
Air Force Institute of Technology Air Force Institute of Technology

AFIT Scholar AFIT Scholar

Faculty Publications

7-2012

Design and Analysis of a Dynamically Configured Log-based Design and Analysis of a Dynamically Configured Log-based

Distributed Security Event Detection Methodology Distributed Security Event Detection Methodology

Michael R. Grimaila
Air Force Institute of Technology

Justin Myers

Robert F. Mills
Air Force Institute of Technology

Gilbert L. Peterson
Air Force Institute of Technology

Follow this and additional works at: https://scholar.afit.edu/facpub

 Part of the Computer Sciences Commons, and the Other Operations Research, Systems Engineering

and Industrial Engineering Commons

Recommended Citation Recommended Citation
Grimaila, M. R., Myers, J., Mills, R. F., & Peterson, G. L. (2012). Design and Analysis of a Dynamically
Configured Log-based Distributed Security Event Detection Methodology. Journal of Defense Modeling
and Simulation, 9(3), 219–241. https://doi.org/10.1177/1548512911399303

This Article is brought to you for free and open access by AFIT Scholar. It has been accepted for inclusion in
Faculty Publications by an authorized administrator of AFIT Scholar. For more information, please contact
richard.mansfield@afit.edu.

https://scholar.afit.edu/
https://scholar.afit.edu/facpub
https://scholar.afit.edu/facpub?utm_source=scholar.afit.edu%2Ffacpub%2F1153&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=scholar.afit.edu%2Ffacpub%2F1153&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/310?utm_source=scholar.afit.edu%2Ffacpub%2F1153&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/310?utm_source=scholar.afit.edu%2Ffacpub%2F1153&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:richard.mansfield@afit.edu

Design and Analysis of a Dynamically Configured Log-based Distributed Security
Event Detection Methodology

Michael R. Grimaila, Justin Myers, Robert F. Mills, and Gilbert L. Peterson
United States Air Force Institute of Technology
2950 Hobson Way
Wright-Patterson AFB, OH 45433-7765

Abstract
Military and defense organizations rely upon the security of data stored in, and communicated through,
their cyber infrastructure to fulfill their mission objectives. It is essential to identify threats to the cyber
infrastructure in a timely manner so mission risks can be recognized and mitigated. Centralized event
logging and correlation is a proven method for identifying threats to cyber resources. However,
centralized event logging is inflexible and does not scale well because it consumes excessive network
bandwidth and imposes significant storage and processing requirements on the central event log server.
In this paper, we present a flexible, distributed event correlation system designed to overcome these
limitations by distributing the event correlation workload across the network of event producing
systems. To demonstrate the utility of the methodology, we model and simulate centralized,
decentralized, and hybrid log analysis environments over three accountability levels and compare their
performance in terms of detection capability, network bandwidth utilization, database query efficiency,
and configurability. The results show that when compared to centralized event correlation, dynamically
configured distributed event correlation provides increased flexibility, a significant reduction in
network traffic in low and medium accountability environments, and a decrease in database query
execution time in the high-accountability case.

Keywords: Distributed event correlation, security incident detection, log analysis, insider threats

1. Introduction

Military and defense organizations have long recognized the benefits of embedding information and
communication technology (ICT) into their core mission processes. Within the United States (US)
Department of Defense (DoD) military environment, information is continuously collected, processed,
analyzed, aggregated, stored, and distributed for multiple purposes including situational awareness,
operations planning, intelligence, and command decision making [1; 2]. Within the Defense Industrial
Base (DIB), ICT enables information sharing across and between business units, increases operational
efficiency, improves decision making quality, reduces delays, and results in significant cost savings.
The extreme dependence on ICT also creates significant risks from threats to the confidentiality,
integrity, and/or the availability of the data contained in, or transported between, systems and devices
[3]. For example, the leak of more than 75,000 US classified documents on the Afghan war to the
Wikileaks web site in July 2010 places US forces at risk because it exposes military tactics and
procedures that could be exploited by US adversaries [4]. Secret data was accessed and copied by a
former intelligence analyst who used his position and clearance far in excess of his official duties. This
represents only one of many possible scenarios where it is essential to identify potential threats to the
organizational ICT in a timely manner so that appropriate actions can be taken. While potential threats
sources are numerous and include natural disasters, equipment failure, accidents, and errors; our
research focuses upon detecting threats arising from the malicious activities of external hackers, trusted
insiders (intentional and unintentional) and malware.

One approach which has proven to be an effective at detecting malicious activities is the analysis of

event logs [5]. Virtually all systems and devices generate events which can be monitored, logged, and
analyzed to help administrators maintain situational awareness of the status of their ICT. Log analysis
provides the ability to understand, troubleshoot, and diagnose faults; identify root causes; and to
identify anomalous system, application, and user behaviors which place the ICT at risk [5]. Within
military environments, the need for high accountability event logging across the enterprise was only
practical for limited access, high security networks such as the Secure Internet Protocol Router (SIPR)
or Joint Warfighter Intelligence Communication System (JWICS) networks. However, the recent
widespread deployment of the Host Based Security System (HBSS) across all DoD computers enables
event collection and transport to centralized log servers to facilitate event correlation within the Non-
Secure Internet Protocol Network (NIPR) network [6].

Security Information and Event Management (SIEM) is a term that encompasses all of the activities
surrounding the collection, logging, and analysis of system and application events to identify
potentially malicious activities and system errors [7]. SIEM provides an integrated view of the events
generated by the organizations ICT so that queries can be made to identify activities of interest. In
corporate environments, the need for SIEM is primarily driven by regulatory compliance requirements.
However, in military environments the value of SIEM lies is the ability to identify malicious activities
in real-time. While SIEM has proven to be an effective means of detecting attacks against
organizational ICT resources, many organizations fail to properly implement and properly resource
SIEM capabilities [8] [9]. There are several reasons for this including the sheer volume of log data for
collection and storage [10], the network bandwidth consumed when transporting events to a centralized
log server [11], the difficulty of conducting log analysis (including issues of log normalization and
event correlation) [12], the lack of definitive action following the reporting of problems once they are
found [12], and limited investigative resources [8; 12; 13].

In this paper, we present the design and analysis of a dynamically configurable, distributed event
correlation system designed to overcome these identified barriers which cause organizations to fail to
implement a SIEM. The purpose of this research is to quantitatively determine if distributed event
correlation techniques are superior to centralized techniques with regard to flexibility, network
bandwidth consumption, detection capability, and database query efficiency. The remainder of this
paper is structured as follows: In Section 2, we present the background of, and motivation for, security
event log analysis and discuss event logging, event correlation, and centralized versus distributed event
correlation; in Section 3, we introduce a dynamically configurable distributed security event correlation
methodology; in Section 4, we present the experimental modeling and simulation environment; in
Section 5, we discuss the results and analysis of the experiment; and in Section 6, we present our
conclusions and discuss future research directions.

2. Background

In this section, we present the evolution of event logging and analysis for the detection of security
events, compare and contrast centralized and distributed event correlation, discuss data normalization,
and review recent surveys which highlight the importance of security event logging and analysis to
motivate the need for the research.

2.1. Event Logging and Analysis

In the early days of computer and network management, event logs were used simply for diagnosing
when a system, application, or device stopped functioning properly. Events were reviewed primarily to
discern the internal state of those systems to aid in troubleshooting and little else [10]. However the

value of event logs for security auditing purposes was recognized as early as 1980 when they were used
to detect unauthorized access to files [14]. At this time, a collection of systems was typically monitored
by using dedicated communications links which provided the ability for administrators to log into the
systems from a central location and remotely review event logs. As networking technologies matured,
standardization of internetworking protocols and lower cost networking hardware made it easier to
remotely monitor networked systems and devices. One of the protocols that focused on the problem of
event logging was the syslog protocol [15]. The syslog protocol provides a standard mechanism to
transport events from any number of remote systems to a central log server where they are stored for
subsequent review and analysis. Typically, a syslog process is run each system and is used to collect
event messages from all running processes, log these event messages to one or more files as well as the
system console, and forward the event messages across the network to a syslog process running on
another machine using syslog protocol [16]. To assure the secure collection and retention of event
messages, best practice requires implementing a hardened, centralized log server where all event
messages sent from the organization’s network devices are stored [5]. The idea is that if a system is
compromised, the event messages related to the compromise will have already been forwarded to the
central log server significantly limiting the ability of the attacker to erase evidence of their attack. In
some cases, multiple log servers may be used and configured in a hierarchical fashion to aggregate
messages. A key benefit of centralized event storage is that an analyst could use pattern matching
utilities to filter event logs to identify events of interest. While useful, this approach was limited by an
inability to capture temporal dependencies and track real-time state information which made it difficult
to automatically detect potentially interesting complex event patterns [17; 18].

2.2 Event Correlation

Event correlation is the activity of finding relationships between two or more events [5]. Event
correlation is usually implemented as a software tool that parses an event stream, or a stream of events
in a log file, to locate predefined patterns of interest. Event correlation provides an analyst with the
ability to automate the identification of complex patterns of interest in large amounts of data. Once an
event of interest is detected, it can be used to trigger an alert, take a specific action, notify the analyst,
and/or generate a new "synthetic" event, if desired.

A number of different approaches for implementing event correlation have been investigated
including finite state machine based [19], rule based event correlation [20; 21; 22; 23; 24], codebook
based [25], case-based reasoning [26; 27], genetic algorithms [28], graph based [29; 30; 31], model
based reasoning [32; 33], neural network based [34], and probabilistic [35] methods. Each approach to
event correlation provides unique benefits and limitations, so the best approach is strongly dependent
on the application environment.

Event correlation overcomes the limitations of simple event filtering by incorporating the ability to
capture and track temporal and state information, enabling the detection of more complex events. For
example, suppose an analyst was reviewing a web server access log to identify any Internet Protocol
(IP) addresses which downloaded more than 100 MB of web server content within a 24 hour period.
Conceptually, this would require tracking accesses by each unique IP address over a 24 hour sliding
window and integrating the amount of downloaded data within the specified time interval. Using
conventional event filtering, it is not possible to answer this type of question in a timely manner.
However, by encoding an event correlation rule which considers the relationships between web server
access requests it is possible to quickly process large data sets in an automated manner. The use of
event correlation provides significant benefits in the analysis of large event sequences because it allows
for automated aggregation, compression, escalation, filtering, generalization, masking, and the removal
of duplicate messages. Further, it aids in root cause analysis by providing valuable information that can

be used to identify dependencies between events which are precursors to failures [36].
Commercial log analysis tools incorporate event correlation capabilities because it is an

increasingly important and accepted tool for managing complexity in enterprise networks [37; 38; 39].
There are numerous open source event correlation tools available including SWATCH [40], LogSurfer
[41], SEC [24], OSSEC [42], Prelude [43], OSSIM [44], Drools [45], and Esper [46]. These tools have
proven useful in a wide variety of public and private sector environments and provide robust
capabilities at a low cost.

