Follow this and additional works at: https://scholar.afit.edu/facpub

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Wardell, D. C., & Peterson, G. L. (2006). Fuzzy State Aggregation and Policy Hill Climbing for Stochastic
Environments. International Journal of Computational Intelligence & Applications, 6(3), 413–428.
https://doi.org/10.1142/S1469026806001903

This Article is brought to you for free and open access by AFIT Scholar. It has been accepted for inclusion in
Faculty Publications by an authorized administrator of AFIT Scholar. For more information, please contact
richard.mansfield@afit.edu.

https://scholar.afit.edu/
https://scholar.afit.edu/facpub
https://scholar.afit.edu/facpub?utm_source=scholar.afit.edu%2Ffacpub%2F1170&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=scholar.afit.edu%2Ffacpub%2F1170&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:richard.mansfield@afit.edu

March 16, 2006 10:26 WSPC/157-IJCIA ijciapaper

International Journal of Computational Intelligence and Applicationsc
 World Scienti�c Publishing Company

FUZZY STATE AGGREGATION AND POLICY HILLCLIMBING FOR STOCHASTIC ENVIRONMENTS
Dean C. Wardell and Gilbert L. PetersonDepartment of Electrical and Computer Engineering, Air Force Institute of Technology, 2950Hobson WayWright-Patterson AFB, OH, 45433, United States

Received (received date)Revised (revised date)
Reinforcement learning is one of the more attractive machine learning technologies, dueto its unsupervised learning structure and ability to continually learn even as the oper-ating environment changes. Additionally, by applying reinforcement learning to multiplecooperative software agents (a multi-agent system) not only allows each individual agentto learn from its own experience, but also opens up the opportunity for the individualagents to learn from the other agents in the system, thus accelerating the rate of learning.This research presents the novel use of fuzzy state aggregation, as the means of functionapproximation, combined with the fastest policy hill climbing methods of Win or LoseFast (WoLF) and policy-dynamics based WoLF (PD-WoLF). The combination of fastpolicy hill climbing and fuzzy state aggregation function approximation is tested in twostochastic environments; Tileworld and the simulated robot soccer domain, RoboCup.The Tileworld results demonstrate that a single agent using the combination of FSAand PHC learns quicker and performs better than combined fuzzy state aggregation andQ-learning reinforcement learning alone. Results from the multi-agent RoboCup domainagain illustrate that the policy hill climbing algorithms perform better than Q-learningalone in a multi-agent environment. The learning is further enhanced by allowing theagents to share their experience through weighted strategy sharing.Keywords: Reinforcement Learning, Policy Hill-Climbing, Fuzzy State Aggregation,Stochastic Environment.

1. Introduction
As researchers in the �eld of machine learning tackle more and more complex prob-lems, the obstacle of ever increasing state-space sizes is a constant challenge. Simplyimproving the speed of the algorithms frequently cannot overcome the enormity ofthe state-space and provide useful results in a timely manner.Using a state generalization architecture to limit the size of the state space andapproximate the learned policy has been presented in several previous e�orts.1;2;3Speci�cally, Berenji and Vengerov4;5 use fuzzy state aggregation (FSA) as a meansof e�ectively limiting the state space in a Q-learning experiment.One method of improving the speed of Q-learning consists of adding the useof a separate policy table to track the probability of selecting an action from a

