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Abstract

In a digital forensics examination, the capture and analysis of volatile data
provides significant information on the state of the computer at the time of
seizure. Memory analysis is a premier method of discovering volatile digital
forensic information. While much work has been done in extracting forensic
artifacts from Windows kernel structures, less focus has been paid to ex-
tracting information from Windows drivers. There are two reasons for this:
(1) source code for one version of the Windows kernel (but not associated
drivers) is available for educational use and (2) drivers are generally called
asynchronously and contain no exported functions. Therefore, finding the
handful of driver functions of interest out of the thousands of candidates
makes reverse code engineering problematic at best. Developing a method-
ology to minimize the effort of analyzing these drivers, finding the functions
of interest, and extracting the data structures of interest is highly desirable.
This paper provides two contributions. First, it describes a general method-
ology for reverse code engineering of Windows drivers memory structures.
Second it applies the methodology to tcpip.sys, a Windows driver that con-
trols network connectivity. The result is the extraction from tcpip.sys of
the data structures needed to determine current network connections and
listeners from the 32 and 64 bit versions of Windows Vista and Windows 7.
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1. Introduction

There are several benefits of supplementing hard drive media analysis
with memory analysis. Since programs load into memory prior to their in-
structions being sent to the processor, looking at programs in memory in-
creases the probability of seeing the actual code that executes rather than
code obfuscated in some way. Since system configuration information is
loaded into memory where it may be changed, looking at the configuration
in memory increases the probability of seeing the actual system configuration
rather than what the configuration was before potentially being modified. Fi-
nally, since operating system structures, like current processes, objects in use,
and network connections, reside in memory, memory is the only place to find
and analyze this information [23]. The first step in memory analysis is ex-
tracting the O/S structures, such as process lists and registry entries as well
as network activity. Fortunately,several authors have documented the struc-
tures and location of these artifacts in Windows XP [26, 1, 7, 31] and one
or more versions of Linux [3, 10, 16]. Unfortunately, the specifics of these
structures vary between operating system versions. While [23] overcomes
this for the Windows NT family of operating system kernel structures (i.e.,
processes and registry entries), it remains an issue for non-kernel artifacts,
including network connections, which are stored in device drivers.

Device drivers provide an I/O interface for a particular type of device [24].
They are structured differently from portable executables (PE) that have a
single entry point where execution begins and then flows linearly through
code. Instead, functions in the driver are called from external programs
directly. As a result, reverse code engineers cannot start at the beginning and
work their way down. Instead, they must first discover which functions are
relevant for analysis. Tcpip.sys is the primary driver for managing network
connectivity within the Windows NT family of operating systems [13]. By
reversing the structures within tcpip.sys, memory forensic tools can locate
these structures within a Windows memory dump and extract the network
connections that existed when the memory was captured.

While tcpip.sys is specific to the Windows NT family of operating sys-
tems, similar drivers exist for other families of operating systems including
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Linux. Initial thoughts may be that the open-source nature of Linux would
make finding these structures easier. While this is true, it neglects to consider
the number of implementations and versions of Linux. So, although finding
the structures of interest for a specific implementation and version of Linux
may indeed be easier, generalizing the location of these structures across all
versions of Linux to produce a single tool that can find these structures in
an arbitrary Linux memory dump is not feasible.

There are two primary methods for reverse code engineering (RCE) [8].
The first, offline code analysis, deciphers what the code does by manually
reading the code. The second, live code analysis, uses both the code and its
behavior to gain a better understanding of what the code does. In addition,
there are two levels of RCE, user-level and kernel-level. User-level RCE
restricts itself to user-level programs that do not have access to modifying
the kernel or its structures, while kernel-level RCE restricts itself to kernel-
level programs that access and/or modify the kernel and its structures. Since
tcpip.sys is a system driver, reversing it requires kernel-level debugging.