Event correlation has also been recognized as being a powerful tool for understanding real-time
events in the military battlespace [47]. In any large scale network, event and alarm-producing systems
are distributed across the entire network, comprising some (and possibly all) of the computing and
infrastructure systems in the network. In common configurations this virtually guarantees a volume of
data, in the form of log messages, which is infeasible for a human operator to manage efficiently [5; 10;
13; 48]. It is clear that using event correlation provides management with the ability to gain deeper
insight into activities occurring within the organizations ICT infrastructure.

2.3 Centralized versus Distributed Event Correlation

The current best practice for event collection, monitoring and analysis is based upon a centralized
architecture where each system or device that generates events sends the events to a single, hardened
centralized log server where event correlation is performed [5]. This architecture is attractive because
event correlation is conducted centrally and a malicious actor cannot eliminate evidence of their attack
on a system if the events are transmitted to, and stored in, a centralized hardened log server. However,
as the number of log-producing systems and devices increases, so does the volume of events that must
be processed, stored, and correlated. This places a significant demand on the computing resources
(processor time, memory, disk space) that must be devoted to event correlation activities. In extreme
cases, the workload can overload the ability for the event correlation engine leading to loss of detection
capability even when the centralized activity is distributed across network domains [49].

In contrast, the distributed event correlation architecture enables a portion of the event correlation
workload to be allocated to the log producers [25; 49; 50; 51; 52]. Specifically, event correlation
patterns that involve only events generated by a single system can be encoded and distributed to the log
producers. The primary benefit of this approach is that the log producers use their own processing
resources to conduct event correlation, reducing the resource burden on the centralized log server.
When an event of interest occurs on a system as defined by the event correlation rules, a synthetic
event is generated and sent to the centralized log server. Note that the synthetic event can be sent in
addition to or in place of a portion of the existing event stream. In general, distributed event correlation
addresses many of the disadvantages with centralized event correlation. First, distributing event
correlation activities reduces the total workload on the centralized log server. This enables a more
efficient use of the log server resources and reduces the likelihood of overwhelming the event
correlation engine. Research has shown that the performance impact of co-locating a lightweight event
correlation engine with a log producing application such as a web server is minimal [24]. Such co-
location makes efficient use of resources and further reduces the cost of implementing such a system.
Second, the ability to squelch event streams at the source based upon detected events provides the
option to reduce the volume of log traffic that must traverse across a network. This reduces the overall
network load, reducing the negative impact associated with the centralized logging approach.

2.4 Log Data Normalization

While virtually every system, application, and device has the capability to generate and to log event
messages, the message format often varies widely. The syslog protocol defines how events are
transported through the network, not the detailed elements that each device may generate. This presents
a difficulty for centralized log analysis, since the analysis engine must be configured to understand and
correlate event logs from every expected source. Since this can be a resource intensive activity for an
organization with logs in many different formats, log normalization is an attractive alternative. Log
normalization is defined as the conversion of each log data field to a particular data representation and
categorizing the resulting fields consistently prior to storage [5]. This preprocessing activity typically
occurs at the centralized log server prior to data storage. Note that log normalization is not the same
activity as traditional database normalization. In log normalization, the focus is upon standardizing the
log storage format so that event correlation can be easily conducted. In contrast, database normalization
is focused upon efficiently storing data within the database by eliminating redundant data and enforcing
consistency by requiring the data to be stored as collection of tables each which represents a well
structured relation. It is important to note that both types of normalization can impact the efficiency of
event correlation both positively and negatively depending upon the environment. While log
normalization generally aids in the efficiency of log analysis activities, it incurs a performance cost at
the log server due to processing that must occur prior to event storage and the increased complexity of
database queries.

An alternate way to achieve log data normalization without the performance overhead on the log
server is to embed standard data representations in each system, device, or application so that the log
producers generate event messages in normalized form. This is stated purpose of MITRE’s Common
Event Expression (CEE) project [53]. While generating events in a standard format provides significant
analysis benefits, ultimately the success of the approach will depend on vendor adoption.

2.5 The Importance of Security Event Logging and Analysis

A recent survey of 2,100 global organizations conducted by Symantec Corporation found that 75%
experienced cyber attacks in 2009 with average combined loss of $2 million per year [54]. Of the
organization surveyed, 42% of ranked cyber security as the top risk to their organization, ranking it
higher than traditional crime, natural disasters and terrorism. A key recommendation of the report was
the need for improved automation and efficiency in the event log monitoring and analysis activity.

The 2009 Verizon Corporation Business Risk Team report identified that 66% of security breach
victims represented in their caseload had “sufficient evidence available within their logs to discover the
breach had they been more diligent in analyzing such resources” [55]. In fact, only 6% of those
surveyed discovered breaches through event monitoring or log analysis. While this highlights that
effectiveness of real-time analysis of logs, it also reveals that many organizations fail to properly
implement and resource the activity. Figure 1 shows how event monitoring and log analysis solutions
are being implemented in organizations according to this report. These findings show that most
organizations rely on basic system and device logs, with a surprisingly low number using solutions
such as intrusion detection systems and automated log analysis. This means that while organizations are
largely collecting the data, the analysis of that data is still very immature, operationally speaking.

Figure 1. Verizon Data Breach Report: Detective Controls by percent of breach victims [55]

The 2008 CSI Computer Crime and Security Survey produced similar results, showing that failure in
the area of system and transaction log monitoring was a significant factor in the success of attacks. The
survey also showed that security log management is far from widely implemented, with 51% of
respondents reporting that they have such a system in place [56].

Failing to properly implement an SIEM capability can result in legal liability should the
organization experience a breach of Personally Identifiable Information (PII). Consider the 2009
Federal Trade Commission (FTC) decision against Geeks.com [57]. At issue in the ruling was the
prolonged leakage of PII, including credit card information, from Geeks.com servers. The FTC ruling
identified the lack of effective monitoring as one of the factors which contributed to this leak [8; 57].
Had Geeks.com implemented a log management strategy, they likely would have been able to detect
the data leak early on and prevent further exploitation [8].

Monitoring event logs for security violations is an important activity for the DoD. US Deputy
Defense Secretary William Lynn recently stated that "Rather than preventing people from having
access to the data, could we do things like credit card companies do, which is to look for anomalous
behavior" [4]. It is clear that if an effective SIEM capability was implemented across the DoD, the
likelihood of the Wikileaks incident being detected would have been much higher. For this reason, we
believe that it is essential to identify and overcome barriers in wide scale SIEM implementation in large
organizations such as the DoD.

3. A Dynamically Configured Distributed Security Event Correlation and Detection Architecture

In order to address limitations of the centralized logging and analysis architecture identified in Section
2, we designed a dynamically configurable architecture where the event correlation activities are
conducted not only on the log server, but also at the log-producing machines themselves. Our design
was motivated by the need to distribute event correlation workload, to reduce network bandwidth
consumption, improve the efficiency of centralized log server event correlation, and to enable dynamic

configuration of the event log collection and analysis. To achieve these objectives, our design sought to
encompass three desirable properties.

The first desirable property is that we want to be able to selectively squelch event streams by
developing event correlation rules that allowed us to transform a specific collection of events into a
single synthetic event. For example, consider an adversary who is conducting a port mapping network
reconnaissance activity against a networked system in preparation of an attack. This is the cyber
equivalent of the Intelligence Preparation of the Battlespace (IPB) in the physical world [1]. In this
case, a tool such as nmap [58] would be used to automatically access each of the ports on the system in
rapid succession to determine if each port is open, a precursor condition to perform a network based
attack. If the system were configured to generate an event for each failed connection attempt, there
would be a large number of events that would be sent to the centralized log server. In contrast, if local
event correlation was performed on the system, the port mapping activity would be detected after a
small number of failed connection attempts from the same Internet Protocol (IP) address. Once
detected, all subsequent failed connection attempt messages resulting from the suspect IP address
would be filtered out, replaced by a single synthetic event indicating that the IP address is port mapping
the system. Note that while events are filtered out of the event stream transported to the centralized log
server, the events are still stored locally on the host so that an administrator could investigate the
incident in more detail if needed. This is a simple example which shows that distributed event
correlation can be used to reduce the amount of data transported back to the centralized log server
while maintaining the ability to detect a specific malicious activity. Figure 2 shows how event logging,
collection and transport are typically implemented within a computer system. In this case, the computer
operating system generates three log files: an application log, a security log, and a system log. This
computer is also running a web server application that generates two log files: an access log and an
error log. The event transport agent collects these raw events from these log files and formats them as
syslog messages for transport back to the centralized log server. Figure 3 shows how the event transport
agent can be augmented with event correlation and filtering capabilities to determine which events, if
any, are transported to the central log server. This architecture enables an administrator to dynamically
configure the event correlation and filtering that occurs on each system so that resource utilization can
be controlled remotely based upon operational needs.

Figure 2. Typical event collection within a host

Figure 3. Enhanced event collection incorporating event correlation and filtering within a host

Second, we want to add synthetic events to the event stream generated by distributed event

correlation that would improve the efficiency of the event correlation conducted at the centralized log
server to more quickly identify event streams of interest. Figure 4 presents a visualization of how
synthetic events produced through distributed event correlation would add value. Instead of querying
each record (where one raw log entry equals one record) to search for a certain behavior, a query is
made to search for a corresponding synthetic event which provides context on the behavior, enabling
another, much smaller query to be made (if necessary) to locate the raw logs which triggered that
synthetic event.