1

March 16, 2006 10:26 WSPC/157-IJCIA ijciapaper

2 Wardell and Peterson
given state. The o�-policy reinforcement learning algorithm, policy hill climbing,yields improved empirical results over on-policy methods.1 Bowling and Veloso6showed continued improvement over policy hill climbing (PHC) by separating thedelta update value into two values, one which updates when winning and one forloosing hence the name of Win or Lose Fast (WoLF) policy hill climbing algorithm.Banjeree and Peng extend WoLF, introducing a policy dynamics based version ofWoLF (PDWoLF), further improving results.7In the case of multi-agent domains additional progress has been made by allowingthe agents to share information and the bene�t of their experience via weightedstrategy sharing (WSS).8 Based on the value of their learned information, eachagent's learning data is weighted and combined to provide each agent the bene�tof information gathered by other agents in the domain.In this paper we present an application of fuzzy state aggregation combined withthree di�erent policy hill-climbing algorithms comparing the speed and e�cacy oftheir learning in the highly stochastic Tileworld9 environment. The results demon-strate the improved performance of combining an o�-policy reinforcement learningmethod with FSA. The Tileworld tests are followed by experiments in the simu-lated robot soccer domain RoboCup in which multiple soccer playing agents makeup teams and play against each other in a fairly realistic soccer simulation.In section 2 of this paper we provide an overview of these di�erent methods andalgorithms. Section 3 covers the combinations of the FSA vector with PHC learning.The TileWorld domain is described in section 4 and the results of applying the PHCalgorithm combined with FSA and WSS in the RoboCup domain comprise the restof section 4. Section 5 contains a discussion of the conclusions and recommendedfuture research areas.
2. Background and Related Work
State aggregation is a type of generalizing function approximation which allowsmachine learning to learn in larger environments more quickly. State aggregationcombines the states of a domain into groups with some common value estimate.1When a state is updated, the entire group is updated. The best known methodsfor state aggregation are tile coding (also known as sparse coarse coding)1 arti�cialneural networks,2 and fuzzy state aggregation.4;5 In the following section, fuzzystate aggregation is described.
2.1. Fuzzy State Aggregation
Fuzzy state aggregation uses Zadeh's10 concept of fuzzy sets to represent the en-vironment with a limited number of \fuzzy states". Fuzzy sets are sets that allowelements to be partially in more than one set at a time. The degree to which anelement is a member of a fuzzy set is measured on a scale between 0.0 and 1.0.Fuzzy state aggregation is a variation of Singh's soft state aggregation,3 which

March 16, 2006 10:26 WSPC/157-IJCIA ijciapaper

Fuzzy State Aggregation and Policy Hill Climbing for Stochastic Environments 3
uses probability values as a measure of the extent to which the current state fallsinto the various aggregate (cluster) states.Like soft state aggregation, fuzzy state aggregation uses a �xed number (K) ofaggregate states to represent the environment and thus minimize the number statesthe learning algorithm must deal with. Rather than using probabilities, a crisp state(s) is represented by its degree of simultaneous membership in each of the K fuzzystates.
2.2. Q-Learning
In the realm of reinforcement learning, Q-learning11 is one of the simplest and mostcommonly used methods. Q-learning assigns values to state-action pairs Q(s,a),and thus implicitly represents a policy. After the algorithm selects an action, a, theQ table representing the policy is updated based on the rewards received and theexpected rewards as represented by the Q value of the resultant state, s', accordingto the function:Q(s; a) Q(s; a) + � hr +
maxa0 Q(s0; a0)�Q(s; a)i (1)
where � is the learning rate (or step size), between 0 and 1, that controls conver-gence, and
 is the discount factor, between 0 and 1, that makes rewards r that areearned later exponentially less valuable.
2.3. Fuzzy Logic and Q-learning
Fuzzy logic has been used to represent continuous state spaces as discrete, therebymaking it possible to implement Q-learning in continuous state spaces. The combi-nation of FLCs with Q-learning has been proposed as Fuzzy Q-Learning (FQL) formany single robot applications.4;5When applying Fuzzy Q-Learning to the robot soccer domain it is often inthe context of learning one particular skill or behavior. Gu and Hu12 (and withSpecek13) present a fuzzy logic controller (FLC) for the implementation of a ballchasing behavior for Sony Aibo robot. Nakashima, et al. propose a fuzzy Q-learningmethod in which an agent tries to intercept a passed ball based on the inferenceresult by a fuzzy rule based system.14Ammerlaan and Wright15 address the question of whether systems based onfuzzy logic can e�ectively adapt themselves to dynamic situations. To answer thisquestion, they design and implement an adaptive fuzzy logic agent for playingRoboCup soccer. The agent has a FLC for basic behaviors, but a neural networkallows the agent to adapt to the changes in the environment.
2.4. Combining fuzzy state aggregation with Q-learning
In a domain with a large state-space, it is ine�cient to learn separate Q-valuesfor each state-action pair. Therefore, it is not uncommon to see Q-learning used in

