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Design and Analysis of a Dynamically Configured Log-based Distributed Security 
Event Detection Methodology 
 
Michael R. Grimaila, Justin Myers, Robert F. Mills, and Gilbert L. Peterson 
United States Air Force Institute of Technology 
2950 Hobson Way 
Wright-Patterson AFB, OH  45433-7765 
 
Abstract 
Military and defense organizations rely upon the security of data stored in, and communicated through, 
their cyber infrastructure to fulfill their mission objectives. It is essential to identify threats to the cyber 
infrastructure in a timely manner so mission risks can be recognized and mitigated. Centralized event 
logging and correlation is a proven method for identifying threats to cyber resources. However, 
centralized event logging is inflexible and does not scale well because it consumes excessive network 
bandwidth and imposes significant storage and processing requirements on the central event log server. 
In this paper, we present a flexible, distributed event correlation system designed to overcome these 
limitations by distributing the event correlation workload across the network of event producing 
systems. To demonstrate the utility of the methodology, we model and simulate centralized, 
decentralized, and hybrid log analysis environments over three accountability levels and compare their 
performance in terms of detection capability, network bandwidth utilization, database query efficiency, 
and configurability. The results show that when compared to centralized event correlation, dynamically 
configured distributed event correlation provides increased flexibility, a significant reduction in 
network traffic in low and medium accountability environments, and a decrease in database query 
execution time in the high-accountability case. 
 
Keywords: Distributed event correlation, security incident detection, log analysis, insider threats 
 
1. Introduction 
 
Military and defense organizations have long recognized the benefits of embedding information and 
communication technology (ICT) into their core mission processes. Within the United States (US) 
Department of Defense (DoD) military environment, information is continuously collected, processed, 
analyzed, aggregated, stored, and distributed for multiple purposes including situational awareness, 
operations planning, intelligence, and command decision making [1; 2]. Within the Defense Industrial 
Base (DIB), ICT enables information sharing across and between business units, increases operational 
efficiency, improves decision making quality, reduces delays, and results in significant cost savings. 
The extreme dependence on ICT also creates significant risks from threats to the confidentiality, 
integrity, and/or the availability of the data contained in, or transported between, systems and devices 
[3]. For example, the leak of more than 75,000 US classified documents on the Afghan war to the 
Wikileaks web site in July 2010 places US forces at risk because it exposes military tactics and 
procedures that could be exploited by US adversaries [4]. Secret data was accessed and copied by a 
former intelligence analyst who used his position and clearance far in excess of his official duties. This 
represents only one of many possible scenarios where it is essential to identify potential threats to the 
organizational ICT in a timely manner so that appropriate actions can be taken. While potential threats 
sources are numerous and include natural disasters, equipment failure, accidents, and errors; our 
research focuses upon detecting threats arising from the malicious activities of external hackers, trusted 
insiders (intentional and unintentional) and malware. 

One approach which has proven to be an effective at detecting malicious activities is the analysis of 



event logs [5]. Virtually all systems and devices generate events which can be monitored, logged, and 
analyzed to help administrators maintain situational awareness of the status of their ICT. Log analysis 
provides the ability to understand, troubleshoot, and diagnose faults; identify root causes; and to 
identify anomalous system, application, and user behaviors which place the ICT at risk [5]. Within 
military environments, the need for high accountability event logging across the enterprise was only 
practical for limited access, high security networks such as the Secure Internet Protocol Router (SIPR) 
or Joint Warfighter Intelligence Communication System (JWICS) networks. However, the recent 
widespread deployment of the Host Based Security System (HBSS) across all DoD computers enables 
event collection and transport to centralized log servers to facilitate event correlation within the Non-
Secure Internet Protocol Network (NIPR) network [6].  

Security Information and Event Management (SIEM) is a term that encompasses all of the activities 
surrounding the collection, logging, and analysis of system and application events to identify 
potentially malicious activities and system errors [7]. SIEM provides an integrated view of the events 
generated by the organizations ICT so that queries can be made to identify activities of interest. In 
corporate environments, the need for SIEM is primarily driven by regulatory compliance requirements. 
However, in military environments the value of SIEM lies is the ability to identify malicious activities 
in real-time. While SIEM has proven to be an effective means of detecting attacks against 
organizational ICT resources, many organizations fail to properly implement and properly resource 
SIEM capabilities [8] [9]. There are several reasons for this including the sheer volume of log data for 
collection and storage [10], the network bandwidth consumed when transporting events to a centralized 
log server [11], the difficulty of conducting log analysis (including issues of log normalization and 
event correlation) [12], the lack of definitive action following the reporting of problems once they are 
found [12], and limited investigative resources [8; 12; 13].  

In this paper, we present the design and analysis of a dynamically configurable, distributed event 
correlation system designed to overcome these identified barriers which cause organizations to fail to 
implement a SIEM. The purpose of this research is to quantitatively determine if distributed event 
correlation techniques are superior to centralized techniques with regard to flexibility, network 
bandwidth consumption, detection capability, and database query efficiency. The remainder of this 
paper is structured as follows: In Section 2, we present the background of, and motivation for, security 
event log analysis and discuss event logging, event correlation, and centralized versus distributed event 
correlation; in Section 3, we introduce a dynamically configurable distributed security event correlation 
methodology; in Section 4, we present the experimental modeling and simulation environment; in 
Section 5, we discuss the results and analysis of the experiment; and in Section 6, we present our 
conclusions and discuss future research directions. 
  
 
2. Background 
 
In this section, we present the evolution of event logging and analysis for the detection of security 
events, compare and contrast centralized and distributed event correlation, discuss data normalization, 
and review recent surveys which highlight the importance of security event logging and analysis to 
motivate the need for the research. 
 
 
2.1. Event Logging and Analysis 
 
In the early days of computer and network management, event logs were used simply for diagnosing 
when a system, application, or device stopped functioning properly. Events were reviewed primarily to 
discern the internal state of those systems to aid in troubleshooting and little else [10]. However the 



value of event logs for security auditing purposes was recognized as early as 1980 when they were used 
to detect unauthorized access to files [14]. At this time, a collection of systems was typically monitored 
by using dedicated communications links which provided the ability for administrators to log into the 
systems from a central location and remotely review event logs. As networking technologies matured, 
standardization of internetworking protocols and lower cost networking hardware made it easier to 
remotely monitor networked systems and devices. One of the protocols that focused on the problem of 
event logging was the syslog protocol [15]. The syslog protocol provides a standard mechanism to 
transport events from any number of remote systems to a central log server where they are stored for 
subsequent review and analysis. Typically, a syslog process is run each system and is used to collect 
event messages from all running processes, log these event messages to one or more files as well as the 
system console, and forward the event messages across the network to a syslog process running on 
another machine using syslog protocol [16]. To assure the secure collection and retention of event 
messages, best practice requires implementing a hardened, centralized log server where all event 
messages sent from the organization’s network devices are stored [5]. The idea is that if a system is 
compromised, the event messages related to the compromise will have already been forwarded to the 
central log server significantly limiting the ability of the attacker to erase evidence of their attack. In 
some cases, multiple log servers may be used and configured in a hierarchical fashion to aggregate 
messages. A key benefit of centralized event storage is that an analyst could use pattern matching 
utilities to filter event logs to identify events of interest. While useful, this approach was limited by an 
inability to capture temporal dependencies and track real-time state information which made it difficult 
to automatically detect potentially interesting complex event patterns [17; 18].  
 
 
2.2 Event Correlation 
 
Event correlation is the activity of finding relationships between two or more events [5]. Event 
correlation is usually implemented as a software tool that parses an event stream, or a stream of events 
in a log file, to locate predefined patterns of interest. Event correlation provides an analyst with the 
ability to automate the identification of complex patterns of interest in large amounts of data. Once an 
event of interest is detected, it can be used to trigger an alert, take a specific action, notify the analyst, 
and/or generate a new "synthetic" event, if desired.  

A number of different approaches for implementing event correlation have been investigated 
including finite state machine based [19], rule based event correlation [20; 21; 22; 23; 24], codebook 
based [25], case-based reasoning [26; 27], genetic algorithms [28], graph based [29; 30; 31], model 
based reasoning [32; 33], neural network based [34], and probabilistic [35] methods. Each approach to 
event correlation provides unique benefits and limitations, so the best approach is strongly dependent 
on the application environment. 