Figure 4. Bracketing of raw events in database queries using context from synthetic events [59]

The benefit of this approach is that when event correlation is conducted at the log server, the workload
required to identify events of interest will be reduced. For example, consider a group of individuals

who possess the necessary clearances and are authorized to access an organizational intranet web server
that contains sensitive intelligence information. While they may access any information on the web
server, users are informed that it is a security policy violation to access data that is not relevant to their
“need to know”. In this case, it is highly desirable to alert security personnel if this security policy is
violated so that a further investigation can be conducted. Now suppose a malicious insider attempted to
download all of the web server content using a web crawler such as wget [60]. If the system were
configured to generate an event for each request, there would be a large number of events that would be
sent to the centralized log server. A security analyst would be responsible for running a set of queries
periodically on the log server to identify patterns of interest. One of these queries would be constructed
to identify all accesses from a single IP address, integrate the number of bytes in the downloaded web
pages, and generate an alert when the sum exceeds a predetermined threshold value. The run time of
the query depends on the complexity of the query and how much data resides in the database. As the
database grows larger the amount of time required to complete the collection of queries would increase,
leading to the possibility that the analyst would reduce the number of queries and miss detection of the
potentially malicious activity. In contrast, if local event correlation was performed on the web server, a
synthetic event indicating that a security policy violation has occurred would be inserted into the event
stream and be stored in the central log server. Now the query run periodically on the central log server
would look for the high priority synthetic events to identify malicious activity more quickly. This is a
simple example which shows that distributed event correlation can be used to add context to the event
stream reducing the workload on the centralized log server to identify specific malicious activity.

Finally, we wanted the ability to dynamically change the configuration on the log producing
systems so that we could change the behavior of logging architecture on demand. The attractiveness of
this methodology is that it provides the ability to dynamically configure systems to distribute event
correlation workload, filter event streams before sending them to the central log server, and
dynamically add context to event streams through the insertion of synthetic events which mark the
location of “interesting” event clusters. Depending upon the desired accountability level, differing
combinations of events will be sent from each log producer to the central log server. Benefits include
the ability to limit network bandwidth utilization, the ability to focus collection efforts where they are
most needed, and the ability to distribute the event correlation workload to the log producers to reduce
the performance and resource demands experienced by the centralized log server. For example, Table 1
shows an example of how each log producing system can be dynamically configured to operate in one
of four accountability levels, each with a differing amount of events that are transported to the central
log server. The modes are listed in order of increasing amount of events generated, and hence the
network bandwidth utilization required to transport the events to the centralized log server.

Table 1. Logging Mode Attributes

Logging Mode Accountability Level Raw Events Filtered Events Synthetic Events
0 None No No No
1 Low No No Yes
2 Medium No Yes Yes
3 High Yes No No
4 High Yes No Yes

Mode 0 represents a no accountability case where the log producer sends no events to the centralized
log server. This mode is used to disable the transport of events back to the log server and is needed

when network resources are too scarce or when central collection of the events is not required. It is
important to emphasize that in this mode, as with all other modes, the raw events are stored locally on
the system for a time period that is determined by the size of the disk storage allocated to local logs.
Periodically, the local log files may be archived to another storage device or may be overwritten as
determined by the organizations data retention policy.

Mode 1 represents a low accountability case where the log producer only generates synthetic events
and does not pass any raw or filtered events to the central log server. Mode 1 is useful when there is a
well defined subset of activities of interest at each system and the network bandwidth utilization is
scarce. Systems and devices that are not mission critical can be configured in Mode 1 by default.

Mode 2 represents a medium accountability case where the log producer passes only some of the
raw events and also sends generated synthetic events to the central log server. Mode 2 is useful when
some detailed information must be passed to the central log server but the use of network bandwidth is
to be reduced. Mode 2 is highly configurable in that the administrator defines exactly which raw events
are suppressed, which raw events passed, and when synthetic events are generated. For instance, raw
logs which do not correspond to malicious behavior could be suppressed, but raw events related to the
suspect behavior as well as synthetic events could be forwarded on to the log server. This way, an
analyst could examine the logs for more detail on the attack. Conversely, raw logs pertaining to the
attack could be suppressed, and synthetic events would be sent along with non-alert-generating logs, so
that additional analysis could be done on them later. In either case, the benefits of the distributed
approach are readily apparent, but the amount of benefit depends upon the particular configuration. The
resource consumption experienced by a system in Mode 2 is proportional to the complexity of the event
correlation workload.

Mode 3 represents a high accountability case where the log producer sends all of raw events it
generates, and no synthetic events, to the central log server. Mode 3 is the current best practice in
centralized security event logging. Our research and the development of a method for dynamic
configuration was driven by the drawbacks of this mode and the realization that we could be more
efficient while still detecting event patterns of interest. While intuitively it does make sense to transport
all events to a central log server for correlation, in practice the excessive consumption of network
bandwidth, the required computational resources needed to conduct event correlation, and disk space
are prohibitive for large enterprise networks.

Mode 4 represents a high accountability case where the log producer sends all of raw events plus
the generated synthetic events to the central log server. Mode 4 exploits the idea that inserting synthetic
events generated by local event correlation into the event stream reduces the workload and increases
the detection efficiency at the central log server. In a high-accountability environment, such as highly
classified networks where centralized, database-driven event correlation is mandatory, this architecture
can sit lightly on top of existing infrastructure and provide context with synthetic events, improve
semantic understanding of events, and provide higher level reasoning about the behavior captured in
log events, making the centralized correlation activities more efficient and effective.

While each of the modes discussed above has benefits and drawbacks, we contend that switching
between modes based upon the changing operational environment provides more efficient utilization of
network, computational, and storage resources. In the next section, we seek to quantitatively determine
the performance of each of these modes in a modeled and simulated network environment.

4. Experiment Design

In this section, we present the modeling and simulation environment used to quantitatively evaluate the
performance of the proposed methodology in a realistic, repeatable manner. The experiment design
section is segmented into five areas: network design, software selection, use case selection,

performance metrics, and experimental runs.

4.1. Network Model Design

In order to determine the effectiveness of the proposed log analysis methodology, we designed a
network model to simulate a typical enterprise logging infrastructure. Figure 5 shows the overall
configuration of the network annotated with IP address ranges and mission functions.

Figure 5. Experimental Network Model

The network model is comprised of nine computers and two network devices. The workstations and
servers were implemented using mini-computers, and the SAST controller and log server were
implemented using laptops. Table 2 gives the hardware specifications for each machine. The two
network devices include a Cisco Catalyst 3550 switch with IOS version 12.1(22)EA4 that was used to
facilitate the creation of Virtual Local Area Networks (VLANs) and a LaCie 1TB network storage disk
was used to record event logs. The Cisco switch is used to divide the network into five VLANs with
routing between each of the VLANs. Three of the VLANs correspond to the simulated Development,
Intelligence and Marketing subnets, each containing a web server and a workstation. The workstation
in each subnet is configured with SAST traffic generation software that makes the workstation appear
on the network as 5 virtual workstations, for a total of 15 simulated virtual workstations for the whole
network. The last two VLANs are administrative: one contains the SAST controller, and one contains
the log server and network storage device.

Table 2. Hardware Specifications for Experimental Network Computers

Function Servers, Workstations SAST Controller Log Server
Type Mini PC Laptop Laptop
Model AOpen MP945-D Dell Latitude D630 HP Compaq 8710w
CPU Celeron M 1.73 GHz Core 2 Duo 2.6 GHz Core 2 Duo 2.6 GHz
Memory 1 GB 4 GB 3 GB
Disk Space 150 GB 150 GB 150 GB

4.2. Software Selection

The configuration of software on the model network was chosen not only to facilitate the experiments
to be performed on the network, but also to add realism and applicability to the results, so that they
could plausibly apply to many common real-world network configurations. To achieve this goal,
common popular operating systems and software packages were chosen when possible. There are five
key software packages that were used for this experiment: the Security Assessment Simulation Toolkit
(SAST) traffic generation package, the Simple Event Correlator (SEC) [24], Apache web server [61],
IIS web server [62], Kiwi [63], ntop [64], and syslog [16]. Table 3 shows the operating system and
software used on each machine in the experimental network model.

Table 3. Operating System and Software for Network Model Computers

Name Operating System Software
Development
Workstations

Windows XP SP3 SAST 3.3.1

Development Server Ubuntu 9.04 Server Apache 2.2.11, SEC 2.5.3
Intelligence
Workstations

Windows XP SP3 SAST 3.3.1

Intelligence Server Windows Server 2003 Microsoft IIS, SEC 2.5.3
Marketing Workstations Windows XP SP3 SAST 3.3.1
Marketing Server Ubuntu 9.04 Server Apache 2.2.11, SEC 2.5.3
SAST Controller Windows 7 SAST 3.3.1
Log Server Windows XP SP3 Kiwi Syslog Server 9.03, Oracle Database 10g
Network Monitor Ubuntu 9.04 NTOP 3.3

4.2.1. Traffic Generator Configuration

Security Assessment Simulation Toolkit (SAST) is a proprietary tool developed by Pacific Northwest
National Laboratory (PNNL) for use by US government organizations to generate realistic-looking
traffic and facilitate exercise environments with benign and malicious traffic. In this research, SAST is
being leveraged as a traffic generation tool, as well as a scheduler to run attack code in a scriptable,
repeatable fashion. The configuration of SAST involves five interrelated components - tasks, actors,
timelines, a scenario, and host service applications (HSAs). Figure 6 shows the relationships between
these components in the configuration process.

Figure 6. SAST Configuration

We now present the process for building a SAST scenario to gives insight into how a scenario executes.
First, the specific tasks to be performed must be defined. These tasks can include surfing the web,
checking e-mail, connecting to an FTP server, or any other behaviors. Next, those tasks are assigned to
a timeline. As part of the configuration they are given a start and stop time, as well as assigned a
probability curve that dictates the frequency and pattern of execution for that task in the timeline. The
timeline, with its tasks, can then be assigned to one or more groups of actors. Each actor will appear on
the network as a distinct entity when the scenario executes. Lastly, some combination of actors is
assigned to a Host Service Application (HSA). An HSA may be located on a remote machine or it may
be local. When the scenario is loaded, each HSA is given its assigned group of actors, along with those
actor’s timelines and tasks. Upon execution of the scenario, all HSAs move together through their
respective timelines, executing tasks as configured.

