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ABSTRACT
In security-related areas there is concern over the novel “zero-

day” attack that penetrates system defenses and wreaks havoc. 

The best methods for countering these threats are recognizing 

“non-self” as in an Artificial Immune System or recognizing 

“self” through clustering. For either case, the concern remains that 

something that looks similar to self could be missed. Given this 

situation one could logically assume that a tighter fit to self rather 

than generalizability is important for false positive reduction in 

this type of learning problem.  

This article shows that a tight fit, although important, does not 

supersede having some model generality. This is shown using 

three systems. The first two use sphere and ellipsoid clusters with 

a k-means algorithm modified to work on the one-class/blind 

classification problem. The third is based on wrapping the self 

points with a multidimensional convex hull (polytope) algorithm 

capable of learning disjunctive concepts via a thresholding 

constant. All three of these algorithms are tested on an intrusion 

detection problem and a steganalysis problem with results 

exceeding published results using an Artificial Immune System. 

Categories and Subject Descriptors
I.5.3 [Pattern Recognition]: Classifier design and evaluation,

feature evaluation and selection.

General Terms
Algorithms, Security 

Keywords
Anomaly detection, clustering, intrusion detection systems.  

1. INTRODUCTION
The development of computer and network intrusion detection 

systems has been conducted along two paths. The first 

development thrust identifies signature elements of attacks, and 

includes them in an attack database. The database is then 

compared with incoming samples looking for matches, and if a 

match occurs, the user, packet, or file is blocked from the internal 

network. This is the approach taken by the majority of 

commercial intrusion detection and steganalysis products, with 

the capability of catching most known attacks with very few false 

alarms. A limitation of this approach is that the attack must be 

known before it can be given a signature and blocked. Subtle, 

stealthy probes will most likely not be picked up by this type of 

system (Williams et al, 2001). Additionally, due to the sample 

arrival rate and database matching procedure, the speed at which 

attacks can be blocked will be limited. 

An alternative attack matching method is based on anomaly 

detection. In this approach, a machine learning algorithm learns a 

model of normal operating behavior so that abnormal conditions 

can be identified. The advantage of this approach is that novel 

attacks (for which signatures have not been identified) may be 

identified and blocked. Additionally, the approach may be much 

quicker, because maintenance of an online signature database for 

matching purposes is not required. A disadvantage is that an 

attacker with knowledge of which attributes are used for detection 

could construct stealthy attacks that avoid using or manipulate the 

attributes used by the machine learning algorithm to appear 

normal. 

In order to detect attacks from an attacker trying to blend in to 

normal traffic, we examine fitting the normal “self” data more 

closely. Figure 1 shows the results of applying the modified k-

means sphere, ellipse, and the convex polytope algorithms to each 

class separately for a simple two class problem. As can be seen 

from just this simple example, the generalizability of the model 

decreases as the model improves its tightness to the data points. 

One could also imagine that if these classes were more 

interspersed that the convex polytope which provides the closest 

fit to the data would perform the best. Given a domain in which 

the attackers attempt to craft an attack that appears as close to 

normal (self) as possible, a learning approach which fits the 

model closely could be seen as important. 

In the following sections we discuss related work on anomaly 

detection for the intrusion detection and steganalysis domains 

used for testing. This is followed by a discussion of how we have 

modified k-means and the thresholding element required for the 

convex polytope to learn disjunctive concepts. The test results are 

then presented showing that a tight fit is important but that 

generalizability is still necessary given the sampling of the 

normal/self space. 
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2. RELATED WORK
In this section we discuss related work on anomaly detection for 

the intrusion detection and steganalysis domains. 

2.1 Intrusion Detection Systems 
Anomaly detection systems have been built making use of rule 

learning, neural networks, Artificial Immune Systems (AIS), and 

clustering methods. The clustering methods and Artificial 

Immune Systems are most closely related to this work in that the 

systems can be trained using only normal traffic. Artificial 

Immune Systems train on normal data by enclosing non-self space 

with randomly generated immune system cells. These cells then 

take part in an evolutionary algorithm evolution process until as 

much of the non-self space as possible is covered with none of the 

cells impinging on self space (Harmer, et al, 2002). We compare 

our results with an AIS technique (Dasgupta and Gonzales, 2002) 

in a later section. Researchers have also made use of system call 

activity as another source of data for anomaly based intrusion 

detection (Hofmeyr, et al, 1998; Nguyen, et al, 2003; and Tan, et 

al, 2003).  