March 16, 2006 10:26 WSPC/157-IJCIA ijciapaper

4 Wardell and Peterson
conjunction with some form of state aggregation. When implementing Q-learningwith such an architecture, the term Q(s,a,r) is used to approximate Q(s,a.) Herer is a vector of the learned parameters. The fundamental parameter updating rulefor each time step t is:4

rt rt + ��t�rtQ(st; a; rt) (2)
Where � is the learning rate and �t is the Bellman error used for the look-up vectorin this corresponding learning rule:

Q(st; a) Q(st; a) + ��t (3)
In discounted Q-learning the Bellman error is calculated as follows:

�t = g(t) +
maxa Q(st+1; a)�Q(st; a) (4)
Where g(t) is the cost of taking the speci�c action and
 is the discount rate.In this work we have speci�cally used fuzzy state aggregation as the functionapproximation architecture. Using this architecture, the Q-value of action a in states is calculated using:

Q(s; a) = KX
k=1 q(k)�k(s; a) (5)

Where q(k) is the Q-value of the k th fuzzy state and �k(s,a) is the degree of mem-bership of state s to k with respect to action a.Replacing �r tQ(st,a,r t) from equation (2) with �k(s,a), the equation to updateq(k) becomes:
8k2K q(k) q(k) + ��t�k(s; a) (6)

2.5. Policy Hill Climbing
Policy Hill Climbing (PHC) is a simple extension of Q-learning. The algorithm,performs hill-climbing (seeking the highest global reward) in the space of mixedpolicies. As shown in table 1, Q-values are maintained as an estimate of the optimalpolicy. In addition to the Q-table, the algorithm maintains the current mixed policy(policy table). The policy is improved by increasing the probability that it selectsthe highest valued action according to a learning rate � 2 (0; 1]. When � = 1 thealgorithm is equivalent to Q-learning, since, with each step, the policy moves to thegreedy policy, always executing the highest valued next step rather than pursuingthe greatest overall reward.

Table 1: Basic Policy Hill Climbing

March 16, 2006 10:26 WSPC/157-IJCIA ijciapaper

Fuzzy State Aggregation and Policy Hill Climbing for Stochastic Environments 5
Input � 2 (0; 1]; � 2 (0; 1]:Initialize Q(s; a) 0 and �(s; a) 1

jAj :Loopfrom state s; select action a according to �(s; a)Observe r and next state s0 and update Q(s; a)compute
�sa =

8<:��sa if a 6= maxaQ(s; a0)Pa0 6=a2A �sa otherwise
where �sa = min��(s; a); �

jAj�1�Update �(s; a) �(s; a) + �sa
2.6. Win or Lose Fast (WoLF-PHC)
The WoLF-PHC6 algorithm is a hill climber that also uses a variable learning rate.The algorithm requires two learning parameters �l > �w. The parameter that is usedto update the policy depends on whether the agent thinks it is currently winningor losing. This determination consists of comparing whether the current expectedvalue is greater than the current expected value of the average policy. If the currentexpected value is lower (i.e., the agent is \losing"), then the larger learning rate�l is used, otherwise �w is used. The purpose of using the variable learning rateis to increase the speed at which the algorithm reaches the optimum policy. Thefunctions shown in table 2 are used to calculate � for the WoLF-PHC algorithm,and are the only changes to PHC as described in Table 1.

Table 2: Additional functions for WoLF-PHC
��(s; a) ��(s; a) + ��(s;a)���(s;a)C(s) �

� =
8<: �w if APa �(s; a)Q(s; a) > APa ��(s; a)Q(s; a)
�l otherwise

2.7. Policy Dynamics based Win or Lose Fast (PDWoLF)
Like WoLF, PDWoLF7 uses the variable learning rate parameters �l and �w. WhereWoLF checks itself against an average policy to determine if it is winning or losing,PDWoLF uses the change in policy from the previous time step �(s,a) with thechange in policy from the current time step �2(s,a), shown below.

