Air Force Institute of Technology

AFIT Scholar

Theses and Dissertations Student Graduate Works

3-1998

Embedding a Reactive Tabu Search Heuristic in Unmanned Aerial
Vehicle Simulations

Joel L. Ryan

Follow this and additional works at: https://scholar.afit.edu/etd

6‘ Part of the Other Operations Research, Systems Engineering and Industrial Engineering Commons

Recommended Citation

Ryan, Joel L., "Embedding a Reactive Tabu Search Heuristic in Unmanned Aerial Vehicle Simulations”
(1998). Theses and Dissertations. 5755.

https://scholar.afit.edu/etd/5755

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been
accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more
information, please contact richard.mansfield@afit.edu.

https://scholar.afit.edu/
https://scholar.afit.edu/etd
https://scholar.afit.edu/graduate_works
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F5755&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/310?utm_source=scholar.afit.edu%2Fetd%2F5755&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/5755?utm_source=scholar.afit.edu%2Fetd%2F5755&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:richard.mansfield@afit.edu

AFIT/GOR/ENS/98M-21

EMBEDDING A REACTIVE TABU SEARCH HEURISTIC
IN UNMANNED AERIAL VEHICLE SIMULATIONS

THESIS
Joel L. Ryan, Captain, USAF
AFIT/GOR/ENS/98M

DYIC Quarysy INEYECTRED 4

Approved for public release; distribution unlimited

19980427 141

AFIT/GOR/ENS/98M-20

THESIS APPROVAL

NAME: Joel L. Ryan, Captain, USAF =~ CLASS: GOR-98M

THESIS TITLE: Embedding a Reactive Tabu Search Heuristic in Unmanned Aerial
Vehicle Simulations

DEFENSE DATE: 3 March 1998

Advisor

Reader

Reader

Assistant Professor of Operations Research
Department of Operational Sciences

COMMITTEE: NAME/TITLE/DEPARTMENT EI_G%URE ?1
1
Glenn Bailey, Lieutenant Colonel, USAF . ,

. Air Force Institute of Technology
p————d
James T. Moore, Lieutenant Colonel, USAF QW}"% / %W/

Associate Professor of Operations Research

Department of Operational Sciences '

Air Force Institute of Technology . W/
William B. Carlton, Lieutenant Colonel, USA M

Adjunct Assistant Professor of Operations Research

Department of Operational Sciences
Air Force Institute of Technology

The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the Department of Defense or the U. S. Government.

EMBEDDING A REACTIVE TABU SEARCH HEURISTIC
IN UNMANNED AERIAL VEHICLE SIMULATIONS

THESIS

Presented to the Faculty of the Graduate School of Engineering
Air Force Institute of Technology
Air University
In Partial Fulfillment of the
Requirements for the Degree of
Master of Science in Operations Research

Joel L. Ryan, B. S.
Captain, USAF

February 1998

Approved for public release; distribution unlimited

Acknowledgments

This section would be better titled “Thanksgivings.” Thanksgiving implies the more
heartfelt thanks Americans give to God and fellow man on their annual holiday, and it is this
level of gratitude I wish to express to God and the individuals listed here. I have risen far above
my expectations. It is a fulfillment of prayer and a gift from family and colleagues.

Foremost, I thank my wife, Tracy, who sacrificed so much in the past year to give me the
freedom to pour myself into this work. In addition to raising two sons, you had a third without
breaking stride. The family graduates from AFIT stronger than when it arrived, and we owe it all
to you.

Lt. Col. Glenn Bailey gave me the encouragement and direction I needed. Without his
support, I think I would have succumb to the doubt that too often drowns great journeys. His
vision for this project was a powerful motivation that pushed me onward.

LTC William Carlton was a selfless aide in this project. Without his code and
instruction, this thesis would not have been possible. I am glad we found more ways to give his
powerful work life.

Lt. Col. Miller took the time to get me over more than one hump in using MODSIM. Lt.
Col. Moore was a patient and constructive reader. All I can offer in return is thanks.

I also thank the guys in 133b, especially “Useful” Joel Coons. You made the work

environment bearable and fun.

ii

Table of Contents

Page

ACKNOWIEAZIMENLS.etiiieiieii i ettt e e e e e e eaes i
LSt Of FIGUIES...c.. ettt e e, v
LSt Of TADLES. ... c. ettt et e vi
ADSITACE. ..ottt e vii
Chapter L. ... e e e 1
(6111 11 o OO PPOPPTRPPPRRON 3
2 B 1115 (o Ta 10167 (o) OO OO OTROTPOTOO 3
2.2. The UAYV Problem Formulation.........ccccoveriviiviiniiniiiiiiiiiiiiiiieeiesin s s 4
2.3. The General Vehicle Routing Problem ..., 7
2.4, MEthOAOIOZYcviemiiieeiiteeeete bttt e sa bt 11
T 111) (53101 01213 (o) | OO OO 17
2.5.1 Object Oriented Programmingccoccvueviiiniinniiininicicinesieeeceseesess st sesnesenes 17
2.5.2 Embedded OptimizZation..........cccevvviiviiiiiiniiinniiniinieneeect et 22
2.6. Results E;nd CONCIUSIONS ..veuviveeeieniieeiesieneeeeeet et e resse s s esesaesee et sbesbesaessaestaenssabesenesasaneas 26
2.6.1 Elucidation Of RODUSINESSc..cerreeruirieereeiieneereeceesir e sies st snnssans s nas 26
2.6.2 Analysis Of Capabilityc.cccvivniniiiiiiiiiiiie e 41
2.7. Recommendations for Further Study ..., 46
BIDHOZIAPNYcouceciieicireieciisis ittt e e s b e ebesn e 48
A/ L YOO OO OO OO OOUORRORRRRO 51
Appendix A: tabuMOd. ..ottt A-1

iii

Appendix B: tSPtWMOd.........oinii i B-1
Appendix C: hashMoOd.c.uiiiiii e C-1
Appendix D: bestSoINMOd.........cooiiiiiiiiiiiei e, D-1
Appendix E: MESPIWcc.neiiii e E-1
Appendix F: uavMod.........oooiiiiiiiiiii F-1
Appendix G: MuavLoiter........ R TSP PP PP PSR TT S TRRPRpS G-1
Appendix H: MuavThreat2..............cooooiiii H-1
Appendix It MUuavServ2...........eeuuvvvivieiieenieaeeeeaneneneenin U PP PRTTUUURURRR I-1
Appendix J: MuavEval...........o J-1
Appendix K: Literature ReVIEW............cooiiiiiiiiiiiiii K-1

v

List of Figures
Figure Page

. GVRP hierarchical classification scheme (Carlton 1995).......c.ccccvrveerirenieerrenrcnneereerieereeeseens 8
. Traveling salesman problem hierarchy; GVRP first floor (Carlton 1995). 12
. Ohio 10-City ProODICIILccoviimiriiiiiiiiitiiee ittt et 13
. UAV Embedded Optimization MOdel..........ccccovviiiinininiiiinineiiiiesesenes 25
. NOtIONAL LOUL AITAY. ¢.vevevvenereirinniiiiierisiet et e bbbttt s sb b sn s s 29

. Nari scenarios, initialization route freqUENCY.........cocvvviiiiiiniinieniiinin e 31

. Tours ChOSEN TOr INAIL SCRIIATIOS. vvvvverrereeeeaeereeereeeeeesseessssssrsssssasersesensesasssssssssssseresssseneseesesesaees 33

. Bosnia scenario, initialization route freqUENCY.coceviiniiiriinicie e 38

. Tours choSen fOr BOSNIA SCEMATIOS. iveeveerrerereeieeieerreeiieierrrerrenrsrsstasssrnnnnsaressssesessssenrarsnansnsnessss 39

List of Tables

Table Page
L. TSPTW TESUILS. ..ottt s sa st s b bbb e san e s 16
2. Main module diagram, mMTSPTW. ...cccccoviviniiiiiii 18
3. Main module diagram, mTSPTW with winds.ccccccoivininnnn 20
4. Main module diagram, UAV ..o s 21
5. NG AALASEL...eeveeivieeieeeeeeete ettt e st e e et s e et e b et e b e bt s abesre e e b e s b b e s bt e sab e sab e e et e e naaenrnebe 28
6. Nari results, Initialization vs. Evaluation PRases.cccccvereeeeeieiiieiceree s eeeceree s e svnenceeeeans 35
7. Notional Bosnia data.ceccceieriieriininicreieciite st s 36
8. Bosnia results, Initialization vs. Evaluation Phases. ... 40
9. Number of feasible solutions in 20 replications.ccecverurrurviiniiiiininiin s 42
10. Bosnia scenario, Day 16 of the initialization phase.ccccoeieininiiniiniiine 44
11. Matrix of waiting times and route length infeasibility.cccconiiiininini 45

vi

Abstract

We apply a Reactive Tabu Search (RTS) heuristic within a discrete-event simulation to
solve routing problems for Unmanned Aerjal Vehicles (UAVs). Our formulation represents this
problem as a multiple Traveling Salesman Problem with time windows (mTSPTW), with the
objective of attaining a specified level of target coverage using a minimum number of vehicles.
Incorporating weather and probability 6f UAV survival at each target as random inputs, the RTS
heuristic in the simulation searches for the best solution in each realization of the problem
scenario in order to identify those routes that are robust to variations in weather, threat, or target
service times.

Generalizing this approach as Embedded Optimization (EO), we define EO as a
characteristic of a simulation model that contains optimization or heuristic procedures that can
affect the state of the system. The RTS algorithm in the UAV simulation demonstrates the utility
of EO by determining the necessary fleet size for an operationally representative scenario. From
our observation of robust routes, we suggest a methodology for using robust tours as initial
solutions in subsequent replications. We present an object-oriented implementation of this
approach using MODSIM III, and show how mapping object inheritance to the GVRP hierarchy
allows for minimal adjustments from previously written objects when creating new types.
Finally, we use EO to conduct an analysis of fleet size requirements within an operationally

representative scenario.

vii

Chapter 1

As begun by Sisson (1997), this thesis further expands the reactive tabu search (RTS) of
Carlton (1995) into Unmanned Aerial Vehicle (UAV) applications of vehicle routing. Carlton’s
RTS is translated into MODSIM (CACI 1996) to take advantage of its object-oriented qualities.
Simulation is a MODSIM strength that facilitates our implementation of embedded optimization.
Embedded optimization is formally defined and employed as a method for incorporating the
stochastic nature of inputs to the UAV scenarios. Although the thesis has no immediate sponsor,
the work is tailored for the U. S. UAV Air Force Battlelab. The work described here is targeted
towards their mission of demonstrating the military worth of innovative concepts.

Capitalizing on the advantages of object-oriented programming languages, a number of
libraries are created in MODSIM that can be used to quickly develop tabu searches tailored to
any specific member of the general vehicle routing problem (GVRP) family. While MODSIM is
not a common programming language, the code is easily read by any programmer of moderate
experience in other languages. As an aid to the use of these libraries, Carlton’s hierarchical
taxonomy of the GVRP is a road map of the steps necessary to transform a search tailored for one
class of problems to another. We present an efficient format for the direct comparison of
Carlton’s pseudocode and accompanying MODSIM library to the UAV pseudocode and libraries.

Chapter 2 is written in an article format meant for journal submission. After a brief
explanation of the thesis motivation in Section 2.1, Section 2.2 presents the UAV problem
formulation and Section 2.3 reviews work relevant to the study of the GVRP. ‘Section 2.4
reviews the power of RTS for vehicle routing problems and the validation of our MODSIM
objects. Section 2.5 discusses our implementation of the RTS within the UAV environment. In
2.5.1, the advantages of an object-oriented execution of the pseudocode are presented, while

1

2.5.2 presents an original embedded optimization approach. Section 2.6.1 provides the results of
our search for a robust tour structure and section 2.6.2 contains the fleet size analysis within an
operationally representative scenario. Section 2.7 concludes our research with recommendations
for further study. The appendices contain the original MODSIM code developed during the

research and an extended literature review.

Chapter 2

2.1. Introduction

Assad (1988) claims vehicle routing as one of the great success stories of operations
research (OR), referring to the particular success this area has enjoyed from the implementation
of academic advances. Although Hall and Partyka (1997) indicate the advances have not slowed,
much work remains in military applications (Sisson 1997). Glover and Laguna (1997) further
emphasize the reactive tabu search (RTS) as a neglected area within the broader study of tabu
search (TS), one of the more recent and most effective techniques applied to the vehicle routing
problem (VRP) (Laporte 1992, Rego 1996).
| This research continues investigations begun by Carlton (1995) and Sisson (1997) into
the effectiveness of RTS on a close relative of the VRP, the multiple traveling salesman problem
with time window constraints (mTSPTW). Specifically, unmanned aerial vehicle (UAV)
applications test our implementations of RTS. The advantages of object-oriented programming
are added to these earlier works, forming a structure for extensive exploration of problems within
the general vehicle routing problem (GVRP) family.

As our main contribution to GVRP research, we identify routes that are persistent
throughout a simulation’s state space. We propose a formal definition and implementation of
embedded optimization as the mechanism that expands the use of optimization methods to
routing problems such as the UAV application. UAV problems differ from those traditionally
found in the GVRP literature because they include stochastic inputs; for example, random winds

(magnitude and direction) and service times are fundamental to all our scenarios. Although these

scenarios are tailored to a UAV environment, the embedded optimization approach we

implement applies to any stochastic VRP.

2.2. The UAV Problem Formulation

Our fundamental idea is to apply Carlton’s RTS (1995) within a Monte-Carlo simulation
of notional scenarios in order to identify routes robust, or persistent, to parameter variation. The
first set of scenarios is considered operationally representative by the U.S. Air Force UAV
Battlelab (Bergdahl 1997) and contains stochastic wind speed and direction and service times (a
service time represents the time a UAV must loiter over a target). The objective function seeks a
hierarchical objective of the minimum number of vehicles needed to achieve a minimum tour
completion time. Sisson (1997) provides a second set of scenarios as a futuristic look at the
routing of UAVs through a threat environment. The objective function for this second set of
scenarios seeks the maximum expected target coverage. If alternate optima exist that differ in
the number of vehicles required, the solution using the lesser amount is chosen.

At the core of our UAV problem formulation is a mTSPTW. Carlton's (1995) RTS seeks
"near optimal" solutions to a mTSPTW with nc customers, indexed by i or j, each requiring a
service time s; at location i. The starting depot is designated 0; the terminal depot by nc (see
Lenstra 1985). With nv vehicles available, if no feasible solutions are found after a reaéonablc
search we increase nv and restart the search.

The time window for each customer i’s pick up is (e;, [;), where e; is the earliest possible
arrival and /; is the latest. The early arrival time is treated as a “soft” constraint in that vehicles
arriving before e; may wait until e; is reached. W; is the wait time at customer i. The parameter

t,is the travel time from customer i to customer j. The binary decision variable X*;; equals 1 if

vehicle v travels on the arc between customers i and j; otherwise it is 0. Tour schedule variables
A; and T; indicate the time a vehicle arrives at customer i and the time service starts at customer
i, respectively. The time windows, times between nodes, and service times are constrained to be

integer. The formulation (Carlton 1995, Sisson 1997) seeks a minimum travel time of the tour:

nc nc nyv v
MINZt=Z 2 ZX i,j'ti,j
i=1 j=1v=1

Subject To:
2 X' =1 Vj=1l.nc {One vehicle entering per customer }
i=0 v=1 b
2 X ;= 1 V i=0.nc {One vehicle leaving per customer}
j=1 v=1 b
nc
$XVii=0 Vv=1.nv {Cycling prevented}
i=0

{Same vehicle entering a node must exit; routes cannot terminate at target nodes}

nc nc
z Xvi,j= > ij,k Vj=lnc,Vv=1l.nv
=0

i=0
k#i

X'j=1= T +s+1,,=T, {Time precedence}

e, <T; < Vi=1l.nc {Time windows }

W; =T, — A Vi=l.nc {Waiting times}

The subtour breaking constraints are not shown, but are included in our model.
The UAV problem further adds vehicle-related route length constraints and alters the

objective function. Given a the maximum time a vehicle can be used, T", the route length

constraints are defined by

nc nc nc nc nc nc
Y YXVjos+ X XXV W+ X XYt STV Vyv=1.nv
i=1j=1 i=1j=1 i=0 j=0

When incorporating the probability of survival for each target, one proposed UAV
objective function seeks to maximize expected target coverage (Sisson 1997). Coverage is

defined as the number of targets that will be visited; therefore, the expected coverage of any

single target equals the probability of surviving that target. Notationally, for target node n}, the

i™ target node visited in the route of vehicle v, the expected coverage is givén by

n

I1 Ps(i)

i=a’

where a’ is the starting node of vehicle v's tour, and Ps(i) is the probability of survival at target
node i. For instance, assuming a UAV travels from target 1 to 2 to 3, and Ps(1) = 0.9, Ps(2) =
0.8, and Ps(3) = 0.7. Target 1's coverage is 0.9, Target 2's is 0.9%0.8=0.72, and Target 3's is
0.90*0.80*0.70=0.50.

The expected coverage of the route of vehicle v is given by the sum of the coverages of

the nodes along the route, or

v y
b n;

> TIPsG)

n! =a’ i=a”
where b is the ending node of vehicle v's tour and @’ < n} < b’. Thus, for the three node example
above, the expected coverage is 0.90 + 0.72 + 0.50 = 2.12.
The UAYV scenario also complicates the calculation of distances and time between points.

Given target locations expressed in latitude and longitude, the angular difference (D) in radians

between locations X (Xiat, Xiong) and y (Vias, Yiong) 18 estimated using the relationship

D=cos™! [sin(x;,;) - sin(y;a,‘)+ cos(xp,;) - cOS(Yigs) - cos(abs(ylong ~ Xlong Ml
and converted into nautical miles by equating one radian to 57.2958 degrees and one degree to 60
nautical miles (Lindholm 1982). To account for the influence of a wind vector, the Law of
Cosines must be used in the travel time calculations and requires we know ¢, the angle between
the heading (6,) and the direction from wﬁich the wind originates (6,,) where
¢=06,- 0y.

Traveling from x to y, the heading is given by

_eo=1, et = iar
Bxy =sin" (5) (Yiong = *tong 2 0)
' . —1,Yiat —Xlar
exy =180° -sin —a—D—g—) (}’long ~ Xlong < 0).

Since UAYV operators receive the wind's heading as a compass direction, we convert the wind's
given compass heading &,, to the Cartesian coordinate system of 6, using
6, = (360 - €,,) + 90°.
The ground speed GS is estimated as
GS2 = AS? +WS? —2- AS - WS - cos(¢)
where AS is the UAV airspeed and WS is the magnitude of the wind vector or wind speed.
Finally, the division of D by GS, where D and GS are specified in the same units of distance,

yields the time to travel from x to y (Klaf 1946).

2.3. The General Vehicle Routing Problem

Carlton’s (1995) survey of proposed classification schemes of problems within the GVRP
class leads him to conclude no prior system exploits the relationships among the problems of the
GVRP family. Thus, he proposes a hierarchical taxonomy that classifies GVRP types into three

7

“floors” (see Figure 1), where the first floor represents the family of TSP problems. With the
addition of vehicle capacity constraints, one transitions to the second floor of VRP problem:s,

while precedence constraints define the third floor of pickup and delivery problems (PDP).

Figure 1. GVRP hierarchical classification scheme (Carlton 1995).

Each floor includes the following cases and their possible combinations:
1. SV: Single vehicle.
2. MVH: Multiple homogenous vehicles.
3. MVH: Multiple non-homogenous vehicles.
4. SD: Single depot.
5. MD: Multiple depots.
6. TW: Time window constraints present.
7. RL: Route length constraints present.
In reference to problems on the first (TSP) floor alone, three works considered

fundamental to the study of the GVRP acknowledge the failure of exact algorithms such as

branch-and-bound and dynamic programming to efficiently solve large instances. In addition to
their remarks on problem complexity, Garfinkel (1985) steps through a transformation of the
multiple salesman TSP (mTSP) to the TSP, while Christofides (1985) moves beyond
optimization algorithms to discuss heuristics. Nemhauser and Wolsey (1995) provide a
motivational example with visual steps to the optimal solution.

The literature identifies TS as a powerful heuristic for the GVRP. Laporte (1992b)
surveys the exact and heuristic algorithms for the VRP, giving the highest marks to TS. Potvin,
Kervahut, Garcia, and Rousseau (1996) compare the performance of their TS heuristic to that of
five other documented heuristics upon the well-known Solomon datasets. Their TS employs a
tabu list of fixed length and infeasible regions were not accessible to the search, yet the quality of
solutions reached by their version of TS outperforms the other heuristics considered except a
genetic sectoring algorithm called GIDEON (Thangiah 1993). Itis in this context that we are
motivated in applying TS to solving UAV routing problems.

Glover (1990a) provides guidelines in building a TS heuristic. In his fifth
guideline, Glover strongly emphasizes using empirical results to improve move evaluations. His
sixth guideline suggests the use of a frequency-derived (the frequency of revisited solutions)
penalty to encourage diversification. With their reactive tabu search (RTS), Battiti and
Tecchiolli (1994) extend Glover’s sixth guideline by showing RTS to be a far more robust
procedure than fixed and strict tabu search heuristics.

Battiti (1996) demonstrates how RTS effectively overcomes the drawbacks of
computationally expensive parameter tuning and defeats the confinement of the search to local
optima so common to fixed or strict implementations of tabu search. As a counter-example,

Rochat and Taillard (1995) rely heavily on randomization to overcome these weaknesses by

generating a set of “good” simple TS solutions and then improving this set through a method
reminiscent of genetic algorithms.

Carlton (1995) demonstrates how RTS obviates the need for any pre-processing of the
sort required for Glover’s target analysis. He also shows the randomization techniques proposed
by Rochat and Taillard are unnecessary. The de-emphasis of randomization is a central tenet of
tabu search (Glover 1993, 1997); and, although it requires greater computational effort, Carlton’s
wholly deterministic RTS implementation with an arbitrarily chosen initial solution consistently
finds solutions of equal quality to those reached from feasible starting tours. By comparing his
results to heuristics similar to the group compiled by Kervahut, Garcia, and Rousseau (1996),
Carlton concludes the RTS dominates the others in solution quality and run time, including
GIDEON (Thangiah 1993).

While the description of VRP’s by Hall and Partyka (1997) captures most commercial
applications, it falls short of military scenarios since it does not include the inherent variability of
the operati;)nal environment’s parameters in areas such as weather and vehicle survivability.
Sisson (1997) investigates a military application, by applying Carlton’s RTS to a unique
mTSPTW formulation that incorporates the probabilities of vehicle attrition due to hostile forces
into the objective function.

Jaillet and Odoni (1988) demonstrate the added complexity of a probabilistic TSP (PTSP)
over the TSP. For even a simple heuristic like the nearest-neighbor, they find the computational
effort increases by O(nz) over the deterministic TSP. Furthermore, their formulation of the PTSP
is simple in comparison to the UAV problem since they only consider the probability that

customers are not present. Jaillet and Odoni seek “well-behaved” or robust routes, but their

10

stochastic programming methods are bound to smaller numbers of customers by the necessary

computational effort.

2.4. Methodology

As demonstrated by Kassou and Pecuchet (1994), object-oriented programming
languages facilitate the inheritance and reuse of existing object definitions and methods. Our
research makes full use of this approach by using CACI’s object-oriented language MODSIM
(CACI 1996a, 1996b; Marti 1997). In MODSIM, an object contains its own fields and routines
(methods). While the contents of an object’s fields can only be modified by its own methods, it
can share those values with any other part of the program. Through inheritance, new object types
arise from existing types by inheriting the fields and objects of the existing type. New objects
can then redefine (or override) the inherited methods to behave differently, as well as add
original fields and methods. For example, MODSIM library contains paired "definition" and
"implementation" modules. The definition module contains the type declarations, while the
implementation module contains the performing code. While a "main" module is similar to an
implementation module in that it also contains executable code, it is used primarily to draw from
existing libraries and is necessary for compilation into an executable file.

This research employs Carlton’s taxonomy as the framework for applying the concept of
inheritance between MODSIM optimization objects. Specifically, MODSIM objects
accompanying this thesis correspond to the mTSPTW and the UAV version of the mTSPTW. As
depicted in Figure 2, the transitions between provide an inheritance framework for building
specialized RTS objects from the existing mTSPTW object. This structure allows us to quickly

create customized heuristic-based objects for problems within the GVRP class.

11

PDP
3d Floor

PRECEDENCE

/

VRP
2d Floor

f

CAPACITY

SV,SD

RL, TW

LEVEL: (0) (D)

ROUTE LENGTH CONSTRAINED

——————— >
v
\
v
!
I\
P
A
\ \
V :
. : MVH, MD
RLTW S
"\ : TSP
L N MvH, sD 7 RL, TW
TSP '
© |RLTW '

®

Figure 2. Traveling salesman problem hierarchy; GVRP first floor (Carlton 1995).

(Label format: Single (SV) or multiple (MVH) vehicles, single (SD) or multiple (MD) depots, traveling
salesman problem (TSP), route length (RL) constrained, and time window (TW) constrained.)

Though possible in previous programming forms, the code encapsulation enforced and

encouraged by MODSIM is useful in studying the GVRP. For instance, Carlton (1995)

compared the results of different objective functions for the VRPTW. Strict encapsulation of

code allows different objective functions to be efficiently introduced to the RTS object.

We created our RTS solver for the mTSPTW by translating Carlton’s (1995) C language

code into a set of MODSIM libraries and objects. These objects provide a “core” solver for the

mTSP and mTSPTW instances of the GVRP family. With very minor adjustments, VRPTW

instances can be solved as well. Testing the solver first on mTSP problems and then on

mTSPTW problems verified the methods in the MODSIM objects. We note that altering the

12

object slightly for the mTSP case by removing time window calculations would speed iteration
times, but is not necessary for verification purposes.

Using the notation presented earlier and a presentation order like that in Figure 2, the
RTS object can solve the TSP (SV, SD TSP --, --) and the mTSP (MVH, SD TSP, --, --) by
reading in time window widths far exceeding the tour length of any feasible solution and setting
every node’s load qqantity to zero. After stepping line-by-line through the translated code with a
4-city problem to ensure accuracy, we further verified the heuristic's capabilities with the TSP by
comparing the résults of our runs of a 10-city TSP (Moore 1997) of known optimal solution and

a problem from Reinelts” TSPLIB (1991).

200
1400 T
T 180
Iteration Tour Liength
1200 1 “ 4 160
T 140
1000 T
.."=_, g T 120 E
o i [=)]
c 800 ! 5
3 ! 100 1
S =
=
(<] Best Solution ﬁ
| 600 T T 80 [o
o 60
400 T
140
200 T
Tabu Length + 20

< -~ © 10

Q v N O M O M~ N O
- -~ 00 NN O ™ © ©

706
753
800
847
894
941
988

Iteration

Figure 3. Ohio 10-City problem.

13

The peaks and valleys of the tabu length illustrate the ability of RTS to alternate from strategies
of diversification to intensification, causing variation in the tour length. The optimal solution is
found on iteration 288.

With any run of the RTS object, the analyst must decide the parameter settings

beforehand. The parameters we consider are as follows:

1. PEN,, is a multiplicative factor that weights the total time window infeasibility of all
nodes, targets and vehicles. Because our formulation allows vehicles to wait, the
early time window is considered soft; therefore, arriving early to create a wait time
does not contribute to time window infeasibility. Only when we exceed the late time
window do we consider the solution time window infeasible. If PEN,, = 1.0, the
weight on time window infeasibility is equal to all other portions of the tour.

2. DEPTH of search is the range of insertion moves considered for each node at each
iteration. In all cases we use

DEPTH = nc +nv - 2.
The RTS logic avoids evaluating nonsensical moves regardless of the DEPTH chosen.

3. Tabu_length is the initial number of iterations a move attribute remains tabu. In all
cases we use initialize Tabu_length to be

Tabu_length = min(30, nc+nv-2).

4. INCREASE is the multiplicative factor used to increase the Tabu_length if a solution

is revisited within the designated Cycle_length. In all cases we use

INCREASE = 1.2.

14

5. DECREASE is the multiplicative factor used to decrease the Tabu_length if the steps
since the last change to the Tabu_length exceed the moving average of Cycle_length.
In all cases we use
DECREASE =0.9.
6. Cycle_length is the minimum number of iterations between visitations to a solution
that will not result in a Tabu_length increase. In all cases, we use
Cycle_length = 50.
7. MINTL is the minimum to which Tabu_length can be decreased. In all cases, we use
MINTL =5.
8. MAXTL is the maximum value to which Tabu_length can be increased. In all cases,
we use
MAXTL = 2000.
We will adjust the value of PEN;, for the UAV problem.
Not only can the code find solutions to the TSP, it can also find solutions for the TSPTW
(SV, SD TSP --, TW) and the mTSPTW (MVH, SD TSP, --, TW). Carlton’s work (1995) with
Solomon’s (1987) benchmark VRPTW datasets ignores the vehicle capacity and customer loads, -
thus providing the means to validate the performance of our RTS object within the TSPTW class

(Table 1). Like Carlton, the PEN,, weight is set to 1.0.

15

Table 1. TSPTW results.

Problem # Vehicles Iteration Best Time Best
Name Solution Used Solution Found Solution Found
(5 vehicles available, 1000 iterations performed)
C101 2441.3 3 23 5 secs
C102 2440.3 3 153 42
C103 2436.9 3 77 25
C104 2441.3 3 611 237
C105 2441.3 3 195 51
C106 2441.3 3 26 5
C107 2441.3 3 28 6
C108 2441.3 3 489 138
C109 2441.3 3 190 58
(10 vehicles available, 1000 iterations performed)
R101 867.1 8 144 36
R102 797.1 7 34 9
R103 704.6 5 135 47
R104 666.9 4 85 33
R105 780.5 6 94 25
R106* 721.1 5 31 9
R107#* 674.3 4 871 343
R108 647.3 4 58 23
R109 691.3 5 32 9
(10 vehicles available, 1000 iterations performed)
RC101 711.1 4 341 87
RC102 601.7 3 20 6
RC103 583.0 3 226 78
RC104** 556.6 3 466 180
RC105 661.2 4 145 38
RC106 595.5 3 144 40
RC107 548.8 3 27 9
RC108 544.5 3 675 284

*Carlton found a better solution (715.4) on his 1209th iteration.
**Qptimal solution found. Carlton did not find the optimal for these instances.

As expected, the iterations required to find solutions of a quality equal to those found by Carlton

do not differ significantly from Carlton's results; what little differences that do exist are

attributable to minute interference. However, the processing time required represents an order of
magnitude increase over those resulting from the execution of Carlton's C code, despite the use
of comparable systems. This comparison was made after running the original C code on an IBM

compatible 486 with the original Pentium processor and running the MODSIM code on a Sun

16

Ultra 1. This increase appears to result from the simplistic form of C into which the MODSIM

compiler translates the MODSIM code.

2.5. Implementation

2.5.1 Object Oriented Programming

Table 2 depicts the MODSIM structure of libraries and objects designed to solve
mTSPTW problems. The pseudocode corresponds to the OBJECT, METHOD, and
PROCEDURE columns in a hierarchical fashion similar to a path name. The heading ("main"
indicates the implementation code can be found in the main module. In all cases, one follows the
path to find the physical location of the code in the right-most nonblank space. If the code is not
in main, the library listed refers to the library in which the right-most nonblank identifier lies.
Darkv gray spaces indicate that depth in the hierarchy is unneeded to specify the location.

The libraries provide a general framework for categorizing code into areas of similarity.
Here, “tabuMod” contains code for use in GVRP-related tabu heuristics. The modules of
“tsptwMod” contain code tailored for the mTSPTW problem, and “hashMod” holds the code for
the creation and use of the hashing structure. As noted by Carlton (1995), many different
objective functions can be used for GVRP problems, so “bestSolnMod” separates the code

determining the best solution visited.

17

81

"M 8A0Qe Ajue 1SE| 8U] 0] [Bonuspl

S| 80UBJBal BU) SO1EDIPUI , PUB UOIIED0| 8yl Ajoads 0] pepesuun s >r_2mm_c sy} ul yidep s,90eds Jey) sresipul seoeds Aeib yieq
"a|NpowW UlewW 8y} Ui punoj 8q ueo apod uoiejusws|dwl syl seesipuy (urew), Buipesy ayy ~sweu yied jeiyolelsly e 931 Suwnjod
IHNAID0OHd PUB ‘QOHLIN ‘LOArg0O euyi peal ueos suo ‘pendexa s eposopnasd sy} jo uoluod e alsym pulj 0] suondallq

3140 pEOIM] POWNQE]L Jreseersrersresessemsmmmsmssseme s s s]nsel “_.DQ“_.DO v
yoreas PONMIAS] froorrreremerere e L+Y =) UCJOO uonela) eseslou])
111segmi " R POuUlOSISaq [rerer e Alljgisesy jo ssa|plebal 1500 N0} 1sajews ay}
UHM Ino} &Y} pue punoj uonN|os a|qises) 1saq ay} urelay (¢
ZMAHINO} . . popngel feesesacaasariaraneasessattaerranaenaaan “:an[eA @C_Swmc 1IN0} aquinou| AN
payosINo) . . PONNQR] | rrererermeeme e 8|NPay9s 1IN0} Juaquinou| :.
: :sioyowered yoless ay) ayepdn 8
uesul yoless fgongejoeas| popwngey | yibusj nqel syl aonpal pue ‘en(eA aAouUl }S9|[BWS 8y} YHM
Joqybiau ay) 0] srow ‘nge} ale SINO} j[e §| "BUSIUO UoISIoap
eleudoidde ue o3 Buipioooe Joqubileu ngej-uou ay) 0} SAON °p
" . . N R Z2- => p ‘uol g = 1.0} (p‘l)] :suollasul Ja|lles, |je ajenfeA] o
lljeaanow " . popngel - rereyoluesuUl siyl Bupjew Jo anfea eyl ajenofen (2
susddwod " " popnger [uolpesul ue yim pajeroosse saljjeusd sy a1enofe) (1
spoNdems yoreas [qongejoeas] popwnagey [L=< p ‘L-u 0} | =140} (p‘1)] SuoIuSsuUl J91e|, Wioped *q
m_0>OOC . . ponnge;m_DMO__n_QN H ;.:.O_._m_ nge) sy}
asea109p pue ‘ainjonils Buiysey ayy o} ppe ‘punoy iou §| (2
®_0>O . . ponngey fre seesessacanesastaseisntetanannnnnanss Q_QMO__QQ.N T ._.t.mcm_ nge; ay}
8SEaIoU| pue ‘puNnoy usym uonelall ey} ayepdn ‘punoy § (1
Iopjoo] " " popysey [ttt ainjonys Bulysey syi ul 1noj JusquINdUl 8y} 1o} 3007 ‘B
_._OL.N¢W _.DODQN..—.O.Nm_ ﬂOEEQW# sseesesssssrecrassacesaasasenennennesAm‘_mn_._c => v_v ®__£>> .ﬂ
1 LIsegm}) . POINUIOSISEQ [reerreereemsssemmesssnessscensseescinnaee UOIIN|OS IS8 [eNIUI Se SAES "0
ZMAHJINO} " " ponngey [ttt = (1L)AYY pue (1)) :senjea Buiysey feniul syl sindwo) *p
C®n->>~Qw“_. . . POAINGEY Jroveerememmmememmeeeeeeees 1509 1IN0} [eiul ®~3QEOO _ww_u_mcwa UBAIL) "0
mcmn_QEOO 1s89guUaduEls . popngey e Chsesesiesiireaantitierrntarananaas mm_u_mr_wa 1no} femiul ®~3QEOO ‘q
payo2sINo} . . pownger fo ceerenansannns Ceseraaisiastsnsetntrrrennrensenaes s|npayos [emul muSQEOO)
LDO._ntmu.w ‘_DOI_.tMuw UO_)_\SH.QWU_. tessscesusesstssstsncestnassasecrareannennns _DOH @C_t.m.._.w Qr_ﬁ wom_mm .N
X u.m—\/_mr_.:w _hu..m_\I_QE_u— UOS—EQW# taeussssesesniretisrrrrersantnananas X_:ME QOCGHM_U\OE:. meQEOO .ﬂ
(urew) *'S19}JU = SUOljela}l JO Jaquinp ‘e
uojueDpEa) Xuleawil popnmidst | - rgoueisul wisjqold induy tL
AC_MEV w‘_wwmgm‘_ma .w_Ou0®> .mm‘_zwoqﬂuw :9zifenu| 0
34NA300dd JOH.13IN 193rdo 3OHNOS 9pod0opnasd Yyoleas hgel aAdesy MidS.Lw

(eInpow urew wispow) midsiy

‘A LJSLW ‘wreaSerp s[npowt urejy ° d[qe.L

Tailoring the mTSPTW code for the UAV problem is simple. The light gray boxes in
Table 3 illustrate the changes necessary to include random winds and service times into the
problem. A distance matrix is calculated before the time matrix, and the time matrix calculation
also differs.

Table 4 depicts the MODSIM code and RTS pseudocode when threats are included and
we seek to maximize coverage. Since the UAV object is essentially a mTSPTW object with an
altered objective function, we take advantage of the inheritance and polymorphism qualities of
MODSIM by substituting only those portions of our mTSPTW associated with the move
evaluation. Except for the lightly grayed-in areas, Table 4 is identical to the mTSPTW code in

Table 2.

19

0¢

‘uoieINWLIO) M1dSL1W reuibuo sy woly siayip 1eyl epod Ajuepl seoeds Aeib ubi 1 eAoge Aljus ise| ayi 0} [ednuap!

S| @dualajel ey} sejedlpul , pue uoneoo] ay) Ajloads o) pepasuun si Ayolesyy ayi Ul Yidep s,aoeds jeuy ajeoipul seoeds Aelb seq

a|npow ujew 8y} Ul puno} ag ued apod uofeluswaldwi ay) seledipul
JHNAID0OHd PUB ‘AOHLIN ‘LOArgO 8y} peas ued suo ‘pajnoexe s| epooopnasd ey *o uoluod e aseym pulj o

ll1isegmi

ZMAHINO}
peyosINo}

uesul

lileasnaow

suaddwod

apoNndems
ajohoou

8JoAo

10pj00|

llisegmi
ZMAHINOY
uagmids)
suagdwoo
peyosIno]

3HNA300Hd

yoleas

yoress

yoress

yoless

JOH.13IN

{gongeoeal

[qgongeoeal

[aonge oeat

103rgo

popmidsy
pomids)
ponmids)

PoiNngel}
Ponngel}

pomidsy

ponge)
poNge)
pPONNQE)
ponge)

PONINGE)

PONYysey
pomids}
poujosiIseq

pPonge;
pongel
poiNnge}
ponnge;}
popmids)

(urew)
popmidsy
(urew)

(ainpow urew wiSpow) AVNIW
"SPUIM IIM M T JSLW ‘wreaderp sfnpour ulejy ¢ d[qe],

............ wu_ﬂmm‘_ H.JQ«DO
............ s |y - 4 UNOD UOIRISY OSBBIOU|
samreressnessanenaee Ajqises} jo ssajpiebal 109 Ino} Jsajews ay}
UM INO} 28U} PUB PUNOJ UOHNIOS B|qISEd) 1S8q By} uleldYy (€
........... IR ER LSRN 11 Y mc_r_w.mc 1no} Jusquunou| AN
“9npayos Jnoj Juequinauj (|
:slejeweled yosess ayy eyepdn @
yibus| nge} 8y} 9onpal pue ‘enfeA SAOW IS9|[BWS aU} Ulm
JoqyBiau 8y} 0] 8AOW ‘Nge) 1. SINO} |8 §| eSO UOISIo8p
e1eudoidde ue o} Buipioooe soqyblau ngej-uou ayl o} 2AON P
...... m- =>p ‘U o} g =140} (p‘)] :suolussu| J8iies, {|e elenjeA] ‘o
............ “uojesul siyl Bupiew jo anjea ayi ajenofe) (2
............ uoluesul ue yym pajeloosse satjjeuad ay} sienoed (L
[t =< p ff-U 0} | = 10§ (p1)] suotuasul J8le], wiolad *q
....... Q_DMO__QQN I .CH—OCQ_ nqge; ey}
asealoop pue ‘ainjoniis Buiysey ay} 0} ppe ‘punoy jou §j (2
................................. m_QNO__QQN I _.Z.OCQ_ nge) ay;
asealou| pue v::o_ usym uoleiall ay} ayepdn ‘punoy 4| (1
................ ainjongjs Buysey sy} ul INo} JUaqINOUl Y} 10§ 4007 "B
................................... Am_®~_c = v_v 3lIUM
..................... resssessss s ONN |08 1500 [BIHUL SE OARS 9
e)AYE pue (1)) isenfea Bugysey fentul ayy eindwod p
.............. seseseeee09 INO) [RINUL ®~3QEOO .mw_u._mcma USAID "2
............................. mm_:NCQQ 1noj |enus QU—JQEOO q
s g INGEUAG [RINU mw_...QEOO %)
............ Setaeesaseesei s I G @C_tmwm ®F=. uow_ww
........................... seeesgnUIM YIM XJBW W 8} quQEOO)
........................... seseresssey IBU QOURBISIP PUIM OU, muJQEOO q
cereeesereeeeeaans rereereeeeenans g 1o = SUOKRISY JO JOQUINN "B

................................m._mmeNhNQ .WLO~0®> .wmhﬂunv:‘;w HQN__NZC_

Jurew), Bupeay sy -swkeu yied fejyoielaiy e aji| sULN|C
:suonoalg

‘G

L4

€

seeeeeegougsul wejgosd indul (L

0

apooopnasd S1Y (pepn|ouj SPUIM) MLdSLw

1T

‘uolie|nuLIo) M1dSLW [eulblo ay) woly s1alIp Tey) apod Auspl seoeds Aelb ubi] ")l eAoge Aljus jse| ayj o} [eoluap]

S1 90UBIS}al BU} SBJEJIDUI , PUB UOIEJ0| By AJ1oeds o] pepesuun si Ayosesiy sy} ul yidep s,eoeds jey) eedipu; seoeds Aelb yieg
"9iNPOW UleW 8y} Uf punoj aq uea apod uolejuswa|dwi sy} sejeoipul (urew), Buipesy sy -sweu yied [BlyoieIslY € 8l SUWNjod

3HNA3IO0Hd PUB ‘OHLIN ‘1O3rg0 Syl peal ued auo

11isegmi

ZMAHINO}
payosIno}

uasul

suaddwoo

apoNdems
ajohoou
ajoho

10pj00|

Llisegmi

ZMAHINO}
uagmids]

suagdwoo

payosIno}

34NA300Hd

QOHL3N

103rgo

pOjNUIOSISaq

POWNQE]}
PONGe}

ponqe}

PONNGE}

PONGE)

POYsey

ik
PONuUlOSISeq
PONge}
PONge]
POANgE)
PONQE]

popmids)

(enpow urew wispo) AVAW

‘penoexa s| apooopnasd ay) Jo uoiuod e aieym pulj 0] Suoloalg
... w::wm_ u—.—Qﬁ:o -m
s |y 2y 10N00 UOYBION SSEBIOU] 3

...................... Aljqisesy Jo ssejpiebay 100 INO) 1S9|jewWs oy}

yam 52 8y} pue puno} uonn|os a|qisesy 1seq ay} ueey (g

.................. PP-..-............m—.:m> m:——v_mm: LSOH wCQQE:U—.—_ AN

... w:der_om ._:Oﬂ ﬁcmDE:OC_ A—.

:slojoweled yoleas oy} ajepdn @
-+++yibue} ngey ey} 9onpas pue ‘enjeA SAOW 1S8||BWS 8Y} UIm
Joqybieu ay) 0} 8A0W ‘Nge} Ble SINO} j[B §| "BUSIUO UOISIOap
ejeundoidde ue o} Buipiodoe Joqybiau ngej-uou sy 0} SAON P

..... 2-=>p ‘U0l g =1.Joj (p'l)| :suoluesul Jsies, |[e sjenjeAl ‘o
....................... Co_tmwc_ W_r_w OC_V_ME h.o ®3_0> m—.: Gwm_so_mo AN
.......... uolesul ue ypm pereloosse seljfeuad sy ejenojen (1
et =< p fp-u 0} | o= 1oy (p)) isuoiesul ey, Wioyed °q
“esuessssesstantacsseantenatetrasrrurrasny ...m—ﬂmo_—aam h_ n—._w@cm_ 33@# ®£ﬂ
aseealoap pue ‘@inonils Bujysey ay) o1 ppe ‘punoj jou §i (2
“esssrssessscascenasiatattssenuans tessessrenvas Q_DNO__QQN h._ .r_u.mcm_ Dﬂm# ¢r=
9SE8.0U| puB ‘puno} usym uoljessyl sy ajepdn ‘punoy i (1
....... - "aunjondls Bulysey ey} ul INoj uaquINoul 8y) 10} 00T B
....... ...Amhmu_c => v_v w—_£>> ...q
................. e yONNIOS 158G [ENIUL SB OARS "
................. (L)Aus pue (1)4 :senjea Buiysey [eniul ey} eindwo) °p
................................ uwoo .__JOH. _m:._c_ mﬂ:QEOO .ww_:mcwa Cm>_0)
.. wm_ﬁ_mcma hJOM _m_H_C_ ww:QEoo -a
............ ...m_svmcow _m;_c_ QH:QEOO ‘e
... .__‘._Ow mc_tmuw msu u0®_¢m -n
..WUC_>> £~_>> X_LﬂmE QE; mﬁw QwDQEOO 7
........X_‘_wME mc:mww—v .UC_>> OC. musano -Q
.. “S18)|U = SUOEIBY 4O JequINN "8
............. ...UQUCM~WC_ EQ_DOLQ wJQC_ -F
..................................... m‘—mﬂmEm‘hma »Wh0ﬂ0®> umwx—sﬁo:\—ﬁm nmN_—m_ﬂC— -o

8poo0pnasd Yoleas nqel sAoEaY AVN

*AV] ‘WeISerp sppow ure p e,

2.5.2 Embedded Optimization

Using the “portable” quality of our UAV object, we embed the UAV object in a Monte-
Carlo simulation that seeks to model the inherent variability of the operational environment’s
parameters. Here, the simulation model introduces random variation in wind magnitude and
direction, survival and service times. From the simulation, we identify routes and UAV fleet
sizes that persist throughout the simulation space. We present this format as an example of

embedded optimization, and in this context we offer the following formal definition:

Embedded optimization occurs whenever a recognized optimization or
heuristic procedure is an event within a simulation that directly affects the state

of the system.

At its most generalized application, our definition of embedded optimization can
encompass any optimization algorithm within a discrete-event simulation. However, for this
paper we restrict our focus to optimization of the GVRP. The universal utility of this approach is
suggested by Hall and Partyka’s (1997) survey of industrial applications of VRP and their
observation that GVRP involves interdependent problems. For example, given stochastic inputs
to a Hall and Partyka problem, a separate optimization routine for both the TSPTW and crew
scheduling subproblems can be inserted within a simulation considering multiple combinations
of the random inputs.

Despite the wealth of real-world application, examples of embedded optimization in the

22

literature are rare (Hall 1997). Kassou and Pecuchet (1994) apply embedded optimization to job
shop scheduling, where their object-oriented programming application uses a sophisticated
optimization framework with an extensive user interface. Using the optimization routines within
a simulation to provide possible scheduling scenarios, the authors arrive at “guided rules” for
choosing one of the three optimization techniques available and how to guide the search. Kassou
and Pecuchet (1994) introduce a feedback loop between the optimization search and the
simulation processes, but the nature of the information shared is ambiguously defined and the
user must maintain interface in the loop (even to the point of being the “Generator of rules”).

Brown and Graves (1981) furnish an example that does not adhere to our definition of
embedded optimization, when they use optimization routines to replace time-consuming manual
operations for the routing decisions of a nation-wide fleet of petroleum tank trucks. Whereas
Brown and Graves refer to their structure as “embedded optimization,” their work better
exemplifies an application of optimization routines where none were used previously, and not the
embedding of optimization routines as an event within a simulation. Conversely, Glover, Laguna,
and Kelly (1996) provide a good example of embedded optimization in a simulation that calls
upon Glover’s scatter search (1977) and tabu search heuristics to find near-optimal solutions.
The simulation can be optimized by a neural-net “accelerator.”

It should be stated that embedded optimization is not a method of simulation
optimization. As defined by Carson and Maria (1997), simulation optimization seeks the best
input variable values among all possibilities without explicitly evaluating each input combination
or choice. Embedded optimization seeks to improve analysis capabilities beyond those supplied

by most current software (Hall and Partyka 1997), because the analyst can move beyond the

23

constraint of user-defined “what-if” situations to find robust answers. In our immediate
application, we find routes robust to the variation of wind and threat inputs that lie outside the
UAV operator’s control, and therefore do not lend themselves to simulation optimization.

Glover (1977) introduces the concept of “strongly determined” and “consistent”
variables, a distinction based on a continuum, not categorical, scale. His discussion focuses on
the use of these concepts in the creation of integer programming heuristics. Our definition of
robust is synonymous with his use of the term consistent; both are defined by the frequency of
solution attributes that appear in a list of good quality solutions.

We make use of these concepts within a heuristic framework that seeks consistent
answers to the UAV version of the mTSPTW. Using constructs similar to Schruben’s (1993)
event diagrams, Figure 4 illustrates our embedded optimization method for solving the UAV
formulation. (Circles represent events, or state transitions, of the simulation, while arcs
correspond to the scheduling of other events.)

Our simulation consists of two distinct phases: initialization and evaluation. In both
phases, each replication of the simulation represents a 24-hour scenario whose random
components (wind, survival probabilities, and service times) remain constant throughout that
period (as drawn from their respective probability distribution functions). The purpose of the
initialization phase is to find an initial pattern of routes that ére robust. The evaluation phase

determines the expected gain in performance of the RTS from the input of a robust solution.

24

State Variables:

d = Scenario, or day, counter.

w = Array of wind parameters: magnitude &direction.
s = Array of service times.

t = Array of threats, or probabilities of survival.

tour =Array of the current tour.

Initialization Evaluation

Dinit = # days in phase Deval = # days in phase

Tour

Chosen

_ Reactive

Tabu

Search
d < Deval

Reactive
Tabu
Search

d=d+1
tour[d] = Robust Tour
w[d], s[d], & t[d]

tour[d] = Best tour found

d=d+ 1 (Day advances)

tour[d] = tour[d-1] (Search begins from previous day)
w[d], s[d], & t[d] (New scenario generated)

tour[d] = Best tour found (Search complete)

Figure 4. UAV Embedded Optimization Model.

The initialization phase of the simulation begins from an arbitrary solution. During this
phase, when the TS for a scenario ends (i.e., the specified number of iterations are complete),
new realizations of the random variables are generated for the next scenario. The TS then begins
from the best solution of the just-completed scenario; in this manner the previous day’s solution
serves as a naive forecast of the next day’s solution. When the search completes the last scenario
of the initialization period, the frequencies of routes used in the feasible solutions are summed in
a route frequency matrix. The feasible solution whose routes are most persistent (i.e., those

whose sum of route frequencies is the greatest) is termed the “Robust Tour.”

25

The simulation then advances to the evaluation phase where the “Robust Tour” initializes
the TS for each replication. Throughout this phase of the simulation, the route frequency matrix
is updated. The continued update provides insight into what deviations from the robust tour will
occur and allows the Robust Tour to be reformed by the results of a larger set of solution choices.
Our approach is motivated by the hypothesis that in this context an RTS beginning from a Robust
Tour will require fewer iterations to find good quality solutions (or better solutions may be
found) than an RTS that begins from a naive initial solution.

We note that this approach can be employed in a real time setting. Knowing the
operating environment’s past conditions, an initialization phase can provide a Robust Tour; then,
once given the environment is known, a UAV operator could feed the Robust Tour into the RTS

to determine routing assignments.

2.6. Results and Conclusions

2.6.1 Elucidation of Robustness

The first scenario set we analyze is a modification of Sisson's (1997) notional Nari dataset
(Table 5). The coordinates are stated in miles from a fixed point. As we see from the time
windows, the Nari dataset is essentially a TSP with a route length constraint of 24 hours. The
services times are now stochastic and significantly shorter than the original with units also stated
in hours. A range of service times is possible at each target.

In our model, the minimum service time is chosen unless a uniform random draw
between 0 and 1 results in a value less than a predetermined probability (P;) that the UAV may

need to loiter at the target. If the first draw determines that an extended service time is required,

26

a second uniform random draw between the minimum and maximum service times determines
the amount of time the UAV will loiter over the target.

The mean expected probabilities of survival (P;) for the target nodes are set to either 0.8
or 0.9. In the UAV main module (Table 4) a uniform random draw determines if the Ps for any
target changes between -0.1, 0.0, or 0.1. Each increment of change has a one-third chance of
occurring. These levels are arbitrarily chosen to demonstrate the effect an objective of maximum

coverage induces upon routing decisions within a stochastic threat environment.

27

\Dw\]O\U’I-Bb)NDdQ*

B W W W W W W W W W W NENNDDNNNENEDNDLD M = e e e e e e e e
SV EWNHEF OV RN EAEWNRER OOV RIAANEREWN=O

Table 5. Nari dataset.