Event correlation overcomes the limitations of simple event filtering by incorporating the ability to 
capture and track temporal and state information, enabling the detection of more complex events. For 
example, suppose an analyst was reviewing a web server access log to identify any Internet Protocol 
(IP) addresses which downloaded more than 100 MB of web server content within a 24 hour period. 
Conceptually, this would require tracking accesses by each unique IP address over a 24 hour sliding 
window and integrating the amount of downloaded data within the specified time interval. Using 
conventional event filtering, it is not possible to answer this type of question in a timely manner. 
However, by encoding an event correlation rule which considers the relationships between web server 
access requests it is possible to quickly process large data sets in an automated manner. The use of 
event correlation provides significant benefits in the analysis of large event sequences because it allows 
for automated aggregation, compression, escalation, filtering, generalization, masking, and the removal 
of duplicate messages. Further, it aids in root cause analysis by providing valuable information that can 



be used to identify dependencies between events which are precursors to failures [36]. 
Commercial log analysis tools incorporate event correlation capabilities because it is an 

increasingly important and accepted tool for managing complexity in enterprise networks [37; 38; 39]. 
There are numerous open source event correlation tools available including SWATCH [40], LogSurfer 
[41], SEC [24], OSSEC [42], Prelude [43], OSSIM [44], Drools [45], and Esper [46]. These tools have 
proven useful in a wide variety of public and private sector environments and provide robust 
capabilities at a low cost. 

Event correlation has also been recognized as being a powerful tool for understanding real-time 
events in the military battlespace [47]. In any large scale network, event and alarm-producing systems 
are distributed across the entire network, comprising some (and possibly all) of the computing and 
infrastructure systems in the network. In common configurations this virtually guarantees a volume of 
data, in the form of log messages, which is infeasible for a human operator to manage efficiently [5; 10; 
13; 48]. It is clear that using event correlation provides management with the ability to gain deeper 
insight into activities occurring within the organizations ICT infrastructure. 
 
 
2.3 Centralized versus Distributed Event Correlation 
 
The current best practice for event collection, monitoring and analysis is based upon a centralized 
architecture where each system or device that generates events sends the events to a single, hardened 
centralized log server where event correlation is performed [5]. This architecture is attractive because 
event correlation is conducted centrally and a malicious actor cannot eliminate evidence of their attack 
on a system if the events are transmitted to, and stored in, a centralized hardened log server. However, 
as the number of log-producing systems and devices increases, so does the volume of events that must 
be processed, stored, and correlated. This places a significant demand on the computing resources 
(processor time, memory, disk space) that must be devoted to event correlation activities. In extreme 
cases, the workload can overload the ability for the event correlation engine leading to loss of detection 
capability even when the centralized activity is distributed across network domains [49]. 

In contrast, the distributed event correlation architecture enables a portion of the event correlation 
workload to be allocated to the log producers [25; 49; 50; 51; 52]. Specifically, event correlation 
patterns that involve only events generated by a single system can be encoded and distributed to the log 
producers. The primary benefit of this approach is that the log producers use their own processing 
resources to conduct event correlation, reducing the resource burden on the centralized log server. 
When an event of interest occurs on a system as defined by the event correlation rules, a synthetic 
event is generated and sent to the centralized log server. Note that the synthetic event can be sent in 
addition to or in place of a portion of the existing event stream. In general, distributed event correlation 
addresses many of the disadvantages with centralized event correlation.  First, distributing event 
correlation activities reduces the total workload on the centralized log server. This enables a more 
efficient use of the log server resources and reduces the likelihood of overwhelming the event 
correlation engine. Research has shown that the performance impact of co-locating a lightweight event 
correlation engine with a log producing application such as a web server is minimal [24]. Such co-
location makes efficient use of resources and further reduces the cost of implementing such a system. 
Second, the ability to squelch event streams at the source based upon detected events provides the 
option to reduce the volume of log traffic that must traverse across a network. This reduces the overall 
network load, reducing the negative impact associated with the centralized logging approach. 
 
 
2.4 Log Data Normalization 
 



While virtually every system, application, and device has the capability to generate and to log event 
messages, the message format often varies widely. The syslog protocol defines how events are 
transported through the network, not the detailed elements that each device may generate. This presents 
a difficulty for centralized log analysis, since the analysis engine must be configured to understand and 
correlate event logs from every expected source. Since this can be a resource intensive activity for an 
organization with logs in many different formats, log normalization is an attractive alternative. Log 
normalization is defined as the conversion of each log data field to a particular data representation and 
categorizing the resulting fields consistently prior to storage [5]. This preprocessing activity typically 
occurs at the centralized log server prior to data storage. Note that log normalization is not the same 
activity as traditional database normalization. In log normalization, the focus is upon standardizing the 
log storage format so that event correlation can be easily conducted. In contrast, database normalization 
is focused upon efficiently storing data within the database by eliminating redundant data and enforcing 
consistency by requiring the data to be stored as collection of tables each which represents a well 
structured relation. It is important to note that both types of normalization can impact the efficiency of 
event correlation both positively and negatively depending upon the environment. While log 
normalization generally aids in the efficiency of log analysis activities, it incurs a performance cost at 
the log server due to processing that must occur prior to event storage and the increased complexity of 
database queries. 

An alternate way to achieve log data normalization without the performance overhead on the log 
server is to embed standard data representations in each system, device, or application so that the log 
producers generate event messages in normalized form. This is stated purpose of MITRE’s Common 
Event Expression (CEE) project [53]. While generating events in a standard format provides significant 
analysis benefits, ultimately the success of the approach will depend on vendor adoption.  
 
 
2.5 The Importance of Security Event Logging and Analysis 
 
A recent survey of 2,100 global organizations conducted by Symantec Corporation found that 75% 
experienced cyber attacks in 2009 with average combined loss of $2 million per year [54]. Of the 
organization surveyed, 42% of ranked cyber security as the top risk to their organization, ranking it 
higher than traditional crime, natural disasters and terrorism. A key recommendation of the report was 
the need for improved automation and efficiency in the event log monitoring and analysis activity. 

The 2009 Verizon Corporation Business Risk Team report identified that 66% of security breach 
victims represented in their caseload had “sufficient evidence available within their logs to discover the 
breach had they been more diligent in analyzing such resources” [55]. In fact, only 6% of those 
surveyed discovered breaches through event monitoring or log analysis. While this highlights that 
effectiveness of real-time analysis of logs, it also reveals that many organizations fail to properly 
implement and resource the activity. Figure 1 shows how event monitoring and log analysis solutions 
are being implemented in organizations according to this report. These findings show that most 
organizations rely on basic system and device logs, with a surprisingly low number using solutions 
such as intrusion detection systems and automated log analysis. This means that while organizations are 
largely collecting the data, the analysis of that data is still very immature, operationally speaking. 
 
 



 
Figure 1. Verizon Data Breach Report: Detective Controls by percent of breach victims [55] 

 
 
The 2008 CSI Computer Crime and Security Survey produced similar results, showing that failure in 
the area of system and transaction log monitoring was a significant factor in the success of attacks. The 
survey also showed that security log management is far from widely implemented, with 51% of 
respondents reporting that they have such a system in place [56].  

Failing to properly implement an SIEM capability can result in legal liability should the 
organization experience a breach of Personally Identifiable Information (PII). Consider the 2009 
Federal Trade Commission (FTC) decision against Geeks.com [57]. At issue in the ruling was the 
prolonged leakage of PII, including credit card information, from Geeks.com servers. The FTC ruling 
identified the lack of effective monitoring as one of the factors which contributed to this leak [8; 57]. 
Had Geeks.com implemented a log management strategy, they likely would have been able to detect 
the data leak early on and prevent further exploitation [8]. 

Monitoring event logs for security violations is an important activity for the DoD. US Deputy 
Defense Secretary William Lynn recently stated that "Rather than preventing people from having 
access to the data, could we do things like credit card companies do, which is to look for anomalous 
behavior" [4]. It is clear that if an effective SIEM capability was implemented across the DoD, the 
likelihood of the Wikileaks incident being detected would have been much higher. For this reason, we 
believe that it is essential to identify and overcome barriers in wide scale SIEM implementation in large 
organizations such as the DoD. 
 
 
3. A Dynamically Configured Distributed Security Event Correlation and Detection Architecture 
 
In order to address limitations of the centralized logging and analysis architecture identified in Section 
2, we designed a dynamically configurable architecture where the event correlation activities are 
conducted not only on the log server, but also at the log-producing machines themselves. Our design 
was motivated by the need to distribute event correlation workload, to reduce network bandwidth 
consumption, improve the efficiency of centralized log server event correlation, and to enable dynamic 



configuration of the event log collection and analysis. To achieve these objectives, our design sought to 
encompass three desirable properties.  