Table 3: Additional functions used in PDWoLF-PHC

March 16, 2006 10:26 WSPC/157-IJCIA ijciapaper

6 Wardell and Peterson
� = � �w if �(s; a) �2(s; a) < 0�l otherwise

where �2 �sa ��(s; a); and �(s; a) �sa
3. Combining PHC and FSA
The combination of PHC and fuzzy state aggregation begins with the state-spaceconstrained to K total fuzzy states. We apply three di�erent variants of a PolicyHill Climbing algorithm; standard PHC, Win or Lose Fast (WoLF) PHC and Pol-icy Dynamics (PD) WoLF-PHC. The implementations of these algorithms use twovectors representing the learned parameter data. The q-vector q(k) as describedpreviously and a policy vector �(k).The q-vector holds the expected reward over time which is iteratively updatedusing a common temporal-di�erence formula. The �-vector holds the probabilitiesused to select an action from a given state (the policy). The policy decision of whichaction to take next is then based on both the expected reward value (q) and thepolicy value (�):

�(s; a) = KX
k=1�(k)q(k)�k(s; a) (7)

The vectors q(k) and �(k) are initialized as shown below:
q(k) 20 and �(k) no: of fuzzy labelsjAKj (8)

where A is the number of possible actions in the domain. The reason for initializing�(k) this way may not be intuitively obvious. Since we are using 3 fuzzy labels, theinitial value of each element of �k(s,a) is 1/3 before learning begins. The elementsof �(k) are initialized so thatAX
a=1

KX
k=1�(k)�k(s; a) = 1 (9)

Normalizing it with a Boltzmann distribution to ensure (9) remains true, the �-vector is updated as follows:
8k2K �(k) �(k) + ��saK �k(s; a)� (10)

with �sacalculated as:
�sa =

8<:��sa if a 6= maxaQ(s; a0)Pa0 6=a2A �sa otherwise (11)

March 16, 2006 10:26 WSPC/157-IJCIA ijciapaper

Fuzzy State Aggregation and Policy Hill Climbing for Stochastic Environments 7
Where

�sa = min KX
k=1�(k)�k(s; a);

�jAj � 1
! (12)

In this application � is set in the range (0,1].Because our intent is to use �sa to update the entire summation
KX
k=1�(k)�k(s; a) =

KX
k=1�(k)�k(s; a) + �sa (13)

for a given action a the division used in equation (10) is necessary to scale andweight �sa correctly and prevent it from causing disproportionate growth in theelements of �(k).
3.1. Combining WoLF-PHC and Fuzzy State Aggregation
Unlike the standard PHC algorithm, the WoLF-PHC and PDWoLF-PHC both uti-lize a dynamic learning rate to increase the speed of convergence over the standardPHC.The WoLF-PHC algorithm uses an additional vector to estimate the averagepolicy value. The average policy vector is initialized like the �-vector:

��(k) no: of fuzzy labelsjAKj (14)
This vector is updated by

8k2K ��(k) ��(k) + ��(k)� ��(k)C
� (15)

where C is a counting function which tracks how many times the elements repre-senting a state have been updated. In this implementation all state elements for theselected action are updated simultaneously, so C is simply the number of times thealgorithm has looped.The delta selection for determining the learning rate in WoLF is then calculatedas follows:
� =

8<: �w if KPk=1
APa=1�(k)q(k)�k(s; a) > KPk=1

APa=1 ��(k)q(k)�k(s; a)�l otherwise (16)
where �l> �w and both fall within the range (0,1]. This value for � is used tocalculate �saas described in (10) and is derived from the � calculation of WoLF inequation 16.