Coordinates (in miles)| Early Late Service Time |Probability
X Y Arrival Arrival| Ranges (in hours) | of Survival
100.286 64.286 0 24 0 0 1
7.714 381.429 0 24 1 5 0.9
55.714 6 0 24 1 5 0.8
81.429 351.429 0 24 1 5 0.9
58.286 342.857 0 24 1 5 0.8
65.143 325.714 0 24 1 5 0.9
34.286 327.429 0 24 1 5 0.8
70.286 296.571 0 24 1 5 0.9
27.429 291.429 0 24 1 5 0.8
93.429 297.429 0 24 1 5 0.9
48 280.286 0 24 1 5 0.8
76.286 269.143 0 24 1 5 0.9
120 274.286 0 24 1 5 0.8
160.286 291.429 0 24 1 5 0.9
100.286 251.143 0 24 1 5 0.8
114 216 0 24 1 5 0.9
205.714 234 0 24 1 5 0.8
104.571 219.429 0 24 1 5 0.9
144 220.286 0 24 1 5 0.8
126.857 203.143 0 24 1 5 0.9
231429 217.714 0 24 1 5 0.8
292.286 191.143 0 24 1 5 0.9
181.714 145.714 0 24 1 5 0.8
200.571 140.571 0 24 1 5 0.9
291.429 137.143 0 24 1 5 0.8
214286 121.714 0 24 1 5 0.9
248.571 92.571 0 24 1 5 0.8
274.286 82.286 0 24 1 5 0.9
291.429 78.857 0 24 1 5 0.8
332.571 82.286 0 24 1 5 0.9
349.714 80.571 0 24 1 5 0.8
377.143 84 0 24 1 5 0.9
375.429 99.429 0 24 1 5 0.8
385.714 111.429 0 24 1 5 0.9
402.857 115.714 0 24 1 5 0.8
404.571 106.286 0 24 1 5 0.9
396 94.286 0 24 1 5 0.8
432 92.571 0 24 1 5 0.9
437.143 70.286 0 24 1 5 0.8
447.429 43.714 0 24 1 5 0.9
472.286 33.429 0 24 1 S 0.8

* Denotes the depot.

28

{
Our initialization phase performs a 21-day simulation of the Nari scenario, where the

winds vary between 205 and 245 degrees in origin at a magnitude ranging between 0 to 20 knots.
Within the simulation, each target node is given a 0.5 probability (P;) of its service (i.e., loiter)
time increasing above its minimum level, while eleven vehicles are ava_ilable for use. The RTS
runs included 500 iterations and PEN,, is set to 10.0 due to the results of test runs with the
minimum travel time objective. Those test runs reveal a tendency of the RTS to choose time
window infeasible solutions with a lower travel time over feasible solutions using more vehicles
but incurring a higher travel time. Although we use the maximum coverage objective function
for the Nari dataset, PEN,, remains at 10.0 for all UAV scenarios of the research.

Before interpreting the route frequency matrix, we review the representation of the

solution vector starting with a notional example in Figure 5.

i= 0 1 2 3 4 5 6 7 8
T(d) = o-—»@—»@—» 5——@—»@-—» 6 7 |—> 8

Figure 5. Notional tour array.

The node filling position i in the array is denpted inside the geometric figures. The figure shape
corresponds to the type of node; circles represent targets while squares denote vehicles. Nodes 0
and 8 will never move since they are the depot; however, node 0 is considered a "vehicle" node.
Using this format, the RTS essentially changes the order of this tour array in search of the
optimal solution. Although not shown in Figure 5, each node contains a record of its position
within the tour by carrying time window, arrival, departure, and wait time fields. In this way, the
array provides a complete description of the routing and vehicle usage. For example, Figure 5

shows two vehicles are used in the vehicle-to-customer transitions of nodes 0 and 1 and nodes 5

29

and 3. We can tell four vehicles are available for use by counting vehicle nodes starting at node
0 but not including node 8. The arrival time to node 5 represents the tour length of the first
vehicle’s tour, while node 6 stores the tour length of the second. Nodes 6 and 7 represent unused
vehicles since there are no intervening targets between them and node 8, the terminal depot.

Figure 6 displays the route frequency matrix resulting from the initialization phase.
Where the row labels represent a departure node and the column labels an arrival node, the
elements in the table represent the number of days that particular routing segment is an attribute
of the solution tour within the 21-day simulation. Each row and column sums to 21 as every

node appears in every tour array. The lightly grayed-in areas represent vehicle arcs.

30

Ie

*£ouanbaaj 3JnoJ uoneZI[RNIUI ‘SOLIBUIIS LIBN *9 2In31]

s
o

B

i

ze 8 Lo T 2 L z ze
ol \ € 1 > Lot 4 2 Lo £
0g| L 2 2 2 | S 3 8 2 0€
62 L2 L2 Lo 1 L 62
82 ! [Lzt L 1 8z
@2 z L L [v 2t 1 Lot z |z
92 8 3 € 3 L e 1 I 92
se o L L L 2 2 1 3 [S L 2 21 oz
ve 1 LoLoe 1 ' t 1 2 vz
€z L et 1 L 2 2 Loy L z £z
2z g [L 1 [Y Lo ez
1z ! L L9 2 bbb z I 1z
0z H 1 L b L € ! 0z
61 [z z L2 9 L L Lo sk
8l 2 [L [' L 81
L L Loz z s 2 z Loz L L1
9t L L v Lz Lo L Lo o1
st L 4 € 2z e ¢ 1 z 1 L St
vH - L2 12 8 € 2 [2
€l o 1 L [L 1 L 1) L - z 1 L
z L [Lozt Lol L z1
1 Lot 2L 9 ¢ 2 L L
oL z L L Lot g 1 oL
6 , L vt e vz 6 |
8l L (r ! Loz 8
L . [} 3 (I € S L € L
9 ¥ z 2 L € o |
st 1 1 2 Lo Lo z 9 5
vie [() 2 1€ 1 4
g0 . . b L2 2 b2 L2 €
el S L 1 2 2 z
1 € L Lot L [L 1 L
0 L z L Lz 2z L L L 2 z 1 0

Although some routes appear in roughly one third of the 21 random scenarios and the arc
39-t0-40 appears in 11, distinguishing robust route structures is not easily done. Since this is a
TSP problem, no time window restrictions are present to induce an order to the tour. Also, the P; |
adjustments add considerable variation in what the objective function desires for an optimal tour
order. One can see that all eleven vehicles are used in every scenario, as no vehicle-to-vehicle
arcs are present. This result is sensible given the objective function seeks to maximize coverage.

Figure 7 graphically depicts the tours chosen for each day of the initialization phase.
Again, the shapes of the tours do not readily yield to a visual examination. Based on the
frequency its routes appear in the different tours chosen, the result of Day 16 is picked as the
robust tour structure. Here, the depot lies above the first tick mark on the horizontal axis, where

we see the eleven vehicle tours converge.

32

Day 16 is chosen as the Robust Tour.

ri scenarios.

€n

Figure 7. Tours chos

33

Table 6 lists the results of both the initialization and evaluation phases. Inputs in the
evaluation phase were identical to the initialization phase; however, the seeds to the random
generators were changed. In short, the input of the chosen robust tour does not decrease
iterations to the best found solution, not does it generate better quality solutions. Looking at the
inputs, no relationship exists between the number of iterations required and the wind parameters
or sum of service time increases. Although the wind inputs do generate variation in the tour
structure, the effect of service time increases appears tied to the targets chosen for increase, not
their sum. The evaluation phase changes the choice of Robust Tour from Day 5 of the
initialization to Day 2, indicating a slight change in the average shape of the chosen tours when

both phases are considered.

34

%43

"WIOJSAS SJRUIPIOOD URISAMIRY) 4
‘uonn|os AIeIjIqIe Ue Woij surdaq)1 Se SuesU JO UOTR[NOEd UT PSS JON«

*IN0J, 1SNqOY Se udsoyo 7 Le(‘I-8¢€ sAe(UQ *INO], 1SNQOY St uasoyd S Le(
, 143 SO°'S1 60°1 . \ 0'ce ST'6 L9'T Ag PIS
ey £061 '1¢ S'1v 6'6L1 L0t SUBIA
|17 6761 6'1¢ S L€81 (4> Ic
99 8691 L'1e 1<% 8CLI 0Ce 114 ’
LE 'I81 0°ze 129 1°981 |4 61
o€ 8LLI 4 1T 6081 01¢ 81
(44 6'¢0C - 66T 811 1061 Tle Ll
9T £'TCT ele LT 0'1L1 81¢ 91
£e I'vLl £Ce 199 S'e81 00t ST
144! LS81 4 1% 0'SL1 (A4 14!
(4% €Ll L'8C 9T L891 6'1¢ el
8¢ 6°00¢ 00¢ LT 061 L'1e 4!
IST SL6l L'1e 9 9061 L'6C I
1e 8°0L1 I'ce (4! I'6L1 0'le 01
ov 6'8L1 (41} €L 6'8L1 861 6
ST ¥'90C TIe 81 I'LLT I'ie 8
€e 0°L81 cot ST 8'661 9°0¢ L
8% TYLL 9'1¢ 14! 6681 7le 9
e 6°00C 8°0¢ ST 0°891 1 £ S
(44 ¢£11¢C Lec 14 €'0LT Lot 14
Le 6°¢0C L6t 14! CTILL £0¢ €
142 6681 (A% LT L] 8¢ (4
x1
ISBIDUJ 4, UISHIQ IPMUSBIA 1594 0} awi], 93e1dAr0) |Le(| aseaxdouy #3UISLIO pmuden 159g 0} Jwil], 9detaA0)) |Aeq
PNIAIS PUIM SUORId)] [9ABA] AL PUIM SUONEId)] [RABI]
uonenfeAy ‘ uonezifenuy |

*SISBYJ UOTIBN[BAT] *SA UOTJBZI[ENIU] ‘SJ NSAI LIBN 9 d[qe],

The second scenario set we analyze is a notional Bosnia dataset provided by the 1™

Reconnaissance Squadron (Bergdahl 1998) where we are given stochastic service times (Table

7). In the operational setting, coordinates are specified in latitude and longitude. The time

windows are specified in military time. A number of nodes must be visited twice, and the time

windows of the second visit follow the service time ranges that apply to both visits.

Table 7. Notional Bosnia data.

First Visit Second Visit

Latitude Longitude Early - Late | Service Time | Early Late
Target Name DEG MIN SEC|DEG MIN SEC|Arrival Arrival|l Ranges (in Min)| Arrival Arrival
TASZAR HUNGARY, DEPOT 46 24 0 |17 54 0
CORRIDOR, SZULOK HUNGARY 46 3 45|17 32 44
CORRIDOR, SRBAC BOSNIA 45 24 0 17 30 0
DUMDVGA 44 58 29| 16 50 34| 1015 1500 30 180 1900 2300
MASTYE 44 58 46| 16 38 56| 1015 1500 30 180 1900 2300
GARRED AAA SITE 4 58 4 | 16 39 31| 1015 1500 2 15 1900 2300
THARMET HEAVY WPN DEPOT 44 58 33|16 39 18| 1015 1500 2 30 1900 2300
THARMET HEAVY WPN DEPOT 44 58 39| 16 39 41| 1015 1500 2 30 1900 2300
THARMET HEAVY WPN DEPOT 44 58 59|16 39 28] 1015 1500 2 30 1900 2300
SERDONA COMM SITE 4 59 2 |16 39 561} 1015 1500 2 30 1900 2300
SERDONA COMM SITE 44 59 11| 16 40 19} 1015 1500 2 30 1900 2300
SERDONA COMM SITE 44 59 15} 16 39 20} 1015 1500 2 30 1900 2300
SUSPECTED WPN STORAGE 4 59 9116 39 107§ 1015 1500 2 30 1900 2300
SUSPECTED WPN STORAGE 44 54 52|16 34 47} 1015 1500 2 30 1900 2300
SUSPECTED WPN STORAGE 44 51 49| 16 41 37| 1015 1500 2 30 1900 2300
SUSPECTED WPN STORAGE 45 0 7 |16 34 47} 1015 1500 2 30 1900 2300
SUSPECTED WPN STORAGE 4 59 9 | 16 49 17| 1015 1500 2 30 1900 2300
SUSPECTED WPN STORAGE 44 57 41| 16 39 35| 1015 1500 2 30 1900 2300
AIR DEFENSE, SAM, PROBABLESA-2 | 44 57 23| 16 51 451 1015 1500 2 30 1900 2300
AIR DEFENSE, SAM, PROBABLESA-2 | 44 57 45| 16 49 28] 1015 1500 2 30 1900 2300
AIR DEFENSE, SAM, PROBABLE SA-2 | 44 55 57| 16 43 52| 1015 1500 2 30 1900 2300
AIR DEFENSE, SAM SITE RADAR 4 57 47|16 39 5S4 1015 1500 2 30 1900 2300
DROMADA HQ SITE 45 0 7 |16 53 49| 1015 1500 30 120 1900 2300
DROMADA WAREHOUSE 44 53 31|16 54 12| 1015 1500 2 60 1900 2300
OMANSKI BARRACKS 44 45 34117 10 34| 1500 1715 5 120
OMANSKI BARRACKS 44 48 19| 17 12 14| 1500 1715 5 120
OMANSKI BARRACKS 44 51 2 |17 13 24| 1500 1715 5 120
BOLSTAVEC TANK RALLY POINT 4 50 51|17 14 39{ 1500 1715 2 30
BOLSTAVEC TANK RALLY POINT 4 56 17| 17 17 41| 1500 1715 2 30
KRAJACHASTANE STORAGE BUNKER| 44 55 51| 17 17 51| 1500 1715 2 30
KRAJACHASTANE STORAGE BUNKER| 44 56 7 | 17 18 23| 1500 1715 2 30
GOLPRTUNIY ROAD 4 28 13|17 1 18} 1730 1830 20 40
GOLPRTUNIY ROAD 4 27 29117 1 46 1730 1830 20 40
GOLPRTUNIY ROAD 44 27 10| 17 24 | 1730 1830 20 40

36

The nodes that must be visited twice are modeled as two independent nodes. The data set
is clustered as target nodes separated into remote operating zones (ROZ) such that time windows
between ROZ’s do not overlap.

Figure 8 displays the route frequency matrix resulting from a 21-day simulation of the
Bosnia scenario, where the winds vary between 265 and 315 degrees in origin at a magnitude
ranging between 10 to 25 knots. Each target node is given a 0.3 probability of its service time
increasing above its minimum level. If the random draw is not less than 0.3, the minimum
service time applies. Five vehicles are available for use.

As the eye readily distinguishes, the matrix is sparse. Several distinct route segments
emerge as being persistent throughout the sirhulation space. For example, segments 13-to-11,
11-to-12, 19-to-15, and 15-3 are present in the best solutions of all 20 replications. Further
examination reveals that the vehicles denoted by node identification numbers 55 and 56 were
never used. The sparseness of the matrix partly results from the clustering of nodes into ROZ’s.

Similar to Figure 7, Figure 9 graphically depicts the tours of the Bosnia initialization
phase. Longitude forms the horizontal axis, latitude the vertical. The depot lies in the top right
hand corner of each chart.

Like Table 6, Table 8 lists the results by phase of the Bosnia dataset. Although the tour
of Day 14 remains the robust tour throughout the evaluation phase, it fails to reduce the number
of iterations to the best found feasible solutions. In fact, the number of iterations increases over

the naive input.

37

6
8
Z
9
S
14
€
(4
3
0

-

-

-

€l

8

~oNm

*Aduanbaj 9Jno1 uonjRZI[EHIUI ‘OLIBUIIS BIUSOY °§ 9INT1]

Vi

Sl

© wn

-mo

© N o

Lt

8¢

2€ Lt 0 62

B

- N W
-
-

o

|

AT
Ll
€ PAN
t € E1
€
L v

oL

Vi

v

4

8

o

3

2

¥4

=]

TN

9l

o m

o N ©

L

2

w o

(4]
1S
0s
(24
8y
Ly
o

OraNmMTWLON®D

L (2]

I

0

Day 1

Day 2

Day 3

Day 4

Day 5

Day 6

Day 7

Day 8

Day 9

Day 10

Day 11

Day 12

Day 13

Day 14

Day 15

Day 16

Day 17

AAQAR

Day 18

KA

Day 19

AN

Day 20

Day 14 chosen as Robust Tour.

Figure 9. Tours chosen for Bosnia scenarios.

Day 21

A

I'LST 80 ¥9'C

1454

=
o
l\
<
™~
—

ov

"TWOISAS QJRUIPIOOD URISOMR)) 44
-uonn[os £IeniqIe ue wrolj surdaq JI Se SUBSW JO UOTIBINO[Ed Ul Pasn JON x

‘uonen[BAf 9Y) JNOYSNOIY) 0S SUIBWIAA PUE INOJ, }SNGOY dY) Sk UIsoyd HT LB JO INSNY

on

NNtV onnmn oottt T on

aseaIouy
ADIAIIS

#xUISLIQ 9pmyy
PUI

Iseq 0}
SUO)BIAN]

Pasnl
SIPIYIA

[PARL],

apmusey
PUIM

e(| aseardu] ., UIBLIQ
EA TR EIN

159¢q 0}
SUOIJBId)]

Pas
SIPIYIA

Ly,
[PARI],

6'SST 00 L6'T |A2A PIS
144} C 86°C1 |SUBII
8 C sovl | 1C
C ILST | 0T
[4 99°CI | 61
[4 01°0C | 81
[4 o1 | L1
C 6C81 | 91
[4 98'¢1 | SI
(4 0s'vL | V1
[4 65°ST | €1
C 6191 | C1
(4 19°L1 | 11
C gLel o1
[4 0zel | 6
4 00°ST | 8
[4 9I'stT | L
C POEl | 9
C €e8T | S
[4 peST | v
[4 991 | ¢
C 996Gl | ¢

uoneneAy

uonezIenIu]

*SaseyJ uonenyeAs] ‘sA uonjezijenIuy ‘sjnsaJ erusog °g d[qeL

From both scenarios, we surmise our definition of the robust tour does not significantly
reduce iteration counts or generate better quality solutions to the search and we thereby reject our
earlier stated hypothesis. This lack of iteration reduction in the evaluation phases for both
scenarios speaks to the power of RTS; the RTS heuristic finds a good solution quickly enough to
offset any advantage provided by a robust starting solution. Although Carlton (1995) reported
better results when the RTS begins from a tour created by Solomon’s respected insertion
heuristic (1987), his RTS still produces solutions of a quality favorably comparable to most of

the other published heuristics for the VRP.

2.6.2 Analysis of Capability

The 11™ Reconnaissance Squadron (RS) operates only one UAV in the air at a time
(Bergdahl 1998). While the 11™ RS plans to increase the number of UAV’s that can operate
simultaneously, they do not know what this capability will achieve in the field. Using our
embedded optimization model, we can evaluate mission capability as measured by the number of
feasible solutions by generating random scenarios from the notional Bosnia dataset. Specifically,
for a given combination of vehicle availability and probability of increased loiter time (P;), we
conduct twenty replications and observe the number of feasible tours. For every combination of
vehicle availability and P, we use the same random number streams; thus, by repeating the same

twenty scenarios we can directly compare the results.

41

Table 9. Number of feasible solutions in 20 replications.

Probability of Loiter
0.1 0.3 0.5

1 11 3 0
Vehicles 2 14 19 17
3 20 20 20

As Table 9 shows, the current capability of one vehicle is woefully lacking given any
strong increase in the probability of extensive loiter times. These results are intuitively
understandable with one exception; the number of feasible solutions for two vehicles increases
significantly when P, increases from 0.1 to 0.3. A knowledge éf our RTS logic explains the
result.

As mentioned previously, the multiplicative factor PEN,, weights time window

infeasibility defined by
P,(T)= PEN,, *"fi;'ﬁlax(o, A1)
t:

where P,,(T) is a portion of the minimum travel time objective function within the RTS.
Violations of target time windows and vehicle route lengths are weighted equally regardless of
the value of PEN,, (vehicle route length constraints are modeled as time windows within the
heuristic). As we increase PEN,,, we decrease the probability the heuristic will choose time
window infeasible solutions over feasible solutions of greater travel time. Increasing PEN,,
beyond its current value of 10.0 will eventually remove the nonsensical result and remove the
artificial under-utilization of the second vehicle.

A more in-depth analysis of the tours can shed a full light on the operational capabilities
of the vehicles within our notional scenario and clarify our discussion of increasing PEN,y,.

Table 10 lists the result of Day 16 of the initialization phase. To get the actual travel time, the

42

“Tour Length” value listed must be divided by 100. Looking at the column of arrival times to
each node (denoted “Arr”) we see that the arrival to vehicle node 53 contains the tour length of
the first vehicle, while the arrival to the terminal depot contains the tour length of the second
vehicle. If the "Arr" column exceeds the late arrival time ("1Arr") of the vehicle at the end of a
vehicle’s tour, then that tour is route length infeasible. The route length constraint is the only
constraint violated on Day 16.

A wait time ("Wait") occurs in front of target nodes that are first visited in the vehicle
tours because the vehicle departure is set equal to the early arrival ("eArr") time of the vehicle.
We do not include this wait time in the sum of wait times reported for target nodes, since it is not
necessary for a dispatcher to follow the heuristic’s simplistic logic for the departure time ("Dep").
The “s” column contains the service time used on this day, while “slo” and “shi” specify

respectively the minimum and maximum possible service times, respectively.

43

Table 10. Bosnia scenario, Day 16 of the initialization phase.

DAY 16 Search complete: BEST TOUR (NOT FEASIBLE)
WIND: magnitude=2 direction (rads) = 5.4978
Tour Length: 22523
TYPE ID eArr 1Arr Arr Dep Wait s slo shi
DEPOT 0 9.25 2375 925 9.25 0 0 0 0
NODE 20 10.25 15 972 1025 053 1994 0S5 2
NODE 14 10.25 15 1229 12.29 0 0.033 0.033 05
NODE 17 10.25 15 1234 1234 0.033 0.033 05
NODE 18 10.25 15 1243 1243 0.167 0.033 05
NODE 19 10.25 15 1264 12.64 0.033 0033 05
NODE 15 10.25 15 12.68 12.68 0.033 0033 05
NODE 3 10.25 15 1272 1272 0.033 0033 025
NODE 4 10.25 15 1276 12.76 0.033 0033 05
NODE 5 10.25 15 1279 1279 0.033 0.033 05
NODE 8 10.25 15 12.84 12.84 0.033 0.033 05
NODE 7 10.25 15 12.87 12.87 0.033 0.033 05
6
9

0
0
0
0
0
0
0
0
0
NODE 10.25 15 1291 1291 0 0.033 0.033 0.5
NODE - 1025 15 1295 1295 0 0.033 0.033 0.5
NODE 10 10.25 15 1298 1298 0 0489 0.033 05
NODE 2 10.25 15 13.47 1347 0 0.5 0.5 3
NODE 13 10.25 15 14.02 14.02 0 0.033 0033 05
NODE i1 10.25 15 1412 14.12 0 0.033 0033 05
NODE 12 10.25 15 1422 1422° 0 0.033 0.033 05
NODE 21 10.25 15 1438 14.38 0 0.033 0.033 1
NODE 16 10.25 15 14.47 1447 0 0.033 0.033 05
NODE 1 10.25 15 1452 1452 0
NODE 32 19 23 15.02 19 3.9
NODE 51 19 23 22.03 2203 0
VHCL 53 9.25 2375 2421 925 0
NODE 26 15 17.25 9.64 15 53

0.5 0.5 3

8 2992 05 3
1704 0.5 2

0

6 0.033 0033 05

NODE 28 15 17.25 15.04 15.04 0 0.033 0033 05
NODE 27 15 17.25 15.08 15.08 0 0.114 0.033 05
NODE 25 15 1725 1527 15.27 0 0.407 0.033 05
NODE 24 15 1725 1569 15.69 0 0.083 0.083 2
NODE 23 15 1725 1581 1581 0 0.66 0.083 2
NODE 22 15 1725 1651 16.51 0 0.083 0.083 2
NODE 31 17.5 185 1685 175 065 0333 0333 0.666
NODE 30 17.5 185 1784 17.84 0 0.625 0.333 0.666
NODE 29 17.5 185 18.48 1848 0 0.333 0.333 0.666
NODE 52 19 23 19.16 19.16 0 0.085 0.033 1
NODE 43 19 23 1937 1937 0 0.398 0.033 05
NODE 42 19 23 19.84 19.84 0 0.033 0033 05
NODE 44 19 23 1995 19.95 0 0.033 0.033 05
NODE 33 19 23 20.02 20.02 0 0.5 0.5 3
NODE 35 19 23 2052 2052 0 0.118 0.033 05
NODE 34 19 23 20.65 20.65 0 0.033 0.033 0.25
NODE 46 19 23 20.69 20.69 0 0.064 0033 05
NODE 50 19 23 20.75 2075 0 0.033 0.033 05
NODE 36 19 23 20.8 20.8 0 0.033 0033 05
NODE 37 19 23 20.83 20.83 0 0.033 0.033 05
NODE 41 19 23 20.87 20.87 0 0.033 0033 05
NODE 40 19 23 2091 2091 0 0.033 0033 05
NODE 38 19 23 2094 2094 0 0363 0033 05
NODE 39 19 23 21.31 21.31 0 0455 0.033 05
NODE 49 19 23 21.82 21.82 0 0.033 0033 05
NODE 45 19 23 2192 2192 0 0.033 0033 05
NODE 48 19 23 2197 2197 0 0235 0033 05
NODE 47 19 23 2222 2222 0 0.033 0.033 0.5
DEPOT 54 9.25 2375 2277 925 0 0 0 0

44

Table 11 shows the mean waiting time (“Wait”) for all targets visited after the first target
of the vehicle tour(s) (a subset we will refer to as “interior targets”) and the mean amount by
which the route length constraint is exceeded (“Infeas”) for the infeasible solutions of Table 9. If
a vehicle tour is not infeasible, the tour length (with all wait times included) is listed in a light

gray box in the “Infeas” column.

Table 11. Matrix of waiting times and route length infeasibility.

Probability of Loiter

0.1 0.3 0.5
Wait Infeas | Wait Infeas | Wait Infeas

w 1 Vehl]| 253 073 | 048 1.81
S 2 Veh1[324 083 ['398 046 | 1.94 053
8= Veh2| - - 1.64 0.18
© 3 VehlEH =
> Veh2
Veh 3
Legend:| , |Wait = Average sum of wait times for "interior" targets

Infeas = Average amount of route length violation
Route Length of the feasible vehicle

When the sum of interior wait times exceeds the amount of route length infeasibility, we
know that if we relax the target time window constraints, the interior wait times will decrease.
Therefore, we conclude that an infeasible answer whose mean sum of interior wait times exceeds
its average amount of route length violations can become feasible by the increasing‘time window
widths of the targets. If the time window constraints can be relaxed in this manner, then a single
UAV can fly feasible tours when P; < 0.1; and two can fly feasible tours for P; < 0.5. By this
logic, our experiments suggest that a feasible tour is not possible for one UAV when P; 2 0.3.
The results for one vehicle and a P; of 0.5 are not shown because all instances are infeasible;

conversely, when three vehicles are available feasible tours occur when P; < 0.5.

45

2.7. Recommendations for Further Study

Comparing alternatives such as those in section 2.6.2 is a classic application of
simulation. With embedded optimization, comparisons are quickly made of a highly corﬁplex
problem. A closer working relationship with UAV operators is likely to result in more
opportunities for comparisonbs such as these.

Despite the failure of our chosen robust tour, plausible uses of embedded optimization to
achieve iteration reduction remain. Instead of injecting random inputs into the RTS, an
experimental design can be constructed to run the RTS for each design point. Given a set of
inputs, a look-up table from the design could then serve to provide a better initial solution. If the
inputs are not similar to any one design point, a method of path-relinking (Glover 1997) could be
used to initiate the RTS.

Our work only scratches the surface of the applications available for embedded
optimization, and additional opportunities abound for improvements to the simple model we
present. Glover, Laguna, and Kelly (1996) contribute a possible improvement to the MODSIM
objects created here. As their OptQuest software iterates through the simulation and
optimization loop, a neural network “accelerator” may be called upon (at the user’s discretion) to
screen simulation input parameters that are likely to result in a poor overall measure of system
performance (such as high cost). With a GVRP, infeasible scenarios could be screened and
insight gained about the parameters making the solution space infeasible.

Finally, an important contribution from this effort is the MODSIM libraries. Using these
libraries, future code can be quickly tailored to specific members of the GVRP family. Even if

the programmer is not working within MODSIM, the libraries provide for a straightforward

46

translation given the “strongly typed” nature of MODSIM and the strict adherence to code
encapsulation they embody. Their use can reduce the up-front coding time so often required for

GVRP research.

47

Bibliography

Battiti, Roberto. “Reactive Search: Toward Self-Tuning Heuristics,” Modern Heuristic
Search Methods. Ed. V.J. Rayward-Smith, LH. Osman, C.R. Reeves and G.D. Smith, New
York: John Wiley and Sons, Inc., (1996).

Battiti, Roberto and Giampietro Tecchiolli. “The Reactive Tabu Search,” ORSA Journal
on Computing. 6 (2), 126-140 (1994).

Burkard, R. E., V. G. Deineko, R. van Dal, J. A. A. van der Veen, G. J. Woeginger. Well-
Solvable Special Cases of the TSP: A Survey. Working Paper, SFB-Report 52. Graz University
of Technology, Austria, (December 1995).

Carlton, William B. A Tabu Search Approach to the General Vehicle Routing Problem.
Ph.D. dissertation. University of Texas, Austin, (1995).

Carson, Yolanda and Anu Maria. “Simulation Optimization: Methods and Applications,”
Proceedings of the 1997 Winter Simulation Conference. Ed. S. Andradottir, K. J. Healy, D. H.
‘Withers, and B. L. Nelson. Atlanta GA, (7-10 December 1997).

Christofides, N. “Vehicle Routing,” The Traveling Salesman Problem. Ed. E. L.
Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, and D. B. Shmoys. New York: John Wiley &
Sons, Inc., (1985).

Garfinkel, R. S. “Motivation and Modeling,” The Traveling Salesman Problem. Ed. E.
L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, and D. B. Shmoys. New York: John Wiley &
Sons, Inc., (1985).

Glover, F. “Heuristics for integer programming using surrogate constraints,” Decision

Sciences, 8: 156-166 (1977).

48

Glover, F. “Tabu Search: A Tutorial,” Interfaces, 20: 74-94 (July-August 1990a).

Glover, F. “Tabu Search - Part I,” ORSA Journal on Computing, 1: 190-206 (Summer
1989).

Glover, F. “Tabu Search - Part II,” ORSA Journal on Computing, 2: 4-32 (Winter
1990b).

Glover, F. Tabu Search Fundamentals and Uses. Working Paper. University of
Colorado, Boulder CO, (April 1995).

Glover, F. and M. Laguna. Tabu Search. Boston: Kluwer Academic Publishers, (1997).

Glover, F., J.P. Kelly, and M. Laguna. “New advances and applications of combining
simulation and optimization,” Proceedings of the 1996 Winter Simulation Conference. Ed. J.M.
Charnes, D.J. Morrice, D.T. Brunner, and J.J. Swain. Coronado CA, (8-11 December 1996).

Golden, B. L. and A. A. Assad, Eds. Vehicle Routing: Methods and Studies.
Amsterdam: North Holland Press, (1988).

Hall, R. W. and J. G. Partyka. “On the Road to Efficiency,” OR/MS Today. June 1997.

Kassou, I. and Pecuchet, J. “Use of simulation within a general framework of
optimization in job-shop sheduling,” Proceedings of CISS - First Joint Conference of
International Simulation Societies. SCS: San Diego (1994).

Kervahut, T., B. Garcia, and J. Rousseau. “The Vehicle Routing Problem with Time
Windows, Part 1: Tabu Search,” INFORMS Journal on Computing. 8: 158-164 (Spring 1996).

Klaf, A. A. Trigonometry Refresher for Technical Men. New York: McGraw Hill Book
Co., Inc. (1946).

Laporte, Gilbert. “The Traveling Salesman Problem: An overview of exact and

49

approximate algorithms,” European Journal of Operational Research, 59: 231-247 (1992).

Laporte, Gilbert. “The Vehicle Routing Problem: An overview of exact and approximate
algorithms,” European Journal of Operational Research, 59: 345-358 (1992).

Reinelt, G. "TSPLIB - A TSP Library", ORSA Journal on Computing, 3: 376-384, (1991).

Rego, Cesar and Catherine Roucairol. “A Parallel Tabu Search Algorithm Using Ejection
Chains for the Vehicle Routing Problem,” Meta-Heuristics: Theory and Applications. Ed. 1. H.
Osman and J. P. Kelly. Boston: Kluwer Academic Publishers, (1996).

RQchat, Yves and Eric D. Taillard. “Probabilistic Diversification and Intensification in
Local Search for Vehicle Routing,” Journal of Heuristics, 1: 147-167 (1995).

Savelsbergh, M. W. P. Computer Aided Routing. CWI Tract 75, CWI Amsterdam,
(1992).

Sisson, Mark R. Applying Tabu Heuristic to Wind Influenced, Minimum Risk and
Maximum Expected Coverage Routes. AFIT/GOR/ENS/97M. School of Engineering, Air Force
Institute of Technology (AU), Wright-Patterson AFB OH, (February 1997).

Solomon, M.M. “Algorithms for the vehicle routing and scheduling problems with time
window constraints,” Operations Research, 35: 254-265, (1987).

Woodruff, D. and E. Zemel. "Hashing Vectors for Tabu Séarch," Annals of Operations

Research, 41: 123-137, (1993).

50

Vita

Joel L. Ryan was born in ||| | | | . .-
-
I /(ic: graduating from Samuel Clemens High School in Schertz, Texas,
he enrolled in Texas Tech University in 1988. Buoyed by a nomination from the Air Force
R.O.T.C. detachment at Texas Tech, he transferred to the Air Force Academy the following year.
Upon graduation in 1993, he accepted his first assignment to HQ Air Force Recruiting Service at
Randolph AFB, Texas. He entered the Graduate School of Engineering, Air Force Institute of
Technology, in August of 1996. After graduation, Capt. Ryan is slated for an assignment to the

Studies and Analysis Squadron of HQ Air Combat Command, Langley AFB, Virginia.

Permanent Address: -

51

Appendix A: tabuMod

The "tabuMod" library contains data structures and procedures useful to building
any tabu search. The node and tour data types, as well as the VRP penalty record and
coordinates array, are all created. The procedures include simple output, swap and insert
moves, and the steps taken when a cycle is found or not found, as well as penalty, wait

time, and vehicle count calculations.

DEFINITION MODULE tabuMod;

FROM IOMod IMPORT StreamObj, ALL FileUseType, ReadKey;
FROM hashMod IMPORT hashRecord;

TYPE
nodeType = RECORD

{input data}
id, {node number}
ea, {early time window (service start}
la, {late time window (service start)}
qty, {node demand or zero}
type, {node type: 1-customer,2-vehicle}

{schedule variables}

arr, {arrival time}
dep, {departure time}
wait, {wait time}

load : INTEGER; {total load on vehicle at visit}
END RECORD:; {nodeType}

coordType = RECORD {node coordinates}
x,y : REAL;
END RECORD; {coordType}

vipPenType = RECORD {penalties}
tw,ld :INTEGER;
END RECORD;

tourType = ARRAY INTEGER OF nodeType;

coordArType = ARRAY INTEGER OF coordType;

arrRealType = ARRAY INTEGER OF REAL;

arrInt2dimType = ARRAY INTEGER, INTEGER OF INTEGER;

arrIntType = ARRAY INTEGER OF INTEGER;
arrReal2dimType = ARRAY INTEGER, INTEGER OF REAL;

{Output the required info through various methods}

{Outputs the tour info to the screen}

PROCEDURE tourToScreen(IN nc, nv, numnodes :INTEGER;
IN coord : coordArrType;
IN tour : tourType);

{Like tourToScreen, but to the out file}

PROCEDURE tourToFile(IN where : STRING;
IN outstrm :StreamObj;
IN coord : coordArrType;
IN tour : tourType;
IN nc, nv, numnodes,
tourLen :INTEGER;
IN m : arrIntType);

{Outputs time matrix to out file}

PROCEDURE timeToFile(IN where : STRING;
IN outstrm :StreamObj;
IN time : arrInt2dimType;
IN numnodes : INTEGER),

{Like tourToFile, but much more clear and takes into account if load info
is viable}
PROCEDURE twlLoadToFile(IN where : STRING;

IN outstrm :StreamObyj;

IN tour : tourType;

IN nc, numnodes,

tourLen :INTEGER;

IN factor : REAL;

IN load : BOOLEAN),

{Similar to tourToFile, puts coordinates to file so you can scatter plot results}
PROCEDURE LatLongToFile(IN where : STRING;

IN outstrm :StreamObj;

IN tour : tourType;

IN nc, numnodes :INTEGER;

IN coord : coordArrType);

{Puts out only the node id, type, and order info of the tour to the file}
PROCEDURE qcktourFile(IN outstrm :StreamObj;

IN tour : tourType;

IN numnodes :INTEGER);

{#** END OF OUTPUT PROCEDURES **%}

{swap 2 integer variables}
PROCEDURE SwapInt(INOUT a, b : INTEGER);

{swap 2 nodeType variables}
PROCEDURE SwapNode(INOUT a, b : nodeType);

{Computes the tour schedule parameters for computing the schedule parameters

for a tour. It returns the total tour length}
PROCEDURE tourSched(IN is, {first customer node in tour}

A-2

nc, numnodes : INTEGER;
INOUT tour : tourType;
IN time : arrInt2dimType;
OUT tourLen : INTEGER;
IN outstrm : StreamQOby);

{Find the number of vehicles being used in the current tour,
by counting the vehicle to demand transitions}
PROCEDURE countVeh(IN numnodes : INTEGER;

IN tour : tourType; '

OUT nvu : INTEGER);

{Calculate TW and LOAD penalties, store in tourPen record}
PROCEDURE compPens(IN numnodes : INTEGER;

IN tour : tourType;

IN capacity : INTEGER;

INOUT tourPen : vipPenType);

{given the TW and LOAD penalties, this procedure personalizes the penalties to the mTSPTW; Computes
cost of tour as tour length + penalty for infeasibilities }
PROCEDURE tsptwPen (IN numnodes, tourLen : INTEGER; {length of curr tour}

IN tour : tourType; {current tour}

IN tourPen : vrpPenType; {record of TW & LD pens}

IN TWPEN : REAL; {mult factor for TW pen}

OUT totPenalty, {total Penalty (TW here}
tourCost, {tourLen + TW cost}
penTrav, {tourCost - totWait}
tvl : INTEGER); {travel time}

{Compute the sum of the waiting time in a given tour}
PROCEDURE sumWait (IN numnodes : INTEGER;
IN tour : tourType;
OUT sumwait : INTEGER);

{Updates the search parameters if the incumbent tour is not found in the
hashing structure}

PROCEDURE nocycle IN DECREASE : REAL; {RTS decrease tabuLen parameter}
IN minTL : INTEGER;
IN mavg :REAL; {moving average of cycle length}

INOUT ssltle, {steps since last tabu length change}
tabuLen : INTEGER; {tabu length}

IN outstrm : StreamOby; {output file}

IN cycleprint : BOOLEAN);

{Updates the search parameters if the incumbent tour is found in the

hashing structure}
PROCEDURE cycle (INOUT matchptr : hashRecord; {current tour's hash info}

IN INCREASE :REAL; {RTS increase tabuLen parameter}
IN maxTL,
CYMAX, {max cyleLength used to alter mavg}
k : INTEGER; {current iteration number}
INOUT mavg :REAL; {cycle length moving average}

INOUT ssltlc, {steps since last tabu length change}

A-3

tabuLen : INTEGER; {tabu length}
IN outstrm : StreamOby; {output file}
IN cycleprint : BOOLEAN),

{Computes the incremental change in the value of the travel time from the incumbent
tour to the proposed neighbor tour, and computes the neighbor schedule parameters
preparing for computation of penalty terms (see compPens)}

PROCEDURE moveValTT (IN i, {position of customer to be moved}
d, {depth of the insertion}
numnodes : INTEGER,
IN tour : tourType; {current tour}

INOUT nbrtour : tourType; {neighbour, temporary tour}
IN time : arrInt2dimType;
OUT moveVal : INTEGER);
{adjusts the current tour for the defined insert move}
PROCEDURE insert (IN chl, chD : INTEGER; {origin and recipient of insert move}
INOUT tour :tourType); {current tour}

END MODULE.

IMPLEMENTATION MODULE tabuMod;

FROM IOMod IMPORT StreamObj, ALL FileUseType, ReadKey;
FROM OSMod IMPORT SystemTime;
FROM hashMod IMPORT hashRecord;

{Output the required info in various forms}

PROCEDURE tourToScreen(IN nc, nv, numnodes :INTEGER;
IN coord : coordArrType;
IN tour : tourType);
VAR
i : INTEGER;
BEGIN

OUTPUT("Node information follows:");
OUTPUT(" # nodes = ",numnodes+1);
FOR i := 0 TO numnodes
IFi=0
OUTPUT("DEPOT ",coord[i].x," ",coord[i].y);

ELSIFi>nc

OUTPUT("VEHICLE");

OUTPUT("INPUT ",tour[i].id," ",tour[i].ea," " tour[i].la
," " tour[i].qty," ",tour[i].type," SCHED ",
tourfi].arr," " tour[i].dep," " tour[i].wait,

" " tour[i].load);

ELSE
OUTPUT("NODE ",coord[il.x," ",coord[i].y);
OUTPUT("INPUT ",tour[i].id," ",tour[i].ea," " tour[i].la
' " tour[i].qty,” ",tour[i].type," SCHED ",
tour[i].arr,” ",tour[i].dep," " tour[i].wait,

" " tour[1].load);
END IF;
END FOR;

END PROCEDURE,; {tourToScreen}

PROCEDURE tourToFile(IN where : STRING;
IN outstrm :StreamObj;
IN coord : coordArrType;
IN tour : tourType;
IN nc, nv, numnodes,
tourLen :INTEGER;
IN m : arrIntType);
CONST
{ id x yeArrlAr | Arr Dep Wait] Qty Load Mid}
format:"***<***<***< ***< ***< ***<***<***< **< ***< ***<";
VAR
i: INTEGER;
name, str : STRING;
BEGIN
ASK outstrm WriteString(where);
ASK outstrm WriteLn;
ASK outstrm WriteString("Tour Length: ");
ASK outstrm WriteInt(tourLen,4);
ASK outstrm WriteLn;
ASK outstrm WriteString("Node information follows:");
ASK outstrm WriteLn;
ASK outstrm WriteString("TYPE ID x y | eArr 1A | Arr Dep");
ASK outstrm WriteString(" Wait | Qty Load | Mid");
ASK outstrm WriteLn;

FOR i := 0 TO numnodes

IF (tour[i].id = 0) OR (tour[i].id = numnodes)
name := "DEPOT ";

ELSIF tour[i].type = 2
name := "VHCL ";

ELSIF tour[i].type = 1
name := "NODE ",

END IF;

IF tour[i].type = 1
str ;= SPRINT (tour{i].id, coord[i].x, coord[i].y,
tour[i].ea, tour[i].la, tour[i].arr, tour[i].dep,
tour[i].wait, tour[i].qty, tour[i].load, m[i])
WITH format;
ELSE
str := SPRINT (tour[i].id, coord[0].x, coord[0].y,
tour[i].ea, tour[i].la, tour[i].arr, tour[i].dep,
tour[i].wait, tour[i].qty, tour[i].load)
WITH format;
END IF;

ASK outstrm WriteString(name);
ASK outstrm WriteString(str);
ASK outstrm WriteLn;

END FOR;
ASK outstrm WriteLn;
END PROCEDURE; {tourToFile}
PROCEDURE timeToFile(IN where : STRING;
IN outstrm :StreamObj;

IN time : arrInt2dimType;
IN numnodes : INTEGER);

VAR
i,j : INTEGER;

BEGIN
ASK outstrm WriteString(where);
ASK outstrm WriteLn;

ASK outstrm WriteString(" ");

FOR i := 0 TO numnodes
ASK outstrm WriteInt(i, 6);
END FOR;
ASK outstrm WriteLn;
FOR i := 0 TO numnodes
ASK outstrm WriteInt(i,6);
FOR j := 0 TO numnodes
ASK outstrm WriteInt(timefi][j], 6)
END FOR;
ASK outstrm WriteLn;
END FOR;

ASK outstrm WriteLn;

END PROCEDURE,; {timeToFile}

PROCEDURE twLoadToFile(IN where : STRING;
IN outstrm :StreamObj;
IN tour : tourType;
IN nc, numnodes,
tourLen :INTEGER;
IN factor : REAL;
IN load : BOOLEAN);

CONST

{ id eArr lArr |Arr Dep Wait |Qty Load}

format1="***< ****_*< ****.*< *****‘*< *****_*< ***.*< **< ***<";
format2="***< ****.*< ****.*< *****'*< *****.*< ***.*<";
VAR
i: INTEGER;
name, str : STRING;
BEGIN
ASK outstrm WriteString(where);
ASK outstrm WriteLn;
ASK outstrm WriteString("Tour Length: ");
ASK outstrm WriteInt(tourLen,4);
ASK outstrm WriteLn;
ASK outstrm WriteString("Node information follows:");

A-6

ASK outstrm WriteLn;
IF load
ASK outstrm WriteString("TYPE ID eArr 1Arr |Arr Dep Wait");
ASK outstrm WriteString("l Qty Load");
ELSE
ASK outstrm WriteString("TYPE ID eArr JArr |Amr Dep Wait");
END IF;
ASK outstrm WriteLn;

FOR i := 0 TO numnodes
IF ((tour[i].id = 0) OR (tour[i].id = numnodes))
AND (tour[i].type = 2)
name := "DEPOT ";
ELSIF tour[i].type = 2
name := "VHCL "“;
ELSIF tour[i].type =1

name := "NODE ";
END IF;
IF load = TRUE

str := SPRINT(tour[i].id, FLOAT(tour[i].ea) / factor,
FLOAT(tour[i].1a) / factor, FLOAT(tour[i].arr) / factor,
FLOAT(tour{i].dep) / factor, FLOAT(tour[i].wait) / factor,
tour[i].qty, tour[i].load)
WITH formatl;
ELSE
str := SPRINT(tour{i].id, FLOAT(tour[i].ea) / factor,
FLOAT(tour[i].1a) / factor, FLOAT(tour[i].arr) / factor,
FLOAT(tour[i].dep) / factor, FLOAT(tour[i].wait) / factor)
WITH format2; '
END IF;

ASK outstrm WriteString(name);
ASK outstrm WriteString(str);
ASK outstrm WriteLn;

END FOR;

ASK outstrm WriteLn;
END PROCEDURE,; {twLoadToFile}

{Similar to tourToFile, puts coordinates to file so you can scatter plot results}
PROCEDURE LatLongToFile(IN where : STRING;
IN outstrm :StreamObj;
IN tour : tourType;
IN nc, numnodes :INTEGER;
IN coord : coordArrType);
CONST
{ d x y}
formatl:"***< ***_****< ***_****<";
VAR
i: INTEGER;
name, str : STRING;
BEGIN
ASK outstrm WriteString(where);

A-7

ASK outstrm WriteLn;
ASK outstrm WriteString("TYPE ID coordX coordY")

FOR i := 0 TO numnodes

IF ((tour[i].id = 0) OR (tour[i].id = numnodes))
AND (tour[i].type = 2)
name := "DEPOT ",

ELSIF tour[i].type = 2
name := "VHCL ";

ELSIF tour[i].type = 1
name := "NODE ";

END IF,

str := SPRINT(tour[i].id, coord[tour[i].id].x, coord[tour[i].id].y)

WITH formatl;

ASK outstrm WriteString(name);
ASK outstrm WriteString(str);
ASK outstrm WriteLn;

END FOR;

ASK outstrm WriteLn;
END PROCEDURE,; {LatLongToFile}

{just sends a "quick" tour permutation to the out file}
PROCEDURE qcktourFile(IN outstrm :StreamObj;
IN tour : tourType;
IN numnodes :INTEGER);
CONST
VAR
i:INTEGER;
type : STRING;
str : STRING;
BEGIN

FOR i := 0 TO numnodes
IF (i = 0) AND (tourl[i].type = 2)

type :="D";
ELSIF (i=numnodes) AND (tour[i].type = 2)
type = an;
ELSIF tour[i].type = 2
type :="V";
ELSE
type = ncn;
END IF;

str := type + INTTOSTR (tour[i].id) + " ";
ASK outstrm WriteString(str);

END FOR;

ASK outstrm WriteLn;

END PROCEDURE; {(qcktourFile}

A-8

{*** END OF OUTPUT PROCEDURES ***}

{swap 2 integer variables}
PROCEDURE SwapInt(INOUT a, b : INTEGER);,

VAR

temp : INTEGER;
BEGIN

temp = a;

a:=b;

b := temp;

END PROCEDURE; {Swap}

{swap 2 nodeType variables}
PROCEDURE SwapNode(INOUT a, b : nodeType);

VAR :

temp : nodeType;
BEGIN

temp := a;

a:=b;

b := temp;

END PROCEDURE,; {Swap}

{Computes the tour schedule parameters for computing the schedule parameters
for a tour. It returns the total tour length}
PROCEDURE tourSched(IN is, {first customer node in tour}
nc, numnodes : INTEGER;
INOUT tour : tourType;
IN time : arrInt2dimType;
OUT tourLen : INTEGER;
IN outstrm : StreamQObyj);
VAR
1,k,continue, lastnode : INTEGER;
BEGIN
tourLen := 0;

{Compute the tour length from depot to node is }
i:=0;
WHILE i< is-1
tourLen := tourLen + time[tour[i].id][tour[i+1].id]
+ tour[i+1].wait;
i=i+1;
END WHILE;

{update the schedule from is to the last node}
FOR i := is-1 TO numnodes-1
{load update}
IF tour[i+1].type =2
tour[i+1].load := tour[i+1].qty;
ELSE
tour[i+1].load := tour[i].load + tour[i+1].qty;
END IF;

{find arrival times}

tour[i+1].arr := tour[i].dep +
time[tour[i].id][tour[i+1].id];

{find departure and wait times}
IF tour[i+1].type =2
tour[i+1].dep := tourfi+1].ea;
tour[i+1].wait := 0;

ELSE
tour[i+1].dep := MAXOF(tour[i+1].ea, tour[i+1].arr);
tour[i+1].wait := tour[i+1].dep - tour[i+1].arr;
END IF;
{tourLen update}

tourLen := tourLen + time[tour[i].id][tour[i+1].id] + tour[i+1].wait;
END FOR;
END PROCEDURE,; {tourSched}

{Find the number of vehicles being used in the current tour,
by counting the vehicle to demand transitions}
PROCEDURE countVeh(IN numnodes : INTEGER;
IN tour : tourType;
OUT nvu : INTEGER);
VAR
i: INTEGER;
BEGIN
nvu := 0;

FOR i := 0 TO numnodes-1
IF (tour[i].type = 2) AND (tour[i+1].type = 1)

nvu :=nvu+ 1;

END IF;
END FOR;

END PROCEDURE; {countVeh}

{Computes the exact vehicle OVERLOAD and TIME WINDOW penalties}
PROCEDURE compPens(IN numnodes : INTEGER;

IN tour : tourType;

IN capacity : INTEGER;

INOUT tourPen : vipPenType);

VAR

i, infeastw, infeasld : INTEGER;
BEGIN

infeastw := 0;

infeasld := 0;

FOR i := 1 TO numnodes
infeastw := infeastw + MAXOF(O, tour[i].arr - tour[i].la);
IF (tour[i].type = 2) AND (capacity > 0)
infeasld := infeasld + MAXOF(O, tour[i].load - capacity);

A-10

END IF;
END FOR;
tourPen.tw := infeastw;
tourPen.1d := infeasld;

END PROCEDURE; {compPens}

{given the TW and LOAD penalties, this procedure personalizes the penalties to the mTSPTW; Computes
cost of tour as tour length + penalty for infeasibilities }
PROCEDURE tsptwPen (IN numnodes, tourLen : INTEGER; {length of curr tour}

IN tour : tourType; {current tour}
IN tourPen : vrpPenType; {record of TW & LD pens}
IN TWPEN : REAL; {mult factor for TW pen}
OUT totPenalty, {total Penalty (TW here}
tourCost, "~ {tourLen + TW cost}
penTrav, {tourCost - totWait}
tvl : INTEGER); {travel time}
VAR
i, totWait, twCost : INTEGER;
BEGIN

{compute infeasibilities }
totPenalty := tourPen.tw;

{compute tour infeasibility costs}
twCost := TRUNC(TWPEN * FLOAT(totPenalty));

{compute tour characteristic values}
tourCost := tourLen + twCost;

sumWait(numnodes, tour, totWait);

penTrav := tourCost - totWait;
tvl := penTrav - twCost;

END PROCEDURE; {tsptwPen}

{Compute the sum of the waiting time in a given tour}
PROCEDURE sumWait (IN numnodes : INTEGER;
IN tour : tourType;
OUT sumwait : INTEGER);
VAR
i: INTEGER;
BEGIN
sumwait :=0;

FOR i := 0 TO numnodes
sumwait := sumwait + tour{i].wait;
END FOR;
END PROCEDURE,; {sumWait}

{Updates the search parameters if the incumbent tour is not found in the
hashing structure}

A-11

PROCEDURE nocycle (IN DECREASE : REAL; {RTS decrease tabuLen parameter}
IN minTL : INTEGER;
IN mavg : REAL; {cycle length moving average}
INOUT ssltle, {steps since last tabu length change}

tabulLen : INTEGER; {tabu length }

IN outstrm : StreamObyj; {output file}
IN cycleprint : BOOLEAN);

BEGIN

ssltlc := ssltlc + 1;

IF FLOAT(ssltlc) > mavg
{NOTE: tabuLen always > 5. If tabuLen were < 5, it would never increase w/ INCREASE = 1.2}
{ Adjust tabuLen}
tabuLen := MAXOF(TRUNC(FLOAT(tabuLen)*DECREASE), minTL);
ssltlc :=0;
END IF;

IF cycleprint
ASK outstrm WriteString("The tour was not found in the hash structure");
ASK outstrm WriteString(" The current mavg: ");
ASK outstrm WriteReal(mavg, 7, 1);
ASK outstrm WriteLn;
ASK outstrm WriteString(" Steps since last tabuLen change: ");
ASK outstrm WriteInt(ssltlc,6);
ASK outstrm WriteString(" Current tabuLen:");
ASK outstrm WriteInt(tabuLen,6);
ASK outstrm WriteLn;
END IF;

END PROCEDURE,; {nocycle}
{Updates the search parameters if the incumbent tour is found in the

hashing structure}
PROCEDURE cycle (INOUT matchptr : hashRecord; {current tour's hash info}

IN INCREASE : REAL; {RTS increase tabuLen parameter}
IN maxTL,
CYMAX, {max cyleLength used to alter mavg}
k : INTEGER; {current iteration number }
INOUT mavg :REAL; {cycle length moving average}

INOUT ssltle, {steps since last tabu length change}
tabuLen : INTEGER,; {tabu length}
IN outstrm : StreamOby; {output file}
IN cycleprint : BOOLEAN);
VAR
cycleLength : INTEGER; {cycle length for the found tour}
BEGIN
ssltlc := ssltlc + 1;

cycleLength := k - matchptr.lastiter;

{update when hash record last visited}
matchptr.lastiter := k;

IF cycleLength < CYMAX
mavg := 0.1 * FLOAT(cycleLength) + 0.9 * mavg;

A-12

tabuLen := MINOF(maxTL, TRUNC(FLOAT(tabuLen)*INCREASE));
END IF;

IF cycleprint
ASK outstrm WriteString("The tour was not found in the hash structure™);
ASK outstrm WriteString(" The current mavg: ");
ASK outstrm WriteReal(mavg,7,1);
ASK outstrm WriteLn;
ASK outstrm WriteString(" Steps since last tabuLen change: ");
ASK outstrm WriteInt(ssltlc,6);
ASK outstrm WriteString(" Current tabuLen:");
ASK outstrm WriteInt(tabuLen,6);
ASK outstrm WriteLn;
END IF;

END PROCEDURE,; {cycle}
{Computes the incremental change in the value of the travel time from the incumbent

tour to the proposed neighbor tour, and computes the neighbor schedule parameters
preparing for computation of penalty terms (see compPens)}

PROCEDURE moveValTT (IN i, {position of customer to be moved}
d, {depth of the insertion}
numnodes : INTEGER;
IN tour : tourType; {current tour}

INOUT nbrtour : tourType; {neighbor, temporary tour}
IN time : arrInt2dimType;
OUT moveVal : INTEGER);

VAR
is, { predecessor of the moving node in its old spot}
s {predecessor of the moving node in its old spot}
delin, {incremental tour trave! time, entering arcs}
delout, {incremental tour trave! time, leaving arcs}
iend, {index to the end of "within" area of insertion}
nodelf, {tour index of node at left}
nodert :INTEGER; {tour index of node at right}

BEGIN

delin := 0; delout :=0;

IFd>0
ji=i+4d;
is:=i+d-1;
iend:=i+d+1;

ELSE '
ji=i1+d-1;
is:=1+d;
iend:=i+d+3;

END IF;

nodelf :=is-1;

nodert := nodelf + 1;

{updates the schedule from node is to appropriate vehicle or terminal depot}
WHILE (nodelf < iend) OR (nbrtour[nodelf].type <> 2)

A-13

{update arrival}
nbrtour[nodert].arr := nbrtour[nodelf].dep +
time[nbrtour[nodelf].id][nbrtour[nodert].id];
{update dep and wait times }
IF nbrtour[nodert].type = 2
nbrtour[nodert].dep := nbrtour[nodert].ea;
nbrtour[nodert].wait := 0;
nbrtour[nodert].load := 0;
ELSE
nbrtour[nodert].load := nbrtour[nodelf].load + nbrtour[nodert].qty;
nbrtour[nodert).dep := MAXOF(nbrtour[nodert].ea, nbrtour[nodert].arr);
nbrtour[nodert].wait := nbrtour[nodert].dep - nbrtour[nodert].arr;
END IF;

nodelf := nodelf + 1;
nodert := nodert + 1;
END WHILE;

{Relative to the incumbent tour (tour) and working tour (nbrtour),
compute the change in travel time}

delout := time[tour[i-1].id][tour[i].id] + time[tour[i].id][tour[i+1].id]
+ time[tour{j].id][tour{j+1].id];

delin := time[tour[i-1].id][tour[i+1].id] + time[tour[j].id]{tour[i].id]
+ time[tour[i].id][tour([j+1].id];

moveVal := delin - delout;
END PROCEDURE; {moveValTT}

{adjusts the current tour for the defined insert move}
PROCEDURE insert (IN chl, chD : INTEGER; {origin and recipient of insert move}

INOUT tour : tourType); {current tour}
VAR
i,j : INTEGER;
BEGIN
IFchD >0

FOR j := 0 TO chD-1
SwapNode(tour[chl+j], tour[chI+j+1]);
END FOR,;
ELSE
FOR j := 0 DOWNTO chD+1
SwapNode(tour[chI+j], tour[chI+j-1]);
END FOR;
END IF;

END PROCEDURE; {insert}

END MODULE.