For this research, SAST was configured with two types of tasks - web download tasks and
command line tasks. The web download tasks are configured to download random pages on each of the
three web servers, simulating a group of users surfing the web. They were run using a “5 per minute”
probability curve, which means 5 requests were made at random times every minute. The command
line tasks are configured to do one-time runs of Python scripts which perform attacks corresponding to
each chosen use case. These tasks were run using the “single-shot” probability curve, which means that
they only happened once, at a time specified in the configuration. Those tasks are then assigned to three
timelines, one for each subnet of abstract clients on the network. The malicious tasks were spread
evenly over three malicious timelines, while the three benign timelines downloaded websites. Actors
are similarly organized in three groups - Development, Intelligence and Marketing, and each group is
assigned its corresponding timeline. Finally, five actors from each benign group and one malicious
actor are assigned to the HSA corresponding with the Workstation machine in their subnet. Each
workstation is assigned an actor group, so that there are Development, Intelligence and Marketing
workstations. Upon execution, the three workstation machines (with HSA software running) receive the
same timeline from and sync up with the central controller. When the “Play” button is pressed, each

workstation performs the tasks included in the timelines assigned to it according to the configured
probability curves and schedules.

4.2.2. Web Server Configuration

The choice was made early on that the content on each of the three web servers should be real-world
content, rather than fabricated websites. This provides another layer of realism to the experiment. In
keeping with the subnet naming convention, the content on the Development server was gathered from
Sourceforge.net, a popular website for hosting of and collaboration on open source projects; the content
on the Intelligence server was gathered from Wikipedia, the free online encyclopedia; and the content
from the Marketing server was gathered from the GNU Operating System’s homepage, a site dedicated
to increasing awareness of free software. All content was gathered using wget.

Web servers can be configured to log many different information elements. The process of writing
event correlation rules for detecting malicious web server activities requires developing a complete
understanding of the possible observable events generated by a web server. Ideally, one would only
select for the final logging configuration the subset of event elements that provides value in the
detection of the set of malicious activities of interest. This process revealed not only which log
elements were commonly relevant to all use cases, but also forced certain design decisions. For
instance, SQL injection attacks are detected in the query string as GET parameters for the purposes of
this research. While that is a plausible location for an injection attack, it is equally if not more likely
that such an attack would be located in POST parameters. This information is not logged by default; in
fact, IIS requires third-party software to log POST data. In Apache, the configuration is straightforward
with the addition of the mod_security or mod_dumpio. Table 4 shows the Apache and IIS web server
event log elements that were collected as determined by the logging configuration in this experiment
[61; 62].

Table 4. Web Server Event Logging Configuration

Description Apache Format String IIS Element Name
Remote IP Address %a c-ip
Server Date/Time %t date, time

Response size (bytes) %b sc-bytes
Response HTTP status %s sc-status

Requested URL %U cs-uri-stem
Referer %{Referer}i cs(Referer)

Query String %q cs-uri-query
SSL Version %{version}c N/A
SSL Cipher %{cipher}c N/A

SSL Error code %{errcode}c N/A
SSL Error string %{errstr}c N/A

4.2.3. Event Correlation Engine Configuration

This research used the Simple Event Correlator (SEC) as the primary event correlation engine [24].
SEC is a lightweight, open-source, and platform independent tool for rule-based event correlation used

worldwide by organizations in industries such as banking, telecommunications, retail, and software
development, with cited benefits including low cost, flexibility, efficiency and ease of configuration.
SEC is written in Perl, has a very small footprint (less than 250 KB) and utilizes tools and concepts
which are familiar to system and network administrators such as regular expressions, file streams, and
named pipes. Configuration files in SEC are plain text files, created and modified with any text editor.
These configuration files may contain one or more rules, which are evaluated in the order in which they
appear in the file. These rules may be one of nine supported rule types, which together enable signature
detection, one or more sliding time windows, calendar events and many more advanced detection
abilities.

In the network model used in this experiment, SEC was used to collect events from the Apache and
IIS log files. The collected, synthetic, and possibly filtered events were transported back to the central
log server using syslog protocol. Within SEC, four basic rule types were used: Single,
SingleWithSuppress, Suppress and SingleWithThreshold. These rules are grouped into fourteen SEC
configuration files - twelve rulesets to detect the twelve detectable use cases, and two rulesets to create
certain conditions necessary for implementing the ability to switch between modes. The organization of
these rulesets on the filesystem takes advantage of SEC’s ability to process multiple configuration files
in parallel, and is designed to effectively implement the logging modes previously discussed. On each
log-producing system, three directories were created in the same directory as SEC. These directories
were named “common,” “conf-available” and “conf-enabled.” The implementation was inspired by
Apache’s configuration paradigm: all configuration files reside in the “conf-available” directory, and
those which are desired for any particular run of the event correlator are copied into “conf-enabled.”
This allows SEC to be initialized with the same command each time, by specifying the configuration to
load. This configuration also allows the modes of operation to be implemented as combinations of
configuration files. To configure a specific mode, a script is executed which copies only the
configuration files for the desired behaviors in the “conf-enabled” directory. The script can be remotely
executed from a central management console using a secure protocol.

4.3. Use Case Selection

The unit of analysis in the modeling and simulation of an enterprise logging environment is web server
generated events. To make the research relevant to real world activities, we used the Open Web
Application Security Project (OWASP) Top Ten as a source of realistic use cases [65]. The OWASP is
an organization focused on improving the security of web applications worldwide that compiles an
annual list of the “Top Ten” web application security risks to help organizations focus their risk
mitigation efforts to combat the most prevalent attacks. The OWASP Top Ten 2010 web server risks are
shown in Table 5 [65].

Table 5. 2010 Open Web Application Security Project (OWASP) Top Ten [65]

Threat Vector Description
Injection Injection flaws, such as SQL, OS, and LDAP

injection
Cross Site Scripting (XSS) Application takes untrusted data and sends it to a

web browser without proper validation and
escaping

Broken Authentication and Session Management Application functions related to authentication and

session management are often not implemented
correctly

Insecure Direct Object References Application developer exposes a reference to an
internal implementation object, such as a file,

directory, or database key
Cross Site Request Forgery (CSRF) An application forces a logged-on victim’s

browser to send a forged HTTP request, including
the victim’s session cookie and any other

automatically included authentication information,
to a vulnerable web application

Security Misconfiguration Secure configuration defined and deployed for all
web applications

Insecure Cryptographic Storage Applications does not properly protect sensitive
data with appropriate encryption or hashing

Failure to Restrict URL Access Attackers can forge URLs to access hidden pages
because URL access rights are unchecked

Insufficient Transport Layer Protection Application fails to authenticate, encrypt, and
protect the confidentiality and integrity of

sensitive network traffic
Unvalidated Redirects and Forwards Application redirect and forward users to other

pages and websites using untrusted data to
determine the destination pages

From the Top Ten, we generated eight use cases and encoded the corresponding behavior in SAST. We
did not use the "Security Misconfiguration" or "Insecure Cryptographic Storage" as use cases because
they result from configuration errors that occur during the set up of the web server which would
normally be manually checked after each installation.

When developing event correlation rule sets to detect potentially malicious activities, there are two
main categories that should be detected: Threat vectors and violations of security policy. Threat vectors
are behaviors and events that should never occur in the ICT, such as an SQL injection attack. When
these activities occur, it is virtually certain the resource is under attack. The OWASP Top Ten falls
largely into this category. In contrast, violations of security policy are often behaviors and events which
occur normally but constitute a policy violation when defined thresholds are exceeded. For example, a
policy might exist that says that no employee should be accessing a given resource outside of normal
work hours (e.g., 6pm - 6am). Access to that resource is a legitimate action, but when the “access time”
is outside of the defined interval, that legitimate action becomes a policy violation.

To ensure that both event classes are covered in this research, five additional use cases were added
to represent combinations of legitimate activities which, taken together, are regarded as policy
violations in the experimental network. These five security policy use cases are shown in Table 6:

Table 6. Security Policy Violations

Policy Violation Description

Naive Web Crawler A client IP address is using a web crawler to access all web server content in
rapid succession

Delayed Web Crawler A client IP address is using a web crawler with a uniform delay constant in

an attempt to mask their access of all web server content
Excessive Downloads A client IP address downloads more than X bytes in Y minutes
Excessive HTTP Errors A client IP address accesses an excessive number of non-existent pages

While this research focuses on the analysis of web server logs to detect attacks, there are many other
event log sources which may provide value in detection malicious activities. To demonstrate this
concept using our distributed event correlation approach, we added the “Injection Sequence” use case
shown in Table 7. This use case combines the query log from MySQL and the Apache access log to
discern suspicious behavior without the use of a regular expression signature. In addition, the
“Insufficient Transport Layer Protection” use case used the Apache error log, which does not have the
rigid format of the access log, to detect accesses by the Firefox web browser to an SSL-enabled page
with an invalid certificate.

Table 7. Multiple Log Fusion

Policy Violation Description
Injection Sequence A client IP address conducts a SQL injection attack detected using both web

server logs and database server logs

Overall, the 13 use cases shown in Table 8 were selected to evaluate the ability of different logging
modes to detect the malicious behavior.

Table 8. Experimental Use Cases

Use Case Type
Cross Site Request Forgery (CSRF) Threat Vector

Injection Threat Vector
Injection Sequence Multiple Log Fusion

Insecure Direct Object References Threat Vector
Excessive Downloads Policy Violation

Unvalidated Redirects and Forwards Threat Vector
Failure to Restrict URL Access Threat Vector

Excessive HTTP Errors Policy Violation
Broken Authentication and Session Management Threat Vector

Cross Site Scripting (XSS) Threat Vector
Naive Web crawler Policy Violation

Delayed Web crawler Policy Violation
Insufficient Transport Layer Protection Threat Vector

4.4. Metrics of Performance

To facilitate the quantitative analysis of the modeling and simulation results for each model of
operation in the experimental network, four metrics were identified:

 Use Case Detection Percentage
 Number of False Positives
 Network Bandwidth Consumption
 Log Server Event Correlation Time

The first metric is the use case detection percentage. The use case detection percentage is defined as the
percentage of number of use cases detected compared to the total use cases executed during the
experiment. In this experiment, each simulation run contains thirteen malicious use cases. A use case
detection is deemed to occur if the event correlation rule corresponding to the malicious use case is
triggered when the use case occurs. It is expected that this measure will be high (e.g., 100%) for all
modes of operation as the event correlation rules are specifically written to detect the malicious use
cases. This metric is used to verify that the malicious activities of interest can be detected in each mode
of operation.