March 16, 2006 10:26 WSPC/157-IJCIA ijciapaper

8 Wardell and Peterson
3.2. Combining PDWoLF and Fuzzy State Aggregation
The PDWoLF-PHC also uses additional values to change the learning rate. Theseare initialized as

�(s; a) 0 and �2(s; a) 0 (17)
Where � and �2 are changing rates within the policy and are estimates of theslopes of the decision space. These are respectively updated for the selected actionas

�2(s; a) � KPk=1 �saK �k(s; a)���(s; a)
�(s; a) � KPk=1 �saK �k(s; a)� : (18)

The delta selection then becomes
� = � �w if �(s; a) �2(s; a) < 0�l otherwise : (19)

4. The Experimental Domain
4.1. Tileworld
We are interested in developing learning processes for an agent with the ball todecide which team mate to pass it to, which direction to dribble or where to aimwhen making a goal shot. As a preliminary test, the very stochastic Tileworld8domain is used as a proof of concept.Speci�cally, this is the modi�ed Tileworld domain used by Berenji andVengerov,4;5 consisting of a 20 x 20 grid world which contains 5 reward oppor-tunities and 5 deformations. The reward opportunities each have random value of20 to 100 points and a random life span of 5 to 15 time steps. Anytime the agentreaches a reward or the reward expires, it disappears from the domain and anotherone is generated elsewhere on the board. The agent can move 1 step each time step.Each deformation has a random penalty value of -5 to -20 points and, unlike therewards, these deformations occasionally drift. At each time step each deformationhas a 10% chance of moving one square in a random direction. Each deformation isalso the center of a potential �eld that radiates out based on the following equation:

P = v(d+ 1)2 : (20)
Where v is the value of the deformation and d is the distance from the deformation.The cost of each square in the domain is the sum of the e�ects of each potential�eld at that point.Each state in the domain is represented by 4 state variables:
(1) Distance to the reward - calculated as the Euclidean distance

March 16, 2006 10:26 WSPC/157-IJCIA ijciapaper

Fuzzy State Aggregation and Policy Hill Climbing for Stochastic Environments 9
(2) Value of the reward - from the initial generation(3) Estimated life expectancy of the reward (t) - calculated as L=m-t(r) where mis the mean life span (m=10 in this example) and t(r) is the number of timesteps that reward r has existed.(4) Roughness of path to the reward - calculated by constructing a rectangle withthe agent and the reward at opposite corners. The roughness is the average costof all the squares in that rectangle.
The value of each of the state variables is described by 3 fuzzy labels Small, Mediumand Large at 0.25, 0.50, and 0.75 respectively.At each time step the agent must decide which of the reward opportunities topursue, based on the state variables described above. Once the decision is made,the agent moves one square (orthogonally or diagonally) towards that opportunity,the policy is updated and the process repeats.With each step, the agent garners a negative reward equivalent to the cost ofthe square it moves to. The agent only receives a positive reward upon reaching areward opportunity before it expires.In this experiment the 4 state variables and 3 fuzzy labels result in 81 (34)total fuzzy states. For comparison purposes, without fuzzy state aggregation, thissame domain would have 210 possible distance values, 80 possible reward values, 15di�erent life expectancy values and at least 1000 di�erent roughness values resultingin 2.52x109 possible states. By limiting the state variable values to only integervalues (which is not the case in our experiment) this number could be reduced tojust over 320,000 states.At the beginning of each experiment the Q-values are all set to 20. This numberis selected because it is comparable to the maximum Q-values found at the end ofthe experiment and starting with this value results in some natural exploration inthe earliest stages of learning. Because the entire q(k) vector and �(k) vector areupdated at each time step, learning occurs very quickly and no dedicated explorationis required.
4.2. Tileworld results
Our experiments were conducted by running multiple games of 200 time-steps each.The q and �-vectors were reinitialized at the beginning of each game and the samenumber of games was run for each algorithm. For these algorithms we used thefollowing parameter settings: �=0.1,
=0.3, �=0.5, �w=0.2,and �l=0.8 based onguidance given in reference 6. Figure 2 shows the averaged results of running 2000games with an on-policy Q-learning algorithm, a basic o�-policy hill climbing algo-rithm, WoLF-PHC and PDWoLF-PHC algorithms. The results of multiple gamesare averaged due to the highly stochastic nature of the domain. As expected, theon-policy Q-learning algorithm performs slightly worse than the policy hill climb-ing algorithms. Of interest is the fact that all three PHC algorithms consistentlyprovide similar results.