A-14

Appendix B: tsptwMod

The library "tsptwMod" contains the objects, methods, and procedures related to
the mTSPTW. Objects include a timeMatrixObj meant for reading in the problem data
and calculating the time matrix. The object startTourObj reorders the initial tour by the
time window medians and initializes the parameters associated with finding a best tour.
The object reacTabuObj contains one method, the reactive tabu search created by Carlton

(1995). The implementation module follows.

IMPLEMENTATION MODULE tsptwMod;

FROM IOMod IMPORT StreamObj, ALL FileUseType;

FROM OSMod IMPORT SystemTime;

FROM MathMod IMPORT SQRT;
{VRP data types}

FROM tabuMod IMPORT arrInt2dimType;

FROM tabuMod IMPORT arrIntType;

FROM tabuMod IMPORT arrRealType;

FROM tabuMod IMPORT coordType;

FROM tabuMod IMPORT coordArrType;

FROM tabuMod IMPORT nodeType;

FROM tabuMod IMPORT tourType;

FROM tabuMod IMPORT vrpPenType;
{output stuff}

FROM tabuMod IMPORT qcktourFile;

FROM tabuMod IMPORT twLoadToFile;
{Move/order/search stuff}

FROM tabuMod IMPORT SwaplInt;

FROM tabuMod IMPORT SwapNode;

FROM tabuMod IMPORT moveValTT; {Travel time version}

FROM tabuMod IMPORT insert;
{schedule, penalty, and hash stuff}

FROM tabuMod IMPORT tourSched;

FROM tabuMod IMPORT compPens;

FROM tabuMod IMPORT tsptwPen; {TSPTW version}
{best solution tracker}

FROM bestSolnMod IMPORT twBestTT; {best travel time, lowest number of vehicles}
{hashing stuff} '

FROM hashMod IMPORT hashListObj;

FROM hashMod IMPORT hashRecord;

FROM hashMod IMPORT hashTblType;

FROM hashMod IMPORT randWtWZ;

FROM hashMod IMPORT tourHVwz;

FROM hashMod IMPORT lookfor;
{reaction stuff}

B-1

FROM tabuMod IMPORT nocycle;
FROM tabuMod IMPORT cycle;

FROM tabuMod IMPORT countVeh;

OBIJECT timeMatrixObj;

{Reads in the x,y coordinates and time window file and calculates the
time between each node. Does not assume the problem is symmetric, but
makes it so}

{read in the time matrix directly -- for mTSP problems}
ASK METHOD readTime (IN instrm : StreamObj;
IN gamma, nv, maxtime : INTEGER;
OUT nc, numnodes : INTEGER;
IN factor : REAL;
OUT tour, bestTour, bfTour : tourType;
OUT time : arrInt2dimType);
VAR
i, j : INTEGER;
node : nodeType;
BEGIN

ASK instrm ReadInt(nc); ‘ {read in # customers}
numnodes := nc + nv;

NEW (tour, 0..numnodes);

NEW(bfTour, 0..numnodes);

NEW! (bestTour, 0..numnodes);

FOR i := 0 TO numnodes

NEW(node); {instantiate each node}
tour[i] := node; {place each node in array}

tour{i].id :=1; {set node id}
IF (i=0) OR (i > nc) {set node types}
tour[i].type := 2; {2=veh node}
ELSE
: tour[i].type := 1; {1=cust node}
END IF;

tourfi].arr ;= Q;
tour[i].dep := 0;
tour[i].wait := 0;
tour[i].load := 0;
tour{i].ea :=0;
tour[i].la := maxtime;

bestTour[i] := CLONE(tour[i]);
bfTour[i] := CLONE(tour[i]);
END FOR;

NEW(time, 0..numnodes, 0..numnodes); {initialize time matrix }

{read in SYMMETRIC time matrix }
FORi:=0TOnc
FOR j :=i1+1 TO nc
ASK instrm ReadInt(time[i][j]);
time[j][i] := time[i][j];
END FOR;
END FOR;

{demand to vehicle & vehicle to demand travel same as demand to depot}
FOR1i:=1TOnc
FOR j := nc+1 TO numnodes
time[i][j] := time[O][i];
time[j][i] := time[il{j];
END FOR;
END FOR;

END METHOD; {readTime}

{Reads in the x,y coordinates for a simple symmetric TSP problem}
{AND calculates the time matrix }
ASK METHOD readTSP(IN instrm : StreamObyj;
OUT nc, numnodes : INTEGER;
IN nv, maxtime : INTEGER;
OUT tour, bestTour, bfTour : tourType;
OUT time : arrInt2dimType);

VAR
i,j,id :INTEGER;
xdiff, ydiff,
xdiff2, ydiff2 : REAL;
position : coordType; {record to instantiate array of coord}
coord :coordArType;
node :nodeType; {record to instantiate array of nodes}
BEGIN
ASK instrm ReadInt(nc); {read in # customers}
numnodes := nc + nv; {# nodes in directed graph}

NEW(tour, 0..numnodes);
NEW(bfTour, 0..numnodes);
NEW(bestTour, 0..numnodes);

FOR i := 0 TO numnodes
NEW(node); {instantiate each node}
tour[i] := node; {place each node in array}

tour[i].id :=1; {set node id}

IF (i=0) OR (i > nc) {set node types}
tour[i].type := 2; {2=veh node}

ELSE
tour[i].type := 1; {l=cust node}

END IF;

tour(i].arr := 0;

B-3

tour[i].dep :=0;
tour[i].wait := 0;
tour[i].load := O;
tour[il.ea := 0;
tour[i].la := maxtime;

bestTour[i] := CLONE(tour[i]);
bfTour[i] := CLONE(tour[i]);

END FOR;
NEW(time, 0..numnodes, 0..numnodes); {initialize time matrix }
NEW(coord, 1..nc); {initialize array of positions}
FORi:=1TOnc
NEW!(position); {instantiate each record}
coord[i] := position; {place record in array}
END FOR;

{read in customer nodes}
FORi:=1TOnc

ASK instrm ReadInt(id);

ASK instrm ReadReal(coord[i].x);

ASK instrm ReadReal(coord[i].y);
END FOR;

{initialize vehicle nodes and terminal depot}
FOR i := nc+1 TO numnodes
tour[i] := CLONE(tour[0]);
tour[i].id :=1i;
END FOR;

{Find integer euclidean dist}
{depot and demand nodes}
FORi:=1TOnc
FOR j :=i+1 TO nc
xdiff := coord[i].x - coord[j].x;
ydiff := coord[i].y - coord[j].y;
xdiff2 := xdiff*xdiff;
ydiff2 := ydiff*ydiff;
time[i][j] := TRUNC(SQRT(xdiff2 + ydiff2));
timel[j][i] := time[i]{j];
END FOR;
END FOR;

{depot to demand & demand to depot travel all equal O !!}
FORi:=1TOnc

time[0][i] := O;

time[i][numnodes] := 0;
END FOR;

END METHOD; {readTSP}

{Reads in the x,y coordinates and time window file and calculates the
time between each node. }

B-4

{reads in a dataset of Solomon's style}

ASK METHOD readTSPTW(IN instrm : StreamObj;
OUT nc, numnodes : INTEGER;
IN factor : REAL;
IN nv : INTEGER;
OUT coord : coordArrType;
OUT tour : tourType;
OUT s : arrIntType);

VAR
i, id,
qty : INTEGER; {quantity demanded at each node}
servtime, {service time at node}
late, {late start to TW}
early :REAL; {early start to TW}
position : coordType; {record to instantiate array of coord}
node :nodeType; {record to instantiate array of nodes}
BEGIN
ASK instrm ReadInt(nc); {read in # customers}
numnodes := nc + nv; {# nodes in directed graph}

NEW(tour, 0..numnodes); {initialize array of nodes}
{node O=depot, nc cust node}
{nodes > nc are vehicle}
{nv-1 vehicle nodes, 0 is 1st vehicle}
{numnodes = terminal depot}
FOR i := 0 TO numnodes
NEW (node); {instantiate each node}
tour[i] ;= node; {place each node in array}

tour[i].id :=1; {set node id}
IF(i=0)OR (i>nc) {set node types}
tour[i].type := 2; {2=veh node}
ELSE
tour[il.type := 1; {l=cust node}
END IF;
END FOR;
NEW(coord, 0..nc); {initialize array of positions}
NEW(s, 0..nc); {initialize service time array }

FORi:=0TOnc

NEW! (position); {instantiate each record}
coord[i] := position; {place record in array}
END FOR;

{read in depot node}

ASK instrm ReadReal(coord[0].x);
ASK instrm ReadReal(coord[0].y);
ASK instrm ReadInt(qty);

ASK instrm ReadReal(early);
ASK instrm ReadReal(late);

ASK instrm ReadReal(servtime);

s[0] := TRUNC(factor * servtime);
tour[0].ea := TRUNC(factor*early); {use Int times}
tour[0].1a := TRUNC(factor*late);

{read in customer nodes}
FORi:=1TOnc
ASK instrm ReadReal(coord[i].x);
ASK instrm ReadReal(coord[i].y);
ASK instrm ReadInt(tour[i].qty);
ASK instrm ReadReal(early);
ASK instrm ReadReal(late);
ASK instrm ReadReal(servtime);

tour[i].ea := TRUNC(factor*early); {use Int times}
tour[i].la := TRUNC(factor*late);
s[i] := TRUNC(factor * servtime);

END FOR;

{initialize depot node}
tour[0].type = 2;
tour[0].arr := tour[0].ea;
tour[0].dep := tour[0].ea;
tour[0].wait := 0;
tour[0].load :=0;

{initialize vehicle nodes and terminal depot}
FOR i := nc+1 TO numnodes
tour[i] := CLONE(tour[0]);
tour[il.id :=1;
END FOR;

END METHOD; {readTSPTW}

{Compute 2 dimensional time/distance matrix }
{Does not assume the problem is symmetric, but makes it so}
ASK METHOD timeMatrix(IN nc , numnodes, gamma : INTEGER;
IN factor : REAL;
IN tour : tourType;
IN coord : coordAnType;
OUT time : arrInt2dimType;
IN s : arrIntType);

VAR
L]
k : INTEGER;
xdiff, ydiff, {differences for dist calc}
xdiff2, ydiff2 : REAL; {squared differences}
BEGIN
NEW(time, 0..numnodes, 0..numnodes); {initialize time matrix }

{Find integer euclidean dist}
{depot and demand nodes}
FORi:=0TO nc-1
FOR j :=i+1 TO nc
xdiff := coord[i].x - coord[j].x;
ydiff := coord[i].y - coord[j].y;

B-6

xdiff2 := xdiff*xdiff;
ydiff2 := ydiff*ydiff;
time[i][j] := TRUNC(factor * SQRT(xdiff2 + ydiff2));
time[j][i] := timel[i][j];
END FOR;
END FOR;

{Ensure triangle inequality holds}
FOR i :=0TO nc-1
FOR j:=i+1 TOnc
FORk:=0TOnc
IF (k<>i) AND (k<>)
IF time[i][j] > time[i]{k] + time[k][j]
time[i][j] := time[i][k] + time [k][j];
time[j][i] := time[i][j];
‘ END IF;
: END IF;
END FOR;
END FOR;
END FOR;

{demand to vehicle & vehicle to demand travel same as demand to depot}
FORi:=1TOnc
FOR j := nc+1 TO numnodes
time[i][j] := time[0][il;
time[j][i] := time[il[j];
END FOR;
END FOR;

{ Add service time for all demand/demand and demand/vehicle arcs}
FORi:=0TOnc
FOR j := 0 TO numnodes
IFi<>j
time[i][j] := time[i](j] + s[il;
END IF;
END FOR;
END FOR;

{ Add vehicle usage penalty "gamma" to all vehicle to vehicle arcs}
FOR i := nc+1 TO numnodes-1
time[0][i] := time[0][i] + gamma;
FOR j :=i+1 TO numnodes
time(il[j] := timelil[j] + gamma;
time(j][i] := time[il[j];
END FOR;
END FOR;

END METHOD; {timeMatrix }
END OBJECT; {timeMatrixObj}
OBJECT startTourObj;

{Kicks off the clock, Computes an initial schedule and initial tour cost.
Tour Cost= Travel time + Waiting Time + Penalty Term

B-7

Then computes the initial hashing values: f(T) and thv(T)}

{A. Produces a tour based on a sort of increasing avg time windows at
each node. The customers are ordered by increasing avg time window
value, and the nv vehicle nodes are appended to the end of the tour}

ASK METHOD startTour (IN nv, nc : INTEGER;
IN time : arrInt2dimType;
INOUT tour : tourType;
OUT tourLen ; INTEGER;
OUT totPenalty : INTEGER;
OUT tourhv,
startTime : INTEGER;
OUT m : arrIntType;
IN outstrm : StreamObj); {**can remove m**}
VAR
iJ,
numnodes : INTEGER;

BEGIN
numnodes := nc + nv;
startTime := SystemTime();

{1. compute the avg time window at each node "m[i]", exlude depot
nodes.}

NEW(m, 1..nc);
FORi:=1TOnc

ml[i] := (tour[i].ea + tour[i].la) DIV 2 ;
END FOR;

{2. Bubble sort the initial tour based on avg TW time. BUT, do not
swap if the move would violate strong TW infeasibility }
FOR i :=1TO nc-1
FOR j := nc DOWNTO i+1
IF (mfj-1] > m[j}) AND
(tour[j].ea + time[tour[j].id][tour[j-1].id]
<= tour[j-1].1a)

Swaplnt(m[j], m[j-11);

SwapNode(tour[j], tour[j-1]);
END IF;
END FOR;
END FOR;
{B. Compute the initial schedule for the initial tour, and store the values in
the node structure. Also, returns the total tour length excluding any penalty
for infeasibility. tour[0].ea=0 here.}

{Compute initial schedule, return tour's total travel + wait time}
tourSched(1, nc, numnodes, tour, time, tourLen, outstrm);

END METHOD; {startTour}

{C. Initialize "best" values and their times; Compute cost of initial tour as tour length + penalty for
infeasibilities }
ASK METHOD startPenBest (IN numnodes, tvl, {travel time of tour}
tourLen : INTEGER; {length of curr tour}
IN tour : tourType; {curr tour}

IN TWPEN : REAL; {mult factor for TW pen}
OUT totPenalty, {total Penalty (TW here)}
penTrav, {tvl and twpen w/our wait}

tourCost : INTEGER; {tourLen + TW cost}
OUT tourPen : vrpPenType;{tour penalty record}

OUT bfiter, {iter # of bf tour fd}
bfCost, {lowest feas cost found}
bfTT, {best feas trav time}
bfav,
bestiter,
bestCost, {lowest cost found}
bestTT,
bestnv,
bfTime, {Time best feas found}
bestTime : INTEGER; { Time best tour found}
OUT bestTour, { The best tour found}
bfTour : tourType); {best feas tour}
VAR
iter, nvu : INTEGER;
BEGIN

{initialize best FEASIBLE stuff}
{make the initial best penalties really large}

bfCost := 999999999;

bfTT := 9999999;
bfnv := 9999;
bfTime := 0;
bfiter :=-1;

NEW(bfTour, 0..numnodes);

bestCost := 999999999;
bestTT := 9999999;
bestnv := 9999;
bestTime := 0;

bestiter :=-1;

NEW (bestTour, 0..numnodes);

{compute infeasibilities and costs}
{note: if totPenalty > 0, tour NOT feasible}
NEW(tourPen); {Tour Penalty record iniialized}

compPens(numnodes, tour, 0, tourPen);
tsptwPen(numnodes, tourLen, tour, tourPen, TWPEN, totPenalty, tourCost,
penTrav, tvl);

countVeh(numnodes, tour, nvu);

twBestTT(numnodes, totPenalty, penTrav, tvl, nvu, 0, tour, bfCost, bfTT,
bfnv, bfiter, bestCost, bestTT, bestnv, bestiter, bfTour,
bestTour, bfTime, bestTime);

END METHOD; {startPenBest}

END OBIJECT; {startTourObj}

OBIJECT reacTabuObj;

{Steps through ITER iterations of the reactive tabu search.}
ASK METHOD search (IN TWPEN, INCREASE, DECREASE : REAL;

VAR

IN HTSIZE, CYMAX, ZRANGE, DEPTH, minTL, maxTL, tabuLen,
iters, nc, numnodes : INTEGER,;

IN outstrm, outstrm?2 : StreamObyj;

INOUT tourPen : vrpPenType;

IN time : arrInt2dimType;

IN stepprint, moveprint, cycleprint : BOOLEAN;

INOUT tourCost, penTrav, totPenalty, tvl,
bfCost, bfTT, bfnv, bfiter, bestCost, bestTT, bestnv,
bestTime, bfTime, bestiter, numfeas : INTEGER;

INOUT tour, bestTour, bfTour : tourType);

i, {index, usually current node for moving}
Js

k, {iteration number}

1, {index only}

fhv, {Woodruff&Zemel 1st level hash value}
shv, {Woodruff&Zemel 2nd level hash value}
tourLen, {entire length of time tour takes}

ssltlc, {steps since last tabu length change}

escBest, {the objective value of the best of all moves}

Dbest, {smallest swap cost among all neighbors}

Dbestf, {smallest swap cost among feasible neighbors}
chl, {choice node initiating overall best insert move}
chD, {choice node receiving overall best insert move}

“ch"'s may be initially set to nontabu infeasible moves
or infeasible moves that aspire at insert move search }

feasl, {node initiating "good" feasible insert move}
feasD, {node receiving "good" feasible insert move}
escl, {node initiating "good" escape insert move}
escD, {node receiving "good" escape insert move}
nodetype, {type of node considered for insertion}

" nexttype, * {type of node next to the considered insert node}
next2type, {type of 2 steps from the considered insert node}
If, {id of node on left}
rt, {id of node on right}

d, {index for insert DEPTH}

dstart, {initial value for DEPTH index in EARLY loop}
moveVal, {move value (curr tour to nbr), tvl + pen change}
totNbrPen, {total penalty for neighbor tour}

zin, {zin and zout update the tour hash value}

zout, { for the affected nodes only}

nvu {# vehicles used}

B-10

: INTEGER;
mavg :REAL; {moving average of cycle length}
tabulist : arrInt2dimType;

list : hashListObj; { used to instantiate the array of lists}
zArr ; arrIntType; {random weights assigned to nodes}

node : nodeType; {used to instantialte "working" tour}

load,

earlymove, {TRUE if an early move is to be performed}
found : BOOLEAN; {TRUE if curr tour was visited before}

hashcurr : hashRecord; {curr tour's 2nd hash and other info}
hashtbl : hashTblType; {array of hash lists indexed by 1st hash}

nbrtour : tourType; {working tour for insertion operation}
nbrPen : vipPenType; {penalty record of neighbor tour}
str,
where : STRING; {used as diagnostic check}
CONST

{ iter penTrav bestCost bfCost}
format="****< Fdckdokk ok o kskokskokdokk o *******<";

BEGIN
{ sk
ASK outstrm?2 WriteString("iter tabuLen penTrav bestCost bfCost");

ASK outstrm?2 WriteLn;
*kek }

{initialize the RTS parameters}
mavg ;= FLOAT(numnodes - 2);
ssltlc := 0;

{initialize tabu array to zero}
NEW(tabulist, 0..numnodes, 0..numnodes);
FOR i := 0 TO numnodes
FOR j := 0 TO numnodes
tabulist[i][j] := O;
END FOR;
END FOR;

k :=1; {first iteration}
numfeas := 0;

NEW(hashtbl, 0. HTSIZE); {instantiate the hash table}
FOR i := 0 TO HTSIZE
NEW(list);
hashtbl[i] := list;
END FOR;
randWtWZ(nc, numnodes, ZRANGE, zArr); {assign random wts to each node}

tourHVwz(numnodes, tour, zArr, shv); {start tour's 2nd level hash val}

B-11

{Place initial tour in hash table}
{create a hashRecord}
NEW (hashcurr);

{assign the 2nd level hash value, tourCost, tvl & penalties hashcurr}
hashcurr.shv := shv;

hashcurr.cost := tourCost;

hashcurr.tvl := tvl;

hashcurr.twpen := tourPen.tw;

hashcurr lastiter := 0;

{find the 1st level hash value for the current tour}
fhv := tourCost MOD HTSIZE;

{ Add current hash record object to the linked list indexed by thv}
ASK hashtbl[fhv] AddFirst(hashcurr);

WHILE k <= iters

IF moveprint

ASK outstrm WriteLn;

str :="k =" + INTTOSTR(k);
ASK outstrm WriteString(str);
END IF;

{** FIND INCUMBENT TOUR *%*}
{initialize "move" parameters}
Dbest := 999999;

escBest := 999999;

Dbestf := 999999;

chl :=0;

chD :=0;

feasl := 0;

feasD :=0;

escl :=0;

escD :=0;

{*******************************}

{** check all LATER insertions**}
FOR i := 1 TO numnodes-2

{copy incumbent tour to working copy "nbr"}
NEW(nbrtour, 0..numnodes);
nbrtour := CLONE(tour);
FOR 1 := 0 TO numnodes
nbrtour[l] := CLONE(tour[1]);
END FOR;

nodetype := tour[i].type; {determine current nodes type}

d=1;
WHILE d <= DEPTH {DEPTH loop}

B-12

IF i+d < numnodes - 1 {feasible depth?}

{determine type of node on right}
nexttype := tour[i+d].type;

IF nodetype = 1 {customer node}

{if strong TWs violated within a vehicle, move the customer
along until a vehicle is encountered, then swap and

"locally" update the schedule as the customer is

swapped, and increment d as well}

| {strong TW check}
IF (tour[i-+d].ea + time[tour[i+d].id][tour[i].id])
> tour]i].la

WHILE nbrtour[i+d].type = 1

If :=i+d-1;
1t = i+d;
SwapNode(nbrtour[lf], nbrtour[rt]);

{local update:arr,dep,wait}

nbrtour[lf].arr := nbrtour[If-1].dep +
time[nbrtour[1f-1].id][nbrtour[lf].id]);

nbrtour[if].dep := MAXOF(nbrtour[1f].ea, nbrtour[lf].arr);

nbrtour[1f].wait :=nbrtour[1f].dep - nbrtour[lf].arr;

{local update:load}
IF nbrtour({1f-1].type =2
nbrtour[lf].load := nbrtour{lf].qty;
ELSE
nbrtour[lf].load := nbrtour[lf-1].1oad + nbrtour[1f].qty;
END IF;

d:=d+1;

{IF with EXIT from "DEPTH" loop}

{because if you increment to numnodes-1, don't want}
{to do a swap with terminal depot}

IF i+d = numnodes-1 EXIT; END IF;

END WHILE;
END IF;{TW check}
{ The customer is now ready to have its move evaluated:
1 Swap it with the next node
2 Compute the change in travel distance, and compute the
neighbor's schedule
3 Compute the neighbor's penalty values

4 Increase the total move value by the "costed penalties"}

{1} SwapNode(nbrtour[i+d-1], nbrtour{i+d]);

B-13

{2} moveValTT(, d, numnodes, tour, nbrtour, time, moveVal);

{3} NEW(nbrPen);
compPens(numnodes, nbrtour, 0, nbrPen);
{4} totNbrPen := nbrPen.tw;
moveVal:= moveVal+TRUNC(TWPEN*FLOAT (nbrPen.tw-tourPen.tw));

DISPOSE(nbrPen);

IF stepprint
ASK outstrm WriteLn;
str := "node " + INTTOSTR(tour[i].id) + "d =" + INTTOSTR(d) + " ";
ASK outstrm WriteString(str);
str := " moveVal =" + INTTOSTR(moveVal) + " totNbrPen = " + INTTOSTR(totNbrPen);
ASK outstrm WriteString(str);

IF i+d < numnodes

IF k <= tabulist[tour[i].id][i+d]

ASK outstrm WriteString(" **TABU");

END IF;
END IF;
END IF;
{END nodetype = 1 (customer)}
ELSE {nodetype = 2, vehicle
and vehicles are always strong TW feasible
IF next node is a customer, move is valid}
IF nexttype = 2 EXIT; END IF;
{dont swap adjacent vehicles, leave "d" loop}
{1} SwapNode(nbrtour[i+d-1], nbrtour[i+d]);
{2} moveValTT(, d, numnodes, tour, nbrtour, time, moveVal);
{3} NEW(nbrPen); .
compPens(numnodes, nbrtour, 0, nbrPen);
{4} totNbrPen := nbrPen.tw;
moveVal:= moveVal+ TRUNC(TWPEN*FLOAT(nbrPen.tw-tourPen.tw));
DISPOSE(nbrPen);
IF stepprint
ASK outstrm WriteLn;

str := "node " + INTTOSTR(tour[i].id) + "d =" + INTTOSTR(d) + " ";
ASK outstrm WriteString(str);
str := " moveVal = " + INTTOSTR(moveVal) + " totNbrPen = " + INTTOSTR(totNbrPen);
ASK outstrm WriteString(str);

IF i+d < numnodes

IF k <= tabulist[tour[i].id][i+d]

ASK outstrm WriteString(" **TABU");

END IF;

END IF;
END IF;

END IF; {nodetype check}

B-14

IF totNbrPen = 0 {feasible candidate tour?}

IF (moveVal < Dbestf) {If this is best feasible neighbor,}
{AND (not tabu OR it aspires), SAVE!}
IF (k > tabulist[tour[i].id][i+d])
OR (moveVal + penTrav < bestCost)

Dbestf := moveVal,
feasl :=1;
feasD :=d;

END IF; {not tabu OR aspires}
END IF; {moveVal < DbestF}
{END totNbrPen = 0}

ELSE {candidate is infeasible}
IF (moveVal < Dbest) {IF this is best infeas neighbor, SAVE}

IF (k > tabulist[tour[i].id][i+d])
OR (moveVal + penTrav < bestCost)

Dbest := moveVal;
chl =i
chD :=d;

END IF; {not tabu OR aspires}
END IF; {moveVal < Dbest}
END IF; {infeas candidate}

{Escape Routine}
{saves the best of all neighbor moves in case all moves tabu or
non-quality changing}
IF moveVal < escBest
escBest := moveVal
escl :=1i; ¢
escD :=d;

END IF;{escape}
{IF only vehicle nodes are left in the tour, STOP, }
{ get the next node. Compare the position to the id of the }
{node, IF equal you are at the end of the tour (Carlton, 95:5.3)}
IF (nbrtour[i+d+1].type =2)
AND (nbrtour[i+d+1].id=1+d + 1)
EXIT; END IF;
ELSE {i+d < numnodes - 1 (feasible DEPTH)}
EXIT;
END IF;

d:=d+1;

B-15

END WHILE; {d=1to DEPTH}

FOR 1 := 0 TO numnodes
DISPOSE(nbrtour(1]);

END FOR;

DISPOSE(nbrtour);

IF stepprint

ASK outstrm WriteLn;

str = "Dbestf = " + INTTOSTR(Dbestf) + " Dbest = " + INTTOSTR(Dbest)
+ " escBest =" + INTTOSTR(escBest);

ASK outstrm WriteString(str); ASK outstrm WriteLn;

END IF;

END FOR;{i = 1 to numnodes-2}

{ sk ke cskokeskokosk sk kR sk ok ********************}

{*** check all EARLIER insertions ***}
i:=3
WHILE i <= numnodes-1
earlymove := TRUE; {initially, we intend to perform a move}
{create working copy}
nbrtour := CLONE(tour);
FOR 1 := 0 TO numnodes
nbrtour([l] := CLONE(tour[1]);
END FOR;

{do not consider any d = -1 moves as they are later moves}
d:=1;

nodetype := tour[i].type;
nexttype := tour[i-1].type;
next2type := tour[i-2].type;

IF nodetype = 2 {vehicle node}

IF (nexttype <> 2) AND (next2type <> 2)
{dont want adjacent vehicles or a sandwiched customer}

SwapNode(nbrtour[i-d], nbrtour[i-d+1]);
di=d+1;

ELSE
earlymove := FALSE; { GOTO NEXT NODE}
END IF; {nexttype or next2type = 2}

ELSE {customer node}

{strong TW check}
IF tour{i).ea + time[tour[i].id][tour[i-1].id] <= tour[i-1].]la
{do the d = -1 swap (i and i-1)}

SwapNode(nbrtour[i-d], nbrtour[i-d+1]);
d:i=d+1;

ELSE {TW check NOT OK}

{do swaps to the next earlier vehicle node}

{stop while a customer is adjacent}

WHILE nbrtour[i-d].type = 1
SwapNode(nbrtour[i-d], nbrtour[i-d-+1]);
d=d+1;

END WHILE;

{if we are now at start depot, GOTO NEXT NODE}

IFi-d=0
earlymove := FALSE;

END IF;

END IF; {strong TW check}
END IF; {END for customer node}
IF earlymove = TRUE
WHILE d <= DEPTH {DEPTH loop}

IF i-d <= 0 {feasible DEPTH check}

EXIT; {avoid unnecessary loops}

ELSE
IF nodetype = 1

{strong TW check}
IF tour[i].ea + time[tour[i].id][tour[i-d].id]

> tour[i-d].la

{swap adjacent customers}
WHILE nbrtour[i-d].type = 1

SwapNode(nbrtour{i-d], nbrtour[i-d+1]);
d=d+1;
END WHILE;
{stop at node 0, GOTO NEXT NODE (i)}
IFi-d=0

EXIT;
END IF;

END IF; {strong TW check}

B-17

{*now evaluate neighbor tour*}

{1} SwapNode(nbrtour[i-d], nbrtour[i-d+11);
{2} moveValTT(, -d, numnodes, tour, nbrtour, time, moveVal);
{3} NEW(nbrPen);
compPens(numnodes, nbrtour, 0, nbrPen);
{4} totNbrPen := nbrPen.tw;
moveVal:= moveVal+ TRUNC(TWPEN*FLOAT(nbrPen.tw-tourPen.tw));

DISPOSE(nbrPen);

IF stepprint
ASK outstrm WriteLn;
str := "node " + INTTOSTR(tour[i].id) + "d =" + INTTOSTR(-d) + " ";
ASK outstrm WriteString(str);
str := " moveVal =" + INTTOSTR(moveVal) + " ;
ASK outstrm WriteString(str);
IF i+d < numnodes
IF k <= tabulist[tour[i].id][i+d]
ASK outstrm WriteString(" **TABU"),
END IF;
END IF;
END IF;

ELSE {END for customer node, start vehicle node}
nexttype := tour[i-d-1].type;

{dont swap to adjacent vehicles, eval next node}
IF (nexttype = 2)

EXIT; {GOTO NEXT NODE (i)}
ELSE

{*evaluate neighbor tour*}
{1} SwapNode(nbrtour[i-d], nbrtour[i-d+1]);

{2} moveValTT(i, -d, numnodes, tour, nbrtour, time, moveVal);
{3} NEW(nbrPen);

compPens(numnodes, nbrtour, 0, nbrPen);
{4} totNbrPen := nbrPen.tw;

moveVal:= moveVal+ TRUNC(TWPEN*FLOAT (nbrPen.tw-tourPen.tw));

DISPOSE(nbrPen);

IF stepprint
ASK outstrm WriteLn;
str := "node " + INTTOSTR(tour[i].id) + "d =" + INTTOSTR(-d) + " ";
ASK outstrm WriteString(str);
str := " moveVal =" + INTTOSTR(moveVal) + " ";
ASK outstrm WriteString(str);
IF i+d < numnodes
IF k <= tabulist[tour[i].id][i+d]

ASK outstrm WriteString(" **TABU");
END IF;
END IF;
END IF;

END IF; {END adjacent vehicle check}
END IF; {END for vehicle node}

{feasible tour?}
IF totNbrPen =0

IF (moveVal < Dbestf)

{IF not tabu OR aspires}
IF (k > tabulist[tourf[i].id][i-d])
OR (moveVal + penTrav < bestCost)

Dbestf := moveVal,;
feasl :=1;
feasD :=-d;

END IF; {IF not tabu OR aspires}
END IF; {moveVal < Dbestf}

ELSE {infeasible tour}
IF (moveVal < Dbest)

{IF not tabu OR aspires}
IF (k > tabulist[tour[i].id][i-d])
OR (moveVal + penTrav < bestCost)

Dbest := moveVal
chl:=i;
chD := -d;

END IF; {IF not tabu OR aspires}
END IF; {moveVal < Dbest}

END IF; {feasible tour check}

{Escape Routine}
{saves the best of all neighbor moves in case all moves tabu
or non-quality changing}
IF moveVal < escBest
escBest := moveVal
escl :=1;
escD :=-d;

END IF;{escape}
END IF; {feasible DEPTH check}

di=d+1;

END WHILE; {DEPTH loop}
END IF; {earlymove=TRUE}
i=i+l;

IF stepprint

ASK outstrm WriteLn;

str := "Dbestf = " + INTTOSTR(Dbestf) + " Dbest =" + INTTOSTR(Dbest)
+ " escBest =" + INTTOSTR(escBest);

ASK outstrm WriteString(str); ASK outstrm WriteLn;

END IF;

FOR 1 := 0 TO numnodes
DISPOSE(nbrtour[1]);

END FOR;

DISPOSE(nbrtour);

END WHILE; {i = 3 TO numnodes-2}
{If feasible move found, move to it}
IF feasI <> 0

chl :=feasl;
chD := feasD;

{** IF ALL MOVES ARE TABU AND NONE MEET ASPIRATION CRITERIA **}

{ }

{ THEN SET chl AND chD TO THE BEST MOVE DISCOVERED

{ AND DECREASE THE TABU LENGTH }
{ }

{ OR IF NO MOVES ARE AVAILABLE }

{***}

{NO MOVES ARE AVAILABLE}

{This "degenerate” condition only occurs whenever only one
vehicle is available and no feasible moves are available

because of STRONG TW feasibility. This stops all computation
and prompts the user to restart allowing more than one vehicle.}

ELSIF escI =0
ASK outstrm WriteLn;
ASK outstrm WriteInt(k, 4);
ASK outstrm WriteString("There are no moves available....");
ASK outstrm WriteString("Increase the number of vehicles and try again”);
ASK outstrm WriteLn;
EXIT;

{ALL MOVES ARE TABU AND NONE MEET ASPIRATION CRITERIA}
ELSIF chI=0

ASK outstrm WriteString("All moves tabu and none meet aspiration criteria ");

ASK outstrm WriteString(“at iteration: ");
ASK outstrm WriteInt(k, 4);

B-20

ASK outstrm WriteLn;

{best of the neighbors is still moved to, tabu length adjusted}

chl :=escl;

chD :=escD;

tabuLen := MAXOF(ROUND(FLOAT(tabuLen) * DECREASE), minTL);
END IF;

{** UPDATE TABU LIST AND TOUR POSITIONS **}

{allow no "return" moves for tabuLen iterations, See Carlton '95: }
{4.3.6. Prevents a direct (active) move back to the position }
{which the node just moved from}

IFchD=1

tabulist[tour[chI+1].id][chI+1] := k + tabuLen;
ELSE

tabulist[tour[chI].id][chI] := k + tabuLen;
END IF;

{allow no "repeat"” moves for tabuLen iterations, See Carlton '95: }
{4.3.6. Prevents a direct (active) move back into the position }
{into which the node is currently moving}

tabulist[tour[chI].id][chI+chD] := k + tabuLen;

{BEFORE the new tour is constructed, update the tour hashing value}
{Performed exactly like a 3-opt move update, Wooruff&Zemel (93)}
zin :=0; zout :=0;

i:=chl;
IFchD >0
ji=chI +chD;
ELSE
j==chl+chD-1;
END IF;

zout := (zArr[tour[i-1].id] * zArr[tour[i].id])
+ (zArr{tour[i].id] * zArr{tour[i+1].id])
+ (zArr[tour[j].id] * zArr([tour{j+1].id]);

zin := (zArr[tour[i-1].id] * zArr[tour[i+1].id])
+ (zArr[tour[j].id] * zArr[tour[i].id])
+ (zArr{tour[i].id] * zArr[tour[j+1].id]);

shv := shv + (zin - zout);

IF moveprint

ASK outstrm WriteLn;

str := "Move inserts node " + INTTOSTR(tour{chI].id) + " to position "
+ INTTOSTR(chI + chD);

ASK outstrm WriteString(str); ASK outstrm WriteLn;

str ;= "w/ shv = " + INTTOSTR(shv);

ASK outstrm WriteString(str); ASK outstrm WriteLn;

END IF;

B-21

{Perform the insertion}
insert(chl, chD, tour);

IF moveprint
gcktourFile(outstrm, tour, numnodes);
END IF;

{*UPDATE THE NEW INCUMBENT SCHEDULE*}
{* schedule data and tour length *}
IFchD >0

tourSched(chl, nc, numnodes, tour, time, tourLen, outstrm);
ELSE

tourSched(chI+chD, nc, numnodes, tour, time, tourLen, outstrm);
END IF;

{update penalties}

compPens(numnodes, tour, 0, tourPen);

tsptwPen(numnodes, tourLen, tour, tourPen, TWPEN, totPenalty,
tourCost, penTrav, tvl);

IF moveprint

str := " and Tour Cost =" + INTTOSTR (tourCost);

ASK outstrm WriteString(str); ASK outstrm WriteLn;

str ;= "Current mavg is " + REALTOSTR(mavg) + " and Steps since last TL change "
+ INTTOSTR(ssltlc) + " current tabuLen " + INTTOSTR(tabuLen);

ASK outstrm WriteString(str); ASK outstrm WriteLn;

END IF;

{*********}

{CYCLE CHECK}

fhv := tourCost MOD HTSIZE;
lookfor(fhv, tourCost, shv, tvl, k, tourPen, hashtbl, hashcurr, found);

{if exact match exists then we found a cycle}

IF found = FALSE {new unfound feasible tour}
IF totPenalty = 0
numfeas := numfeas +1;
END IF;

countVeh(numnodes, tour, nvu);

twBestTT(numnodes, totPenalty, penTrav, tvl, nvu, k, tour, bfCost, bfTT,
bfnv, bfiter, bestCost, bestTT, bestnv, bestiter, bfTour,
bestTour, bfTime, bestTime);

nocycle(DECREASE, minTL, mavg, ssltlc, tabuLen, outstrm, cycleprint);

IF moveprint

str := "This tour was NOT FOUND in the hashing structure";
ASK outstrm WriteString(str); ASK outstrm WriteLn;

END IF;

ELSE

{use hashcurr to get correct "lastiter" }
cycle(hashcurr, INCREASE, maxTL, CYMAX, k, mavg, ssltlc, tabuLen,

B-22

outstrm, cycleprint);

IF moveprint

str := "This tour was FOUND in the hashing structure”;
ASK outstrm WriteString(str); ASK outstrm WriteLn;
END IF;

END IF;

{ ko

IF moveprint

St[' := "non

twLoadToFile(str, outstrm, tour, nc, numnodes, tourLen, TRUE);
END IF;

**}

{*** OUTPUT("k = ", k," and bestCost = ", bestCost); ***}

{ sk

IF(kMOD 10)=0
ASK outstrm?2 WriteInt(k, 4); ASK outstrm WriteString(" ");
ASK outstrm?2 WriteInt(tabuLen, 4); ASK outstrm WriteString(" ");
ASK outstrm2 WriteInt(penTrav, 7); ASK outstrm WriteString(" ");
ASK outstrm?2 WriteInt(bestCost, 7); ASK outstrm WriteString(" ");
ASK outstrm?2 WriteInt(bestCost, 7); ASK outstrm WriteString(" ");
ASK outstrm?2 WriteLn;

END IF;
**}
k:=k+1;

END WHILE,; {* TABU SEARCH ROUTINE END *}
DISPOSE(hashtbl);

DISPOSE(tabulist);

DISPOSE(zArmm);

END METHOD; {search}

END OBJECT; {reacTabuObj}

END MODULE. {Implementation}

B-23

Appendix C: hashMod

The "hashMod" library contains the procedures associated with using a hashing
structure as the long-term memory component to a tabu search. The definition module
creates the hash record and table data structures. The procedure "lookfor" compares a
tour to those values in the hash table. While "randWtWZ" assigns the random weights in
a form suggested by Woodruff and Zemel (1993), "tourHVwz" assigns the hash value to a

given tour.

DEFINITION MODULE hashMod;

FROM ListMod IMPORT BasicRankedList;
FROM ListMod IMPORT BasicListObj;

FROM tabuMod IMPORT vrpPenType;

FROM tabuMod IMPORT tourType;

FROM tabuMod IMPORT arrIntType;

TYPE

hashListObj = OBJECT (BasicListObj, BasicRankedList)
END OBJECT;

hashRecord = RECORD {The Hashing structure}

shv, {2nd level tour hashing value}
cost, {tour cost = tourLen + TW cost}
tvl, {tour's travel time}

twpen, {tour's time window penalty}
loadpen, {tour's load penalty }

lastiter : INTEGER; {iteration of last visit}
next : hashRecord;

END RECORD; {hashRecord}

hashTblType = ARRAY INTEGER OF hashListObj;

{Looks for the current tour in the hashing structure, If the tour is found,
the pointer to the hash table is returned. If not found, the tour is added to
the structure and a NILREC pointer is returned}
PROCEDURE lookfor (IN fhv, tourCost, shv, tvl, iter: INTEGER;

IN tourPen : vrpPenType;

IN hashtbl : hashTblType;
INOUT hashcurr : hashRecord; {pointer to current record}
OUT found : BOOLEAN);

{Computes the Woodruff & Zemel (1993) hashing value from the sum of adjacent
node id multiplication}
PROCEDURE tourHVwz (IN numnodes : INTEGER; IN tour : tourType;

IN zAurr : arrIntType;

OUT tourHV : INTEGER);

{ Assigns random weights between 1 & RANGE to the nodes for Woodruff&Zemel (1993) hashing value
calculations}
PROCEDURE randWtWZ (IN nc, numnodes, ZRANGE : INTEGER;

OUT zArr : arrIntType);

END MODULE.

IMPLEMENTATION MODULE hashMod;

FROM tabuMod IMPORT tourType;
FROM tabuMod IMPORT vrpPenType;
FROM tabuMod IMPORT tourType;
FROM tabuMod IMPORT arrIntType;

FROM RandMod IMPORT RandomObj;

{Looks for the current tour in the hashing structure, If the tour is found,
the pointer to the hash table is returned. If not found, the tour is added to
the structure and a NILREC pointer is returned}
PROCEDURE lookfor (IN fhv, tourCost, shv, tvl, iter: INTEGER;
IN tourPen : vrpPenType;
IN hashtbl : hashTbIType;
INOUT hashcurr : hashRecord; {pointer to current record}
OUT found : BOOLEAN);
VAR
hnp : hashRecord; {hash list pointer}
BEGIN
found := FALSE;

{While the list pointer is not NILREC, search the hash table to determine
if the current tour values are equal to any stored values. If so,
return the pointer}

hnp := ASK hashtbl[fhv] First;

WHILE hnp <> NILREC
IF (hnp.twpen = tourPen.tw)
AND (hnp.loadpen = tourPen.ld)
AND (hnp.shv = shv)
AND (hnp.tvl = tvl)

hashcurr := hnp;

found := TRUE;
EXIT;
ELSE
hnp := ASK hashtbl[fhv] Next(hnp);
END IF; '
END WHILE; '

{If not found, add to hash table}

IF found = FALSE
NEW (hashcurr);
hashcurr.shv := shv;
hashcurr.cost := tourCost;
hashcurr.tvl := tvl;
hashcurr.twpen := tourPen.tw;
hashcurr.loadpen := tourPen.Id;
hashcurr.lastiter := iter;

ASK hashtbl[fhv] AddFirst(hashcurr);
{use AddFirst to prevent another run through the list}
END IF;

END PROCEDURE,; {lookfor}

{Computes the Woodruff & Zemel (1993) hashing value from the sum of adjacent
node id multiplication}
PROCEDURE tourHVwz (IN numnodes : INTEGER; IN tour : tourType;
IN zAurr : arrIntType;
OUT h3 : INTEGER);
VAR
i: INTEGER;
BEGIN
h3 :=0;

FOR i := 0 TO numnodes-1
h3 :=h3 + zArr[tour[i].id] * zArr[tourfi+1].id];
END FOR;

END PROCEDURE; {tourHVwz}

{ Assigns random weights between 1 & RANGE to the nodes for Woodruff&Zemel (1993) hashing value
calculations}

PROCEDURE randWtWZ (IN nc, numnodes, ZRANGE : INTEGER;

OUT zArr : arrIntType);

VAR
i: INTEGER;
randObj : RandomObyj;
BEGIN
NEW(zArr, 0..numnodes);
NEW (randObj);
FORi:=0TOnc

zArt[i] ;= ABS(ASK randObj UniformInt(1, ZRANGE));

{* OUTPUT("zAn["i,"] = ", zArt[i]); *}

C-3

END FOR;
DISPOSE(randObj);

{vehicle nodes same as depot}
FOR i := nc+1 TO numnodes
zArr[i] := zArr[0];
{* OUTPUT("zArr[",1,"] = ", zArr[i]); *}
END FOR;

END PROCEDURE; {tourHVwz}

END MODULE.

Appendix D: bestSolnMod

The "bestSolnMod" library contains only one procedure intended for Carlton's
(1995) reactive tabu search. This procedure, twBestTT, tracks the best travel times and
tour costs and saves the corresponding tours. A separate library was created because
GVRP research is known to use many different forms of the objective function. The

implementation module follows.

IMPLEMENTATION MODULE bestSolnMod;

FROM OSMod IMPORT SystemTime;
{VRP data types}
FROM tabuMod IMPORT tourType;

FROM tabuMod IMPORT countVeh;

{best Travel Time, lowest number of vehicles}
{Retains the feasible solution having the shortest travel time and with the
shortest travel time has the shortest completion time
first saves tour with shortest travel time
ties broken by shortest completion time
and/or number of vehicles used}
PROCEDURE twBestTT (IN numnodes,

totPenalty, {total penalty}
penTrav, {current tour: penalty + tvl}
tvl, {current tour: travel time}
nvu, {number of vehicles used}
iter {current iteration number}

: INTEGER;

IN tour : tourType;

{current tour}

INOUT bfCost, bfTT, {best feas cost & tvl time}

bfnv, {best feas num vehs used}

bfiter, {iter # when best feas found}

bestCost, {best overall penalty + TT}

bestTT, {best overall travel time}

bestnv, {best number of vehs used}

bestiter {iter # when best ovrall found}
: INTEGER;

INOUT bfTour, bestTour : tourType;
INOUT bfTime, bestTime : INTEGER);

VAR
i,
currtime
BEGIN
currtime := SystemTime();

: INTEGER;

{save the tour if it is the best ever found}

{current clock time of search}

IF penTrav < bestCost

bestTT :=tvl;
bestCost := penTrav;
bestTime := currtime;
bestiter := iter;
FOR i := 0 TO numnodes
bestTour[i] := CLONE(tour[i]);
END FOR;
bestnv = nvu;

ELSIF (penTrav = bestCost) AND (nvu < bestnv)

bestTime := currtime;
bestTT :=tvl;
bestiter := iter;
FOR i := 0 TO numnodes
bestTour[i] := CLONE(tour[i]);
END FOR;
bestnv = nvu;

END IF;

{feasible checks}
IF (tvl > bfTT) OR (totPenalty > 0)
RETURN;
ELSIF (tvl < bfTT) AND (totPenalty = 0)
bfTime := currtime;
bfCost := penTrav;
bfTT := tvl;
bfiter := iter;
FOR i := 0 TO numnodes
bfTour[i] := CLONE(tour[i]);
END FOR;
bfnv :=nvu;
RETURN;
ELSIF (tvl = bfTT) AND ((penTrav < bfCost) OR (nvu < bfnv))
bfTime := currtime;
bfCost := penTrav;
bfTT := tvl;
bfiter := iter;
FOR i := 0 TO numnodes
bfTour[i] := CLONE(tour[i]);
END FOR;
bfnv := nvu;
RETURN;
END IF;

RETURN;
END PROCEDURE,; {twbestTT}

END MODULE.