This paper proposes a methodology for the reversing of tcpip.sys to ex-
tract the structures that enumerate the TCP and UDP network connections,
listeners, and endpoints that exist on a target machine. Section 2 places the
methodology within the framework of related work. It begins by discussing
Windows memory forensic tools and their inability to extract non-kernel ar-
tifacts due to lack of exported structures. Section 2 then goes on to discuss
reverse code engineering techniques including kernel-level debugging. Section
3 then provides a detailed explanation of the methodology breaking down
into its constituent parts. The authors then implement the methodology for
Windows 7 64 bit to extract the memory structures. Section 4 shows the
results of these tests. A brute force, exhaustive search of tcpip.sys would
potentially require looking at 4,974 different functions. By using the method-
ology discussed in this paper, analysts were able to reduce this initially to
30 functions and then to further reduce those 30 functions to 4. The end
result is several weeks of reverse code engineering of tcpip.sys to arrive at
a collection of offsets that allow extraction of network connections for foren-
sic analysis. Finally, Section 5 discusses limitations of the methodology and
proposes future extensions.
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2. Background

2.1. Memory Forensics

Historically, computer forensics focused on file systems, i.e., the files, pro-
grams, configurations and log files installed on a target machine. While this
information is valuable, it overlooks the architecture of computers. Before
the computer executes a program, displays a file, or logs an activity, it first
loads the information into memory. Memory forensics examines the infor-
mation captured from memory at the time the computer is seized. Forensic
memory analysis starts with collecting the memory from the target machine
followed by parsing the memory dump into meaningful artifacts.

There are several tools for collecting memory from a machine including
windd [28] and Memoryze [20]. The important step is to use these tools
to capture memory before the computer is shut off or rebooted. Although
some forensic artifacts may remain after a reboot [26] or even after power is
turned off [12, 9] after power is turned off, to maximize the retrieval of forensic
artifacts, memory dumps need to be done prior to rebooting or disconnecting
the machine. These memory capture tools generally have options to either
store the entire memory image on the local hard disk or send it over a network
connection to another machine. When possible, saving the memory image
on another machine is preferable [19] because it minimizes changes to the
seized computer’s hard disk. Recently, Beverly et al [2] observed that many
of the forensic artifacts found in memory are routinely stored to disk when
computers go into hibernation. Given the frequency that users put their
laptops into hibernation, there is a good chance that a seized computer may
have a hibernation file. While the headers of these compressed hibernation
files are destroyed, each page of the compressed hibernation file is also marked
and may be found intact. Beverly carved these residual files on disk to find
network activity that had occurred in the past. However, it should be possible
to extend his work and retrieve a wide range of forensic artifacts from the
old hibernation files of computers (particularly laptops, cell phones, PDAs,
and tablets).

After the memory has been captured, the next step is to extract forensic
artifacts from it. Several tools for parsing Windows XP memory dumps
include Schuster’s Ptfinder [26, 27], Betz’s Memparser [1], and Walter’s
Volatility [31]. The purpose of these tools is to identify key operating system
structures and extract a subset of the data in them. Some of the structures

4



found in the Windows kernel include processes, threads, and configurations
(i.e., registry hives).

Unfortunately, what the above tools have in common is a limitation to a
particular operating system (and in many cases, service pack). CMAT [23]
provides some additional flexibility by parsing much of the same information
out of a memory dump from any of the Windows NT family of operating
systems (including Windows XP, Vista, and 7). As shown in Figure 1, CMAT
begins by searching through memory for a debugger data structure; once it
finds this data structure, it uses the information in it to determine if the
memory dump is 32 bit, 32 bit with physical address extensions (PAE) or
64 bit. At the same time, it determines the version of Windows, the kernel’s
base address, the address of the loaded module list. If it was unable to
find the debugger structure, it then searches for the string kernel.exe (or
some variant of it); CMAT then backtracks to the beginning of kernel.exe
(implicitly finding the kernel’s base address) and uses the information in the
PE header to determine the above information. With this information in
hand, CMAT sequentially searches through the memory dump looking for
top-level page directory tables (i.e., page directory map tables for 64 bit
operating systems, page directory pointer tables for 32 bit operating systems
with PAE enabled, and page directory tables for 32 bit operating systems).
Finally, with all of this information, CMAT is able to extract the globally
unique identifier from the kernel’s debug section and download the kernel’s
program database (PDB) file from the Microsoft Symbol Server. It then uses
the structures and symbols found in the PDB file to create signatures for
searching for process and configuration files in the memory dump. Once it
has found these structures, it extracts the forensic artifacts of interest.

While CMAT does provide more flexibility than the other parsing tools,
it is limited to operating system structures, i.e., structures found in and
exported by ntoskrnl.exe. One of the key pieces of forensic data, open net-
work connections, does not reside within ntoskrnl.exe. Instead, it resides
within the driver tcpip.sys. Furthermore, while ntoskrnl.exe makes many of
its structures available to external programs, tcpip.sys does not. This is cap-
tured in the differences between ntoskrnl.exe’s program database (PDB) file
and tcpip.sys ’s PDB file. Ntoskrnl.exe has approximately 5,000 structures
in its PDB file while tcpip.sys has none (tcpip.sys has 7,336 symbols and
ntoskrnl.exe has 18,640 symbols). As a result, in order to bring structure
to the data section of tcpip.sys, its structures must be reversed.