March 16, 2006 10:26 WSPC/157-IJCIA ijciapaper

10 Wardell and Peterson

Fig. 1. Results of PHC vs. on-Policy Q-Learning
The generalization of the crisp states into a fuzzy state approximation vectorsmoothes the landscape of the policy table to the extent that the use of the variablelearning rate has little e�ect. The use of the variable learning rate in more chaoticpolicy landscapes is the key to the improved performance previously demonstratedby the WoLF-PHC and PDWoLF-PHC algorithms.

4.3. RoboCup Multi-Agent Experiments
In the RoboCup domain, each agent learns a good policy for which action to takewhen it has possession of the ball. The decision space consists of three possibleactions; shoot for a goal, pass the ball or dribble it. This decision is based on whichof these actions has the highest expected reward for the current state of the game.The expected value for each of these actions is calculated using FSA and a standardPHC algorithm.Passing the Ball - To calculate the expected reward for passing the ball, theagent with the ball considers each teammate (except the goalie) that is visible andto which the agent has a clear line of sight. For each teammate, the state variablesthe agent uses are
� How many opponents are around the teammate� How far away is the teammate

March 16, 2006 10:26 WSPC/157-IJCIA ijciapaper

Fuzzy State Aggregation and Policy Hill Climbing for Stochastic Environments 11
� How much closer to, or further from, the opponent's goal is that teammate

The number of Opponents around the teammate is calculated by projecting a 45ocone from the agent to the teammate and counting the number of opponent playerslocated inside that cone.The distance to the teammate is the Euclidean distance, and the relative close-ness to the opponent goal is the di�erence between the players' X positions.As in the tile world experiment, fuzzy state aggregation constrains the numberof states in the domain. There are three fuzzy labels (sets) for each state variableresulting in 33 or 27 total fuzzy states used for passing the ball. Since the RoboCupdomain is continuous, the actual number of states is incalculable.Dribble the Ball - In calculating the expected reward of dribbling the ball, theagent considers dribbling in each of eight di�erent directions. The eight directionsare 45o apart in a complete circle around the agent, beginning with the -Y direction.For each possible direction the agent uses two state variables
� Number of opponents in that direction� Degrees away from a direct path to the goal

The number of opponents in the direction is calculated by projecting a 45ocone toa point 10 meters away in that direction and counting the opponents within thatcone. The second state variable value is simply the di�erence between the directionin question and the angle to the goal. Using fuzzy state aggregation with three fuzzylabels and these two state variables the domain consists of nine (32) fuzzy states fordribbling the ball.Shots on Goal - To calculate the expected reward of shooting the ball, the agentconsiders shooting at each of seven di�erent points in the goal. The seven points areall along the back of goal, starting at dead center (55, 0) and working out 2 metersat a time. For each possible target point the agent uses three state variables
� Number of opponents along the path to the target point� Distance between the target point and the opposing goalie� Distance to that point

The number of opponents near the path to the target point is calculated by pro-jecting a 15o cone from the agent to the target point and counting the numberof opponent players located inside that cone, as shown in �gure 3.9. The distancebetween the goalie and the target point is simply the di�erence in Y value of thegoalie's location compared to the Y value of the target point. The distance to thetarget point is a simple Euclidean distance.Using fuzzy state aggregation with three fuzzy labels and these two state vari-ables the domain is constrained to 27 (33) fuzzy states for shots on goal.After making the decision, the agent receives feedback in the form of a penaltyor reward based on the outcome of that decision. This feedback is used to updatethe policy for that action.