The first desirable property is that we want to be able to selectively squelch event streams by 
developing event correlation rules that allowed us to transform a specific collection of events into a 
single synthetic event. For example, consider an adversary who is conducting a port mapping network 
reconnaissance activity against a networked system in preparation of an attack. This is the cyber 
equivalent of the Intelligence Preparation of the Battlespace (IPB) in the physical world [1]. In this 
case, a tool such as nmap [58] would be used to automatically access each of the ports on the system in 
rapid succession to determine if each port is open, a precursor condition to perform a network based 
attack. If the system were configured to generate an event for each failed connection attempt, there 
would be a large number of events that would be sent to the centralized log server. In contrast, if local 
event correlation was performed on the system, the port mapping activity would be detected after a 
small number of failed connection attempts from the same Internet Protocol (IP) address. Once 
detected, all subsequent failed connection attempt messages resulting from the suspect IP address 
would be filtered out, replaced by a single synthetic event indicating that the IP address is port mapping 
the system. Note that while events are filtered out of the event stream transported to the centralized log 
server, the events are still stored locally on the host so that an administrator could investigate the 
incident in more detail if needed. This is a simple example which shows that distributed event 
correlation can be used to reduce the amount of data transported back to the centralized log server 
while maintaining the ability to detect a specific malicious activity. Figure 2 shows how event logging, 
collection and transport are typically implemented within a computer system. In this case, the computer 
operating system generates three log files: an application log, a security log, and a system log. This 
computer is also running a web server application that generates two log files: an access log and an 
error log. The event transport agent collects these raw events from these log files and formats them as 
syslog messages for transport back to the centralized log server. Figure 3 shows how the event transport 
agent can be augmented with event correlation and filtering capabilities to determine which events, if 
any, are transported to the central log server. This architecture enables an administrator to dynamically 
configure the event correlation and filtering that occurs on each system so that resource utilization can 
be controlled remotely based upon operational needs. 

 
 

 
 

Figure 2. Typical event collection within a host 
 
 



 
 

Figure 3. Enhanced event collection incorporating event correlation and filtering within a host 
 
 
Second, we want to add synthetic events to the event stream generated by distributed event 

correlation that would improve the efficiency of the event correlation conducted at the centralized log 
server to more quickly identify event streams of interest. Figure 4 presents a visualization of how 
synthetic events produced through distributed event correlation would add value. Instead of querying 
each record (where one raw log entry equals one record) to search for a certain behavior, a query is 
made to search for a corresponding synthetic event which provides context on the behavior, enabling 
another, much smaller query to be made (if necessary) to locate the raw logs which triggered that 
synthetic event. 
 
 

 
 
Figure 4. Bracketing of raw events in database queries using context from synthetic events [59] 

 
 

The benefit of this approach is that when event correlation is conducted at the log server, the workload 
required to identify events of interest will be reduced. For example, consider a group of individuals 



who possess the necessary clearances and are authorized to access an organizational intranet web server 
that contains sensitive intelligence information. While they may access any information on the web 
server, users are informed that it is a security policy violation to access data that is not relevant to their 
“need to know”. In this case, it is highly desirable to alert security personnel if this security policy is 
violated so that a further investigation can be conducted. Now suppose a malicious insider attempted to 
download all of the web server content using a web crawler such as wget [60]. If the system were 
configured to generate an event for each request, there would be a large number of events that would be 
sent to the centralized log server. A security analyst would be responsible for running a set of queries 
periodically on the log server to identify patterns of interest. One of these queries would be constructed 
to identify all accesses from a single IP address, integrate the number of bytes in the downloaded web 
pages, and generate an alert when the sum exceeds a predetermined threshold value. The run time of 
the query depends on the complexity of the query and how much data resides in the database. As the 
database grows larger the amount of time required to complete the collection of queries would increase, 
leading to the possibility that the analyst would reduce the number of queries and miss detection of the 
potentially malicious activity. In contrast, if local event correlation was performed on the web server, a 
synthetic event indicating that a security policy violation has occurred would be inserted into the event 
stream and be stored in the central log server. Now the query run periodically on the central log server 
would look for the high priority synthetic events to identify malicious activity more quickly. This is a 
simple example which shows that distributed event correlation can be used to add context to the event 
stream reducing the workload on the centralized log server to identify specific malicious activity. 

Finally, we wanted the ability to dynamically change the configuration on the log producing 
systems so that we could change the behavior of logging architecture on demand. The attractiveness of 
this methodology is that it provides the ability to dynamically configure systems to distribute event 
correlation workload, filter event streams before sending them to the central log server, and 
dynamically add context to event streams through the insertion of synthetic events which mark the 
location of “interesting” event clusters. Depending upon the desired accountability level, differing 
combinations of events will be sent from each log producer to the central log server. Benefits include 
the ability to limit network bandwidth utilization, the ability to focus collection efforts where they are 
most needed, and the ability to distribute the event correlation workload to the log producers to reduce 
the performance and resource demands experienced by the centralized log server. For example, Table 1 
shows an example of how each log producing system can be dynamically configured to operate in one 
of four accountability levels, each with a differing amount of events that are transported to the central 
log server. The modes are listed in order of increasing amount of events generated, and hence the 
network bandwidth utilization required to transport the events to the centralized log server. 
 
 

Table 1. Logging Mode Attributes 
 

Logging Mode Accountability Level Raw Events Filtered Events Synthetic Events 
0 None No No No 
1 Low No No Yes 
2 Medium No Yes Yes 
3 High Yes No No 
4 High Yes No Yes 

 
 
Mode 0 represents a no accountability case where the log producer sends no events to the centralized 
log server. This mode is used to disable the transport of events back to the log server and is needed 



when network resources are too scarce or when central collection of the events is not required. It is 
important to emphasize that in this mode, as with all other modes, the raw events are stored locally on 
the system for a time period that is determined by the size of the disk storage allocated to local logs. 
Periodically, the local log files may be archived to another storage device or may be overwritten as 
determined by the organizations data retention policy. 

Mode 1 represents a low accountability case where the log producer only generates synthetic events 
and does not pass any raw or filtered events to the central log server. Mode 1 is useful when there is a 
well defined subset of activities of interest at each system and the network bandwidth utilization is 
scarce. Systems and devices that are not mission critical can be configured in Mode 1 by default. 

Mode 2 represents a medium accountability case where the log producer passes only some of the 
raw events and also sends generated synthetic events to the central log server. Mode 2 is useful when 
some detailed information must be passed to the central log server but the use of network bandwidth is 
to be reduced. Mode 2 is highly configurable in that the administrator defines exactly which raw events 
are suppressed, which raw events passed, and when synthetic events are generated. For instance, raw 
logs which do not correspond to malicious behavior could be suppressed, but raw events related to the 
suspect behavior as well as synthetic events could be forwarded on to the log server. This way, an 
analyst could examine the logs for more detail on the attack.  Conversely, raw logs pertaining to the 
attack could be suppressed, and synthetic events would be sent along with non-alert-generating logs, so 
that additional analysis could be done on them later.  In either case, the benefits of the distributed 
approach are readily apparent, but the amount of benefit depends upon the particular configuration. The 
resource consumption experienced by a system in Mode 2 is proportional to the complexity of the event 
correlation workload. 

Mode 3 represents a high accountability case where the log producer sends all of raw events it 
generates, and no synthetic events, to the central log server. Mode 3 is the current best practice in 
centralized security event logging. Our research and the development of a method for dynamic 
configuration was driven by the drawbacks of this mode and the realization that we could be more 
efficient while still detecting event patterns of interest. While intuitively it does make sense to transport 
all events to a central log server for correlation, in practice the excessive consumption of network 
bandwidth, the required computational resources needed to conduct event correlation, and disk space 
are prohibitive for large enterprise networks. 

Mode 4 represents a high accountability case where the log producer sends all of raw events plus 
the generated synthetic events to the central log server. Mode 4 exploits the idea that inserting synthetic 
events generated by local event correlation into the event stream reduces the workload and increases 
the detection efficiency at the central log server. In a high-accountability environment, such as highly 
classified networks where centralized, database-driven event correlation is mandatory, this architecture 
can sit lightly on top of existing infrastructure and provide context with synthetic events, improve 
semantic understanding of events, and provide higher level reasoning about the behavior captured in 
log events, making the centralized correlation activities more efficient and effective. 

While each of the modes discussed above has benefits and drawbacks, we contend that switching 
between modes based upon the changing operational environment provides more efficient utilization of 
network, computational, and storage resources. In the next section, we seek to quantitatively determine 
the performance of each of these modes in a modeled and simulated network environment. 

 
 

4. Experiment Design 
 
In this section, we present the modeling and simulation environment used to quantitatively evaluate the 
performance of the proposed methodology in a realistic, repeatable manner. The experiment design 
section is segmented into five areas: network design, software selection, use case selection, 



performance metrics, and experimental runs. 
 
 
4.1. Network Model Design 
 
In order to determine the effectiveness of the proposed log analysis methodology, we designed a 
network model to simulate a typical enterprise logging infrastructure. Figure 5 shows the overall 
configuration of the network annotated with IP address ranges and mission functions. 

