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ABSTRACT

The new Global Engégement vision places increased emphasis on the Air Force’s
ability to control and exploit space. A military spaceplane combining reliable access to
space, high operational tempos, and multi-mission capabilities is in conceptual stages of
development. Virtual environment technology provides an opportunity to investigate
system requirements and unconventional interface paradigms for this unique vehicle.

A virtual environment architecture and design based on support for a rapid
prototyping development process, separation of concerns, and user interface development
is presented. The rapid prototyping process allowed management of changing
requirements via an evolutionary approach to implementation. Separation of the
activities performed by the virtual environment into classes enabled high performance
through computational distribution, prevented modifications from rippling through the
system and impeding development, and promoted reuse of computation and geometric
models. A technique was developed to reduce the flimmer induced by the large spatial
extent of the virtual environment.

The architecture succeeded in providing a flexible framework for the AFIT
Virtual Spaceplane. The Virtual Spaceplane is a large scale virtual environment within
which an immersed user commands a military spaceplane through atmospheric and

orbital regimes to complete several simulated missions via an unconventional virtual

interface.
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ARCHITECTURE, DESIGN, AND IMPLEMENTATION OF A RAPIDLY
PROTOTYPED VIRTUAL ENVIRONMENT FOR A MILITARY

SPACEPLANE

1. INTRODUCTION

The United States Air Force recently released a new vision statement to provide
strategic guidance for the start of the next century; Global Engagement: A Vision for the
21st Century Air Force. Whereas Global Reach - Global Power, the previous vision,
transitioned the Air Force out of the Cold War, the new vision leads the Air Force into the
next millennia.

Global Engagement is unique in its emphasis on the Air Force’s relation to space.
Fifty years ago, the Air Force was created to take advantage of the military aspects of
powered flight. As we enter the second fifty years of its existence, the Air Force is
beginning to fully investigate the advantages and capabilities provided by the control and
exploitation of regions outside the Earth’s atmosphere. Global Engagement never refers
to the Air Force as simply an air force; it is always an air and space force. In fact, it
specifically states that “we are now transitioning from an air force into an air and space

force on an evolutionary path to a space and air force” [DAF96]. Space operations span




all the core competencies - rapid global mobility, precision engagement, global attack, air
and space dominance, information superiority, and agile combat support - and their
importance to the national security of the United States will only increase as we enter the
next century.

One future embodiment of the Global Engagement vision is a military spaceplane.
A military spaceplane would project force and support national interests around the world
with a unit based in the continental U.S. Unlike reusable space vehicles designed for
commercial or scientific applications, a military spaceplane would complete missions
including transportation, force projection, reconnaissance, and deployment of space assets
supporting the strategic and tactical goals of theater commanders. Reliable access to
space will drastically change how military goals are achieved.

However, development of a capable, cost effective military spaceplane is fraught
with difficulties. Very little doctrine is established for completion of direct space
operations. Requirements for the military spaceplane are based on best guesses of the
capabilities and applications of space assets. Unconventional interface paradigms are
needed to filter and display tremendous amounts of data and enable a single spaceplane
commander (and possibly co-commander) to manage the systems, maintain situational
awareness, and accomplish mission goals.

Virtual environment technology provides a medium for investigation and
experimentation to determine requirements and solutions for a conceptual military
spaceplane. Development of experimental vehicles traditionally requires extensive time

and money for the assembly and testing of models and vehicles. Virtual environments




allow users to immerse themselves in a situation and directly determine the effects and
results of a particular implementation or capability for the spaceplane being developed.

Unfortunately, the development of large, active, complex virtual environments
involves its own set of difficulties and pitfalls. As with any complex software system,
implementation and requirement changes can ripple through a system and require
tremendous effort to maintain the integrity of the initial architecture and design. Many
traditional design approaches combat this effect by trying to specify the problem and
solution before implementation even begins. This approach is unacceptable for a virtual
environment intended to support the design of a conceptual vehicle such as a military
spaceplane - too many unknown factors exist at the beginning. A few of the unknown
factors are issues such as:

1. How will the dynamics of the vehicle by simulated?

2. How will the user control the spaceplane?

3. What missions need to be supported and to what extent?

4. How can immersion in a virtual environment be used to enhance the

situational awareness of a spaceplane commander?

Effective virtual environments are also confronted with demanding performance
requirements, typical of real-time systems. Imaging systems must produce sufficiently
realistic images at frame rates exceeding 15 frames per second, while hundreds of entities
are concurrently simulated to achieve a dynamic and realistic environment. User

interaction must be detected, processed, and its effect demonstrated in less than 100 ms




[Ellis91][Macedonia94][Stytz96]. All of these constraints must be met to induce the
immersion of a participant into a virtual environment.

A key to meeting these challenges is the underlying software architecture that the
virtual environment is based upon. The architecture and design must withstand
continuous, concurrent implementation changes by multiple researchers during the
development cycle. It must be flexible enough to allow requirements to be investigated,
changed, added and removed without wholesale redesign and recoding effort. It must
support multiprocessing capabilities needed to achieve demanding performance
constraints. Unfortunately, little investigation has been conducted into architectures that

can satisfy all these conditions.

1.1 Thesis Statement

Develop a virtual environment architecture that specifically acknowledges
unknown and changing application requirements, high performance constraints,
development of the user interface, and concurrent implementation and use the resulting

architecture to rapidly prototype a virtual environment for a military spaceplane.

This research effort was conducted in close cooperation with two other Master’s
students, Capt John Lewis and Lt Troy Johnson. Although we cooperated to accomplish
the overall goal of developing a virtual environment for a military spaceplane, each

member contributed by investigating separate areas key to the success of the project.




Capt John Lewis concentrated on developing the user interface for controlling the
spaceplane. Rather than relying on conventional cockpit paradigms using a throttle and
stick to control the vehicle, Capt Lewis investigated techniques employing the
capabilities possible with virtual environment technology and user immersion [Lewis97].

Lt Troy Johnson investigated techniques for modeling a multi-regime vehicle, like
the military spaceplane, that operates both inside and outside of the Earth’s atmosphere.
No complete aerodynamic/astrodynamic model existed for the military spaceplane, so
multiple, independently developed models simulating separate portions of the overall
flight regime were acquired. Lt Johnson’s research focused on the integration of the
diverse models and their various coordinate systems, and the smooth, stable transition
from one to another [Johnson97].

The primary focus of this research was the development of a virtual environment
architecture that specifically attacks thev problems of unknown and/or changing
requirements, high performance constraints, lack of support for user interface
development, and the control of concurrent changes that result from a rapid prototyping
development process.

Because of the wide operational envelope of a military spaceplane, the virtual
environment must accurately model an area of space over 400,000 km in diameter. This
expansive region of interest creates problems with maintaining state information of
entities and with rendering scenes in the virtual environment. As such, a secondary focus

was the investigation of techniques for handling the enormous spatial extents in the




military spaceplane virtual environment. These topics will be discussed in detail in the

following chapters.

1.2 Overview and Terminology

Before providing an outline of this thesis document, several terms used
throughout must be defined. _Thg term military spaceplane (MSP) will be used whenever
properties of the generic class of vehicles are discussed. In contrast, the term Gryphon
will be used to describe the specific instantiation of a military spaceplane simulated in the
virtual environment. This name arose during development and follows the military
tradition of christening vehicles with suitable nicknames. The final term, Virtual
Spaceplane (VSP), will refer to the entire virtual environment encompassing the
architecture, interface, all the entities of the environment, and the Gryphon.

The current chapter established the relevance of this research and defined the
purpose of the VSP project and of this specific effort. Chapter 2 presents background
material necessary for appreciating the research, while Chapter 3 defines the requirements
for completion of the initial VSP. The Architecture chapter explains the development
process, the architectural goals, and the final VSP architecture. Chapter 5, Design,
describes how and why the architecture was instantiated into a set of object-oriented
classes that provided the framework for developing the VSP. The Design chapter will be
followed by a discussion of several implementation issues in Chapter 6 and the results of
the initial VSP effort in Chapter 7. The document concludes with conclusions and

recommendations for future work.




2. BACKGROUND

The previous chapter set the stage for this research effort by demonstrating
relevance to the Air Force, describing the purpose of the Virtual Spaceplane, and
establishing the focus of this effort with regard to the companion efforts of Capt John
Lewis and Lt Troy Johnson. This chapter provides background needed for understanding
and appreciating the focus of this research. After opening with the military spaceplane,
distributed virtual environment concepts and architectures will be characterized. The
background chapter closes with an introduction of IRIS Performer and discussion of

several existing large scale virtual environments.

2.1 Military Spaceplane

The Air Force Space Command (AFSPC) and Air Force Material Command
(AFMC) Military Spaceplane Integrated Concept Team is currently investigating
technologies and plans for developing a reusable launch vehicle for the military
exploitation of space. This conceptual vehicle would be launched from earth
(horizontally or vertically), climb out of the Earth’s atmosphere into a low-Earth orbit,
perform a variety of military operations, and then return to Earth.

The military spaceplane (MSP) would share some properties with NASA’s Space
Shuttle (Space Transportation System or STS), but it would be radically different in many
aspects. While the STS was designed primarily for the transportation of scientific

experiments to low-Earth orbit and launch and/or retrieval of satellites, the MSP’s range




of mission profiles would be more diverse. To support short notice reconnaissance
missions, the MSP could take off and fly over any point on the Earth within 90 minutes.
Space operations would include launch and retrieval of military assets, as well as
rendezvous and docking missions with other orbital vehicles. At this time, it is expected
that the MSP will be operated manned, unmanned, or virtually commanded.

The military spaceplane must be revolutionary in terms of pre-launch operations.
The STS requires thousands of personnel to maintain and prepare it for launches that are
typically separated by several months of downtime. The MSP will combine low
maintenance and low turn a;round times (on the order of half a day) to support operational
tempos and maintenance costs normally only associated with traditional aircraft. This
capability will be supported by a standard containerized payload system for rapid mission

reconfigurations [MSPICT97] [PLSTD97].

2.2 Distributed Virtual Environments

A Virtual Environment (VE) involves the use of various technologies to immerse
a person into an artificial environment such that they act and respond as if the
environment was real. Distributed Virtual Environments (DVE) extend this concept by
using network technology to enable entities on multiple, geographically separated
computer hosts to interact in the same environment. DVE research is a broad field that
incorporates software architecture, 3D computer graphics, traditional simulation, human-

computer interaction, networking, and artificial intelligence [Stytz96].
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Various taxonomies have been proposed to describe the effectiveness and/or
components of a distributed virtual environment. These taxonomies highlight the goals
and purposes that should be considered when developing a DVE.

Zeltzer offered a cube model that illustrated the degree with which a virtual
environment captures three non-orthogonal components [Zeltzer92]. His AIP-cube
described a virtual environment in terms of three qualitative measures: autonomy,
interaction, and presence. Autonomy is associated with the computational models used in
the VE and their ability to react to events in the environment. Interaction is achieved by
supporting user modifications to the environment and presenting the results of these
modifications in real time. The final dimension of the AIP-cube relates to the user’s
perception that they are part of a real environment, not simply a participant in a virtual
world. A system with complete presence would integrate input from all five senses and
be indistinguishable from reality.

Zeltzer’s AIP-cube is shown in Figure 1 with several corners labeled with
example systems. The origin of the AIP-cube, signified by no autonomy, interaction, or
presence, could be thought of aS a program that simply prints out the text “This is a
virtual environment” and ends. Complete presence would make an excellent amusement
ride, and combined with autonomy would equate to an immersive theatrical experience.
The ultimate goal is virtual reality with all three components fully integrated into a single

system.
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Figure 1 - Autonomy, Interaction, Presence cube.

Whereas Zeltzer’s AIP-cube characterized a VE’s use and effect on the user,
Macedonia and Zyda provided a breakdown of the architecture of the DVE, particularly
with respect to how the network, views, data, and processes are distributed
[Macedonia97]. The network component of a DVE, as is typical of most network
applications, is concerned with bandwidth, data distribution (broadcast, multicast, or
point-to-point), reliability, and latency. In very large DVE’s involving hundreds or
thousands of entities, the network component is currently the primary limit to
performance.

Views provide a visual representation of the virtual environment and are therefore
intimately related to 3D graphics. Views are typically either synchronous or

asynchronous. A system with multiple views, each of which is rendered on a separate
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machine and combined to form one cohere;lt image of the environment, would utilize
synchronous views. Most virtual environments use what Macedonia refers to as
asynchronous views. In these environments, a separate view is associated with each
entity and all the views are related with regard to the single environment within which
they interact.

While the network component describes the communication and information flow
between entities, the location of the state information of each entity is central to the data
component. The four most common methods for data distribution are listed in Table 1

with example systems that utilize the method.

Table 1 - Data distribution techniques in Virtual Environments.

Data distribution Example system
Replicated homogeneous SIMNET, DIS
Shared centralized Vistel, MUD’s
Shared distributed, peer-to-peer DIVE
Shared distributed, client-server WorldNet, Massive

In systems using replicated, homogeneous distribution, each distributed host
maintains a separate copy of the entire virtual environment and hosts use broadcast
messaging to keep -all the environments consistent. Shared, centralized environments,
typical in text based MUD’s (Multi-User Dungeon), employ a single database maintained
on a central server. Users send messages to the server, which processes and redistributes
the message to all the other current users. In the shared distributed paradigms, the

environmental database is partitioned among the various hosts in order to reduce
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bottlenecks around a central server. In the peer-to-peer variant, reliable multicast
communication is used to share state information between relevant hosts, while the client-
server variant uses a central server to dynamically configure multicast groups and
determine which host an entity exists on.

The final component in Macedonia and Zyda’s taxonomy is the approach to
process distribution. Most modern systems use multiple processes (on single or multiple
machines) to increase the aggregate computing power and to reduce system latency and
lag. However, some VE’s combine all computation, interaction, and rendering in a single
process. Typically, these systems must use domain specific customizations to maintain
frame rates sufficient for immersion. An example is the virtual colonoscopy project at
the University of New York at Stony Brook which required preprocessed optimizations
based on the unique shape of the human large intestine to achieve interactive frame rates
[Hong97].

The preceding section presented several taxonomies for describing distributed
virtual environments. These taxonomies are useful for comparing and contrasting virtual
environments with differing goals or capabilities. Zeltzer’'s AIP-cube describes the
behavior of a VE and its affect on a user, while Macedonia’s classification emphasizes

the attributes of four architectural components of a VE.

2.3 DVE Architectures

A wide variety of software architectures have been developed to combat the

unique difficulties inherent in building DVE’s. Each approach addresses different aspects
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of the problems of user interaction, real-time performance requirements, communication
(between entities and between processes) and scalability. This section will propose a
virtual environment taxonomy based on a set of activities common to all virtual
environments and a method for describing how a system organizes these activities into
modules and tasks. The purpose of this taxonomy is to provide a common framework
within which different architectures can be compared and analyzed. Several virtual
environment architectures will be discussed and presented using this taxonomy.