March 16, 2006 10:26 WSPC/157-IJCIA ijciapaper

12 Wardell and Peterson
4.4. Weighted Strategy Sharing
Because each agent runs this algorithm independently of its teammates, each agentlearns a di�erent policy based on its individual experience. Weighted Strategy Shar-ing (WSS) allows the agents to bene�t from their teammates' experiences and de-velop more re�ned policies. The communication available between agents duringgame play is limited in range, constrained in its content size and not completelyreliable. For all of these reasons, and the fact that RoboCup rules prohibit anyinter-agent communication outside the simulator, the WSS occurs o�-line at theend of each game.At the conclusion of the game, each agent stores their respective Q-vector andtotal reward for each of the three activities using reinforcement learning (passing,dribbling and shooting). The WSS algorithm accesses these �les and creates a singleupdated vector using the \Learning From All" 8 weight assignment mechanism inwhich agent j is weighted by agent i using the equation:

Wij = ejnPk=1 ek
(21)

Where n is the total number of agents and ek is the amount of the expertnessof agent k. The individual expertness value for each agent is calculated using theabsolute value of the algebraic sum of the reinforcement signals (r i).
ei = ���X ri��� (22)

The updated Q vector is used as the initial vector for the next game, and is calcu-lated as follows:
Qnewi nX

j=1 (Wij �Qoldj): (23)
4.5. RoboCup Experimental Results
To obtain a quick snapshot of how well the algorithm works in the RoboCup soccerdomain, the team using FSA and a PHC play against a \Dummy" team. TheDummy team is simply an earlier version of the experimental team which usesconventional if{else statements in selecting the action taken.From the perspective of the learning agent, opponent players are treated as partof the environment. The Dummy team generally performs poorly, but provides agood stochastic environment in which to measure the performance of the experi-mental team. The parameter settings are; �=0.1,
=0.3, �=0.5. Figure 3 shows theevaluation of the learning ability of the experimental team using Q-learning withFSA, and PHC with FSA against the Dummy team. These results are the averagereinforcement points collected by the team each time the agents had control of theball. Each curve is a collective average over �ve runs of 10 games each. The average

March 16, 2006 10:26 WSPC/157-IJCIA ijciapaper

Fuzzy State Aggregation and Policy Hill Climbing for Stochastic Environments 13

Fig. 2. Q-learning with FSA and PHC with FSA Performance vs.the Dummy Team

lines plotted through the data points are based on the average value of the team'sreward points at that time.Consistent with results from the Tileworld experiment, the PHC algorithmdemonstrates a better learning ability over the Q-learning algorithm, despite thefact that both algorithms use the exact same FSA method.

4.6. Results using Weighted Strategy Sharing
Because multiple agents are learning in the environment simultaneously, it is bene-�cial for them to share what they learn. The inclusion of WSS implemented at theend of the game provides each agent with a new Q-vector for the next game basedon the inputs of the other team members.The results in Figure 4 are a comparison of the evaluated learning ability of theexperimental team with and without weighted strategy sharing. As anticipated, theexperimental team shows an increased learning ability using WSS over the courseof these games.Clearly, the use of weighted strategy sharing increases the rate of learning overthat of agents independently learning at their own rate.

March 16, 2006 10:26 WSPC/157-IJCIA ijciapaper

14 Wardell and Peterson

Fig. 3. PHC with FSA Games With and Without WSS
5. Conclusion and Future Work
This work demonstrates the improvement of combining fuzzy state aggregation(FSA) with each of three di�erent PHC algorithms over standard Q-Learning. Bothin terms of speed to convergence and the convergence value itself. The resultingincrease in performance clearly shows the bene�t of applying the o�-policy hillclimbing algorithm to the FSA in this highly stochastic environment. Unlike theresults of using the WoLF-PHC and PDWoLF-PHC algorithms in a crisp environ-ment, these two algorithms showed no improved performance over the common PHCalgorithm.Our future work will include applying this same combination to more complexdomains in an e�ort to determine if the performance potential of the di�erent algo-rithms maps to the fuzzy set aggregation function approximation method. We alsoplan to explore the potential bene�t of learning the optimal fuzzy label values foreach state variable as a means of further improving performance.ACKNOWLEDGMENTThe authors wish to thank representatives of the United States Air Force Re-search Laboratory (AFRL) for their professional interest and support of this re-search e�ort.The views expressed in this paper are those of the authors and do not endorse,or re
ect the o�cial policy or position of, the United States Air Force, Department