The application of clustering to intrusion detection groups 

network traffic into subclasses such that the members in one 

subclass are similar, while members of different subclasses are 

distinct. Several techniques have been studied, such as k-means, 

Self Organizing Maps (SOM), Neural-Gas, and Mixture-of-

Spherical Gaussians (MOSG) to name a few. Clustering has been 

shown to produce very good results as an unsupervised IDS 

technique (Zhong, et al, 2004) and for data reduction prior to 

categorization (Zanero and Savaresi, 2004). In addition, there is a 

variation of k-means that also contains a stochastic element which 

behaves like an AIS (Guan, Ghorbani and Belacel, 2003).  

2.2 Steganography 
Steganography refers to hiding information in an innocuous place 

so that it may be transmitted without notice. In the digital realm, 

specifically digital images, the message is hidden within a cover 

image. The hiding or steganograpy process varies the image’s 

pixels in such a way that the changes are virtually undetectable to 

the human eye. The cover images that provide the most difficulty 

for message detection are JPEG images.  

JPEG compression is a lossy image compression technique that 

exploits the fact that the eye cannot detect small changes in an 

image. In a JPEG image, a message is stored using the least 

significant bit (LSB) or even through rounding errors on the 

quantized discrete cosine transform (DCT) coefficients 

representing 8x8 blocks of the image.  

For the lossy steganography problem there have only been a few 

applications of learning models for normal images, and none have 

used any type of clustering. Approaches which make use of both 

self and non-self data have used Fisher’s linear discriminant, 

Support Vector Machines with image quality metrics, and wavelet 

statistics calculated from the suspect images (Farid and Lyu, 

2002; Lyu and Farid, 2002; and Avcibas, et al, 2002). A survey of 

the metrics available and their utility is provided in (Kharazzi, et 

al, 2004).  

Blind or one-class learning methodologies have consisted of 

Artificial Immune Systems (Jackson, 2003) and single class 

Support Vector Machines (Lyu and Farid, 2004). 

3. METHODS
In this section, we discuss how we have modified k-means and the 

thresholding element required for the convex polytope to learn 

disjunctive concepts.  

3.1 k-means 
The k-means algorithm is a clustering algorithm which assigns 

points to clusters by attempting to minimize the sum of squared 

errors within groups, or the sum of the distance squared between 

each point and the centroid of its assigned cluster. The algorithm 

then iteratively updates the cluster centroids moving the centroid 

toward the center of the cluster’s points. This is followed by 

reassigning points to different clusters until it can no longer 

reduce the sum of squared within group errors. The time 

complexity of the k-means algorithm is O(knr) for k clusters, n 

points, and r iterations (Wong, Chen and Yeh, 2000). 

As k-means is being used as a classifying algorithm, a class is 

described by a set S of k hyper-spheres. First, the k-means 

clustering algorithm partitions the self data into k different 

clusters, where k acts as a tolerance parameter for the hyper-

sphere classification algorithm by controlling the partitioning of 

the self data.  For the spherical version, a radius for each cluster is 

calculated from the distance between the corresponding centroid 

and the most distant point in the cluster. A new sample is declared 

part of self if it falls within one of the cluster radii.  

A good IDS or steganalysis detection system should have a high 

probability of detection (PD) and small probability of false alarm 

(PF). The challenge is finding the appropriate balance between 

these opposing objectives.  For example, decreasing the volume 

Figure 1. The 2-Class Problem with Sphere, Ellipse and 
Convex Polytope 
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of the training class reduces the number of missed detections, 

thereby improving PD, but at the expense of more false alarms and 

a higher PF. As a method to create a tradeoff between PD and PF, 

a tolerance parameter, 0 < δ < 1, applied to each cluster’s radius

provides a simple method to constrain the clusters from covering 

too much non-self space. 

An ellipsoid model was also used to strike a balance between the 

loose fitting spherical k-means representation of self space and the 

very tight fitting convex polytope described in the next section. 