An analysis of the architectures manifested in the MR Toolkit [Shaw92],
Walkthru-CFAST [Bukowski97], Veridical User Environment [Appin0o92], and
ObjectSim [Snyder93] virtual environments uncovered seven primary activities that a
virtual environment must perform. These activities and their purpose are:

1. Acquire Input - gather input from the user

2. Process Input - interpret user input as changes in the virtual environment

3. State Computation - determine the current status or position of all objects in

the virtual environment |

4. State Representation - determine how the current status or position of objects

will be depicted or presented

5. Output - present non-visual aspects of the virtual environment to the user

6. Rendering - present visual aspects of the virtual environment to the user

7. Sim Management - perform initialization, destruction, time management, and

coordination activities for the virtual environment.
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Although the Rendering activity is a form of output, it was separated from the other
Output activities to illustrate the increased attention visual presentation of the VE must be
given in terms of design and processing.

The other aspect of this taxonomy is describing how a specific architecture
organizes these activities into modules and tasks. A module is an object or structure
designed to perform a subset of the activities presented above. A task is an independent
process that may contain one or more modules. A task may also perform a subset of the
activities independently of any modules contained within the task. Data may flow from
module to module or from task to task. Figure 2 shows the symbols used to represent the

components of this taxonomy.

Module

Set of Modules
each performing
similar Activities

/ / Task
Set of Tasks each
containing similar Modules and

7 performing similar Activities

_ Data flow

Figure 2 - Module and Task Symbology.
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Given the seven activities, a specific architecture defines the organization and
relationships between a collection of modules, tasks, and data flows that together

complete all the activities.

2.3.1 MR Toolkit

The MR Toolkit, developed at the University of Alberta, was developed to
support “distributed computing, head-mounted displays, room geometry, performance
monitoring, hand input devices and sound feedback” [Shaw92]. The MR Toolkit used a
Decoupled Simulation model composed of four components:

e Interaction components control input devices

e Presentation components present output to the user

e Computation components perform the traditional simulation function of

calculating new state information for all the entities
e Geometry Models represent the data produced by the Computation

components.
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Figure 3 - MR Toolkit architecture.

Figure 3 illustrates the MR Toolkit architecture using the taxonomy described at
the beginning of this section. Several components execute in their own processes
(potentially on different machines) with communication accomplished via TCP/IP socket
connections. Separate processes shared data using a synchronous producer/consumer
model. A primary feature of the MR Toolkit was the ability to decouple the various VE
components, allowing them to execute at their optimal rate and preventing changes in one

component from rippling through the entire system.

2.3.2 Walkthru-CFAST

The Walkthru-CFAST architecture was the result of integrating two large,

independently developed systems into a single virtual environment [Bukowski97]. The
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Berkeley Architectural Walkthrough Program was designed to visualize “large (several
million polygons), densely occluded building models” composed of a collection of rooms
(cells) connected by doors (portals). The second component was the National Institute of
Standards and Technology’s CFAST fire simulator. CFAST simulates the chemical and
physical reactions of fires in an environment composed of many volumes connected by

vents. Bukowski refers to the systems as the visualizer and simulator, respectively.

L]

Visualizer

Acquirelnput Visual. Manager

Processinput ¢ )

Rendering SimManagement
Output
StateRepresentation /
2z ]
// 7
Simulator Sim. Manager Bandwidth Manager
StateComputation — SimManagement ¢ SimManagement

Figure 4 - Walkthru-CFAST architecture.

In the Walkthru-CFAST architecture (see Figure 4), each system executes on a
separate machine (with potentially multiple visualizers accessing a single simulator) with
a mapping scheme correlating cell/portal pairs to volume/vent pairs. The visualizer

performs all rendering and user interface handling. The architecture utilizes several
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manager components (visualization, simulator, and bandwidth) together with a “just-in-
time” data management philosophy to synchronize and arbitrate data flow between the

visualizer and simulator.

2.3.3 Veridical User Environment

The Veridical User Environment (VUE) was similar to the MR Toolkit with its
emphasis on partitioning the system into processes, but contained several features that
distinguished it [Appino92]. The VUE used a collection of independent processes, each
executing various portions of the virtual environment:

e Device Servers controlled input and output devices

¢ Application processes executed the computation models supporting the VE

e A central event driven Dialogug Manager passed messages from process to

process.
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Figure 5 - Veridical User Environment architecture.

What distinguished VUE from many architectures was its asynchronous message
handling and emphasis on user interaction. The VUE architecture, described using the

module/task taxonomy, is shown in Figure 5.

2.3.4 ObjectSim

The ObjectSim software architecture was developed with the goal of providing an
object-oriented design framework and corresponding set of classes to develop a variety of
distributed virtual environment applications at the Air Force Institute of Technology

[Snyder93]. By providing a common framework for development, it was hoped that the
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development time, maintainability, and design quality of the applications produced would
improve. ObjectSim provided seven tightly coupled superclasses which individual
applications modified to suit their specific needs. The classes and their functions are
listed below with the architecture illustrated in Figure 6:

e The Simulation class exercised primary control of the simulation

e The Pfr_Renderer encompassed the majority of the rendering functions

e The Terrain class handled a flat-earth terrain representation

e The Player provided a base upon which simulation entities were derived

e Flt_Models abstracted and facilitated the reuse of geometric models

e The View class represented the viewpoint

e Modifier subclasses abstracted input devices

¢ No specific class had responsibility for processing input.
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Figure 6 - ObjectSim architecture.

of ObjectSim.

in many instances was designed around these applications.
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Several projects including the Virtual Cockpit [Erichsen93], the Synthetic Battle
Bridge [Wilson93], and the Solar System Modeler [Kunz93] were developed concurrently

with and using ObjectSim. The success of these applications demonstrated the usefulness

Kayloe described several weaknesses and problems associated with ObjectSim
[Kayloe94]. ObjectSim was developed in conjunction with several other simulations, and
Rather than forcing the
applications to fit within the original ObjectSim framework, ObjectSim was modified to

satisfy the applications. This approach resulted in an undesirable intermingling between




the architectural framework and the imélementation. Although ObjectSim was
implemented using C++, it did not make use of C++’s powerful object-oriented features
such as private sections of a class, polymorphism, and constructors. The result of these
weaknesses was a highly coupled design that relied on global variables for
communication and was subsequently difficult to understand and modify.

The preceding sections presented a taxonomy for comparing the software
architectures of DVE’s and several virtual environments were discussed using this
taxonomy. The taxonomy describes a VE as a collection of interconnected modules and
tasks that must perform a set of activities common to all virtual environments. This

taxonomy will also be used to describe the VSP architecture.

2.4 Common Object DataBase

The Common Object DataBase (CODB) provides several capabilities to a virtual
environment, enabling it to take advantage of multiprocessing and distributed resources
required for effective execution of large, complex, distributed virtual environments
[Stytz97]. Containers of data are defined and stored in the CODB. Through the use of a
consistent interface, multiple processes on the same host asynchronously access and/or
modify the contents of the containers. Semaphores built into the CODB protect the data
from concurrent access and a double buffering scheme reduces latency due to blocking of
data.

The CODB can be used in many ways to improve the execution of a virtual

environment. For example, the CODB can eliminate processing stalls related to the serial
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polling of many input devices. VE’s designed around the CODB take advantage of the
computing power available in multiprocessor machines by forking off independent
processes simulating specific components of a virtual environment. These processes

communicate to the main process via containers in the CODB.

2.5 IRIS Performer

IRIS Performer is a suite of high performance libraries designed to build real-time
3D applications. Performer supports level of detail switching, billboards, anti-aliasing,
texture mapping, illumination, intersection testing, vector and matrix mathematics,
multiprocessing, and shared memory. Performer rendering is built upon two concepts; a
hierarchical scene graph describing the rendered environment and a three stage rendering
pipeline.

In Performer, scenes are built by creating an acyclic scene graph of nodes. Table
2 (based on a table in the IRIS Performer Programmer’s Guide) lists some of the nodes
available in Performer used while developing the VSP. The scene graph precisely
describes the positions and orientations of all geometry that must be rendered. The IRIS
Performer Programmer’s Guide details the use of these nodes to describe a scene

[IRIS95].
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Table 2 - Subset of IRIS Performer scene nodes.

Node Description
pfNode Abstract base type of all nodes
pfGroup Contains one or more pfNodes
pfScene Root of the scene graph A
pfSCS Static coordinate transformation
pfDCS Dynamic coordinate transformation
pfSwitch Selects one of more of its children to be traversed
pfLOD Level-of-detail node
pfLayer Manages coplanar geometry
pfLightPoint Points of light (no illumination)
pfLightSource | Provides scene illumination
pfGeode Contains geometry specifications
pfText Renders 3D text

After the scene graph is created, a three stage rendering pipeline produces 3D
images in real-time. Performer obtains real-time frame rates by executing each stage of
the pipeline in an independent process and by virtue of custom rendering hardware
inherent in Silicon Graphics workstations. In the Application (APP) process, a program
creates and modifies the scene graph based on results of the developer’s simulation
engine. The vast majority of code written executes in the APP process.

When the APP process has completed modifications to the scene graph, the graph
is passed to the CULL process. The CULL process completes a graph traversal that

determines which geometry is visible in the viewing frustum. The CULL traversal
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produces an optimized display list of the \‘/isible geometry and passes the list to the
DRAW process. The DRAW process then renders the scene.

The pipeline architecture of Performer allows three sequential frames to be in
various rendering stages at the same time, resulting in a potential sixfold increase in
frame rate [Macedonia94].

Performer also supports a wide variety of external geometry specifications.
Performer’s flexibility allows geometry to be built using geometric modeling programs
such as Coryphaeus’ Designer’s Workbench and loaded into the Performer scene graph at
runtime. To reduce memory use and improve loading time, a conversion routine called
pfconv is available to convert any Performer loadable format into the Performer Fast
Binary (pfb) format.

Geometry can also be created in the APP process using pfGeoSets of points, lines,
triangles, or polygons. While building complex models is simpler using external
modelers, pfGeoSets of dynamic points and lines can be used to create many interesting
effects not available in static modelers.

The VSP project relies on SGI rendering hardware and Performer software to
efficiently render the virtual environment. The preceding section introduced basic
Performer concepts needed to understand the VSP architecture with regard to how it

integrates the Performer rendering structures.
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2.6 Large spatial VE’s

One of the challenges of simulating a vehicle that operates from the earth’s
surface to low-earth orbit, is the enormous range of positional data that must be
maintained and the expansive scenes that must be rendered. Assuming that a simulation
must portray objects extending from the earth’s center to the apogee of the Moon’s orbit,
distances between objects can exceed 400,000 km. Although a MSP may only travel to
low-earth orbits, the VSP must be capable of rendering objects anywhere within the
Moon’s orbit. Figure 7 illustrates this worst case scenario with several important orbital

distances labeled.

-¢+—— Potential viewing distance = 425000 km ——»

. . . Moon
High Earth radius | Max Medium
Earth Orbit ' 6370km | Earth Orbit 384000 km
(Geosynchronous) 480 km alt
35900 km alt
Troposphere Max Lo“f
16 km alt Earth Orbit Not to scale
100 km alt All distances approximated

Figure 7 - Virtual Spaceplane region of interest.

Since the MSP conducts precision operations such as orbital docking, a simulation
must not only maintain large distances, it must maintain them with high accuracy.

Double precision operations have the required range and accuracy for performing and
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storing these positional calculations. Table 3 demonstrates the accuracy differences

between single and double precision floating point numbers.

Table 3 - Accuracy of single and double precision floating point numbers.

Distance from origin Single Precision Positional  Double Precision Positional
(arbitrary units) Accuracy (23 bit mantissa)  Accuracy (52 bit mantissa)

1 1.19 x 10”7 2.22x 107

10° 6.10 x 10 1.13x 1073

10° 6.26 x 10 1.16 x 100

400 x 10° 3.2x 10’ 5.96 x 10°®

However, the limited precision available in the graphics hardware presents a
rendering problem referred to as flimmering. During the rendering process, a technique
called z-buffering determines the portions of the polygons that are closest to the viewer
and are therefore rendered to the screen. The Silicon Graphics Onyx Reality Engine®’s
used in the AFIT Virtual Environments Lab use 24-bit depth buffers to.determine the
depth levels of all polygons at pixel resolutions (the ﬁmdware actually computes depths at
sub-pixel accuracy, but the concepts below apply either way) [Akeley93]. When two
polygons are coplanar or very close to one another (relative to the viewpoint), the limited
precision of the depth buffer prevents the rendering process from determining which
polygon is in front. This inconclusive determination results in the hardware rendering
different portions of each polygon from frame to frame. The net effect is flimmer.

The region of interest in the Virtual Spaceplane is from the surface of the Earth to

slightly beyond the Moon (the Sun is modeled slightly beyond the Moon’s orbit and is
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scaled appropriately). Therefore, at any time the rendering hardware must differentiate
the depths of objects spanning a distance of over 400,000 kilometers. In addition,
because all objects are modeled to scale, the depth resolution must be accurate to several
centimeters. Unfortunately, many of the depth levels are used to model empty areas
between the center of the Earth to the Earth’s crust and between high Earth orbits to the
Moon.

Several large VE’s built in the past address and propose (directly or indirectly)
solutions to the aforementioned problem. These systems and their applicability to

simulating a military spaceplane are discussed below.

2.6.1 Solar System Modeler

The Solar System Modeler (SSM) was a virtual environment developed at AFIT
that simulated the motion of many of the heavenly bodies within our solar system
[Williams96]. An immersed user employed an interface scheme called the Pod
[Kestermann94] to explore the planets, planetary moons, asteroids, interplanetary and
earth orbiting satellites. ~ The SSM accurately simulated the propagation and
transmissions of the Global Positioning System (GPS) satellites, so remote entities could
enter a virtual environment and, using a virtual GPS receiver, obtain position, velocity
and time measurements.

The solar system is over 11 billion kilometers in diameter, so the SSM routinely
manipulated enormous numbers. It approached the problem of rendering this space by

uniformly scaling all objects and distances in the virtual environment by a factor of
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1:10,000. Small objects such as the GPS satellites were scaled to make them visible from
large distances. This was acceptable for the SSM because the purpose was to visualize
and explore planetary and orbital motion, not represent the detailed interaction of a space

vehicle with the environment and other entities in the environment.

2.6.2 Virtual Planetary Exploration project

The Virtual Planetary Exploration (VPE) project conducted at NASA Ames
enabled geologists and engineers to virtually explore planetary terrain data [Hitcher93].
VPE was built using digital elevation data and projected image sets of Mars obtained
from the Viking missions. This data was used to generate 3D polygon meshes that VPE
visualized and the user explored using either a six degree of freedom environment mode
or a two degree of freedom panorama mode. The VPE project also investigated the use
of geometry culling (both viewport and object occlusion), level of detail switching, and
texture mapping to improve the performance and quality of the visualized environment.
The paper discusses the implementation, advantages, and disadvantages of these
techniques.

Although Hitcher did not directly discuss the problem of rendering a large scale
virtual environment (other than with respect to performance and data requirements),
several implied observations can be drawn from his discussion. VPE used custom
visualization software that employed a 32-bit z-buffer implemented in main memory.
The software implementation combined with the fact that their region of visualization

was smaller than the VSP (the radius of Mars is 3,398 km, whereas the radius of a
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geosynchronous orbit is 35,900 km and the apogee of the Moon is greater than 380,000

km), prevents flimmering.