The second metric is the number of false positives. The number of false positives is defined as the
raw number of event rule correlation detection alerts that occur during each 8 hour experimental run
that do not match a corresponding malicious use case. Typically, false positives occur as the result of
the event correlation rules not being specific enough or because some non-malicious behavior matches
the pattern of an activity of interest. This represents one of the real challenges when conducting event
correlation: you try to define event correlation rules specific enough to minimize the number of false
positives to reduce investigative costs while be general enough to identify potentially malicious
activities that require further investigation.

 The third metric is the network bandwidth consumption. This metric is defined as the percentage of
raw syslog event data transported to the total traffic in the network over the duration of the experiment.
The total traffic in the modeled network is the sum of the SAST controller traffic, the HTTP web server
requests and responses, and the resulting syslog traffic. For a fixed set of use cases, this metric is a
measure of the burden placed on the network resulting from logging in proportion to the total network
traffic. This measurement is taken by monitoring all traffic via a SPAN port on the switch, using ntop
[65] to collect data and generate summary statistics. This metric is most important for determining the
value of this research in terms of reducing network bandwidth consumption.

The fourth metric is the log server event correlation time. This metric is used to quantify the
difference in database query execution time at the centralized log server in high accountability
environments. This metric is calculated for Mode 4 (e.g., all raw events) and Mode 5 (e.g. all raw
events plus synthetic events). The hypothesis is that addition of synthetic events reduces the time
required to complete an event correlation database queries.

4.5. Experimental Runs

This section describes the simulation of the network model in detail, including which use cases and
logging modes were simulated. It also describes the protocols followed during testing, including how
data and statistics are collected and the clearing of log files and databases between runs.

Table 9 shows the details for each of the five experimental simulation runs. These runs test each
logging mode with all use cases, to simulate detection of any scenario under normal circumstances. In
addition to the use case detection percentage, false positive count, and network bandwidth
consumption, which are calculated for each experimental run; the log server event correlation time was
determined for two database queries only for the data collected Mode 3 and Mode 4.

Table 9. Experimental Run Detail

Logging Mode Events Collected

0 No Events Collected
1 Synthetic Events Only
2 Synthetic Events + Filtered Events
3 Raw Events Only
4 Synthetic Events + Raw Events

A SAST scenario containing all of the experimental use cases presented in Table 8 was designed to run
over an eight hour time period. The scheduling timeline of the SAST scenario is shown in Table 10. A
set of non-malicious web surfing activities was programmed to occur uniformly throughout each
experimental run. Within the SAST scenario, there are two significant sources of variation from run to
run: 1) the target of each attack, and 2) the execution time for three specific use cases. The target of
each attack is chosen randomly by the python script executing the attack, adding an element of
unpredictability to the simulation. The three use cases with variable execution times are the Naive web
crawler, Delayed web crawler and Insufficient Transport Layer Protection use cases. These cases had to
be executed by hand, so the execution times differed slightly. Generally, the web crawlers were
executed early in the simulation, while the Insufficient Transport Layer Protection use case was
executed later. Note that the variation in the execution times does not impact the performance metrics
in this experiment.

Table 10. SAST Scenario Time Line

Task Scheduled Offset (hours) Targeted Server
Scenario Start +0 All
Web Surfing Uniformly Throughout All

Cross Site Request Forgery (CSRF) +0 Development
Injection +1 Intelligence

Injection Sequence +1.5 Marketing
Insecure Direct Object References +2 Marketing

Excessive Downloads +3 Development
Unvalidated Redirects and Forwards +4 Intelligence

Failure to Restrict URL Access +5 Marketing
Excessive HTTP Errors +6 Development

Broken Authentication and Session Management +7 Intelligence
Cross Site Scripting (XSS) +7.5 Marketing

Naive Web crawler +1 to +2 Marketing
Delayed Web crawler +3 to +4 Marketing

Insufficient Transport Layer Protection +2 to +7 Development
Scenario End +8 All

Prior to beginning a run of the experiment, several tasks must be completed to ensure that the data
collected is correct for that run. There are five such tasks: ensuring that data is properly collected from

the previous run, restarting SAST HSAs and resetting ntop. When the above steps have been
performed, the network model is ready to be prepared for the next experimental run. Three
configuration steps are needed to prepare the network for a run. First, the SEC instances on each web
server must be configured. This is done remotely through a configuration shell script written for this
purpose. Once SEC has been configured, the SAST scenario must be loaded at the controller. Next, the
database on the central log server which will store log messages from this run must be created, Kiwi
must be configured to write to a new text file, and the log server SEC instance must be configured with
the correct source file and destination database. The last step involved in preparing the network for a
new run is running the “resetStats.sh” tool on the server running ntop. Database queries are run after all
data collection has been completed. At this point, the SAST controller is used to initiate the defined
SAST scenario.

5. Simulation Results

In this section, we present the results of the network model simulation and present an analysis of the
results with respect to the goals of the research. A separate experimental run was conducted for each of
the modes of operation. The network model was configured for each of the modes of operation using
remote shell scripts which validated the ability to dynamically configure the collection, correlation, and
filtering of events.

5.1. Use Case Detection Percentage

Table 11 shows the use case detection percentage, number of false positives, and number of false
negatives for each experimental run. As expected, all thirteen use cases were detected for each of the
modes of operation resulting in 100% use case detection percentage for each of the modes. A manual
verification of the results was performed to assure that detection alerts generated by the event
correlation rule correctly matched each use case activity.

Table 11. Use Case Detection Summary

Mode Use Cases Detection Percentage False Positives False Negatives
0 0.0 % 0 0
1 100 % 1 0
2 100 % 2 0
3 100 % 1 0
4 100 % 1 0

5.2. Number of False Positives

Table 11 also reveals that a single false positive alert occurred during the experimental runs for Modes
1, 3, and 4, and two false positives occurred during the experimental run for Mode 2. Further
investigation of the raw data collected revealed that in all four modes of operation, the naïve web
crawler event correlation detection rule fired once. This occurred because the SAST generated behavior
for "Excessive Access Attempts" use case matched the naïve web crawler detection criteria (e.g., the

download of more than 100MB bytes by the same IP address within a 1 hour window). This illustrates
the difficulty of coding event correlation rule sets to detect policy violations: the policies must
specifically define suspicious or disallowed behavior and that behavior must result in observables that
can be encoded in to the detection mechanism. A second false positive occurred during Mode 3 data
collection, but this resulted from the delayed web crawler event correlation detection rule which fired
once because of the regularity of a download from one specific SAST client IP address. Since the false
positives were not the focus of the research, the event correlation rules were not adjusted to reduce the
false positive count. In an operational environment, event correlation rules would be continuously
refined in an effort to minimize the number of false positives without excluding behavior which may be
malicious.

5.3. Network Bandwidth Consumption

During each experimental run, ntop was used to monitor all traffic traversing the central switch. The
network traffic was composed of SAST controller traffic, HTTP traffic, and the syslog traffic which is
the focus of this research. Table 12 shows the raw network traffic over each 8 hour experimental run.
Note that there are variations in the total SAST and HTTP traffic for each mode due to the stochastic
nature of the SAST scenario execution.

Table 12. Raw Network Traffic Composition

Mode Total Throughput SAST Traffic HTTP Traffic Syslog Traffic
0 2.0 GB 56.3 MB 1.9 GB 0.0 KB
1 2.0 GB 56.3 MB 1.9 GB 7.8 KB
2 2.0 GB 56.2 MB 1.9 GB 31.5 KB
3 2.1 GB 57.2 MB 2.0 GB 6.80 MB
4 2.4 GB 57.3 MB 2.3 GB 6.83 MB

The results for Mode 0 verify the ability to filter all events generated from remote servers so that none
are transported to the central log server. In this case, no syslog data traversed the network. While the
experiment was designed to configure all servers in the same way, a practical application of the
methodology would allow the administrator to selectively disable event collecting when there was a
need to conserve network bandwidth at all costs.

In Mode 1, only 7.8 KB of syslog data traversed the network to the central log server. This data
consisted only of the synthetic events generated by the remote event correlation rules executed on each
of the servers. Despite the small amount of syslog traffic generated, all 13 use cases were detected.

In Mode 2, 31.5 KB of syslog data traversed the network to the central log server. This data
consisted of the synthetic events plus the raw events which are related to the synthetic events. The
ability to pass raw events related to the generated synthetic events is analogous to a motion sensitive
camera in its ability to only record activities of interest.

In Mode 3, 6.80 MB of syslog traffic traversed the network to the central log server. This data
contained all events generated by the system and is representative of the best practice in event log
collection and analysis (e.g., the transport of all logs to a central server for event correlation).

In Mode 4, 6.83 MB of syslog traffic traversed the network to the central log server. Mode 4 is
identical to Mode 3, but adds additional context to the data for the purposes of improving the efficiency

of central event correlation in high accountability environments.
The traffic from syslog is an incredibly small percentage of the overall traffic. However, it is

important to remember that this research utilizes only a small number of log-producing applications. If
this were a full-scale enterprise network, there would be other forms of logs, including workstation,
router, firewall, and other application logs. These logs, if added to this experimental network with no
further modification, could easily push the percentage of traffic identified as syslog significantly higher.

Table 13 shows the average network throughput as well as the network composition of each type of
traffic as a percentage of the total throughput. Note that Mode 1 is the most efficient in terms of its
ability to minimize the syslog traffic while still detecting all of the experimental use cases. In contrast,
Mode 4 results in the maximum syslog traffic as it contains all raw and synthetic events.

Table 13. Network Traffic Composition Percentages

Mode Average Network
Throughput

SAST Traffic
Percentage

HTTP Traffic
Percentage

Syslog Traffic
Percentage

0 587.7 Kb/s 2.8 % 97.1 % 0.0 %
1 587.7 Kb/s 2.8 % 97.1 % 0.00039 %
2 584.2 Kb/s 2.8 % 97.1 % 0.00158 %
3 622.4 Kb/s 2.3 % 97.3 % 0.283 %
4 714.3 Kb/s 2.7 % 96.9 % 0.324 %

Figure 7 shows the syslog traffic as a function of the mode of operation graphed on a logarithmic scale.
Visualization of the syslog traffic makes the benefits of using Mode 1 or Mode 2 clear whenever it is
possible to do so. It also shows that Mode 3 and Mode 4 differ only slightly in the amount of syslog
traffic.