Appendix E: Mtsptw

The main module MtsptwMod is used for mTSPTW problems. It may also be
used for TSP and mTSP problems. As written, it can work on much of the Solomon

datasets (1987) in one run.

MAIN MODULE tsptw;

FROM IOMod IMPORT StreamObj, ALL FileUseType, ReadKey;
FROM OSMod IMPORT SystemTime;

FROM tsptwMod IMPORT timeMatrixObj;
FROM twReduceMod IMPORT twReductionObyj;
FROM tsptwMod IMPORT startTourObyj;

FROM tsptwMod IMPORT reacTabuObj;

FROM tabuMod IMPORT coordArrType;
FROM tabuMod IMPORT tourType;
FROM tabuMod IMPORT vrpPenType;
FROM tabuMod IMPORT arrInt2dimType;
FROM tabuMod IMPORT arrIntType;
FROM tabuMod IMPORT arrRealType;

FROM tabuMod IMPORT twl.oadToFile;
FROM tabuMod IMPORT timeToFile;

VAR
timeMatrix : timeMatrixObj;
twReduce : twReductionObj;
startTour : startTourObyj;
rts : reacTabuOby;

instrm,
outstrm,
outstrm?2 : StreamOby;

factor, {used to convert the coordinates to integer values}

TWEPEN, {Penalty weight assigned to the sum of late arr TW violations}
INCREASE, {RTS parameter: mult. factor to decrease tabu length}
DECREASE {RTS parameter: mult. factor to increase tabu length}

:REAL;
Ljk
endnum,
maxtime, {max possible time of arrival to any node, for time read}
numcycles, {number of TW reduction cycles wanted}
.numchanges, {number of TWs reduced by TW reduction Obj}
numnodes, {number of nodes in the directed graph}
nv, {number of vehicles}
nc, {number of targets/customers}
gamma, {arbitrary cost assigned to the use of each vehicle}

E-1

iters, {number of Tabu Search Iterations per problem}
tourLen, {Length of tour in time}

tvl, {travel] time of tour}
totPenalty, {Total Penalty assigned to current tour}
tourCost, {tour Length + Time Window Cost}
penTrav, {tourCost - totWait == travel time + TW penalty}
bfTourCost, {lowest tourCost found for a feasible tour}
bestCost, {lowest tourCost found for a any tour}
bestTT, {lowest travel time found for a any tour}
bestnv, {# vehs used by best overall tour}
bfTT, {lowest travel time found for feasible tour}
bfnv, {# vehs used by best feas tour}
bfiter, {iteration # when best feasible tour found}
tourhv, {tour's hashing value}
bestiter, {iteration the best Tour found}
bestTime, {Time the best Tour found}
bestTimeF, { Time the best feasible Tour found}
numfeas, {number of feasible solns found}
startTime, {start Time (after time matrix, before TW reductions)}
stopTime, {stop Time (after last iteration)}
duration, { stopTime - startTime}
DEPTH, {depth of nodes we look for insert moves}
ZRANGE, {upper bound on random integer weights assigned to nodes}
HTSIZE, {size of hash table array}
CYMAX, {max cyleLength used to alter mavg}
tabuLen, { current length of tabu tenure}
minTL, {minimum Tabu Length}
maxTL {maximum Tabu Length}
: INTEGER,
outfile, {name of output file}
where, {where in the code?}
file, filein,
filebegin,
fileout2,
fileout : STRING; {filenames}
loadprint, {print load on vehicles}
stepprint, {print each move evaluation}
moveprint, {print every insert move made by RTS}
startprint, {print starting tour and tw reduction steps}
cycleprint, {print hash results}

twrdprint : BOOLEAN; {print tw reduction steps}

coord : coordArrType; {coordinates array}
bestTourF, {best feasible tour found}
bestTour, {node array holding best tour}
tour : tourType; {node array holding the tour}
tourPen : vrpPenType; {record of curr tour penalties}
s : arrIntType; {array of service times}
time : arrInt2dimType; {time/dist matrix }
m : arrIntType; {array of TW midpoints}

BEGIN

{**

**}

OUTPUT(" ");
OUTPUT("Please input the number of vehicles");
INPUT(nv);

OUTPUT(" "™);

OUTPUT("Please input the number of tabu search iterations");
OUTPUT("you would like to step through.");

INPUT(iters);

OUTPUT(" ");
OUTPUT("Please input the problem to work on:");
INPUT(file);

OUTPUT(" ");

OUTPUT("Please input the factor necessary to convert");
OUTPUT("the data coordinates to integer quantities,");
OUTPUT("such as 1, 10, 100, etc.");

INPUT(factor);

OUTPUT(" ");

OUTPUT("Please input the number of time window reduction cycles");
OUTPUT("you would like to step through (2 or 3 usually fine).");
INPUT(numcycles);

{** LOOP THRU MULTIPLE FILES ***

FORj:=1TO6

[Fi=1

filebegin := "C10";
endnum :=9;

ELSIFj =2

filebegin := "R10";
endnum := 12;

ELSIFj =3

filebegin := "C20";
endnum := §;

ELSIFj=4

filebegin := "R20";
endnum :=11;

ELSIFj=>5

filebegin := "RC10";
endnum := §;

ELSIFj=6

filebegin := "RC20";
endnum := 8;

END IF;

FOR k := 1 TO endnum

***}

file := filebegin + INTTOSTR(k);

filein := file + ".DAT";

fileout := file + ".OUT";

{** fileout2 := file + "Rslt.OUT";

**}

OUTPUT((file);
OUTPUT (filein);
OUTPUT (fileout);
{*OUTPUT(fileout2);

*}

{INITTIALIZE}
startprint := FALSE;
timeprint := FALSE,;
stepprint := FALSE;
moveprint := FALSE;
twrdprint ;= FALSE;
cycleprint := FALSE;
loadprint := FALSE;

{print starting tour}

{print time matrix}

{print each RTS step eval}
{print each RTS insert move}
{print TW reduction steps}
{print cycle/nocycle steps}
{print quantity & vehicle loads}

{*} {denotes a parameter setting}

{* nv := 10; *}
{* factor ;= 10.0; *}
{* numcycles :=3; *}

{* iters := 1000; *}
{*} TWPEN := 1.0;
{*} gamma :=0;

{*} INCREASE :=1.2;
{*} DECREASE :=0.9;
{*} CYMAX :=50;

{*} HTSIZE := 1009;
{*} ZRANGE := 5003;
{*} minTL :=5;

{*} maxTL := 2000;

{**was 1009 by Carlton**}
{**was 131073 by Carlton**}

NEW(instrm);
ASK instrm Open(filein, Input);

NEW (outstrm);

ASK outstrm Open(fileout, Output);
{ Kk

NEW (outstrm?2);

ASK outstrm?2 Open(fileout2, Output);
3k }

NEW((timeMatrix);

{reads Carlton file, finds nc, inits coord & tour}
ASK timeMatrix readTSPTW (instrm, nc, numnodes, factor, nv,
coord, tour, s);

{compute time matrix }

ASK timeMatrix timeMatrix(nc, numnodes, gamma, factor,
tour, coord, time, s);

E-4

{open problem file}

{calc time/dist matrix }

{***

***}

{*}
{*}

{***

***}

where := "timeMatrix complete";
timeToFile(where, outstrm, time, numnodes);

DEPTH := nc+nv-1;
tabuLen := MINOF(30, nc+nv-1);

ASK instrm Close; DISPOSE(instrm);
DISPOSE(timeMatrix);
NEW(twReduce); {reduce time windows}

ASK twReduce rdWindow(outstrm, nc, numnodes, numcycles,
numchanges, time, tour, twrdprint);
DISPOSE(twReduce);

where := "TW reduction complete";
twLoadToFile(where, outstrm, tour, nc, numnodes, tourLen, factor, loadprint);

NEW(m, 1..nc);
FORj:=1TOnc

m[j] :=0;
END FOR;

NEW(startTour); {find intial tour}
ASK startTour startTour(nv, nc, time, tour, tourLen,
totPenalty, tourhv, startTime, m, outstrm);

IF startprint

where := "startTour complete";

twLoadToFile(where, outstrm, tour, nc, numnodes, tourLen, factor, loadprint);
END IF;

ASK startTour startPenBest(numnodes, tvl, tourLen, tour, TWPEN,
totPenalty, penTrav, tourCost, tourPen,
bfiter, bfTourCost, bfTT, bfnv, bestiter,
bestCost, bestTT, bestnv, bestTimeF, bestTime,
bestTour, bestTourF);

ASK outstrm WriteString("totPen penTrav tourCost bfiter biter");
ASK outstrm WriteString(" bCost bestTT bfCost bfTT");

ASK outstrm WriteLn;

ASK outstrm WriteInt(totPenalty,6); ASK outstrm WriteInt(penTrav,8);
ASK outstrm WriteInt(tourCost,9); ASK outstrm WriteInt(bfiter,7);
ASK outstrm WriteInt(bestiter,6); ASK outstrm WriteInt(bestCost,6);
ASK outstrm WriteInt(bestTT,7);

ASK outstrm WriteInt(bfTourCost,7); ASK outstrm WriteInt(bfTT,5);
ASK outstrm WriteLn; ASK outstrm WriteLn;

IF startprint

where := "startTour & startPen complete”;

ASK outstrm WriteString(where); ASK outstrm WriteLn;

ASK outstrm WriteString("tourLen: "); ASK outstrm WriteInt(tourLen, 3);
ASK outstrm WriteString(" Total Penalty: ");

ASK outstrm WriteInt(totPenalty, 4);

ASK outstrm WriteLn;

ASK outstrm WriteString(" TourCost: ");

ASK outstrm WriteInt(tourCost, 4);

ASK outstrm WriteString(" Best Cost: ");.

ASK outstrm WriteInt(bestCost, 4);

ASK outstrm WriteString(" Best Travel Time: ");
ASK outstrm WriteInt(bestTT, 4);

ASK outstrm WriteLn;

END IF;

DISPOSE(startTour);

NEW(rts);
{conduct RTS} ,
ASK rts search(TWPEN, INCREASE, DECREASE, HTSIZE, CYMAX, ZRANGE, DEPTH,
minTL, maxTL, tabuLen, iters, nc, numnodes,
outstrm, outstrm?2, tourPen, time, stepprint,
moveprint, cycleprint, tourCost, penTrav,
totPenalty, tvl, bfTourCost, bfTT, bfnv, bfiter,
bestCost, bestTT, bestnv, bestTime, bestTimeF,
bestiter, numfeas, tour, bestTour, bestTourF);
DISPOSE(rts);

stopTime := SystemTime();
duration := stopTime - startTime;

where := "Search complete: BEST TOUR";
twLoadToFile(where,outstrm, bestTour, nc, numnodes, bestTT, factor,loadprint);

ASK outstrm WriteString("# vehicles used =");

ASK outstrm WriteInt(bestnv, 2); ASK outstrm WriteLn;

ASK outstrm WriteString("Best solution found after ");

ASK outstrm WriteString(INTTOSTR (bestTime-startTime)+" secs");
ASK outstrm WriteLn;

ASK outstrm WriteString("on Iteration: "+ INTTOSTR(bestiter));
ASK outstrm WriteLn;

IF bfiter > 0
where := "Search complete: BEST FEASIBLE TOUR";
twLoadToFile(where, outstrm, bestTourF, nc, numnodes, bfTT, factor,
loadprint);

ASK outstrm WriteString("# vehicles used =");
ASK outstrm WriteInt(bfnv, 2); ASK outstrm WriteLn;

ASK outstrm WriteString("Best Feasible solution found after ");
ASK outstrm WriteString(INTTOSTR(bestTimeF-startTime)+" secs");
ASK outstrm WriteLn;
ASK outstrm WriteString("on Iteration: "+ INTTOSTR(bfiter));
ASK outstrm WriteLn;
END IF;

ASK outstrm WriteLn;
ASK outstrm WriteString("Time of Search: "+INTTOSTR(duration));
ASK outstrm WriteString(" secs"); ASK outstrm WriteLn;

{**

{**

{**

ASK outstrm Close;
ASK outstrm2 Close; **}

DISPOSE(outstrm);
DISPOSE(outstrm2); **}
DISPOSE(m); DISPOSE(s);
DISPOSE(time);
DISPOSE(coord);
DISPOSE(tourPen);
DISPOSE(tour);
DISPOSE(bestTour);
DISPOSE(bestTourF);

END FOR; {k, 1 to endnum}
END FOR; {j, file group}

**}

END MODULE; {MAIN}

{*****

*****}

{read in time matrix directly -- for TSP problems}
maxtime := 9999;

ASK timeMatrix readTSP(instrm, nc, numnodes, nv, maxtime,
tour, bestTour, bestTourF, time);

ASK timeMatrix readTime(instrm, gamma, nv, maxtime, nc, numnodes,
factor, tour, bestTourF, bestTour, time);

{reads Carlton file, finds nc, inits coord & tour}
ASK timeMatrix readTSPTW (instrm, nc, numnodes, factor, nv,

coord, tour, s);

{compute time matrix }
ASK timeMatrix timeMatrix(nc, numnodes, gamma, tour, coord, time, s);

E-7

Appendix F: uavMod

The library "vavMod" contains the objects, methods, and procedures needed for
the UAV problem. Most "tsptwMod" code does not need to be rewritten for random
winds or service times, but threats add expected coverage to the objective function

making a rewrite necesssary for any code related to the ‘objective function.

IMPLEMENTATION MODULE uavMod;

FROM IOMod IMPORT StreamObj, ALL FileUseType;
FROM MathMod IMPORT SQRT, ACOS, COS, SIN, pi;
FROM OSMod IMPORT SystemTime;
{VRP data types}
FROM tabuMod IMPORT arrInt2dimType;
FROM tabuMod IMPORT arrReal2dimType;
FROM tabuMod IMPORT arrIntType;
FROM tabuMod IMPORT arrRealType;
FROM tabuMod IMPORT coordType;
FROM tabuMod IMPORT coordArrType;
FROM tabuMod IMPORT nodeType;
FROM tabuMod IMPORT tourType;
FROM tabuMod IMPORT vrpPenType;
{output stuff}
FROM tabuMod IMPORT qcktourFile;
FROM tabuMod IMPORT twlLoadToFile;
{Move/order/search stuff}
FROM tabuMod IMPORT Swaplnt;
FROM tabuMod IMPORT SwapNode;
FROM tabuMod IMPORT insert;
FROM tabuMod IMPORT moveValTT; {used to update travel info}
FROM tabuMod IMPORT countVeh;
{schedule, penalty, and hash stuff}
FROM tabuMod IMPORT tourSched;
FROM tabuMod IMPORT compPens;
FROM tabuMod IMPORT tsptwPen; {TSPTW version}
{hashing stuff}
FROM hashMod IMPORT hashListObj;
FROM hashMod IMPORT hashRecord;
FROM hashMod IMPORT hashTbIType;
FROM hashMod IMPORT randWtWZ;
FROM hashMod IMPORT tourHVwz;
FROM hashMod IMPORT lookfor;
{reaction stuff}
FROM tabuMod IMPORT nocycle;
FROM tabuMod IMPORT cycle;

OBJECT timeMatrixQObj;

F-1

{Reads in the the prevalent wind vector, x,y coordinates and time window file and
calculates the time between each node. Does not assume the problem is symmetric,
but makes it so}

{Reads in a UAV problem: the number of targets, the probablities of
survival, and the target coordinates}
ASK METHOD readUAV(IN instrm : StreamObj;
OUT nc, numnodes : INTEGER;
IN factor : REAL; {coord conversion factor}
IN nv : INTEGER;
OUT psury : arrRealType; {prob of survival at each target}
OUT coord : coordArrType; {coordinate array}
OUT tour : tourType; {intial tour}
OUT s : arrIntType; {time of service at each target}
IN outstrm : StreamOby;
IN print : BOOLEAN);

VAR
i,id,
qty : INTEGER; {quantity demanded at each node}
xcoord, ycoord, {coordinates from data file}
servtime, {service time at node}
late, {late start to TW}
early :REAL; {early start to TW}
position : coordType; {record to instantiate array of coord}
node :nodeType; {record to instantiate array of nodes}
str : STRING;

BEGIN
ASK instrm ReadInt(nc); {read in # customers}
numnodes := nc + nv; {# nodes in directed graph}

NEW!(tour, 0..numnodes); {initialize array of nodes}
{node O=depot, nc cust node}
{nodes > nc are vehicle}
{nv-1 vehicle nodes, 0 is 1st vehicle}
{numnodes = terminal depot}
FOR i := 0 TO numnodes
NEW (node); {instantiate each node}
tourfi] := node; {place each node in array}

tour[il.id :=1; {set node id}
IF (i=0)OR (i>nc) {set node types}
tour(i].type := 2; {2=veh node}
ELSE
tour[i].type := 1; {1=cust node}
END IF;
END FOR;
NEW(coord, 0..nc); {initialize array of positions}
NEW(s, 0..nc); {initialize service time array }
NEW(psurv, 0..nc); {initialize prob of survival array}
FOR1i:=0TOnc
NEW(position); {instantiate each record}

E-2

coord[i] := position; {place record in array}
END FOR;

{read in depot node}

ASK instrm ReadReal(xcoord);
ASK instrm ReadReal(ycoord);
ASK instrm ReadlInt(qty);

ASK instrm ReadReal(early);
ASK instrm ReadReal(late);
ASK instrm ReadReal(servtime);
ASK instrm ReadReal(psurv[0]);

coord[0].x := xcoord;
coord[0].y := ycoord;
s[0] := TRUNC(factor * servtime);
tour[0].ea := TRUNC(factor*early); {use Int times}
tour[0].la := TRUNC(factor*late);
IF print
ASK outstrm WriteString("READ UAV INFO"); ASK outstrm WriteLn;
str:="0: x =" + INTTOSTR(coord[0].x) + " ea =" + INTTOSTR(tour[0].ea);
ASK outstrm WriteString(str); ASK outstrm WriteLn;
END IF;
{read in customer nodes}
FORi:=1TOnc
ASK instrm ReadReal(xcoord);
ASK instrm ReadReal(ycoord);
ASK instrm ReadInt(tour[i].qty);
ASK instrm ReadReal(early);
ASK instrm ReadReal(late);
ASK instrm ReadReal(servtime);
ASK instrm ReadReal(psurvl[i]);

coord[i].x := xcoord;
coord[i].y := ycoord;
s[i] := TRUNC(factor * servtime);
tour[i].ea := TRUNC(factor*early); {use Int times}
tour[i].la := TRUNC(factor*late);
IF print
str := INTTOSTR(@)+": x =" + INTTOSTR(coord[i].x) + " ea =" + INTTOSTR(tour[i].ea);
ASK outstrm WriteString(str); ASK outstrm WriteLn;
END IF;
' END FOR;

{initialize depot node}
tour[0].type := 2;
tour[0].arr := tour[0].ea;
tour[0].dep := tour[0].ea;
tour[0].wait := 0;
tour[0].load := 0;

{initialize vehicle nodes and terminal depot}
FOR i := nc+1 TO numnodes
tour[i] := CLONE(tour[0]);
tour[il.id :=i;
END FOR;

E-3

END METHOD; {readUAV}

{Reads in a coords in miles scenario with Service time ranges and psurv}
ASK METHOD readUAVloiter(IN instrm : StreamObj;

VAR

BEGIN

1,1id,

qty : INTEGER;
xcoord, ycoord,
servlo, servhi,
late,

OUT nc, numnodes : INTEGER;

IN factor : REAL; {coord conversion factor}

IN nv : INTEGER;

OUT psurv : arrRealType; {prob of survival at each target}
OUT coord : coordArtType; {coordinate array}

OUT tour : tourType; {intial tour}

OUT slo, shi : arrIntType; {service range at each target}

IN outstrm : StreamObj;

IN print : BOOLEAN);

{quantity demanded at each node}
{coordinates from data file}
{service time range at node}

{late start to TW}

early :REAL; {early start to TW}

position : coordType; {record to instantiate array of coord}
node :nodeType; {record to instantiate array of nodes}
str : STRING;

ASK instrm ReadInt(nc); {read in # customers}
numnodes := nc + nv; {# nodes in directed graph}

NEW!(tour, 0..numnodes); {initialize array of nodes}

{node O=depot, nc cust node}

{nodes > nc are vehicle}

{nv-1 vehicle nodes, O is 1st vehicle}
{numnodes = terminal depot}

FOR i := 0 TO numnodes
NEW (node); {instantiate each node}
tour[i] := node; {place each node in array}

tour[il.id :=1; {set node id}
IF (i=0)OR (i > nc) {set node types}
tour[i].type := 2; {2=veh node}
ELSE
tour[i].type := 1; {l=cust node}
END IF;
END FOR;
NEW(coord, 0..nc); {initialize array of positions}

NEW(shi, 0..nc);
NEW(slo, 0..nc);

{initialize service time array }

NEW (psurv, 0..nc); {initialize prob of survival array}

FORi:=0TO nc
NEW (position); {instantiate each record}

coord[i]

= position; {place record in array}

END FOR;

{read in depot node}

ASK instrm ReadReal(xcoord);
ASK instrm ReadReal(ycoord);
ASK instrm ReadInt(qty);

ASK instrm ReadReal(early);
ASK instrm ReadReal(late);
ASK instrm ReadReal(servlo);
ASK instrm ReadReal(servhi);
ASK instrm ReadReal(psurv[0]);

coord[0].x := xcoord;
coord[0].y := ycoord;
slo[0] := TRUNC (factor * servlo);
shi[0] := TRUNC(factor * servhi);
tour[0].ea := TRUNC(factor*early); {use Int times}
tour[0].la := TRUNC(factor*late);
IF print
ASK outstrm WriteString("READ UAV INFO"); ASK outstrm WriteLn;
str:="0: x =" + INTTOSTR (coord[0].x) + " ea =" + INTTOSTR(tour[0].ea);
ASK outstrm WriteString(str); ASK outstrm WriteLn;
END IF;
{read in customer nodes}
FORi:=1TOnc
ASK instrm ReadReal(xcoord);
ASK instrm ReadReal(ycoord);
ASK instrm ReadInt(tour[i].qty);
ASK instrm ReadReal(early);
ASK instrm ReadReal(late);
ASK instrm ReadReal(servlo);
ASK instrm ReadReal(servhi);
ASK instrm ReadReal(psurv[i]);

coord[i].x := xcoord;
coord[i].y := ycoord;
slo[i] := TRUNC((factor * servlo);
shi[i] := TRUNC(factor * servhi);
tour[i].ea := TRUNC(factor*early); {use Int times}
tour[i].la := TRUNC(factor*late);
IF print
str := INTTOSTR(@i)+": x =" + INTTOSTR(coord[i].x) + " ea =" + INTTOSTR(tour[i].ea);
ASK outstrm WriteString(str); ASK outstrm WriteLn;
END IF;
END FOR;

{initialize depot node}
tour[0].type :=2;
tour[0].arr := tour[0].ea;
tour[0].dep := tour[0].ea;
tour[0].wait := 0;
tour[0].load := 0;

{initialize vehicle nodes and terminal depot}
FOR i := nc+1 TO numnodes

F-5

tour[i] := CLONE(tour[0]);
tour[il.id :=1;
END FOR;

END METHOD; {readUAVloiter}

{Reads in a Latitude and Longitude scenario: the number of targets,
the probablities of survival, and the target coordinates}
ASK METHOD readLatLong(IN instrm : StreamOby;
OUT nc, numnodes : INTEGER;
IN factor : REAL; {coord conversion factor}
IN nv : INTEGER;
OUT coord : coordArrType; {coordinate array}
OUT tour : tourType; {intial tour}
OUT s : arrIntType; {time of service at each target}
IN outstrm : StreamObj;
IN print : BOOLEAN);

VAR
i, id,
qty : INTEGER; {quantity demanded at each node}
latDeg, longDeg,
latMin, longMin, {Latitude and Longitude units}
latSec, longSec,
servtime, {service time at node}
late, {late start to TW}
early :REAL; {early start to TW}
position : coordType; {record to instantiate array of coord}
node :nodeType; {record to instantiate array of nodes}
str : STRING;

BEGIN
ASK instrm ReadInt(nc); {read in # customers}
numnodes := nc + nv; {# nodes in directed graph}

NEW(tour, 0..numnodes); {initialize array of nodes}
{node O=depot, nc cust node}
{nodes > nc are vehicle}
{nv-1 vehicle nodes, 0 is 1st vehicle}
{numnodes = terminal depot}
FOR i := 0 TO numnodes
NEW (node); {instantiate each node}
tour[i] := node; {place each node in array}

tour[i].id :=i; {set node id}
IF (i=0) OR (i > nc) {set node types}
tour[i].type := 2; {2=veh node}
ELSE
tour[i].type := 1; {1l=cust node}
END IF;
END FOR,;
NEW(coord, 0..nc); {initialize array of positions}
NEW(s, 0..nc); {initialize service time array}

IF print

FORi1:=0TOnc

NEW(position); {instantiate each record}
coord[i] := position; {place record in array}
END FOR;

ASK outstrm WriteString("READ UAV INFO"); ASK outstrm WriteLn;
str:="0: x =" + INTTOSTR(coord[0].x) + " ea =" + INTTOSTR(tour{0].ea);
ASK outstrm WriteString(str); ASK outstrm WriteLn;

END IF;

IF print

str ;= INTTOSTR(@i)+": x =" + INTTOSTR(coord[i].x) + " ea = " + INTTOSTR(tour[i].ea);

{read in customer nodes}

FORi:=0TOnc
ASK instrm ReadReal(latDeg);
ASK instrm ReadReal(1atMin);
ASK instrm ReadReal(latSec);
ASK instrin ReadReal(longDeg);
ASK instrm ReadReal(longMin);
ASK instrm ReadReal(longSec);
ASK instrm ReadReal(early);
ASK instrm ReadReal(late);
ASK instrm ReadReal(servtime);

coord[i].x := (latDeg + latMin /60.0 + latSec / 3600.0) / 57.2958;
coord[il.y := (longDeg+longMin /60.0 + longSec/ 3600.0) / 57.2958;

s[i] := TRUNC(factor * servtime);
tour[i].ea := TRUNC(factor*early); {use Int times}
tour[i].la := TRUNC(factor*late);

ASK outstrm WriteString(str); ASK outstrm WriteLn;

END IF;

END FOR;

{initialize depot node}
tour[0].type :=2;
tour[0].arr := tour[0].ea;
tour[0].dep := tour[0].ea;
tour[0].wait := O;
tour[0].load := 0;

{initialize vehicle nodes and terminal depot}
FOR i :=nc+1 TO numnodes
tour[i] := CLONE(tour[0]);
tour[i].id :=i;
END FOR;

END METHOD; {readLatLong}

{Reads in a Latitude and Longitude scenario with variable Service Times}
ASK METHOD readLatLongLoiter(IN instrm : StreamObj;

OUT nc, numnodes : INTEGER;

IN factor : REAL; {coord conversion factor}
IN nv : INTEGER;

OUT coord : coordArrType; {coordinate array}

F-7

VAR

BEGIN

IF print

OUT tour : tourType; {intial tour}

OUT slo, shi : arrIntType; {target service ranges}

IN outstrm : StreamObj;
IN print : BOOLEAN);

i,id, ,

qty : INTEGER; {quantity demanded at each node}
latDeg, longDeg,

latMin, longMin, {Latitude and Longitude units}

latSec, longSec,

servlo, servhi, {service ranges at node}

late, {late start to TW}

early :REAL; {early start to TW}

position : coordType; {record to instantiate array of coord}
node :nodeType; {record to instantiate array of nodes}
str : STRING;

ASK instrm ReadInt(nc); {read in # customers}
numnodes := nc + nv; {# nodes in directed graph}

NEW(tour, 0..numnodes); {initialize array of nodes}
{node O=depot, nc cust node}
{nodes > nc are vehicle}
{nv-1 vehicle nodes, 0 is 1st vehicle}
{numnodes = terminal depot}
FOR i := 0 TO numnodes
NEW (node); {instantiate each node}
tour[i} := node; {place each node in array}

tour[il.id :=1; {set node id}
IF (i=0) OR (i>nc) {set node types}
tour[i].type := 2; {2=veh node}
ELSE
tour[il.type := 1; {1=cust node}
END IF;
END FOR;
NEW(coord, 0..nc); {initialize array of positions}
NEW(slo, 0..nc); {initialize service time arrays}

NEW(shi, 0..nc);

FORi:=0TOnc
NEW(position); {instantiate each record}
coord[i] := position; {place record in array}
END FOR;

ASK outstrm WriteString("READ UAV INFO"); ASK outstrm WriteLn;
str :="0: x =" + INTTOSTR(coord[0].x) + " ea =" + INTTOSTR(tour[0].ea);
ASK outstrm WriteString(str); ASK outstrm WriteLn;

END IF;

{read in customer nodes}
FORi:=0TOnc

ASK instrm ReadReal(latDeg);
ASK instrm ReadReal(latMin);
ASK instrm ReadReal(latSec);
ASK instrm ReadReal(longDeg);
ASK instrm ReadReal(longMin);
ASK instrm ReadReal(longSec);
ASK instrm ReadReal(early);
ASK instrm ReadReal(late);
ASK instrm ReadReal(servlo);
ASK instrm ReadReal(servhi);

coord[i].x := (latDeg + 1atMin /60.0 + latSec / 3600.0) / 57.2958;
coord[i].y := (longDeg+longMin /60.0 + longSec/ 3600.0) / 57.2958;

slo[i] := TRUNC(factor * servlo);

shi[i] := TRUNC(factor * servhi);

tour[i].ea := TRUNC(factor*early); {use Int times}

tour[i].la := TRUNC(factor*1ate);
IF print
str := INTTOSTR()+": x = " + INTTOSTR(coord[i].x) + " ea = " + INTTOSTR(tour[i].ea);
ASK outstrm WriteString(str); ASK outstrm WriteLn;
END IF;

END FOR;

{initialize depot node}
tour[0].type :=2;
tour[0].arr := tour[0].ea;
tour[0].dep := tour[0].ea;
tour[0].wait := 0;
tour[0].load := 0;

{initialize vehicle nodes and terminal depot}
FOR i := nc+1 TO numnodes
tour[i] := CLONE(tour[0]);
tour[i].id :=1;
END FOR;

END METHOD; {readLatLongLoiter}

{Compute 2 dimensional distance matrix given coords in same distance units
as vehicle airspeed}
{Wind NOT taken into account}
{Does not assume the problem is symmetric, but makes it so}
ASK METHOD distMatrix(IN nc , numnodes : INTEGER;
IN coord : coordArrType;
OUT dist : arrReal2dimType;
IN outstrm : StreamObj);

VAR
i, J
k : INTEGER;
xdiff, ydiff, {differences for dist calc}
xdiff2, ydiff2 : REAL; {squared differences}
BEGIN
NEW(dist, 0..numnodes, 0..numnodes); {initialize dist matrix}

{Find integer euclidean dist}
{depot and demand nodes}
FORi:=0TO nc-1
FORj :=i+1 TO nc
xdiff := coord[i].x - coord[j].x;
ydiff := coord[i].y - coord[j].y;
xdiff2 := xdiff*xdiff;
ydiff2 := ydiff*ydiff;
dist[i][j] := SQRT(xdiff2 + ydiff2);
dist[j][i] := dist[i][j];
END FOR;
END FOR;

{Ensure triangle inequality holds}
FORi:=0TO nc-1
FORj:=i+1 TOnc
FORk:=0TOnc
IF (k <> i) AND (k <>j)
IF dist[i][j] > dist[i][k] + dist[k][j]
dist[i][j] := dist[i](k] + dist [k][j];
dist[j1[i] := dist[i][j];
END IF;
END IF;
END FOR;
END FOR;
END FOR;

{demand to vehicle & vehicle to demand travel same as demand to depot}
FORi:=1TOnc
FOR j := nc+1 TO numnodes
dist[i][j] := dist{O][i];
dist[j][i] := dist[il[j];
END FOR;
END FOR;

END METHOD:; {distMatrix}

{Compute 2 dimensional distance matrix given Latitude and Longitude coords}
{Does not take wind into account}
{Does not assume the problem is symmetric, but makes it so}
ASK METHOD distLatLong(IN nc , numnodes : INTEGER;
IN coord : coordArrType;
OUT dist : arrReal2dimType;
IN startprint : BOOLEAN;
IN outstrm : StreamObj);

VAR

i, j,

k : INTEGER;

str : STRING;

angdiff : REAL; {angular difference in radians}
BEGIN
NEW(dist, 0..numnodes, 0..numnodes); {initialize dist matrix}

IF startprint ASK outstrm WriteLn; END IF;

F-10

{Find integer euclidean dist}
{depot and demand nodes}
FORi:=0TOnc
FORj:=i+1 TOnc
angdiff := ACOS(SIN(coord[i].x) * SIN(coord[j].x)
+ COS(coord[i].x) * COS(coord[j].x)
* COS(ABS(coord[j].y - coord[i].y)));

{57.2958 degrees per radian, 60 naut miles per degree}
dist[i][j] := 57.2958 * 60.0 * angdiff;
dist[j][i] := dist[i][j];

IF startprint

str := "i = "+INTTOSTR(i)+" j = "+INTTOSTR(j)+" dist = "+REALTOSTR(dist[i][j1);
ASK outstrm WriteString(str); ASK outstrm WriteLn;

END IF;

END FOR;
END FOR;

{Ensure triangle inequality holds}
FORi:=0TOnc
FOR j :=i+1 TO nc
FORk:=0TOnc
IF (k <> i) AND (k <> j)
IF dist[i][j] > dist[i][k] + dist[k][}]
dist[i]{j] := dist[i][k] + dist [k][j];
dist[j](i] := dist[i][j1;
END IF;
END IF;
END FOR;
END FOR;
END FOR;

{demand to vehicle & vehicle to demand travel same as demand to depot}
FORi:=1TOnc
FOR j := nc+1 TO numnodes
dist[i1[j] := dist[O][i];
dist[j1[i] := dist[il[j1;
END FOR;
END FOR;

END METHOD; {distLatLong}

{Compute 2 dimensional time matrix }

{Does take wind into account}

{Does not assume the problem is symmetric, but makes it so}
ASK METHOD timeMatrix(IN nc , numnodes,

gamma, {cost placed on veh - veh arcs}
as, {uav air speed}
wmag : INTEGER; {magnitude of the wind vector}

IN wdir, {direction of wind vector}
windconv : REAL;

IN coord : coordArrType;

IN s : arrIntType;

F-11

IN dist : arrReal2dimType;
OUT time : arrInt2dimType;
IN outstrm : StreamObj;
IN print : BOOLEAN);
VAR
i,j, k
: INTEGER;
xdiff, ydiff,
gs2, {gs squared}
gs, {ground speed}
Theta, {angle between due EAST and ground speed vector}
Phi {angle between gs vector and wind vector}
:REAL;
str : STRING;
BEGIN

NEW(time, 0..numnodes, 0..numnodes); {initialize time matrix }
{Find the angle from 0 (due EAST) to ground speed vector (gs)}
FORi:=0TOnc
FOR j:=0TO nc
IFi<>]

xdiff := coord[j].x - coord[i].x;
ydiff := coord[j].y - coord[i].y;

IF ABS(xdiff) < 0.00001
IF ydiff > 0.0
Theta :=90.0 * pi/ 180.0;
ELSE
Theta := 270.0 * pi / 180.0;
END IF;
ELSE
IF ABS(ydiff) < 0.00001
IF xdiff > 0.0
Theta := 0.0;
ELSE
Theta := pi; {180 degs}
END IF;
ELSIF ydiff > 0.0
Theta := ACOS(xdiff / dist[1][j]);
ELSE {ydiff < 0.0}
Theta := 2.0 * pi - ACOS(xdiff / dist[i][j]); {2*pi =360 degs}

END IF;
END IF;

F-12

Phi := wdir - Theta;
gs2 := FLOAT(as*as) +FLOAT(wmag*wmag) - 2.0*FLOAT(as*wmag) *COS(Phi);
gs := SQRT(gs2);

time[i][j] := TRUNC(windconv * dist[i][j] / gs);
IF print
str := "i="+INTTOSTR(i)+" j="+INTTOSTR(j)+" Theta="+REALTOSTR(Theta)
+" Phi="+REALTOSTR(Phi)+" cos(Phi)="+REALTOSTR(COS(Phi))
+" GS="+REALTOSTR(gs)+" time="+INTTOSTR(time[i][j]);
ASK outstrm WriteString(str); ASK outstrm WriteLn;

END IF;
ELSE
time[i][j] := 0;
END IF; {i<>j}
END FOR;
END FOR;

{Ensure triangle inequality holds}
FORi:=0TOnc
FORj:=0TO nc
FORk:=0TOnc
IF (k <> i) AND (k <>j)
IF time[i][j] > time[i][k] + time[k][j]
time[i][j] := time[i][k] + time [k][j1;
END IF;
END IF;
END FOR;
END FOR;
END FOR;

{demand to vehicle & vehicle to demand travel same as demand to depot}
FORi:=1TOnc
FOR j := nc+1 TO numnodes
time[i][j] := time[O][i];
time[j][i] := time[i][j];
END FOR,;
END FOR;

{ Add service time for all demand/demand and demand/vehicle arcs}
FORi:=0TOnc
FOR j := 0 TO numnodes
IFi<>]
time[i][j] := time[i](j] + s[i];
END IF;
END FOR;
END FOR;

{ Add vehicle usage penalty "gamma" to all vehicle to vehicle arcs}
FOR i := nc+1 TO numnodes-1
time[0][i] := time[O][i] + gamma;
FOR j :=i+1 TO numnodes
time[i][j] := time[i][j] + gamma;
time[j][i] := time[i][j];
END FOR;

F-13

END FOR;
END METHOD; {timeMatrix}

END OBJECT; {timeMatrixObj}

OBIJECT startUAVObj;

ASK METHOD startUAVbest (IN numnodes, tvl, {travel time of tour}
tourLen : INTEGER; {length of curr tour}
IN tour : tourType; {curr tour}

IN TWPEN : REAL; { mult factor for TW pen}
IN psurv : arrRealType; {prob of survival array}
OUT totPenalty, {total Penalty (TW here)}
penTrav, {tvl and twpen w/our wait}
tourCost {tourLen + TW cost}
: INTEGER;
OUT tourPen : vrpPenType;{tour penalty record}
OUT bfiter, {iter # of bf tour fd}
bfCost, {lowest feas cost found}
bfTT, {best feas trav time}
bfnv,
bestiter,
bestCost, {lowest cost found}
bestTT,
bestnv,
bfTime, { Time best feas found}
bestTime { Time best tour found}
: INTEGER;
OUT cvrg,
bfCvrg,
bestCvrg : REAL,;
OUT bestTour, {The best tour found}
bfTour : tourType); {best feas tour}
VAR
iter, nvu : INTEGER;
BEGIN

{initialize best FEASIBLE stuff}
{make the initial best penalties really large}

bfCost := 999999999;
bfTT := 9999999;
bfnv :=9999;

bfCvrg :=0.0;
bfTime := 0;

bfiter :=-1;

NEW(bfTour, 0..numnodes);
bestCost := 999999999;

bestTT :=9999999;
bestnv := 9999,

F-14

bestCvrg :=0.0;
bestTime := 0;
bestiter :=-1;

NEW (bestTour, 0..numnodes);

{compute infeasibilities and costs}
{note: if totPenalty > 0, tour NOT feasible}
NEW(tourPen); {Tour Penalty record iniialized}

compPens(numnodes, tour, 0, tourPen);
tsptwPen(numnodes, tourLen, tour, tourPen, TWPEN, totPenalty, tourCost,
penTrav, tvl);

countVeh(numnodes, tour, nvu);
expCvrg(numnodes, psurv, tour, cvrg);

uavBest(cvrg, numnodes, totPenalty, penTrav, tvl, nvu, 0, tour, bfCost,
bfTT, bfnv, bfiter, bestCost, bestTT, bestnv, bestiter,
bfCvrg, bestCvrg,
bfTour, bestTour, bfTime, bestTime);

END METHOD; {startPenBest}

END OBJECT {startUAVobj};

OBIJECT uavRTSobj;

{Steps through ITER iterations of the UAV reactive tabu search. }

{The UAV search uses the max coverage procedure to evaluate move Value.
The factor PSFCT converts the coverage value to integer.

PSFECT is determined by the user as a function of the number of vehicles, and
the number of targets.

The TW constraints are still used to determine feasibility}

{The best tour is that of maximum coverage}

ASK METHOD search (IN psurv : arrRealType; {Prob of survival array}
IN PSECT : REAL;
IN TWPEN, INCREASE, DECREASE : REAL;
IN HTSIZE, CYMAX, ZRANGE, DEPTH, minTL, maxTL, tabuLen,
iters, nc, numnodes : INTEGER;
IN outstrm, outstrm?2 : StreamObj;
INOUT tourPen : vrpPenType;
IN time : arrInt2dimType;
IN stepprint, moveprint, cycleprint : BOOLEAN;
INOUT tourCost, penTrav, totPenalty, tvl,
bfCost, bfTT, bfnv, bfiter, bestCost, bestTT, bestnv,
bestTime, bfTime, bestiter, numfeas : INTEGER,;
INOUT bfCvrg, bestCvrg, cvrg : REAL;
INOUT tour, bestTour, bfTour : tourType);
VAR
{UAV specific}
nbrevrg { " """ tour being evaluated}
:REAL;

travVal : INTEGER; {move Value to the mTSPTW model}

{from original}

i, {index, usually current node for moving}
)

k, {iteration number}

I {index only}

fhv, {Woodruff&Zemel 1st level hash value}
shv, {Woodruff&Zemel 2nd level hash value}
tourLen, {entire length of time tour takes}

ssltlc, {steps since last tabu length change}

escBest, {the objective value of the best of all moves}

Dbest, {smallest swap cost among all neighbors}

Dbestf, {smallest swap cost among feasible neighbors}
escBestTT, {trav time of the best neighbor of all moves}
DbestTT, {trav time of smallest swap cost neighbor}
DbestfTT, {trav time of smallest swap cost feasible neighbor}
chl, {choice node initiating overall best insert move}
chD, {choice node receiving overall best insert move}

{"ch"'s may be initially set to nontabu infeasible moves
or infeasible moves that aspire at insert move search }

feasl, {node initiating "good" feasible insert move}
feasD, {node receiving "good" feasible insert move}
escl, {node initiating "good" escape insert move}
escD, {node receiving "good" escape insert move}
nodetype, {type of node considered for insertion}

nexttype, {type of node next to the considered insert node}
next2type, {type of 2 steps from the considered insert node}
If, {id of node on left}

rt, {id of node on right}

d, {index for insert DEPTH}

dstart, {initial value for DEPTH index in EARLY loop}
moveVal, {move value (curr tour to nbr), tvl + pen change}
totNbrPen, {total penalty for neighbor tour}

Zin, {zin and zout update the tour hash value}

zout, { for the affected nodes only}

nvu {# vehicles used}

: INTEGER;

mavg : REAL; {moving average of cycle length}

tabulist : arrInt2dimType;

list : hashListObj; {used to instantiate the array of lists}
zArr : arrIntType; {random weights assigned to nodes}

node : nodeType; {used to instantialte "working" tour}

load,

earlymove, {TRUE if an early move is to be performed}
found : BOOLEAN; {TRUE if curr tour was visited before}

hashcurr : hashRecord; {curr tour's 2nd hash and other info}
hashtbl : hashTblType; {array of hash lists indexed by 1st hash}

F-16

nbrtour : tourType; {working tour for insertion operation}
nbrPen : vrpPenType; {penalty record of neighbor tour}

str,

where : STRING; {used as diagnostic check}

CONST

{ iter penTrav bestCost bfCost}
fomat:"****< *******< ********< *******<";

BEGIN

{ %k

ASK outstrm2 WriteString("iter tabuLen penTrav bestCost bfCost");
ASK outstrm?2 WriteLn;

**}

{initialize the RTS parameters}
mavg := FLOAT(numnodes - 2);
ssltlc := 0;

{initialize tabu array to zero}
NEW(tabulist, 0..numnodes, 0..numnodes);
FOR i := 0 TO numnodes
FOR j := 0 TO numnodes
tabulist[i][j] := 0;
END FOR;
END FOR;

k :=1; {first iteration}
numfeas := 0;

NEW (hashtbl, 0. HTSIZE); {instantiate the hash table}
FOR i :=0TO HTSIZE

NEW(list);

hashtbl[i] := list;
END FOR;

randWtWZ(nc, numnodes, ZRANGE, zArr); {assign random wts to each node}
tourHVwz(numnodes, tour, zArr, shv); {start tour's 2nd level hash val}

{Place initial tour in hash table}
{create a hashRecord}
NEW (hashcurr);

{assign the 2nd level hash value, tourCost, tvl & penalties hashcurr}
hashcurr.shyv := shv; :
hashcurr.cost := tourCost;

hashcurr.tvl := tvl;

hashcurr.twpen := tourPen.tw;

hashcurr.lastiter := 0;

" {find the 1st level hash value for the current tour}
fhyv := tourCost MOD HTSIZE,;

{ Add current hash record object to the linked list indexed by fhv}

F-17

ASK hashtbl[fhv] AddFirst(hashcurr);

WHILE k <= iters

IF moveprint

ASK outstrm WriteLn;
str:="k =" + INTTOSTR(k);
ASK outstrm WriteString(str);
END IF;

{** FIND INCUMBENT TOUR *#*}
{initialize "travel value" parameters}
DbestTT := 999999;

escBestTT := 999999;

Dbestf{TT := 999999,

{initialize "move value" parameters}
Dbest := 999;

escBest := 999;

Dbestf :=999;

chl :=0;

chD :=0;

feasl := 0;

feasD :=0;

escl :=0;

escD :=0;

{*******************************}

{** check all LATER insertions**}
FOR i := 1 TO numnodes-2

{copy incumbent tour to working copy "nbr"}
NEW (nbrtour, 0..numnodes);
nbrtour := CLONE(tour);
FOR 1 := 0 TO numnodes
nbrtour[1] := CLONE(tour[1]);
END FOR;

nodetype := tour[i].type; {determine current nodes type}

d:=1;
WHILE d <= DEPTH {DEPTH loop}

IF i+d < numnodes { -1 }{feasible depth?}

{determine type of node on right}
nexttype := tour[i+d].type;

IF nodetype = 1 {customer node}

{if strong TWs violated within a vehicle, move the customer
along until a vehicle is encountered, then swap and

"locally" update the schedule as the customer is

swapped, and increment d as well}

{strong TW check}
IF (tour[i+d].ea + time[tour[i+d].id][tour[i].id])
> tour[i].la

WHILE nbrtour[i+d].type = 1

If :=i+d-1;
rt :=i+d;
SwapNode(nbrtour[lf], nbrtour(rt]);

{local update:arr,dep,wait}

nbrtour[If].arr := nbrtour[lf-1].dep +
time[nbrtour{1f-1].id][nbrtour[lf].id];

nbrtour{1f].dep := MAXOF(nbrtour[lf].ea, nbrtour[lf].arr);

nbrtour[1f].wait :=nbrtour[If].dep - nbrtour[lf].arr;

{local update:load}
IF nbrtour[lf-1].type = 2
nbrtour[if].load := nbrtour[lf].qty;
ELSE
nbrtour[lf].load := nbrtour[1f-1].load + nbrtour[lf].qty;
END IF;

d=d+1;

{IF with EXIT from "DEPTH" loop}
{because if you increment to numnodes-1, don't want}
{to do a swap with terminal depot}

IF i+d = numnodes-1 EXIT; END IF;
END WHILE;
END IF;{TW check}

{The customer is now ready to have its move evaluated:

TRAVEL PORTION

1 Swap it with the next node

2 Compute the change in travel distance, and compute the
neighbor's schedule

3 Compute the neighbor's penalty values

4 Increase the total move value by the "costed penalties"}

{COVERAGE PORTION

5 Find the neighbor's coverage

6 Subtract nbr tour's cvrg from curr tour's coverage for moveVal}

{1} SwapNode(nbrtour[i+d-1], nbrtour[i+d]);
{2} moveValTT(i, d, numnodes, tour, nbrtour, time, travVal);
{3} NEW(nbrPen);
compPens(numnodes, nbrtour, 0, nbrPen);
{4} totNbrPen := nbrPen.tw;
travVal:= travVal+ TRUNC(TWPEN*FLOAT(nbrPen.tw-tourPen.tw));

{5} expCvrg(numnodes, psurv, nbrtour, nbrcvrg);
{6} moveVal := TRUNC(PSFCT * (cvrg - nbrcvrg));

F-19

DISPOSE(nbrPen);

IF stepprint
ASK outstrm WriteLn;
str := "node " + INTTOSTR (tour[i].id) + "d =" + INTTOSTR(d) + " ";
ASK outstrm WriteString(str);
str := " moveVal =" + INTTOSTR(moveVal) + " totNbrPen = " + INTTOSTR (totNbrPen);
ASK outstrm WriteString(str);

IF i+d < numnodes

IF k <= tabulist[tour[i].id][i+d]

ASK outstrm WriteString(" **TABU");

END IF;

END IF;
END IF;

{END nodetype = 1 (customer)}

ELSE {nodetype = 2, vehicle
and vehicles are always strong TW feasible
IF next node is a customer, move is valid}

IF nexttype = 2 EXIT; END IF;

{dont swap adjacent vehicles, leave "d" loop}

{1} SwapNode(nbrtour[i+d-1], nbrtour[i+d]);

{2} moveValTT(i, d, numnodes, tour, nbrtour, time, travVal);

{3} NEW(nbrPen);
compPens(numnodes, nbrtour, 0, nbrPen);
{4} totNbrPen := nbrPen.tw;
travVal:= travVal+ TRUNC(TWPEN*FLOAT(nbrPen.tw-tourPen.tw));

{5} expCvrg(numnodes, psurv, nbrtour, nbrcvrg);
{6} moveVal := TRUNC(PSFCT * (cvrg - nbrcvrg));

DISPOSE(nbrPen);

IF stepprint
ASK outstrm WriteLn;
str := "node " + INTTOSTR(tour[i].id) + "d =" + INTTOSTR(d) + " ";
ASK outstrm WriteString(str);
str := " moveVal =" + INTTOSTR(moveVal) + " totNbrPen = " + INTTOSTR(totNbrPen);
ASK outstrm WriteString(str);

IF i+d < numnodes

IF k <= tabulist[tour{i].id][i+d]

ASK outstrm WriteString(" **TABU");

END IF;

END IF;
END IF;

END IF; {nodetype check}

IF totNbrPen = 0 {feasible candidate tour?}
{If this is best feasible neighbor, AND not tabu OR it aspires, SAVE}
IF (moveVal < Dbestf)

E-20

OR ((moveVal = Dbestf) AND (travVal < DbestfTT))

IF (k > tabulist[tour[i].id][i+d])
OR (nbrevrg < bestCvrg)

Dbestf := moveVal,
feasl :=1;

feasD :=d;
DbestfTT := travVal;

END IF; {not tabu OR aspires}
END IF; {moveVal < DbestF}
{END totNbrPen = 0}

ELSE {candidate is infeasible}

{IF this is best infeas neighbor, SAVE}
IF (moveVal < Dbest)
OR ((moveVal = Dbest) AND (travVal < DbestTT))

IF (k > tabulist[tour[i].id][i+d])
OR (nbrevrg < bestCvrg)

Dbest := moveVal,
chl:=1;

chD :=d;

DbestTT := travVal;

END IF; {not tabu OR aspires}
END IF; {moveVal < Dbest}
END IF; {infeas candidate}

{Escape Routine}
{saves the best of all neighbor moves in case all moves tabu or
non-quality changing}
IF (moveVal < escBest)
OR ((moveVal = escBest) AND (travVal < escBestTT))

escBest := moveVal;
escl :=1;
escD :=d;
escBestTT := travVal;
END IF;{escape}
{IF only vehicle nodes are left in the tour, STOP, }
{ get the next node. Compare the position to the id of the }
{node, IF equal you are at the end of the tour (Carlton, 95:5.3)}
IF (nbrtour[i+d+1].type =2)
AND (nbrtour[i+d+1].id=i+d+1)
EXIT; END IF;

ELSE {i+d < numnodes - 1 (feasible DEPTH)}

F-21

EXIT;
END IF;
di=d+1;
END WHILE; ~ {d=1to DEPTH}

FOR 1:= 0 TO numnodes
DISPOSE(nbrtourf{l]);

END FOR;

DISPOSE(nbrtour);

IF stepprint

ASK outstrm WriteLn;

str := "Dbestf =" + INTTOSTR(Dbestf) + " Dbest =" + INTTOSTR(Dbest)
+ " escBest =" + INTTOSTR(escBest);

ASK outstrm WriteString(str); ASK outstrm WriteLn;

END IF;

END FOR;{i =1 to numnodes-2}

{************************************}

{*** check all EARLIER insertions ***}
i:=3
WHILE i <= numnodes-1

earlymove := TRUE; {initially, we intend to perform a move}

{create working copy}

nbrtour := CLONE(tour);

FOR 1 := 0 TO numnodes
nbrtour(l] := CLONE(tour[1]);

END FOR; :

{do not consider any d = -1 moves as they are later moves}
d:=1;

nodetype := tourl[i].type;
nexttype := tour[i-1].type;
next2type := tour[i-2].type;

IF nodetype = 2 {vehicle node}

IF (nexttype <> 2) AND (next2type <> 2)
{dont want adjacent vehicles or a sandwiched customer}

SwapNode(nbrtour[i-d], nbrtour[i-d+1]);
di=d+1,;