2.6.3 Diamond Park’s Locales

The final discussed approach to handling spatially large virtual environments is
the locales concept developed at the Mitsubishi Electric Research Laboratory (MERL)
and subsequently used to build a virtual world called Diamond Park [Barrus96]. The
premise of locales was that the user of a virtual environment can only view and affect a
small portion of the world at any given instance. Therefore, rather than building the
entire world as a single environment (with a single coordinate system), the world was
divided into individual locales and hierarchical relationships were built to specify which
locales were connected and/or visible from another locale. A single transformation
converts an entity’s state from one locale to an adjacent locale.

Locales reduced problems associated with spatially large environments by
propagating entities in their immediate locale and building the virtual environment such
that the number and size of locales visible at a given instant was significantly smaller than
the entire world together. The technique also provided regions that could be used to
minimize communication between entities and increase culling efficiency.

Virtual environments that model large spatial extents must deal with the
degradation of accuracy as entities in the environment retreat from the origin.

Approaches applied by the Solar System Modeler, Virtual Planetary Exploration project,
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and MERL’s Diamond Park were introduced and analyzed for their applicability to the

VSP. This problem and a proposed solution will return in the Implementation chapter.

2.7 Background Conclusion

This chapter discussed several subjects needed to understand and appreciate the
research completed in the development of the VSP and presented in the following
chapters. The entire project revolves around the simulation of a military spaceplane, so
an understanding of its purpose and capabilities is required. Discussion of example
virtual environment architectures and descriptions of several VE taxonomies enables
comparisons between these VE’s and the VSP to highlight strengths and weaknesses of
each. The chapter closed by presenting problems associated with large spatial VE and
several solutions used by past virtual environments. The next chapter presents the

requirements and goals for Gryphon, the AFIT Virtual Spaceplane.
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3. REQUIREMENTS

Before proceeding into the Architecture and Design chapters, the requirements for

the research product must be established. These requirements derived from the VSP

project objective and evolved during the course of the development of the VSP.

The VSP requirements fell into five primary areas:

1.

2.

3.

4.

5.

Simulated capabilities of the MSP
Supported missions

User interface

Virtual environment

Miscellaneous requirements.

The following sections describe each area. Because this research was conducted

in cooperation with two other students, this thesis and the following chapters will only

address a proper subset of the requirements.‘ However, the entire set of requirements are

presented to provide a global perspective of the VSP project.

3.1 Simulated Capabilities of a Military Spaceplane

The VSP must simulate the operation and characteristics of a hypothetical MSP.

A MSP operates in atmospheric and space envelopes, so the VSP must support these

modes as well as smoothly transitioning from one to the other. An interactive

environment must provide the ability to manually modify the environment (in this case

the spaceplane). Additionally, the VSP must provide capabilities for the system to accept
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higher level maneuvering commands and automatically perform the intended operation.
However, since the VSP is an initial prototyping effort, these automatic operations need
not be intelligent or validated; the VSP must only demonstrate support for these features.
Because no MSP exists to validate the model against, no accuracy requirements were

established. Table 4 lists the capability sub-tasks required of the VSP.

Table 4 - Capability Requirements.

ID Requirement Description
Flight Characteristics

1.11 The VSP shall simulate maneuvering on runways.

1.12 The VSP shall simulate flight through the atmosphere.

1.13 The VSP shall simulate maneuvering in space.

1.14 The VSP shall transition from one flight regime to another.

Manual Operation

1.21 The VSP shall provide capability to manually operate MSP in the atmosphere.

1.22 The VSP shall provide capability to manually operate MSP in space.
Automatic Operation

1.31 The VSP shall provide capability to automatically takeoff.

1.32 The VSP shall provide capability to automatically fly predetermined routes.

1.33 The VSP shall provide capability to automatically enter orbit.

1.34 The VSP shall provide capability to automatically modify orbital parameters.

1.35 The VSP shall provide capability to automatically reenter the atmosphere.

1.36 The VSP shall provide capability to automatically land.

The focus of this thesis effort with regard to the capability requirements was

development of a flexible architecture that could accommodate a variety of propagation
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models. The propagation models and architecture should be designed to accept input

originating from either users or internal agents.

3.2 Supported Missions

As discussed in the Background, the MSP will conduct a variety of missions
intended to accomplish the exploitation of space to achieve military objectives. The VSP
must initially only support a subset of these mission profiles as listed in Table 5. In
particular, the Gryphon must be able to co-orbit with objects in low-earth orbit and

deploy additional satellites into orbit.

Table 5 - Mission Requirements.

ID Requirement Description

Supported Missions
2.1 The VSP shall support co-orbiting with low-earth satellites.
22 The VSP shall support deployment of satellite.

This thesis will not address completion of these mission requirements. Interested

readers should refer to Lt Troy Johnson’s thesis for discussion and results [Johnson97].

3.3 User Interface

A primary goal of the VSP was to investigate non-traditional interface schemes
for controlling a MSP and maintaining situational awareness without becoming
overburdened with information. The requirements specifying the interface goals are

listed in Table 6.
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The facilities at the AFIT Virtual Environments Lab do not include reliable 3D
pointing devices. Until these resources become available, all user interaction must be
accomplished via a standard three button mouse. However, the interface design should
consider future integration and use of 3D pointers such as the Ascension Flock of
Birds™. Enhanced immersion via support for a head mounted display and associated
head tracker, and configurability of the interface, specifically what information to display
and where to display it, were also requirements. The interface had to present information
describing the state of the Gryphon in the atmosphere, in space, and during entry/reentry,
as well as providing mechanisms for changing the state of the Gryphon in all the
operational regimes. The interface must assist the user in acquiring potential targets and
displaying their relevant state information. The interface must relieve the user of nominal
system management via diagnosis of problems and presentation of the status of
consumable resources. Finally, the VSP needed to investigate the use of hyper-text
paradigms and the interface had to minimize obstruction of the user’s view of the virtual

environment.
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Table 6 - User Interface Requirements.

ID Requirement Description
Interaction Methods
3.11 All user interaction shall be performed via a three button mouse.
3.12 The VSP shall support a head mounted display (HMD) with head tracking.
Configurable Cockpit

321 The user shall be able to display or conceal information interactively.

322 The user shall be able to modify the location of information displays
interactively.

Displayed Information

3.31 The interface shall display state information for the Gryphon in the
atmosphere.

332 The interface shall display state information for the Gryphon during orbit
entry/reentry.

3.33 The interface shall display state information for the Gryphon in the space.

3.34 The interface shall display status of consumables (propellants, life-support,
etc.).

3.35 The interface shall display state information of potential targets.

3.36 The interface shall assist the user in locating/acquiring potential targets.

3.37 The interface shall assist the user with system management and diagnosis.

3.38 The VSP shall investigate hyper-text paradigms for display of information.

3.39 The interface shall minimize obstruction of the user’s view of the VE.

Controlling the Gryphon

341 The interface shall not utilize a throttle and stick for control of Gryphon.

342 The interface shall enable users to change the state of the Gryphon in the
atmosphere.

343 The interface shall enable users to change the state of the Gryphon in space.

The focus of the this thesis was developing a flexible architectural framework that

supported evolutionary prototyping of interface components. The exact properties, style,

and mechanisms of the interface were initially unknown, so the architecture had to allow
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experimentation resulting in frequent changes to all aspects of the interface. The actual

interface development is presented in Capt John Lewis’s thesis [Lewis97].

3.4 Virtual Environment

An effective virtual environment encourages the user to make the mental
transition from participating in a computer simulation to accepting immersion in the
environment. This shift requires a virtual environment that looks and changes like the
user expects or would accept as the actual environment. Entities must resemble their real
world counterparts and react to the user or other entities in a believable fashion.
Although ultimate immersion requires integration of all five senses, technological and
time constraints restricted the VSP to concentrate on the visual aspects. The

environmental requirements of the VSP are given in Table 7.

Table 7 - Environmental Requirements.

ID Requirement Description

Environment
4.1 The VSP shall present convincing terrain surrounding Edwards AFB.
42 The VSP shall present a convincing representation of the Earth, Sun, and
Moon.
4.3 The VSP shall simulate multiple constellations of Earth orbiting objects.
4.4 The VSP shall portray the transition between day/night and atmosphere/space.

This thesis effort addressed completion of requirements 4.1 through 4.4.
Requirement 4.1 included building a representation of the runways and other terrain

features near Edwards AFB. Models of the Earth, Sun, and Moon provided a sense of
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familiarity and an intuitive mechanism to illustrate the passage of time. The Earth, Sun,
and Moon should display such phenomenon as moon phases, seasonal changes in sunrise
and sunset, and a visible day/night terminator when in space. An important aspect of a
virtual environment is a population of dynamic entities the user can interact with; in the
case of the VSP, a variety of earth orbiting objects. Visually modeling the atmosphere
concentrated on performing a smooth transition from the light blue sky associated with
the atmosphere to the star-filled black of space. As with previous requirements, the VSP

design must support development of these requirements.

3.5 Miscellaneous

Several requirements levied against the VSP did not correspond to one of the

previous areas. These requirements are listed in Table 8.

Table 8 - Miscellaneous Requirements.

ID Requirement Description
Miscellaneous
5.1 The VSP shall be able to exchange state information with remote entities via
the DIS protocols.
52 The VSP shall transmit state information of the Gryphon via the DIS
protocols.
5.3 The VSP shall operate at a mean rate of 15 frames per second on a 4 processor

250 MHz R4400 SGI Onyx with Reality Engine® graphics equipped with 16
Mbytes of hardware texture memory.

The primary mechanism for increasing the number of entities in the VSP was

through the DIS protocol standard. Support for the DIS protocols enabled the VSP to join
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in large scale distributed environments and interact with more entities than would be
computationally possible using only a local host. As such, the architecture and design
must support a sufficient subset of the DIS protocols to accept state information of remote
entities and to transmit the state information of the Gryphon. The final requirement
ensures that the VSP maintains an interactive frame rate; users lose their sense of

immersion if long latencies are introduced into the system.

3.6 Requirements Conclusion

The preceding chapter presented the overall requirements of the VSP and
highlighted specific requirements addressed in the following chapters. These include
requirements defining the capabilities of a MSP the VSP must simulate, types of MSP
missions supported, functionality provided by the user interface, aspects of the
environment modeled, and several qﬂscellaneous requirements. The next chapter
describes the development process, architectural goals, and resulting architecture for

implementing the requirements of the Virtual Spaceplane.
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4. ARCHITECTURE

The development of a distributed virtual environment is a challenging multi-
disciplinary task beset by high performance requirements and unknown and/or constantly
changing application requirements. A development environment such as this demands
flexible processes and architectures designed to combat architectural and design
degradation. The following sections in this chapter discuss the procedures and
architectural goals used to guide the development the VSP. The chapter concludes by

presenting and justifying the architecture chosen for the VSP.

4.1 Development Process

Although the specific architecture and design are vital to development of a
complex system, the process by which the system is built is also of paramount
importance. The process defines how requirements are developed and changed, how
team members work together to achieve common goals, and how problems are detected
and removed. The VSP used a rapid evolutionary prototyping process designed to
produce functional prototypes built on the following principles [Stytz97]:

a) Employ Object Oriented Design techniques

b) Support undeveloped and/or changing requirements

c) Exploit Silicon Graphics hardware and IRIS Performer software for
performance

d) Reduce dependence between components
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e) Reuse components from previous efforts as applicable.

Projects conducted in the Virtual Environments Lab at AFIT are typically
sponsored by organizations with high level goals and concepts, but few specific
application requirements. In many cases, one of the Lab’s purposes is to explore and
define requirements. Rapid evolutionary prototyping accomplishes this exploration by
defining baseline requirements using current knowledge and quickly building a functional
prototype to aid in exploring these requirements. The prototype is used to refine and
uncover more requirements, providing input to the next iteration of the prototype
development process.

However, if this process is not managed properly, the initial architectural integrity
could quickly degrade to chaos. Specific actions can be taken to combat this eventual
decline by maintaining the architecture and design. Reducing dependence and coupling
between components of the design is one such action. By minimizing coupling in the
system, the inevitable changes in requirements and the resulting changes necessary to
implement these requirements are localized to aA few components. Standard object-
oriented desigﬂ concepts such as encapsulation and information hiding also combat the
decline.

The Common Object DataBase supports the evolutionary prototyping process by
providing a simple, uniform method for multi-process communication. As such, the
CODB enables computational distribution with the resulting improvements in

performance. It also improves maintenance of the initial architectural integrity by
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providing a standard interface for componénts of the virtual environment to
communicate.

To manage the software development, the coding process had to enable
concurrent development by each team member, but keep the code from diverging by
using frequent integrations. The process allowed each member to pursue independent
tasks concurrently by maintaining four versions of the VSP simultaneously. Each
member modified and developed his own copy, while a fourth read-only version ensured
that a recent fully functional VSP was always available for demonstration and testing. At
least once a week, code integrations assembled the three diverging versions into a single
functional program. Each team member then proceeded using the new integrated version.
The frequent integrations ensured that problems resulting from concurrent changes or
misunderstandings between team members about design or implementation goals were
detected as soon a;s possible. Finding problems and misunderstandings early prevented
the investment of large amounts of time and effort into code, based on incorrect
assumptions, that must eventually be recoded or restructured. More significant changes
warranted immediate integration to uncover potential problems as soon as possible. The
use of concurrent development, frequent integrations, and continual testing is similar to
the synch-and-stabilize method employed by Microsoft [Cusumano97].

The success of a rapidly prototyped project depends on finding problems and
deficiencies before significant portions of the system become dependent upon the faulty
component. Rather than using a dedicated testing phase in the development process,

informal testing was done continuously in an attempt to find problems as early in the
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development as possible. Whenever a problem was encountered (regardless of the
problem’s relation to the individual team member or their current task), the symptom was
documented for further investigation. Following code integrations, the team categorized
and assigned pending problems to specific members for immediate resolution. However,
because the VSP was an initial prototyping effort, it was not necessary for all problems to
be found and resolved. More attention was focused towards investigating functionality

and concepts in the virtual environment, than in producing reliable, error-free code.

4.2 Architectural Goals

Before the design and implementation of the VSP began, several virtual
environments previously developed at AFIT (the Solar System Modeler [Williams96] and
the Virtual Cockpit [Adams96]) were investigated and modified. These investigations
uncovered many strengths and weaknesses of the architectures and designs. These
findings combined with observations gleaned from literature reviews, produced several
high level architectural goals for the VSP. The architectural framework must:

a) support the development process
b) emphasize separation of concerns
c) support user interface development.

The following sections discuss the importance of each of these architectural goals
and the alternatives considered for realizing the goals. Past efforts at AFIT, the
ObjectSim architecture, and architectures discussed in the background chapter were used

as comparisons to make the architectural design decisions. The ObjectSim architecture
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was the primary source for comparison; readers unfamiliar with ObjectSim are

encouraged to review Snyder’s thesis and the ObjectSim programmer’s guide [Snyder93].