Figure 7. Syslog Traffic as a Function of the Logging Mode

Overall, the flexibility offered by the logging modes becomes apparent in terms of the ability to
adjusting the amount of syslog traffic. In the best case, where a Mode 4 configuration is compared with
a Mode 1 configuration, there is a 99.88% reduction in the amount of syslog traffic on the network.
These results clearly show the value of a configurable, distributed event correlation infrastructure with
regards to network utilization. This is especially true in a low-accountability environment, where no
centralized logging is required and thus the smallest possible amount of syslog traffic can be sent over
the network.

5.4. Log Server Event Correlation Time

In this section, we examine the effect of adding synthetic events to the raw events and the effect of
using traditional database normalization on the time required to conduct database driven event
correlation at the central log server in high accountability (e.g., Mode 3 and Mode 4) networks. These
metrics were collected after all network simulation runs were completed because they only involved
post processing of the data stored on the central log server.

5.4.1. Addition of Synthetic Events

One of the theories tested in this research was that the use of distributed event correlation and filtering
not only provides benefits in reducing network bandwidth consumption, but also improve the efficiency
of centralized event correlation that occurs in high accountability environments. To determine the
impact of the addition of synthetic events on the time to complete event correlation at the central log
server, two typical tasks were chosen and database queries were written to implement the event
correlation necessary to complete the tasks.

The "excessive downloads" use case was selected as a representative example due to the
complexity of the case (e.g., implement a sliding window to identify when more than 100MB of data
are downloaded within a 1 hour period by any single IP address). The composition of a database query
to identify violations of the “excessive downloads” rule differs depending on whether synthetic events
are present or not in the data. In the case where no synthetic events are present (e.g., Mode 3), the
database query must be constructed to identify all unique IP addresses that accessed the server of
interest, identify all web page accesses from each of unique IP address that accessed the server,
integrate all of data transfers from this set over a sliding window of the given time period for each
unique IP address, and return the IP address of the offending system if the sum of accesses within the
sliding window exceeds a specified threshold. In contrast, the database query is much simpler when
synthetic events are present (e.g., Mode 4) because the query simply returns the synthetic events to
identify the offending IP addresses. In some cases, it may be desirable to identify only the IP address of
the offending system(s) and in other cases it may be desirable to identify both the IP addresses of the
offending system and other parameters from the related raw events that will aid in an investigation. For
this reason, we constructed two different types of database queries to detect violations of the
"Excessive Downloads" use case:

1. Return the IP addresses of each offending systems.
2. Return the IP addresses of each offending systems and the related raw events.

For each of the two query types, a separate query was written to process Mode 3 and Mode 4 data.
Each of these four unique queries was executed and the results are shown in Table 14.

The results of the first query to return only the IP addresses of offending systems show that adding
synthetic events to the event stream resulted in a 1405:1 improvement in query performance. This large
performance improvement was expected and is due to the fact that the query workload was allocated to
the remote event producing systems. The remote systems processed their own raw event data, identified
event sequences which matched the excessive download rule, and when detected inserted the
“excessive download” synthetic events into the event stream that was transported back to the central
log server. When querying Mode 4 data, the database only had to search for the synthetic events
corresponding to the excessive download event correlation rule. In contrast, when querying Mode 3
data the event correlation workload burden was placed solely on central log server which had to
process large amounts of data to identify the event streams of interest.

The results of the second query to return the IP addresses of offending systems and related events
shows that adding synthetic events to the event stream resulted in a 289:1 improvement in query
performance. This performance improvement occurs for the same reasons as Query 1 but is also due to
the fact that the addition of synthetic events in the event stream enables the database to more quickly
identity the location of the violations (e.g., where “excessive download” event correlation rules fired).
When querying Mode 4 data, the database only had to search for “excessive download” synthetic
events and if found, return the raw events which caused the production of the synthetic event. In
contrast, when querying Mode 3 data the event correlation workload burden, as well as the requirement
to return the related events, was placed solely on central log server.

Table 14. Performance Improvement for Excessive Download Event Correlation Queries

Query Returned Results Mode 3 – Raw
Events

Mode 4 – Raw Events
+ Synthetic Events

Performance
Improvement

1 IP Address Only 120.9s 0.086s 1405:1
2 IP Address and Related

Raw Events
289.4s 1.0s 289:1

Our results clearly show that even when related logs are collected, the time required in the context-
aware case is several orders of magnitude smaller than in the context-less case. This is an intuitive
result - in the context-aware case, the hard work of actually correlating individual log-based events was
done in real-time as they happened, allowing the context-aware script to merely query the database for
related logs. The context-less case had to do both the task of correlating individual events and the task
of searching for related logs. In this experimental high-accountability environment the raw logs are still
accessible at the centralized log server, but these results demonstrate that the addition of context in real
time through distributed event correlation can foster a remarkable decrease in the amount of time it
takes to interact with those raw logs.

It is important to note that the purpose of this experiment was to show experimentally if a
performance increase existed. We are planning to further explore this in more detail to identify the
factors which determine the magnitude of the performance improvement (e.g., size of the database,
complexity of the correlation rules, CPU loading) so that rational tradeoffs can be made when
designing a SIEM solution.

5.4.3. Database Normalization

Another theory tested in this research was that the use of database normalization would improve the
efficiency of centralized event correlation that occurs in high accountability environments. To
determine the impact of database normalization, the data collected for Mode 4 (e.g., raw and synthetic
events) was stored in two separate databases: 1) a non-normalized database, and 2) a normalized
database. The non-normalized database is the current best practice where all syslog events are stored in
a single event table within the database using the database table schema shown in Figure 8. The syslog
data field encapsulated all of the raw and synthetic events within a single table.

Figure 8. Non-Normalized Log Server Database Table Schema

In contrast, the normalized database stores each incoming syslog event into either a raw event table or a
synthetic event table using the schema shown in Figure 9. Before a record is inserted into the database,
code within the database is used to parse the syslog event and store the incoming syslog event into the
appropriate table. The benefit of this approach is that the synthetic events can be more quickly searched
to identity activities of interest.

Figure 9. Normalized Log Server Database Table Schema

Table 15 shows the mean and variance of both the normalized and non-normalized runtime of
queries for ten queries for each of the use cases using the data collected for Mode 4. All queries were
written in Oracle PL/SQL with the exception of the Naive Web Crawler, Excessive Downloads, and
Excessive Access Attempts queries. Due to the complex nature of these use cases, these behaviors were
detected in the database using Perl scripts. The null hypothesis, Ho, is that the mean runtimes are the
same; that is to say, normalization of the database has no effect on the runtime of queries. The alternate
hypothesis, Ha, is that the mean runtimes are statistically different.

Table 15. Query Runtime for Normalized and Non-Normalized Mode 4 Data

Index
Log Server
Date/Time

Syslog event data (raw events only)

RawEventTable

Index
Log Server
Date/Time

Syslog event data (synthetic events only)

SyntheticEventTable

Index
Log Server
Date/Time

Syslog event data (raw events and synthetic events)

EventTable

Use Case Mean
(normalized)

Mean
(non-normalized)

Variance
(normalized)

Variance
(non-normalized)

p-value

Injection 0.158 0.206 0.000307 0.000093 2.50 E-06

XSS 0.029 0.079 0.000543 0.000010 7.28 E-05

Authentication 0.015 0.505 0.000094 0.025783 4.63 E-06

Object
References

0.123 0.245 0.000179 0.000027 6.81 E-12

CSRF 0.031 0.085 0.000187 0.001783 2.77 E-03

URL Access 0.055 0.083 0.000250 0.000157 394. E-06

Redirects 0.058 0.073 0.000351 0.000134 48.0 E-03

SSL 0.054 0.070 0.000271 0.000000 13.3 E-03

Naïve Web 325.0 8063.3 0.888889 64.3333 321. E-09

Excessive
Downloads

265.9 76.6 0.544444 0.266667 < 2.2E-16

Excessive
Access
Attempts

324.7 210.1 0.455556 0.100000 < 2.2E-16

The p-value is the observed level of significance, which is the smallest value at which Ho can be
rejected for the collected data. If the p-value is greater than or equal to α, the null hypothesis (Ho) is
not rejected. If the p-value is smaller than α, the null hypothesis (Ho) is rejected. The resulting p-values
reveal that database normalization makes a statistically significant difference in the runtime of all of the
use case queries. All p-values are less are under the 1% (α = 0.01) significance level (e.g., the p-value is
less than 0.01) which means the null hypothesis (Ho: mean query runtimes are the same) is rejected in
favor of the alternative hypothesis (Ha: mean query runtimes are statistically significantly different).
The use of database normalization reduced the query runtimes for the Injection, XSS, Authentication,
Object References, CSRF, URL Access, Redirects, SSL, and Naïve Web Crawler use case; it increased
the query runtime for the Excessive Downloads and Excessive Access Attempts use cases.

The results clearly demonstrated the value of normalizing a database for increasing the efficiency of
queries made on that database, with an average reduction in query time of 15.31%. This benefit is even
clearer when only the OWASP Top Ten use cases are considered which results in an average percent
reduction in query time of 46.76%. Figure 10 shows the runtimes of the queries, along with the average
runtime. The three insider threat use cases (the Delayed Web Crawler was omitted due to its similarity
to the Naive Web Crawler and the long runtimes of each) did not all exhibit such a clear-cut benefit.
While the Naive Web Crawler queries showed the most runtime reduction of the set (absolute reduction
of over 2 hours or 95.97%), the Excessive Downloads and Excessive Access Attempts queries were
actually slower by several minutes in the normalized case. The higher runtimes for the last two queries
is likely due to the data structures used to perform the detection - in the non-normalized queries, the
sliding time window was implemented using a Perl array, while the normalized queries implemented
the window as a series of SQL queries. It was thought that the ability to leverage optimizations in
Oracle would cause the normalized queries to perform more efficiently. Clearly, this is not universally
the case.