What is needed is a methodology for quickly reversing tcpip.sys from an
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arbitrary Windows O/S to extract the symbols and data structures needed
to provide the network connections. The methodology can then be applied
to any of the forensic tools (e.g., CMAT [23] or Volatility [31]) to allow them
to handle new operating systems.

2.2. Reverse Code Engineering

Reverse Engineering was defined in 1990 by Chikofsky and Cross as “the
process of analyzing a subject system to (i) identify its system’s components
and their inter-relationships and (ii) create representations of the system
in another form or at a higher level of abstraction” [4]. In the case of bi-
nary executables, if the software’s developers have not consented to this, the
question of legality is often raised. While every situation is different, the
general consensus is if the code is not duplicated (i.e., the reverser doesn’t
take the reversed code and put it into a competing product) and if the public
benefits from the effort (e.g., through additional functionality not otherwise
available), reverse code engineering is legal [8].

In the past twenty years, there have been three primary focus areas in
reverse code engineering (RCE). The first area is the analysis of large-scale
systems for maintenance, enhancement and porting to new systems [21,
14, 30]. In the case of large systems, code analysis is only one element of
RCE. Equally important is an understanding of the user requirements, system
architecture, engineering constraints, and design tradeoffs [22]. The second
area is on developing tools for better static analysis of source code, including
tools to handle object oriented programs [6, 18, 17] and Unified Modeling
Language (UML) [15]. Finally, the third area is reversing malware. While
there has been a tremendous amount of effort dedicated to reversing specific
pieces of malware (e.g., Conficker, Stuxnet, etc.), the efforts have typically
been performed in an ad hoc manner. According to Muller et al, “the process
must become more mature and repeatable, and more of its elements need to
be supported by automated tools” [22].

While reverse engineering of malware often means reversing binary code,
there has been little published on reversing other types of binary code, par-
ticularly drivers for the Windows operating systems. Chipounov [5] has
developed a tool, RevNIC, that allows drivers to be automatically ported
from one operating system to another and has successfully tested the tool
against four small Windows NIC device drivers( pcntpci5.sys, rtl8139.sys,
lan9000.sys, and rtl8029.sys). While not directly applicable to the problem
at hand, Guha and Mukherjee [11] have reversed TCP/IP source programs
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for UNIX systems using slicing. Unfortunately, the source code for Windows
drivers is not available. An important distinction between malware and Win-
dows drivers is that when Microsoft compiles their programs, they create a
program database (PDB) file which stores debug information. They then
publish this PDB file on their symbol server so that debuggers can download
it on the fly to aid with debugging. The consequence of this is that different
reversing techniques are possible with Windows drivers than with malware.

2.3. Kernel-Level Debugging

While user-level debugging can be performed straightforwardly, using sev-
eral different disassemblers and debuggers, kernel-level debugging is more in-
volved. First, an analyst cannot debug the kernel of the operating system he
is using. Instead, the analyst must instantiate an instance of the operating
system and then debug it from another instance. This can be done either
with two machines connected through a null modem or through the use of
virtual machines. In addition, the number of debuggers that may be used
decreases, especially when working with 64 bit operating systems, to either
WinDbg or KDbg.

First, a virtual machine is installed; in this case, VMWare was chosen.
Next, an instance of Windows 7 is loaded into the virtual machine. Third, a
virtual serial connection is created between the guest operating system and
the host operating system with the guest O/S being the server and the host
O/S being the client. In some cases, an additional piece of software, e.g., Vir-
tualKD [29], is used to provide the interface. In this case, vmmon.exe is run
on the host machine and then the virtual machine is started. WinDbg starts
automatically, connects to the virtual machine and kernel-level debugging
begins.

3. Methodology

As shown in Figure 2, before attempting to understand the data struc-
tures within aWindows’ driver, some preliminary reconnaissance is advisable.
There are several methods to gain information. User applications that inter-
act with the driver provide the analyst with relevant names of the functions
and symbol names in the user application. The analyst can then look in the
driver for symbols and functions with similar names. Offline code analysis
(OCA) gives an overview and allows the analyst to look for symbols or func-
tions with potentially relevant names. Finally, seeding and harvesting data
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enables an analyst to seed known values into the data structures of interest
and then extract the locations in memory where those data structures reside
(e.g., opening Internet Explorer and going to a known website will place its
IP address in the data structure of interest in tcpip.sys).