4.2.1 Support Development Process

Complex systems such as the VSP can not be reliably built using ad hoc
development processes. The development process described in Section 4.1 and used for
the VSP follows the advice of Brooks in No Silver Bullet: Essence and Accident of
Software Engineering [Brooks87] by growing the system using an iterative prototyping
approach to software development. With this process, functionality and capability are
gradually and concurrently integrated into the system by multiple developers. An
architecture needs to consider this process. Otherwise, concurrently developed
components may not work together and time and effort will be required to integrate the
incompatible components.

Snyder designed the ObjectSim framework as a general purpose architecture for
quickly building distributed virtual environments. It was object-oriented, Performer
based, and enabled the rapid creation of initial prototypes so next generation requirements
could be developed and explored. ObjectSim was used to develop several virtual
environments (Solar System Modeler, Virtual Cockpit, Synthetic Battle Bridge) and was
known to be stable and useful.

Unfortunately, it suffered from several weaknesses that lead to decreased
productivity and limited exploration later in the development cycle. First, it achieved

much of it generality through the use of pointers linking the components together. This
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high coupling increases the interdependence of the components and complicates the

process of isolating and modifying problems and/or changes. Another weakness of

- ObjectSim was the absence of the CODB as an integral part of the design. Previous

attempts at integrating the CODB into ObjectSim were characterized by replicated data
and functionality. The replication was due to the ad hoc methods (typically use of
Performer shared memory) required for interprocess communication in ObjectSim.

In contrast, decoupled architectures like the MR Toolkit and the Veridical User
Environment would better support a rapid prototyping development process via inherently
low component interdependence forced by the limited methods of interprocess
communication. These limitations keep changes from rippling through the system and
the decoupling improves performance on multi-processor systems. Ordinarily, the
primary disadvantage to this approach was the time required to build and establish a
stable system that. incorporated multiple process communication. The capabilities
inherent in the CODB and the rapid prototyping process alleviated these development
problems. The CODB provides a standard, stable, and efficient mechanism for multiple
processes to communicate so a system can take advantages of multiprocessing

immediately.

4.2.2 Separation of Concerns

The separation of concerns emphasizes a system in which each class or object has
a specific goal or purpose. Given the taxonomy proposed in the Background, these

purposes correspond to the seven primary VE activities. Objects should not be
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responsible for completing several different activities of the virtual environment.
Conversely, a single activity should not be spread across multiple components of the
architecture. Separation of concerns prevents components from developing
interdependencies that complicate modifications to the requirements and implementation.
Changes to one component should not require significant changes to other components
that require time and effort to implement. These distributed changes increase the
complexity of the system and make it more difficult for other team members to
understand and use the components.

The VSP is a distributed virtual environment composed of many individual
entities (as opposed to VE’s with few entities such as the Virtual Colonoscopy Project
[Hong 97] or the Virtual Wind Tunnel [Bryson92]) that emphasizes the visual
representation of these entities and state of a military spaceplane. As such, how the
architecture organizes the State Computation, State Representation, and Rendering
activities is paramount. The separation of these activities with respect to previous

architectures is discussed below.

4.2.2.1 State Computation and Representation

ObjectSim approached entity abstraction by providing a Player class responsible
for managing the geometry (State Representation) and propagation of entities (State
Computation). Subclasses defined specific custom propagation or geometry models.
Unfortunately, this approach bound the movement of an object to its physical

representation. While this binding exists in the real world, in software it prevents
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components from being developed independently, complicates the code and structure of a
component, and restricts the amount of code reuse available. For example, in space
environments all entities essentially propagate identically. ObjectSim forced the
replication of orbital mechanics code wherever different methods of managing the
geometry were needed.

The Virtual Emergency Room (VER) employed a central Motion Manager that
coordinated all propagation within the virtual environment [Garcia96]. This approach
was sufficient for the VER because only the user initiated movement or a change within
the environment (other than changes in the virtual patient). In the VSP, however, entities
must propagate and interact independently.

The MR Toolkit separated the State Computation and State Representation
aspects of the application. However, the MR Toolkit was not specifically designed for an
entity based VE, so it aggregates all computaﬁon (and similarly geometric) functions into
single processes. This aggregation prevented distribution of independent propagation

models across multiple processors.

4.2.2.2 Rendering

The IRIS Performer rendering software was based on the concept of managing a
rendering pipeline and a scene graph describing the environment. Because rendering is
typically the key limit to performance and it was anticipated that the large extent of the

VSP would require special techniques to correctly render the environment, determining
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how the architecture handled rendering was important for the performance, development,
and maintenance of the VSP.

ObjectSim distributes the rendering responsibilities throughout the application
with no central control. The Pfr_Renderer isolated the Performer pipeline from other
architectural components. However, the tasks of building and updating the scene graph
were shared by the Pfr_Renderer (who created the root pfScene), the Players (who
inserted and updated their state information in the scene graph), and the View class
(which handled the viewpoint and jitter removal). This organization made complex
rendering modifications like jitter and flimmer removal difficult to track and modify and
unnecessarily bound the framework to Performer.

Even if rendering was not completely decoupled from the rest of the application,
as VUE and the MR Toolkit advocate, it made sense to isolate all rendering operations in
a single component of the application. Isolation of rendering promoted the process goal
of reducing interdependencies and took advantage of the resulting improvements in

maintainability and flexibility.

4.2.3 Support User Interface Development

A primary goal of the VSP was the development of an unconventional,
reconfigurable interface for controlling a military spaceplane. However, at the beginning
of the research term the mechanisms and style of the interface were unknown. This
objective demanded an architecture that specifically accommodated the incremental

development of user interaction in its design.
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The ObjectSim design was aimed at providing generality and quick functionality
for a virtual environment. Unfortunately, these features did not extend to the user
interface. Other than providing an abstract Modifier class for deriving input devices,
ObjectSim did not address user interaction in any specific part of its design. Examples in
the ObjectSim programmer’s guide placed keyboard interaction in the Sim’s pre_draw
method and head tracking handled by a View class accessing an HMD_Modifier (a
Modifier polling a sensor attached to a head mounted display). This inconsistent design
made adding or modifying user interaction capabilities and developing a consistent user
interface difficult.

The Virtual Emergency Room handled all user interaction in its Renderer class.
This centralized approach was an improvement over the distributed manner that
ObjectSim used. However, it was unclear why (other than ease of implementation) user
interaction was completed by a component associated with an aspect of the virtual
environment’s output.

The approaches used by the MR Toolkit and VUE provided the most architectural
integrity by providing a single specific place in the architecture for managing all user
interaction. Centralizing user interaction also supported the goals of reducing component

interdependence and establishing clear separation of responsibilities.

4.3 Virtual Spaceplane Architecture

There is one final aspect of the architecture that must be discussed before

presenting the VSP architecture - the division of the system into a set of independent
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tasks or processes. The primary purpose for using multi-processing in virtual
environments is the increase in performance it affords on machines equipped with
multiple processors. Process distribution is also used to eliminate the lag produced by
polling input devices and to increase the fidelity of a simulation by allowing
computational models to update themselves more frequently then if they were
synchronized with the application’s rhain loop.

However, unnecessary separation of the system into processes introduces several
problems. These include the limited forms of interprocess communication, maintaining
the consistency and coherency of shared memory, potential communication lag if
processes are distributed across multiple machines, and the overhead required to perform
context switches if tasks outnumber physical processors. Therefore, it was decided that
unless direct performance or fidelity gains resulted, the activities of the VE would be kept
within the main application process.

The culmination of the goals presented above was the Virtual Spaceplane
architecture, shown in Figure 8 using the Activity/Module/Task taxonomy described in

the background.
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Figure 8 - Virtual Spaceplane architecture.

The VSP architecture was based on the following principles:

a) The ObjectSim framework was not used because of its tight component
coupling, its lack of a specific place to perform input processing, the absence
of a uniform method for safe interprocess communication, and the
architecture’s failure to recognize the separation of concerns. Instead, a
custom design directed towards the unique requirements of the VSP was
developed.

b) Emphasis was placed on separating different components of the application

into distinct classes/components to reduce interdependencies and coupling.
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)

d)

€)

g)

The CODB was used to maintain architectural integrity and provide the
capability to decouple input/output devices and computationally intensive
propagation models from remainder of VSP.

Tasks performing the Acquire Input activities were forked off to eliminate lag
produced by polling input devices.

Entity’s State Representation and State Computation activities were separated
into different classes, making each class simpler and, therefore, easier to test
and maintain. The separation enabled more class reuse because general State
Representation and State Computation modules could be developed
independently and then paired to instantiate specific entities.

Both Performer pipeline and scene graph maintenance were isolated into a
single module responsible for Rendering activities. The large spatial extent of
the VSP required special processing to correctly render the VE. Isolation of
Rendering activities shielded the remainder of the VSP from any changes or
problems in the rendering process. |

A single module performed Sim Management and Process Input activities. In
an interactive environment such as the VSP, the user could potentially affect
all aspects of and entities in the environment. Therefore, the module
performing the Process Input activity needed access to all entities. In the
proposed architecture, only a single module had this global knowledge which

necessitated combining these activities in a single module.
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h) The capability to fork off additional tasks to perform computationally
intensive State Computation routines was supported. This capability resulted
from the separation of State Computation and State Representation activities

and the use of the CODB to provide safe interprocess communication.

4.4 Architecture Conclusion

This chapter presented the rapid prototyping process used to develop the VSP and
the goals used to design the software architecture. The architecture was based on support
of the development process, separation of concerns, and the ability to incrementally
develop an unconventional user interface. The chapter concluded by presenting
justification for the architecture using the taxonomy introduced in the Background
chapter. With the architecture established, the following chapter will detail how the
architecture was realized into the design of a collection of classes for implementing the

VSP.
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5. DESIGN

As discussed in the previous Chapter, the decision was made to combine lessons
learned from a variety of previous virtual environment architectures and goals specifically
derived for the VSP into an original design. This chapter describes the capabilities of a
set of classes forming the framework of the VSP and presents justifications for breaking
the system down in this manner. Rumbaugh diagrams [Rumbaugh91] will be used to
show the methods of each class and relationships between classes. The architectural
principle of separation of concerns was paramount in designing these classes. Each class
had a specific goal or purpose and a concerted effort was made during implementation to
keep this design integrity maintained.

Figure 9 is a modification of the architectural diagram shown in Figure 8. Figure
9 names the modules that perform each activity and shows the relationship between the
high level modules used in the VSP. In the VSP design, each module was replaced by a

C++ class that performed the appropriate activities and functions.
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Figure 9 - Diagram of Virtual Spaceplane design.

The heart of the VSP is the Sim class that contains all the components of the
virtual environment. Instances of the SimObject class represent entities in the virtual
environment and are associated with a PropModél that models the dynamics of each
entity. SimObjectManagers (not shown) manage and encapsulate multiple SimObjects
with similar physical and propagation representations. The Renderer controls all
rendering activities and a global SimClock maintains a consistent flow of time throughout
the virtual environment. The I/O Modifiers provide abstract access to input and output
which the Sim class manifests (via the CODB) as changes in the virtual environment.

More detailed discussion of each class is given in the following sections. Although

several classes provided bases for extensive inheritance (particularly the SimObject and
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PropModel classes), these subclasses are not shown in Figure 9, but are discussed further

in the relevant sections below.

5.1 Renderer

The goal of providing separation of concerns in the design led to the development
of the Renderer class. This class had the responsibility for setting up the graphics
hardware and then building and mainpaining the Performer scene graph. With the
exception of SimObjects creating and updating their local geometry, the Renderer class
encapsulated all rendering functions. These functions included managing the IRIS
Performer components (pfPipe, pfPWindow, pfChannel, and pfScene), the scene graph,
the user’s viewpoint, and jitter and flimmer removal. The encapsulation allowed jitter
and flimmer removal (see Implementation chapter) to be completely localized to the
Renderer, rather than spread throughout the simulation where changes to a specific
implementation could require rework of other components besides the Renderer. Figure

10 shows the class structures related to the Renderer.
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rendering the environment, including the pfPipe, pfPWindow, pfChannel and pfScene

Figure 10 - Renderer class diagram.

Initialize
IntersectSegment
GetHitPosition
GetHitDirection
GetClippedSegment

test segments against

pfScene

[IRIS95][Rohlf94]. It also created the Intersection Manager discussed below.

Restricting other simulation components from the scene graph necessitated that
the Renderer keep a list of all the active SimObjects in the virtual environment. This
entity list enabled the Renderer to query SimObjects about their state and geometry
information prior to finalizing the scene graph. Registering SimObjects by invoking the

AddObject, AddEarth and AddToView methods added entities to the entity list. Most
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entities were registered via the AddObject method, except for the entity representing the
Earth. The AddEarth method was needed because the Renderer was also tasked with
transforming all entities into a single coordinate system. This transformation potentially
involved correcting an entity’s state for the rotation of the Earth; the Earth’s rotation was
obtained by querying the SimObject signified by the AddEarth method.

The Renderer also managed the location and orientation of the user’s viewpoint in
the virtual environment. The viewpoint had two independent aspects. The first aspect
was represented by a logical camera that could be dynamically attached to any SimObject
in the VSP. Each SimObject controlled a camera offset that specified the initial distance
and orientation of the camera attachment and the Renderer provided several methods
(TrackCameraUp, TrackCameraRight, PitchCameraUp, etc.) to modify the offset after the
view was attached. The TrackCamera methods kept the field of view and the center of
the attached SimObject aligned, while thé remaining camera methods removed this
restriction. The second aspect of the viewpoint was represented by the user’s head
position and orientation relative to the camera. This aspect of the view enabled a 3D
head tracker to correlate the viewpoint with a user’s actual head position by making calls
to the SetHeadPosOri method each frame.

SimObjects registered via the AddToView method were always associated with
the camera viewpoint; their position and orientation indicated offsets from the camera.
The VSP cockpit is an example of an entity with this association to the viewpoint. The

RemoveObject method provided for the removal of entities from the environment.
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The Renderer’s FinalizeSceneGraph method was one of the most important
routines in the VSP. The method queried each entity for their state information,
integrated the various coordinate systems used in the VSP, and placed the resulting
position and orientation information into the appropriate pfDCS nodes in the scene graph.
FinalizeSceneGraph transformed view modifications and offsets and applied them to the
pfChannel. Operations for jitter and flimmer removal, discussed in detail in the

Implementation chapter, completed scene graph finalization.

5.1.1 Intersection Manager

Performer provided considerable functionality for implementing intersection
testing between geometry in the scene and line segments. Requirements for runway
operations motivated the development of intersection testing in the VSP, particularly
between the Gryphon and the terrain. Two primary concerns emerged when building the
Intersection Manager for the VSP, where the Intersection Manager would fit into the
design and how it would affect performance.

The Performer software contained all the code to calculate hit points between
application specified line segments and geometry in the scene graph. However, the line
segments must be specified in the coordinate system of the scene graph, which was only
known by the Renderer. This restriction necessitated making the Intersection Manager an
internal component of the Renderer.