An ellipsoid in d dimensions is represented by three parameters 

defining its location size (s: a scalar value), (µ: a d-vector

specifying the center point), and shape (Σ-1: a d-by-d matrix

describing the shape of the ellipsoid). Any point x on the ellipsoid 

boundary (locus) satisfies 

sxx T =−∑− − )()( 1 µµ
The ellipsoid model in k-means minimizes to find not only a 

cluster center µ but the shape Σ-1 as well. This increases the

creation time complexity to O(kn2d2). 

3.2 Convex Polytope 
A d-polytope is a closed geometric construct bounded by the 

intersection of a finite set of hyperplanes, or halfspaces, in d 

dimensions (Coxeter, 1973). The polytope is convex if all points 

in a line segment between any two points on the polytope 

boundary lie either within the polytope or on its boundary. A 

convex hull of a set of points S in d dimensions is the smallest 

convex d-polytope that encloses S (O'Rourke, 1998). Each vertex 

of this enclosing polytope is a point in S. 

For classification purposes, the convex polytope for a class C is 

built from the set T of d-vectors from the sample space. If the 

desired geometric shape is a convex d-polytope, then the convex 

hull H of T is computed. There are several algorithms for 

computing convex hulls in higher dimensions (Avis, et al, 1997). 

This research uses the qhull program (Barber, et al. 1997), which 

has a time complexity of O(n ⎣ d / 2 ⎦) for n points in d-space. A 

distinct test point p is declared to be a match (member of class C) 

if and only if it is bounded by the polytope defined by H. 

To account for class disjunction, we define 0 < β < 1 as a

tolerance parameter to control the creation of smaller convex 

hulls. With β = 1, the algorithm creates a single convex polytope

around all training points. As β decreases, the potential number of

smaller polytopes increases, and their combined hyper-volume in 

the attribute space decreases. For the extreme case β = 0, no

convex hull models are created and all test points are 

subsequently rejected. The method for constructing the smaller 

convex hulls is described in (McBride and Peterson 2004).   

Selecting different values of β allows us to achieve the desired

balance between false positive and false negative error 

probabilities. If instances of all possible testing classes are 

available when creating the class model, then the value of β that

best fits the training data (i.e., provides an appropriate balance 

between false positives and false negatives) can be found through 

experimentation.  

4. TESTING
The flexibility of these classifiers allows for uses in many 

possible domains. Our research focuses on evaluating anomaly 

classification as applied to the problems of detecting suspicious 

computer network activity and steganography, both of which may 

accompany an attack against a computer network by an outsider. 

These domains also show the classification capabilities on 

windowed time series data (IDS) as well as discrete sampled data 

(steganalysis). 

4.1 IDS Experiment 
The dataset used for this experiment was obtained from the 

Lincoln Laboratory of the Massachusetts Institute of Technology. 

MIT maintains data sets with normal and abnormal information 

collected in a test network (Haines, et al, 1999). Although this 

data set has been shown to be statistically different from normal 

traffic (Mahoney and Chan, 2003), its many uses by the research 

community allow for comparison with other approaches. For this 

experiment, we used the 1999 data set, with week 1 (normal 

traffic) to train our classifiers, and week 2 (normal traffic mixed 

with attacks) for testing. Abnormal activity includes both internal 

(misuse) and external (hacking or denial of service) attacks, but 

not the external use of operating system or application exploits, as 

shown in Table 1. 

Table 1. Week 2 Attack Profile  

Day Attack  Attack Type Start Time Duration 

1 Back DOS 9:39:16 00:59 

2 Portsweep Probe 8:44:17 26:56 

3 SATAN Probe 12:02:13 2:29 

4 Portsweep Probe 10:50:11 17:29 

5 Neptune DOS 11:20:15 04:00 

We follow the same data preparation methodology as (Dasgupta 

and Gonzalez 2002) and collect statistics on the number of bytes 

per second, number of packets per second, and number of Internet 

Control Management Protocol (ICMP) packets per second for 

classification features. These features were sampled each minute 

from the raw tcpdump data files. Dasgupta and Gonzalez showed 

that while none of these features alone could reliably detect the 

five attacks, combining the features was quite effective. They also 

explored overlapping the time series as a means of detecting 

temporal patterns, with their best results generated using a sliding 

window of three seconds. 