March 16, 2006 10:26 WSPC/157-IJCIA ijciapaper

Fuzzy State Aggregation and Policy Hill Climbing for Stochastic Environments 15
of Defense, or the United States Government.
References
1. R.S. Sutton and A. G. Barto, Reinforcement learning: an introduction (Cambridge,

Massachusetts, MIT Press, 1998.
2. S. Lawrence, A.C. Tsoi, and A.D. Back, Function approximation with neural networks

and local methods: bias, variance and smoothness, In: P. Bartlett, A. Burkitt and
R. Williamson (eds), Australian Conference on Neural Networks, Australian National
University, Australian National University, 1996, 16-21.

3. S. P. Singh, T. Jaakkola, and M. I. Jordan. Reinforcement learning with soft state
aggregation. Advances in Neural Information Processing 7, MIT Press, 1994, 361-368.

4. H.R. Berenji and D. Vengerov, Cooperation and coordination between fuzzy reinforce-
ment learning agents in continuous state partially observable markov decision processes,
Proceedings of 1999 IEEE International Fuzzy Systems Conference, Seoul, Korea, 1999,
621-627.

5. H.R. Berenji and D. Vengerov, Advantages of cooperation between reinforcement learn-
ing agents in di�cult stochastic problems, Proceedings of the 9th IEEE International
Conference on Fuzzy Systems (FUZZ-IEEE '00), San Antonio, Tx , 2000, 871-876.

6. M. Bowling and M. Veloso, Multiagent learning using a variable learning rate, Arti�cial
Intelligence 136, 2002, 215-250

7. B. Banjeree and J. Peng, Adaptive policy gradient in multiagent learning. AAMAS
'03 International Joint Conference on Autonomous Agent and Multi- Agent Systems,
Melbourne, Australia, 2003

8.
9. M.E. Pollack and M. Ringuette, Introducing the tileworld: experimentally evaluating

agent architectures, Eighth National Conference on Arti�cial Intelligence, Menlo Park,
CA, 1990.

10. L.A. Zadeh, Fuzzy sets. Journal of information and control 8, 1965, 338-353.
11. C. J. C. H. Watkins, Learning from delayed rewards, Cambridge, UK, Cambridge

University, Ph.D. thesis, 1989.
12. D. Gu and H. Hu. \Reinforcement Learning of Fuzzy Logic Controllers for Quadruped

Walking Robots," Proceedings of the 15th IFAC World Congress, Barcelona, Spain, July
21-26, 2002.

13. D. Gu, H. Hu & L. Spacek. \Learning Fuzzy Logic Controller for Reactive Robot Be-
haviours," International Conference on Advanced Intelligent Mechatronics (AIM 2003),
Kobe, Japan, July 20-24, 2003.

14. T. Nakashima, M. Udo, and H. Ishibuchi. \Acquiring the Positioning Skill in a Soc-
cer Game using a Fuzzy Q-Learning," Proceedings of 2003 IEEE International Sym-
posium on Computational Intelligence in Robotics and Automation, 1488-1491, July
16-20, Kobe, Japan, 2003.

15. J. Ammerlaan & D. Wright. \Adaptive Cooperative Fuzzy Logic Controller," Com-
puter Science 2004 Proceedings of the ACS Conferences in Research and Practice in
Information Technology (CRPIT) 26, 2004.

	Fuzzy State Aggregation and Policy Hill Climbing for Stochastic Environments
	Recommended Citation

	Fuzzy State Aggregation and Policy Hill Climbing for Stochastic Environments