By default, Performer tests for intersections in the application process by

searching the entire scene graph for valid intersections. Informal observations showed
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this scene traversal added approximately 15 ms to the application process, making it the
longest process and translating directly to a reduced frame rate. Fortunately, Performer
allowed the application to fork off another process that performed intersection testing
concurrently with the cull process. By instantiating an additional process, the frame rate
penalty resulting from intersection testing was undetectable. Rather than using standard
shared memory to communicate the result of the intersections back to the application, the

CODB was used to help meet design goals and prevent memory contentions.

5.2 SimObject

The SimObject class provides a base class from which all simulation entities and
methods for manipulating and managing the entities were developed. As mentioned
previously, a primary goal of the design was to provide clean separations between
activities in the simulation. This goal prompted the removal of all State Computation
activities and methods out of the SimObject, into a separate PropModel class. Therefore,
each SimObject was associated with a propagation model that described the object’s
movement in the virtual environment. Therefore, the SimObject’s primary purpose is
performing the State Representation activity for its entity; i.e. managing the entity’s local
geometry to ensure that it reflects the state of the entity as determined by its PropModel.
This separation produced several capabilities. A SimObject could change the PropModel
it was associated with and therefore change how it moved through the environment.
Identical SimObject subclasses could also be instantiated with different PropModels

resulting in different movement characteristics.
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SimObjects contained two primary methods, Initialize and Update. These
methods were generally overridden by subclasses to customize the SimObject’s behavior.
In the Initialize method, the SimObject loaded external geometry or created its own
geometry using Performer structures. Prior to rendering each frame, the simulation
invoked each instantiated SimObjects’ Update method. In response, the SimObject
dynamically modified its displayed geometry (with the option of making no changes) and
notified its propagation model to calculate the SimObject’s new position and orientation.

In addition to these functions, SimObjects maintained their camera offsets,
provided the capability to draw and modify characteristics (such as the length and color)
of trails behind themselves, and provided methods for accessing state information from
their PropModel. The Renderer used the camera offset when attaching the view to a
SimObject and the trails provided information about the entity’s previous position. The
flimmer removal technique described in the .Implementation chapter required that all the
geometry in the VE was sorted into logical bins. The PutGeomInBin method placed the

entity’s geometry in the bin specified by the input parameter.
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Figure 11 - SimObject class diagram.

Several subclasses of SimObject were created during development. These and
several other subclasses are shown in Figure 11. A list of these subclasses and their
purpose is given below.

e TwoLODObject represented an entity with two levels of detail (LOD).
TwoLODObjects were initialized by specifying the geometry for the two levels and
the distance from the viewpoint when the LOD’s should switch. The Reinitialize

method provided the ability to change the geometry or switch distance at any time.
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This class was used primarily to implement entity locators - simple, color-coded
representations designed to identify the entity from distances at which the entity
would not be visible. The FarGeometryOff and -On methods enabled the locators to
be turned off and on.

The Cockpit subclass contained the geometry of the user interface developed for the
VSP. The Cockpit used a collection of movable panels, buttons, and displays to both
communicate and enable the user to change the state of the Gryphon and the
environment. The Sim class invoked the ProcessSelection, Panel and ControlSystem
methods to notify the Cockpit of user events or changes in the virtual environment
that the user interface had to reflect. Capt John Lewis’s thesis details the
development and operation of the user interface encapsulated by the Cockpit class
[Lewis97]. |

Sol was represented by SunType, whose distinguishing feature was the addition of
illumination to the environment. The SetAmbient method changed the ratio of
ambient to diffuse lighting, providing the capability to artificially increase the lighting
of dark areas such as the night side of the Earth.

The StarSphere visualized over 32,000 stars visible in space or during the night. The
subclass also included lines representing 81 major constellations. A description of
how the stars and constellations were visualized is given in the Implementation
chapter.

MoonType represented the Earth’s only natural satellite.
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e The Payload subclass represented the paglload within the Gryphon. The payload is
currently limited to a stowed satellite, but could be extended to other potential
payloads such as weapon systems or reconnaissance equipment.

¢ SimGryphon managed the external representation of the Gryphon spaceplane and the
various propagation models used to propagate it. A detailed description of
SimGryphon follows this list.

e A Waypoint signified a specific location in space that was relevant to the current
mission. A set of Waypoints could constitute a route, in which case speed and range
attributes defined a successful rendezvous with the Waypoint. A Waypoint was
visualized as a spinning diamond in the VE.

e The DISEntity subclass was used in conjunction with the DISEntityManager,
DISEntityProp and DISManager to model remote entities using the DIS suite of
protocols [IEEE93]. The DISManager removed DIS packets from the network and
placed the contents into the CODB. The DISEntityManager collected the state
information out of the CODB and partitioned it out to the DISEntities and
DISEntityProps. The DISEntity interpreted the entity type fields and selected an

appropriate geometric model to represent the entity.

5.2.1 SimGryphon |

SimGryphon was one of the most complex classes in the VSP. This complexity
resulted from the Gryphon’s need for dynamic geometry and use of multiple propagation

models. Unlike most SimObjects, the Gryphon contained moving geometry representing
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the landing gear, payload, and payload door. However, most of the complexity resulted
from managing multiple propagation models. Because Gryphon simulated a military
spaceplane in the conceptual stages of development, no single propagation model for the
entire flight regime of a military spaceplane existed. To overcome this obstacle, the
SimGryphon class dynamically switched between separate propagation models
calculating the atmospheric, hypersonic, exo-atmospheric, and orbital dynamics. At each
transition the Gryphon's position, orientation, and velocity were synchronized so the
immersed user had no indication that the transition actually occurred. The primary
difficulty with this process was the conversion between the various coordinate systems
used in the VSP. Lt Troy Johnson’s thesis provides more detail on the procedures and

problems associated with this approach [Johnson97].

5.3 PropModel

The abstract PropModel class provided a base to develop propagation models
used by SimObjects and methods to consistently manipulate and query the PropModels.
This separation between PropModels and SimObjects was chosen for several reasons. It
made each class simpler, and therefore easier to code, maintain, and test, than if the
SimObject and PropModel functionality were combined into a single class. It also
provided more opportunity for reuse. For example, a single orbital mechanics model
could be developed for all space entities and different SimObjects could be assigned to

achieve different geometric models, two-line element sets, and dynamic behavior
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(established satellites do not change orbits considerably, while the Gryphon will do so
frequently).

PropModels have two primary methods, Initialize and CalcNewPosition. Derived
subclasses of PropModel overrode both methods to model the dynamics appropriate to
each subclass. The Initialize method assigns a starting location, loads model specific data
from an external file such as two-line element sets, or completes other appropriate
activities. The CalcNewPosition method determines the entity’s new position and
orientation with respect to the entity’s old position and/or the current simulation time.
PropModels obtain the simulation time from the global SimClock.

Each PropModel was designed around an arbitrary coordinate system. This
coordinate system was selected in each case to simplify the calculations performed by the
PropModel. For example, the AeroModel (described below) assumes a flat earth to
remove complications that arise from the curvature of the Earth, while the AstroProp
model uses orbital mechanics and assumes a spherical Earth. However, to simplify
interactions between other entities and components ‘of the VSP, each PropModel provided
routines to access state information in several standard coordinate systems. These
included:

1. the WGS84 system - a non-inertial, right-handed coordinate system that

rotates with the Earth and defined with its center at the center of the Earth, its
z-axis passing through the North Pole and its x-axis passing through the point

where the equator and the prime meridian intersect [DOD87]. The methods
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GetWGSPosition and GetWGSbrientation return an entity’s state in this
coordinate system.

. the Earth Centered Inertial (ECI) system - an inertial, right-handed coordinate
system the Earth rotates within and defined with its center at the center of the
Earth, its z-axis passing through the North Pole and its x-axis pointing
towards the Point of Aries (where the WGS84 x-axis points at during the
vernal equinox) [Bate71]. The methods GetGeocVEPosition and
GetGeocVEOrientation return an entity’s state in this coordinate system.

. the Geodetic c-oordinate system - a flat-earth system defined by lines of
latitude running parallel with the equator and lines of longitude intersecting at
the Earth’s poles. The methods GetGeodeticPosition and GetInstrumentOrient

return an entity’s state in this coordinate system.

To simplify the transformation of coordinates between these systems, the AFIT

Coordinate Conversion Utilities (ACCU) were developed. They served the same purpose

as ObjectSim’s Round Earth Utilities (REU), but whereas the REU were meant to operate

over a small specified region of the globe, the ACCU functions correctly anywhere on the

globe [Johnson97]. The ACCU provided methods to convert between the WGS84,

Geodetic, ENV (a local flat-earth system), and DIS coordinate systems. The

ENVDelta_for_ WGS84Move and ENVDelta_for_GeodeticMove methods compensated

for the curvature of the Earth by calculating a new position based on a starting position

(in the WGS of Geodetic systems) and a movement in the East, North, and vertical
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directions. PropModel also included standard methods for accessing the current speed,
velocity, mach, ground speed, altitude, and percent throttle applied.

PropModels exploited polymorphism and a suite of standardized routines so other
VSP components could consistently access state information of entities while ignoring
the internal differences between the various models. Unfortunately, providing standard
methods for input to the PropModels introduced complications because each PropModel
often required unique types of input. For example, the orbital mechanic model used
deltaV (change in velocity) inputs to calculate changes in orientation and orbital
elements, the atmospheric flight model used throttle setting, pitch, bank, and roll
commands, and the terrain following model only needed the offset from the ground to
function correctly. Rather than building standard input methods, which would have been
useless and/or confusing in many cases, each PropModel defined specific input routines.
The GetPropModelType method allowed simulation components to determine the

appropriate input by returning a unique enumerated value for each PropModel.
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Figure 12 - PropModel class diagram.
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SetBack

BankRight
EngageDigitalControl
DisengageDigitalControl

SpeedUp
SetSpeed
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TurnRight
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SunProp

MoonProp

DISEntityProp

PropModels describing different dynamic models were developed and reused

throughout the simulation. Examples of PropModels developed for the VSP are shown in

Figure 12 and listed below.

o FreeFlight ignored most physical laws of motion. It accepted commands to change its

speed or orientation and performed the actions without regard for constraints such as

inertia or aerodynamics. FreeFlight was also used to position static entities such as

ground tracking stations and terrain patches in the environment.
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TaxiProp implemented terrain following between an entity and the Earth’s surface.
When TaxiProp was Updated, it would compare the current altitude above ground (as
determined by intersection testing performed in the Renderer) with its target offset. It
would then move itself up or down to maintain the specified terrain offset.

SunProp, MoonProp, and EarthProp simulated the movement of the Sun, Moon, and
Earth within the ECI coordinate system. These classes were based on orbital
mechanics routines developed for the Solar System Modeler [Kunz93][Williams96].
AeroProp contained the six degree of freedom aerodynamic model supplied by
WL/FIGD (Wright Lab’s Flight Simulation Branch) and initially integrated into the
AFIT Virtual Cockpit [Adams96]. This model accepted stick, throttle, and rudder
commands and was only accurate at altitudes below 30 km and velocities below Mach
2.5.

AstroProp was based on an orbital mechanics model obtained from the Air Force
Academy Astronomy Department. AstroProp accepted commands to change the
entity’s current velocity (ApplyDeltaV) or orientation (PitchUp, TurnRight,
RollRight, TurnToDirection, PointInDirection). It also determined deltaV’s required
to change from one orbit to another (DetermineHohmann) and returned the set of
classical orbital elements describing the current orbit (GetCOE). Methods were also
available to test whether a potential deltaV would send an entity out of a stable orbit
(IsDeltaVHyperbolic) or into the Earth (IsDeltaVEarthIntersect). AstroProp was used

to simulate entities orbiting the Earth at altitudes above 100 km.
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e OrbitEntryProp was an orbit entry/reentry model for transitioning from the Earth’s
atmosphere to space and back provided by ASC/XRD (Air Systems Center’s
Directorate of Development Planning, Design Branch). This model bridged the gap
between the AeroProp and AstroProp models. OrbitEntryProp accepted a potential
path (described as a plot in the altitude vs. velocity domain) together with data
describing the aerodynamic and propulsion properties of a vehicle and returned the
angle of attack, throttle settings and down range necessary to follow the specified
path.

e The DISEntityProp subclass was used in conjunction with the DISEntityManager,
DISEntity and DISManager to model remote entities using the DIS suite of protocols.
Whereas the DISEntity determined the geometric representation, DISEntityProp uses
DIS packet information and calculates the entity’s position and orientation in the

WGS84 coordinate system.

5.4 SimObjectManager

As the number of entities in the virtual environment increased, it became more
tedious to manage and manipulate them. A SimObjectManager provided a consistent
mechanism to manage multiple SimObjects that shared common geometric
representations and/or PropModels (see Figure 13). A single method call from the Sim to
a SimObjectManager resulted in the identical call being echoed to each of the Manager’s
SimObjects. For example, the VSP modeled 25 Global Positioning System (GPS)

satellites. Without using a SimObjectManager, the Sim class would have had to
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explicitly manage all 25 satellites individually. A SimObjectManager aggregated all the
GPS satellites into a single logical group that could be manipulated as a whole. Instead of
explicitly calling the Update method for each satellite, Sim simply invoked the GPS
SimObjectManager’s Update.

In order to provide more capability, SimObjectManager’s aggregated a collection
of TwoLODObjects rather than simple SimObjects. In this sense, a more accurate name
for the class would be TwoLODObjectManager.

The Initialize, Update, Trail and FarGeometry modification méthods echo the
method invocation to each of the TwoLODObjects the SimObjectManager controls. The
SimObjectManager also acknowledges a specific SimObject as the current SimObject.
The GetNext and GetPrev methods iterate through the Manager’s list of SimObjects,
changing the current SimObject along the way. GetSimObjectNumber returns the ith
SimObject, where i is passed in as an arguinent and the GetNumOfSimObjects method

returns the total number of SimObjects managed by the SimObjectManager.
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Figure 13 - SimObjectManager class diagram.

Subclasses of SimObjectManager were defined to capture certain characteristics

of a group and are listed below with a description of their purpose.
e A SatelliteConstellationManager was instantiated for each constellation of satellites
that shared common physical representations (GPS, DMSP, DSCSIHI, TDRS,
Molniya). It assigned each of its SimObjects an AstroProp model initialized with an

appropriate two-line element (TLE) set.
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e TerrainManagers loaded polygonal terrain patches over selected regions of the Earth.
TerrainManagers used multiple levels of detail to balance detail and frame rate. More
information concerning the creation of the terrain patches is given in the
Implementation chapter.

e GroundEntityManagers created static terran entities that model reconnaissance targets
or ground tracking stations.

e The Waypoint Route represented a collection of Waypoints constituting a flight
pattern necessary to complete a goal.

e The DISEntityManager used the DISEntity class, DISEntityProp class, the
DISManager, and the CODB to realize, manipulate, and access state information of

remote entities via the DIS suite of protocols.

5.5 SimClock

The SimClock class controls the flow of time in the simulation. Previous virtual
environments at AFIT have either used the operating system’s clock or used a global data
structure that all components were free to modify at will. The operating system clock was
unacceptable because it provided insufficient control of time in the virtual environment,
such as the ability to pause or change the rate at which time flows in the virtual
environment. The global data structure technique was unacceptable because it violated
the architectural principle of separation (and the associated isolation) of concerns. Any
implementation changes to the clock would require modifying components throughout

the system. By encapsulating all time management in the SimClock class, other design
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components were protected against implementation changes and a single modification to
the SimClock would affect the entire environment. For example, all propagation models
referred to the SimClock when calculating their next location, so a single change to the
SimClock affected all SimObjects uniformly (Figure 12).

