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AFIT/GOR/ENS/98M-18 Abstract

The analysis of fuel-air mixing in a scramjet is often accomplished either with computational
fluid dynamics (CFD) algorithms or through experimental research. These approaches, while accu-
rate and reliable, are extremely expensive and thus not well-suited for use with conventional design
optimization methods. In this investigation, Variable-Complexity Modeling (VCM) is used to sig-
nificantly reduce the number of complex, expensive analyses required to optimize the design of a
scramjet fuel injection array. A design problem formulation for a lateral transverse injection array is
developed and a VCM approach to design optimization is conducted in two stages. Initially, a sim-
plified analysis model is used to provide relatively inexpensive predictions of design fuel-air mixing
characteristics. A parametric analysis is conducted to explore the design region, and a preliminary
optimal design is found using both Sequential Quadratic Programming and a Genetic Algorithm.
In the second stage, response surface methodology is supplemented with preliminary stage infor-
mation to minimize the number of expensive analyses required to finalize the design. It is shown

that only 25 design evaluations are required to develop a near-optimal design.
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A Variable-Complexity Modeling Approach to Scramjet
Fuel Injection Array Design Optimization

Chapter 1 - Introduction

1.1 Background

In 1903, the Wright brothers made their historic first flight into the skies at Kittyhawk. Since
then, aircraft have been designed and built with an unwavering purpose: to fly higher and faster than
ever befor‘e. Less than a century later, our sights are set on the ultimate goal of achieving flight at
any speed and altitude [1] . This quest will be realized by an aircraft capable of taking off from a
conventional runway, accelerating to hypersonic speeds, and coasting into' low-earth orbit.

Hypersonic speeds and transatmospheric flight are currently achievable, but not with an air-
breathing propulsion system. The SR-71, capable of flight speeds exceeding Mach 3, is the fastest
known air-breathing aircraft [2] . Only rocket propulsion systems are currently capable of reaching
hypersonic speeds. Rockets, however, must carry their own oxidizer for combustion, and therefore
are a costly and inefficient means of transporting payload through the atmosphere. An air-breathing
system does not suffer a comparable weight penalty, as the available oxygen in the atmosphere is
used for oxidation. Table 1 illustrates the contrast in typical takeoff weight fractions (TWF) for

rocket and aircraft systems [1] .

Table 1. Takeoff Weight Fractions

| TWF Rocket | Aircraft

Oxygen 65 % 0%
Fuel 24 % 30 %
Empty 7% 55 %
Payload 4% 15 %




The severe weight penalty imposed by the oxidizer results in reduced rocket payload and empty
weight fractions. Large, heavy vehicles are required to compensate for the small rocket payload
fraction. Reduced empty weight leaves less weight available for rocket structures, controls, and
instrumentation. This significantly reduces margins for error and results in less durable, more
expensive vehicles [1] . In contrast, aircraft are proportionately smaller and more cost-effective
since a larger weight fraction is available for payload. An aircraft is also more durable, since
more weight is available for the structure and systems. In addition, exceedingly complex and
expensive rocket launch facilities are not required for an air-breathing aircraft. These aircraft will
operate from traditional runways [1] , thereby significantly reducing the support costs associated
with rocket launches. Clearly, hypersonic air-breathing propulsion offers several advantages over
current rocket technology for transatmospheric flight. The promise of these benefits has fueled the

growth of hypersonic research, and renewed the quest to fly higher and faster.

1.1.1 Scramjet Engines

Transatmospheric flight will not be realized by traditional turbojet and ramjet engines, which
are incapable of reaching hypersonic speeds. Conventional engines, including those that operate
at supersonic flight conditions, decelerate the incoming airflow to p.rovide subsonic flow to the
combustor. Relatively low-speed flows are desirable in a combustor to allow sufficient time for
complete fuel-air mixing and efficient combustion.

As the entering air is decelerated by the engine inlet, the relative velocity of the air, and thus
its kinetic energy, decreases. Energy conservation requires that a decrease in kinetic energy be
accompanied by a corresponding increase in the internal energy of the flow. This conversion is
manifested as an increase in the pressure, density, and temperature of the airstream. As the flight

Mach number increases, the amount of kinetic energy converted to internal energy also increases.



For flight Mach numbers greater than abbut 6, the temperature increase caused by deceleration of
the flow to subsonic speeds is sufficient to incinerate most known structural materials. In addition,
such temperatures cause dissociation of the combustion constituents, and a subsequent loss of a
large portion of the chemical energy required for thrust generation [1] .