 

  
 

Figure 5. Experimental Network Model 
 
 
The network model is comprised of nine computers and two network devices. The workstations and 
servers were implemented using mini-computers, and the SAST controller and log server were 
implemented using laptops. Table 2 gives the hardware specifications for each machine. The two 
network devices include a Cisco Catalyst 3550 switch with IOS version 12.1(22)EA4 that was used to 
facilitate the creation of Virtual Local Area Networks (VLANs) and a LaCie 1TB network storage disk 
was used to record event logs. The Cisco switch is used to divide the network into five VLANs with 
routing between each of the VLANs. Three of the VLANs correspond to the simulated Development, 
Intelligence and Marketing subnets, each containing a web server and a workstation. The workstation 
in each subnet is configured with SAST traffic generation software that makes the workstation appear 
on the network as 5 virtual workstations, for a total of 15 simulated virtual workstations for the whole 
network. The last two VLANs are administrative: one contains the SAST controller, and one contains 
the log server and network storage device. 

 



 
Table 2. Hardware Specifications for Experimental Network Computers 

 
Function Servers, Workstations SAST Controller Log Server 
Type Mini PC Laptop Laptop 
Model AOpen MP945-D Dell Latitude D630 HP Compaq 8710w 
CPU Celeron M 1.73 GHz Core 2 Duo 2.6 GHz Core 2 Duo 2.6 GHz 
Memory 1 GB 4 GB 3 GB 
Disk Space 150 GB 150 GB 150 GB 
 
 
4.2. Software Selection 
 
The configuration of software on the model network was chosen not only to facilitate the experiments 
to be performed on the network, but also to add realism and applicability to the results, so that they 
could plausibly apply to many common real-world network configurations. To achieve this goal, 
common popular operating systems and software packages were chosen when possible. There are five 
key software packages that were used for this experiment: the Security Assessment Simulation Toolkit 
(SAST) traffic generation package, the Simple Event Correlator (SEC) [24], Apache web server [61], 
IIS web server [62], Kiwi [63], ntop [64], and syslog [16]. Table 3 shows the operating system and 
software used on each machine in the experimental network model. 
 
 

Table 3. Operating System and Software for Network Model Computers 
 

Name Operating System Software 
Development 
Workstations 

Windows XP SP3 SAST 3.3.1 

Development Server Ubuntu 9.04 Server Apache 2.2.11, SEC 2.5.3 
Intelligence 
Workstations 

Windows XP SP3 SAST 3.3.1 

Intelligence Server Windows Server 2003 Microsoft IIS, SEC 2.5.3 
Marketing Workstations Windows XP SP3 SAST 3.3.1 
Marketing Server Ubuntu 9.04 Server Apache 2.2.11, SEC 2.5.3 
SAST Controller Windows 7 SAST 3.3.1 
Log Server Windows XP SP3 Kiwi Syslog Server 9.03, Oracle Database 10g 
Network Monitor Ubuntu 9.04 NTOP 3.3 
 
 
4.2.1. Traffic Generator Configuration 
 
Security Assessment Simulation Toolkit (SAST) is a proprietary tool developed by Pacific Northwest 
National Laboratory (PNNL) for use by US government organizations to generate realistic-looking 
traffic and facilitate exercise environments with benign and malicious traffic. In this research, SAST is 
being leveraged as a traffic generation tool, as well as a scheduler to run attack code in a scriptable, 
repeatable fashion. The configuration of SAST involves five interrelated components - tasks, actors, 
timelines, a scenario, and host service applications (HSAs). Figure 6 shows the relationships between 
these components in the configuration process.  



 

 
 

Figure 6. SAST Configuration 
 
 
We now present the process for building a SAST scenario to gives insight into how a scenario executes. 
First, the specific tasks to be performed must be defined. These tasks can include surfing the web, 
checking e-mail, connecting to an FTP server, or any other behaviors. Next, those tasks are assigned to 
a timeline. As part of the configuration they are given a start and stop time, as well as assigned a 
probability curve that dictates the frequency and pattern of execution for that task in the timeline. The 
timeline, with its tasks, can then be assigned to one or more groups of actors. Each actor will appear on 
the network as a distinct entity when the scenario executes. Lastly, some combination of actors is 
assigned to a Host Service Application (HSA). An HSA may be located on a remote machine or it may 
be local. When the scenario is loaded, each HSA is given its assigned group of actors, along with those 
actor’s timelines and tasks. Upon execution of the scenario, all HSAs move together through their 
respective timelines, executing tasks as configured.  

For this research, SAST was configured with two types of tasks - web download tasks and 
command line tasks. The web download tasks are configured to download random pages on each of the 
three web servers, simulating a group of users surfing the web. They were run using a “5 per minute” 
probability curve, which means 5 requests were made at random times every minute. The command 
line tasks are configured to do one-time runs of Python scripts which perform attacks corresponding to 
each chosen use case. These tasks were run using the “single-shot” probability curve, which means that 
they only happened once, at a time specified in the configuration. Those tasks are then assigned to three 
timelines, one for each subnet of abstract clients on the network. The malicious tasks were spread 
evenly over three malicious timelines, while the three benign timelines downloaded websites. Actors 
are similarly organized in three groups - Development, Intelligence and Marketing, and each group is 
assigned its corresponding timeline. Finally, five actors from each benign group and one malicious 
actor are assigned to the HSA corresponding with the Workstation machine in their subnet. Each 
workstation is assigned an actor group, so that there are Development, Intelligence and Marketing 
workstations. Upon execution, the three workstation machines (with HSA software running) receive the 
same timeline from and sync up with the central controller. When the “Play” button is pressed, each 



workstation performs the tasks included in the timelines assigned to it according to the configured 
probability curves and schedules.  
 
 
4.2.2. Web Server Configuration 
 
The choice was made early on that the content on each of the three web servers should be real-world 
content, rather than fabricated websites. This provides another layer of realism to the experiment. In 
keeping with the subnet naming convention, the content on the Development server was gathered from 
Sourceforge.net, a popular website for hosting of and collaboration on open source projects; the content 
on the Intelligence server was gathered from Wikipedia, the free online encyclopedia; and the content 
from the Marketing server was gathered from the GNU Operating System’s homepage, a site dedicated 
to increasing awareness of free software. All content was gathered using wget. 

Web servers can be configured to log many different information elements. The process of writing 
event correlation rules for detecting malicious web server activities requires developing a complete 
understanding of the possible observable events generated by a web server. Ideally, one would only 
select for the final logging configuration the subset of event elements that provides value in the 
detection of the set of malicious activities of interest. This process revealed not only which log 
elements were commonly relevant to all use cases, but also forced certain design decisions. For 
instance, SQL injection attacks are detected in the query string as GET parameters for the purposes of 
this research. While that is a plausible location for an injection attack, it is equally if not more likely 
that such an attack would be located in POST parameters. This information is not logged by default; in 
fact, IIS requires third-party software to log POST data. In Apache, the configuration is straightforward 
with the addition of the mod_security or mod_dumpio. Table 4 shows the Apache and IIS web server 
event log elements that were collected as determined by the logging configuration in this experiment 
[61; 62].  
 
 

Table 4. Web Server Event Logging Configuration 
 

Description Apache Format String IIS Element Name
Remote IP Address %a c-ip 
Server Date/Time %t date, time 

Response size (bytes) %b sc-bytes 
Response HTTP status %s sc-status 

Requested URL %U cs-uri-stem 
Referer %{Referer}i cs(Referer) 

Query String %q cs-uri-query 
SSL Version %{version}c N/A 
SSL Cipher %{cipher}c N/A 

SSL Error code %{errcode}c N/A 
SSL Error string %{errstr}c N/A 

 
 
4.2.3. Event Correlation Engine Configuration 
 
This research used the Simple Event Correlator (SEC) as the primary event correlation engine [24]. 
SEC is a lightweight, open-source, and platform independent tool for rule-based event correlation used 



worldwide by organizations in industries such as banking, telecommunications, retail, and software 
development, with cited benefits including low cost, flexibility, efficiency and ease of configuration. 
SEC is written in Perl, has a very small footprint (less than 250 KB) and utilizes tools and concepts 
which are familiar to system and network administrators such as regular expressions, file streams, and 
named pipes. Configuration files in SEC are plain text files, created and modified with any text editor. 
These configuration files may contain one or more rules, which are evaluated in the order in which they 
appear in the file. These rules may be one of nine supported rule types, which together enable signature 
detection, one or more sliding time windows, calendar events and many more advanced detection 
abilities.  