ELSE

earlymove ;= FALSE; { GOTO NEXT NODE}

F-22

END IF; {nexttype or next2type = 2}
ELSE {customer node}
{strong TW check}
IF tour[i].ea + time[tour[i].id][tour[i-1].id] <= tour[i-1].1a

{do the d =-1 swap (i and i-1)}

SwapNode(nbrtour[i-d], nbrtour[i-d+1]);
di=d+1;

ELSE {TW check NOT OK}

{do swaps to the next earlier vehicle node}

{stop while a customer is adjacent}

WHILE nbrtour[i-d].type = 1
SwapNode(nbrtour{i-d], nbrtour[i-d+1]);
d=d+1;

END WHILE;

{if we are now at start depot, GOTO NEXT NODE}

IFi-d=0
earlymove := FALSE;

END IF;

END IF; {strong TW check]}
END IF; {END for customer node}
IF earlymove = TRUE
WHILE d <= DEPTH {DEPTH loop}

IF i-d <= 0 {feasible DEPTH check}

EXIT; {avoid unnecessary loops}

ELSE
IF nodetype = 1

{strong TW check}
IF tour[i].ea + time[tour[i].id][tour{i-d].id]

> tour{i-d].la

{swap adjacent customers}
WHILE nbrtour[i-d].type = 1

SwapNode(nbrtour[i-d], nbrtour[i-d+1]);
d:=d+1;

END WHILE;

{stop at node 0, GOTO NEXT NODE (i)}
IFi-d=0

F-23

EXIT;
END IF;

END IF; {strong TW check}

{*now evaluate neighbor tour*}

{1} SwapNode(nbrtour{i-d], nbrtour[i-d+1]);
{2} moveValTT(, -d, numnodes, tour, nbrtour, time, travVal);
{3} NEW(nbrPen);
compPens(numnodes, nbrtour, 0, nbrPen);
{4} totNbrPen := nbrPen.tw;
travVal:= travVal+ TRUNC(TWPEN*FLOAT(nbrPen.tw-tourPen.tw));

{5} expCvrg(numnodes, psurv, nbrtour, nbrevrg);
{6} moveVal := TRUNC(PSFCT * (cvrg - nbrcvrg));

DISPOSE(nbrPen);

ASK outstrm WriteLn;
str := "node " + INTTOSTR(tour[i].id) + " d =" + INTTOSTR(-d) + " ";
ASK outstrm WriteString(str);
str ;=" moveVal =" + INTTOSTR(moveVal) + " ";
ASK outstrm WriteString(str);

IF i+d < numnodes

IF k <= tabulist[tourfi].id][i+d]

ASK outstrm WriteString(" **TABU");

ELSE {END for customer node, start vehicle node}

nexttype := tour[i-d-1].type;

{dont swap to adjacent vehicles, eval next node}

IF (nexttype = 2)

EXIT; {GOTO NEXT NODE (i)}

ELSE

{*evaluate neighbor tour*}
{1} SwapNode(nbrtour[i-d], nbrtour[i-d+1]);

{2} moveValTT(, -d, numnodes, tour, nbrtour, time, travVal);
{3} NEW(nbrPen);
compPens(numnodes, nbrtour, 0, nbrPen);
{4} totNbrPen := nbrPen.tw;
travVal:= travVal+ TRUNC(TWPEN*FLOAT(nbrPen.tw-tourPen.tw));

{5} expCvrg(numnodes, psurv, nbrtour, nbrcvrg);
{6} moveVal ;= TRUNC(PSECT * (cvrg - nbrcvrg));

F-24

DISPOSE(nbrPen);

IF stepprint
ASK outstrm WriteLn;
str := "node " + INTTOSTR(tour[i].id) + " d =" + INTTOSTR(-d) + " ";
ASK outstrm WriteString(str);
str := " moveVal =" + INTTOSTR(moveVal) + " ";
ASK outstrm WriteString(str);
IF i+d < numnodes
IF k <= tabulist[tour[i].id][i+d]
ASK outstrm WriteString(" **TABU");
END IF,
END IF;
END IF;

END IF; {END adjacent vehicle check}
END IF; {END for vehicle node}

{feasible tour?}
IF totNbrPen = 0

IF (moveVal < Dbestf)
OR ((moveVal = Dbestf) AND (travVal < DbestfTT))

{IF not tabu OR aspires}
IF (k > tabulist[tour[i].id][i-d])
OR (nbrcvrg < bestCvrg)

Dbestf := moveVal;
feasI :=1i;

feasD = -d;
DbestfTT := travVal;

END IF; {IF not tabu OR aspires}
END IF; {moveVal < Dbestf}

ELSE {infeasible tour}

IF (moveVal < Dbest)
OR ((moveVal = Dbest) AND (travVal < DbestTT))

{IF not tabu OR aspires}
IF (k > tabulist[tour[i].id][i-d])
OR (nbrcvrg < bestCvrg)

Dbest := moveVal
chl :=1;

chD :=-d;

DbestTT :=travVal;

END IF; {IF not tabu OR aspires}
END IF; {moveVal < Dbest}

END IF; {feasible tour check}

F-25

{Escape Routine}
{saves the best of all neighbor moves in case all moves tabu
or non-quality changing}
IF (moveVal < escBest)
OR ((moveVal = escBest) AND (travVal < escBestTT))
escBest ;= moveVal
escl :=1;
escD :=-d;
escBestTT := travVal;

END IF;{escape}
END IF; {feasible DEPTH check}
d:=d+1;
END WHILE; {DEPTH loop}
END IF; {earlymove=TRUE}
i=1i+1;
IF stepprint
ASK outstrm WriteLn;
str := "Dbestf = " + INTTOSTR(Dbestf) + " Dbest =" + INTTOSTR(Dbest)
+ " escBest =" + INTTOSTR(escBest);
ASK outstrm WriteString(str); ASK outstrm WriteLn;
END IF,;
FOR 1:= 0 TO numnodes
DISPOSE(nbrtour[1]);
END FOR;
DISPOSE(nbrtour);
END WHILE; {i = 3 TO numnodes-1}
{If feasible move found, move to it}
IF feasI <> 0

chl := feasl;
chD :=feasD;

{** IF ALL MOVES ARE TABU AND NONE MEET ASPIRATION CRITERIA **}

{ }

{ THEN SET chl AND chD TO THE BEST MOVE DISCOVERED

{ AND DECREASE THE TABU LENGTH }
{ }

{ OR IF NO MOVES ARE AVAILABLE }

{***}

{NO MOVES ARE AVAILABLE}

{This "degenerate" condition only occurs whenever only one
vehicle is available and no feasible moves are available

because of STRONG TW feasibility. This stops all computation

F-26

and prompts the user to restart allowing more than one vehicle.}

ELSIF escl =0
ASK outstrm WriteLn;
ASK outstrm Writelnt(k, 4);
ASK outstrm WriteString("There are no moves available....");
ASK outstrm WriteString("Increase the number of vehicles and try again");
ASK outstrm WriteLn;
EXIT;

{ALL MOVES ARE TABU AND NONE MEET ASPIRATION CRITERIA}
ELSIF chI =0

ASK outstrm WriteString("All moves tabu and none meet aspiration criteria ");
ASK outstrm WriteString("at iteration: ");

ASK outstrm WriteInt(k, 4);

ASK outstrm WriteLn;

{best of the neighbors is still moved to, tabu length adjusted}

chl :=escl;

chD :=escD;

tabuLen := MAXOF(ROUND(FLOAT(tabuLen) * DECREASE), minTL);
END IF;

{** UPDATE TABU LIST AND TOUR POSITIONS **}

{allow no "return" moves for tabuLen iterations, See Carlton '95: }
{4.3.6. Prevents a direct (active) move back to the position }
{which the node just moved from}

IFchD=1

tabulist[tour[chI+1].id][chI+1] :=k + tabuLen;
ELSE

tabulist[tour[chI].id][chI] := k + tabuLen;
END IF;

{allow no "repeat" moves for tabuLen iterations, See Carlton '95: }
{4.3.6. Prevents a direct (active) move back into the position }
{into which the node is currently moving}

tabulist[tour[chI].id][chI+chD] := k + tabuLen;

{BEFORE the new tour is constructed, update the tour hashing value}
{Performed exactly like a 3-opt move update, Wooruff&Zemel (93)}
zin = 0; zout :=0;

i:=chl;
IF chD >0
j:=chl + chD;
ELSE
j=chl+chD-1;
END IF;

zout := (zArr[tour[i-1].id] * zArr[tour[i].id])

+ (zArr[tour[i].id] * zArr[tour[i+1].id])
+ (zArr[tour[j].id] * zArr[tour{j+1].id]);

F-27

zin := (zArr[tour[i-1].id] * zArr[tour[i+1].id])
+ (zArr[tour[j].id] * zArr{tour[i].id])
+ (zArr[tour[i].id] * zArr[tour[j+1].id]);

shv := shv + (zin - zout);

IF moveprint

ASK outstrm WriteLn;

str := "Move inserts node " + INTTOSTR(tour[chI].id) + " to position "
+ INTTOSTR(chI + chD);

ASK outstrm WriteString(str); ASK outstrm WriteLn;

str := "w/ shv =" + INTTOSTR(shv);

ASK outstrm WriteString(str); ASK outstrm WriteLn;

END IF; .

{Perform the insertion}
insert(chl, chD, tour);

IF moveprint
gcktourFile(outstrm, tour, numnodes);
END IF;

{*UPDATE THE NEW INCUMBENT SCHEDULE*}
{* schedule data and tour length *}
IFchD >0

tourSched(chl, nc, numnodes, tour, time, tourLen, outstrm);
ELSE

tourSched(chI+chD, nc, numnodes, tour, time, tourLen, outstrm);
END IF;

{update penalties}

compPens(numnodes, tour, 0, tourPen); .

tsptwPen(numnodes, tourLen, tour, tourPen, TWPEN, totPenalty,
tourCost, penTrav, tvl);

{UPDATE COVERAGE}
expCvrg(numnodes, psurv, tour, cvrg);

IF moveprint

str := "and Tour Cost =" + INTTOSTR(tourCost);

ASK outstrm WriteString(str); ASK outstrm WriteLn;

str := "Current mavg is " + REALTOSTR(mavg) + " and Steps since last TL change "
+ INTTOSTR(ssltlc) + " current tabuLen " + INTTOSTR(tabuLen);

ASK outstrm WriteString(str); ASK outstrm WriteLn;

END IF; '

{*********}

{CYCLE CHECK}

fhv := tourCost MOD HTSIZE;)
lookfor(thv, tourCost, shv, tvl, k, tourPen, hashtbl, hashcurr, found);

{if exact match exists then we found a cycle}

F-28

IF found = FALSE {new unfound feasible tour}
IF totPenalty = 0
numfeas := numfeas +1;
END IF;

countVeh(numnodes, tour, nvu);

uavBest(cvrg, numnodes, totPenalty, penTrav, tvl, nvu, k, tour, bfCost,
bfTT, bfnv, bfiter, bestCost, bestTT, bestnv, bestiter,
bfCvrg, bestCvrg,
bfTour, bestTour, bfTime, bestTime);

nocycle(DECREASE, minTL, mavg, ssltlc, tabulLen, outstrm, cycleprint);

IF moveprint

str := "This tour was NOT FOUND in the hashing structure”;
ASK outstrm WriteString(str); ASK outstrm WriteLn;

END IF;

ELSE
{use hashcurr to get correct "lastiter”}
cycle(hashcurr, INCREASE, maxTL, CYMAX, k, mavg, ssltlc, tabuLen,
outstrm, cycleprint);

IF moveprint

str := "This tour was FOUND in the hashing structure";
ASK outstrm WriteString(str); ASK outstrm WriteLn;
END IF;

END IF,;

{ Rk

IF moveprint

str := "o

twLoadToFile(str, outstrm, tour, nc, numnodes, tourLen, TRUE);
END IF;

**}

{*** QUTPUT("k = ", k," and bestCost =", bestCost); ***}

{ dk

IF (k MOD 10)=0
ASK outstrm?2 WriteInt(k, 4); ASK outstrm WriteString(" ")
ASK outstrm?2 WriteInt(tabulen, 4); ASK outstrm WriteString(" ");
ASK outstrm?2 WriteInt(penTrav, 7); ASK outstrm WriteString(" ");
ASK outstrm?2 WriteInt(bestCost, 7); ASK outstrm WriteString(" ");
ASK outstrm?2 WriteInt(bestCost, 7); ASK outstrm WriteString(" ");
ASK outstrm?2 WriteLn;

END IF;
**}
k=k+1;

END WHILE; {* TABU SEARCH ROUTINE END *}
DISPOSE(hashtbl);

DISPOSE(tabulist);
DISPOSE(zArr);

F-29

END METHOD; {search}

END OBIJECT; {uavRTSobj}

{Find the expected coverage for an entire tour}
{ Total coverage is the sum of each vehicle's coverage}
{Each vehicle's coverage is the product of the probabilities of survival for
the targets that vehicle visits}
PROCEDURE expCvrg(IN numnodes : INTEGER;
IN psurv : arrRealType;
IN tour : tourType;
OUT cvrg : REAL); {coverage of tour}

VAR

1, {index of tour array}

j : INTEGER; {index of the vehicle tours}

vehevrg : REAL; {coverage performed by one vehicle}

nodecvrg : arrRealType; {array holding the exp cvrg at each target}
BEGIN

{Instantiate a temporary array to hold the}
{expected coverage for each node visited by}
{this vehicle.}

NEW(nodecvrg, 1..numnodes)

cvrg :=0.0;
i:=0;

WHILE i < numnodes

{ vehicle to demand transition starts veh tour}
IF (tour[i].type = 2) AND (tour[i+1].type = 1)

j=1 {start of the vehicle tour}
vehcvrg := 0.0; {reset vehicle coverage}

{find coverage of this vehicle}
WHILE tour[i+j].type = 1

IFj=1

nodecvrg[i+j] := psurv[tour[i+j].id];
ELSE

nodecvrg[i+j] := nodecvrg[i+j-1] * psurv[tour[i+j].id];
END IF;

{add the expected node cvrg to vehcvrg}
vehevrg = vehevrg + nodecvrg[i+j]
j=j+1

END WHILE; {vehicle}

{add vehicle cvrg to total cvrg}
cvrg := cvrg + vehevrg;

{move past this veh tour to look for another veh tour}
i=14j;

E-30

ELSE
IF i = numnodes - 1
EXIT;
ELSE
i=1+1;
END IF,;

END IF;
END WHILE;
DISPOSE(nodecvrg);
END PROCEDURE; {expCvrg}

{Print tour with random Service info to outstrm file}
PROCEDURE twServToFile(IN where : STRING;
IN outstrm :StreamObj;
IN tour : tourType;
IN nc, numnodes,
tourLen :INTEGER;
IN factor : REAL;
IN load : BOOLEAN;
IN s, slo, shi : arrIntType);
CONST
{ id eArr 1A |Arr Dep Waitls slo shi | Qty Load}
formatl="***< ****_*< ****_*(*****‘*< *****_*< ***.*< *.***< *.***< *.***< **< ***<";
format2="***< ****.*< ****.*< *****'*< *****-*< ***'*< *_***< *_***< *_***<";
VAR
i: INTEGER;
name, str : STRING;
serv, servlo, servhi : REAL;
BEGIN
ASK outstrm WriteString(where);
ASK outstrm WriteLn;
ASK outstrm WriteString("Tour Length: ");
ASK outstrm WriteInt(tourLen,4);
ASK outstrm WriteLn;
ASK outstrm WriteString("Node information follows:");
ASK outstrm WriteLn;
IF load
ASK outstrm WriteString("TYPE ID eArr lArr 1A Dep Waitl s");
ASK outstrm WriteString(" slo shi [Qty Load");
ELSE
ASK outstrm WriteString("TYPE ID eArr 1Arr |Arr Dep Waitl s");
ASK outstrm WriteString(" slo shi");
END IF; _
ASK outstrm WriteLn;

FOR i := 0 TO numnodes
IF ((tour[i].id = 0) OR (tour[i].id = numnodes))
AND (tour[i].type = 2)
name := "DEPOT ";
serv := FLOAT(s[0]);

F-31

servlo := FLOAT(slo[0]);
servhi := FLOAT(shi[0]);
ELSIF tour[i].type = 2
name := "VHCL *“;
serv := FLOAT(s[0]);
servlo := FLOAT(slo[0]);
servhi := FLOAT(shif0]);
ELSIF tour[i].type = 1
name := "NODE ",
serv := FLOAT(s[tour[i].id]);
servlo := FLOAT(slo[tour[i].id]);
servhi := FLOAT(shiftour[i].id]);
END IF;

IF load = TRUE
str := SPRINT (tour{i].id, FLOAT(tour[i].ea) / factor,
FLOAT(tour[i].1a) / factor, FLOAT(tour[i].arr) / factor,
FLOAT (tour[i].dep) / factor, FLOAT(tour[i].wait) / factor,
serv / factor, servlo / factor, servhi / factor,
tour[i].qty, tour[i].load)
WITH formatl;
ELSE
str := SPRINT(tour[i].id, FLOAT(tour[i].ea) / factor,
FLOAT(tour[i].1a) / factor, FLOAT(tour[i].arr) / factor,
FLOAT(tour[i].dep) / factor, FLOAT(tour[i]. wait) / factor,
serv / factor, servlo / factor, servhi / factor)
WITH format2;
END IF;

ASK outstrm WriteString(name);
ASK outstrm WriteString(str);
ASK outstrm WriteLn;

END FOR;

ASK outstrm WriteLn;
END PROCEDURE; {twServToFile}

{Print tour with coverage and service info to outstrm file}
PROCEDURE twCvrgServToFile(IN where : STRING;
IN outstrm :StreamOby;
IN tour : tourType;
IN nc, numnodes,
tourLen :INTEGER;
IN factor : REAL;
IN load : BOOLEAN;
IN psurv : arrRealType;
IN s, slo : arrIntType);
CONST
{ id eArr 1Arr |Ar Dep Wait!Ps s slolQty Load}

format1="***< ****.*< ****'*< *****.*< *****_*< ***_*< *.** ***_** ***.**< **< ***<”;
format2="***< ****.*< ****_*< *****.*< *****_*< ***‘*< *'** ***.** ***'**<";
VAR
i : INTEGER;
name, str : STRING;

F-32

ps, serv, servlio : REAL;
BEGIN
ASK outstrm WriteString(where);
ASK outstrm WriteLn;
ASK outstrm WriteString("Tour Length: ");
ASK outstrm WriteInt(tourLen,4);
ASK outstrm WriteLn;
ASK outstrm WriteString("Node information follows:");
ASK outstrm WriteLn;
IF load
ASK outstrm WriteString("TYPE ID eArr 1Arr [Arr Dep Wait|Ps");
ASK outstrm WriteString(" s slo | Qty Load");
ELSE
ASK outstrm WriteString("TYPE ID eArr 1Arr |Arr Dep Wait| Ps");
ASK outstrm WriteString(" s slo"); \
END IF;
ASK outstrm WriteLn;

FOR i := 0 TO numnodes
IF ((tour[i].id = 0) OR (tourf{i].id = numnodes))
AND (tour[i].type = 2)
name := "DEPOT ";
ps := psurv[0];
serv := FLOAT(s[tour[0].id]);
servlo := FLOAT(slo[tour[0].id]);
ELSIF tour[i].type = 2
name :="VHCL ";
ps := psurv{0];
serv := FLOAT(s[tour[0].id]);
servlo := FLOAT(slo[tour[0].id]);
ELSIF tour[i].type = 1
name := "NODE ";
ps := psurv[tour[i].id];
serv := FLOAT(s[tour[i].id]);
servlo := FLOAT(slo[tour[i].id]);
END IF,;

IF load = TRUE
str := SPRINT(tour[i].id, FLOAT(tour[i].ea) / factor,
FLOAT (tour[i].1a) / factor, FLOAT(tour[i].arr) / factor,
FLOAT (tour[i].dep) / factor, FLOAT(tour[i].wait) / factor, ps,
serv / factor, servlo / factor,
tour[i].qty, tour[i}.load)
WITH formatl;
ELSE
str := SPRINT(tour[i].id, FLOAT(tour[i].ea) / factor,
FLOAT(tour[i].1a) / factor, FLOAT(tour[i].arr) / factor,
FLOAT(tour[i].dep) / factor, FLOAT(tour[i].wait) / factor, ps,
serv / factor, servlo / factor)
WITH format2;
END IF;

ASK outstrm WriteString(name);

ASK outstrm WriteString(str);
ASK outstrm WriteLn;

E-33

END FOR;
ASK outstrm WriteLn;
END PROCEDURE; {twCvrgServToFile}

{Print tour with coverage info to outstrm file}
PROCEDURE twCvrgToFile(IN where : STRING;
IN outstrm :StreamObyj;
IN tour : tourType;
IN nc, numnodes,
tourLen :INTEGER;
IN factor : REAL;
IN load : BOOLEAN;
IN psurv : arrReal Type);
CONST
{ id eArr lAmr |Arr Dep WaitlPs |Qty Load}
format1="***< ****_*< ****_*< *****‘*< *****_*< ***.*< *_**< **< ***<";
format2=“***< *?k**'*< ****‘*< *****'*< *****_*< ***_*< *_**<";
VAR
i:INTEGER;
name, str : STRING;
ps : REAL;
BEGIN
ASK outstrm WriteString(where);
ASK outstrm WriteLn;
ASK outstrm WriteString("Tour Length: ");
ASK outstrm WriteInt(tourLen,4);
ASK outstrm WriteLn;
ASK outstrm WriteString("Node information follows:");
ASK outstrm WriteLn;
IF load
ASK outstrm WriteString("TYPE ID eArr 1A |Arr Dep WaitlPs");
ASK outstrm WriteString("l Qty Load");
ELSE
ASK outstrm WriteString("TYPE ID eArr 1A |Amr Dep Wait|Ps");
END IF,
ASK outstrm WriteLn;

FOR i := 0 TO numnodes

IF ((tourfi].id = 0) OR (tourfi].id = numnodes))
AND (tour[i].type = 2)
name := "DEPOT ";
ps := psurv[Q];

ELSIF tour[i].type = 2
name := "VHCL ";
ps := psurv[0];

ELSIF tour[i].type = 1
name := "NODE ";
ps := psurv{tour{i].id];

END IF;

IF load = TRUE

str := SPRINT (tourfi].id, FLOAT(tourf[i].ea) / factor,
FLOAT(tour(i].la) / factor, FLOAT(tour[i].arr) / factor,

F-34

FLOAT(tour[i].dep) / factor, FLOAT(tour][i].wait) / factor, ps,
tour[i].qty, tour[i].load)
WITH formatl;
ELSE :
str ;= SPRINT(tour[i].id, FLLOAT(tour[i].ea) / factor,
FLOAT(tour[i].la) / factor, FLOAT(tour[i].arr) / factor,
FLOAT(tourfi].dep) / factor, FLOAT(tour[i].wait) / factor, ps)
WITH format?2;
END IF;

ASK outstrm WriteString(name);
ASK outstrm WriteString(str);
ASK outstrm WriteLn;

END FOR;

ASK outstrm WriteLn;

END PROCEDURE; {twCvrgToFile}

{best coverage, lowest completion time}
{Retains the feasible solution having the greatest coverage and with the
greatest coverage has the lowest completion time

first saves tour with greatest coverage

ties broken by shortest completion time }

PROCEDURE uavBest (IN expCvrg : REAL; {expected coverage}
IN numnodes,

totPenalty, {total penalty}

penTrav, {current tour: penalty + tvl}
tvl, {current tour: travel time}
nvu, {number of vehicles used}
iter {current iteration number}

: INTEGER;

IN tour : tourType; {current tour}
INOUT bfCost, bfTT, {best feas cost & tvl time}

bfnv, . {best feas num vehs used}
bfiter, {iter # when best feas found}
bestCost, {best overall penalty + TT}
bestTT, {best overall travel time}
bestnv, {best number of vehs used}
bestiter {iter # when best ovrall found}
: INTEGER;
INOUT bfCvrg, {best feas expected cvrg}
bestCvrg {best overall exp cvrg}
: REAL;

INOUT bfTour, bestTour : tourType;
INOUT bfTime, bestTime : INTEGER);

VAR

i, :
currtime : INTEGER; {current clock time of search}
BEGIN

currtime := SystemTime();

E-35

{save the tour if it is the best ever found}
IF expCvrg > bestCvrg

bestCvrg := expCvrg; -

bestTT :=tvl;
bestCost := penTrav;
bestTime := currtime;
bestiter := iter;
FOR i := 0 TO numnodes
bestTour[i] := CLONE(tour[il);
END FOR;
bestnv := nvu;

ELSIF (expCvrg = bestCvrg) AND (penTrav < bestCost)

bestCost := penTrav;
bestTT := tvl;
bestTime := currtime;
bestiter := iter;
FOR i := 0 TO numnodes
bestTour[i] := CLONE(tourf[i]);
END FOR;
bestnv := nvu;

END IF;

{feasible checks}

IF (expCvrg < bfCvrg) OR (totPenalty > 0)
RETURN;

ELSIF (expCvrg > bfCvrg) AND (totPenalty = 0)

bfCvrg := expCvrg;

bfTime := currtime;

bfCost := penTrav;

bfTT := tvl;

bfiter := iter;

FOR i := 0 TO numnodes
bfTour[i] := CLONE(tour[i]);

END FOR;

bfnv := nvu;

RETURN;

ELSIF (expCvrg = bfCvrg) AND (penTrav < bfCost)

bfTime := currtime;

bfCost := penTrav;

bfTT := tvl;

bfiter := iter;

FOR i := 0 TO numnodes
bfTour[i] := CLONE(tour[i]);

END FOR;

bfnv := nvu;

RETURN;

F-36

END IF;
RETURN;
END PROCEDURE; {twbestTT}

END MODULE. {Implementation uavMod}

E-37

Appendix G: MuavLoiter

The main module MuavLoiter runs the initialization phase of UAV problems with
stochastic winds and service times. The operator can adjust the random seeds, the
airspeed, the wind parameters, and choose to read-in an initial tour. It creates the route

frequency matrix and ﬁnds the "robust" tour after the specified number of days.

MAIN MODULE uavLoiter;

FROM IOMod IMPORT StreamObj, ALL FileUseType, ReadKey;
FROM OSMod IMPORT SystemTime; :
FROM MathMod IMPORT pi;

FROM uavMod IMPORT timeMatrixObj;
FROM twReduceMod IMPORT twReductionObj;
FROM tsptwMod IMPORT startTourObj;
FROM tsptwMod IMPORT reacTabuObj;

FROM tabuMod IMPORT arrReal2dimType;
FROM tabuMod IMPORT coordArrType;
FROM tabuMod IMPORT tourType;

FROM tabuMod IMPORT nodeType;
FROM tabuMod IMPORT vrpPenType;
FROM tabuMod IMPORT arrInt2dimType;
FROM tabuMod IMPORT arrIntType;
FROM tabuMod IMPORT arrRealType;

FROM tabuMod IMPORT SwapNode;
FROM uavMod IMPORT twServToFile;
FROM tabuMod IMPORT LatLongToFile;
FROM tabuMod IMPORT gcktourFile;
FROM tabuMod IMPORT timeToFile;
FROM tabuMod IMPORT tourSched;
FROM tabuMod IMPORT countVeh;

FROM RandMod IMPORT RandomObj, SetSeed, FetchSeed;

VAR
timeMatrix : timeMatrixObyj;
twReduce : twReductionObj;
startTour : startTourObj;
rts : reacTabuObyj;
randObj1, randObj2, randObj3, randObj4 : RandomObj;

instrm,
instrm?2,
outstrm,
outstrm?2,

G-1

outlnit : StreamObyj;

factor, {used to convert the time windows to integer values}

TWPEN, {Penalty weight assigned to the sum of late arr TW violations}
INCREASE, {RTS parameter: mult. factor to decrease tabu length}
DECREASE, {RTS parameter: mult. factor to increase tabu length}

" windconv, {multiplied by the resulting UAV time matrix, it provides an
integer matrix (for calc speed) with the needed precision}

sumTij, {sum of the i to j distances in the distance matrix }

mindist, {minimum travel distance}

maxdist, {maximum travel distance}

distAvg, {avg travel distance}

wdir, {direction of wind vector}
ploiter, {probabilitiy you loiter over a target}
loiter, {loiter? - individual node result}
servSum {sum of increase in service times }

: REAL;
i, j, k,
endnum, {end number in a numbered data file group}
maxtime, {max possible time of arrival to any node, for time read}
numcycles, {number of TW reduction cycles wanted}
numchanges, {number of TWs reduced by TW reduction Obj}
numnodes, {number of nodes in the directed graph}
nv, {number of vehicles}
nc, {number of targets/customers}
gamma, {arbitrary cost assigned to the use of each vehicle}
iters, {number of Tabu Search Iterations per problem}
tourLen, {Length of tour in time}
tvl, {travel time of tour}
totPenalty, {Total Penalty assigned to current tour}
tourCost, {tour Length + Time Window Cost}
penTrav, {tourCost - totWait == travel time + TW penalty}
bfCost, {lowest tourCost found for a feasible tour}
bestCost, {lowest tourCost found for a any tour}
bestTT, {lowest travel time found for a any tour}
bestnv, {# vehs used by best overall tour}
bfTT, {lowest trave! time found for feasible tour}
bfnv, {# vehs used by best feas tour}
bfiter, {iteration # when best feasible tour found}
tourhv, {tour's hashing value}
bestiter, {iteration the best Tour found}
bestTime, { Time the best Tour found}
bestTimeF, { Time the best feasible Tour found}
numfeas, {number of feasible solns found}
startTime, {start Time (after time matrix, before TW reductions)}
stopTime, {stop Time (after last iteration)}
DEPTH, {depth of nodes we look for insert moves}
ZRANGE, {upper bound on random integer weights assigned to nodes}
HTSIZE, {size of hash table array}
CYMAX, {max cyleLength used to alter mavg}
tabuLen, {current length of tabu tenure}
minTL, {minimum Tabu Length}

G-2

maxTL, {maximum Tabu Length}

wmag, {magnitude of wind vector}

as, {UAV's air speed}

numdays, {number of days to run random scenarios }

day, {index of current day} ’

nvlnit, - {# vehicles in initial tour read from a file}

nvu, {# vehicles currently in use}

windques, {ask whether or not you want random winds}

magseed, dirseed, {seeds for random winds}

startques, {ask whether or not you want to input the initial tour}

servseed, loitseed, {seeds for random service times}

servques, {ask whether or not you want random service times}

lowdeg, {low end of range of wind direction to test}

highdeg, { high end of range of wind direction to test}

lowmag, {low end of range of wind magnitude to test}

highmag, {high end of range of wind magnitude to test}

minloiter,

maxloiter, {minimum & maximum loiter time}

dayscore, {robustness score of day under consideration}

maxdayscore, {max robustness measure found}

bestscore, {robustness measure of best route found}

sumScores, {sum of all dayscores, used to find a mean}

robustChoice {tags the resulting tour chosen as most robust}
: INTEGER;

outfile, {name of output file}

where, {where in the code?}

str,

startfile,

file, filein, {filenames}

filebegin,

fileout3,

fileout2,

fileout : STRING;

loadprint, {print load on vehicles}

stepprint, {print each move evaluation}

moveprint, {print every insert move made by RTS}
startprint, {print starting tour and tw reduction steps}
cycleprint, {print hash results}

timeprint, { print time matrix }

twrdprint : BOOLEAN; {print tw reduction steps}

psurv : arrReal Type; {prob of survival array}

coord : coordArrType; {coordinates array}

bfTour, {best feasible tour found}
bestTour, {node array holding best tour}

G-3

BEGIN

tour, {node array holding the tour}

inittour : tourType; {tour to read in an initial tour}
tourPen : vrpPenType; {record of curr tour penalties}
windmag, {array of wind magnitude per day}
winddir, {array of wind direction per day}

duration, {array of time to best solution per day}
besttype, {array tracking type of best: 1=feas, O=not}
scores, {array of robustness scores}

m, {array of TW midpoints}

slo, shi, {arrays of service time ranges}

S : arrIntType; {service times used}

dist : arrReal2dimType; {no wind distance matrix }
temp,

routefreq, {counts the frequency that route i to j

is chosen, where i and j are the array
indices, in that order}
time : arrInt2dimType; {time matrix }

tourChoice : ARRAY INTEGER OF tourType; {array of tour choices per day}

{INITIALIZE}

startprint := FALSE; { print starting tour}
timeprint ;= FALSE; {print time matrix}

stepprint := FALSE; {print each RTS step eval}
moveprint := FALSE; {print each RTS insert move}

twrdprint := FALSE; {print TW reduction steps}
cycleprint := FALSE; {print cycle/nocycle steps}

loadprint := FALSE; {print quantity & vehicle loads}

OUTPUT(" ");

OUTPUT("Please input the problem to work on:");

INPUT(file);
NEW(instrm); {open problem file}
NEW (outstrm); {open results file}
NEW (outlnit); {open file for future initial tour}

filein := file + ".DAT";

fileout := file + ".OUT";

fileout?2 := file + "Init. OUT";

ASK instrm Open(filein, Input);
ASK outstrm Open(fileout, Output);
ASK outlInit Open(fileout2, Output);

fileout3 := file + "Rslt" + ".OUT";
NEW(outstrm?2);
ASK outstrm?2 Open(fileout3, Output);

str := "FILE: " + file;
ASK outstrm WriteString(str); ASK outstrm WriteLn; ASK outstrm WriteLn;

OUTPUT(" ");

OUTPUT("Please input the factor (such as 1, 10, 100, etc.) necessary to convert");
OUTPUT("the time window info to integer quantities”);

INPUT (factor);

str := "Factor used for target windows and distances " + REALTOSTR (factor);
ASK outstrm WriteString(str); ASK outstrm WriteLn;

OUTPUT(™ ");
OUTPUT("Please input the number of vehicles");
INPUT(nv);

NEW(timeMatrix);

OUTPUT(" ");

OUTPUT("Do you want random service times?");
OUTPUT(" - 1=YES");

OUTPUT(" - 0=NO");

INPUT(servques);

IF servques = 1

OUTPUT(" ");

OUTPUT("Input seed number to use for service time randomization");
INPUT (servseed);

OUTPUT(" "),

OUTPUT("Input seed number to use for loiter randomization");
INPUT(loitseed);

NEW(randObj3); NEW(randObj4);
ASK randObj3 SetSeed(FetchSeed(loitseed));
ASK randObj4 SetSeed(FetchSeed(servseed));

OUTPUT(" ");
OUTPUT("Give the probability you will loiter over a target");
INPUT(ploiter);

ASK outstrm WriteLn;

str := "loitseed="+INTTOSTR(loitseed)+" servseed="+INTTOSTR(servseed)+
" Pr{loiter} = "+REALTOSTR(ploiter);

ASK outstrm WriteString(str); ASK outstrm WriteLn;

{Reads in a Latitude and Longitude scenario with Service time ranges}
ASK timeMatrix readLatLongLoiter(instrm, nc, numnodes, factor, nv, coord,

tour, slo, shi, outstrm, startprint);

NEW(s, 0..nc);
s[0] :=0;

G-5

ELSE

{Reads in a Latitude and Longitude scenario: the number of targets,

the probablities of survival, and the target coordinates}

ASK timeMatrix readLatLong(instrm, nc, numnodes, factor, nv, coord,
tour, s, outstrm, startprint);

END IF;
"ASK instrm Close; DISPOSE(instrm);

{Compute 2 dimensional distance matrix given Latitude and Longitude coords}
{Does not take wind into account}

{Does not assume the problem is symmetric, but makes it so}

ASK timeMatrix distLatLong(nc, numnodes, coord, dist, startprint, outstrm);

IF startprint
{output distance matrix }
NEW(temp, 0..numnodes, 0..numnodes);
where := "No wind distance Matrix complete";
FOR i := 0 TO numnodes
FOR j :=i+1 TO numnodes
templil[j] := TRUNC(dist[i][j1);
templj][i] := temp[i](jl;
END FOR;
END FOR;
timeToFile(where, outstrm, temp, numnodes);
DISPOSE(temp);
END IF;

mindist := 9999.0; maxdist := 0.0;
sumTij := 0.0; distAvg := 0.0;
FORi:=0TOnc
FORj:=i+1 TOnc
sumTij := sumTij + dist[i][j];
IF (dist[i][j] < mindist) AND (dist[i]{j] > 0.0)
mindist := dist[i]{j]; END IF;
IF dist[i][j] > maxdist
maxdist := dist[i][j]; END IF;
END FOR;
END FOR;

distAvg := sumTij / (FLOAT((nc+1)*(nc+1))/2.0 - FLOAT(nc+1));

OUTPUT(" ");

OUTPUT(" Average distance to travel is ", distAvg);
OUTPUT("Min distance to travel is ", mindist);
OUTPUT("Max distance to travel is ", maxdist);

str := "Average distance to travel is " + REALTOSTR(distAvg);
ASK outstrm WriteString(str); ASK outstrm WriteLn;

str := "Min distance to travel is " + REALTOSTR(mindist);
ASK outstrm WriteString(str); ASK outstrm WriteLn;

str := "Max distance to travel is " + REALTOSTR (maxdist);
ASK outstrm WriteString(str); ASK outstrm WriteLn;

G-6

OUTPUT(" "),
OUTPUT("Please input vehicle's air speed (in mi/hr)");
INPUT(as);

OUTPUT(" ");

OUTPUT("Please input the conversion factor to use with the WIND time matrix");
OUTPUT("The time windows will be updated to ensure the conversion matches");
OUTPUT(" (must be at least as great as previous factor)”);

INPUT(windconv);

{Update tour with windconv to match times}
FOR i := 0 TO numnodes
IFi<=nc)
slo[i} := TRUNC(windconv / factor * FLOAT(sloli]));
slo[i] := TRUNC(windconv / factor * FLOAT(slo[i]));
END IF;

tour[i].ea := TRUNC(windconv / factor * FLOAT(tour[i].ea));
tour([i].la := TRUNC(windconv / factor * FLOAT(tour[i].1a));

IF tour[i].type = 2
tour[i].arr := tour[i].ea;
tour[i].dep := tour[i].arr;

END IF;

END FOR;

str := "Air speed " + REALTOSTR(as);

ASK outstrm WriteString(str); ASK outstrm WriteLn;

str := "Factor used to make the wind time matrix integer" + REALTOSTR(windconv);
ASK outstrm WriteString(str); ASK outstrm WriteLn;

ASK outstrm WriteLn;

OUTPUT(" ");

OUTPUT("Please input the number of tabu search iterations");
OUTPUT("you would like to step through.");

INPUT(ters);

ASK outstrm WriteLn;
str :="# Iters = " + INTTOSTR(iters);
ASK outstrm WriteString(str); ASK outstrm WriteLn;

OUTPUT(" ");

OUTPUT("Please input the number of days for which you would like to ");
OUTPUT("test random scenarios.");

INPUT(numdays);

OUTPUT(" ");

OUTPUT("Do you want random wind effects on every day");
OUTPUT(" - 1=YES");

OUTPUT(" - 0=NO");

INPUT(windques);

G-7

IF windques = 1

OUTPUT(" "); ,

OUTPUT("Input seed number to use for wind mag");
INPUT(magseed);

OUTPUT(" "),

OUTPUT("Input seed number to use for wind dir");
INPUT(dirseed);

ASK outstrm WriteLn;
str := "magseed="+INTTOSTR(magseed)+" dirseed="+INTTOSTR(dirseed);
ASK outstrm WriteString(str); ASK outstrm WriteLn;

NEW (randObj1); ASK randObj1 SetSeed(FetchSeed(magseed));
NEW (randObj2); ASK randObj2 SetSeed(FetchSeed(dirseed));

OUTPUT(" "); :

OUTPUT("Please input the range of DEGREES you would like to test");
OUTPUT(" - Put lowest number first");

OUTPUT(" - If testing winds around the O deg direction,");

OUTPUT(" Make sure lowdeg is negative");

INPUT(lowdeg);

INPUT(highdeg);

OUTPUT(" ");

OUTPUT("Please input the range of MAGNITUDE you would like to test");
OUTPUT(" - Put lowest number first");

INPUT(lowmag);

INPUT (highmag);

ASK outstrm WriteLn;

str :="RANDOM WINDS: degrees " + INTTOSTR(lowdeg) + " " + INTTOSTR (highdeg)
+ " magnitude " + INTTOSTR(lowmag) + " " + INTTOSTR(highmag);

ASK outstrm WriteString(str); ASK outstrm WriteLn;

ELSE

OUTPUT(" ");
OUTPUT("Please input the magnitude of the wind vector (in mi/hr)");
INPUT(wmag);

OUTPUT(" ");

OUTPUT("Please input the direction that the wind is blowing FROM in degrees”);
OUTPUT(" (due EAST is 0 degs, due NORTH is 90 degs, and so on)");
INPUT(wdir);

wdir := pi/ 180.0 * wdir;
END IF;
OUTPUT(" ");
OUTPUT("Do you want to input the initial tour?");
OUTPUT(" - 1=YES");

OUTPUT(" - 0=NO");
INPUT(startques);

G-8

IF startques = 1

OUTPUT(" "); :
OUTPUT("Input the file from which to read the initial tour");
INPUT (startfile);

{open problem file}
NEW(instrm2};

filein := startfile + ".DAT";
ASK instrm2 Open(filein, Input);

{initialize array of node id's}
NEW(m, 0..numnodes);
FORj:=1TOnc

m[j] :=0;
END FOR;

ASK instrm2 ReadInt(nvInit);

IF nvInit <> nv
OUTPUT("nv and # vehicles in initial tour do not agree -- Break program!!");
END IF;

FOR i := 0 TO numnodes
ASK instrm2 ReadInt(m[i]); {m contains the id at position i}
END FOR;

ASK instrm?2 Close; DISPOSE(instrm?2);

END IF;

OUTPUT(file);
OUTPUT(filein);
OUTPUT((fileout);
OUTPUT(fileout2);

{*} {denotes a parameter setting}
{* nv :=10; *}

{* windconv := 10.0; *}

{* numcycles :=3; *}

{* iters := 1000; *}

{*} TWPEN := 1.0;

{*} gamma := 0;

{*} INCREASE :=1.2;
{*} DECREASE :=0.9;
{*} CYMAX :=50;

{*} HTSIZE := 1009;
{*} ZRANGE := 1009;
{*} minTL :=5;

{*} maxTL := 2000;

{*} DEPTH := nc+nv-1;
{*} tabuLen := MINOF(30, nc+nv-1);

{**** LOOP OF SCENARIOS ***}

NEW(windmag, 1..numdays);

NEW (winddir, 1..numdays);

NEW ((duration, 1..numdays);

NEW!(besttype, 1..numdays);

NEW(scores, 1..numdays);
NEW!(tourChoice, 1..numdays, 0..numnodes);
NEW (routefreq, 0..numnodes, 0..numnodes);

{initialize matrix of route frequency counts}
FOR i := 0 TO numnodes
FOR j := 0 TO numnodes
routefreq[i](j] := 0;
END FOR;
END FOR;

FOR day := 1 TO numdays

ASK outstrm WriteLn;
str :="DAY: " + INTTOSTR(day); .
ASK outstrm WriteString(str); ASK outstrm WriteLn;

IF windques =1
windmag[day] := ASK randObj1 UniformInt(lowmag, highmag);
wmag := windmag[day];
winddir[day] := ASK randObj2 UniformInt(lowdeg, highdeg);
wdir := FLOAT(winddir[day]);
wdir ;= pi/ 180.0 * wdir;

END IF;

ASK outstrm WriteLn;
str :="WIND: magnitude ="+INTTOSTR(wmag)+" direction(rads) =" + REALTOSTR (wdir);
ASK outstrm WriteString(str); ASK outstrm WriteLn; ASK outstrm WriteLn;
IF servques = 1
FORi:=1TOnc
loiter := ASK randObj3 UniformReal(0.0, 1.0);
IF loiter <= ploiter
s[i] := ASK randObj4 UniformInt(slofi], shii]);
ELSE
s[i] := slo[il;
END IF;
END FOR;

END IF;

G-10

ASK timeMatrix timeMatrix(nc, numnodes, gamma, as, wmag, wdir, windconv,
coord, s, dist, time, outstrm, startprint);
OUTPUT("b");

NEW(startTour); {find initial tour and/or initial penalties}
IF day = 1 {must find a true initial tour}
IF startques = 1 {read in initial tour}
NEW(inittour, 0..numnodes);

{Reorder tour, currently in numerical order, by the initial tour
and place temporarily into inittour}

FOR i := 0 TO numnodes
inittour[i] := CLONE(tour[m[i]]);
END FOR;

{Copy inittour into tour}

FOR i := 0 TO numnodes
tour[i] := CLONE(nittour[i]);

END FOR;

DISPOSE(Gnittour);
tourSched(1, nc, numnodes, tour, time, tourLen, outstrm);
startTime := SystemTime();

ELSE

ASK startTour startTour(nv, nc, time, tour, tourLen,
totPenalty, tourhv, startTime, m, outstrm);

END IF;

DISPOSE(m);
OUTPUT("c");
ELSE

NEW(tour, 0.. numnodes);
{use the best result of the previous day}
FOR i := 0 TO numnodes
tour[i] := CLONE(tourChoice[day-1][i]);
END FOR;

{Compute initial schedule, return tour's total travel + wait time}
tourSched(1, nc, numnodes, tour, time, tourLen, outstrm);

startTime := SystemTime();
END IF,
OUTPUT("d");

IF startprint
ASK outstrm WriteString("startTour complete"); ASK outstrm WriteLn;

G-11

gcktourFile(outstrm, tour, numnodes);
END IF;

ASK startTour startPenBest(numnodes, tvl, tourLen, tour, TWPEN,
totPenalty, penTrav, tourCost, tourPen,
bfiter, bfCost, bfTT, bfnv, bestiter,
bestCost, bestTT, bestnv, bestTimeF,
bestTime, bestTour, bfTour);

OUTPUT("e"),

NEW(rts);

{conduct RTS}

ASK r1ts search(TWPEN, INCREASE, DECREASE, HTSIZE, CYMAX, ZRANGE, DEPTH,
minTL, maxTL, tabuLen, iters, nc, numnodes,
outstrm, outstrm2, tourPen, time, stepprint,
moveprint, cycleprint, tourCost, penTrav,
totPenalty, tvl, bfCost, bfT'T, bfnv, bfiter,
bestCost, bestTT, bestnv, bestTime, bestTimeF,
bestiter, numfeas, tour, bestTour, bfTour);

DISPOSE(xts);

stopTime := SystemTime();
IF bfiter > -1

{save the best feasible tour found}

FOR i := 0 TO numnodes
tourChoice[day][i} := CLONE(bfTourfi});

END FOR;

{output the results}

where = "DAY " + INTTOSTR(day) + " BEST FEASIBLE TOUR";

twServToFile(where, outstrm, bfTour, nc, numnodes, bfCost,
windconyv, loadprint, s, slo, shi);

duration[day] := bestTimeF - startTime;
besttype[day] := 1;

ASK outstrm WriteString("# vehicles used = ");
ASK outstrm WriteInt(bfnv, 2); ASK outstrm WriteLn;

ASK outstrm WriteString("Best Feasible solution found after ");

ASK outstrm WriteString(INTTOSTR (bestTimeF-startTime)+" secs");
ASK outstrm WriteLn;

ASK outstrm WriteString("on Iteration: "+ INTTOSTR(bfiter));

ASK outstrm WriteLn;

ASK outstrm WriteString("with travel time = "+ INTTOSTR(bfTT));
ASK outstrm WriteLn;

{update the route frequency matrix }
FOR i := 0 TO numnodes-1

j = bfTourl[i].id;

k :=bfTour[i+1].id;

routefreq(jl[k] := routefreq[jl[k] + 1;
END FOR;

OUTPUT("f");

ELSE

{save the best tour found}
FOR i := 0 TO numnodes

tourChoice[day][i] := CLONE(bestTour[i]);
END FOR;

{output the results}
where := "DAY " + INTTOSTR(day)
+ " Search complete: BEST TOUR (NOT FEASIBLE)";
twServToFile(where, outstrm, bestTour, nc, numnodes, bestCost,
windconv, loadprint, s, slo, shi);

duration[day] := bestTime - startTime;
besttype[day] := 0;

ASK outstrm WriteString("# vehicles used = ");

ASK outstrm WriteInt(bestnv, 2); ASK outstrm WriteLn;

ASK outstrm WriteString("Best solution found after ");

ASK outstrm WriteString(INTTOSTR (bestTime-startTime)+" secs");
ASK outstrm WriteLn;

ASK outstrm WriteString("on Iteration: "+ INTTOSTR (bestiter));
ASK outstrm WriteLn;

ASK outstrm WriteString("with travel time = "+ INTTOSTR(bestTT));
ASK outstrm WriteLn;

{#**+* DONT UPDATE THE MATRIX WITH A BAD TOUR

*****}

{update the route frequency matrix}
FOR i := 0 TO numnodes-1
Jj = bestTour[i].id;
k :=bestTour[i+1].id;
routefreq(j]{k] := routefreq[jlk] + 1;
END FOR;

END IF;

{output coords to file so we can scatter plot tours}
where := "Day =" + INTTOSTR(day);
LatLongToFile(where, outstrm?2, tourChoice[day], nc, numnodes, coord);

{Output service time difference}
IF servques = 1
servSum := 0.0;
FORi:=1TOnc
servSum := servSum + FLOAT(s[i] - slo[i]);
END FOR;
servSum := servSum / windconv;
str :="Sum of increase over min service times = "+ REALTOSTR(servSum);
ASK outstrm WriteLn; ASK outstrm WriteString(str);
ASK outstrm WriteLn;
END IF;

DISPOSE(bfTour);
DISPOSE(bestTour);
DISPOSE(tourPen);
DISPOSE(tour);

END FOR;
{**%* END OF DAY LOOP *#**}
OUTPUT("g");

{output route frequency matrix }
where := "SCENARIO LOOP COMPLETE, Frequency of Routes Chosen: ";
timeToFile(where, outstrm, routefreq, numnodes);

{find most robust tour chosen}
dayscore :=0;

maxdayscore := 0;

sumScores := 0;

robustChoice := 1;

FOR day := 1 TO numdays

FOR i := 0 TO numnodes-1
dayscore := dayscore
+ routefreq[tourChoice[day][i].id][tourChoice[day][i+1].id];
END FOR;
scores[day] := dayscore;
sumScores := sumScores + dayscore;

{choose the tour with the most robust routes}
IF dayscore > maxdayscore

robustChoice := day;

bestscore := dayscore;

maxdayscore := dayscore;

ELSIF dayscore = maxdayscore

{choose feasible tours over nonfeas, or choose the most recent}
IF besttype[day] >= besttype[robustChoice]

robustChoice := day;

bestscore := dayscore;
END IF;

END IF;
dayscore :=0;

END FOR;
OUTPUT("1");
{output robust tour}
tourSched(1, nc, numnodes, tourChoice[robustChoice], time, tourLen, outstrm);
countVeh(numnodes, tourChoice[robustChoice], nvu);
OUTPUT("2");
where := "MOST ROBUST TOUR: day = " + INTTOSTR(robustChoice);
twServToFile(where, outstrm, tourChoice[robustChoice],
nc, numnodes, tourLen, windconv, loadprint, s, slo, shi);

ASK outstrm WriteString("# vehicles used ="

ASK outstrm WriteInt(nvu, 2); ASK outstrm erteLn,
ASK outstrm WriteString("With robustness score "+ INTTOSTR(bestscore))

G-14

ASK outstrm WriteLn; ASK outstrm WriteLn;
OUTPUT("3");
ASK outstrm WriteString("MEAN robustness score "
+ INTTOSTR(sumScores DIV numdays));
ASK outstrm WriteLn; ASK outstrm WriteLn;

{Output Robustness scores}
ASK outstrm WriteLn;
ASK outstrm WriteString("Robustness scores: ");
FOR i := 1 TO numdays
ASK outstrm WriteInt(i, 3);
ASK outstrm WriteInt(scores([i], 5);
ASK outstrm WriteLn;
END FOR;

{Output Robust tour for future Initial tour}

ASK outInit WriteInt(nv, 3); ASK outlnit WriteLn;

FOR i:= 0 TO numnodes
ASK outInit WriteInt(tourChoice[robustChoice][i].id, 5);
ASK outInit WriteLn;

END FOR;

ASK outstrm Close;
ASK outlnit Close;
ASK outstrm? Close;

DISPOSE(startTour);
DISPOSE(timeMatrix);
DISPOSE(outstrm);
DISPOSE(outlnit);
DISPOSE(outstrm2};
DISPOSE(s);
DISPOSE(time);
DISPOSE(coord);

IF windques =1

DISPOSE(randObj1); DISPOSE(randObj2);
END IF;

IF servques = 1

DISPOSE(randObj3); DISPOSE(randObj4);
END IF;

END MODULE; {MAIN}

Appendix H: MuavThreat2

The main module MuavThreat2 runs the initialization phase of UAV problems
with stochastic winds, service times, and threats. The threats adjust by -0.1, 0.0, or 0.1

and every target is open to having a threat adjustment.