Once these preliminary steps are performed, the analyst has three leads
for setting breakpoints to perform live code analysis: symbols of interest,
functions of interest, and memory addresses of interest. After setting break-
points for each of these, the analyst then begins live code analysis to winnow
down the results to a handful of likely functions. The final step is then to re-
verse the functions of interest to extract the structure of the data structures
of interest.

3.1. User Application Analysis

When faced with a large, opaque driver, the first step in gaining insight
into it is to perform live code analysis on a small, user-level program that uses
the driver. Such an analysis is significantly faster and will provide symbol
and function names of interest. For instance, if the user application has a
function called “GetExtendedTcpTable” which eventually contains the data
of interest, there may be a function or symbol in the driver called either
TcpTable or ExtendedTcpTable that should be investigated.

Tcpvcon.exe [25] is a user-level program developed by Mark Russinovich
which shows the current TCP and UDP connections. Using tcpvcon.exe
as a starting point provides insight into the tcpip.sys symbols, functions,
and entry points. Reversing tcpvcon.exe is fairly straightforward. Like
most application portable executables (PEs), it begins with a main func-
tion. Main2 begins by loading a constant called “ShowAllEndpoints” and
then makes external calls to “GetExtendedTcpTable”, “GetTcpTable” and
“GetUdpTable”. When these functions are traced, function calls are made
from them including calls like “nsi NsiEnumerateObjects- AllParameters”.
While it is not possible to follow the calls into tcpip.sys due to programs
interacting with drivers through traps, the names of these functions and
symbols provides a starting point for offline code analysis.

3.2. Offline Code Analysis

The most intuitive approach for understanding a program is to read the
code, especially given some previous understanding. For example, in Win-
dows XP, the data structures that hold the TCP/IP and UDP connections are
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ADDROBJTABLE and TCBTABLE. Unfortunately, neither of these sym-
bols exist in the Windows 7 version of tcpip.sys nor are there any simi-
larly named symbols. However, there are several symbols with promising
names (e.g., TcpPortPool, UdpPortPool, InetSockAddrStorage, IOCtlDis-
patchTable, TcpCcbObject, and TcpInetTransport) that can have break-
points set on them. In addition, when the symbols and functions discovered
during User Application Analysis are searched for, several groups of promis-
ing functions appear, e.g., UdpEnumerateAllEndpoints. Breakpoints are set
on the potential functions and symbols of interest in the hopes that one of
them is called during live code analysis.

3.3. Seeding and Harvesting Data

While OCA and user applications provide likely symbol and function
names of interest, seeding and harvesting data provides potential memory
addresses of interest (Figure 3). First the analyst generates some unique data
(e.g., by establishing a TCP/IP connection to a known IP address). Next, the
analyst generates a memory dump and then transfers it to the host O/S; he
then suspends the guest O/S so the state doesn’t change. Finally, the analyst
locates the data in the memory dump, translates the physical address into
a system virtual address. The analyst now has virtual memory addresses
to set breakpoints on. Observe that the seeded data does shows up in the
memory dump in the process space for the user application (in this case,
Internet Explorer) that generated it; however, by noting that these physical
addresses don’t have any corresponding valid virtual system addresses, they
are eliminated.

3.4. Live Code Analysis

The analyst then sets breakpoints on the functions of interest, the mem-
ory locations of interest, and, as much as possible to debugger limitations,
the symbols of interest. The guest O/S is then restarted and the user applica-
tion re-run, triggering a debugger breakpoint. The resultant call stack shows
both the relevant driver function and how it was called. When this process
is applied to tcpip.sys, several potential functions are discovered. Further-
more, after a quick look at the disassembled code, several of these functions
are stubs that call others in the list. At this point, additional breakpoint are
set and the user application run again.

When live code analysis is performed on a 64-bit Windows 7 virtual ma-
chine, first the memory locations that hold the IP address is located within
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the tcpip.sys function Ipv4EnumerateAllPaths. Judging by the name, this
certainly seems like it may be the correct function since the name suggests
its purpose is to enumerate all of something. The first named symbol in
the function is Ipv4Global which also seems promising. It appears to be
composed of a linked list of IP “compartments” which house relevant IP
information. Within each compartment is a hash table composed of IP in-
formation entries. The hash table is implemented as a series of linked lists.
Each linked list either has a forward and backward link that points to itself
(in which case there is no entry) or a forward link that points to an IP in-
formation entry. This entry begins with a linked list that eventually points
back to the hash table. Unfortunately, while the IP information entry holds
both the local and remote addresses, it does not hold information on the
process ID that created the connection (or if it does, the author was unable
to find it). A second function found by tracing down through tcpvcon.exe
was “nsi NsiEnumerateObjectsAllParameters”.