In the network model used in this experiment, SEC was used to collect events from the Apache and 
IIS log files. The collected, synthetic, and possibly filtered events were transported back to the central 
log server using syslog protocol. Within SEC, four basic rule types were used: Single, 
SingleWithSuppress, Suppress and SingleWithThreshold. These rules are grouped into fourteen SEC 
configuration files - twelve rulesets to detect the twelve detectable use cases, and two rulesets to create 
certain conditions necessary for implementing the ability to switch between modes. The organization of 
these rulesets on the filesystem takes advantage of SEC’s ability to process multiple configuration files 
in parallel, and is designed to effectively implement the logging modes previously discussed. On each 
log-producing system, three directories were created in the same directory as SEC. These directories 
were named “common,” “conf-available” and “conf-enabled.” The implementation was inspired by 
Apache’s configuration paradigm: all configuration files reside in the “conf-available” directory, and 
those which are desired for any particular run of the event correlator are copied into “conf-enabled.” 
This allows SEC to be initialized with the same command each time, by specifying the configuration to 
load. This configuration also allows the modes of operation to be implemented as combinations of 
configuration files. To configure a specific mode, a script is executed which copies only the 
configuration files for the desired behaviors in the “conf-enabled” directory. The script can be remotely 
executed from a central management console using a secure protocol.  
 
 
4.3. Use Case Selection 
 
The unit of analysis in the modeling and simulation of an enterprise logging environment is web server 
generated events. To make the research relevant to real world activities, we used the Open Web 
Application Security Project (OWASP) Top Ten as a source of realistic use cases [65]. The OWASP is 
an organization focused on improving the security of web applications worldwide that compiles an 
annual list of the “Top Ten” web application security risks to help organizations focus their risk 
mitigation efforts to combat the most prevalent attacks. The OWASP Top Ten 2010 web server risks are 
shown in Table 5 [65]. 
 
 

Table 5. 2010 Open Web Application Security Project (OWASP) Top Ten [65] 
 

Threat Vector Description 
Injection Injection flaws, such as SQL, OS, and LDAP 

injection 
Cross Site Scripting (XSS) Application takes untrusted data and sends it to a 

web browser without proper validation and 
escaping 

Broken Authentication and Session Management Application functions related to authentication and 



session management are often not implemented 
correctly 

Insecure Direct Object References Application developer exposes a reference to an 
internal implementation object, such as a file, 

directory, or database key 
Cross Site Request Forgery (CSRF) An application forces a logged-on victim’s 

browser to send a forged HTTP request, including 
the victim’s session cookie and any other 

automatically included authentication information, 
to a vulnerable web application 

Security Misconfiguration Secure configuration defined and deployed for all 
web applications 

Insecure Cryptographic Storage Applications does not properly protect sensitive 
data with appropriate encryption or hashing 

Failure to Restrict URL Access Attackers can forge URLs to access hidden pages 
because URL access rights are unchecked 

Insufficient Transport Layer Protection Application fails to authenticate, encrypt, and 
protect the confidentiality and integrity of 

sensitive network traffic 
Unvalidated Redirects and Forwards Application redirect and forward users to other 

pages and websites using untrusted data to 
determine the destination pages 

 
 
From the Top Ten, we generated eight use cases and encoded the corresponding behavior in SAST. We 
did not use the "Security Misconfiguration" or "Insecure Cryptographic Storage" as use cases because 
they result from configuration errors that occur during the set up of the web server which would 
normally be manually checked after each installation. 

When developing event correlation rule sets to detect potentially malicious activities, there are two 
main categories that should be detected: Threat vectors and violations of security policy. Threat vectors 
are behaviors and events that should never occur in the ICT, such as an SQL injection attack. When 
these activities occur, it is virtually certain the resource is under attack. The OWASP Top Ten falls 
largely into this category. In contrast, violations of security policy are often behaviors and events which 
occur normally but constitute a policy violation when defined thresholds are exceeded. For example, a 
policy might exist that says that no employee should be accessing a given resource outside of normal 
work hours (e.g., 6pm - 6am). Access to that resource is a legitimate action, but when the “access time” 
is outside of the defined interval, that legitimate action becomes a policy violation. 

To ensure that both event classes are covered in this research, five additional use cases were added 
to represent combinations of legitimate activities which, taken together, are regarded as policy 
violations in the experimental network. These five security policy use cases are shown in Table 6: 
  

 
Table 6. Security Policy Violations 

 
Policy Violation Description 

Naive Web Crawler A client IP address is using a web crawler to access all web server content in 
rapid succession 

Delayed Web Crawler A client IP address is using a web crawler with a uniform delay constant in 



an attempt to mask their access of all web server content 
Excessive Downloads A client IP address downloads more than X bytes in Y minutes 
Excessive HTTP Errors A client IP address accesses an excessive number of non-existent pages 
 
 
While this research focuses on the analysis of web server logs to detect attacks, there are many other 
event log sources which may provide value in detection malicious activities. To demonstrate this 
concept using our distributed event correlation approach, we added the “Injection Sequence” use case 
shown in Table 7. This use case combines the query log from MySQL and the Apache access log to 
discern suspicious behavior without the use of a regular expression signature. In addition, the 
“Insufficient Transport Layer Protection” use case used the Apache error log, which does not have the 
rigid format of the access log, to detect accesses by the Firefox web browser to an SSL-enabled page 
with an invalid certificate. 
 
 

Table 7. Multiple Log Fusion 
 

Policy Violation Description 
Injection Sequence A client IP address conducts a SQL injection attack detected using both web 

server logs and database server logs 
 
 
Overall, the 13 use cases shown in Table 8 were selected to evaluate the ability of different logging 
modes to detect the malicious behavior. 
 
 

Table 8. Experimental Use Cases 
 

Use Case Type 
Cross Site Request Forgery (CSRF) Threat Vector 

Injection Threat Vector 
Injection Sequence Multiple Log Fusion 

Insecure Direct Object References Threat Vector 
Excessive Downloads Policy Violation 

Unvalidated Redirects and Forwards Threat Vector 
Failure to Restrict URL Access Threat Vector 

Excessive HTTP Errors Policy Violation 
Broken Authentication and Session Management Threat Vector 

Cross Site Scripting (XSS) Threat Vector 
Naive Web crawler Policy Violation 

Delayed Web crawler Policy Violation 
Insufficient Transport Layer Protection Threat Vector 

 
 
4.4. Metrics of Performance 

 
To facilitate the quantitative analysis of the modeling and simulation results for each model of 
operation in the experimental network, four metrics were identified: 



 
 Use Case Detection Percentage 
 Number of False Positives 
 Network Bandwidth Consumption 
 Log Server Event Correlation Time 

 
The first metric is the use case detection percentage. The use case detection percentage is defined as the 
percentage of number of use cases detected compared to the total use cases executed during the 
experiment. In this experiment, each simulation run contains thirteen malicious use cases. A use case 
detection is deemed to occur if the event correlation rule corresponding to the malicious use case is 
triggered when the use case occurs. It is expected that this measure will be high (e.g., 100%) for all 
modes of operation as the event correlation rules are specifically written to detect the malicious use 
cases. This metric is used to verify that the malicious activities of interest can be detected in each mode 
of operation.  

The second metric is the number of false positives. The number of false positives is defined as the 
raw number of event rule correlation detection alerts that occur during each 8 hour experimental run 
that do not match a corresponding malicious use case. Typically, false positives occur as the result of 
the event correlation rules not being specific enough or because some non-malicious behavior matches 
the pattern of an activity of interest. This represents one of the real challenges when conducting event 
correlation: you try to define event correlation rules specific enough to minimize the number of false 
positives to reduce investigative costs while be general enough to identify potentially malicious 
activities that require further investigation. 

 The third metric is the network bandwidth consumption. This metric is defined as the percentage of 
raw syslog event data transported to the total traffic in the network over the duration of the experiment. 
The total traffic in the modeled network is the sum of the SAST controller traffic, the HTTP web server 
requests and responses, and the resulting syslog traffic. For a fixed set of use cases, this metric is a 
measure of the burden placed on the network resulting from logging in proportion to the total network 
traffic. This measurement is taken by monitoring all traffic via a SPAN port on the switch, using ntop 
[65] to collect data and generate summary statistics. This metric is most important for determining the 
value of this research in terms of reducing network bandwidth consumption. 

The fourth metric is the log server event correlation time. This metric is used to quantify the 
difference in database query execution time at the centralized log server in high accountability 
environments. This metric is calculated for Mode 4 (e.g., all raw events) and Mode 5 (e.g. all raw 
events plus synthetic events). The hypothesis is that addition of synthetic events reduces the time 
required to complete an event correlation database queries. 
 
 
4.5. Experimental Runs 
 
This section describes the simulation of the network model in detail, including which use cases and 
logging modes were simulated. It also describes the protocols followed during testing, including how 
data and statistics are collected and the clearing of log files and databases between runs.  