Figure 10. Normalized and Non-normalized queries for OWASP use cases

Figure 11. Normalized and Non-normalized queries for insider threat use cases

An examination of the algorithms used in these queries provides insight into these results. Essentially,
the only difference between the Naive Web crawler algorithm and the Excessive Access Attempts
algorithm is that the query which pulls all relevant records from the database includes an additional
qualifier in the latter that only selects those log messages with an HTTP status of “404.” Similarly, The
Excessive Downloads algorithm requires a single pass through the records, whereas the Naive Web
crawler algorithm requires multiple passes for each record. This results in a much lower number of
records to consider for the Excessive Access Attempts and Excessive Downloads algorithms. This
difference in complexity exposes the underlying mechanisms used to conduct the detection. In the non-
normalized cases, a Perl array was used to store the relevant information parsed out of the log
messages. These Perl arrays were then used to implement the sliding time windows. In the normalized
queries, no such reliance on arrays was necessary, since the sliding time window could be implemented
entirely in SQL queries. It seems, therefore, that the implementation of sliding time windows in Perl
arrays is more efficient than their implementation in SQL queries. The relatively lower complexity of
the Excessive Downloads and Excessive Access Attempts algorithms allows that difference to manifest
itself. These results make two points about database normalization of log messages. First, they show
that in many cases there can be a distinct efficiency advantage in doing event correlation using a
normalized database. Second, these results illustrate the fact that normalization by itself is unlikely to
solve the major issues with centralized log management. In the Excessive Downloads and Excessive
Access Attempts queries, a more efficient detection implementation actually outweighed any benefit
presented by the use of a normalized database.

5.5. Remote Configurability and Log Source Flexibility

In a small experimental network, it is feasible to manually configure each machine in a network.
Indeed, a centralized event correlator can be reasonably configured manually, since all event
correlation activities happen in one place. It is essential that a distributed event correlation scheme have
the capacity for remote configuration to overcome this disadvantage. To provide this capability, a bash
script was written which utilized SEC’s capability for dynamic configuration via Linux operating
system signals. The script takes a logging mode and a reset type as parameters, the reset type being
either ’hard’ (terminate ongoing event correlation activities) or ’soft’ (maintain ongoing event
correlation activities and just reload the configuration). The script chooses the appropriate
configuration files for the indicated logging mode, and moves them from “conf-available” to “conf-
enabled.” It then sends either SIGHUP (hard reset) or SIGABRT (soft reset) to SEC, causing it to
reload its configuration. We were able to implement and test this capability under a Linux operating
system, but the Windows operating system does not have a comparable signaling system and thus an
additional process would be required to implement this capability. Despite this limitation, we have
proven that a logging environment can be dynamically configured from a remote location making
administration of an enterprise wide SIEM solution feasible.

6. Conclusions

In this paper, we presented the design and analysis of a flexible, distributed event correlation system
designed to overcome limitations in security event logging and analysis. To demonstrate the utility of
the methodology, we modeled and simulated centralized, decentralized, and hybrid log analysis

environments over three accountability levels and compare their performance in terms of
configurability, network bandwidth utilization, detection capability and database query efficiency. The
results show that when compared to centralized event correlation, dynamically configured distributed
event correlation provides increased flexibility, a significant reduction in network traffic in the low-
accountability case, and a decrease in database query execution time through context addition in the
high-accountability case while detecting all modeled malicious use cases with a low false positive rate.
The goal of this research had two components, namely developing a distributed log event correlation
methodology and to quantify the value provided by that methodology over a centralized alternative.
That two-part goal is met when the chosen metrics for measuring the value of a methodology
demonstrate that the distributed methodology does in fact outperform the centralized methodology. The
secondary goal of this research was to demonstrate additional advantages of a distributed approach
which provide useful, if not quantifiable, value. This goal is met when a plausible implementation of
the advantages is demonstrated and shown to provide the anticipated value.

The primary goal of this research was met in part by the measurement of network utilization,
showing a best-case reduction in syslog traffic of 99.88% between a raw log only and synthetic-event
only configuration. The goal was further met by the measurement of query efficiencies, showing that
adding context to the database has a dramatic effect in reducing the time necessary to detect suspicious
behavior by querying the database.

The secondary goal of the research was met through the implementation of several techniques
which take advantage of the distributed architecture to add additional value. Those techniques were
remote configuration, inclusion of multiple log sources and analysis of the differences between
normalized and non-normalized databases. The remote configuration showed that distributed event
correlation architectures can be easily managed remotely, making it much more practical at a larger
scale. The inclusion of multiple log sources showed that the methodology can correlate sources with
different formats and information, even combining information from multiple sources to detect
behavior that is not evident in only one or the other. Lastly, the value of normalizing a database was
shown through analysis that revealed that as the complexity of detection algorithms increase, the
reduction in query time becomes even more pronounced.

6.1 Future Work

There are several issues in distributed event correlation that need further exploration. First, this
research effort focused primarily on the use of web server access logs and, to a lesser extent, web
server error logs for detecting malicious activities on a system. We included one use case that utilized
the MySQL event log to demonstrate the value of fusing multiple event log sources on the same
system. However, further work needs to be conducted to identify tradeoffs in the benefits provided by
fusing multiple logs compared to the costs in terms of processing and storage requirements. Second, a
study of the expansion of this methodology to include other types of logs, such as router logs,
workstation logs, firewall and intrusion detection logs, and other application logs should be conducted
to develop an understanding of what is activities are detectable how their inclusion affects event
correlation activities. Third, further research is recommended in the area of emerging common log
event description standards such as MITRE’s Common Event Expression. This area provides great
potential for log normalization and event correlation, and parallel research efforts would benefit all
concerned communities. Fourth, further research needs to address the presentation and the prioritization
of alerts with respect the organizational high value assets. As noted in the introduction, SIEM tools are
focused not only on collecting logs and detecting behavior, but also on incident management, reporting
and visualization. This research did not meaningfully address the reporting of events once they were
generated, or the organizational processes which would be necessary to respond to incidents once they

were reported. Further research in this area would give the log collection and incident detection
components of this research additional organizational relevance.

7. Disclaimer

The views expressed in this paper are those of the authors and do not reflect the official policy or
position of the United States Air Force, the Department of Defense, or the U.S. Government.

8. References

[1] Joint Chiefs of Staff, “Joint Publication 3-13: Information Operations,” United States Department

of Defense, 13 February 2006.
[2] Libicki, M.C. and Johnson, S.E. (Ed), “Dominant Battlespace Knowledge,” National Defense

University Press, October, 1995.
[3] Grimaila, M.R., Fortson, L.W., and Sutton, J.L., “Design Considerations for a Cyber Incident

Mission Impact Assessment (CIMIA) Process,” Proc. of the 2009 International Conference on
Security and Management (SAM09), Las Vegas, Nevada, 2009.

[4] Christie, M., “U.S. Mulls Credit Card⁷ Type Monitoring To Halt Leaks,” Reuters, October 26,
2010, http://in.reuters.com/article/idINIndia-52465720101026 (accessed October 28, 2010).

[5] Kent, K. and Souppaya, M. “Guide to Computer Security Log Management”, NIST Special
Publication 800-92:, September 2006, http://csrc.nist.gov/publications/nistpubs/800-92/SP800-
92.pdf (accessed October 23, 2009).

[6] DISA, "Host Based Security System," Defense Information Systems Agency, 2010,
http://disa.mil/hbss (accessed October 23, 2010).

[7] Swift, D., “A Practical Application of SIM/SEM/SIEM Automating Threat Identification,”
Technical report, SANS Institute, December 23, 2006.

[8] Shenk, J., “SANS Annual 2009 Log Management Survey,” Technical report, SANS, 2009.
[9] Wilshusen, G. and Powner, D., “CYBERSECURITY: Continued Efforts Are Needed to Protect

Information Systems from Evolving Threats”, 2009, http://www.gao.gov/new.items/d10230t.pdf
(accessed December 10, 2009).

[10] Sah, A., “A New Architecture for Managing Enterprise Log Data”. LISA, 121–132, 2002.
[11] Myers, J., Grimaila, M.R., and Mills, R.F., “Towards Insider Threat Detection using Web Server

Logs,” Proc. of the Cyber Security and Information Intelligence Research Workshop (CSIIRW
2009), Oak Ridge National Laboratory, Oak Ridge, TN, April 13-15, 2009.

[12] Myers, J. Grimaila, M.R., and Mills, R.F., “Insider Threat Detection using Distributed Event
Correlation of Web Server Logs,” Proceedings of the 2010 International Conference on
Information Warfare and Security (ICIW 2010), WPAFB, OH, April 8-9, 2010.

[13] Shenk, J., “Demanding More from Log Management Systems,” Technical report, SANS, 2008.
[14] Anderson, J. P., Computer Security Threat Monitoring and Surveillance, James P. Anderson Co.,

Fort Washington, PA, 1980.
[15] Lonvick, C., “RFC 5424: The Syslog Protocol,” Internet Engineering Task Force, Network

Working Group, March 2009.
[16] Gerhards, R., “RFC 3164: The BSD syslog Protocol,” Internet Engineering Task Force, Network

Working Group, August 2001.
[17] Bing, M. and Erickson, C., “Extending UNIX System Logging with SHARP,” LISA ’00:

Proceedings of the 14th USENIX conference on System administration, pp. 101–108, 2000.

[18] Jakobson, G. “The Technology and Practice of Integrated Multi-Agent Event Correlation
Systems,” KIMAS, 568–573, 2003.

[19] Bouloutas, A., Hart, G.W., and Schwartz, M., "Simple finite-state fault detectors for
communication networks," Communications, IEEE Transactions on, 40(3):477-479,1992.

[20] Cronk, R.N., Callahan, P.H., and Bernstein, L., "Rule-based expert systems for network
management and operations: an introduction," Network, IEEE, 2(5): 7-21, September 1988.

[21] Doorenbos, R.B., "Production Matching for Large Learning Systems," PhD Dissertation, CMU-
CS-95-113, Department of Computer Science, Carnegie Mellon University, January 31, 1995.

[22] Pouget, F. and Dacier, M., "Alert correlation: Review of the state of the art," Technical Report,
EURECOM Research Report RR-03-093, Institut Eurecom, France, November 2003.

[23] Sadoddin, R. and Ghorbani, A., "Alert correlation survey: framework and techniques," In
proceeding of the 2006 International Conference on Privacy, Security and Trust (PST '06), 37,
2006.

[24] Vaarandi, R. “SEC - a Lightweight Event Correlation Tool,” Proceedings of the 2002 IEEE
Workshop on IP Operations and Management 2002,
http://ristov.users.sourceforge.net/publications/sec-ipom02-web.pdf (accessed October 23, 2010).