Therefore, the conventional approach of decelerating the flow to subsonic conditions must be
abandoned if flight Mach numbers above 6 are to be achieved. It is possible to avoid these exces-
sively high temperatures by limiting the flow deceleration in the engine inlet. As a result, the flow
entering the combustor remains supersonic and combustion must occur under supersonic flow con-
ditions. An air-breathing engine that employs supersonic combustion is referred to as a supersonic
combustion ramjet, or a scramjet [1] . The Air Force Research Laboratory (AFRL/PRSS) is cur-
rently conducting research to develop a scramjet engine. Figure 1 shows a scramjet combustor in

the AFRL/PRSS research facility.

B

Figure 1. AFRL/PRSS Scramjet Combustor Development Facility




1.1.2 Fuel Injection

Achieving stable and efficient combustion under supersonic conditions presents several chal-
lenges, most notably fuel injection. In a supersonic combustor, the residence time of any fluid par-
ticle is on the order of only 10~ seconds. Thus, sufficient penetration, mixing of the fuel and air,
and combustion must occur over an extremely short time period [3]. The problem is further com-
plicated by total pressure losses that are incurred when penetration and mixing rates are improved.
Total pressure losses translate directly to severe reductions in combustor efficiency [1] .

There are two primary methods used to inject gaseous fuel into a supersonic airflow: trans-
verse and swept-ramp injection. Transverse injection consists of a wall-flush port through which
a gas is injected directly into the supersonic freestream. Figure 2 is an illustration of transverse in-

jection with a single jet [4] . The transverse injection scheme is often enhanced by injecting the

yid

Figure 2. Transverse Injection

gas at angles between normal and parallel to the freestream. Intuitively, normal injection provides

maximum near-field penetration but also maximizes pressure losses, and thus decreases thrust po-




tential. Parallel injection can enhance thrust due to additional momentum flux from the fuel jet,
but does not provide sufficient penetration and mixing within the required residence time [5] .
Swept-ramp injection is the injection of a gas from the downstream face of swept ramps placed
in the freestream. The presence of swept ramps causes spillage of high pressure air off and around
the inclined compression surfaces, thereby generating vorticity to enhance mixing [6] . A typical

swept-ramp injector is illustrated in Figure 3. This method appears to yield significant improve-

Flow Direction

Figure 3. Swept-Ramp Injectors

ments in far-field mixing, but also contributes significantly to pressure losses in the combustor. In
addition, ramps placed in the freestream may require active cooling mechanisms to prevent inciner-
ation at high flight Mach numbers. While transverse and swept-ramp injection are both considered
viable candidates for future combustor designs, an investigation of both methods is beyond the scope
of this study. Due to the availability of analysis software [7], this investigation focuses exclusively

on transverse injection.

1.1.3 Scramjet Combustor Analysis

As with many engineering design problems, scramjet combustor analysis is often accomplished
via computational algorithms. Computational fluid dynamics (CFD) methods currently provide
results that agree closely with the available experimental data for non-reacting flows. However,

CFD analysis is extremely time-consuming, even on the most powerful computers. The cost of



executing a three-dimensional CFD simulation for scramjet combustor analysis is estimated to be
on the order of $10,000 per run {7] . Such extreme computational intensity is a severe impediment
to research aimed at enhancing fuel injection efficiency. Moreover, it is not feasible to use CFD in
conjunction with conventional mathematical programming methods, which would require hundreds
of CFD runs in the course of determining an optimal fuel injection design.

Billig and Schetz [7] have developed a simplified analysis method, JETPEN, to predict the
major properties and features of a transverse injection flowfield at a reasonable computational cost.
The results obtained with JETPEN were compared to the experimental data in [5], [8] , and [9] ,
and found to be as accurate as results obtained from the most sophisticated CFD codes [7] . The
JETPEN code is, therefore, capable of providing reliable design assessments rapidly enough to

make integration with a conventional optimization approach computationally feasible.