Table 9 shows the details for each of the five experimental simulation runs. These runs test each 
logging mode with all use cases, to simulate detection of any scenario under normal circumstances. In 
addition to the use case detection percentage, false positive count, and network bandwidth 
consumption, which are calculated for each experimental run; the log server event correlation time was 
determined for two database queries only for the data collected Mode 3 and Mode 4.  

 



 
Table 9. Experimental Run Detail 

 
Logging Mode Events Collected 

0 No Events Collected 
1 Synthetic Events Only 
2 Synthetic Events + Filtered Events 
3 Raw Events Only 
4 Synthetic Events + Raw Events 

 
 
A SAST scenario containing all of the experimental use cases presented in Table 8 was designed to run 
over an eight hour time period. The scheduling timeline of the SAST scenario is shown in Table 10. A 
set of non-malicious web surfing activities was programmed to occur uniformly throughout each 
experimental run. Within the SAST scenario, there are two significant sources of variation from run to 
run: 1) the target of each attack, and 2) the execution time for three specific use cases. The target of 
each attack is chosen randomly by the python script executing the attack, adding an element of 
unpredictability to the simulation. The three use cases with variable execution times are the Naive web 
crawler, Delayed web crawler and Insufficient Transport Layer Protection use cases. These cases had to 
be executed by hand, so the execution times differed slightly. Generally, the web crawlers were 
executed early in the simulation, while the Insufficient Transport Layer Protection use case was 
executed later. Note that the variation in the execution times does not impact the performance metrics 
in this experiment. 
 
 

Table 10. SAST Scenario Time Line 
 

Task Scheduled Offset (hours) Targeted Server
Scenario Start +0 All 
Web Surfing Uniformly Throughout All 

Cross Site Request Forgery (CSRF) +0 Development 
Injection +1 Intelligence 

Injection Sequence +1.5 Marketing 
Insecure Direct Object References +2 Marketing 

Excessive Downloads +3 Development 
Unvalidated Redirects and Forwards +4 Intelligence 

Failure to Restrict URL Access +5 Marketing 
Excessive HTTP Errors +6 Development 

Broken Authentication and Session Management +7 Intelligence 
Cross Site Scripting (XSS) +7.5 Marketing 

Naive Web crawler +1 to +2 Marketing 
Delayed Web crawler +3 to +4 Marketing 

Insufficient Transport Layer Protection +2 to +7 Development 
Scenario End +8 All 

 
 
Prior to beginning a run of the experiment, several tasks must be completed to ensure that the data 
collected is correct for that run. There are five such tasks: ensuring that data is properly collected from 



the previous run, restarting SAST HSAs and resetting ntop. When the above steps have been 
performed, the network model is ready to be prepared for the next experimental run.  Three 
configuration steps are needed to prepare the network for a run. First, the SEC instances on each web 
server must be configured. This is done remotely through a configuration shell script written for this 
purpose. Once SEC has been configured, the SAST scenario must be loaded at the controller. Next, the 
database on the central log server which will store log messages from this run must be created, Kiwi 
must be configured to write to a new text file, and the log server SEC instance must be configured with 
the correct source file and destination database. The last step involved in preparing the network for a 
new run is running the “resetStats.sh” tool on the server running ntop. Database queries are run after all 
data collection has been completed. At this point, the SAST controller is used to initiate the defined 
SAST scenario. 
 
 
5. Simulation Results 
 
In this section, we present the results of the network model simulation and present an analysis of the 
results with respect to the goals of the research. A separate experimental run was conducted for each of 
the modes of operation. The network model was configured for each of the modes of operation using 
remote shell scripts which validated the ability to dynamically configure the collection, correlation, and 
filtering of events. 
 
 
5.1. Use Case Detection Percentage  
 
Table 11 shows the use case detection percentage, number of false positives, and number of false 
negatives for each experimental run. As expected, all thirteen use cases were detected for each of the 
modes of operation resulting in 100% use case detection percentage for each of the modes. A manual 
verification of the results was performed to assure that detection alerts generated by the event 
correlation rule correctly matched each use case activity.  
 
 

Table 11. Use Case Detection Summary 
 

Mode Use Cases Detection Percentage False Positives False Negatives
0 0.0 % 0 0 
1 100 % 1 0 
2 100 % 2 0 
3 100 % 1 0 
4 100 % 1 0 

 
 
5.2. Number of False Positives  
 
Table 11 also reveals that a single false positive alert occurred during the experimental runs for Modes 
1, 3, and 4, and two false positives occurred during the experimental run for Mode 2. Further 
investigation of the raw data collected revealed that in all four modes of operation, the naïve web 
crawler event correlation detection rule fired once. This occurred because the SAST generated behavior 
for "Excessive Access Attempts" use case matched the naïve web crawler detection criteria (e.g., the 



download of more than 100MB bytes by the same IP address within a 1 hour window). This illustrates 
the difficulty of coding event correlation rule sets to detect policy violations: the policies must 
specifically define suspicious or disallowed behavior and that behavior must result in observables that 
can be encoded in to the detection mechanism. A second false positive occurred during Mode 3 data 
collection, but this resulted from the delayed web crawler event correlation detection rule which fired 
once because of the regularity of a download from one specific SAST client IP address. Since the false 
positives were not the focus of the research, the event correlation rules were not adjusted to reduce the 
false positive count. In an operational environment, event correlation rules would be continuously 
refined in an effort to minimize the number of false positives without excluding behavior which may be 
malicious. 
 
 
5.3. Network Bandwidth Consumption 
 
During each experimental run, ntop was used to monitor all traffic traversing the central switch. The 
network traffic was composed of SAST controller traffic, HTTP traffic, and the syslog traffic which is 
the focus of this research. Table 12 shows the raw network traffic over each 8 hour experimental run. 
Note that there are variations in the total SAST and HTTP traffic for each mode due to the stochastic 
nature of the SAST scenario execution.  
 
 

Table 12. Raw Network Traffic Composition 
 

Mode Total Throughput SAST Traffic HTTP Traffic Syslog Traffic 
0 2.0 GB 56.3 MB 1.9 GB 0.0 KB 
1 2.0 GB 56.3 MB 1.9 GB 7.8 KB 
2 2.0 GB 56.2 MB 1.9 GB 31.5 KB 
3 2.1 GB 57.2 MB 2.0 GB 6.80 MB 
4 2.4 GB 57.3 MB 2.3 GB 6.83 MB 

 
 
The results for Mode 0 verify the ability to filter all events generated from remote servers so that none 
are transported to the central log server. In this case, no syslog data traversed the network. While the 
experiment was designed to configure all servers in the same way, a practical application of the 
methodology would allow the administrator to selectively disable event collecting when there was a 
need to conserve network bandwidth at all costs. 

In Mode 1, only 7.8 KB of syslog data traversed the network to the central log server. This data 
consisted only of the synthetic events generated by the remote event correlation rules executed on each 
of the servers.  Despite the small amount of syslog traffic generated, all 13 use cases were detected. 

In Mode 2, 31.5 KB of syslog data traversed the network to the central log server. This data 
consisted of the synthetic events plus the raw events which are related to the synthetic events. The 
ability to pass raw events related to the generated synthetic events is analogous to a motion sensitive 
camera in its ability to only record activities of interest. 

In Mode 3, 6.80 MB of syslog traffic traversed the network to the central log server. This data 
contained all events generated by the system and is representative of the best practice in event log 
collection and analysis (e.g., the transport of all logs to a central server for event correlation). 

In Mode 4, 6.83 MB of syslog traffic traversed the network to the central log server. Mode 4 is 
identical to Mode 3, but adds additional context to the data for the purposes of improving the efficiency 



of central event correlation in high accountability environments. 
The traffic from syslog is an incredibly small percentage of the overall traffic. However, it is 

important to remember that this research utilizes only a small number of log-producing applications. If 
this were a full-scale enterprise network, there would be other forms of logs, including workstation, 
router, firewall, and other application logs. These logs, if added to this experimental network with no 
further modification, could easily push the percentage of traffic identified as syslog significantly higher. 

Table 13 shows the average network throughput as well as the network composition of each type of 
traffic as a percentage of the total throughput. Note that Mode 1 is the most efficient in terms of its 
ability to minimize the syslog traffic while still detecting all of the experimental use cases. In contrast, 
Mode 4 results in the maximum syslog traffic as it contains all raw and synthetic events.   
 
 

Table 13. Network Traffic Composition Percentages 
 

Mode Average  Network 
Throughput 

SAST Traffic 
Percentage 

HTTP Traffic 
Percentage 

Syslog Traffic 
Percentage 

0 587.7 Kb/s 2.8 % 97.1 % 0.0 % 
1 587.7 Kb/s 2.8 % 97.1 % 0.00039 % 
2 584.2 Kb/s 2.8 % 97.1 % 0.00158 % 
3 622.4 Kb/s 2.3 % 97.3 % 0.283 % 
4 714.3 Kb/s 2.7 % 96.9 % 0.324 % 

 
 
Figure 7 shows the syslog traffic as a function of the mode of operation graphed on a logarithmic scale. 
Visualization of the syslog traffic makes the benefits of using Mode 1 or Mode 2 clear whenever it is 
possible to do so. It also shows that Mode 3 and Mode 4 differ only slightly in the amount of syslog 
traffic.  
 