Since both nsi NsiEnumerateObjectsAllParameters and Ipv4Enumerate-
AllPaths have the word “Enumerate” in common, functions in tcpip.sys
with the word enumerate in their name are searched for. Going back through
a list of all functions in tcpip.sys (retrieved using CMAT and the tcpip.pdb
file), finds approximately 30 functions. While this is a large number of func-
tions, they break down into four categories, InetEnumerateXXX, IpEnumer-
ateXXX, TcpEnumerateXXX, and UdpEnumerateXXX. Furthermore, if the
functions are restricted to the Tcp and Udp functions, the result is Ud-
pEnumerateAllEndpoints, TcpEnumerateAllPortPropertyObjects, TcpEnu-
merateBasicConnections, TcpEnumerateListeningConnections, TcpE numer-
ateConnections, TcpEnu- merateAllConnections, UdpEnumerateEndpoints,
TcpEnumerateListeners, and TcpEnumerateConnectionType. After exam-
ining the disassembled code, several of these functions are stubs that call
others in the list. At this point, placing breakpoints at the start of each
of the functions and running tcpvcon.exe and netstat.exe in the guest
operating system provides an entry point for live code analysis.

3.5. Tcpip.sys Functions that Describe the data Structures

Using the above approach, Reversing TcpEnumerateConnections, TcpEnu-
merateListeners, and UdpEnumerateEndpoints provides sufficient details to
describe the data structures needed to report on the TCP and UDP connec-
tions and listeners in Window 7.
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TcpEnumerateConnections enumerates all established TCP connections,
i.e. it enumerates connections where there is both a local and a remote IP
address. Figure 4 shows the function flow. First the function begins a loop
that repeats for the number of partitions (found in PartitionCount). Within
this loop is a second loop that uses Microsoft’s runtime library functions to
enumerate a hash table. First, the function acquire a spin lock and raises
the interrupt level to Deferred Procedure Calls (DPC). It then retrieves the
connection information, starting with the local and remote addresses and
ports, followed by some flags and the process that owns the connection. It
then releases the spin lock and finds the next element in the hash table. Once
the table is enumerated, the outer loop than repeats for the next partition
table.

There are two symbols used in this function that are important for retriev-
ing network connections, PartitionTable and PartitionCount. PartitionTa-
ble is a pointer to the overall structure that holds the connections and lis-
teners. This structure begins with an array of partition tables. The symbol
PartitionCount tracks how many elements there are in the array. Each par-
tition is 64 bytes. The first element of each partition table is a pointer to a
hash table. The hash table is a structure with several elements. The elements
at offset 0x08 is the maximum number of elements in the hash table while
the element at offset 0x20 is a pointer to the first element in the hash table
(Figure 5). The hash table structure itself is fairly straightforward. Each el-
ement is a doubly linked list (forward link followed by backward link). If the
forward link points to itself than the hash table entry is empty. If it doesn’t,
then it points to the first entry in a linked list of network connections/listener
information, henceforth called IpInfo.

The local port is at offset +0x44 of IpInfo and the Remote Port is at
offset +0x46. The local IP address is two levels deep (Figure 5). There
is a pointer at offset -0x08 which points to a structure which contains the
IP addresses, henceforth called IpAddressInfo. In this structure at offset
0x00 is a pointer to another structure (structure A). Within this structure at
offset 0x10 there is a pointer to a third structure (structure B). Within this
structure at offset 0x00, there is a pointer to the local IP address. The remote
address is less deep. At offset 0x10 of IpAddressInfo, there is a pointer to
the remote address. The process ID associated with this IP information is
at offset +0x210. Finally, to determine whether this is IPv4 or IPv6, the
pointer at -0x10 is used. It points to another structure which has a pointer
at offset 0x14 which points to a value. If this value is 0x17, the information
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relates to IPv6; otherwise it relates to IPv4 (Figure 5).
These two functions are very similar, both in flow (Figure 6) and in the

type of data structures used (Figure 7). They begin by enumerating a pool
of ports (either UDP ports or TCP ports). They then check to see if there is
a local address (just for TCP listeners) and then retrieve the remote address,
port, owning process id, and some flags. They then repeat for the next entry
in the port pool.