The SimClock provided several methods for controlling and accessing the flow
and state of time. Entities requested the time in either the Gregorian
date:hour:minute:second format or as the Julian Date, used in many astronomical
algorithms [Meeus91]. The SetTimeFactor method allowed the simulation to proceed at
an arbitrarily faster or slower pace then real time. It was anticipated that modifying the
flow of time may be useful during lengthy automatic takeoff, landing, or orbital
maneuvers. The TogglePause method stopped and restarted the flow of time in the
simulation. The SimClock also provided several static methods for converting from one
time format to another. |

The SimClock was the only globally visible object used in the Virtual Spaceplane
other than the CODB. Extensive use of the SimClock in the simulation necessitated this

break in object-oriented design.

5.6 Sim

The Sim class was the heart of the Virtual Spaceplane. The Sim class, shown in
Figure 14, contained all the entities in the virtual environment, a Renderer, a Selection
Manager, and the input modifiers. The Sim’s responsibilities included creating and

destroying all the SimObjects, assigning a PropModel to each SimObject, creating the
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Renderer, invoking the Update methods of the simulation components (SimObjects
and/or SimObjectManagers), and translating all user interaction and events into specific

commands to the various simulation components.

CODB
write input to
BeginRead
EndRead
Renderer BeginWrie
EndWrite .
BeginReadWrite I0_Modifier
EndReadWrite 1+
poll
read
processInput
SimObject DN
Manager Sim
g o SelectionManager
Initialize
GO Process_Selection
1+ C TranslateInputs C g:i“g:;ln dox
<> SetSelectionLevel
SimObject — ocoses
selections
£
g
S I
Autopilot
Fly Route
SetState follows
<AssignRoutes>
AssignOrbitChange
TurnTowards |
IsActive .
Waypoint

Figure 14 - Sim class diagram.
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The majority of simulation execution occurred within the GO method of Sim.
Invocation of the GO method initiated the simulation’s primary loop until the user
indicated the simulation should end. An abbreviated listing of the GO method is shown

below.

void Sim::GO()
{
// Complete Initialization

while (notDone)

{
//Signal Input modifiers to update their CODB containers
Keyboard->Poll();
Mouse->Poll();

Translatelnputs();
// eventually sets notDone to false

//Update all the SimObjects
Gryphon->Update() ;

theEarth->Update() ;

theStars->Update() ;

//the Renderer builds the scene graph

7/ for the current frame
theRenderer->FinalizeSceneGraph() ;

//Tell Performer to render the current frame
pfFrame() ;

}
} // end of Sim::GO

The main execution loop begins by polling all the input devices. All I/O devices

were decoupled from the main application, but they needed to be signaled to update their
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CODB containers with the most up to daté: input. Next, the Sim translated all user
interaction into events that triggered changes in the virtual environment. All entities in
the Simulation were Updated to modify their geometry and propagate themselves as
appropriate. Finally, the Renderer built the scene graph before signaling Performer to
render the current frame. This loop continued until the user terminated the virtual
environment.

To provide the capability for various automatic control modes, the Sim had an
Autopilot class that could be assigned to any SimObject (normally the Gryphon). Based
on the Autopilot’s state, thé current PropModel of its assigned SimObject, and possibly a
Route, the Autopilot directed the SimObject towards an objective.

The Sim also had a private method for broadcasting the state information of any
SimObject using the DIS protocols. As with the DISEntity and DISEntityProp mentioned
previously, this method used the CODB and Sheasby’s DISManager (also referred to as

World State Manager in [Stytz97]) to manage the network and packet issues.

5.6.1 User Interaction

A key design decision of the VSP was centralizing the translation of all user (and
potentially intelligent agent) interaction in the Sim class. Although combining these
activities deviated from the goal of separation of concerns (the Sim now instantiated all
the VSP components and performed input translation), the translation was performed in
TranslateInputs, a private method of Sim.  This organization simplified the

implementation because the Sim was the only component with access to all other
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simulation components. The centralization directly supported the development process

because different interaction mechanisms could be investigated and functionality could be

~ gradually introduced/modified by changing this single method.

To further support the development process, the translation of input into changes
in the virtual environment was divided into two distinct phases. The first phase
interpreted user input from the keyboard, mouse, Polhemus Fastrak, Ascension Flock of
Birds™, intelligent agent, or other I0_Modifier, and generated a unique event. The
SelectionManager facilitated this first phase by accepting screen coordinates (from mouse
clicks or 3D tracker input) and returning the event associated with the selected geometry.
The second phase interpreted events as modifications to the virtual environment via
method calls to the appropriate entities or VSP components. The phased approach
cleanly separated specific input devices from the effects they created, preventing

modifications in one phase from affecting the other.

5.7 Design Conclusion

This chapter presented the design framework of the VSP. Discussion of each of
the key base classes (Renderer, SimObject, PropModel, SimObjectManager, SimClock,
and Sim) covered the capability and the class’s relation to the architectural principles
introduced in previous chapters. The next chapter will describe several implementation

techniques and issues featured in the VSP.
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6. IMPLEMENTATION

While the primary focus of this research was creating the architecture and design
discussed in the previous chapters, many implementation issues arose during the
development process. The techniques for jitter and flimmer removal and aspects of
modeling the Terran environment not only demonstrate the flexibility and capability of
the VSP’s architecture and design, but also highlight several features of the Virtual

Spaceplane.

6.1 Jitter removal

During the implementation of ObjectSim, Snyder discovered that geometry
rendered far from the simulation’s origin shifted positions chaotically from frame to
frame [Snyder93]. This phenomenon was referred to as jitter. The cause of jitter was
hypothesized to result from the limited precision of the rendering hardware.

ObjectSim’s response to jitter was rendering the scene with the viewpoint at the
origin by placing a pfDCS translation node at the root of the scene graph. By placing the
negative of the viewpoint’s position in this root translation, the scene effectively rendered
around the viewpoint. Unfortunately, the translation relied upon single precision
subtraction of large numbers, an imprecise operation. The imprecision became apparent
in the Solar System Modeler by a return of jitter when the user attached to the outer

planets or distant inter-planetary satellites.
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Like ObjectSim, the Virtual Spacepiane combated jitter by rendering the scene
with the view at the origin. However, instead of relying on Perfbrmer’s single precision
mathematics to perform the final translation, the Renderer translated positions in double
precision. The translation was accomplished by calculating the position of the view
(based on the position of the SimObject the view was attached to) and subtracting this
view position from each of the other SimObjects’ positions and placing these values into
the appropriate pfDCS nodes. By using double precision, the Renderer better preserved

small changes in SimObjects’ positions regardless of the objects’ pre-rendered position.

6.2 Flimmer removal

The key to removing flimmer (introduced in Chapter 2) lies in minimizing the
distance between the far and near clipping planes of the viewing frustum, or more
accurately, the ratio of the far to the near plane. Several methods were considered to
minimize this ratio and solve the flimmering problem.

1. The Performer library provided several structures specifically designed to combat
flimmer (pfLayer and pfDecal). Unfortunately, these structures were designed for flat
surfaces known to be coplanar. In the VSP where non-planar objects are moving
dynamically with respect to one another, these structures were not appropriate.

2. Rather than mocieling the entire region from the center of the Earth to the Moon, the
region could have been reduced to just beyond high Earth orbit. This approach would
require modeling the Moon and Sun within this region and would have created

several disadvantages in the process. Because the Moon and Sun would be modeled
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so close to the Earth, their true position and apparent position would be significantly
different. The perceptual errors resulting from modeling the Moon closer to the Earth
were deemed unacceptable. This error is present when the Sun is modeled just
beyond the Moon, but the resulting reduction in the modeled space outweighs the
perceptual error.

. At first it would seem the scaling approach used by the Solar System Modeler would
help combat flimmer, when in fact it would have no effect. In a given depth buffer,
there is a constant number of levels that can be differentiated regardless of the values
assigned to the shallowest and deepest levels. If the geometry in the virtual
environment is unchanged while the clipping planes are scaled down, the resolution
of the depth buffer will be improved and flimmer will be reduced in the resulting
scene. However, when the geometry is uniformly scaled with the clipping planes as
the SSM did, the relative resolution of the depth buffer is unaffected.  Uniformly
scaling the environment has no effect on the resolution of the depth buffer, so it has
no effect on flimmering.

. The locales approach to partitioning an environment into smaller sections used in
MERL’s Diamond Park was an innovative technique that would reduce flimmer
problems in many applications [Barrus96]. Unfortunately, the VSP failed to satisfy
the premise the technique was based on; “...even in a very large virtual world, most of
what a single user can observe at a given moment is nevertheless local in nature.”

. The final unacceptable approach involved rendering each frame in two cycles. To

implement the two cycle render, all geometry is placed in the Performer scene graph
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at a uniform scale. During the first cycle, the color and depth buffers would be
cleared and the far and near clipping planes would be set such that only geometry far
from the viewpoint would be rendered. During the second cycle, only the depth
buffer would be cleared and the clipping planes would be reset to render the near
geometry. Although this approach required two actual frames to render each image
(for a peak frame rate of 30 fps), it was hypothesized that since less geometry was
rendered each frame, the perceived frame rate would not be significantly reduced.
However, the hardware’s use of double buffering prevented this approach from
working. Since the same frame buffers were always used for the near and far
geometry, respectively, the frame buffer associated with the near geometry never had
its color buffer cleared. Forcing the hardware to use only a single buffer would have
fixed this problem, but the potential flickering was deemed unacceptable.

The method implemented to remove flimmer was conceptually similar to the final
solution discussed above. Figure 15 and Figure 16 illustrate how the implemented
method worked. Figure 15 is a profile of a Viewiné frustum with a simple scene and the
desired image using no flimmer removal techniques. When the distance between the near
and far clipping planes becomes large, the rendering hardware can not differentiate which

object is closer to the viewer and flimmering occurs.
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Figure 15 - Profile of Viewing Frustum with no Flimmer Removal.

The selected method (illustrated in Figure 16) divided the geometry into two
groups; objects farther than a speciﬁed distance from the viewpoint (indicated by the
near-far divider) and objects closer than this distance. The clipping planes were set for
rendering the near geometry and the geometry located far from the viewpoint had its
position and size uniformly scaled towards the viewpoint so it also lay within the clipping
planes. As long as scaling occurred uniformly towards the viewpoint, no distortion would
appear in the rendered image.

As is, the scaling still caused incorrect rendering of the scene, indicated by the
image in upper left of Figure 16. Geometry located far from the viewpoint incorrectly
overlapped geometry much closer, due to the position change. To correctly render the

two sections and create one coherent image, the method sorted objects into bins, one for
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far geometry and one for near geometry. For example, in Figure 16 the square object
would be placed in the near bin, while the sphere would be placed in the far bin. Each
frame, the far bin was rendered, the depth buffer cleared, and then the geometry in the
near bin rendered. Clearing the depth‘buffer ensured rendering of the near geometry in
front of the far geometry. In the lower left corner of Figure 16, the resulting correct

image is shown.
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Figure 16 - Profile of Viewing Frustum demonstrating Flimmer Removal.
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The final implementation actually used more than two bins to separate geometry.
To improve performance, a permanent-far bin was used to hold geometry known to
remain in the far bin. Examples included the stars, Sun, Moon, and Earth (terrain was
separate from the Earth). To correctly render transparent geometry (used extensively in
the interface), the transparent geometry must be rendered last. This ordering necessitated
the creation of a transparent-near bin rendered after the (opaque) near bin.

Figure 17 - Figure 22 illustrate the separation of a scene into appropriate bins.
Figure 17, Figure 18, Figure 19, and Figure 20 show the contents of the pcrmanent—fﬁr,
far, near, and transparent-near bins, respectively. The composition of these bins without
the z-buffer clear is shown in Figure 21. The correct image resulting from a z-buffer

clear between the far and near bins is shown in Figure 22.

Figure 17 - Contents of Permanent-Far bin.
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Figure 18 - Contents of Far bin.

Figure 19 - Contents of Near bin.
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Figure 20 - Contents of Transparent-Near bin.

Figure 21 - Incorrect image without intermediate z-buffer clear.
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Figure 22 - Correctly rendered image.

6.2.1 Complications

Although the flimmer removal technique allowed the VSP to model an expansive
region, it introduced several complications that had to be compensated for. The first
involved the use of multiple levels of detail and the second complicated the use of
instancing to reduce memory requirements. Each of the complications and the
corresponding solutions are discussed below.

Performer pfLOD nodes can be used to automatically rendered different geometry
based on the node’s distance from the viewpoint. However, the flimmer removal
technique complicated this process by dividing the position of far geometry by a scaling
factor. The Twol.ODObject corrected for this scaling factor and ensured correct

rendering of its geometry.
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Entities requiring more than two levels of detail used TwoLODObject to extend
the number of levels available to the VSP. The extension was accomplished by first
setting the TwoLODObject switch (the distance where the two primary levels were
exchanged) to the near-far divider used for flimmer removal. Two separate models were
built corresponding to geometry that would exist in the near and far bins. Additional
LOD’s within each model increased the overall levels of detail. To ensure that the far
LOD’s operated correctly, the switch values within the far models were divided by the
scale factor of the far bin. Scaling the switch values was required because the scaling
performed by the Renderer as part of flimmer removal did not affect the internal LOD
switch values. In this manner, the TwoLODObject allowed the VSP to use arbitrarily
complex LOD structures in spite of the complexity introduced by the flimmer removal
technique.

The second complication involved tﬁe use of instancing. Instancing is a technique
designed to reduce memory usage by taking advantage of replicated geometry in a scene.
A single copy of the geometry can be loaded into memory and referenced from multiple
places in the scene graph. A GeometryModel class was built to simplify the use of
instancing in the VSP. This class assigned a identifier to all geometry that could be
potentially instanced. Simulation components requested geometric models by their
unique identifier and the GeometryModel automatically returned the instanced geometry
or loaded the geometry if it had not previously been instanced.

The flimmer removal complications to instancing surfaced when geometry was

instanced by two entities assigned to different flimmer bins. In this case, one of the

90




entities had its geometry rendered at the incorrect time. The GeometryModel prevented
this problem by maintaining two separate copies of the geometry corresponding to the
near and far bins. As with SimObjects, the GeometryModel responded to the
PutGeomInBin method by selecting the appropriate geometry and ensured that the

SimObject’s geometry was correctly rendered.

6.3 Modeling the environment

A vital aspect of an immersive VE is simulating the physical environment. For

this research, two primary areas modeled were the terrain and the atmosphere.

6.3.1 Terrain

Although the VSP operated primarily in orbits above the Earth, during takeoff and
landing significant portions of terrain were visible at a distance that required the
simulation to render elevation and terrain features. Therefore, the Virtual Spaceplane
used polygonal models of terrain patches based on Digital Terrain Elevation Data
(DTED) Level 1 data. The National Imaging and Mapping Agency (previously the
Defense Mapping Agency) prepares and distributes DTED Level 1 data. Each DTED cell
covered a 1° by 1° area and was divided into 1201 profiles, each of which contained 1201
equally spaced elevation posts [DOD96].