 

 
 



Figure 7. Syslog Traffic as a Function of the Logging Mode 
 
 
Overall, the flexibility offered by the logging modes becomes apparent in terms of the ability to 
adjusting the amount of syslog traffic. In the best case, where a Mode 4 configuration is compared with 
a Mode 1 configuration, there is a 99.88% reduction in the amount of syslog traffic on the network. 
These results clearly show the value of a configurable, distributed event correlation infrastructure with 
regards to network utilization. This is especially true in a low-accountability environment, where no 
centralized logging is required and thus the smallest possible amount of syslog traffic can be sent over 
the network. 
 
 
5.4. Log Server Event Correlation Time 
 
In this section, we examine the effect of adding synthetic events to the raw events and the effect of 
using traditional database normalization on the time required to conduct database driven event 
correlation at the central log server in high accountability (e.g., Mode 3 and Mode 4) networks. These 
metrics were collected after all network simulation runs were completed because they only involved 
post processing of the data stored on the central log server. 
 
 
5.4.1. Addition of Synthetic Events 
 
One of the theories tested in this research was that the use of distributed event correlation and filtering 
not only provides benefits in reducing network bandwidth consumption, but also improve the efficiency 
of centralized event correlation that occurs in high accountability environments. To determine the 
impact of the addition of synthetic events on the time to complete event correlation at the central log 
server, two typical tasks were chosen and database queries were written to implement the event 
correlation necessary to complete the tasks. 

The "excessive downloads" use case was selected as a representative example due to the 
complexity of the case (e.g., implement a sliding window to identify when more than 100MB of data 
are downloaded within a 1 hour period by any single IP address). The composition of a database query 
to identify violations of the “excessive downloads” rule differs depending on whether synthetic events 
are present or not in the data. In the case where no synthetic events are present (e.g., Mode 3), the 
database query must be constructed to identify all unique IP addresses that accessed the server of 
interest, identify all web page accesses from each of unique IP address that accessed the server, 
integrate all of data transfers from this set over a sliding window of the given time period for each 
unique IP address, and return the IP address of the offending system if the sum of accesses within the 
sliding window exceeds a specified threshold. In contrast, the database query is much simpler when 
synthetic events are present (e.g., Mode 4) because the query simply returns the synthetic events to 
identify the offending IP addresses. In some cases, it may be desirable to identify only the IP address of 
the offending system(s) and in other cases it may be desirable to identify both the IP addresses of the 
offending system and other parameters from the related raw events that will aid in an investigation. For 
this reason, we constructed two different types of database queries to detect violations of the 
"Excessive Downloads" use case: 
 

1. Return the IP addresses of each offending systems. 
2. Return the IP addresses of each offending systems and the related raw events. 

 



For each of the two query types, a separate query was written to process Mode 3 and Mode 4 data. 
Each of these four unique queries was executed and the results are shown in Table 14. 

The results of the first query to return only the IP addresses of offending systems show that adding 
synthetic events to the event stream resulted in a 1405:1 improvement in query performance. This large 
performance improvement was expected and is due to the fact that the query workload was allocated to 
the remote event producing systems. The remote systems processed their own raw event data, identified 
event sequences which matched the excessive download rule, and when detected inserted the 
“excessive download” synthetic events into the event stream that was transported back to the central 
log server. When querying Mode 4 data, the database only had to search for the synthetic events 
corresponding to the excessive download event correlation rule. In contrast, when querying Mode 3 
data the event correlation workload burden was placed solely on central log server which had to 
process large amounts of data to identify the event streams of interest. 

The results of the second query to return the IP addresses of offending systems and related events 
shows that adding synthetic events to the event stream resulted in a 289:1 improvement in query 
performance. This performance improvement occurs for the same reasons as Query 1 but is also due to 
the fact that the addition of synthetic events in the event stream enables the database to more quickly 
identity the location of the violations (e.g., where “excessive download” event correlation rules fired). 
When querying Mode 4 data, the database only had to search for “excessive download” synthetic 
events and if found, return the raw events which caused the production of the synthetic event. In 
contrast, when querying Mode 3 data the event correlation workload burden, as well as the requirement 
to return the related events, was placed solely on central log server. 
 
 

Table 14. Performance Improvement for Excessive Download Event Correlation Queries 
 

Query Returned Results Mode 3 – Raw 
Events 

Mode 4 – Raw Events 
+ Synthetic Events 

Performance 
Improvement 

1 IP Address Only 120.9s 0.086s 1405:1 
2 IP Address and Related 

Raw Events 
289.4s 1.0s 289:1 

 
 
Our results clearly show that even when related logs are collected, the time required in the context-
aware case is several orders of magnitude smaller than in the context-less case. This is an intuitive 
result - in the context-aware case, the hard work of actually correlating individual log-based events was 
done in real-time as they happened, allowing the context-aware script to merely query the database for 
related logs. The context-less case had to do both the task of correlating individual events and the task 
of searching for related logs. In this experimental high-accountability environment the raw logs are still 
accessible at the centralized log server, but these results demonstrate that the addition of context in real 
time through distributed event correlation can foster a remarkable decrease in the amount of time it 
takes to interact with those raw logs. 

It is important to note that the purpose of this experiment was to show experimentally if a 
performance increase existed. We are planning to further explore this in more detail to identify the 
factors which determine the magnitude of the performance improvement (e.g., size of the database, 
complexity of the correlation rules, CPU loading) so that rational tradeoffs can be made when 
designing a SIEM solution. 
 
 
5.4.3. Database Normalization 



 
Another theory tested in this research was that the use of database normalization would improve the 
efficiency of centralized event correlation that occurs in high accountability environments. To 
determine the impact of database normalization, the data collected for Mode 4 (e.g., raw and synthetic 
events) was stored in two separate databases: 1) a non-normalized database, and 2) a normalized 
database. The non-normalized database is the current best practice where all syslog events are stored in 
a single event table within the database using the database table schema shown in Figure 8. The syslog 
data field encapsulated all of the raw and synthetic events within a single table.  
 
 

 
 

Figure 8. Non-Normalized Log Server Database Table Schema 
 
 
In contrast, the normalized database stores each incoming syslog event into either a raw event table or a 
synthetic event table using the schema shown in Figure 9. Before a record is inserted into the database, 
code within the database is used to parse the syslog event and store the incoming syslog event into the 
appropriate table. The benefit of this approach is that the synthetic events can be more quickly searched 
to identity activities of interest. 
 
 

 
 

Figure 9. Normalized Log Server Database Table Schema 
 
 

Table 15 shows the mean and variance of both the normalized and non-normalized runtime of 
queries for ten queries for each of the use cases using the data collected for Mode 4. All queries were 
written in Oracle PL/SQL with the exception of the Naive Web Crawler, Excessive Downloads, and 
Excessive Access Attempts queries. Due to the complex nature of these use cases, these behaviors were 
detected in the database using Perl scripts. The null hypothesis, Ho, is that the mean runtimes are the 
same; that is to say, normalization of the database has no effect on the runtime of queries. The alternate 
hypothesis, Ha, is that the mean runtimes are statistically different.  
 
 

Table 15. Query Runtime for Normalized and Non-Normalized Mode 4 Data  

Index 
Log Server 
Date/Time 

Syslog event data (raw events only)

RawEventTable 

Index 
Log Server 
Date/Time 

Syslog event data (synthetic events only)

SyntheticEventTable 

Index 
Log Server 
Date/Time 

Syslog event data (raw events and synthetic events) 

EventTable 



 

Use Case Mean 
(normalized) 

Mean 
(non-normalized) 

Variance 
(normalized)

Variance  
(non-normalized) 

p-value 

Injection 0.158 0.206 0.000307 0.000093 2.50 E-06 

XSS 0.029 0.079 0.000543 0.000010 7.28 E-05 

Authentication 0.015 0.505 0.000094 0.025783 4.63 E-06 

Object 
References 

0.123 0.245 0.000179 0.000027 6.81 E-12 

CSRF 0.031 0.085 0.000187 0.001783 2.77 E-03 

URL Access 0.055 0.083 0.000250 0.000157 394. E-06 

Redirects 0.058 0.073 0.000351 0.000134 48.0 E-03 

SSL 0.054 0.070 0.000271 0.000000 13.3 E-03 

Naïve Web 325.0 8063.3 0.888889 64.3333 321. E-09 

Excessive 
Downloads 

265.9 76.6 0.544444 0.266667 < 2.2E-16 

Excessive 
Access 
Attempts 

324.7 210.1 0.455556 0.100000 < 2.2E-16 

 
 
The p-value is the observed level of significance, which is the smallest value at which Ho can be 
rejected for the collected data. If the p-value is greater than or equal to α, the null hypothesis (Ho) is 
not rejected. If the p-value is smaller than α, the null hypothesis (Ho) is rejected. The resulting p-values 
reveal that database normalization makes a statistically significant difference in the runtime of all of the 
use case queries. All p-values are less are under the 1% (α = 0.01) significance level (e.g., the p-value is 
less than 0.01) which means the null hypothesis (Ho: mean query runtimes are the same) is rejected in 
favor of the alternative hypothesis (Ha: mean query runtimes are statistically significantly different). 
The use of database normalization reduced the query runtimes for the Injection, XSS, Authentication, 
Object References, CSRF, URL Access, Redirects, SSL, and Naïve Web Crawler use case; it increased 
the query runtime for the Excessive Downloads and Excessive Access Attempts use cases. 