These function enumerates all TCP listeners and UDP endpoints, i.e. it
enumerates connections where there is at most a local IP address. There
are two symbols used in these function that are important for retrieving
network listeners and UDP endpoints, TcpPortPool and UdpPortPool. The
two variables are pointers to a pool of available ports. Each pool has two
fields, BitMapPtr and BitMapSize. The bitmap size is the number of bits
in the bitmap. The way the bitmap is arranged is the lowest bit of the first
byte is in position 0. The second lowest bit of the first byte is in position
1. The lowest bit of the second byte is in position 8 and so on. Those bits
that are set indicate ports that are in use. BitMapSize and BitMapPtr are
at offsets 0x90 and 0x98 respectively for both pools. To find the location
of the port, left shift the bit number by 8. This results in a number that is
up to two bytes long. The high byte is the page number and the low byte
is the offset. The pointers to the pages begin at offset 0xA0. A pointer to
the list of pointers to the IpInfo record is at offset 0x20 of the page. The
IpInfo record pointer is then found by taking the offset, left shifting by 4,
adding 0x08 to the result (Figure 7) and then zeroing out the low 2 bits. The
local port is at offset - 0x06 for TCP and at offset - 0x08 for UDP. The local
address is again reached via indirection. If there is a valid pointer at offset -
0x18 (offset - 0x28 for UDP), the structure that it points to has a pointer to a
structure at offset 0x00 (offset 0x10 for UDP)which has a pointer to the local
address at offset 0x00. The remote port and Ipv4/Ipv6 determination is also
reached via indirection by the pointer at offset - 0x10 ( - 0x68 for UDP) of
the IpInfo record and then retrieving the remote port by finding the pointer
at offset + 0x14 of the new structure (Figure 7). Finally, a pointer to the
process ID is at offset -0x48.

4. Analysis of Results

Using the methodology discussed in this paper, the authors reduced the
5,000 functions in tcpip.sys to three functions. Due to one author’s unfamil-
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iarity with reverse code engineering, reversing the three functions and finding
the locations of the forensic artifacts of interest still took approximately three
weeks. However, when considers that this works out to approximately one
function per week, reversing all 5,000 functions would have taken this novice
author 100 years to complete.

As an added bonus, once the initial reverse code engineering was com-
pleted on Windows Vista 32-bit, extending this work to include Windows
Vista 64-bit and 32-bit as well as Windows 7 32-bit only added an additional
six hours of effort. All of these versions were similar enough that the only
effort involved was locating the functions described above and adjusting the
CMAT code to match the offset values in the code. The details of these
locations are shown in Figures 8, 9, and 10.

With the methodology described, updating CMAT to handle new ver-
sions of tcpip.sys consists of reviewing TcpEnumerateConnections, TcpEnu-
merateListeners, and UdpEnumerateEndpoints and update the values in Fig-
ures 8, 9 and 10. Although these figures appear complex, the implementation
is straightforward. First the location of the symbols named at the top of the
Figures are retrieved from tcpip.pdb. Then the variables in the figures are
filled in from top to bottom (including iterating through the partition table,
hash table, bit maps and the IPInfo linked lists) resulting in the network
connections being retrieved. However, this does assume that while the fields
in the data structure may change names or move around, the underlying data
structures (i.e., hash tables and bitmaps) won’t. The tests do show that this
process works on both 32-bit and 64-bit versions of the operating systems.

The results were verified by running netstat.exe on the virtual machine
immediately after the memory dump was performed and comparing the re-
sults. In all cases, CMAT and netstat produced the same results.

5. Conclusions and Future Work

As forensic analysts become more experienced with the types of data
they can extract from memory dumps, they will continue to ask for more
forensic artifacts. One such artifact is open network connections at the time
the suspect computer is seized. Software engineers are then faced with the
task of locating the drivers that create and store these artifacts, determining
the functions within these drivers that read and/or write these artifacts and
then finally, reversing these functions. The authors, faced with the need to
reverse tcpip.sys to discover the location of network connections used the
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methodology discussed in this paper. The result was a quick reduction of
the almost 5,000 functions in tcpip.sys to a manageable three functions.
These three functions were then quickly reversed and the locations of the
data structures of interest were found.