MAIN MODULE uavThreat2;

FROM IOMod IMPORT StreamObj, ALL FileUseType, ReadKey;
FROM OSMod IMPORT SystemTime;
FROM MathMod IMPORT pi;

FROM uavMod IMPORT timeMatrixObj;

FROM twReduceMod IMPORT twReductionObyj;

FROM uavMod IMPORT startUAVObj;

FROM uavMod IMPORT uavRTSobj; {risk oriented tabu search}

FROM tabuMod IMPORT coordArrType;
FROM tabuMod IMPORT tourType;

FROM tabuMod IMPORT nodeType;
FROM tabuMod IMPORT vrpPenType;
FROM tabuMod IMPORT arrInt2dimType;
FROM tabuMod IMPORT arrReal2dimType;
FROM tabuMod IMPORT arrIntType;
FROM tabuMod IMPORT arrRealType;

FROM uavMod IMPORT twCvrgServToFile;
FROM tabuMod IMPORT LatLongToFile;
FROM tabuMod IMPORT qgcktourFile;
FROM tabuMod IMPORT timeToFile;
FROM tabuMod IMPORT tourSched;
FROM tabuMod IMPORT countVeh;

FROM uavMod IMPORT expCvrg;
FROM RandMod IMPORT RandomObyj, SetSeed, FetchSeed;

VAR
timeMatrix : timeMatrixObyj;
twReduce : twReductionObj;
startTour : startUAVODbyj;
rts : uavRTSobj;
randObj1, randObj2, randObj3, randObj4, randObj5 : RandomObyj;

instrm,

instrm?2,

outstrm,

outstrm?2,

outlnit : StreamObj;

H-1

factor, {used to convert the time windows to integer values}

TWPEN, {Penalty weight assigned to the sum of late arr TW violations}
INCREASE, {RTS parameter: mult. factor to decrease tabu length}
DECREASE, {RTS parameter: mult. factor to increase tabu length}

windconv, {multiplied by the resulting UAV time matrix, it provides an
integer matrix (for calc speed) with the needed precision}

sumTij, {sum of the i to j distances in the distance matrix}

mindist, {minimum travel distance}

maxdist, {maximum travel distance}

distAvg, {avg travel distance}

wdir, {direction of wind vector}
riskadj, {amount to randomly adjust a target's prob of survival}
PSFCT, {factor multiplied by coverage results to get more info into
the integer move value}
cvrg, {expected coverage of the tour}
bfCvrg, {exp coverages of best and best feas tours}
bestCvrg,
loiter, {use to increase random service time is exceeded}
ploiter,
servSum {for output of the increase in service times}
: REAL;
i, j, k, »
endnum, {end number in a numbered data file group}
maxtime, {max possible time of arrival to any node, for time read}
numcycles, {number of TW reduction cycles wanted}
numchanges, {number of TWs reduced by TW reduction Obj}
numnodes, {number of nodes in the directed graph}
nv, {number of vehicles}
nc, {number of targets/customers}
gamma, {arbitrary cost assigned to the use of each vehicle}
iters, - {number of Tabu Search Iterations per problem}
tourLen, {Length of tour in time}
tvl, {travel time of tour}
totPenalty, {Total Penalty assigned to current tour}
tourCost, {tour Length + Time Window Cost}
penTrav, {tourCost - totWait == travel time + TW penalty}
bfCost, {lowest tourCost found for a feasible tour}
bestCost, {lowest tourCost found for a any tour}
bestTT, {lowest travel time found for a any tour}
bestnv, {# vehs used by best overall tour}
bfTT, {lowest travel time found for feasible tour}
bfnv, {# vehs used by best feas tour}
bfiter, {iteration # when best feasible tour found}
tourhv, {tour's hashing value}
bestiter, {iteration the best Tour found}
bestTime, { Time the best Tour found}
bfTime, {Time the best feasible Tour found}
numfeas, {number of feasible solns found}
startTime, {start Time (after time matrix, before TW reductions)}
stopTime, {stop Time (after last iteration)}
DEPTH, {depth of nodes we look for insert moves}
ZRANGE, {upper bound on random integer weights assigned to nodes}

HTSIZE, {size of hash table array}
CYMAX, {max cyleLength used to alter mavg}
tabuLen, { current length of tabu tenure}

minTL, {minimum Tabu Length}
maxTL, {maximum Tabu Length}
wmag, {magnitude of wind vector}

as, {UAV's air speed}

numdays, {number of days to run random scenarios}

day, {index of current day}

windques, {ask whether or not you want random winds}
magseed, dirseed,

startques, {ask whether or not you want to input the initial tour}
lowdeg, {low end of range of wind direction to test}

highdeg, {high end of range of wind direction to test}

lowmag, {low end of range of wind magnitude to test}
highmag, {high end of range of wind magnitude to test}
riskques, { ask whether or not you want random threats }

cvrseed,

nvlnit, {# vehicles in initial tour read from a file}
nvu, {# vehicles used in current tour}

dayscore, {robustness score of day under consideration}
maxdayscore, {max robustness measure found}

bestscore, {robustness measure of best route found}
sumScores, {sum of all dayscores, used to find a mean}
robustChoice, {tags the resulting tour chosen as most robust}
servques, {ask whether or not you want random service times}
servseed, {seeds for random service times }
loitseed

: INTEGER;

outfile, {name of output file}

where,
str,

startfile,

file, filein,
filebegin,
fileout3,

fileout2,

fileout : STRING;

{where in the code?}

{filenames}

loadprint, {print load on vehicles}

stepprint, {print each move evaluation}

moveprint, {print every insert move made by RTS}
startprint, {print starting tour and tw reduction steps}
cycleprint, {print hash results}

timeprint, {print time matrix }

twrdprint : BOOLEAN;

{print tw reduction steps}

H-3

BEGIN

psurv : arrReal Type; {prob of survival array }

coord : coordArrType; {coordinates array}

bfTour, { best feasible tour found}
bestTour, {node array holding best tour}
tour, {node array holding the tour}
inittour : tourType; {tour to read in an initial tour}
tourPen : vrpPenType; {record of curr tour penalties}
windmag, {array of wind magnitude per day}
winddir, {array of wind direction per day}

duration, {array of time to best solution per day}
besttype, {array tracking type of best: 1=feas, O=not}
scores, {array of robustness scores}

m, {array of TW midpoints}

slo, shi, {low, high ranges for random service}
s : arrIntType; {array of service times}

dist : arrReal2dimType; {no wind distance matrix }
temp,

routefreq, {counts the frequency that route i to j

is chosen, where i and j are the array
indices, in that order}
time : arrInt2dimType; {time matrix }

tourChoice : ARRAY INTEGER OF tourType; {array of tour choices per day}
psurvDay : ARRAY INTEGER OF arrRealType; {array of psurv per day}

{INITIALIZE}

startprint := FALSE; {print starting tour}
timeprint := FALSE; {print time matrix}
stepprint := FALSE; {print each RTS step eval}

moveprint := FALSE; {print each RTS insert move}
twrdprint := FALSE; {print TW reduction steps}
cycleprint := FALSE; {print cycle/nocycle steps}
loadprint := FALSE; {print quantity & vehicle loads}

NEW(outstrm);

OUTPUT(" ");
OUTPUT("Please input the problem to work on:");
INPUT(file);

NEW(instrm); {open problem file}
NEW ((outstrm); {open results file}
NEW (outlnit); {open file for future initial tour}
filein := file + ".DAT";

H-4

fileout := file + ".OUT";

fileout?2 := file + "Init. OUT";

ASK instrm Open(filein, Input);
ASK outstrm Open(fileout, Output);
ASK outlnit Open(fileout2, Output);

fileout3 := file + "Rslt" + ".OUT";
NEW ((outstrm?2);
ASK outstrm2 Open(fileout3, Output);

str ;= "FILE: " + file;
ASK outstrm WriteString(str); ASK outstrm WriteLn; ASK outstrm WriteLn;

OUTPUT(" ");

OUTPUT("Please input the factor (such as 1, 10, 100, etc.) necessary to convert");
OUTPUT("the time window info to integer quantities”);

INPUT(factor);

str := "Factor used for target windows and distances " + REALTOSTR(factor);
ASK outstrm WriteString(str); ASK outstrm WriteLn;

OUTPUT(" "),
OUTPUT("Please input the number of vehicles");
INPUT(nv);

NEW(timeMatrix);

OUTPUT(" ");

OUTPUT("Do you want random service times?");
OUTPUT(" -1=YES");

OUTPUT(" - 0=NO");

INPUT(servques);

IF servques = 1

OUTPUT(" ");

OUTPUT("Input seed number to use for service time randomization");
INPUT(servseed);

OUTPUT("");

OUTPUT("Input seed number to use for loiter randomization");
INPUT(loitseed);

NEW (randObj3); NEW (randObj4);

ASK randObj3 SetSeed(FetchSeed(loitseed));
ASK randObj4 SetSeed(FetchSeed(servseed));

OUTPUT(" ");
OUTPUT("Give the probability you will loiter over a target");
INPUT(ploiter);

ASK outstrm WriteLn;

str := "loitseed="+INTTOSTR(loitseed)+" servseed="+INTTOSTR(servseed)+
" Pr{loiter} = "+REALTOSTR(ploiter);

ASK outstrm WriteString(str); ASK outstrm WriteLn;

H-5

{Reads in a coords in miles scenario with Service time ranges and psurv}
ASK timeMatrix readUAVloiter(instrm, nc, numnodes, factor, nv,
psurv, coord, tour, slo, shi,
outstrm, startprint);

NEW(s, 0..nc);
s[0] :=0;

ELSE

{reads UAYV file, finds nc, inits coord & tour}
ASK timeMatrix readUAV (instrm, nc, numnodes, factor, nv,
psurv, coord, tour, s, outstrm,
startprint);

END IF;
ASK instrm Close; DISPOSE(instrm);

{compute distance matrix, given coordinates in miles}
ASK timeMatrix distMatrix(nc, numnodes, coord, dist, outstrm);

IF startprint
{output distance matrix }
NEW(temp, 0..numnodes, 0..numnodes);
where := "No wind distance Matrix complete”;
FOR i := 0 TO numnodes
FOR j :=i+1 TO numnodes
temp(i][j] == TRUNC(dist[i][]]);
templj][i] := templil(j];
END FOR;
END FOR;
timeToFile(where, outstrm, temp, numnodes);
DISPOSE(temp);
END IF,; a
mindist := 9999.0; maxdist := 0.0;
sumTij := 0.0; distAvg := 0.0,
FORi:=0TOnc
FORj:=i+1 TOnc
sumTij := sumTij + dist[i][j];
IF (dist[i][j] < mindist) AND (dist[i][j] > 0.0)
mindist := dist[i][j]; END IF;
IF dist[i][j] > maxdist
maxdist := dist[i][j]; END IF;
END FOR;
END FOR;

distAvg := sumTij / (FLOAT((nc+1)*(nc+1))/2.0 - FLOAT(nc+1));
OUTPUT(" ");

OUTPUT(" Average distance to travel is ", distAvg);
OUTPUT("Min distance to travel is ", mindist);

H-6

OUTPUT("Max distance to travel is ", maxdist);

str := "Average distance to travel is " + REALTOSTR(distAvg);
* ASK outstrm WriteString(str); ASK outstrm WriteLn;

str := "Min distance to travel is " + REALTOSTR (mindist);

ASK outstrm WriteString(str); ASK outstrm WriteLn;

str := "Max distance to travel is " + REALTOSTR(maxdist);

ASK outstrm WriteString(str); ASK outstrm WriteLn;

OUTPUT(" ");
OUTPUT("Please input vehicle's air speed (in mi/hr)");
INPUT(as);

OUTPUT(" "),

OUTPUT("Please input the conversion factor to use with the WIND time matrix");
OUTPUT("The time windows will be updated to ensure the conversion matches");
OUTPUT(" (must be at least as great as previous factor)");

INPUT(windconv);

{Update tour with windconv to match times}
FOR i := 0 TO numnodes
IFi<=nc
slo[i] := TRUNC(windconv / factor * FLOAT(slo[i]));
shi[i] := TRUNC(windconv / factor * FLOAT(shi[il));
END IF,
tour[i].ea := TRUNC(windconv / factor * FLOAT(tourfi].ea));
tour[i].la := TRUNC(windconv / factor * FLOAT(tour[i].1a));

IF tour(i].type = 2
tour[i].arr := tourfi].ea;
tourf[i].dep := tour[i].arr;

END IF;

END FOR;

str := "Air speed " + REALTOSTR(as);

ASK outstrm WriteString(str); ASK outstrm WriteLn;

str := "Factor used to make the wind time matrix integer" + REALTOSTR(windconv);
ASK outstrm WriteString(str); ASK outstrm WriteLn;

ASK outstrm WriteLn;

OUTPUT(" ");

OUTPUT("Please input the number of tabu search iterations");
OUTPUT("you would like to step through.");

INPUT(iters);

ASK outstrm WriteLn;
str :="# Iters = " + INTTOSTR(iters);
ASK outstrm WriteString(str); ASK outstrm WriteLn;

OUTPUT(" ");

OUTPUT("Please input the number of days for which you would like to ");
OUTPUT("test random scenarios.");

INPUT(numdays);

H-7

OUTPUT(" ");

OUTPUT("Do you want random WIND effects on every day");
OUTPUT(" - 1=YES");

OUTPUT(" - 0=NO");

INPUT(windques);

IF windques = 1

OUTPUT(" ");

OUTPUT("Input seed number to use for wind mag");
INPUT(magseed);

OUTPUT(" "),

OUTPUT("Input seed number to use for wind dir");
INPUT(dirseed);

ASK outstrm WriteLn; .
str := "magseed="+INTTOSTR(magseed)+" dirseed="+INTTOSTR(dirseed);
ASK outstrm WriteString(str); ASK outstrm WriteLn;

NEW (randObj1); ASK randObj1 SetSeed(FetchSeed(magseed));
NEW (randObj2); ASK randObj2 SetSeed(FetchSeed(dirseed));

OUTPUT(" ");

OUTPUT("Please input the range of DEGREES you would like to test");
OUTPUT(" - Put lowest number first");

OUTPUT(" - If testing winds around the 0 deg direction,");

OUTPUT(" Make sure lowdeg is negative");

INPUT(lowdeg);

INPUT(highdeg);

OUTPUT(" ");

OUTPUT("Please input the range of MAGNITUDE you would like to test");
OUTPUT(" - Put lowest number first");

INPUT(lowmag);

INPUT (highmag);

ASK outstrm WriteLn;

str :=="RANDOM WINDS: degrees " + INTTOSTR(lowdeg) + " " + INTTOSTR(highdeg)
+ " magnitude " + INTTOSTR(lowmag) + " " + INTTOSTR (highmag);

ASK outstrm WriteString(str); ASK outstrm WriteLn;

ELSE
OUTPUT(" ");
OUTPUT("Please input the magnitude of the wind vector (in mi/hr)");
INPUT(wmag);
OUTPUT(" ");
OUTPUT("Please input the direction that the wind is blowing FROM in degrees");
OUTPUT(" (due EAST is 0 degs, due NORTH is 90 degs, and so on)");
INPUT(wdir);
wdir := pi / 180.0 * wdir;

END IF;

OUTPUT(" ");

OUTPUT("Do you want to input the initial tour?");
OUTPUT(" - 1=YES");

OUTPUT(" - 0=NO");

INPUT(startques);

IF startques = 1

OUTPUT(" ");
OUTPUT("Input the file from which to read the initial tour");
INPUT (startfile);

NEW!(instrm2); {open problem file}

filein := startfile + ".DAT";
ASK instrm?2 Open(filein, Input);

{initialize array of node id's}
NEW (m, 0..numnodes);
FORj:=1TOnc

m[j] :=0;
END FOR;

ASK instrm2 ReadInt(nvInit);

IF nvInit <> nv
OUTPUT("nv and # vehicles in initial tour do not agree -- Break program!!");
END IF;

FOR i := 0 TO numnodes
ASK instrm2 ReadInt(m[i]); {m contains the id at position i}
END FOR;

ASK instrm?2 Close; DISPOSE(instrm?2);

END IF;

OUTPUT(" ");

OUTPUT("Do you want random THREAT effects on every day");
OUTPUT(" - 1=YES");

OUTPUT(" - 0=NO");

INPUT (riskques);

OUTPUT(" ");
OUTPUT("Input the factor to convert coverage to an integer value");
INPUT(PSFCT);

IF riskques = 1
OUTPUT(" ");

OUTPUT("Input seed number to use for random COVERAGES");
INPUT(cvrseed);

ASK outstrm WriteLn;
str := "RANDOM THREATS: cvrseed="+INTTOSTR(cvrseed);
ASK outstrm WriteString(str); ASK outstrm WriteLn;

NEW(randObj5); ASK randObjS SetSeed(FetchSeed(cvrseed));
END IF;

OUTPUT(file);
OUTPUT(filein);
OUTPUT((fileout);
OUTPUT(fileout2);

{*} {denotes a parameter setting}
{* nv := 10; *}

{* windconv := 10.0; *}

{* numcycles :=3; *}

{* iters := 1000; *}

{*} TWPEN := 10.0;

{*} gamma :=0;

{*} INCREASE :=1.2;
{*} DECREASE :=0.9;
{*} CYMAX :=50;

{*} HTSIZE := 131073;
{*} -~ ZRANGE := 1009;
{*} minTL :=§;

{*} maxTL := 2000;

{*} DEPTH := nc+nv-1;
{*} tabuLen := MINOF(30, nc+nv-1);

{**** LOOP OF SCENARIOS ***}

NEW(windmag, 1..numdays);

NEW(winddir, 1..numdays);

NEW(duration, 1..numdays);

NEW(scores, 1..numdays);

NEW(besttype, 1..numdays);
NEW(psurvDay, 1..numdays, 0..nc);
NEW(tourChoice, 1..numdays, 0..numnodes);
NEW (routefreq, 0..numnodes, 0..numnodes);

FOR i := 0 TO numnodes
FOR j := 0 TO numnodes
routefreq[i][j] := 0;
END FOR;
END FOR;

FOR day := 1 TO numdays
ASK outstrm WriteLn;

str :="DAY: " + INTTOSTR(day);
ASK outstrm WriteString(str); ASK outstrm WriteLn;

H-10

IF windques = 1
windmag[day] := ASK randObj1 UniformInt(lowmag, highmag);
wmag := windmag[day]; ’
winddir[day] := ASK randObj2 UniformInt(lowdeg, highdeg);
wdir ;= FLOAT(winddir[day]);
wdir := pi/ 180.0 * wdir;

END IF;

ASK outstrm WriteLn;
str :="WIND: magnitude ="+INTTOSTR(wmag)+" direction(rads) = " + REALTOSTR(wdir);
ASK outstrm WriteString(str); ASK outstrm WriteL.n; ASK outstrm WriteLn;

IF riskques = 1

{randomly adjust the prob of survival at the target nodes}
FORi:=1TOnc
riskadj ;= ASK randObj3 UniformReal(-1.0, 1.0);
IF riskadj < -0.333

riskadj :=-1.0;
ELSIF riskadj > 0.333
riskadj := 1.0;
ELSE
riskadj := 0.0;

END IF;
psurvDay[day][i] := psurv[i] + riskadj / 10.0;

END FOR;
ELSE
psurvDay[day] := psurv;
END IF;
IF servques = 1
FORi:=1TOnc
loiter := ASK randObj3 UniformReal(0.0, 1.0);
IF loiter <= ploiter
s[i] := ASK randObj4 UniformInt(slo[i], shi[i]);
ELSE
s[i] := slo[i];
END IF;
END FOR;
END IF;
ASK timeMatrix timeMatrix(nc, numnodes, gamma, as, wmag, wdir, windconv,

coord, s, dist, time, outstrm, startprint);

NEW(startTour); {find initial tour and/or initial penalties}

H-11

IF day = 1 {must find a true initial tour}
IF startques = 1 {read in initial tour}
NEW!(inittour, 0..numnodes);

{Reorder tour, currently in numerical order, by the initial tour
and place temporarily into inittour}

FOR i := 0 TO numnodes
inittour[i] := CLONE(tour[m[i]]);
END FOR;

{Copy inittour into tour}

FOR i := 0 TO numnodes
tour{i] := CLONE(inittour[il);

END FOR;

DISPOSE(nittour);
tourSched(1, nc, numnodes, tour, time, tourLen, outstrm);
startTime := SystemTime();

ELSE

ASK startTour startTour(nv, nc, time, tour, tourLen,
totPenalty, tourhv, startTime, m, outstrm);
END IF;

DISPOSE(m);
ELSE

NEW!(tour, 0..numnodes);
{use the best result of the previous day}
FOR i := 0 TO numnodes
tour[i] := CLONE(tourChoice[day-1][i]);
END FOR;

{Compute initial schedule, return tour's total travel + wait time}
tourSched(1, nc, numnodes, tour, time, tourLen, outstrm);

startTime := SystemTime();
END IF;

IF startprint

where := "startTour complete";
qcktourFile(outstrm, tour, numnodes);
END IF;

ASK startTour startUAVbest(numnodes, tvl, tourLen, tour, TWPEN,
psurvDay[day], totPenalty, penTrav, tourCost,
tourPen, bfiter, bfCost, bfTT, bfnv, bestiter,

bestCost, bestTT, bestnv, bfTime,
bestTime, cvrg, bfCvrg, bestCvrg,
bestTour, bfTour);

NEW(xts);
{conduct RTS}

ASK rts search(psurvDay[day], PSFCT,
TWPEN, INCREASE, DECREASE, HTSIZE, CYMAX, ZRANGE, DEPTH,
minTL, maxTL, tabuL.en, iters, nc, numnodes,
outstrm, outstrm?2, tourPen, time, stepprint,
moveprint, cycleprint, tourCost, penTrav, totPenalty, tvl,
bfCost, bfTT, bfnv, bfiter, bestCost, bestTT, bestnv,
bestTime, bfTime, bestiter, numfeas,
bfCvrg, bestCvrg, cvrg,
tour, bestTour, bfTour);
DISPOSE(rts);

stopTime := SystemTime();
IF bfiter > -1

{save the best feasible tour found}

FOR i := 0 TO numnodes
tourChoice[day][i] := CLONE(bfTour[i]);

END FOR;

{output the results}

where := "DAY " + INTTOSTR(day) + " BEST FEASIBLE TOUR";

twCvrgServToFile(where, outstrm, bfTour, nc, numnodes, bfCost,
factor, loadprint, psurvDay[day], s, slo);

duration[day] := bfTime - startTime;

besttype[day] := 1;

ASK outstrm WriteString("# vehicles used = ");
ASK outstrm WriteInt(bfnv, 2); ASK outstrm WriteLn;

ASK outstrm WriteString("Best Feasible solution found after ");
ASK outstrm WriteString(INTTOSTR(bfTime-startTime)+" secs");

ASK outstrm WriteLn;

ASK outstrm WriteString("on Iteration: "+ INTTOSTR(bfiter));
ASK outstrm WriteLn;

ASK outstrm WriteString("with travel time = "+ INTTOSTR(bfTT));
ASK outstrm WriteLn;

ASK outstrm WriteString("& Expected coverage = "+REALTOSTR (bfCvrg));
ASK outstrm WriteLn;

{update the route frequency matrix }
FOR i := 0 TO numnodes-1

j = bfTourfil.id;

k := bfTour[i+1].id;

routefreq[jl[k] := routefreq[jl[k] + 1;
END FOR;

ELSE

{save the best tour found}
FOR i := 0 TO numnodes

tourChoice[day][i] := CLONE(bestTour[i]);
END FOR;

{output the results}
where := "DAY "+ INTTOSTR(day) +" Search complete: BEST TOUR (NOT FEAS)";
twCvrgServToFile(where, outstrm, bestTour, nc, numnodes, bestCost,
factor, loadprint, psurvDay[day], s, slo);
duration[day] := bestTime - startTime;
besttype[day] := 0;

ASK outstrm WriteString("# vehicles used = ");
ASK outstrm WriteInt(bestnv, 2); ASK outstrm WriteLn;

ASK outstrm WriteString("Best solution found after ");
ASK outstrm WriteString(INTTOSTR (bestTime-startTime)+" secs");
ASK outstrm WriteLn;
ASK outstrm WriteString("on Iteration: "+ INTTOSTR(bestiter));
ASK outstrm WriteLn;
ASK outstrm WriteString("with travel time = "+ INTTOSTR(bestTT));
ASK outstrm WriteLn;
ASK outstrm WriteString("& Expected coverage = "+REALTOSTR (bestCvrg));
ASK outstrm WriteLn;
{*** DONT UPDATE THE ROUTE FREQ MATRIX WITH BAD TOURS
{update the route frequency matrix }
FOR i := 0 TO numnodes-1
j = bestTour[i].id;
k := bestTour[i+1].id;
routefreq[jl{k] := routefreq[jl[k] + 1;
END FOR;
skksk }

END IF;

{output coords to file so we can scatter plot tours}
where := "Day =" + INTTOSTR(day);
LatLongToFile(where, outstrm?2, tourChoice[day], nc, numnodes, coord);

{Output service time difference}
IF servques = 1
servSum := 0.0;
FORi:=1TOnc
servSum := servSum + FLOAT(s[i] - slo[i]);
END FOR,;
servSum := servSum / windconv;
str :="Sum of increase over min service times = "+ REALTOSTR(servSum);
ASK outstrm WriteLn; ASK outstrm WriteString(str);
ASK outstrm WriteLn;
END IF;

DISPOSE(bfTour);
DISPOSE(bestTour);
DISPOSE(tourPen);
DISPOSE(tour);

H-14

END FOR; {day loop}
{**** END OF DAY LOOP *#%%}

{output route frequency matrix }
where := "SCENARIO LOOP COMPLETE, Frequency of Routes Chosen: ";
timeToFile(where, outstrm, routefreq, numnodes);

{find most robust tour chosen}
dayscore :=0;

maxdayscore := 0;

sumScores := 0;

robustChoice := 1;

FOR day := 1 TO numdays

FOR i := 0 TO numnodes-1
dayscore := dayscore
+ routefreq[tourChoice[day][i].id][tourChoice[day][i+1].id];
END FOR;
scores[day] := dayscore;
sumScores := sumScores + dayscore;

{choose the tour with the most robust routes}
IF dayscore > maxdayscore

robustChoice := day;

bestscore := dayscore;

maxdayscore := dayscore;

ELSIF dayscore = maxdayscore

{choose feasible tours over nonfeas, or choose the most recent}
IF besttype[day] >= besttype[robustChoice]

robustChoice := day;

bestscore := dayscore;
END IF;

END IF;
dayscore := 0;
END FOR;

{output robust tour}

tourSched(1, nc, numnodes, tourChoice[robustChoice], time, tourLen, outstrm);
countVeh(numnodes, tourChoice[robustChoice], nvu);

expCvrg(numnodes, psurvDay[robustChoice}], tourChoice[robustChoice], cvrg);

where := "MOST ROBUST TOUR: day = " + INTTOSTR(robustChoice);
twCvrgServToFile(where, outstrm, tourChoice[robustChoice}, nc, numnodes,
tourLen, factor, loadprint, psurvDay[day], s, slo);

ASK outstrm WriteString("# vehicles used = ");

ASK outstrm WriteInt(nvu, 2); ASK outstrm WriteLn;
ASK outstrm WriteString("Expected Coverage =");

H-15

ASK outstrm WriteReal(cvrg, 6, 1); ASK outstrm WriteLn;
ASK outstrm WriteString("With robustness score "+ INTTOSTR (bestscore));
ASK outstrm WriteLn; ASK outstrm WriteLn;

ASK outstrm WriteString("MEAN robustness score "
+ INTTOSTR(sumScores DIV numdays));
ASK outstrm WriteLn; ASK outstrm WriteLn;

{ Output Robustness scores}
ASK outstrm WriteLn;
ASK outstrm WriteString("Robustness scores: ");
ASK outstrm WriteLn;
FOR i := 1 TO numdays
ASK outstrm WriteInt(i, 3);
ASK outstrm WriteInt(scores([i], 5);
ASK outstrm WriteLn;
END FOR;

{Output Robust tour for future Initial tour}

ASK outlnit WriteInt(nv, 5); ASK outInit WriteLn;

FOR i:= 0 TO numnodes
ASK outInit WriteInt(tourChoice[robustChoice][i].id, 5);
ASK outInit WriteLn;

END FOR;

ASK outstrm Close;
ASK outlnit Close;
ASK outstrm?2 Close;

DISPOSE(timeMatrix);
DISPOSE(outstrm);-
DISPOSE(outstrm?2);
DISPOSE(s);
DISPOSE(time);
DISPOSE(coord);

IF windques = 1

DISPOSE(randObj1); DISPOSE(randObj2);
END IF;

IF riskques = 1

DISPOSE(randObj3);

END IF;

END MODULE. {MAIN}

H-16

Appendix I: MuavServ2

A second step to MuavLoiter, the main module MuavServ2 runs the evaluation
phase of UAV problems with stochastic winds and service times. An entire set of tours
and the route frequency matrix from the initialization phase is read into the module.
Every day in this phase the route frequency matrix is updated and the robust tour is re-

identified.

MAIN MODULE uavServ2;

FROM IOMod IMPORT StreamObj, ALL FileUseType, ReadKey;
FROM OSMod IMPORT SystemTime;
FROM MathMod IMPORT pi;

FROM uavMod IMPORT timeMatrixObj;
FROM twReduceMod IMPORT twReductionObyj;
FROM tsptwMod IMPORT startTourObj;
FROM tsptwMod IMPORT reacTabuObj;

FROM tabuMod IMPORT arrReal2dimType;
FROM tabuMod IMPORT coordArrType;
FROM tabuMod IMPORT tourType;

FROM tabuMod IMPORT nodeType;
FROM tabuMod IMPORT vrpPenType;
FROM tabuMod IMPORT arrInt2dimType;
FROM tabuMod IMPORT arrIntType;
FROM tabuMod IMPORT arrRealType;

FROM tabuMod IMPORT SwapNode;
FROM uavMod IMPORT twServToFile;
FROM tabuMod IMPORT LatLongToFile;
FROM tabuMod IMPORT qcktourFile;
FROM tabuMod IMPORT tourToScreen;
FROM tabuMod IMPORT timeToFile;
FROM tabuMod IMPORT tourSched;
FROM tabuMod IMPORT countVeh;

FROM RandMod IMPORT RandomObyj, SetSeed, FetchSeed;

VAR
timeMatrix : timeMatrixObyj;
twReduce : twReductionObyj;
startTour : startTourObyj;
rts : reacTabuObj;
randObj1, randObj2, randObj3, randObj4 : RandomObj;

instrm,

I-1

instrm2, instrm3, instrm4,
outstrm,

outstrm?2,

outlnit : StreamObyj;

factor, {used to convert the time windows to integer values}

TWPEN, {Penalty weight assigned to the sum of late arr TW violations}
INCREASE, {RTS parameter: mult. factor to decrease tabu length}
DECREASE, {RTS parameter: mult. factor to increase tabu length}

windconv, {multiplied by the resulting UAV time matrix, it provides an
integer matrix (for calc speed) with the needed precision}

sumTij, {sum of the i to j distances in the distance matrix}

mindist, {minimum travel distance}

maxdist, {maximum travel distance}

distAvg, {avg travel distance}

wdir, {direction of wind vector}
ploiter, {probabilitiy you loiter over a target}
loiter, {loiter? - individual node result}
servSum {sum of increase over minimum service times}
: REAL;
i, j, k,
endnum, {end number in a numbered data file group}
maxtime, {max possible time of arrival to any node, for time read}
numcycles, {number of TW reduction cycles wanted}
numchanges, {number of TWs reduced by TW reduction Obj}
numnodes, {number of nodes in the directed graph}
nv, {number of vehicles}
nc, {number of targets/customers}
gamma, {arbitrary cost assigned to the use of each vehicle}
iters, {number of Tabu Search Iterations per problem}
tourLen, { Length of tour in time}
tvl, {travel time of tour}
totPenalty, {Total Penalty assigned to current tour}
tourCost, {tour Length + Time Window Cost}
penTrav, {tourCost - totWait == travel time + TW penalty}
bfCost, {lowest tourCost found for a feasible tour}
bestCost, {lowest tourCost found for a any tour}
bestTT, {lowest travel time found for a any tour}
bestnv, {# vehs used by best overall tour}
bfTT, {lowest travel time found for feasible tour}
bfnv, {# vehs used by best feas tour}
bfiter, {iteration # when best feasible tour found}
tourhv, {tour's hashing value}
bestiter, {iteration the best Tour found}
bestTime, { Time the best Tour found}
bestTimeF, {Time the best feasible Tour found}
numfeas, {number of feasible solns found}
startTime, {start Time (after time matrix, before TW reductions)}
stopTime, {stop Time (after last iteration)}
DEPTH, {depth of nodes we look for insert moves}
ZRANGE, {upper bound on random integer weights assigned to nodes}

12

HTSIZE, {size of hash table array}

CYMAX, {max cyleLength used to alter mavg}
tabuLen, { current length of tabu tenure}

minTL, {minimum Tabu Length}

maxTL, {maximum Tabu Length}

wmag, {magnitude of wind vector}

as, {UAV's air speed}

numdays, {number of days to run random scenarios }

day, {index of current day}

nlnitdays, {number of days in the initialization set}

totaldays, {nInitdays + numdays}

nvlnit, {# vehicles in initial tour read from a file}

nvu, {# vehicles used in current tour}

windques, {ask whether or not you want random winds}
magseed, dirseed, {seeds for random winds}

startques, {ask whether or not you want to input the initial tour}
servseed, loitseed, {seeds for random service times }

servques, {ask whether or not you want random service times }

initques, {ask if an initialization set already performed}

lowdeg, {low end of range of wind direction to test}
highdeg, {high end of range of wind direction to test}

lowmag, {low end of range of wind magnitude to test}
highmag, {high end of range of wind magnitude to test}
minloiter,

maxloiter, {minimum & maximum loiter time}
dayscore, {robustness score of day under consideration}
maxdayscore, {max robustness measure found}

bestscore, {robustness measure of best route found}
sumScores, {sum of all dayscores, used to find a mean}

robustChoice, {tags the resulting tour chosen as most robust}

startday, {# of day beginning the scenario, day, loop}
rday {loop var of the incremental robust tour choice}

: INTEGER;
outfile, {name of output file}
where, {where in the code?}
str,
startfile,
file, filein, {filenames}
filebegin,
fileout3,
fileout2,

filetour, filefreq,
fileout : STRING;

loadprint, {print load on vehicles}

stepprint, { print each move evaluation}

moveprint, {print every insert move made by RTS}
startprint, {print starting tour and tw reduction steps}

I3

cycleprint, {print hash results}
timeprint, {print time matrix}
twrdprint : BOOLEAN; {print tw reduction steps}

psurv : arrReal Type; {prob of survival array}

coord : coordArrType; {coordinates array}

bfTour, {best feasible tour found}
bestTour, {node array holding best tour}
tour, {node array holding the tour}
oldtour, {temporary tour}

inittour : tourType; {tour to read in an initial tour}
tourPen : vrpPenType; {record of curr tour penalties}
windmag, {array of wind magnitude per day}
winddir, {array of wind direction per day}

duration, {array of time to best solution per day}
besttype, {array tracking type of best: 1=feas, O=not}
scores, {array of robustness scores}

m, {array of TW midpoints}

slo, shi, {arrays of service time ranges}

] : arrIntType; {service times used}

dist : arrReal2dimType; {no wind distance matrix }
temp,

routefreq, {counts the frequency that route i to j

is chosen, where i and j are the array
indices, in that order}
time : arrInt2dimType; {time matrix }

tourChoice : ARRAY INTEGER OF tourType; {array of tour choices per day}

node : nodeType;

BEGIN
{INITIALIZE}
startprint := FALSE; { print starting tour}
timeprint := FALSE; {print time matrix }
stepprint := FALSE; {print each RTS step eval}
moveprint := FALSE; {print each RTS insert move}
twrdprint := FALSE; {print TW reduction steps}
cycleprint := FALSE; {print cycle/nocycle steps}
loadprint := FALSE; {print quantity & vehicle loads}
OUTPUT(" ");
OUTPUT("Please input the problem to work on:");
INPUT(file);

NEW(instrm); {open problem file}
NEW (outstrm); {open results file}
NEW (outlnit); {open file for future initial tour}
filein := file + ".DAT";

fileout := file + ".OUT";

fileout2 := file + "Init.OUT";

ASK instrm Open(filein, Input);

ASK outstrm Open(fileout, Output);

ASK outlnit Open(fileout2, Output);

fileout3 := file + "Rslt" + ".OUT";
NEW (outstrm?2);
ASK outstrm?2 Open(fileout3, Output);

str ;= "FILE: " + file;
ASK outstrm WriteString(str); ASK outstrm WriteL.n; ASK outstrm WriteLn;

OUTPUT(" ");

OUTPUT("Please input the factor (such as 1, 10, 100, etc.) necessary to convert");
OUTPUT("the time window info to integer quantities");

INPUT((factor);

str := "Factor used for target windows and distances " + REALTOSTR(factor);
ASK outstrm WriteString(str); ASK outstrm WriteLn;

OUTPUT(" ");
OUTPUT("Please input the number of vehicles");
INPUT(nv);

NEW(timeMatrix);

OUTPUT(" ");

OUTPUT("Do you want random service times?");
OUTPUT(" - 1=YES");

OUTPUT(" - 0=NO");

INPUT(servques);

IF servques = 1

OUTPUT(" ");

OUTPUT("Input seed number to use for service time randomization");
INPUT(servseed);

OUTPUT(" ");

OUTPUT("Input seed number to use for loiter randomization");
INPUT(loitseed);

NEW(randObj3); NEW (randObj4);
ASK randObj3 SetSeed(FetchSeed(loitseed));
ASK randObj4 SetSeed(FetchSeed(servseed));

OUTPUT(" ");
OUTPUT("Give the probability you will loiter over a target");
INPUT(ploiter);

ASK outstrm WriteLn;

str := "loitseed="+INTTOSTR (loitseed)+" servseed="+INTTOSTR(servseed)+
" Pr{loiter} = "+REALTOSTR((ploiter);

ASK outstrm WriteString(str); ASK outstrm WriteLn;

{Reads in a Latitude and Longitude scenario with Service time ranges}

ASK timeMatrix readLatLongLoiter(instrm, nc, numnodes, factor, nv, coord,

tour, slo, shi, outstrm, startprint);

NEW(s, 0..nc);
s[0] :=0;

ELSE
{Reads in a Latitude and Longitude scenario: the number of targets,
the probablities of survival, and the target coordinates}
ASK timeMatrix readLatLong(instrm, nc, numnodes, factor, nv, coord,
tour, s, outstrm, startprint);

END IF;

ASK instrm Close; DISPOSE(instrm);

{Compute 2 dimensional distance matrix given Latitude and Longitude coords}

{Does not take wind into account}
{Does not assume the problem is symmetric, but makes it so}

ASK timeMatrix distLatLong(nc, numnodes, coord, dist, startprint, outstrm);

IF startprint
{output distance matrix }
NEW(temp, 0..numnodes, 0..numnodes);
where := "No wind distance Matrix complete";
FOR i := 0 TO numnodes
FOR j :=i+1 TO numnodes
temp[i]j] := TRUNC(dist[i][j]);
templj][i] := temp[i][jl;
END FOR;
END FOR;
timeToFile(where, outstrm, temp, numnodes);
DISPOSE(temp);
END IF;

mindist := 9999.0; maxdist := 0.0;
sumTij := 0.0; distAvg := 0.0;
FORi:=0TOnc
FOR j :=i+1 TO nc
sumTij := sumTjj + dist[i][j];
IF (dist[i][j] < mindist) AND (dist[i][j] > 0.0)
mindist := dist[i][j]; END IF;
IF dist[i][j] > maxdist
maxdist := dist[i]{j]; END IF;
END FOR;
END FOR;

distAvg := sumTij / (FLOAT((nc+1)*(nc+1))/2.0 - FLOAT(nc+1));

OUTPUT(" ");

OUTPUT(" Average distance to travel is ", distAvg);
OUTPUT("Min distance to travel is ", mindist);
OUTPUT("Max distance to travel is ", maxdist);

str := "Average distance to travel is " + REALTOSTR(distAvg);
ASK outstrm WriteString(str); ASK outstrm WriteLn;

str := "Min distance to travel is " + REALTOSTR (mindist);
ASK outstrm WriteString(str); ASK outstrm WriteLn;

str := "Max distance to travel is " + REALTOSTR(maxdist);
ASK outstrm WriteString(str); ASK outstrm WriteLn;

OUTPUT(" ");
OUTPUT("Please input vehicle's air speed (in mi/hr)");
INPUT(as);

OUTPUT(" ");

OUTPUT("Please input the conversion factor to use with the WIND time matrix");
OUTPUT("The time windows will be updated to ensure the conversion matches");
OUTPUT(" (must be at least as great as previous factor)");

INPUT(windconv);

{Update tour with windconv to match times}
FOR i := 0 TO numnodes
IFi<=nc
slo[i] := TRUNC(windconv / factor * FLOAT(slo[i]));
shi[i] := TRUNC(windconv / factor * FLOAT(shi[i]));
END IF,;

tour[i].ea := TRUNC(windconv / factor * FLOAT (tour[i].ea));
tour[i].la := TRUNC(windconv / factor * FLOAT (tour[i].1a));

IF tour[i].type = 2
tour[i].arr := tour[i].ea;
tour[i].dep := tour[i}.arr;

END IF;

END FOR;

str := "Air speed " + REALTOSTR(as);

ASK outstrm WriteString(str); ASK outstrm WriteLn;

str := "Factor used to make the wind time matrix integer" + REALTOSTR(windconv);
ASK outstrm WriteString(str); ASK outstrm WriteLn;

ASK outstrm WriteLn;

OUTPUT(" ");

OUTPUT("Please input the number of tabu search iterations");
OUTPUT("you would like to step through.");

INPUT(iters);

ASK outstrm WriteLn;

str :="# Iters = " + INTTOSTR(iters);
ASK outstrm WriteString(str); ASK outstrm WriteLn;

I-7

OUTPUT(" ");

OUTPUT("Please input the number of days for which you would like to ");
OUTPUT("test random scenarios.");

INPUT(numdays);

OUTPUT(" ");

OUTPUT("Do you want random wind effects on every day");
OUTPUT(" - 1=YES");

OUTPUT(" - 0=NO");

INPUT(windques);

IF windques = 1

OUTPUT(" ");
OUTPUT("Input seed number to use for wind mag");
INPUT(magseed);
OUTPUT(" ");

- OUTPUT("Input seed number to use for wind dir");
INPUT(dirseed);

ASK outstrm WriteLn;
str := "magseed=" +INTTOSTR(magseed)+“ dirseed="+INTTOSTR(dirseed);
ASK outstrm WriteString(str); ASK outstrm WriteLn;

NEW(randObj1); ASK randObj1 SetSeed(FetchSeed(magseed));
NEW(randObj2); ASK randObj2 SetSeed(FetchSeed(dirseed));

OUTPUT(" ");

OUTPUT("Please input the range of DEGREES you would like to test");
OUTPUT(" - Put lowest number first");

OUTPUT(" - If testing winds around the 0 deg direction,");

OUTPUT(" Make sure lowdeg is negative");

INPUT(lowdeg);

INPUT(highdeg);

OUTPUT(" ");

OUTPUT("Please input the range of MAGNITUDE you would like to test");
OUTPUT(" - Put lowest number first");

INPUT(lowmag);

INPUT(highmag);

ASK outstrm WriteLn;
tr :="RANDOM WINDS: degrees " + INTTOSTR(lowdeg) + " " + INTTOSTR(highdeg)
+ " magnitude " + INTTOSTR(lowmag) + " " + INTTOSTR (highmag);
ASK outstrm WriteString(str); ASK outstrm WriteLn;

ELSE
OUTPUT(" ");
OUTPUT("Please input the magnitude of the wind vector (in mi/hr)");
INPUT(wmag);
OUTPUT(" ");
OUTPUT("Please input the direction that the wind is blowing FROM in degrees");

I-8

OUTPUT(" (due EAST is 0 degs, due NORTH is 90 degs, and so on)");
INPUT(wdir);

wdir := pi / 180.0 * wdir;
ENDIF; .

OUTPUT(" "),

OUTPUT("Do you want to input the initial tour?");
OUTPUT(" - 1=YES");

OUTPUT(" - 0=NO");

INPUT(startques);

IF startques = 1

OUTPUT(" "),
OUTPUT("Input the file from which to read the initial tour");
INPUT (startfile);

{open problem file}
NEW(instrm2);

filein := startfile + ".DAT";
ASK instrm2 Open(filein, Input);

{initialize array of node id's}
NEW(m, 0..numnodes);
FORj:=1TOnc

m[j] :=0;
END FOR;

ASK instrm?2 ReadInt(nvlnit);

IF nvInit <> nv
OUTPUT("nv and # vehicles in initial tour do not agree -- Break program!!");
END IF;

FOR i := 0 TO numnodes
ASK instrm?2 ReadInt(m(i]); {m contains the id at position i}
END FOR;

ASK instrm?2 Close; DISPOSE(instrm2);

OUTPUT(" ");

OUTPUT("Do you want to input an initialization set?");
OUTPUT(" - 1 =YES");

OUTPUT(" - 0=NO");

INPUT(initques);

IF initques = 0
totaldays := numdays;
nInitdays := 0;
startday := 1;

ELSE

OUTPUT(" ");
OUTPUT("Input the name of the file of tour arrays");
INPUT((filetour);

OUTPUT(" ");

OUTPUT("Input the name of the file of the route frequency matrix");
INPUT(filefreq);

NEW (instrm3); NEW(instrm4);

filetour := filetour + ".DAT";
ASK instrm3 Open(filetour, Input);

filefreq := filefreq + ".DAT";
ASK instrm4 Open(filefreq, Input);

{Read in the number of tours in the initialization set}
ASK instrm3 ReadInt(nlnitdays);
totaldays := nInitdays + numdays;
startday := nlnitdays + 1;
NEW ((tourChoice, 1..totaldays, 0..numnodes);
{Read in the initialization set}
FOR i := 1 TO nInitdays

NEW(oldtour, 0..numnodes);

FOR j := 0 TO numnodes

NEW(node);
oldtour[j] := node;

ASK instrm3 ReadInt(oldtour(j].id);

{set node types}
IF (oldtour(j].id = 0) OR (oldtour[j].id > nc)
oldtour{j].type :=2; {2=veh node}
ELSE
oldtour[j]l.type := 1; {1=cust node}
END IF;

oldtour[j].ea := tour[oldtour[j].id].ea;
oldtour[j].1a := tour[oldtour(j].id].1a;
oldtour[j].dep := tour[oldtour[j].id].dep;
oldtourf[j].arr := tour[oldtour(j].id].arr;
tourChoice[i][j] := CLONE(oldtour(j]);

END FOR;
END FOR;

OUTPUT("aa");

{Read in the route frequency matrix of the initialization set}

I-10

NEW!(routefreq, 0..numnodes, 0..numnodes);
FOR i := 0 TO numnodes
FOR j := 0 TO numnodes
ASK instrm4 ReadInt(routefreq[i][j1);
END FOR;
END FOR;

{output route frequency matrix }
where := "ROUTE FREQUENCY MATRIX, History included ";
timeToFile(where, outstrm, routefreq, numnodes);

ASK instrm3 Close; ASK instrm4 Close;
DISPOSE(instrm3); DISPOSE(instrm4);

END IF; {initques}

END IF;

OUTPUT(file);
OUTPUT(filein);
OUTPUT(fileout);
OUTPUT(fileout2);

{*} {denotes a parameter setting}
{* nv :=10; *1

{* windconv ;= 10.0; *}

{* iters := 1000; *}

{*} TWPEN := 1.0;

{*} gamma := (;

{*} INCREASE :=1.2;
{*} DECREASE :=0.9;
{*} CYMAX :=50;

{*} HTSIZE := 131073;
{*} ZRANGE := 1009;
{*} minTL :=5;

{*} maxTL := 2000;

{*} DEPTH := nc+nv-1;

{*} tabuLen := MINOF(30, nc+nv-1);
{**** LOOP OF SCENARIOS ***}
NEW (windmag, startday..totaldays);
NEW (winddir, startday..totaldays);
NEW (duration, startday..totaldays);
NEW(scores, 1..totaldays);
NEW(besttype, 1..totaldays);
IF initques = 1

FOR i := 1 TO nlnitdays
besttype[i] := 1; {since only feasible tours used}

I-11

END FOR;
END IF;

IF initques = 0
NEW (tourChoice, 1..numdays, 0..numnodes);
NEW(routefreq, 0..numnodes, 0..numnodes);

{initialize matrix of route frequency counts}
FOR i := 0 TO numnodes
FOR j := 0 TO numnodes
routefreq[i][j] := 0;
END FOR;
END FOR;
END IF;

NEW(startTour); {find initial tour and/or initial penalties}

{#*+*} FOR day := startday TO totaldays o {Fekekkskkkkok

ASK outstrm WriteLn;
str :="DAY: " + INTTOSTR(day);
ASK outstrm WriteString(str); ASK outstrm WriteLn;

IF windques = 1
windmag[day] := ASK randObj1 UniformInt(lowmag, highmag);
wmag := windmag[day];
winddir[day] := ASK randObj2 UniformInt(lowdeg, highdeg);
wdir := FLOAT(winddir[day]);
wdir := pi / 180.0 * wdir;

END IF;

ASK outstrm WriteLn;
str :="WIND: magnitude ="+INTTOSTR(wmag)+" direction(rads) = " + REALTOSTR(wdir);
ASK outstrm WriteString(str); ASK outstrm WriteLn; ASK outstrm WriteLn;
IF servques = 1
FORi:=1TOnc
loiter := ASK randObj3 UniformReal(0.0, 1.0);
IF loiter <= ploiter
s[i] := ASK randObj4 UniformInt(slo[i], shi[i]);
ELSE
s[i] := slo[il;
END IF,
END FOR;
END IF;
ASK timeMatrix timeMatrix(nc, numnodes, gamma, as, wmag, wdir, windconv,

coord, s, dist, time, outstrm, startprint);
OUTPUT("b");

I-12

IF day = startday {must find a true initial tour}
IF startques = 1 {read in initial tour}
NEW (inittour, 0..numnodes);

{Reorder tour, currently in numerical order, by the initial tour
and place temporarily into inittour}

FOR i := 0 TO numnodes
inittour[i] := CLONE(tour[m[i]]);
END FOR;

{Copy inittour into tour}

FOR i := 0 TO numnodes
tour[i] := CLONE(inittourfi]);

END FOR;

DISPOSE(nittour);
tourSched(1, nc, numnodes, tour, time, tourLen, outstrm);
startTime := SystemTime();
ELSE
ASK startTour startTour(nv, nc, time, tour, tourLen,
totPenalty, tourhv, startTime, m, outstrm);
END IF;
DISPOSE(m);
ELSE
IF initques = 0
{lose old tour, use previous days Choice}
DISPOSE(tour);
NEW (tour, 0.. numnodes);
{use the best result of the previous day}
FOR i := 0 TO numnodes
tour[i] := CLONE(tourChoice[day-1][il});
END FOR;
ELSE
OUTPUT("c");
{use the robust tour, But it may not have TW info with it}
NEW (inittour, 0..numnodes);
{So reorder the tour of the previous day into inittour from the robust tour}
FOR i := 0 TO numnodes

inittour[i] := CLONE(tour[tourChoice[robustChoice][i].id]);
END FOR;

I-13

{Copy inittour into tour}

FOR i := 0 TO numnodes
tour[i] := CLONE(nittourfi]);

END FOR;

" DISPOSE(inittour);
END IF;

{Compute initial schedule, return tour's total travel + wait time}
tourSched(1, nc, numnodes, tour, time, tourLen, outstrm);

startTime := SystemTime();

END IF;
OUTPUT("d");
{ *IF startprint*}
ASK outstrm WriteString("startTour complete"); ASK outstrm WriteLn;
qcktourFile(outstrm, tour, numnodes);
{*END IF;*}

ASK startTour startPenBest(numnodes, tvl, tourLen, tour, TWPEN,
totPenalty, penTrav, tourCost, tourPen,
bfiter, bfCost, bfTT, bfnv, bestiter,
bestCost, bestTT, bestnv, bestTimeF,
bestTime, bestTour, bfTour);

OUTPUT("e");

NEW(xts);

{conduct RTS}

ASK rts search(TWPEN, INCREASE, DECREASE, HTSIZE, CYMAX, ZRANGE, DEPTH,
minTL, maxTL, tabuLen, iters, nc, numnodes,
outstrm, outstrm?2, tourPen, time, stepprint,
moveprint, cycleprint, tourCost, penTrav,
totPenalty, tvl, bfCost, bfTT, bfnv, bfiter,
bestCost, bestTT, bestnv, bestTime, bestTimeF,
bestiter, numfeas, tour, bestTour, bfTour);

DISPOSE(rts);

stopTime := SystemTime();
IF bfiter > -1

{save the best feasible tour found}

FOR i := 0 TO numnodes
tourChoice[day][i] := CLONE(bfTourfi]);

END FOR;

{ output the results}
where = "DAY " + INTTOSTR(day) + " BEST FEASIBLE TOUR";

twServToFile(where, outstrm, bfTour, nc, numnodes, bfCost,
windconv, loadprint, s, slo, shi);

duration[day] := bestTimeF - startTime;
besttype[day] := 1;

ASK outstrm WriteString("# vehicles used =");

I-14

ASK outstrm WriteInt(bfnv, 2); ASK outstrm WriteLn;

ASK outstrm WriteString("Best Feasible solution found after ");

ASK outstrm WriteString(INTTOSTR(bestTimeF-startTime)+" secs");
ASK outstrm WriteLn;

ASK outstrm WriteString("on Iteration: "+ INTTOSTR(bfiter));

ASK outstrm WriteLn;

ASK outstrm WriteString("with travel time = "+ INTTOSTR(bfTT));
ASK outstrm WriteLn;

{update the route frequency matrix}
FOR i := 0 TO numnodes-1

j = bfTourli].id;

k := bfTour[i+1].id;

routefreq(j][k] := routefreq[ji[k] + 1;
END FOR;

OUTPUT("f");

ELSE

{save the best tour found}
FOR 1 := 0 TO numnodes

tourChoice[day][i] := CLONE(bestTourl[i]);
END FOR;

{output the results}
where := "DAY " + INTTOSTR(day)
+ " Search complete: BEST TOUR (NOT FEASIBLE)";
twServToFile(where, outstrm, bestTour, nc, numnodes, bestCost,
windconv, loadprint, s, slo, shi);

duration[day] := bestTime - startTime;
besttype[day] := 0;

ASK outstrm WriteString("# vehicles used = ");

ASK outstrm WriteInt(bestnv, 2); ASK outstrm WriteLn;

ASK outstrm WriteString("Best solution found after ");

ASK outstrm WriteString(INTTOSTR (bestTime-startTime)+" secs”);
ASK outstrm WriteLn;

ASK outstrm WriteString("on Iteration: "+ INTTOSTR(bestiter));
ASK outstrm WriteLn;

ASK outstrm WriteString("with travel time = "+ INTTOSTR(bestTT));
ASK outstrm WriteLn;

{** DONT UPDATE FREQ MATRIX WITH BAD TOUR

****}

{update the route frequency matrix}
FOR i := 0 TO numnodes-1

j == bestTour[i].id;

k := bestTour[i+1].id;

routefreq[j][k] := routefreq[jl{k] + 1;
END FOR;

END IF;

{Output service time difference}
servSum := 0.0;

I-15

FORi:=1TOnc
servSum := servSum + FLOAT(s[i] - slo[i]);
END FOR;

servSum := servSum / windconv;

str := "Sum of increase over min service times = "+ REALTOSTR (servSum);
ASK outstrm WriteLn; ASK outstrm WriteString(str);

ASK outstrm WriteLn;

{If we're in the test set, find the Robust Tour every day}
IF initques = 1

{find most robust tour chosen}

robustChoice := 1;

dayscore :=0;

maxdayscore = 0;

sumScores := 0;

FOR rday := 1 TO day
FOR i := 0 TO numnodes-1

dayscore := dayscore
+ routefreq[tourChoice[rday][i].id][tourChoice[rday][i+1].id];
END FOR;
scores[rday] := dayscore;
sumScores := sumScores + dayscore;

{choose the tour with the most robust routes }
IF dayscore > maxdayscore

robustChoice := rday;

bestscore := dayscore;

maxdayscore := dayscore;

ELSIF dayscore = maxdayscore
{choose feasible tours over nonfeas, or choose the most recent}
IF besttype[rday] >= besttype[robustChoice]
robustChoice := rday;
bestscore := dayscore;
END IF;
END IF;
dayscore := 0;
END FOR; {rday}
str := "Day = "+INTTOSTR(day)+" and Robust Choice ="
+INTTOSTR (robustChoice);
ASK outstrm WriteLn; ASK outstrm WriteString(str);
ASK outstrm WriteLn;
END IF;

{output coords to file so we can scatter plot tours}
where := "Day =" + INTTOSTR(day);

I-16

LatLongToFile(where, outstrm?2, tourChoice[day], nc, numnodes, coord);

DISPOSE(bfTour);
DISPOSE(bestTour);
DISPOSE(tourPen);

END FOR;
{**+* END OF DAY LOOP ****}

OUTPUT("k");

{output route frequency matrix }
where := "SCENARIO LOOP COMPLETE, Frequency of Routes Chosen: ";
timeToFile(where, outstrm, routefreq, numnodes);

{find most robust tour chosen}
dayscore := 0;

maxdayscore := 0;

sumScores := 0;

robustChoice = 1;

FOR day := 1 TO totaldays

FOR i := 0 TO numnodes-1
dayscore := dayscore
+ routefreq[tourChoice[day][i].id][tourChoice[day][i+1].id];
END FOR;
scores[day] := dayscore;
sumScores := sumScores + dayscore;

{choose the tour with the most robust routes}
IF dayscore > maxdayscore

robustChoice := day;

bestscore := dayscore;

maxdayscore := dayscore;

ELSIF dayscore = maxdayscore
{choose feasible tours over nonfeas, or choose the most recent}
IF besttype[day] >= besttype[robustChoice]
robustChoice := day;
bestscore := dayscore;
END IF;
END IF;
dayscore :=0;

END FOR; {DAY LOOP}

OUTPUT("1");
{output robust tour}
tourSched(1, nc, numnodes, tourChoice[robustChoice], time, tourLen, outstrm);
countVeh(numnodes, tourChoice[robustChoice], nvu);

where := "MOST ROBUST TOUR: day =" + INTTOSTR (robustChoice);

1-17

twServToFile(where, outstrm, tourChoice[robustChoice],
nc, numnodes, tourLen, windconv, loadprint, s, slo, shi);

ASK outstrm WriteString("# vehicles used = ");

ASK outstrm WriteInt(nvu, 2); ASK outstrm WriteLn;

ASK outstrm WriteString("With robustness score "+ INTTOSTR (bestscore));
ASK outstrm WriteLn; ASK outstrm WriteLn;

OUTPUT("2");

ASK outstrm WriteString("MEAN robustness score "
+ INTTOSTR(sumScores DIV totaldays));
ASK outstrm WriteLn; ASK outstrm WriteLn;

{Output Robustness scores}
ASK outstrm WriteLn;
ASK outstrm WriteString("Robustness scores: ");
FOR i := 1 TO totaldays
ASK outstrm Writelnt(i, 3);
ASK outstrm WriteInt(scores[i], 5);
ASK outstrm WriteLn;
END FOR;

{Output Robust tour for future Initial tour}

ASK outInit WriteInt(nv, 3); ASK outInit WriteLn;

FOR i:= 0 TO numnodes
ASK outInit WriteInt(tourChoice[robustChoice][i].id, 5);
ASK outInit WriteLn;

END FOR;

ASK outstrm Close;
ASK outlnit Close;

ASK outstrm?2 Close;

DISPOSE(startTour);
DISPOSE(timeMatrix);
DISPOSE(outstrm);
DISPOSE(outlnit);
DISPOSE(outstrm?2);
DISPOSE(s);
DISPOSE(time);
DISPOSE(coord);

IF windques = 1

DISPOSE(randObj1); DISPOSE(randObj2);
END IF;

IF servques = 1

DISPOSE(randObj3); DISPOSE(randObj4);
END IF;

END MODULE; {MAIN}

I-18

Appendix J: MuavEval

A second step to MuavThreat2, the main module MuavEval runs the evaluation

phase of UAV problems with stochastic winds, service times, and threats.