The results clearly demonstrated the value of normalizing a database for increasing the efficiency of 
queries made on that database, with an average reduction in query time of 15.31%. This benefit is even 
clearer when only the OWASP Top Ten use cases are considered which results in an average percent 
reduction in query time of 46.76%. Figure 10 shows the runtimes of the queries, along with the average 
runtime. The three insider threat use cases (the Delayed Web Crawler was omitted due to its similarity 
to the Naive Web Crawler and the long runtimes of each) did not all exhibit such a clear-cut benefit. 
While the Naive Web Crawler queries showed the most runtime reduction of the set (absolute reduction 
of over 2 hours or 95.97%), the Excessive Downloads and Excessive Access Attempts queries were 
actually slower by several minutes in the normalized case. The higher runtimes for the last two queries 
is likely due to the data structures used to perform the detection - in the non-normalized queries, the 
sliding time window was implemented using a Perl array, while the normalized queries implemented 
the window as a series of SQL queries. It was thought that the ability to leverage optimizations in 
Oracle would cause the normalized queries to perform more efficiently. Clearly, this is not universally 
the case. 



 
 

 
 

Figure 10. Normalized and Non-normalized queries for OWASP use cases 
 
 

  
 



Figure 11. Normalized and Non-normalized queries for insider threat use cases 
 
 

An examination of the algorithms used in these queries provides insight into these results. Essentially, 
the only difference between the Naive Web crawler algorithm and the Excessive Access Attempts 
algorithm is that the query which pulls all relevant records from the database includes an additional 
qualifier in the latter that only selects those log messages with an HTTP status of “404.”  Similarly, The 
Excessive Downloads algorithm requires a single pass through the records, whereas the Naive Web 
crawler algorithm requires multiple passes for each record. This results in a much lower number of 
records to consider for the Excessive Access Attempts and Excessive Downloads algorithms.  This 
difference in complexity exposes the underlying mechanisms used to conduct the detection. In the non-
normalized cases, a Perl array was used to store the relevant information parsed out of the log 
messages. These Perl arrays were then used to implement the sliding time windows. In the normalized 
queries, no such reliance on arrays was necessary, since the sliding time window could be implemented 
entirely in SQL queries. It seems, therefore, that the implementation of sliding time windows in Perl 
arrays is more efficient than their implementation in SQL queries. The relatively lower complexity of 
the Excessive Downloads and Excessive Access Attempts algorithms allows that difference to manifest 
itself. These results make two points about database normalization of log messages. First, they show 
that in many cases there can be a distinct efficiency advantage in doing event correlation using a 
normalized database. Second, these results illustrate the fact that normalization by itself is unlikely to 
solve the major issues with centralized log management. In the Excessive Downloads and Excessive 
Access Attempts queries, a more efficient detection implementation actually outweighed any benefit 
presented by the use of a normalized database.  
 
 
5.5. Remote Configurability and Log Source Flexibility 
 
In a small experimental network, it is feasible to manually configure each machine in a network. 
Indeed, a centralized event correlator can be reasonably configured manually, since all event 
correlation activities happen in one place. It is essential that a distributed event correlation scheme have 
the capacity for remote configuration to overcome this disadvantage. To provide this capability, a bash 
script was written which utilized SEC’s capability for dynamic configuration via Linux operating 
system signals. The script takes a logging mode and a reset type as parameters, the reset type being 
either ’hard’ (terminate ongoing event correlation activities) or ’soft’ (maintain ongoing event 
correlation activities and just reload the configuration). The script chooses the appropriate 
configuration files for the indicated logging mode, and moves them from “conf-available” to “conf-
enabled.” It then sends either SIGHUP (hard reset) or SIGABRT (soft reset) to SEC, causing it to 
reload its configuration. We were able to implement and test this capability under a Linux operating 
system, but the Windows operating system does not have a comparable signaling system and thus an 
additional process would be required to implement this capability. Despite this limitation, we have 
proven that a logging environment can be dynamically configured from a remote location making 
administration of an enterprise wide SIEM solution feasible. 
  
 
6. Conclusions 
 
In this paper, we presented the design and analysis of a flexible, distributed event correlation system 
designed to overcome limitations in security event logging and analysis. To demonstrate the utility of 
the methodology, we modeled and simulated centralized, decentralized, and hybrid log analysis 



environments over three accountability levels and compare their performance in terms of 
configurability, network bandwidth utilization, detection capability and database query efficiency. The 
results show that when compared to centralized event correlation, dynamically configured distributed 
event correlation provides increased flexibility, a significant reduction in network traffic in the low-
accountability case, and a decrease in database query execution time through context addition in the 
high-accountability case while detecting all modeled malicious use cases with a low false positive rate. 
The goal of this research had two components, namely developing a distributed log event correlation 
methodology and to quantify the value provided by that methodology over a centralized alternative. 
That two-part goal is met when the chosen metrics for measuring the value of a methodology 
demonstrate that the distributed methodology does in fact outperform the centralized methodology. The 
secondary goal of this research was to demonstrate additional advantages of a distributed approach 
which provide useful, if not quantifiable, value. This goal is met when a plausible implementation of 
the advantages is demonstrated and shown to provide the anticipated value.  

The primary goal of this research was met in part by the measurement of network utilization, 
showing a best-case reduction in syslog traffic of 99.88% between a raw log only and synthetic-event 
only configuration. The goal was further met by the measurement of query efficiencies, showing that 
adding context to the database has a dramatic effect in reducing the time necessary to detect suspicious 
behavior by querying the database.  

The secondary goal of the research was met through the implementation of several techniques 
which take advantage of the distributed architecture to add additional value.  Those techniques were 
remote configuration, inclusion of multiple log sources and analysis of the differences between 
normalized and non-normalized databases. The remote configuration showed that distributed event 
correlation architectures can be easily managed remotely, making it much more practical at a larger 
scale. The inclusion of multiple log sources showed that the methodology can correlate sources with 
different formats and information, even combining information from multiple sources to detect 
behavior that is not evident in only one or the other. Lastly, the value of normalizing a database was 
shown through analysis that revealed that as the complexity of detection algorithms increase, the 
reduction in query time becomes even more pronounced.  
 
 
6.1 Future Work 
 
There are several issues in distributed event correlation that need further exploration. First, this 
research effort focused primarily on the use of web server access logs and, to a lesser extent, web 
server error logs for detecting malicious activities on a system. We included one use case that utilized 
the MySQL event log to demonstrate the value of fusing multiple event log sources on the same 
system. However, further work needs to be conducted to identify tradeoffs in the benefits provided by 
fusing multiple logs compared to the costs in terms of processing and storage requirements. Second, a 
study of the expansion of this methodology to include other types of logs, such as router logs, 
workstation logs, firewall and intrusion detection logs, and other application logs should be conducted 
to develop an understanding of what is activities are detectable how their inclusion affects event 
correlation activities. Third, further research is recommended in the area of emerging common log 
event description standards such as MITRE’s Common Event Expression. This area provides great 
potential for log normalization and event correlation, and parallel research efforts would benefit all 
concerned communities. Fourth, further research needs to address the presentation and the prioritization 
of alerts with respect the organizational high value assets. As noted in the introduction, SIEM tools are 
focused not only on collecting logs and detecting behavior, but also on incident management, reporting 
and visualization. This research did not meaningfully address the reporting of events once they were 
generated, or the organizational processes which would be necessary to respond to incidents once they 



were reported. Further research in this area would give the log collection and incident detection 
components of this research additional organizational relevance.  
 
 
7. Disclaimer 
 
The views expressed in this paper are those of the authors and do not reflect the official policy or 
position of the United States Air Force, the Department of Defense, or the U.S. Government. 
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