The polygonal models were built using Coryphaeus’ EasyT 4.0. EasyT had the
capability to read in raw DTED files, create polygonal models based on a variety of user

preferences (sampling rate of DTED posts, polygonalization algorithm, and level of detail
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setting) and save the resulting model in a Designer’s Workbench file. Table 9 lists the
parameters used to generate each cell of terrain. All of the patches used uniform edge

sampling to ensure that adjacent cells of terrain fit together without gaps.

Table 9 - Terrain Generation Parameters.

Level of | Polygonalization Number of ~ Switch Out Edge Sampling
Detail Algorithm Triangles Distance (km) Rate
0 Delaunay 7200 100 40
1 Delaunay 1800 300 40
2 Delaunay 200 400 40

Application of geographically correlated terrain textures obtained from Living
Earth, Inc. improved the quality of the polygonal models. The Living Earth textures are
based on high resolution satellite photographs which are processed to add color and
correlate the textures to a specific geographic region. The VSP utilized two different
texture resolutions to balance quality and performance (extensive use of texture mapping
resulted in time consuming texture paging between hardware texture memory and main
memory). Terrain immediately surrounding Edwards AFB used 3 arc second/pixel

(=160m/pixel) texture, while the remaining terrain patches (an 8° by 8° area centered at

35°N 118W°) used 1 km/pixel texture.

6.3.2 Earth’s atmosphere

While many simulators operate within the Earth’s atmosphere or in the voids of

space, few must make the transition from one to the other. The VSP performed an
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approximation of the visual transition from clear blue sky to the star-filled black of space
that occurred when the spaceplane passed from the earth’s atmosphere to space and when
day turned to night.

This research extended the monochrome 5000 star field existing in the Solar
System Modeler to over 32,000 stars varying in size and color depending on the star’s
brightness and class, respectively. This star field was generated using a star catalog
obtained from the Astronomical Data Center at NASA’s Goddard Space Flight Center
[ADC97]. The addition of lines representing the constellations further improved the star
field. The constellation database was obtained from Chris Dolan, a doctoral candidate in
astronomy at the University of Wisconsin [Dolan97]. Deriving the star and constellation
data from different catalogs resulted in small errors between the line segments of the
constellations and their corresponding stars. This error was deemed acceptable as a result
of its small magnitude and the effort required to remove the errors.

The atmospheric and temporal transition was accomplished by calculating a sky
coefficient every frame. This coefficient varied from 0.0 to 1.0 and indicated the degree
that the sky appeared black and star-filled. A coefficient of 1.0 indicates a completely
black sky and stars and constellations at their peak brightness; when the coefficient was
0.0 there were no visible stars or constellations and the sky was a light blue shade. The
sky coefficient is composed of two factors, one for the current altitude and one for the
local time of day. The altitude factor was determined by comparing the altitude of the
viewpoint with two constant values, each signifying the top and bottom of an atmospheric

transition layer. If the view was below the bottom threshold, above the top threshold, or
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in between, the VSP assumed the view was fully in the atmosphere, in space, or in the
transition region, respectively. The local time of day factor is based on the angle created
by extending vectors from the viewpoint to the center of the Earth and from the viewpoint
to the Sun’s position. Figure 23 illustrates the change in the sky coefficient as altitude
and time of day change. Although this coefficient method does not accurately represent
why the day/night transition is observed (the blue sky is caused by the scattering of light
by the atmosphere - at high altitudes there is less atmosphere to scatter the light and at
night there is less light to scatter - both contribute to darkening the sky), it sufficiently

portrays the phenomenon to the user with very little computation.
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Figure 23 - Change in sky coefficient versus altitude and time.
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Each of the components of the sky (the color, the stars, and the constellations)
used the coefficient to vary an aspect of themselves that resulted in the overall transition
from atmosphere to space. The sky color changed by modifying the color Performer used
to clear the frame buffer each frame. The stars and constellations faded in and out by
using anti-aliased points and lines, respectively; when the point size or line width

approached zero, the objects disappeared.

6.4 Implementation Conclusion

This chapter described various implementation issues including jitter removal,
flimmer removal, terrain and atmospheric modeling necessary to present an effective
virtual environment. The flimmer removal technique logically increased the depth buffer
by sorting the geometry in a scene into two bins depending on the geometry’s distance
from the viewpoint, uniformly scaling and translating the far geometry, and then
rendering each bin separately with a depth buffer clear in between, resulting in a correctly
rendered scene. Polygonal terrain models utilizing DTED data and geographically
correlated textures and an approximation of the atmospheric change visible at day/night
and atmosphere/space transitions increased the degree of immersion induced by the VSP.

The next chapter presents the results and shows screen captures of the VSP.
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7. RESULTS

The results chapter will mirror the structure of the requirements chapter by
presenting a brief overview of the results of the entire VSP accompanied by more detailed
results of topics relating directly to this research effort. An analysis of the
implementation’s success at realizing the original architectural and design goals and of

the flimmer removal technique will conclude the chapter.

7.1 Completion of Requirements

This section will concentrate on the results of the research completed for this
thesis with respect to the overall VSP requirements. Readers are encouraged to peruse
the companion theses by Capt John Lewis [Lewis97] and Lt Troy Johnson [Johnson97]

for detailed results on the remaining requirements.

7.1.1 Simulated Capabilities

Table 10 lists the capability requirements and corresponding method of

completion.
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Table 10 - Completion of Capability Requirements.

ID Requirement Resolution
Flight Characteristics
1.11 Maneuvering on runways TaxiProp
1.12 Flight through the atmosphere AeroProp
1.13 Maneuvering in space AstroProp
1.14 Transition between flight regimes OrbitEntryProp, common interfaces of
PropModels
Manual Operation
1.21 Manually operate in the atmosphere Input methods of AeroProp
1.22 Manually operate in space Input methods of AstroProp
Automatic Operation
1.31 Automatically takeoff TAKEOFF mode of Autopilot
1.32 Automatically fly specified routes FLYROUTE mode, Route of Waypoints
1.33 Automatically enter orbit ENTERORBIT mode of Autopilot
1.34 Automatically modify orbital HOHMANN and RENDEZVOUS modes
parameters
1.35 Automatically reenter the atmosphere REENTER mode of Autopilot
1.36 Automatically land LANDING mode of Autopilot

The architecture designed for the VSP succeeded in supporting the variety of

propagation models used in the VE. The separation between PropModel and SimObject

allowed development of a suite of propagation models paired with independently

developed SimObjects to quickly and reliably populate the virtual environment with

entities.

A set of access methods in the PropModel superclass provided standard

interfaces to access state information for the various PropModels. The separation of

propagation and representation reduced the development difficulties associated with
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multi-regime entities such as the Gryphon and alleviated the need to create a propagation
model that could operate in all flight regimes.

Although not implemented, the strong object oriented design and encapsulation
should permit computationally intensive propagation models to fork off separate
processes that communicate via the CODB. Decoupling these calculations from the
primary simulation loop may improve performance by distributing computation and
fidelity by increasing the update rate of models. State access methods (GetPosition,
GetOrientation, GetVelocity, etc.) could be rewritten to access the most recent data from
the CODB, and prevent other simulation components from feeling the impact of this
restructuring (other than the increased performance).

The Autopilot class successfully performed a variety of basic maneuvering
operations based on its state (TAKEOFF, FLYROUTE, LANDING, RENDEZVOUS, etc.), the
current PropModel, and user specified inputs. The GetPropModelType method of
PropModel, in conjunction with the Autopilot’s state, provided the capability to
automatically control the Gryphon across multiplé flight regimes. For example, the
TAKEOFF mode typically started in TaxiProp, but finished at a safe altitude above the
ground in the AeroProp model. By knowing the PropModel type, the Autopilot reacted
differently and provided appropriate inputs at different stages of a task. The Autopilot is
not, nor was it intended to be, a fully functional, intelligent autopilot. However, more
sophisticated control functionality could be added by changing the internal routines

performed by the Autopilot.
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7.1.2 Supported Missions

The required mission capabilities listed in Table 11 were successfully integrated
into the VSP. The current implementation places restrictions and/or makes assumptions
concerning parameters affecting the missions. The rendezvous mission does not include
any time or fuel restrictions and does not provide the capability to physically dock with
orbiting objects. The satellite deployment mission does not model the boost of a satellite
to a higher orbit typical of many launches and only a single type of satellite can be

launched. More information concerning mission support is given in Lt Johnson’s thesis

[Johnson97].
Table 11 - Completion of Mission Requirements.
ID Requirement Resolution
Supported Missions
2.1 Rendezvous with orbiting object Auto RENDEZVOUS capability,
Autopilot
2.2 Deployment of satellite Payload capability of SimGryphon

7.1.3 User Interface

The architectural design succeeded in providing a framework for the development,
implementation, mddification and testing of a user-centered virtual interface. Initially,
very little was known about the style, methods, and functionality of the interface, yet the

architecture provided the flexibility to experiment and the firewalls to prevent changes
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from accelerating the system integrity towards chaos. The interface instantiations used to

fulfill each interface requirement are listed in Table 12.

Table 12 - Completion of Interface Requirements.

ID Requirement Resolution
Interaction Methods
3.11 All functionality via three button mouse Left button - geometry selection
Middle button - head movement
Right button - field of view
3.12 HMD with head tracking N-Vision HMD and Ascension Bird™
Configurable Cockpit
3.21 Selectively display information Minimizable panels
3.22 Modify location of information Movable panels
Displayed Information
3.31 Gryphon state in atmosphere Virtual HUD, Aero panel
3.32 Gryphon state during entry/reentry Virtual HUD, Trajectory, Aero panels
3.33 Gryphon state in space Virtual HUD, Orbit panel
3.34 State of consumables Engineering and Payload panels
3.35 Target information Target panel
3.36 Locating/acquiring targets Target panel, selection of locators
3.37 System management and diagnosis Engineering and Payload panels
3.38 Investigate hyper-text paradigms Engineering panel
3.39 Minimize obstruction of view Transparent panels
Controlling the Gryphon

341 No throttle and stick Mouse interaction, Virtual HUD
342 Change state in the atmosphere Virtual HUD, Autopilot
343 Change state in space Virtual HUD, Target panel
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The architecture succeeded in supporting the incremental development of the user
interface by isolating user interaction from all components of the VSP, with the exception
of the main Sim class. The Sim’s TranslateInputs routine polled the various input devices
and either directly caused changes in the VE (as in the case of keyboard input) or
generated events processed independently of their source. Generally, the events were
generated by using the mouse to select geometry in the virtual environment.

The conversion of user input to events allowed multiple input sources to reliably
produce identical results and made the development of event processing independent
from input processing. The event method could also provide interaction for an intelligent
agent. In this case, the agent could produce events that cause changes in the interface
and/or the environment on behalf of the user.

To simplify interaction development, event processing was dividing into two
stages. The first stage occurred in the Sim and caused changes to entities and properties
of the virtual environment. The second stage occurred in the Cockpit and caused changes
to the virtual user interface. This staging was peﬁo@ed for two reasons. The Sim was
the only class with access to all the entities and components of the VE. Second, the
Cockpit was a dynamic, complex component that underwent continual, occasionally
radical changes. The alternative, requiring a multitude of methods in the Cockpit to
generate the necessary functionality, would have increased the complexity of the event
processing.

Results on the actual interface design, development, and usability are given in

Capt John Lewis’ thesis [Lewis97].
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7.1.4 Virtual Environment

The VSP succeeded in developing several aspects of the environment previously
unexplored at the AFIT Virtual Environments Lab. The integration of geographically
accurate terrain into a simulation based on a round earth coordinate system (WGS84)
resulted in the ability to immerse the user in the atmosphere, in space, or anywhere in
between. The visible atmospheric transition increased the presence of the user by making

the environment change as expected. The environmental requirements summary is shown

in Table 13.
Table 13 - Completion of Environmental Requirements.
ID Requirement Resolution
Environment
4.1 Convincing terrain near Edwards DTED based with LOD and textures
AFB '
42 Model Earth, Sun, Moon EarthProp, SunProp, MoonProp
4.3 Earth orbiting objects GPS, DMSP, DSCSII, TDRS, Molniya,
Space station
44 Day/night, atmospheric/space Calculation of sky coefficient, fading stars
transition

Adding realistic terrain based on DTED data and geographically correlated
textures dramatically improved the immersive effect of the VSP. Previous efforts using
either finite flat planes or terrain created from someone’s imagination immediately
destroyed any sense of immersion. However, the combination used in the VSP was

accurate enough to invite the user to accept the environment. The user could fly around
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and see the green mountains rise up around the desolate tan lake beds of the Mojave
Desert where Edwards AFB is situated. Figure 24 and photo here

Figure 25 are screen captures from the VSP showing the terrain around Edwards AFB.

Figure 24 - Runway pattern of Edwards AFB.
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Figure 25 - Example terrain near Edwards AFB as seen from spaceplane.

The Sun and Moon also heightened the sense of immersion by improving the
modeling of day/night illumination differences, moon phases, and even the seasonal
change in sunrise and sunset times. Figure 26 is a view of the Earth from a high earth
orbit showing the day/night terminator. Unfortunately, an element missing from the VSP
is the casting of shadows. Addition of shadows would likely offer another dramatic
increase in user immersion and automatically create eclipses and other illumination

effects.
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Figure 26 - View of Earth from high Earth orbit showing day/night terminator.

The VSP populated the VE with numerous satellite systems. Satellites from the
Global Positioning System (25 satellites), Defense Meteorological Satellite Program (8),
Defense Satellite Communication System (10), Tracking and Data Relay System (6),
Molniya system (12) and a space station were added to the VE by creating polygonal
models and using NORAD Two-Line Element (TLE) sets for orbit initialization. Figure

27 - Figure 32 show the satellite models in their respective orbits.
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Figure 27 - Global Positioning System satellite.

Figure 28 - Defense Meteorological Satellite System satellite.
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Figure 29 - Defense Satellite Communication System satellite.
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Figure 30 - Tracking and Data Relay System satellite.
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Figure 32 - Space Station.
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The final environmental requirement related to the transition from the atmosphere
to space. Changing the color of the sky and modeling the fade in and out of stars
provided strong user cues about the current altitude and relative position of the Sun. The

constellations provided useful navigation and orientation clues in the space environment.

7.1.5 Miscellaneous

Table 14 lists the Miscellaneous requirements for the VSP and how the

implementation satisfied them.

Table 14 - Completion of Miscellaneous Requirements.