MAIN MODULE uavEval;

FROM I0Mod IMPORT StreamObj, ALL FileUseType, ReadKey;
FROM OSMod IMPORT SystemTime;
FROM MathMod IMPORT pi;

FROM uavMod IMPORT timeMatrixObj;
FROM twReduceMod IMPORT twReductionObyj;
FROM uavMod IMPORT startUAVOby;

FROM uavMod IMPORT uavRTSobj;

FROM tabuMod IMPORT arrReal2dimType;
FROM tabuMod IMPORT coordArrType;
FROM tabuMod IMPORT tourType;

FROM tabuMod IMPORT nodeType;
FROM tabuMod IMPORT vrpPenType;
FROM tabuMod IMPORT arrInt2dimType;
FROM tabuMod IMPORT arrIntType;
FROM tabuMod IMPORT arrRealType;

FROM tabuMod IMPORT SwapNode;
FROM uavMod IMPORT twCvrgServToFile;
FROM tabuMod IMPORT LatLongToFile;
FROM tabuMod IMPORT qcktourFile;
FROM tabuMod IMPORT tourToScreen;
FROM tabuMod IMPORT timeToFile;
FROM tabuMod IMPORT tourSched;
FROM tabuMod IMPORT countVeh;

FROM uavMod IMPORT expCvrg;
FROM RandMod IMPORT RandomObj, SetSeed, FetchSeed;

VAR
timeMatrix : timeMatrixObyj;
twReduce : twReductionObj;
startTour : startUAVObj;
rts : uavRTSobj;
randObj1, randObj2, randObj3, randObj4, randObj5 : RandomObyj;

instrm,

instrm2, instrm3, instrm4,
outstrm,

outstrm2,

outlnit : StreamObj;

J-1

factor, {used to convert the time windows to integer values}

TWPEN, {Penalty weight assigned to the sum of late arr TW violations}
INCREASE, {RTS parameter: mult. factor to decrease tabu length}
DECREASE, {RTS parameter: mult. factor to increase tabu length}

windconv, {multiplied by the resulting UAV time matrix, it provides an
integer matrix (for calc speed) with the needed precision}

sumTij, {sum of the i to j distances in the distance matrix}

mindist, {minimum travel distance}

maxdist, {maximum travel distance}

distAvg, {avg travel distance}

wdir, {direction of wind vector}

ploiter, {probabilitiy you loiter over a target}

loiter, {loiter? - individual node result}

riskadj, {amount to randomly adjust a target's prob of survival}

PSFCT, {factor multiplied by coverage results to get more info into

the integer move value}

cvrg, {expected coverage of the tour}

bfCvrg, {exp coverages of best and best feas tours}

bestCvrg,

servSum {sum of increase over minimum service times}
:REAL,;

i,], k,

endnum, {end number in a numbered data file group}

maxtime, {max possible time of arrival to any node, for time read}

numcycles, {number of TW reduction cycles wanted }

numchanges, {number of TWs reduced by TW reduction Obj}

numnodes, {number of nodes in the directed graph}

nv, {number of vehicles}

nc, {number of targets/customers}

gamma, {arbitrary cost assigned to the use of each vehicle}

iters, {number of Tabu Search Iterations per problem}

tourLen, {Length of tour in time}

tvl, {travel time of tour}

totPenalty, { Total Penalty assigned to current tour}

tourCost, {tour Length + Time Window Cost}

penTrav, {tourCost - totWait == travel time + TW penalty}

bfCost, {lowest tourCost found for a feasible tour}

bestCost, {lowest tourCost found for a any tour}

bestTT, {lowest travel time found for a any tour}

bestnv, {# vehs used by best overall tour}

bfTT, {lowest travel time found for feasible tour}

bfnv, {# vehs used by best feas tour}

bfiter, {iteration # when best feasible tour found}

tourhv, {tour's hashing value}

bestiter, {iteration the best Tour found}

bestTime, {Time the best Tour found}

bfTime, {Time the best feasible Tour found}

numfeas, {number of feasible solns found}

startTime, {start Time (after time matrix, before TW reductions)}

stopTime, {stop Time (after last iteration)}

DEPTH, {depth of nodes we look for insert moves}

J-2

ZRANGE, {upper bound on random integer weights assigned to nodes}

HTSIZE, {size of hash table array}

CYMAX, {max cyleLength used to alter mavg}
tabuLen, { current length of tabu tenure}

minTL, {minimum Tabu Length}

maxTL, {maximum Tabu Length}

wmag, {magnitude of wind vector}

as, {UAV's air speed}

numdays, {number of days to run random scenarios }
day, {index of current day}

nlnitdays, {number of days in the initialization set}
totaldays, {nInitdays + numdays}

nvInit, {# vehicles in initial tour read from a file}
nvu, {# vehicles used in current tour}

windques, {ask whether or not you want random winds}
magseed, dirseed, {seeds for random winds}

startques, {ask whether or not you want to input the initial tour}
servseed, loitseed, {seeds for random service times}
servques, {ask whether or not you want random service times }
initques, {ask if an initialization set already performed}
riskques, {ask if random service times are needed}
cvrseed,

lowdeg, {low end of range of wind direction to test}
highdeg, {high end of range of wind direction to test}

lowmag, {low end of range of wind magnitude to test}
highmag, {high end of range of wind magnitude to test}
minloiter,

maxloiter, {minimum & maximum loiter time}
dayscore, {robustness score of day under consideration}
maxdayscore, {max robustness measure found}

bestscore, {robustness measure of best route found}
sumScores, {sum of all dayscores, used to find a mean}

robustChoice, {tags the resulting tour chosen as most robust}

startday, {# of day beginning the scenario, day, loop}
rday {loop var of the incremental robust tour choice}
: INTEGER;

outfile, {name of output file}
where, {where in the code?}
str,

startfile,

file, filein, {filenames}
filebegin,

fileout3,

fileout2,

filetour, filefreq,

fileout : STRING;

loadprint, {print load on vehicles}

J-3

stepprint, {print each move evaluation}

moveprint, {print every insert move made by RTS}
startprint, {print starting tour and tw reduction steps}
cycleprint, {print hash results}

timeprint, { print time matrix}

twrdprint : BOOLEAN; {print tw reduction steps}

psurv : arrReal Type; {prob of survival array}

coord : coordArrType; {coordinates array}

bfTour, {best feasible tour found}
bestTour, {node array holding best tour}
tour, {node array holding the tour}
oldtour, {temporary tour}

inittour : tourType; {tour to read in an initial tour}
tourPen : vrpPenType; {record of curr tour penalties}
windmag, {array of wind magnitude per day}
winddir, {array of wind direction per day}

duration, {array of time to best solution per day}
besttype, {array tracking type of best: 1=feas, O=not}
scores, {array of robustness scores}

m, {array of TW midpoints}

slo, shi, {arrays of service time ranges}

S : arrIntType; {service times used}

dist : arrReal2dimType; {no wind distance matrix }
temp,

routefreq, {counts the frequency that route i to j

is chosen, where i and j are the array
indices, in that order}
time : arrInt2dimType; {time matrix}

tourChoice : ARRAY INTEGER OF tourType; {array of tour choices per day}
psurvDay : ARRAY INTEGER OF arrRealType; {array of psurv per day}

node : nodeType;

BEGIN
{INITIALIZE}
startprint := FALSE; { print starting tour}
timeprint := FALSE; {print time matrix }
stepprint := FALSE; {print each RTS step eval}

moveprint := FALSE; {print each RTS insert move}
twrdprint := FALSE; {print TW reduction steps}
cycleprint := FALSE; {print cycle/nocycle steps}
loadprint := FALSE; {print quantity & vehicle loads}

OUTPUT(" ");
OUTPUT("Please input the problem to work on:");

INPUT(file);
NEW(instrm); {open problem file}
NEW ((outstrm); {open results file}
NEW (outlnit); {open file for future initial tour}

filein := file + ".DAT";

fileout := file + ".OUT";

fileout? := file + "Init. OUT";

ASK instrm Open(filein, Input);
ASK outstrm Open(fileout, Output);
ASK outlnit Open(fileout2, Output);

fileout3 :=file + "Rsit" + ".OUT";
NEW (outstrm?2);
ASK outstrm2 Open(fileout3, Output);

str := "FILE: " + file;
ASK outstrm WriteString(str); ASK outstrm WriteLn; ASK outstrm WriteLn;

OUTPUT(" ");

OUTPUT("Please input the factor (such as 1, 10, 100, etc.) necessary to convert");
OUTPUT("the time window info to integer quantities");

INPUT (factor);

str ;= "Factor used for target windows and distances " + REALTOSTR (factor);
ASK outstrm WriteString(str); ASK outstrm WriteLn;

OUTPUT(" ");
OUTPUT("Please input the number of vehicles");
INPUT(nv);

NEW (timeMatrix);

OUTPUT(" "),

OUTPUT("Do you want random service times?");
OUTPUT(" - 1=YES");

OUTPUT(" - 0=NO");

INPUT(servques);

IF servques = 1

OUTPUT(" ");

OUTPUT("Input seed number to use for service time randomization");
INPUT(servseed);

OUTPUT(" ");

OUTPUT("Input seed number to use for loiter randomization");
INPUT (loitseed);

NEW (randObj3); NEW(randObj4);

ASK randObj3 SetSeed(FetchSeed(loitseed));
ASK randObj4 SetSeed(FetchSeed(servseed));

J-5

OUTPUT(" ");
OUTPUT("Give the probability you will loiter over a target");
INPUT (ploiter);

ASK outstrm WriteLn;

str := "loitseed="+INTTOSTR(loitseed)+" servseed="+INTTOSTR(servseed)+
" Pr{loiter} = "+REALTOSTR(ploiter);

ASK outstrm WriteString(str); ASK outstrm WriteLn;

ELSE

END IF;

{Reads in a coords in miles scenario with Service time ranges and psurv}
ASK timeMatrix readUAVloiter(instrm, nc, numnodes, factor, nv,
psurv, coord, tour, slo, shi,
outstrm, startprint);

NEW(s, 0..nc);
s[0] :=0;

{reads UAYV file, finds nc, inits coord & tour}
ASK timeMatrix readUAV (instrm, nc, numnodes, factor, nv,
psurv, coord, tour, s, outstrm,
startprint);

ASK instrm Close; DISPOSE(instrm);

{compute distance matrix, given coordinates in miles}
ASK timeMatrix distMatrix(nc, numnodes, coord, dist, outstrm);

IF timeprint
{output distance matrix }
NEW(temp, 0..numnodes, 0..numnodes);
where := "No wind distance Matrix complete”;
FOR i := 0 TO numnodes
FOR j :=i+1 TO numnodes
templ[i][j] := TRUNC(dist[i][j1);
templ(j][i] := temp[il[j];
END FOR;
END FOR;
timeToFile(where, outstrm, temp, numnodes);
DISPOSE(temp);

END IF;

mindist := 9999.0; maxdist := 0.0;
sumTijj := 0.0; distAvg := 0.0;
FORi:=0TOnc
FORj:=i+1 TOnc
sumTij := sumTij + dist[i][j];
IF (dist[i][j] < mindist) AND (dist[i][j] > 0.0)
mindist := dist[i][j]; END IF;
IF dist[i][j] > maxdist
maxdist := dist[i]{j}; END IF;

J-6

END FOR;
END FOR;

distAvg := sumTij / (FLOAT((nc+1)*(nc+1))/2.0 - FLOAT(nc+1));

OUTPUT(" ");

OUTPUT("Average distance to travel is ", distAvg);
OUTPUT("Min distance to travel is ", mindist);
OUTPUT("Max distance to travel is ", maxdist);

str := "Average distance to travel is " + REALTOSTR(distAvg);
ASK outstrm WriteString(str); ASK outstrm WriteLn;

str := "Min distance to travel is " + REALTOSTR(mindist);
ASK outstrm WriteString(str); ASK outstrm WriteLn;

str := "Max distance to travel is " + REALTOSTR (maxdist);
ASK outstrm WriteString(str); ASK outstrm WriteLn;

OUTPUT(" ");
OUTPUT("Please input vehicle's air speed (in mi/hr)");
INPUT (as);

OUTPUT(" ");

OUTPUT("Please input the conversion factor to use with the WIND time matrix");
OUTPUT("The time windows will be updated to ensure the conversion matches");
OUTPUT(" (must be at least as great as previous factor)");

INPUT(windconv);

{Update tour with windconv to match times}
FOR i := 0 TO numnodes
IFi<=nc
slo[i] := TRUNC(windconv / factor * FLOAT(slo[il));
shi[i] := TRUNC(windconv / factor * FLOAT(shi[i]));
END IF;

tour[i].ea := TRUNC(windconv / factor * FLOAT(tour[i].ea));
tour[i].]la := TRUNC(windconv / factor ¥ FLOAT(tourl[i].1a));

IF tourfi].type = 2
tour[i].arr := tour[i].ea;
tour[i].dep := tour[i].arr;

END IF;

END FOR;

str := "Air speed " + REALTOSTR(as);

ASK outstrm WriteString(str); ASK outstrm WriteLn;

str := "Factor used to make the wind time matrix integer" + REALTOSTR (windconv);
ASK outstrm WriteString(str); ASK outstrm WriteLn;

ASK outstrm WriteLn;

OUTPUT(" ");

OUTPUT("Please input the number of tabu search iterations");
OUTPUT("you would like to step through.”");

INPUT(iters);

J-7

ASK outstrm WriteLn;
str :="# Iters = " + INTTOSTR(iters);
ASK outstrm WriteString(str); ASK outstrm WriteLn;

OUTPUT(" ");

OUTPUT("Please input the number of days for which you would like to ");
OUTPUT("test random scenarios.");

INPUT(numdays);

OUTPUT(" ");

OUTPUT("Do you want random wind effects on every day");
OUTPUT(" - 1'=YES");

OUTPUT(" - 0=NO");

INPUT(windques);

IF windques = 1

OUTPUT(" "),

OUTPUT("Input seed number to use for wind mag");
INPUT(magseed);

OUTPUT(" "); -
OUTPUT("Input seed number to use for wind dir");
INPUT(dirseed); ‘

ASK outstrm WriteLn;
str := "magseed="+INTTOSTR(magseed)+" dirseed="+INTTOSTR(dirseed);
ASK outstrm WriteString(str); ASK outstrm WriteLn;

NEW (randObj1); ASK randObjl SetSeed(FetchSeed(magseed));
NEW(randObj2); ASK randObj2 SetSeed(FetchSeed(dirseed));

OUTPUT(" ");

OUTPUT("Please input the range of DEGREES you would like to test");
OUTPUT(" - Put lowest number first");

OUTPUT(" - If testing winds around the 0 deg direction,");

OUTPUT(" Make sure lowdeg is negative");

INPUT(lowdeg);

INPUT/(highdeg);

OUTPUT(" ");

OUTPUT("Please input the range of MAGNITUDE you would like to test");
OUTPUT(" - Put lowest number first");

INPUT(lowmag);

INPUT(highmag);

ASK outstrm WriteLn;

str :="RANDOM WINDS: degrees " + INTTOSTR(lowdeg) + " " + INTTOSTR(highdeg)
+ " magnitude " + INTTOSTR(lowmag) + " " + INTTOSTR (highmag);

ASK outstrm WriteString(str); ASK outstrm WriteLn;

ELSE
OUTPUT(" ");

OUTPUT("Please input the magnitude of the wind vector (in mi/hr)");
INPUT(wmag);

OUTPUT(" ");

OUTPUT("Please input the direction that the wind is blowing FROM in degrees");
OUTPUT(" (due EAST is 0 degs, due NORTH is 90 degs, and so on)");

INPUT (wdir);

wdir := pi/ 180.0 * wdir;
END IF;

OUTPUT(" ");

OUTPUT("Do you want to input the initial tour?");
OUTPUT(" - 1=YES");

OUTPUT(" - 0=NO");

INPUT(startques);

IF startques = 1

OUTPUT(" ");
OUTPUT("Input the file from which to read the initial tour");
INPUT (startfile);

{open problem file}
NEW(instrm2);

filein := startfile + ".DAT";
ASK instrm2 Open(filein, Input);

{initialize array of node id's}
NEW(m, 0..numnodes);
FORj:=1TOnc

m[j] :=0;
END FOR;

ASK instrm2 ReadInt(nvInit);

IF nvInit <> nv
OUTPUT("nv and # vehicles in initial tour do not agree -- Break program!!");
END IF;

FOR i := 0 TO numnodes
ASK instrm?2 ReadInt(m[i]); {m contains the id at position i}
END FOR;

ASK instrm2 Close; DISPOSE(instrm2);

OUTPUT(" ");

OUTPUT("Do you want to input an initialization set?");
OUTPUT(" - 1=YES");

OUTPUT(" - 0=NO"),

INPUT (initques);

IF initques = 0
totaldays := numdays;

I-9

nlnitdays = 0;
startday = 1;

ELSE
OUTPUT(" ");
OUTPUT("Input the name of the file of tour arrays");
INPUT (filetour);
OUTPUT(" ");
OUTPUT("Input the name of the file of the route frequency matrix");
INPUT(filefreq);
NEW!(instrm3); NEW (instrm4);

filetour := filetour + ".DAT";
ASK instrm3 Open(filetour, Input);

filefreq := filefreq + ".DAT";
ASK instrm4 Open(filefreq, Input);

{Read in the number of tours in the initialization set}
ASK instrm3 ReadInt(nInitdays);
totaldays := nInitdays + numdays;
startday := nlnitdays + 1;
NEW (tourChoice, 1..totaldays, 0..numnodes);
{Read in the initialization set}
FOR i := 1 TO nlnitdays

NEW (oldtour, 0..numnodes);

FOR j := 0 TO numnodes

NEW(node);
oldtour[j] := node;

ASK instrm3 ReadInt(oldtour[j].id);

{set node types}
IF (oldtour(j].id = 0) OR (oldtour{j].id > nc)
oldtour[j].type :=2; {2=veh node}
ELSE
oldtour[j].type := 1; {1=cust node}
END IF;

oldtour[j].ea := tour[oldtour({j].id].ea;

* oldtour[j].1a := tour[oldtour{j].id] la;
oldtour(j].dep := tour[oldtour(j].id].dep;
oldtour{j].arr := tour[oldtour(j].id].arr;

tourChoice[i][j] := CLONE(oldtour[j1);

END FOR;
END FOR;

OUTPUT("aa");

{Read in the route frequency matrix of the initialization set}
NEW (routefreq, 0..numnodes, 0..numnodes);
FOR i := 0 TO numnodes
FOR j := 0 TO numnodes
ASK instrm4 ReadInt(routefreq[i][j]);
END FOR;
END FOR;

{output route frequency matrix }
where := "ROUTE FREQUENCY MATRIX, History included ";
timeToFile(where, outstrm, routefreq, numnodes);

ASK instrm3 Close; ASK instrm4 Close;
DISPOSE(instrm3); DISPOSE(instrm4);

END IF; {initques}

END IF;

OUTPUT(" ");

OUTPUT("Do you want random THREAT effects on every day");
OUTPUT(" - 1=YES");

OUTPUT(" - 0=NO");

INPUT(riskques);

OUTPUT(" ");
OUTPUT("Input the factor to convert coverage to an integer value");
INPUT(PSFCT);

IF riskques = 1

OUTPUT(™);
OUTPUT("Input seed number to use for random COVERAGES"),
INPUT(cvrseed);

ASK outstrm WriteLn;
str := "RANDOM THREATS: cvrseed="+INTTOSTR(cvrseed);
ASK outstrm WriteString(str); ASK outstrm WriteLn;

NEW (randObj5); ASK randObj5 SetSeed(FetchSeed(cvrseed));
END IF;
OUTPUT(file);
OUTPUT(filein);
OUTPUT(fileout);
OUTPUT(fileout2);
{*} {denotes a parameter setting}

{* nv :=10; *}
{* windconv := 10.0; *}

J-11

{* iters := 1000; *}
{*} TWPEN := 10.0;
{*} gamma := 0;

{*} INCREASE :=1.2;
{*} DECREASE :=0.9;
{*} CYMAX :=50;

{*} HTSIZE := 131073;
{*} ZRANGE = 1009;
{*} minTL :=5;

{*} maxTL := 2000;

{*} DEPTH := nc+nv-1;
{*} tabuLen := MINOF(30, nc+nv-1);

{**** LOOP OF SCENARIOS ***}

NEW(windmag, startday..totaldays);
NEW(winddir, startday..totaldays);

NEW (duration, startday..totaldays);

NEW (psurvDay, startday..totaldays, 0..nc);
NEW(scores, 1..totaldays);

NEW((besttype, 1..totaldays);

IF initques = 1
FOR i := 1 TO nlnitdays
besttypel[i] := 1; {since only feasible tours used}
END FOR;
END IF;

IF initques =0
NEW (tourChoice, 1..numdays, 0..numnodes);
NEW (routefreq, 0..numnodes, 0..numnodes);

{initialize matrix of route frequency counts}
FOR i := 0 TO numnodes
FOR j := 0 TO numnodes
routefreq[i][j] := O;
END FOR;
END FOR;
END IF;

NEW(startTour); {find initial tour and/or initial penalties}

{**+*} FOR day := startday TO totaldays {eak sk ok)
ASK outstrm WriteLn;
str :="DAY: " + INTTOSTR(day);
ASK outstrm WriteString(str); ASK outstrm WriteLn;
IF windques = 1
windmag[day] := ASK randObj1 UniformInt(lowmag, highmag);

J-12

wmag ;= windmag[day];
winddir[day] := ASK randObj2 UniformInt(lowdeg, highdeg);
wdir := FLOAT(winddir[day]);
wdir := pi/ 180.0 * wdir;
END IF;

ASK outstrm WriteLn;
str :="WIND: magnitude ="+INTTOSTR(wmag)+" direction(rads) = " + REALTOSTR(wdir);
ASK outstrm WriteString(str); ASK outstrm WriteLn; ASK outstrm WriteLn;

IF riskques = 1

{randomly adjust the prob of survival at the target nodes}
FORi:=1TOnc
riskadj := ASK randObj3 UniformReal(-1.0, 1.0);
IF riskadj < -0.333
riskadj :=-1.0;
ELSIF riskadj > 0.333
riskadj := 1.0;
ELSE
riskadj := 0.0;
END IF;
psurvDay[day][i] := psurv[i] + riskadj / 10.0;

END FOR;
ELSE -
psurvDay[day] := psurv;
END IF;
OUTPUT("aaa");
IF servques = 1
FORi:=1TOnc
loiter ;= ASK randObj3 UniformReal(0.0, 1.0);
IF loiter <= ploiter
s[i] := ASK randObj4 UniformInt(slo[i], shi[i]);
ELSE
s[i] := slo[i];
END IF,
END FOR;
END IF;

ASK timeMatrix timeMatrix(nc, numnodes, gamma, as, wmag, wdir, windconv,
coord, s, dist, time, outstrm, timeprint);
OUTPUT("b");
IF day = startday {must find a true initial tour}

IF startques = 1 {read in initial tour}

J-13

NEW (inittour, 0..numnodes);

{Reorder tour, currently in numerical order, by the initial tour
and place temporarily into inittour}

FOR i := 0 TO numnodes
inittour[i] := CLONE(tour[m[i]]);
END FOR;

{Copy inittour into tour}

FOR i := 0 TO numnodes
tour[i] := CLONE(nittour[i]);

END FOR;

DISPOSE(inittour);
tourSched(1, nc, numnodes, tour, time, tourLen, outstrm);
startTime := SystemTime();

ELSE

ASK startTour startTour(nv, nc, time, tour, tourLen,
totPenalty, tourhv, startTime, m, outstrm);

END IF;

DISPOSE(m);
ELSE

IF initques = 0

{lose old tour, use previous days Choice}
DISPOSE(tour);
NEW(tour, 0.. numnodes);
{use the best result of the previous day}
FOR i := 0 TO numnodes
tour{i} := CLONE(tourChoice[day-1][i]);
END FOR;

ELSE
OUTPUT("c");
{use the robust tour, But it may not have TW info with it}
NEW(inittour, 0..numnodes);

{So reorder the tour of the previous day into inittour from the robust tour}
FOR i := 0 TO numnodes
inittour[i] := CLONE(tour[tourChoice[robustChoice][i].id]);
END FOR;
{Copy inittour into tour}

FOR i := 0 TO numnodes
tour[i] := CLONE(inittourl[i});

J-14

END FOR;

DISPOSE(inittour);
END IF;

{Compute initial schedule, return tour's total travel + wait time}
tourSched(1, nc, numnodes, tour, time, tourLen, outstrm);

startTime := SystemTime();

END IF;
OUTPUT("d");
IF startprint
{* ASK outstrm WriteString("startTour complete"); ASK outstrm WriteLn;
qcktourFile(outstrm, tour, numnodes); *}
where := "startTour complete";
twCvrgServToFile(where, outstrm, tour, nc, numnodes, tourLen,
windconv, loadprint, psurv, s, slo);

END IF;

ASK startTour startUA Vbest(numnodes, tvl, tourLen, tour, TWPEN,
psurvDay[day], totPenalty, penTrav, tourCost,
tourPen, bfiter, bfCost, bfTT, bfnv, bestiter,
bestCost, bestTT, bestnv, bfTime,
bestTime, cvrg, bfCvrg, bestCvrg,

, bestTour, bfTour);
OUTPUT("e");
NEW(xts);
{conduct RTS}

ASK rts search(psurvDay[day], PSFCT,
TWPEN, INCREASE, DECREASE, HTSIZE, CYMAX, ZRANGE, DEPTH,
minTL, maxTL, tabuLen, iters, nc, numnodes,
outstrm, outstrm2, tourPen, time, stepprint,
moveprint, cycleprint, tourCost, penTrav, totPenalty, tvl,
bfCost, bfTT, bfnv, bfiter, bestCost, bestTT, bestnv,
bestTime, bfTime, bestiter, numfeas,
bfCvrg, bestCvrg, cvrg,
tour, bestTour, bfTour);
DISPOSE(rts);

stopTime := SystemTime();
IF bfiter > -1

{save the best feasible tour found}

FOR i := 0 TO numnodes
tourChoice[day][i} := CLONE(bfTourl[i]);

END FOR;

{output the results}

where := "DAY " + INTTOSTR(day) + " BEST FEASIBLE TOUR";

twCvrgServToFile(where, outstrm, bfTour, nc, numnodes, bfCost,
factor, loadprint, psurvDay[day], s, slo);

duration[day] := bfTime - startTime;
besttype[day] := 1;

J-15

ASK outstrm WriteString("# vehicles used = ");
ASK outstrm WriteInt(bfnv, 2); ASK outstrm WriteLn;

ASK outstrm WriteString("Best Feasible solution found after ");

ASK outstrm WriteString(INTTOSTR (bfTime-startTime)+" secs");

ASK outstrm WriteLn;

ASK outstrm WriteString("on Iteration: "+ INTTOSTR(bfiter));

ASK outstrm WriteLn;

ASK outstrm WriteString("with travel time = "+ INTTOSTR(bfTT));

ASK outstrm WriteLn;

ASK outstrm WriteLn;

ASK outstrm WriteString("& Expected coverage = "+REALTOSTR(bfCvrg));
ASK outstrm WriteLn;

{update the route frequency matrix}
FOR i := 0 TO numnodes-1

j :=bfTourfi].id;

k :=bfTour[i+1].id;

routefreq[j][k] := routefreq[jl{k] + 1;
END FOR;

OUTPUT("f");
ELSE

{save the best tour found}
FOR i := 0 TO numnodes

tourChoice[day][i] := CLONE(bestTour(i]);
END FOR;

{output the results}
where := "DAY " + INTTOSTR(day)
+" Search complete: BEST TOUR (NOT FEASIBLE)";
twCvrgServToFile(where, outstrm, bestTour, nc, numnodes, bestCost,
windconv, loadprint, psurvDay[day], s, slo);

duration[day] := bestTime - startTime;
besttype[day] := 0;

ASK outstrm WriteString("# vehicles used = ");
ASK outstrm WriteInt(bestnv, 2); ASK outstrm WriteLn;
ASK outstrm WriteString("Best solution found after);
ASK outstrm WriteString(INTTOSTR (bestTime-startTime)+" secs");
ASK outstrm WriteLn;
ASK outstrm WriteString("on Iteration: "+ INTTOSTR(bestiter));
ASK outstrim WriteLn;
ASK outstrm WriteString("with travel time = "+ INTTOSTR (bestTT));
ASK outstrm WriteLn;
ASK outstrm WriteLn;
ASK outstrm WriteString("& Expected coverage = "+REALTOSTR(bestCvrg));
ASK outstrm WriteLn;
{** DONT UPDATE FREQ MATRIX WITH BAD TOUR
{update the route frequency matrix }
FOR i := 0 TO numnodes-1
j = bestTourl[i].id;

J-16

****}

k := bestTour[i+1].id;
routefreq[jl[k] := routefreq[j][k] + 1;
END FOR;

END IF;

{Output service time difference}
servSum := 0.0;

FORi:=1TOnc
servSum := servSum + FLOAT(s[i] - slo[i]);
END FOR;

servSum ;= servSum / windconv;

str := "Sum of increase over min service times = "+ REALTOSTR(servSum);
ASK outstrm WriteLn; ASK outstrm WriteString(str);

ASK outstrm WriteLn;

{If we're in the test set, find the Robust Tour every day}
IF initques = 1

{find most robust tour chosen}

robustChoice := 1;

dayscore := 0;

maxdayscore := 0;

sumScores := 0;

FOR rday := 1 TO day
FOR i := 0 TO numnodes-1

dayscore := dayscore
+ routefreq[tourChoice[rday][i].id][tourChoice[rday][i+1].id];
END FOR;
scores[rday] := dayscore;
sumScores := sumScores + dayscore;

{choose the tour with the most robust routes }
IF dayscore > maxdayscore

robustChoice := rday;

bestscore := dayscore;

maxdayscore := dayscore;

ELSIF dayscore = maxdayscore
{choose feasible tours over nonfeas, or choose the most recent}
IF besttype[rday] >= besttype[robustChoice]
robustChoice := rday;
bestscore := dayscore;
END IF;
END IF;
dayscore := 0;

END FOR; {rday}

str := "Day = "+INTTOSTR(day)+" and Robust Choice ="

J-17

+INTTOSTR (robustChoice);
ASK outstrm WriteL.n; ASK outstrm WriteString(str);
ASK outstrm WriteLn;

END IF;

{output coords to file so we can scatter plot tours}
where := "Day =" + INTTOSTR(day);
LatLongToFile(where, outstrm?2, tourChoice[day], nc, numnodes, coord);

DISPOSE(bfTour);
DISPOSE(bestTour);
DISPOSE(tourPen);

END FOR;
{#*#* END OF DAY LOOP **%**}
OUTPUT("k");

{output route frequency matrix }
where := "SCENARIO LOOP COMPLETE, Frequency of Routes Chosen: ";
timeToFile(where, outstrm, routefreq, numnodes);

{find most robust tour chosen}
dayscore :=0;

maxdayscore := 0;

sumScores = 0;

robustChoice := 1;

FOR day := 1 TO totaldays

FOR i := 0 TO numnodes-1
dayscore := dayscore
+ routefreq[tourChoice[day][i].id][tourChoice[day][i+1].id];
END FOR;
scores[day] := dayscore;
sumScores := sumScores + dayscore;

{choose the tour with the most robust routes }
IF dayscore > maxdayscore

robustChoice := day;

bestscore := dayscore;

maxdayscore := dayscore;

ELSIF dayscore = maxdayscore
{choose feasible tours over nonfeas, or choose the most recent}
~ IF besttype[day] >= besttype[robustChoice]
robustChoice := day;
bestscore := dayscore;
END IF;
END IF;

dayscore :=0;

J-18

END FOR; {DAY LOOP}

OUTPUT("1");
{output robust tour}
tourSched(1, nc, numnodes, tourChoice[robustChoice], time, tourLen, outstrm);
countVeh(numnodes, tourChoice[robustChoice], nvu);
expCvrg(numnodes, psurv, tourChoice[robustChoice], cvrg);

where := "MOST ROBUST TOUR: day = " + INTTOSTR(robustChoice);
twCvrgServToFile(where, outstrm, tourChoice[robustChoice], nc, numnodes,
tourLen, windconv, loadprint, psurvDay[totaldays], s, slo);

ASK outstrm WriteString("# vehicles used =");
ASK outstrm WriteInt(nvu, 2); ASK outstrm WriteLn;
ASK outstrm WriteString("With robustness score "+ INTTOSTR (bestscore));
ASK outstrm WriteLn; ASK outstrm WriteLn;
OUTPUT("2"),
ASK outstrm WriteString("MEAN robustness score "
+ INTTOSTR(sumScores DIV totaldays));
ASK outstrm WriteLn; ASK outstrm WriteLn;

{ Output Robustness scores}
ASK outstrm WriteLn;
ASK outstrm WriteString("Robustness scores: ");
FOR i := 1 TO totaldays
ASK outstrm WriteInt(i, 3);
ASK outstrm WriteInt(scores[il, 5);
ASK outstrm WriteLn;
END FOR;

{Output Robust tour for future Initial tour}

ASK outInit WriteInt(nv, 3); ASK outInit WriteLn;

FOR i:= 0 TO numnodes
ASK outInit WriteInt(tourChoice[robustChoice][i].id, 5);
ASK outInit WriteLn;

END FOR;

ASK outstrm Close;
ASK outlnit Close;
ASK outstrm?2 Close;

DISPOSE(startTour);
DISPOSE(timeMatrix);
DISPOSE(outstrm);
DISPOSE(outlnit);
DISPOSE(outstrm2);
DISPOSE(s);
DISPOSE(time);
DISPOSE(coord);

IF windques = 1

DISPOSE(randObj1); DISPOSE(randObj2);
END IF;

IF servques = 1

DISPOSE(randObj3); DISPOSE(randObj4);

J-19

END IF;

END MODULE; {MAIN}

J-20

Appendix K: Literature Review

This review concentrates on contemporary works relevant to the class of general
vehicle routing problems (GVRP) approached within this thesis and works related to our
embedded optimization approach. It is separated into three sections, although some
works contribute to more than section. Section K.1 provides a summary of the literature
relevant to an understanding of the GVRP and the attacked subset. Section K.2 follow§
with a survey of works describing tabu search (TS) and some relevant applications of this
powerful meta-heuristic. Section K.3 reviews literature exploring the utility and
relationships important to the embedded optimization of the TS heuristic within a
simulation or other problem solving form. Section K.4 describes the resources used by
the author as references for CACI’s MODSIM programming lanquage. A number of
MODSIM objects created by the researcher form a fundamental part of this study.

Section K.5 closes with a few conclusions drawn from the literature review.

K.1. The General Vehicle Routing Problem

In their 1997 survey article of commercial vehicle routing software, Hall and
Partyka describe the vehicle routing problem (VRP) as an interdependent collection of
four problems. One is the calculation of distances between stops, two is the partitioning
of the region into districts of feasible routes, three is usually a traveling salesman problem
(TSP) or a TSP with time window constraints (TSPTW), and four is the subsequent crew
assignment (Hall and Partyka 1997). Within the collection of articles entitled Vehicle
Routing: Method and Studies (Golden and Assad 1988), Assad places the general

characteristics of routing problems into six categories: nature of demand, information on

demand, vehicle fleet, crew requirements, scheduling requirements, and data
requirements. Both descriptions illustrate the need for any routing system to incorporate
elements of embedded optimization. While these descriptions capture the industrial
application of the VRP, they fall short for most military applications as they do not
include a variance in the nature of the operational environment.

In his thesis on unmanned aerial vehicle routing, Sisson created a formulation of a
multiple vehicle TSPTW (mTSPTW) that incorporated the probabilities of vehicle
attrition due to hostile forces into the objective function (Sisson 1997). No civilian
approach considers the possibility of attrition due to a hostile environment. Although the
commercial market is competitive, combative behavior remains illegal. Sisson also
researched the performance of unmanned aerial vehicles the important influence of wind.
Sisson’s work is a critical stepping stone for this thesis.

As Hall and Partyka noted, an mTSPTW often comprises a critical portion of any
larger VRP. To better understand the relationship of problems within the GVRP family, a
number of works were consulted. The Traveling Salesman Problem holds a prominent
standing amongst the literature available. In Chapter 2 of that collection, R. S. Garfinkel
quickly summarizes the TSP’s “seductive” qualities and provides five distinctly separate
applications. Garfinkel also provides some simple transformations to the TSP, including
the introduction of multiple salesman (referred to previously as multiple vehicle) and the
relaxation allowing the repetition of cities. Garfinkel continues through tile
generalization of the TSP as an assignment problem and a minimum spanning tree, as ‘
well as providing a standard linear programming formulation. Chapter 12 of The

Traveling Salesman Problem, written by N. Christofides, is entitled “Vehicle routing.”

K-2

Christofides provides three formulations, some optimization algorithms, and some
heuristics. Nemhauser and Wolsey’s text, Integer and Combin‘atorial Optimization,
provided an example meant for students of the subject after providing a integer
programming formulation of the issues involved.

A more current survey of approaches to the TSP and VRP was accomplished in
1992 by Gilbert Laporte. In the first of two invited reviews for the European Journal of
Operational Research, Laporte surveys the main exact and heuristic algorithms for the
TSP. The second article performs the same function for the VRP. After introdﬁcing tabu
search, Laporte states the “computational results indicate that the proposed heuristic may
be one of the best ever developed for the VRP” (Laporte 1992b).

Although the TSP is classified as NP-hard (Glover 1997; Lenstra 1985), special
cases exist that can be solved in polynomial time (Glover 1997). In their 1997 article,
Glover and Punnen identify new solvable cases of the TSP. A similar work accomplished
by the Optimization Group at the Technical University of Graz surveys known efficiently
solved cases. This thesis suggests such cases be sought by any VRP software before a
more general algorithm, such as tabu search, is applied.

Finally, Carlton’s 1995 dissertation is a critical resource. Carlton surveys the
proposed classification schemes of the problems within the GVRP class. He concludes
that no prior system gives “a direct approach to GVRP classification to enhance the
understanding and exploitation of the relationships among the GVRP problem types”
(Carlton 1995). He then proposes a hierarchical taxonomy that classifies GVRP types

along those lines. In brief, Carlton first summarizes the GVRP into three “floors.” Each

floor includes the following cases and their possible combinations (Carlton’s notation is
slightly altered for more simplicity without loss of information):

1. SV: Single vehicle.

2. MVH: Multiple homogenous vehicles.

3. M;ﬁ: Multiple non-homogenous vehicles

4. SD: Single depot.

5. MD: Multiple depots.

6. TW: Time window constraints present.

7. RL: Route length constraints present.

The first floor is the family of TSP problems. With the addition of vehicle capacity
constraints, one transitions to the second floor of VRP problems. Precedence constraints
cause a transition to third floor of pickup and delivery problems (PDP). As a tangible
illustration of his success, this research employs Carlton’s taxonomy to enact the object-
oriented concepts of inheritance and polymorphism between MODSIM optimization
objects.

The MODSIM objects accompanying this thesis correspond to the TSP, the
mTSP, the mTSPTW, and the VRPTW. Carlton concentrates much his efforts upon the
TSPTW and mTSPTW. Of course, a simple transformation creates TSPTW from the
mTSPTW. From his literature review, Carlton concludes the TSPTW is not as “well
studied” as the TSP and VRP; “it stands in the gap” (Carlton 1995). Carlton’s focus on
the TSPTW appears well warranted given the previous synopsis»of “real-world”

applications of the VRP given by Hall and Partyka. This research uses an adaptation of

K-4

Carlton’s C programming language code for the VRPTW as a first step in the creation of
the MODSIM obje;cts.

Jaillet and Odoni (1988) demonstrate the added complexity of a probabilistic TSP
(PTSP) over the TSP. For even a simple heuristic like the nearest-neighbor, they find the
computational effort increases by O(nz) over the deterministic version. Furthermore, their
formulation of the PTSP is simple in comparison to the UAV problem since they only
consider the probability that customers are not present. Jaillet and Odoni sought the
similar objective of “well-behaved” or robust routes, but all of their stochastic
programming methods were bound to smaller numbers of customers by the necessary

computational effort.

K.2. Tabu Search and Applications Related to the GVRP

As mentioned previously, Laporte’s survey of VRP algorithms gave highest marks
to tabu search (TS). He based this conclusion upon his own version of TS created with
Gendreau and Hertz. In their 1996 article, Kervahut, Garcia, and Rousseau compare the
performance of their TS heuristic to that of five other documented heuristics within the
well known Solomon datasets. Their TS employed a tabu list of fixed length and
infeasible regions were not accessible to the search. Yet, the quality of solutions reached
by their version of TS bests all other considered heuristics except one known as
GIDEON. A statistical test failed to reject the hypothesis that the tested TS heuristic and
GIDEON are equally effective (Kervahut 1996). From the literature, it is apparent TS is a

powerful heuristic within the GVRP class.

K-5

Given this justification for its use, an investigation of TS becomes imperative.
Fred Glover introduced TS in 1986 and his writings form a necessary portion of any
review regarding this heuristic. His 1990 article, “Tabu Search: A Tutorial,” seemed an
obvious place to start. Here, Glover provides guidelines in building a TS heuristic.
Guidelines include suggestions for the length of tabu lists, the number of attributes
considered, the comparison of attributes, the balancing of diversification and
intensification efforts to the aspiration criteria, and the powers of target analysis.

As an application of artificial intelligence, target analysis is the application of
empirical results from classes of problems to the problems attempted by your own
heuristic. Glover strongly emphasizes to use of target analysis to improve move
evaluations as his fifth guideline (Glover 1990a). His sixth guideline suggests the use of
a frequency-derived (the frequency of revisited solutions) penalty to encourage
diversification, with a possible marrying to restarting the search (Glover 1990a).

Glover had stated one year prior to the “tutorial” article in his “Tabu Search-Part
1” publication, that TS was “still in its infancy” (Glover 1989). The tutorial mostly
provided a review of “where TS is, and where it is going” with Glover’s guidelines,
predictions, and other theoretical discussions for the meta-heuristic. Many of the
guidelines were the obvious result of Glover’s experience in TS application. Similarly,
his predictions were educated guesses of things to come. Glover’s “Tabu Search-Part I”
and Tabu Search-Part II” are more heavily cited than the tutorial article, as they provide a
more straight-forward and step-by-step presentation of TS (Glover 1989; 1990b).

With their reactive tabu search (RTS), Battiti and Tecchiolli provided the

important next step suggested by Glover’s fifth guideline. Battiti and Tecchiolli present

the reactive tabu search in their 1994 article and show it to be a far more robust procedure
than the fixed and strict tabu search heuristics. To illustrate the technique’s abilities, the
authors apply it to the optimization of a quadratic assignment problem and a complex
sinusoidal function. The applications are both successful and the authors are kind enough
to provide detailed pseudocode. (Battiti 1994)

When one considers that the TS heuristics given by Laporté and Kervahut fall in
the category of fixed TS and the RTS achieves significant jumps in computational
efficiency without applying Glover’s time consuming target analysis preprocessing, it
beccomes apparent that Battiti and Tecchiolli have ushered in a powerful improvement to
the application of TS. In his 1996 article, Battiti states that “parameter tuning” and
“search confinement” are “potential drawbacks to simple implementations” of tabu
search, genetic algorithms, and simulated annealing. He then explains that the reactive
tabu search effectively overcomes these drawbacks. He classifies the reactive TS as a
deterministic algorithm. However, it is quickly made stochastic through random tie
breaking and a random “escape trajectory.” (Battiti 1996)

Battiti shares the important find that the order of operations required for memory
usage per iteration is O(1) or essentially a constant that is independent of the number of
iterations performed. He also claims hashing techniques are available that need only a
few bytes of memory and result in small “collision” probabilities. He does not support
the claim, but he states small collision probabilities do not have statistically significant
effects on the reactive TS heuristic. (Battiti 1996)

With a four 0/1 bit example, Battiti then illustrates the properties of

reactive TS. In the example, the tabu list length takes progressively more iterations to

K-7

increase after the previous increment, and the distance of the search from the optimal
“attractor” varies quickly and increases quickly to the maximum range. These illustrations
are convincing evidence of the robust balance of intensification and diversification
achieved with the reactive TS heuristic. (Battiti 1996)

Once again, Carlton’s dissertation is helpful. He provides a two-level open
hashing structure. This structure allows the TS to “efficiently store and accurately
identify solutions in order to determine whether a particular solution has been visited
previously during the search” (Carlton 1995). It minimizes the probability of two non-
identical tours being incorrectly determined as identical (Carlton 1995).

It should be noted that Carlton’s RTS is deterministic, while the RTS proposed by
Battiti and Tecchiolli is stochastic. Carlton’s RTS begins from a deterministic starting
solution and uses deterministic escape routines, while the heuristic of Battiti and
Tecchiolli begins from a stochastic starting solution and uses stochastic escape routines
(Carlton 1995).

Although two and a half years have passed since the introduction of RTS, it
remains at the forefront of TS heuristics proposed. A contrasting example is provided by
Rochat and Taillard. In their 1995 article, the authors propose a technique to overcome
the Wcaknesses of previous local searches and tabu search. The first weakness is the
probability of becoming trapped in local optimum, the second is the large computational
effort. The approach has two phases. The first begins with an initialization set generated
from “good” heuristic solutions. The second phase seeks to extract good tours from the
initial set (or from any previous tours after the 2" jteration) and then seeks to improve

this set. The improvement often arises from a combination of the previous “good” tours.

K-8

How these “good” solutions are achieved is not specified and appears to be a major
weakness of the approach.

As it does with Glover’s target analysis, RTS seems to obviate the need for any
esoteric pre-processing of the sort used by Rochat and Taillard. These pre-processing
techniques report impressive results, but they require a high computational cost and
would be difficult to implement by non-TS experts working in the field vehicle routing,
civilian and otherwise. Carlton’s work confirms the robust abilities of RTS. Starting
with arbitrarily chosen initial solutions, his RTS consistently achieved feasible solutions
within one percent of the optimal solution when applied to the Solomon data set. He then
found feasible starting tours produced better overall solutions using less computational
effort. (Carlton 1995)

Recent improvements to TS include the addition of compound moves to the
neighborhood search and parallel tabu searches that share information. The results of
Rego and Roucairol in their 1996 article suggest Carlton’s RTS could be improved with
these techniques. Glover’s 1995 Tabu Search Fundamentals and Uses is a useful
reference and also suggests the use of compound moves and parallel processing as

avenues of improvement.

K.3. Embedded Optimization

Despite the wealth of real-world application, examples of embedded optimization
in the literature are rare (Hall 1997). Kassou and Pecuchet (1994) apply embedded
optimization to job shop scheduling, where their object-oriented programming application

uses a sophisticated optimization framework with an extensive user interface. Using the

optimization routines within a simulation to provide possible scheduling scenarios, the
authors arrive at “guided rules” for choosing one of the three optimization techniques
available and how to guide the search. Kassou and Pecuchet (1994) introduce a feedback
loop between the optimization search and the simulation processes, but the nature of the
information shared is ambiguously defined and the user must maintain interface in the
loop (even to the point of being the “Generator of rules”).