[25] Yemini, S.A., Kliger, S., Mozes, E., Yemini, Y., and Ohsie, D., “High speed and robust event
correlation,” IEEE Communications Magazine, 34(5): 82-90, 1996.

[26] Aamodt, A. and Plaza, E., "Case-based reasoning; Foundational issues, methodological
variations, and system approaches," AI Communications, IOS Press, 7(1):39-59, 1994.

[27] Lewis, L., "A case-based reasoning approach to the management of faults in communication
networks," In proceedings of the Twelfth Annual Joint Conference of the IEEE Computer and
Communications Societies (INFOCOM '93), pp. 1422-1429, April 1993.

[28] Me, L., "GasSATA: a Genetic Algorithm as an Alternative Tool for Security Audit Trails
Analysis," 2000, http://www.rennes.supelec.fr/ren/rd/ssir/publis/raid98_me.pdf (accessed October
14, 2010).

[29] Ben-Gal I., Bayesian Networks, in Ruggeri F., Faltin F. & Kenett R., Encyclopedia of Statistics in
Quality & Reliability, Wiley & Sons, 2007.

[30] Lazar, A.A., Wang, W., and Deng, R.H., "Models and algorithms for network fault detection and
identification: a review," In Singapore ICCS/ISITA '92, pp. 999-1003, Nov 1992.

[31] Gruschke, B.,"Integrated Event Management: Event Correlation Using Dependency Graphs,"
Ninth Annual IFIP/IEEE International Workshop on Distributed Systems, Operations, and
Management, October 1998.

[32] Davis, R., Shrobe, H., Hamscher, W., Wieckert, K., Shirley, M., and Polit, S., "Diagnosis Based
on Description of Structure and Function," Second National Conference on Artificial Intelligence,
American Association for Artificial Intelligence, pp. 137-142, 1982.

[33] Hanemann, A. and Sailer, M., "A framework for service quality assurance using event correlation
techniques," Telecommunications, Advanced industrial conference on
telecommunications/service assurance with partial and intermittent resources conference/e-
learning on telecommunications workshop, pp. 428-433, July 2005.

[34] Wietgrefe, H., Tuchs, K., Jobmann, K., Carls, G., Fröhlich, P., Nejdl, W., and Steinfeld , S.,
"Using Neural Networks for Alarm Correlation in Cellular Phone Networks," In Proc.
International Workshop on Applications of Neural Networks in Telecommunications, pp. 248-
255, 1997.

[35] Steinder, M. and Sethib, A.S., "A survey of fault localization techniques in computer networks,"
Science of Computer Programming, 53(2): 165-194, November 2004.

[36] Hasan, M., Viswanathan, R., and Sugla, R., “A Conceptual Framework for Network Management
Event Correlation and Filtering Systems," Integrated Network Management, pp. 233–246, 1999.

[37] HP, "ArcSight: Enterprise Security Manager," http://www.arcsight.com/products/products-esm/
(accessed October 23, 2010).

[38] IBM, "Tivoli Netview Documentation," http://publib.boulder.ibm.com/infocenter/tivihelp/v3r1/
(accessed October 23, 2010).

[39] HP, "HP OpenView Event Correlation Services (ECS),"
http://h20229.www2.hp.com/products/ecs/ (accessed October 22, 2010).

[40] Hansen, S.E. and Atkins, E.T., "Automated system monitoring and notification with swatch,"
Proceedings of the 7th USENIX conference on System administration, November 1993.

[41] Thompson, K., "An introduction to logsurfer," SysAdmin magazine, 2004,
http://www.crypt.gen.nz/papers/logsurfer.html (accessed 22 October 2010).

[42] OSSEC, "Open Source Host-based Intrusion Detection System," http://ossec.net/ (accessed
October 24, 2010).

[43] Prelude Technologies, "Prelude: A Universal "Security Information Management" (SIM) system,"
http://www.prelude-technologies.com/en/development/documentation/index.html (accessed
October 28, 2010).

[44] OSSIM, "Open Source Security Information Management," http://www.ossim.net/ (accessed
October 28, 2010).

[45] Drools, "Drools - The Business Logic integration Platform," http://www.jboss.org/drools/
(accessed October 25, 2010).

[46] EsperTech, "Event Stream Intelligence: Esper & NEsper," http://esper.codehaus.org (accessed
October 29, 2010).

[47] Jakobson, G., Lewis, L., Buford, C.J. and Sherman, C.E., “Battlespace situation analysis: the
dynamic CBR approach”. Military Communications Conference (MILCOM 2004), pp. 941–947,
2004.

[48] Jakobson, G., Buford, J., and Lewis, L., "Towards an architecture for reasoning about complex
event-based dynamic situations," International Workshop on Distributed Event-based Systems
(DEBS 2004), 2004.

[49] Tai, W., O'Sullivan, D., Keeney, J., "Distributed Fault Correlation Scheme using a Semantic
Publish/Subscribe system," in Proceedings of The 11th IEEE/IFIP Network Operations and
Management Symposium (NOMS 2008), pp. 835-838, April 2008.

[50] Jakobson, G., Weissman, M., Brenner, L., Lafond, C., Matheus, C., “GRACE: building next
generation event correlation services,” IEEE/IFIP Network Operations and Management
Symposium, pp. 701–714, 2000.

[51] Zach, M., Parker, D., Fallon, L., Unfried, C., Ponce De Leon, M., Van Der Meer, S., Georgalas,
N., and Nielsen, J., “CELTIC Initiative Project Madeira: A P2P Approach to Network
Management”, 2005, http://www.celtic-madeira.org/publications/summit05_49_madeira.pdf
(accessed October 20, 2010).

[52] Sailhan, F. and Bourgeois, J. “Log-based Distributed Intrusion Detection for Hybrid Networks,”
Proceedings of the Cyber Security and Information Intelligence Research Workshop (CSIIRW
2008), Oak Ridge National Laboratory, Oak Ridge, TN, May 12-14, 2008.

[53] MITRE, “Common Event Expression: A Standard Log Language for Event Interoperability in
Electronic Systems”, The MITRE Corporation, http://cee.mitre.org/ (accessed November 13,
2009).

[54] Symantec, “State of Enterprise Security,” Technical report, Symantec Corporation, 2010.
[55] Baker, W., Hutton, A., Hylender, C.D., Novak, C., Porter, C., Sartin, B., Tippett, P., and

Valentine, J.A., “2009 Data Breach Investigations Report,” Technical report, Verizon Business
RISK Team, 2009,
http://www.verizonbusiness.com/resources/security/reports/2009_databreach_rp.pdf (accessed
December 10, 2009).

[56] Richardson, R., “2008 CSI Computer Crime & Security Survey,” The 13th Annual Computer
Crime and Security Survey (Computer Security Institute), Technical report, 2008.

[57] Federal Trade Commission, “In the Matter of Genica Corporation, a corporation, and
Compgeeks.com, also doing business as Computer Geeks Discount Outlet and Geeks.com, a
corporation,” FTC File No. 082 3113, 2009, http://www2.ftc.gov/os/caselist/0823113/index.shtm
(accessed June 2, 2010).

[58] Lyon, G., "NMAP: Network Mapper," http://nmap.org/ (accessed October 15, 2010).
[59] Myers, J. Grimaila, M.R., and Mills, R.F., “Adding Value to Log Event Correlation Using

Distributed Techniques,” Proceedings of the Cyber Security and Information Intelligence
Research Workshop (CSIIRW 2010), Oak Ridge National Laboratory, Oak Ridge, TN, April 21-
23, 2010.

[60] GNU, "Wget," http://www.gnu.org/software/wget/ (accessed October 15, 2010).
[61] Apache Software Foundation, “Apache Web Server,” http://www.apache.org/ (accessed October

15, 2010).
[62] IIS, “Microsoft Internet Information Service (IIS),” http://www.iis.net/ (accessed October 15,

2010).
[63] Kiwi Enterprises, “Kiwi Syslog Server,” http://www.kiwisyslog.com/kiwi-syslog-server-

overview/ (accessed October 15, 2010).
[64] ntop, “Network top,” http://www.ntop.org/ (accessed October 15, 2010).
[65] OWASP, "OWASP Top 10 2010 RC1," The OWASP Foundation, http://www.owasp.org

(accessed October 15, 2010).

9. Author Biographies

Michael R. Grimaila is an Associate Professor of Information Resource Management at the Air Force
Institute of Technology. He received his PhD in Computer Engineering from Texas A&M University in
1999, his MSEE from Texas A&M University in 1995, and his BSEE from Texas A&M University in
1993. He holds the Certified Information Security Manager (CISM), the Certified Information Systems
Security Professional (CISSP), and the National Security Agency's INFOSEC Assessment
Methodology and INFOSEC Evaluation Methodology certifications. Dr. Grimaila’s research interests
include cyber incident detection, mission assurance, network management and security, information
warfare, and systems engineering. He is a member of the ACM, Eta Kappa Nu, ISACA, ISC2, ISSA,
Tau Beta Pi, and he is a Senior Member of the IEEE.

Justin Myers is an analyst with the Naval Criminal Investigative Service (NCIS). Mr. Myers holds the
following degrees: BS, Northwestern University, 1993; MS, Air Force Institute of Technology, 2010.

Robert F. Mills is an Associate Professor of Electrical Engineering at the Air Force Institute of
Technology. He received his PhD in Electrical Engineering from the University of Kansas in 1994, his
MSEE from AFIT in 1987, and his BSEE from Montana State University in 1983. His research
interests are in communication systems, network management and security, information warfare, and
systems engineering. He is a member of Eta Kappa Nu and Tau Beta Pi, and is a Senior Member of the
IEEE.

Gilbert L. Peterson is an Associate Professor of Computer Science at the Air Force Institute of
Technology. He received his PhD in Computer Science from the University of Texas Arlington in 2001,
his MS in Computer Science from the University of Texas Arlington in 1998, and a BS in Architecture
from the University of Texas Arlington in 1995. His research interests include artificial intelligence,

autonomous robots, multi-robot systems, digital forensics, steganalysis, and machine learning.

	Design and Analysis of a Dynamically Configured Log-based Distributed Security Event Detection Methodology
	Recommended Citation

	Design and Analysis of a Dynamically Configured Log-based Distributed Security Event Detection Methodology