ID Requirement Resolution
Miscellaneous
5.1 Accept remote entities via DIS DISEntityManager, DISEntity,
DISEntityProp
5.2 Transmit Gryphon state via DIS BroadcastSimObject in Sim
53 Mean of 15 frames per second Average of 14.05 frames per second

The VSP acéepted and recognized a subset of the DIS protocol packets. In
particular, only entity state PDU’s were recognized and used to simulate remote entities,
and the Gryphon was the only locally simulated entity that had its state information
transmitted. However, the BroadcastSimObject routine used to transmit state information
of local entities accepts any SimObject as a parameter. Therefore, extension of
requirement 5.2 to include other entities modeled in the VSP could be accomplished by

simply calling BroadcastSimObject on additional SimObjects.
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Meeting the minimum frame rate requirement was challenging and required
constant attention and code optimization. The primary limiting factor for frame rate was
the draw process, so any simplification or minimization of geometry that did not penalize
the rendered quality of a scene was desirable. This geometric simplification was
generally accomplished using specialized culling or LOD’s.

A key example of the specialized culling was the 32,000 point star sphere. While
the SGI Reality Engine efficiently rendered textured polygons, it was much less efficient
at rendering the anti-aliased lines and points used for the star field. The efficiency was
further reduced because only a couple hundred stars were visible at any instant (given a
reasonable field of view). By grouping the stars into spatial regions using multiple
pfGeoSets, the cull process drastically reduced the number of stars that were actually
rendered, resulting in a shorter draw process and improved frame rate.

Several sample measurements of the‘VSP frame rate are given in Table 15. The
first trial exercised the VSP in the atmospheric regime by performing an automatic
takeoff, followed by a flyby of Edwards AFB and eventual landing. During this trial the
atmospheric control system, virtual landing system, Navigation, and Aero Flight panels
were all active with the field of view and head position at initial settings. The second trial
was executed while in the space regime and consisted of performing an automatic
rendezvous with DMSP satellite number two using deltaV option one. This trial lasted
approximately ten minutes, during which the Navigation, Astro Flight, Target primary-

and sub- panels were active with the field of view and head position once again at initial
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settings. During both trials all constellation lines, entity locators and trails were

displayed.
Table 15 - Average Frame Rates of VSP trials.
Four 250 MHz R4400’s Four 195 MHz R10000’s
Trial Onyx Reality Engine2 Onyx2 Infinite Reality
192 Mbytes main memory 384 Mbytes main memory
Atmospheric 13.36 {/s 30.05 f/s
Orbital 14.737 f/s 29.94 f/s

The results show that the frame rate requirements were nearly met using the
Reality Engine®, an impressive feat considering the VSP contained over half a million
primitives (triangles, lines, or points) and over 13 Mbytes of textures. The Infinite

Reality system demonstrated its prowess by producing a consistent 30 frames per second.

7.2 Architectural Goals

The architectural goals specified in Chapter 4 were not explicit requirements of
the VSP, but the completion and adherence to these goals directly impacted the success of
the VSP. By acknowledging the development process, separating the responsibilities of
simulation components, and supporting the user interface development, the architecture
aided the management and resolution of the demanding, ever-changing requirements of

the VSP.
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7.2.1 Support Development Process

To support the development process, the architecture needed to allow multiple
people to concurrently evolve the VSP without creating conflicts between components.
The lack of dependencies between simulation components allowed the team members to
progress independently on various aspects of the VSP without integration difficulties.
Because the architectural integrity was actively maintained by the members and code
integrations were conducted frequently, most integrations required less than an hour to
complete and test.

The object oriented design allowed incremental growth of base class functionality
to uniformly affect and extend the features and capabilities of the VSP beyond initial
expectations. Examples include:

o Entity trails were added as an inherent attribute of SimObjects rather than the

case by case approach used in the SSM.

e SimObjects included a method assigning a selection ID to the entity, allowing
any SimObject to create an event when it was selected by the user.

e All PropModels had methods for accessing state information in a variety of
standard coordinate systems. Standardization ensured that entities could
interact (at least with regard to their state) regardless of the regime they
operated within.

e The ability to track the viewpoint around a SimObject was added to the

Renderer and required no other changes to the simulation.
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7.2.2 Separation of Responsibilities

The purpose of separating the simulation responsibilities was to simplify the
individual components, prevent modifications from causing changes to external
components, and provide clear direction concerning where functionality should be
implemented. Primary examples included rendering and entity management.

The isolation of rendering functions resulted in enormous dividends in time and
effort. Development of the jitter and flimmer removal methods and resolution of all the
coordinate systems used in the VSP was an evolutionary process requiring many
iterations to complete. Performing all these tasks within the Renderer acted as a firewall
to keep these iterations from affecting other components.

An exception to this goal was necessary for the flimmer removal, because the
removal technique required sorting geometry into bins implemented using IRIS Performer
calls on individual pfGeoSets. Because SimObjects maintain their local geometry (which
could become arbitrarily complex), it was decided that they should account for any
custom geometry configurations and assign their geometry to the appropriate bin via the
PutGeomInBin method. However, SimObjects did not determine which bin they
belonged in; that was the responsibility of the Renderer. SimObjects simply responded to
the PutGeomlInBin call.

Separating entity propagation and representation into the PropModel and
SimObject classes also generated savings in time and effort by supporting code reuse.
For example, TwolLODObject’s were used for satellites, terrain patches, DIS entities, and

the Gryphon even though the entities used completely different PropModels (in particular
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the AstroProp, FreeFlight, DISEntityProp, and multiple PropModels, respectively). The
separation provided the means for the SimGryphon to use multiple PropModels without
requiring replication of code or the development and testing of a single PropModel

modeling a spaceplane’s movement through multiple regimes.

7.2.3 Support User Interface Development

This goal was motivated by the observation that the style and method of both user
interaction and the user interface were unknown when the architecture was designed.
Therefore flexibility within an established design was needed. The VSP fulfilled this
goal by separating the cause and effects of user interaction and providing specific
locations to add user interaction. The cause and effect separation was accomplished by
first converting user input into events and then processing the source independent events
by making specific method calls for each event. The centralization of the process
removed any ambiguity concerning where user interaction should be coded.

By making the top level Sim class collect and translate all user interaction into
events, different input devices could reliably and consistently modify the virtual
environment. This model also extends beyond user input and allows an intelligent agent

to create events that perform activities normally attributed to the user.

7.3 Flimmer removal

Although development of a flimmer removal technique was not a direct
requirement of this research, it became a vital element of the VSP and a key advancement

resulting from this effort. The technique drastically reduced the flimmering problem
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caused by the immense region the Gryphon operated in and permitted the VSP to develop
unhindered by concerns about the size and scale of the environment. It should be noted
that the flimmer removal technique does not completely eliminate all flimmer; it only
reduces the degree of flimmering in a specific scene.

The flimmer removal technique effectively increased the logical resolution of the
system’s depth buffer, without requiring changes in the underlying hardware. For
example, in the VSP the distance from the near to far clipping planes was increased a
thousand times without introducing additional immersion destroying flimmer. Without
the flimmer removal technique, the z-buffer would have required ten additional bits per
pixel to obtain an equivalent increase in depth buffer resolution (2'° = 1000). Given a
screen resolution of 1280 by 1024, this increase equates to 1600 kilobytes of memory.

In comparison, the memory requirements of the flimmer removal technique
increased with the number of entities in the virtual environment. Assuming the use of an
8-bit integer to store the bin assignment of each entity (yielding 256 bins, considerable
more than the four bins used in the VSP), over 1.6 million entities could be simulated
before the memory requirements of this technique surpassed the equivalent increase in the
depth buffer.

There were several complications and disadvantages associated with the
technique. Whereas the memory requirements were reduced (as compared to an increase
using z-buffer only), the technique required additional processing to sort the geometry
into the appropriate bins. Optimizations were performed that ensured that the additional

sort processing was only completed when entities transitioned between the near and far
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bins. The current implementation is dépendent on IRIS Performer functionality
(specifically the independent rendering of each logical bin), so migration to other
environments may require additional effort to replicate this functionality.

Complications arising from using multiple levels of detail were discussed in the
Implementation chapter. The TwoLODObject resolved the level of detail problems
created by the flimmer removal technique and the GeometryModel class allowed the use
of instancing to reduce memory requirements. While the level of detail complication was
resolved, a couple other potential problems with the current flimmer removal technique
were not addressed, primarily because they did not impact the VSP.

The first relates to intersection testing. Performer contains functionality for
performing intersection testing of line segments against the scene graph. Unfortunately,
flimmer removal creates a discrepancy between entities’ apparent and actual positions
with regard to the scene graph (see Figure 33). The translation of far geometry completed
by the flimmer removal technique may incorrectly occlude near geometry and result in
erroneous intersection data. An intersection routine could compensate by detecting an
intersection with far geometry and either ignoring the far intersection or continue the

intersection process searching for near intersections that are actually closer.
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Figure 33 - Intersection complications introduced by flimmer removal.

The second problem is due to the finite distance between the near-far divider and
the far clipping plane used by the flimmer removal technique. The problem surfaces
when a very large object in the near region approaches the near-far divider. If the object’s
geometry extends beyond the far clipping plane, it will be partially clipped until it
transitions to the far region, at which time the entire object will be visible (or possibly
have different portions clipped against the far region’s near clipping plane). For example,
in the VSP, the near-far divider was set to 300 km and the far clipping plane (for near

geometry) was at 480 km. Therefore, entities with geometry extending beyond 180 km
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from their origin could potentially be incorrectly rendered.  Fortunately, the largest
objects in the VSP were the 1° by 1° terrain cells whose corners only extended
approximately 78 km from their origin. Larger objects such as the Earth did not apply
since they were assigned to the permanent far bin.

Other than the complications discussed above, the flimmer removal technique
resolved the rendering problems associated with the expansive region simulated in the

VSP.

7.4 Results Conclusion

The discussion of flimmer removal and several resulting complications ends the
Results chapter. In addition to flimmer removal, resolution of the initial VSP
requirements and completion of architectural goals were addressed. The VSP succeeded
in meeting the challenges presented by the requirements of the initial prototype and the
architecture fulfilled it goals by providing a ﬂexible framework for meeting the
requirements using a rapid prototyping process.. The final chapter will present

conclusions of this research and propose areas for further investigation.
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8. CONCLUSIONS AND FUTURE WORK

The preceding chapter presented the results of the VSP with regard to the overall
goals and requirements as well as the specific foci of this research effort. The final
chapter of this document begins with a list of accomplishments attained during the
development of the Virtual Spaceplane and a review of the thesis statement. The chapter
closes by recommending several areas of research that would further improve the VSP’s

capability to model and investigate requirements for a military spaceplane.

8.1 Accomplishments

During its first year of development, the Virtual Spaceplane project succeeded in
prototyping a functional virtual environment for a military spaceplane. An architecture
specifically designed for rapid prototyping was used to implement a large, complex
virtual environment featuring a unconventional user interface for controlling a military
spaceplane through a variety of missions and operational regimes. In particular, the VSP:

e is based on a software architecture emphasizing support of the development

process, separation of concerns, and user interface development

e utilizes the CODB to further support the development process and assist in the

computaﬁonal distribution of system components

e simulates a concept military spaceplane by dynamically switching between

separate models targeted towards specific operation regimes of the vehicle
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includes a simple autopilot capable of directing the Gryphon towards an
atmospheric or orbital objective

supports rendezvous with orbiting objects and deployment of a satellite
features a virtual user interface based on a management approach to
controlling the spaceplane, rather than the traditional piloting approach.
presents a convincing representation of terrain near Edwards AFB, the Earth,
Sun, Moon, and stars, and the visible changes to the atmosphere during orbit
entry/reentry.

simulates the GPS, DMSP, DSCSIII, TDRS, and Molniya satellite systems
and an orbiting space station.

participates in large scale distributed virtual environments through a subset of
the DIS suite of protocols.

employs an original flimmer reduction technique for rendering the large

spatial extent of the virtual environment.

These accomplishments demonstrate that the initial development of a virtual environment

for a military spaceplane was completed and the groundwork has been laid for further

investigation and research.

8.2 Thesis Statement Revisited

The specific purpose of this research effort was to develop the architecture and

design for a military spaceplane virtual environment and to investigate several

implementation issues relating to the large extent of the environment. The architecture’s
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support of the rapid prototyping allowed a team of three researchers to concurrently
investigate a variety of areas while preventing the concurrent changes from impeding
progress on the project as a whole. An emphasis on separation of concerns and
responsibilities of system components enabled the addition and modification of
requirements and functionality throughout the VSP’s development without requiring
redesign and recoding effort of unrelated components. A centralized, two phase event
model allowed an initially unknown, unconventional, and usable interface to evolve
without being restricted by specific input mechanisms or changes in other components of

the virtual environment.

8.3 Future Work

Despite the accomplishments and successes of the VSP project and of this
particular research, continued effort in several areas should be pursued to extend the VSP
beyond its current capabilities. These areas include further expansion of the distributed
components of the VE, support for a greater variety of military spaceplane missions,
modeling of the internal systems of a military spaceplane, continued development of the
user interface, and extending the types of environmental phenomenon simulated by the

VSP.

8.3.1 Distributed Virtual Environment

Although the VSP currently supports a portion of the DIS standards, further effort
will increase its ability to participate in large scale distributed virtual environments. The

VSP should concentrate on using the High Level Architecture (HLA) for this effort rather
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than the DIS standards. Investigating HLA topics' complies with the recent Department of
Defense mandate and takes advantage of the sophistication and features of HLA.
Computational distribution can also Be accomplished on a more local scale by forking off
additional processes that execute the propagation models of local entities concurrently

with the main application process.

8.3.2 Missions

A wider variety of missions will increase the VSP’s value as a tool.for
investigating military spaceplane technology. These missions may include
reconnaissance of earth or space based targets, pop-up missions for deployment of
military assets, docking with orbiting stations, and investigating potential on-board
weapon systems. These missions are described in the military spaceplane system
requirement [PLSTD97] and technology roadmap [MSPICT97] documents as desired
applications. Therefore, the VSP should implement these missions to improve its ability

to investigate the capabilities of a MSP.

8.3.3 MSP Systems

The current VSP models a MSP’s movement through the environment without
considering the internal systems required to complete the operations. The following
systems should be simulated to increase the fidelity of the MSP model; engines,

propellant storage, thermal protection, life support, communication, and sensors.
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8.3.4 Interface

Continued development of the user interface should accompany all other future
work on the VSP. Interface development applies primarily to extension of the missions
and MSP systems, but may also include completely new areas. For example, intelligent
agents could assist the MSP commander in completing mission objectives by filtering
vast amounts of sensor data to find relevant or critical information. Any continued
interface effort should comply with the existing interface guidelines to maintain

consistency and usability.

8.3.5 Environment

Integration of phenomenology and environmental factors will increase the degree
of user immersion and realism of the VSP. These factors may include extending regions
of the globe covered by terrain models, increasing the quality of these terrain models, and
introducing atmospheric and space phenomenon such as Van Allen belts and weather that

potentially affects the completion of missions.

8.4 Conclusion

The domains of space and virtual environments are challenging areas that will
require tremendous amounts of effort to fully explore and exploit. The new Air Force
vision of Global Engagement and the investigation of military spaceplane technology are
two signs that the Air Force is starting a transition into becoming a space and air force.
Virtual Environment technology holds the promise of providing a new media for

exploring new concepts and interacting with the ever increasing power of modern
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computing systems. The Virtual Spaceplane project investigated some of the capabilities

possible when these two domains are merged into a single system.
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