Brown and Graves (1981) furnish an example that does not adhere to our
definition of embedded optimization, when they use optimization routines to replace
time-consuming manual operations for the routing decisions of a nation-wide fleet of
petroleum tank trucks. Whereas Brown and Graves refer to their structure as “embedded
optimization,” their work better exemplifies an “application” of optimization routines
where none were used previously, and not the embedding of optimization routines as an
event within a simulation.

Most current software fails to move beyond the constraint of user-defined “what-
if” situations (Hall and Partyka 1997). As a counter-example, Glover, Laguna, and Kelly
(1996) provide a good example of embedded optimization in a simulation that calls upon
Glover’s scatter search (1977) and tabu search heuristics to find near-optimal solutions.
A neural-net “accelerator” may be used to cull out input combinations that the neural net

learns will generate poor solution quality.

K.4. MODSIM

CACT’s MODSIM programming language is an object-oriented language that

lends itself to this approach. Much more than a traditional data structure or subroutine, a

K-10

MODSIM object can contain its own fields and routines, called methods. Marti’s text,
not yet published, and CACI’s MODSIM III Tutorial and User’s Guide were helpfﬁl

resources in the coding of the RTS objects.

K.5. Conclusions

Battiti’s reactive tabu search and the version created by Carlton are powerful
heuristics for the VRPTW. Given the many directions one can take in GVRP research,
object-oriented programming is a necessary coding methodology. Stochastic versions of
GVRP problems significantly increase the complexity and have been largely avoided.
Embedded optimization poses a powerful remedy for this untapped area. Although a
large body of research and software addresses the GVRP, considerable work remains,

especially for military applications.

K-11

Appendix J: MuavEval

A second step to MuavThreat2, the main module MuavEval runs the evaluation

phase of UAV problems with stochastic winds, service times, and threats.

MAIN MODULE uavEval;

FROM IOMod IMPORT StreamObj, ALL FileUseType, ReadKey;
FROM OSMod IMPORT SystemTime;
FROM MathMod IMPORT pi;

FROM uavMod IMPORT timeMatrixObj;
FROM twReduceMod IMPORT twReductionObyj;
FROM uavMod IMPORT startUAVObj;

FROM uavMod IMPORT uavRTSobj;

FROM tabuMod IMPORT arrReal2dimType;
FROM tabuMod IMPORT coordArrType;
FROM tabuMod IMPORT tourType;

FROM tabuMod IMPORT nodeType;
FROM tabuMod IMPORT vrpPenType;
FROM tabuMod IMPORT arrInt2dimType;
FROM tabuMod IMPORT arrIntType;
FROM tabuMod IMPORT arrRealType;

FROM tabuMod IMPORT SwapNode;
FROM uavMod IMPORT twCvrgServToFile;
FROM tabuMod IMPORT Latl_ongToFile;
FROM tabuMod IMPORT qcktourFile;
FROM tabuMod IMPORT tourToScreen;
FROM tabuMod IMPORT timeToFile;
FROM tabuMod IMPORT tourSched;
FROM tabuMod IMPORT countVeh;

FROM uavMod IMPORT expCvrg;
FROM RandMod IMPORT RandomObj, SetSeed, FetchSeed;

VAR
timeMatrix : timeMatrixObj;
twReduce : twReductionObj;
startTour : startUAVObj;
rts : uavRTSobj;
randObj1, randObj2, randObj3, randObj4, randObj5 : RandomOby;;

instrm,

instrm?2, instrm3, instrm4,
outstrm,

outstrm?2,

outlnit : StreamObj;

factor, {used to convert the time windows to integer values}

TWPEN, {Penalty weight assigned to the sum of late arr TW violations}
INCREASE, {RTS parameter: mult. factor to decrease tabu length}
DECREASE, {RTS parameter: mult. factor to increase tabu length}

windconv, {multiplied by the resulting UAV time matrix, it provides an
integer matrix (for calc speed) with the needed precision}

sumTij, {sum of the i to j distances in the distance matrix}

mindist, {minimum travel distance}

maxdist, { maximum travel distance}

distAvg, {avg travel distance}

wdir, {direction of wind vector}
ploiter, {probabilitiy you loiter over a target}
loiter, {loiter? - individual node result}
riskadj, {amount to randomly adjust a target's prob of survival}
PSFCT, {factor multiplied by coverage results to get more info into
the integer move value}
cvrg, {expected coverage of the tour}
bfCvrg, {exp coverages of best and best feas tours}
bestCvrg,
servSum {sum of increase over minimum service times}
: REAL;
i,j, k
endnum, {end number in a numbered data file group}
maxtime, {max possible time of arrival to any node, for time read}
numcycles, {number of TW reduction cycles wanted}
numchanges, {number of TWs reduced by TW reduction Obj}
numnodes, {number of nodes in the directed graph}
nv, {number of vehicles}
nc, {number of targets/customers}
gamma, {arbitrary cost assigned to the use of each vehicle}
iters, {number of Tabu Search Iterations per problem}
tourLen, {Length of tour in time}
tvl, {travel time of tour}
totPenalty, {Total Penalty assigned to current tour}
tourCost, {tour Length + Time Window Cost}
penTrav, {tourCost - totWait == travel time + TW penalty}
bfCost, {lowest tourCost found for a feasible tour}
bestCost, {lowest tourCost found for a any tour}
bestTT, {lowest travel time found for a any tour}
bestnv, {# vehs used by best overall tour}
bfTT, {lowest travel time found for feasible tour}
bfnv, {# vehs used by best feas tour}
bfiter, {iteration # when best feasible tour found}
tourhv, {tour's hashing value}
bestiter, {iteration the best Tour found}
bestTime, {Time the best Tour found}
bfTime, { Time the best feasible Tour found}
numfeas, {number of feasible solns found}
startTime, {start Time (after time matrix, before TW reductions)}
stopTime, {stop Time (after last iteration)}
DEPTH, {depth of nodes we look for insert moves}
12

ZRANGE, {upper bound on random integer weights assigned to nodes}

HTSIZE, {size of hash table array}

CYMAX, {max cyleLength used to alter mavg}
tabuLen, { current length of tabu tenure}

minTL, {minimum Tabu Length}

maxTL, {maximum Tabu Length}

wmag, {magnitude of wind vector}

as, {UAV's air speed}

numdays, {number of days to run random scenarios}
day, {index of current day}

nlnitdays, {number of days in the initialization set}
totaldays, _{nInitdays + numdays}

nvInit, {# vehicles in initial tour read from a file}
nvu, {# vehicles used in current tour}

windques, {ask whether or not you want random winds}
magseed, dirseed, {seeds for random winds}

startques, {ask whether or not you want to input the initial tour}
servseed, loitseed, {seeds for random service times}
servques, {ask whether or not you want random service times }
initques, {ask if an initialization set already performed}
riskques, {ask if random service times are needed }
cvrseed,

lowdeg, {low end of range of wind direction to test}
highdeg, {high end of range of wind direction to test}

lowmag, {low end of range of wind magnitude to test}
highmag, {high end of range of wind magnitude to test}
minloiter,

maxloiter, {minimum & maximum loiter time}
dayscore, {robustness score of day under consideration}
maxdayscore, {max robustness measure found}

bestscore, {robustness measure of best route found}
sumScores, {sum of all dayscores, used to find a mean}

robustChoice, {tags the resulting tour chosen as most robust}

startday, {# of day beginning the scenario, day, loop}
rday {loop var of the incremental robust tour choice}

: INTEGER;
outfile, {name of output file}
where, {where in the code?}
str,
startfile,
file, filein, {filenames}
filebegin,
fileout3,
fileout2,

filetour, filefreq,
fileout : STRING;

loadprint, {print load on vehicles}

J-3

stepprint, {print each move evaluation}

moveprint, {print every insert move made by RTS}
startprint, { print starting tour and tw reduction steps}
cycleprint, { print hash results}

timeprint, {print time matrix }

twrdprint : BOOLEAN; {print tw reduction steps}

psurv : arrRealType; {prob of survival array}

coord : coordArrType; {coordinates array}

bfTour, {best feasible tour found}
bestTour, {node array holding best tour}
tour, {node array holding the tour}
oldtour, {temporary tour}

inittour : tourType; {tour to read in an initial tour}
tourPen : vrpPenType; {record of curr tour penalties}
windmag, {array of wind magnitude per day}
winddir, {array of wind direction per day}

duration, {array of time to best solution per day}
besttype, {array tracking type of best: 1=feas, O=not}
scores, {array of robustness scores}

m, {array of TW midpoints}

slo, shi, {arrays of service time ranges}

s : arrIntType; {service times used}

dist : arrReal2dimType; {no wind distance matrix }
temp,

routefreq, {counts the frequency that route i to j

is chosen, where i and j are the array
indices, in that order}
time : arrInt2dimType; {time matrix }

tourChoice : ARRAY INTEGER OF tourType; {array of tour choices per day}
psurvDay : ARRAY INTEGER OF arrReal Type; {array of psurv per day}

node : nodeType;

BEGIN
{INITIALIZE}
startprint := FALSE; { print starting tour}
timeprint := FALSE; { print time matrix }
stepprint := FALSE,; {print each RTS step eval}
moveprint := FALSE; {print each RTS insert move}

twrdprint := FALSE; {print TW reduction steps}
cycleprint := FALSE; { print cycle/nocycle steps}
loadprint := FALSE; { print quantity & vehicle loads}

J-4

OUTPUT(" ");
OUTPUT("Please input the problem to work on:");

INPUT(file),
NEW!(instrm); {open problem file}
NEW(outstrm); {open results file}
NEW (outlnit); {open file for future initial tour}

filein := file + ".DAT";

fileout := file + ".OUT";

fileout2 := file + "Init.OUT";

ASK instrm Open(filein, Input);
ASK outstrm Open(fileout, Qutput);
ASK outlnit Open(fileout2, Output);

fileout3 := file + "Rslt" + ".OUT";
NEW (outstrm2);
ASK outstrm2 Open(fileout3, Output);

str := "FILE: " + file;
ASK outstrm WriteString(str); ASK outstrm WriteLn; ASK outstrm WriteLn;

OUTPUT(" "),

OUTPUT("Please input the factor (such as 1, 10, 100, etc.) necessary to convert");
OUTPUT("the time window info to integer quantities");

INPUT (factor);

str := "Factor used for target windows and distances " + REALTOSTR(factor);
ASK outstrm WriteString(str); ASK outstrm WriteLn;

OUTPUT(" "),
OUTPUT("Please input the number of vehicles");
INPUT(nv);

NEW((timeMatrix);

OUTPUT(" ");

OUTPUT("Do you want random service times?");
OUTPUT(" - 1=YES");

OUTPUT(" - 0=NO");

INPUT(servques);

IF servques =1

OU'TPUT(VI ll);

OUTPUT("Input seed number to use for service time randomization");
INPUT(servseed);

OUTPUT(" ");

OUTPUT("Input seed number to use for loiter randomization");
INPUT(loitseed);

NEW(randObj3); NEW(randObj4);

ASK randObj3 SetSeed(FetchSeed(loitseed));
ASK randObj4 SetSeed(FetchSeed(servseed));

J-5

OUTPUT(" n);
OUTPUT("Give the probability you will loiter over a target");
INPUT(ploiter);

ASK outstrm WriteLn;

str := "loitseed="+INTTOSTR(loitseed)+" servseed="+INTTOSTR(servseed)+

" Pr{loiter} = "+REALTOSTR(ploiter);
ASK outstrm WriteString(str); ASK outstrm WriteLn;

{Reads in a coords in miles scenario with Service time ranges and psurv}

ASK timeMatrix readUA Vloiter(instrm, nc, numnodes, factor, nv,
psurv, coord, tour, slo, shi,
outstrm, startprint);

NEW(s, 0..nc);

s[0] :=0;
ELSE

{reads UAYV file, finds nc, inits coord & tour}

ASK timeMatrix readUAV(instrm, nc, numnodes, factor, nv,

psurv, coord, tour, s, outstrm,
startprint);

END IF;

ASK instrm Close; DISPOSE(instrm);

{compute distance matrix, given coordinates in miles}

ASK timeMatrix distMatrix(nc, numnodes, coord, dist, outstrm);
IF timeprint

{output distance matrix }
NEW(temp, 0..numnodes, 0..numnodes);
where := "No wind distance Matrix complete"”;
FOR i := 0 TO numnodes
FOR j := i+1 TO numnodes
temp(i}[j] := TRUNC(dist[il[j]);
temp[j1(i] := templil[j];
END FOR;
END FOR;
timeToFile(where, outstrm, temp, numnodes);
DISPOSE(temp);
END IF;

mindist := 9999.0; maxdist := 0.0;
sumTij := 0.0; distAvg := 0.0;
FORi:=0TOnc
FOR j:=i+1 TO nc
sumTij := sumTij + dist[i][j];
IF (dist[i][j] < mindist) AND (dist[i][j] > 0.0)
mindist := dist[i][j]; END IF;
IF dist[i][j] > maxdist
maxdist := dist[i][j]; END IF;

J-6

END FOR;
END FOR;

distAvg := sumTij / (FLOAT((nc+1)*(nc+1))/2.0 - FLOAT(nc+1));

OUTPUT(" ");

OUTPUT(" Average distance to travel is ", distAvg);
OUTPUT("Min distance to travel is ", mindist);
OUTPUT("Max distance to travel is ", maxdist);

str := "Average distance to travel is " + REALTOSTR(distAvg);
ASK outstrm WriteString(str); ASK outstrm WriteLn;

str := "Min distance to travel is " + REALTOSTR(mindist);
ASK outstrm WriteString(str); ASK outstrm WriteLn;

str ;= "Max distance to travel is " + REALTOSTR(maxdist);
ASK outstrm WriteString(str); ASK outstrm WriteLn;

OUTPUT(" ");
OUTPUT("Please input vehicle's air speed (in mi/hr)");
INPUT(as);

OUTPUT(" ");

OUTPUT("Please input the conversion factor to use with the WIND time matrix");
OUTPUT("The time windows will be updated to ensure the conversion matches");
OUTPUT(" (must be at least as great as previous factor)");

INPUT(windconv);

{Update tour with windconv to match times}
FOR i := 0 TO numnodes
IFi<=nc
slo[i] := TRUNC(windconv / factor * FLOAT(slo[i]));
shi[i] := TRUNC(windconv / factor * FLOAT(shi[i]));
END IF;

tour[i].ea := TRUNC(windconv / factor * FLOAT(tour[i].ea));
tour[i].la := TRUNC(windconv / factor * FLOAT(tour[i].la));

IF tourfi].type = 2
tour{i].arr := tour[i].ea;
tour{i}.dep := tour[i].arr;

END IF,;

END FOR;

str := "Air speed " + REALTOSTR(as);

ASK outstrm WriteString(str); ASK outstrm WriteLn;

str := "Factor used to make the wind time matrix integer" + REALTOSTR(windconv);
ASK outstrm WriteString(str); ASK outstrm WriteLn;

ASK outstrm WriteLn;

OUTPUT(" ");

OUTPUT("Please input the number of tabu search iterations");
OUTPUT("you would like to step through.");

INPUT(iters);

17

ASK outstrm WriteLn;
str :="# Iters = " + INTTOSTR(iters);
ASK outstrm WriteString(str); ASK outstrm WriteLn;

OUTPUT(" ");

OUTPUT("Please input the number of days for which you would like to ");
OUTPUT("test random scenarios.");

INPUT(numdays);

OUTPUT(" ");

OUTPUT("Do you want random wind effects on every day");
OUTPUT(" - 1=YES");

OUTPUT(" - 0=NO");

INPUT(windques);

IF windques = 1

OUTPUT(" ");

OUTPUT("Input seed number to use for wind mag");
INPUT(magseed);

OUTPUT(" "), :
OUTPUT("Input seed number to use for wind dir");
INPUT(dirseed); '

ASK outstrm WriteLn;
str := "magseed="+INTTOSTR(magseed)+" dirseed="+INTTOSTR(dirseed);

ASK outstrm WriteString(str); ASK outstrm WriteLn;

NEW(randObj1); ASK randObj1 SetSeed(FetchSeed(magseed));
NEW(randObj2); ASK randObj2 SetSeed(FetchSeed(dirseed));

OUTPUT(" ");

OUTPUT("Please input the range of DEGREES you would like to test");
OUTPUT(" - Put lowest number first");

OUTPUT(" - If testing winds around the 0 deg direction,");

OUTPUT(" Make sure lowdeg is negative");

INPUT(lowdeg);

INPUT (highdeg);

OUTPUT(" "),
OUTPUT("Please input the range of MAGNITUDE you would like to test");

OUTPUT(" - Put lowest number first");
INPUT(lowmag);
INPUT(highmag);

ASK outstrm WriteLn;

str :="RANDOM WINDS: degrees " + INTTOSTR(lowdeg) + " " + INTTOSTR(highdeg)
+ " magnitude " + INTTOSTR(lowmag) + " " + INTTOSTR(highmag);

ASK outstrm WriteString(str); ASK outstrm WriteLn;
ELSE
OUTPUT(" ");

OUTPUT("Please input the magnitude of the wind vector (in mi/hr)");
INPUT(wmag);

OUTPUT(" ");

OUTPUT("Please input the direction that the wind is blowing FROM in degrees");

OUTPUT(" (due EAST is 0 degs, due NORTH is 90 degs, and so on)");
INPUT(wdir);

wdir := pi/ 180.0 * wdir;
END IF;

OUTPUT(" ");

OUTPUT("Do you want to input the initial tour?");
OUTPUT(" - 1 = YES");

OUTPUT(" -0=NO");

INPUT(startques);

IF startques = 1
OU'IVPUT(II vl);
OUTPUT("Input the file from which to read the initial tour");
INPUT(startfile);

{open problem file}
NEW!(instrm?2);

filein := startfile + ".DAT";
ASK instrm2 Open(filein, Input);

{initialize array of node id's}
NEW(m, 0..numnodes);

FORj:=1TOnc
m{j] :=0;
END FOR;

ASK instrm2 ReadInt(nvInit);

IF nvInit <> nv
OUTPUT("nv and # vehicles in initial tour do not agree -- Break program!!");
END IF;

FOR 1 := 0 TO numnodes
ASK instrm2 ReadInt(m[i]); {m contains the id at position i}
END FOR;

ASK instrm2 Close; DISPOSE(instrm2);

OUTPUT(" ");

OUTPUT("Do you want to input an initialization set?"),
OUTPUT(" - 1=YES");

OUTPUT(" -0=NO");

INPUT (initques);

IF initques = 0
totaldays := numdays;

19

nlnitdays := 0;
startday := 1;

ELSE

OUTPUT(" n);
OUTPUT("Input the name of the file of tour arrays");
INPUT(filetour);

OUTPUT(H n);
OUTPUT("Input the name of the file of the route frequency matrix");

INPUT(filefreq);
NEW(instrm3); NEW(instrm4);

filetour := filetour + ".DAT";
ASK instrm3 Open(filetour, Input);

filefreq := filefreq + ".DAT";
ASK instrm4 Open(filefreq, Input);

{Read in the number of tours in the initialization set}
ASK instrm3 ReadInt(nInitdays);

totaldays := nlnitdays + numdays;

startday := nInitdays + 1;

NEW!(tourChoice, 1..totaldays, 0..numnodes);
{Read in the initialization set}
FOR i := 1 TO nInitdays
NEW(oldtour, 0..numnodes);
FOR j := 0 TO numnodes

NEW (node);
oldtour(j] := node;

ASK instrm3 ReadInt(oldtour[j].id);

{set node types}
IF (oldtour[j].id = 0) OR (oldtour[j].id > nc)
oldtour[j].type :=2; {2=veh node}
ELSE
oldtour[j]l.type := 1; {1=cust node}
ENDIF;

oldtour[j].ea := tour[oldtour[j].id].ea;
oldtour([j].la := tour{oldtour[j].id].la;
oldtour[j].dep := tour[oldtour([j].id].dep;
oldtour{j].arr := tour{oldtour[j].id].arr;

tourChoice[i][j] := CLONE(oldtour[j]);

END FOR;
END FOR;

J-10

OUTPUT("aa");

{Read in the route frequency matrix of the initialization set}
NEW(routefreq, 0..numnodes, 0..numnodes);
FOR i := 0 TO numnodes
FOR j := 0 TO numnodes
ASK instrm4 ReadInt(routefreq[i][j]);
END FOR;
END FOR;

{output route frequency matrix }
where := "ROUTE FREQUENCY MATRIX, History included ";
timeToFile(where, outstrm, routefreq, numnodes);

ASK instrm3 Close; ASK instrm4 Close;
DISPOSE(instrm3); DISPOSE(instrm4);

END IF; {initques}

END IF;

OUTPUT(" "),

OUTPUT("Do you want random THREAT effects on every day");
OUTPUT(" - 1 = YES");

OUTPUT(" - 0=NO");

INPUT (riskques);

OUTPUT(" ");
OUTPUT("Input the factor to convert coverage to an integer value");
INPUT(PSFCT);

IF riskques = 1

OUTPUT(" ||);
OUTPUT("Input seed number to use for random COVERAGES");
INPUT(cvrseed);

ASK outstrm WriteLn;
str ;= "RANDOM THREATS: cvrseed="+INTTOSTR(cvrseed);
ASK outstrm WriteString(str); ASK outstrm WriteLn;

NEW (randObj5); ASK randObj5 SetSeed(FetchSeed(cvrseed));
END IF;
OUTPUT(file);
OUTPUT(filein);
OUTPUT(fileout);
OUTPUT((fileout2);
{*} {denotes a parameter setting}

{* nv := 10; *}
{* windconv := 10.0; *}

J-11

* ¥

*

{
{
{

{*}
{*}
{*}
{*}
{*}
{*}
{*}

{*}
{*}

iters := 1000; *}
TWPEN := 10.0;
gamma :=0;

INCREASE :=1.2;
DECREASE :=0.9;
CYMAX :=50;
HTSIZE := 131073;
ZRANGE := 1009;
minTL :=5;
maxTL := 2000;

DEPTH := nc+nv-1;
tabuLen := MINOF(30, nc+nv-1);
{**** LOOP OF SCENARIOS ***}

NEW(windmag, startday..totaldays);
NEW(winddir, startday..totaldays);
NEW(duration, startday..totaldays);

NEW (psurvDay, startday..totaldays, 0..nc);
NEW(scores, 1..totaldays);

NEW(besttype, 1..totaldays);

IF initques = 1

FOR i := 1 TO ninitdays

{***}

besttype[i] := 1; {since only feasible tours used}
END FOR;
END IF;

IF initques = 0
NEW(tourChoice, 1..numdays, 0..numnodes);
NEW (routefreq, 0..numnodes, 0..numnodes);

{initialize matrix of route frequency counts}
FOR i := 0 TO numnodes
FOR j := 0 TO numnodes
routefreq[i][j] := O;
END FOR;
END FOR;
END IF;

NEW(startTour); {find initial tour and/or initial penalties}

FOR day := startday TO totaldays {rAk ok ok ok ok }

ASK outstrm WriteLn;
str:="DAY: " + INTTOSTR(day);
ASK outstrm WriteString(str); ASK outstrm WriteLn;

IF windques = 1
windmag[day] := ASK randObj! UniformInt(lowmag, highmag);

J-12

wmag := windmag[day];
winddir[day] := ASK randObj2 UniformInt(lowdeg, highdeg);
wdir := FLOAT(winddir[day]);
wdir := pi / 180.0 * wdir;
END IF;

ASK outstrm WriteLn;
str :="WIND: magnitude ="+INTTOSTR(wmag)+" direction(rads) = " + REALTOSTR(wdir);
ASK outstrm WriteString(str); ASK outstrm WriteLn; ASK outstrm WriteLn;

IF riskques = 1

{randomly adjust the prob of survival at the target nodes}
FORi:=1TOnc
riskadj := ASK randObj3 UniformReal(-1.0, 1.0);
IF riskadj < -0.333

riskadj :=-1.0;
ELSIF riskadj > 0.333
riskadj := 1.0;
ELSE
riskadj := 0.0;
END IF;
psurvDay[day][i] := psurv[i] + riskadj / 10.0;
END FOR;
ELSE
psurvDay[day] := psurv;
END IF;

OUTPUT("aaa");
IF servques =1
FORi:=1TOnc
loiter := ASK randObj3 UniformReal(0.0, 1.0);
IF loiter <= ploiter
s[i] := ASK randObj4 Uniformint(slo[i}, shi[i]);
ELSE
s[i] := slo[i];
END IF;
END FOR;
END IF;
ASK timeMatrix timeMatrix(nc, numnodes, gamma, as, wmag, wdir, windconv,
coord, s, dist, time, outstrm, timeprint);
OUTPUT("b");

IF day = startday {must find a true initial tour}

IF startques = 1 {read in initia] tour}

J-13

NEW(inittour, 0..numnodes);

{Reorder tour, currently in numerical order, by the initial tour
and place temporarily into inittour}

FOR i := 0 TO numnodes
inittour[i] := CLONE(tour[m{[i}]);
END FOR;

{Copy inittour into tour}

FOR i := 0 TO numnodes
tour[i] := CLONE(inittourfi]);

END FOR;

DISPOSE(nittour);

tourSched(1, nc, numnodes, tour, time, tourLen, outstrm);
startTime := SystemTime();

ELSE

ASK startTour startTour(nv, nc, time, tour, tourLen,
totPenalty, tourhv, startTime, m, outstrm);

END IF;

DISPOSE(m);
ELSE

IF initques = 0

{lose old tour, use previous days Choice}
DISPOSE(tour);
NEW (tour, 0.. numnodes);
{use the best result of the previous day}
FOR i := 0 TO numnodes
tour[i] := CLONE(tourChoice[day-1][i]);
END FOR;

ELSE

OUTPUT("c");
{use the robust tour, But it may not have TW info with it}
NEW(inittour, 0..numnodes);

{So reorder the tour of the previous day into inittour from the robust tour}

FOR i := 0 TO numnodes
inittour[i] := CLONE(tourftourChoice[robustChoice][i].id]);
END FOR;

{Copy inittour into tour}
FOR i := 0 TO numnodes
tour[i] := CLONE(inittour[i]);

J-14

END FOR;

DISPOSE(inittour);
END IF;

{Compute initial schedule, return tour's total travel + wait time}
tourSched(1, nc, numnodes, tour, time, tourLen, outstrm);

startTime := SystemTime();

END IF;
OUTPUT("d"™);
IF startprint
{* ASK outstrm WriteString("startTour complete"); ASK outstrm WriteLn;
qcktourFile(outstrm, tour, numnodes); *}
where := "startTour complete"”;
twCvrgServToFile(where, outstrm, tour, nc, numnodes, tourLen,
windconv, loadprint, psurv, s, slo);

END IF,

ASK startTour startUA Vbest(numnodes, tvl, tourLen, tour, TWPEN,
psurvDay[day], totPenalty, penTrav, tourCost,
tourPen, bfiter, bfCost, bfTT, bfnv, bestiter,
bestCost, bestTT, bestnv, bfTime,
bestTime, cvrg, bfCvrg, bestCvrg,

_ bestTour, bfTour);
OUTPUT("e");
NEW(rts);
{conduct RTS}

ASK rts search(psurvDay[day], PSFCT,

TWPEN, INCREASE, DECREASE, HTSIZE, CYMAX, ZRANGE, DEPTH,

minTL, maxTL, tabuLen, iters, nc, numnodes,
outstrm, outstrm?2, tourPen, time, stepprint,
moveprint, cycleprint, tourCost, penTrav, totPenalty, tvl,
bfCost, bfTT, bfnv, bfiter, bestCost, bestTT, bestnv,
bestTime, bfTime, bestiter, numfeas,
bfCvrg, bestCvrg, cvrg,
tour, bestTour, bfTour);
DISPOSE(rts);

stopTime := SystemTime();
IF bfiter > -1

{save the best feasible tour found}

FOR i := 0 TO numnodes
tourChoice[day][i] := CLONE(bfTour[i});

END FOR;

{output the results}

where := "DAY " + INTTOSTR(day) + " BEST FEASIBLE TOUR";

twCvrgServToFile(where, outstrm, bfTour, nc, numnodes, bfCost,
factor, loadprint, psurvDay[day], s, slo);

duration[day] := bfTime - startTime;
besttype[day] := 1;

J-15

ASK outstrm WriteString("# vehicles used =");
ASK outstrm WriteInt(bfnv, 2); ASK outstrm WriteLn;

ASK outstrm WriteString("'Best Feasible solution found after ");

ASK outstrm WriteString(INTTOSTR (bfTime-startTime)+" secs");

ASK outstrm WriteLn;

ASK outstrm WriteString("on Iteration: "+ INTTOSTR(bfiter));

ASK outstrm WriteLn;

ASK outstrm WriteString("with travel time = "+ INTTOSTR(bfTT));

ASK outstrm WriteLn;

ASK outstrm WriteLn;

ASK outstrm WriteString("& Expected coverage = "+REALTOSTR(bfCvrg));
ASK outstrm WriteLn;

{update the route frequency matrix }
FOR i := 0 TO numnodes-1

j := bfTourl[i].id;

k := bfTour[i+1].id;

routefreq[j](k] := routefreq[jl[k] + 1;
END FOR;

OUTPUT("f");
ELSE

{save the best tour found}
FOR i := 0 TO numnodes

tourChoice[day][i] := CLONE(bestTourfi]);
END FOR;

{output the results}
where = "DAY " + INTTOSTR(day)
+" Search complete: BEST TOUR (NOT FEASIBLE)";
twCvrgServToFile(where, outstrm, bestTour, nc, numnodes, bestCost,
windconv, loadprint, psurvDay[day], s, slo);

duration[day] := bestTime - startTime;
besttype[day] := 0;

ASK outstrm WriteString("# vehicles used = ");
ASK outstrm WriteInt(bestnv, 2); ASK outstrm WriteLn;
ASK outstrm WriteString("Best solution found after ");
ASK outstrm WriteString(INTTOSTR (bestTime-startTime)+" secs");
ASK outstrm WriteLn;
ASK outstrm WriteString("on Iteration: "+ INTTOSTR(bestiter));
ASK outstrm WriteLn;
ASK outstrm WriteString("with travel time = "+ INTTOSTR(bestTT));
ASK outstrm WriteLn;
ASK outstrm WriteLn;
ASK outstrm WriteString("& Expected coverage = "+REALTOSTR (bestCvrg));
ASK outstrm WriteLn;
{** DONT UPDATE FREQ MATRIX WITH BAD TOUR
{update the route frequency matrix}
FOR i := 0 TO numnodes-1
j = bestTour[i].id;

J-16

****}

k := bestTour[i+1].id;
routefreq[j][k] := routefreg[j][k] + 1;
END FOR;

END IF;

{Output service time difference}
servSum := 0.0;

FORi:=1TOnc
servSum := servSum + FLOAT(s[i] - slo[i]);
END FOR;

servSum := servSum / windconv;

str := "Sum of increase over min service times = "+ REALTOSTR(servSum);
ASK outstrm WriteLn; ASK outstrm WriteString(str);

ASK outstrm WriteLn;

{If we're in the test set, find the Robust Tour every day}
IF initques = 1

{find most robust tour chosen}

robustChoice := 1;

dayscore := 0;

maxdayscore := (;

sumScores :=0;

FOR rday := 1 TO day
FOR i := 0 TO numnodes-1

dayscore := dayscore
+ routefreq[tourChoice[rday][i].id}[tourChoice[rday][i+1].id];
END FOR;
scores[rday] := dayscore;
sumScores := sumScores + dayscore;

{choose the tour with the most robust routes}
IF dayscore > maxdayscore

robustChoice := rday;

bestscore := dayscore;

maxdayscore := dayscore;

ELSIF dayscore = maxdayscore
{choose feasible tours over nonfeas, or choose the most recent}
IF besttype[rday] >= besttype[robustChoice]
robustChoice := rday;
bestscore := dayscore;
END IF;
END IF;
dayscore := 0;

END FOR; {rday}

str := "Day = "+INTTOSTR(day)+" and Robust Choice ="

I-17

+INTTOSTR (robustChoice);
ASK outstrm WriteLn; ASK outstrm WriteString(str);
ASK outstrm WriteLn;

END IF;

{output coords to file so we can scatter plot tours}
where := "Day = " + INTTOSTR(day);
LatLongToFile(where, outstrm2, tourChoice[day], nc, numnodes, coord);

DISPOSE(bfTour),
DISPOSE(bestTour);
DISPOSE(tourPen);

END FOR;
{**** END OF DAY LOQP ****}

OUTPUT("k");

{ output route frequency matrix }
where := "SCENARIO LOOP COMPLETE, Frequency of Routes Chosen: ";

timeToFile(where, outstrm, routefreq, numnodes);

{find most robust tour chosen}
dayscore = 0;

maxdayscore := 0;

sumScores := 0;

robustChoice := 1;

FOR day := 1 TO totaldays

FOR i := 0 TO numnodes-1
dayscore := dayscore
+ routefreqtourChoice[day][i].id][tourChoice[day][i+1].id];
END FOR;
scores[day] := dayscore;
sumScores := sumScores + dayscore;

{choose the tour with the most robust routes}
IF dayscore > maxdayscore

robustChoice := day;

bestscore := dayscore;

maxdayscore := dayscore;

ELSIF dayscore = maxdayscore

{choose feasible tours over nonfeas, or choose the most recent}
IF besttype[day] >= besttype[robustChoice]

robustChoice := day;

bestscore := dayscore;
END IF;

END IF;

dayscore := 0;

J-18

END FOR; {DAY LOOP}

OUTPUT("1");
{output robust tour}
tourSched(1, nc, numnodes, tourChoice[robustChoice], time, tourLen, outstrm);
countVeh(numnodes, tourChoice[robustChoice], nvu);
expCvrg(numnodes, psurv, tourChoice[robustChoice], cvrg);

where := "MOST ROBUST TOUR: day = " + INTTOSTR(robustChoice);
twCvrgServToFile(where, outstrm, tourChoice[robustChoice], nc, numnodes,
tourLen, windconv, loadprint, psurvDay[totaldays], s, slo);

ASK outstrm WriteString("# vehicles used = ");
ASK outstrm WriteInt(nvu, 2); ASK outstrm WriteLn;
ASK outstrm WriteString("With robustness score "+ INTTOSTR (bestscore));
ASK outstrm WriteLn; ASK outstrm WriteLn;
OUTPUT("2"),
ASK outstrm WriteString("MEAN robustness score "
+ INTTOSTR(sumScores DIV totaldays));
ASK outstrm WriteLn; ASK outstrm WriteLn;

{ Output Robustness scores}
ASK outstrm WriteLn;
ASK outstrm WriteString("Robustness scores: ");
FOR i := 1 TO totaldays
ASK outstrm Writelnt(i, 3);
ASK outstrm Writelnt(scores([i], 5);
ASK outstrm WriteLn;
END FOR;

{Output Robust tour for future Initial tour}

ASK outlnit WriteInt(nv, 3); ASK outInit WriteLn;

FOR i:= 0 TO numnodes
ASK outlnit WriteInt(tourChoice[robustChoice][i].id, 5);
ASK outlnit WriteLn;

END FOR;

ASK outstrm Close;
ASK outlnit Close;
ASK outstrm?2 Close;

DISPOSE(startTour);
DISPOSE(timeMatrix);
DISPOSE(outstrm);
DISPOSE(outlInit);
DISPOSE(outstrm?2);
DISPOSE(s);
DISPOSE(time);
DISPOSE(coord);

IF windques = 1

DISPOSE(randObj1); DISPOSE(randObj2);
END IF;

IF servques = 1

DISPOSE(randObj3);‘ DISPOSE(randObj4);

J-19

END IF;

END MODULE; {MAIN}

J-20

Appendix K: Literature Review

This review concentrates on contemporary works relevant to the class of general
vehicle routing problems (GVRP) approached within this thesis and works related to our
embedded optimization approach. It is separated into three sections, although some
works contribute to more than section. Section K.1 provides a summary of the literature
relevant to an understanding of the GVRP and the attacked subset. Section K.2 follows
with a survey of works describing tabu search (TS) and some relevant applications of this
powerful meta-heuristic. Section K.3 reviews literature exploring the utility and
relationships important to the embedded optimization of the TS heuristic within a
simulation or other problem solving form. Section K.4 describes the resources used by
the author as references for CACI’s MODSIM programming lanquage. A number of
MODSIM objects created by the researcher form a fundamental part of this study.

Section K.5 closes with a few conclusions drawn from the literature review.

K.1. The General Vehicle Routing Problem

In their 1997 survey article of commercial vehicle routing software, Hall and
Partyka describe the vehicle routing problem (VRP) as an interdependent collection of
four problems. One is the calculation of distances between stops, two is the partitioning
of the region into districts of feasible routes, three is usually a traveling salesman problem
(TSP) or a TSP with time window constraints (TSPTW), and four is the subsequent crew
assignment (Hall and Partyka 1997). Within the collection of articles entitled Vehicle
Routing: Method and Studies (Golden and Assad 1988), Assad places the general

characteristics of routing problems into six categories: nature of demand, information on

demand, vehicle fleet, crew requirements, scheduling requirements, and data
requirements. Both descriptions illustrate the need for any routing system to incorporate
elements of embedded optimization. While these descriptions capture the industrial
application of the VRP, they fall short for most military applications as they do not
include a variance in the nature of the operational environment.

In his thesis on unmanned aerial vehicle routing, Sisson created a formulation of a
multiple vehicle TSPTW (mTSPTW) that incorporated the probabilities of vehicle
attrition due to hostile forces into the objective function (Sisson 1997). No civilian
approach considers the possibility of attrition due to a hostile environment. Although the
commercial market is competitive, combative behavior remains illegal. Sisson also
researched the performance of unmanned aerial vehicles the important influence of wind.
Sisson’s work is a critical stepping stone for this thesis.

As Hall and Partyka noted, an mTSPTW often comprises a critical portion of any
larger VRP. To better understand the relationship of problems within the GVRP family, a
number of works were consulted. The Traveling Salesman Problem holds a prominent
standing amongst the literature available. In Chapter 2 of that collection, R. S. Garfinkel
quickly summarizes the TSP’s “seductive” qualities and provides five distinctly separate
applications. Garfinkel also provides some simple transformations to the TSP, including
the introduction of multiple salesman (referred to previously as multiple vehicle) and the
relaxation allowing the repetition of cities. Garfinkel continues through the
generalization of the TSP as an assignment problem and a minimum spanning tree, as
well as providing a standard linear programming formulation. Chapter 12 of The

Traveling Salesman Problem, written by N. Christofides, is entitled “Vehicle routing.”

K-2

Christofides provides three formulations, some optimization algorithms, and some
heuristics. Nemhauser and Wolsey’s text, Integer and Combinatorial Optimization,
provided an example meant for students of the subject after providing a integer
programming formulation of the issues involved.

A more current survey of approaches to the TSP and VRP was accomplished in
1992 by Gilbert Laporte. In the first of two invited reviews for the European Journal of
Operational Research, Laporte surveys the main exact and heuristic algorithms for the
TSP. The seéond article performs the same function for the VRP. After introducing tabu
search, Laporte states the “computational results indicate that the proposed heuristic may
be one of the best ever developed for the VRP” (Laporte 1992b).

Although the TSP is classified as NP-hard (Glover 1997; Lenstra 1985), special
cases exist that can be solved in polynomial time (Glover 1997). In their 1997 article,
Glover and Punnen identify new solvable cases of the TSP. A similar work accomplished
by the Optimization Group at the Technical University of Graz surveys known efficiently
solved cases. This thesis suggests such cases be sought by any VRP software before a
more general algorithm, such as tabu search, is applied.

Finally, Carlton’s 1995 dissertation is a critical resource. Carlton surveys the
proposed classification schemes of the problems within the GVRP class. He concludes
that no prior system gives “a direct approach to GVRP classification to enhance the
understanding and exploitation of the relationships among the GVRP problem types”
(Carlton 1995). He then proposes a hierarchical taxonomy that classifies GVRP types

along those lines. In brief, Carlton first summarizes the GVRP into three “floors.” Each

floor includes the following cases and their possible combinations (Carlton’s notation is
slightly altered for more simplicity without loss of information):

1. SV: Single vehicle.

2. MVH: Multiple homogenous vehicles.

3. M\-’—H: Multiple non-homogenous vehicles

4. SD: Single depot.

5. MD: Multiple depots.

6. TW: Time window constraints present.

7. RL: Route length constraints present.

The first floor is the family of TSP problems. With the addition of vehicle capacity
constraints, one transitions to the second floor of VRP problems. Precedence constraints
cause a transition to third floor of pickup and delivery problems (PDP). As a tangible
illustration of his success, this research employs Carlton’s taxonomy to enact the object-
oriented concepts of inheritance and polymorphism between MODSIM optimization
objects.

The MODSIM objects accompanying this thesis correspond to the TSP, the
mTSP, the mTSPTW, and the VRPTW. Carlton concentrates much his efforts upon the
TSPTW and mTSPTW. Of course, a simple transformation creates TSPTW from the
mTSPTW. From his literature review, Carlton concludes the TSPTW is not as “well
studied” as the TSP and VRP; “it stands in the gap” (Carlton 1995). Carlton’s focus on
the TSPTW appears well warranted given the previous synopsis of “real-world”

applications of the VRP given by Hall and Partyka. This research uses an adaptation of

Carlton’s C programming language code for the VRPTW as a first step in the creation of
the MODSIM objects.

Jaillet and Odoni (1988) demonstrate the added complexity of a probabilistic TSP
(PTSP) over the TSP. For even a simple heuristic like the nearest-neighbor, they find the
computational effort increases by O(nz) over the deterministic version. Furthermore, their
formulation of the PTSP is simple in comparison to the UAV problem since they only
consider the probability that customers are not present. Jaillet and Odoni sought the
similar objective of “well-behaved” or robust routes, but all of their stochastic
programming methods were bound to smaller numbers of customers by the necessary

computational effort.

K.2. Tabu Search and Applications Related to the GVRP

As mentioned previously, Laporte’s survey of VRP algorithms gave highest marks
to tabu search (TS). He based this conclusion upon his own version of TS created with
Gendreau and Hertz. In their 1996 article, Kervahut, Garcia, and Rousseau compare the
performance of their TS heuristic to that of five other documented heuristics within the
well known Solomon datasets. Their TS employed a tabu list of fixed length and
infeasible regions were not accessible to the search. Yet, the quality of solutions reached
by their version of TS bests all other considered heuristics except one known as
GIDEON. A statistical test failed to reject the hypothesis that the tested TS heuristic and
GIDEON are equally effective (Kervahut 1996). From the literature, it is apparent TS is a

powerful heuristic within the GVRP class.

K-5

Given this justification for its use, an investigation of TS becomes imperative.
Fred Glover introduced TS in 1986 and his writings form a necessary portion of any
review regarding this heuristic. His 1990 article, “Tabu Search: A Tutorial,” seemed an
obvious place to start. Here, Glover provides guidelines in building a TS heuristic.
Guidelines include suggestions for the length of tabu lists, the number of attributes
considered, the comparison of attributes, the balancing of diversification and
intensification efforts to the aspiration criteria, and the powers of target analysis.

As an application of artificial intelligence, target analysis is the application of
empirical results from classes of problems to the problems attempted by your own
heuristic. Glover strongly emphasizes to use of target analysis to improve move
evaluations as his fifth guideline (Glover 1990a). His sixth guideline suggests the use of
a frequency-derived (the frequency of revisited solutions) penalty to encourage
diversification, with a possible marrying to restarting the search (Glover 1990a).

Glover had stated one year prior to the “tutorial” article in his “Tabu Search-Part
1” publication, that TS was “still in its infancy” (Glover 1989). The tutorial mostly
provided a review of “where TS is, and where it is going” with Glover’s guidelines,
predictions, and other theoretical discussions for the meta-heuristic. Many of the
guidelines were the obvious result of Glover’s experience in TS application. Similarly,
his predictions were educated guesses of things to come. Glover’s “Tabu Search-Part I”
and Tabu Search-Part II” are more heavily cited than the tutorial article, as they provide a
more straight-forward and step-by-step presentation of T'S (Glover 1989; 1990b).

With their reactive tabu search (RTS), Battiti and Tecchiolli provided the

important next step suggested by Glover’s fifth guideline. Battiti and Tecchiolli present

K-6

the reactive tabu search in their 1994 article and show it to be a far more robust procedure
than the fixed and strict tabu search heuristics. To illustrate the technique’s abilities, the
authors apply it to the optimization of a quadratic assignment problem and a complex
sinusoidal function. The applications are both successful and the authors are kind enough
to provide detailed pseudocode. (Battiti 1994)

When one considers that the TS heuristics given by Laporte and Kervahut fall in
the category of fixed TS and the RTS achieves significant jumps in computational
efficiency without applying Glover’s time consuming target analysis preprocessing, it
beccomes apparent that Battiti and Tecchiolli have ushered in a powerful improvement to
the application of TS. In his 1996 article, Battiti states that “parameter tuning” and
“search confinement” are “potential drawbacks to simple implementations” of tabu
search, genetic algorithms, and simulated annealing. He then explains that the reactive
tabu search effectively overcomes these drawbacks. He classifies the reactive TS as a
deterministic algorithm. However, it is quickly made stochastic through random tie
breaking and a random “escape trajectory.” (Battiti 1996)

Battiti shares the important find that the order of operations required for memory
usage per iteration is O(1) or essentially a constant that is independent of the number of
iterations performed. He also claims hashing techniques are available that need only a
few bytes'of memory and result in small “collision” probabilities. He does not support
the claim, but he states small collision probabilities do not have statistically significant
effects on the reactive TS heuristic. (Battiti 1996)

With a four 0/1 bit example, Battiti then illustrates the properties of

reactive TS. In the example, the tabu list length takes progressively more iterations to

increase after the previous increment, and the distance of the search from the optimal
“attractor” varies quickly and increases quickly to the maximum range. These illustrations
are convincing evidence of the robust balance of intensification and diversification
achieved with the reactive TS heuristic. (Battiti 1996)

Once again, Carlton’s dissertation is helpful. He provides a two-level open
hashing structure. This structure allows the TS to “efficiently store and accurately
identify solutions in order to determine whether a particular solution has been visited
previously during the search” (Carlton 1995). It minimizes the probability of two non-
identical tours being incorrectly determined as identical (Carlton 1995).

It should be noted that Carlton’s RTS is deterministic, while the RTS proposed by
Battiti and Tecchiolli is stochastic. Carlton’s RTS begins from a deterministic starting
solution and uses deterministic escape routines, while the heuristic of Battiti and
Tecchiolli begins from a stochastic starting solution and uses stochastic escape routines
(Carlton 1995).

Although two and a half years have passed since the introduction of RTS, it
remains at the forefront of TS heuristics proposed. A contrasting example is provided by
Rochat and Taillard. In their 1995 article, the authors propose a technique to overcome
the weaknesses of previous local searches and tabu search. The first weakness is the
probability of becoming trapped in local optimum, the second is the large computational
effort. The approach has two phases. The first begins with an initialization set generated
from “good” heuristic solutions. The second phase seeks to extract good tours from the

initial set (or from any previous tours after the 2™ iteration) and then seeks to improve

this set. The improvement often arises from a combination of the previous “good” tours.

How these “good” solutions are achieved is not specified and appears to be a major
weakness of the approach.

As it does with Glover’s target analysis, RTS seems to obviate the need for any
esoteric pre-processing of the sort used by Rochat and Taillard. These pre-processing
techniques report impressive results, but they require a high computational cost and
would be difficult to implement by non-TS experts working in the field vehicle routing,
civilian and otherwise. Carlton’s work confirms the robust abilities of RTS. Starting
with arbitrarily chosen initial solutions, his RTS consistently achieved feasible solutions
within one percent of the optimal solution when applied to the Solomon data set. He then
found feasible starting tours produced better overall solutions using less computational
effort. (Carlton 1995)

Recent improvements to TS include the addition of compound moves to the
neighborhood search and parallel tabu searches that share information. The results of
Rego and Roucairol in their 1996 article suggest Carlton’s RTS could be improved with
these techniques. Glover’s 1995 Tabu Search Fundamentals and Uses is a useful
reference and also suggests the use of compound moves and parallel processing as

avenues of improvement.

K.3. Embedded Optimization

Despite the wealth of real-world application, examples of embedded optimization
in the literature are rare (Hall 1997). Kassou and Pecuchet (1994) apply embedded
optimization to job shop scheduling, where their object-oriented programming application

uses a sophisticated optimization framework with an extensive user interface. Using the

K-9

optimization routines within a simulation to provide possible scheduling scenarios, the
authors arrive at “guided rules” for choosing one of the three optimization techniques
available and how to guide the search. Kassou and Pecuchet (1994) introduce a feedback
loop between the optimization search and the simulation processes, but the nature of the
information shared is ambiguously defined and the user must maintain interface in the
loop (even to the point of being the “Generator of rules”).

Brown and Graves (1981) furnish an example that does not adhere to our
definition of embedded optimization, when they use optimization routines to replace
time-consuming manual operations for the routing decisions of a nation-wide fleet of
petroleum tank trucks. Whereas Brown and Graves refer to their structure as “embedded
optimization,” their work better exemplifies an “application” of optimization routines
where none were used previously, and not the embedding of optimization routines as an

event within a simulation.

Most current software fails to move beyond the constraint of user-defined “what-
if” situations (Hall and Partyka 1997). As a counter-example, Glover, Laguna, and Kelly
(1996) provide a good example of embedded optimization in a simulation that calls upon
Glover’s scatter search (1977) and tabu search heuristics to find near-optimal solutions.

A neural-net “accelerator” may be used to cull out input combinations that the neural net

learns will generate poor solution quality.

K.4. MODSIM

CACI’s MODSIM programming language is an object-oriented language that

lends itself to this approach. Much more than a traditional data structure or subroutine, a

K-10

MODSIM object can contain its own fields and routines, called methods. Marti’s text,
not yet published, and CACI’s MODSIM III Tutorial and User’s Guide were helpful

resources in the coding of the RTS objects.

K.5. Conclusions

Battiti’s reactive tabu search and the version created by Carlton are powerful
heuristics for the VRPTW. Given the many directions one can take in GVRP research,
object-oriented programming is a necessary coding methodology. Stochastic versions of
GVRP problems significantly increase the complexity and have been largely avoided.
Embedded optimization poses a powerful remedy for this untapped area. Although a
large body of research and software addresses the GVRP, considerable work remains,

especially for military applications.

K-11

Form Approved
REPORT DOCUMENTATION PAGE OMBE No. 09040188

Public reporting burden for this collection of information 1s estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503,

1. AGENCY USE ONLY (Leave blank) |2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
March 1998 Master's Thesis
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Embedding a Reactive Tabu Search Heuristic
in Unmanned Aerial Vehicle Simulations

6. AUTHOR(S)
Capt. Joel L. Ryan, USAF

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
AFIT/ENS REPORT NUMBER
2950 P Street

AFIT/GOR/ENS/98M-21

WPAFB OH 45433-7765

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) =] 10. SPONSORING/MONITORING
USAF UAV BATTLELAB AGENCY REPORT NUMBER
ATTN: Maj Mark O'Hair
203 W. D Ave., Suite 406

Eglin AFB FL 32542-6867

11. SUPPLEMENTARY NOTES
Advisor: Lt. Col. T. Glenn Bailey

12a. DISTRIBUTION AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE
Approved for public release; distribution unlimited.

13. ABSTRACT {Maximum 200 words)
We apply a Reactive.Tabu Search (RTS) heuristic within a discrete-event simulation to solve routing problems for

Unmanned Aerial Vehicles (UAVs). Our formulation represents this problem as a multiple Traveling Salesman Problem
with time windows (mTSPTW), with the objective of attaining a specified level of target coverage using a minimum number
of vehicles. Incorporating weather and probability of UAV survival at each target as random inputs, the RTS heuristic in the
simulation searches for the best solution in each realization of the problem scenario in order to identify those routes that are
robust to variations in weather, threat, or target service times. , '

Generalizing this approach as Embedded Optimization (EO), we define EO as a characteristic of a discrete-event
simulation model that contains optimization or heuristic procedures that can affect the state of the system. The RTS
algorithm in the UAV simulation demonstrates the utility of EO by determining the necessary fleet size for an operationally
representative scenario. From our observation of robust routes, we suggest a methodology for using robust tours as initial
solutions in subsequent replications. We present an object-oriented implementation of this approach using MODSIM 11, and
show how mapping object inheritance to the GVRP hierarchy allows for minimal adjustments from previously written objects
when creating new types. Finally, we use EO to conduct an analysis of fleet size requirements within an operationally

representative scenario

14. SUBJECT TERMS 15. NUMBER OF PAGES
Embedded Optimization; Tabu Search; Heuristics; Simulation; Optimization; Routing; 214
Unmanned Aerial Vehicles 16. PRICE CODE
17. SECURITY CLASSIFICATION | 18. SECURITY CLASSIFICATION | 19. SECURITY CLASSIFICATION {20. LIMITATION OF ABSTRACT]
OF REPORT OF THIS PAGE OF ABSTRACT
Unclassified Unclassified Unclassified UL

Standard Form 2983(Rev. 2-89) {(EG)
Prescribed by ANSI Std. 239.18
Designed using Perform Pro, WHS/DIOR, Oct 94

	Embedding a Reactive Tabu Search Heuristic in Unmanned Aerial Vehicle Simulations
	Recommended Citation

	tmp.1683917802.pdf.D6qRZ