The primary contribution of this paper is developing a process that en-
ables efficient reversing of Windows drivers and dynamic link libraries. Since
they do not have a single entry point, and in the case of drivers, may have no
exported functions, locating the data structures of interest is a hard prob-
lem. Possibly as a consequence of this, there has not been a lot of effort
focused on extracting forensic artifacts from drivers. Unfortunately, there
are a large number of forensic artifacts that reside in drivers or dynamic link
libraries (DLLs). Network connections are one of them. Others include print
spooler information, graphic processing until information and clipboard con-
tents. Applying this methodology to extract these forensic artifacts would
be very useful future work.
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Search memory dump 
for debug structure

Found 
it?

Using the structure available, determine:
• 32 bit/32 bit with PAE/ 64 bit O/S
• Version and Patch Level of Windows
• Machine Type 
• Kernel Base Address
• List of Loaded Modules

Search memory dump 
for “kernel.pdb”

Back up to the head of 
kernel.exe

Found 
it?

Abnormal
End

Search for the kernel page tables

Using kernel.exe’s debug section, determine the kernel’s globally unique ID (GUID)

Using kernel.exe’s GUID, download the kernel Program Database (PDB) file

Load the kernel’s structures and symbols from the kernel’s PDB file

Using the kernel structures construct signatures for the process & configuration data structures

Search the memory dump for process and configuration records

Extract the forensic artifacts of interest and display/ dump them for further analysis

Figure 1: CMAT’s Process Flow
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Live Code Analysis
• When breakpoint triggers, review call stack, analyze function currently executing
• Add additional breakpoints as applicable and step through relevant functions

Review Driver in 
Disassembler

Offline Code 
Analysis

Potential 
Functions and 

Symbols

Seed and Harvest 
Data

Place known values in
desired data structures

Dump memory

Potential locations of 
data structures

Third Party Software

Driver

User Application
Analysis

Potential Function 
and Symbol Names

Reconnaissance

Figure 2: A Methodology for Reversing Drivers.
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1. Create the data you’re 
looking for
(e.g., Open Internet Explorer and connect to a known IP 
address)

2. Create a memory dump

3. Suspend the guest O/S
4. Using a hex editor, find the 

data in the memory dump
5. Convert the physical address 

to a linear address
6. In the debugger, set a 

breakpoint on the address
7. Resume the guest O/S

8. Run a user application that 
uses the driver
(e.g., Run netstat)

8. When the breakpoint is 
triggered, display the call 
stack and set breakpoints as 
desired (e.g., on the current 
function)

9. Resume the guest O/S and 
start reverse code engineering

Guest O/S Host O/S

Figure 3: Seeding and Harvesting Data.

Figure 4: TCPEnumerateConnections Flow Diagram.
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PartitionTable fffff800…

PartitionTable
0x00 *PartitionEntry[] PartitionEntries

PartitionEntry
0x08 UInt64 Nbr_Entries
0x20 *HashTable HashTable

HashTable
0x00 ListEntry[] IpInfoPtr

PartitionCount 1

IpInfo
0x18 *HeaderInfo HeaderInfo
0x20 *IPAddress IPAddresses
0x28 ListEntry[] IpInfoPtr
0x6c Big Endian UInt16 LocalPort
0x6e Big Endian UInt16 RemotePort
0x238 *EPROCESS ProcessID

HeaderInfo
0x14 UInt32 IPType

IpAddresses
0x00 Big Endian UInt32 RemoteIP
0x10 *LocalIPInfo LocalIPPtr

LocalIPInfo
0x00 BigEndian UInt32 LocalIP

Figure 5: TCP Connections Data Structures.

nsi\_NsiEnumerateObjectsAll
Parameters
nsi\_NsiEnumerateObjectsAll
Parameters

Figure 6: TCP Listeners and UDP Endpoints Process Flow.
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TcpPortPool fffff800…

PortPool
0x90 UInt64 BitMapSize
0x98 *BitMap BitMapPtr
0xA0 *PoolPage[] PoolPage

PoolPage
0x20 *PoolEntry PoolEntry

PoolEntry
0x00 *PtrStruct[] PtrStruct

PtrStruct
0x08 *IpInfo IpInfo

UdpPortPool fffff800…

IpInfo
0x00 _EPROCESS ProcessId
0x30 *IPAddresses IPAddresses
0x38 *HeaderInfo RemotePortPtr
0x38 *HeaderInfo HeaderInfo
0x42 BigEndian UInt16 LocalPort
0x48 ListEntry IpInfo

HeaderInfo
0x14 UInt32 IPType

IpAddresses
0x00 *LocalIPInfo LocalIPPtr

LocalIPInfo
0x00 BigEndian UInt32 LocalIP

Figure 7: TCP Listeners and UDP Connections Data Structures.
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TCP ESTABLISHED
CONNECTIONS