False positive and true positive probabilities were calculated by 

comparing the classifier output with the Week 2 attack data. Table 

2 shows the results of testing the k-means sphere and ellipse 

classifiers, the convex polytope, and the AIS results (Dasgupta 

and Gonzalez, 2002) on the MIT IDS dataset. Multiple tests for 

each algorithm were run, and the table contains the best results 

found for PF and PD of each algorithm with the exception of the 

AIS which includes the results for 1 and 3 time slices from 

(Dasgupta and Gonzales, 2002).  
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Table 2. IDS Results

Sphere Ellipse Polytope AIS

k=75 δ = 1.0

k=100 δ = 0.9

k=30 δ = 1.0

k=75 δ = 1.0

β > 0.3 β = 0.1 1 time 

slice 

3 time 

slices 

PD (%) 1.82 5.45 98.2 100.0 98.2 100.0 92.8 98.0

PF (%) 0.0 1.02 0.0 0.2 0.27 0.35 1.0 2.0

During testing of the k-means variations, k-values ranged from 1-

100 in steps of 5 and δ=0.9, 0.95, and 1.0 were used to determine

classifier sensitivity as a function of the number of ellipsoids used 

to fit the training data. As shown, the ellipsoid model with its 

added capability of generalizing beyond the strict sampling is able 

to better fit the training data over the convex polytope which was 

trained using several values of β for 0 ≤ β ≤ 1.  In addition, the

results show that the sphere version of k-means performs very 

poorly predominantly because it inaccurately covers the training 

attribute space by also enclosing space including anomalous data 

points. This continues even as k increases and each cluster 

decreases in size. The reason the sphere does not perform as well 

as the other two geometric constructs is that the k-means classifier 

uses the point furthest from the mean for each cluster to estimate 

the size of the hyper-sphere, resulting in an over-generalization. 

This contrasts with the ellipse and convex polytopes which try to 

maintain a closer fit to the training data. 

These results imply that the convex polytope and the ellipse k-

means had little trouble fitting the training data, and that their 

ability to more tightly fit the self space improves their overall 

performance for classification based on these three statistical 

attributes. Additionally this shows that although both models fit 

the data closely that the added generality of the ellipse k-means 

assists in reducing the false positives which is counter to the 

assumption that one would want the closest fit to the training data 

for anomaly detection. 

4.2 Steganalysis Experiment 
For this domain we test using the wavelet coefficient statistics 

(Farid and Lyu, 2003) derived from a database of 1,100 grayscale 

images. The best three of the 36 coefficients determined by J-

score are extracted from each image. In addition to clean images, 

the testing set includes steganographic images created with Jsteg, 

and Outguess with and without statistical correction. For each of 

these three steganography methods, images are created using 

100%, 50%, 25%, and 12.5% of the cover image’s embedding 

capacity.  

Figure 2 shows the results from the steganography testing 

compared with the results using the same testing domain and an 

AIS as the classifier from (Jackson 2003). As seen with the IDS 

problem, the closer fit to the self space provided by both the 

convex polytope and ellipse k-means outperforms the more 

general sphere k-means. However, it is also shown that striving 

for the closest fit possible, i.e. the convex polytope, is also not the 

direction that should be pursued. Specifically, the lack of 

generality, especially on the Jsteg dataset, is detrimental to the 

convex polytope over the ellipse k-means. 

5. CONCLUSIONS
For security anomaly detection domains, a concern prior to 

fielding the system is whether it can be spoofed by an attacker 

manipulating their attack to appear similar to normal traffic. In 

order to combat such an event we proposed that a model of self 

should fit the normal self sample tightly. This theory has been 

tested on two security domains, namely intrusion detection and 

steganalysis. 

This paper shows that while the convex polytope algorithm 

provides the tightest fit to self, the ellipsoid k-means provides the 

best balance between a tight fit and sufficient generality. The 

small amount of generality provided by the ellipse resulted in a 

better ability to detect novel events that may otherwise go 

undetected in a classifier with a tight fit. This is especially 

worrisome in a network intrusion scenario in which the attack 

pattern appears as close to normal as possible. The results have 

demonstrated that a tight fit is important but does not obviate the 

need for generality. 
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