Vista
32 bit

Windows 7
32 bit

Vista
64 Bit

Windows 7
64 bit

Partition Table Pointer (PTP) [PartitionTable]

Partition Table Entry (PTE) [PTP +  0x04 + 
0x48 * 

EntryNbr]

[PTP +  0x04 
+ 0x78 * 
EntryNbr]

[PTP +  0x08 
+ 0x40 * 

EntryNbr]

[PTP +  0x08 
+ 0x78 * 

EntryNbr]

Hash Table Pointer (HTP) [PTE + 0x30] [PTE+ 0x20] [PTE + 0x38] [PTE + 0x20]

Hash Table Element Count [PTE + 0x08]

Hash Table Entry (HTE) [HTP + entry# * 0x08] [HTP + entry# * 0x10]

IP Info Entry (IIE) [HTE]

Process Handle [IIE + 0x14c] [IIE + 
0x160]

[IIE + 0x1e0] [IIE + 0x210]

Local Port [IIE + 0x18] [IIE + 0x24] [IIE + 0x2c] [IIE + 0x44]

Remote Port [IIE + 0x1a] [IIE + 0x26] [IIE + 0x2e] [IIE + 0x46]

IP Hdr Info (IHI) [IIE – 0x08] [IIE – 0x10]

IP Address Info (IAI) [IIE – 0x04] [IIE – 0x08]

Struct A (SA) [IAI]

Struct B (SB) [SA+ 0x0c] [SA + 0x10]

Local Address [SB ]

Remote Address [IAI +  0x08] [ IAI + 0x10]

IP Type Pointer (ITP) [IHI + 0x14]

IP Type (IT) [ITP]

Is this an IPv6 address? IT == 0x17

Figure 8: TCP Established Connections.
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TCP LISTENERS Vista
32 bit

Windows 7
32 bit

Vista
64 Bit

Windows 7
64 bit

Tcp Port Pool Pointer (TPPP) [TcpPortPool]

Bit Map Pointer (BMP) [TPPP+ 0x54] [TPPP + 0x98]

Bit Map Size [TPPP+ 0x50] [TPPP+ 0x90]

Page Number (PN) Bit Number & 0xFF00

Offset Number (ON) Bit Number & 0x00FF

Pool Page (PP) [TPPP + 0x58 + PN * 0x04] [TPPP + 0xA0 + PN * 0x08]

Pointer List (PL) [PP + 0x14] [PP + 0x20]

IP Info Entry (IIE) [PL + 0x04 + ON * 0x08 ] [PL + 0x08+ ON * 0x010]

Process Handle [IE – 0x28] [IIE – 0x48]

Local Port [IIE – 0x02] [IIE – 0x06]

Struct A (SA) (if present) [IIE – 0x0c] [IIE – 0x18]

Struct B (SB) [SA + 0x0c] [SA ]

Struct C (SC) [SB + 04] [SB]

Local Address [SC ]

Struct D (SD) [IIE – 0x10]

IP Type (IT) [SD + 0x14]

Is this an IPv6 address? IT == 0x17

Figure 9: TCP Listeners.
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UDP ENDPOINTS Vista
32 bit

Windows 7
32 bit

Vista
64 Bit

Windows 7
64 bit

Udp Port Pool Pointer (UDPP) [UdpPortPool]

Bit Map Pointer (BMP) [UDPP+ 0x54] [UDPP + 0x98]

Bit Map Size [UDPP+ 0x50] [UDPP+ 0x90]

Page Number (PN) Bit Number & 0xFF00

Offset Number (ON) Bit Number & 0x00FF

Pool Page (PP) [UDPP + 0x58 + PN * 0x04] [UDPP + 0xA0 + PN * 0x08]

Pointer List (PL) [PP + 0x14] [PP + 0x20]

IP Info Entry (IIE) [PL + 0x04 + ON * 0x08 ] [PL + 0x08+ ON * 0x010]

Process Handle [IE – 0x34] [IIE – 0x60]

Local Port [IIE – 0x08]

Struct A (SA) (if present) [IIE – 0x14] [IIE – 0x28]

Struct B (SB) [SA + 0x0c] [SA  + 0x10]

Struct C (SC) [SB + 04] [SB]

Local Address [SC ]

Struct D (SD) [IIE – 0x68]

IP Type (IT) [SD + 0x14]

Is this an IPv6 address? IT == 0x17

Figure 10: UDP Endpoints.
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