1.2 Purpose of the Research
Scramjet fuel injection array design has not been previously studied in the context of a design
optimization problem. As such, this investigation begins with a formulation of the design problem

and a description of the design evaluation method. A fuel injection plate, illustrated in Figure 4, will

Injectors

%\\\_j// Block Dimensions:

@ 5” X 10”

Figure 4. AFRL/PRSS Fuel Injection Array



be designed for the AFRL/PRSS combustor shown in Figure 1. The fuel injection array consists of
a lateral row of circular, wall-flush injector ports that will be designed to optimize fuel-air mixing.
The purpose of this research is to develop a Variable-Complexity Modeling (VCM) approach to
minimize the cost of optimizing the scramjet fuel injection array design.

VCM is a two-stage approach designed to minimize computational effort by reducing the num-
ber of complex analyses required to locate an optimal design. The VCM approach is illustrated in

Figure 5. Initially, a simplified analysis method is used in conjunction with conventional optimiza-

INITIAL STAGE

l
AI«

SOP 7 GA ——

Number
of
Evaluations

.

RSM ——

FINAL STAGE

| |
1 |
JETPEN CFD

\

Model Complexity

Figure 5. Variable-Complexity Modeling Approach

tion techniques to quickly explore the design space and develop a preliminary optimal design. The
size and complexity of the problem are reduced in this stage by screening out regions of the design
space that obviously do not contain the optimal design. In this investigation, JETPEN is used as the
simplified design assessment tool and two optimization methods, Sequential Quadratic Program-
ming and a Genetic Algorithm, are used to develop the preliminary optimal design. In the second

stage of VCM, complex analysis methods are used in conjunction with response surface methodol-



ogy to verify the preliminary analysis and finalize the design. However, since JETPEN is capable
of providing accurate and reliable design assessments [7] , it is used in this investigation to demon-
strate the final-stage VCM approach and thus provide a basis for future research; time limitations
precluded the use of CFD and/or experimental analysis methods in this study. This investigation

concludes with recommendations for future research.



Chapter 2 - Literature Review

2.1 Overview

The literature relevant to this effort is conveniently divided into two categories. First, literature
related to the study of transverse injection is presented. Emphasis is placed on developments con-
tributing to an understanding of the fundamental flow physics, as well as on the progress of mixing
and penetration enhgncement. Second, relevant optimization literature is reviewed from a histori-
cal perspective. The focus is not to present a comprehensive review of optimization, but rather a
survey of the algorithms and heuristics commonly employed to optimize computationally-intensive
engineering design problems. This review concludes with an introduction to Variable-Complexity

Modeling (VCM)-a relatively new technique developed to minimize the cost of optimization.

2.2 Transverse Injection

Transverse injection is the injection of a gas from a wall-flush port into a crossflow. The open
literature is abundant with studies of transverse injection and the factors that influence the fuel-air
mixing performance. Several factors are considered critical to the penetration, mixing, and pressure
loss characteristics of a transverse injection configuration. These include the dynamic pressure of
the injectant, the angle of injection, and the number and arrangement of injectors employed [3] .

Each of these factors is addressed in detail.

2.2.1 Injectant Dynamic Pressure

The ratio of injectant dynamic pressure to freestream dynamic pressure (g) significantly affects
mixing and penetration of the jet [10] . Consider first the effect of § on mixing rate. Increasing g
may be achieved either by increasing the velocity or density of the injectant stream. If the velocity
is increased, there is less time available for the injectant to mix with the freestream, and mixing rate

decreases. Similarly, increasing the density results in an injectant stream that is more resistant to

9



mixing with the main flow, and thus more time is required for mixing. It is therefore apparent that
mixing rate is inversely proportional to g [6] . This is true for near-field mixing [3] , but far-field
mixing is relatively unaffected by g [8]. In the far-field, mixing is largely dominated by small-scale
turbulence effects [11] .

In contrast, penetration is improved by increasing g, as a more dense or more rapidly moving
stream forces the Mach disk further into the crossflow [S] . If the injectant stream is supersonic, it
will penetrate the main flow further than a sonic injectant stream. However, increased penetration

requires that the jet be turned more sharply, which generates increased pressure losses in the flow

[10].

2.2,2 Injection Angle

Normal injection angles can produce reasonable penetration and mixing. This configuration,
however, requires the freestream to turn the injectant flow through a 90° angle. This turning,
coupled with the barrier presented to the main flow by the jet, causes significant total pressure losses.
In contrast, fuel injected parallel to the main flow can contribute to thrust generation. quever,
parallel injection produces no penetration and relies strictly on shearing effects for mixing [5] .
Shearing results in extremely slow mixing rates, and thus requires a p.rohibitively long combustor
to complete the process [1] .

Several attempts have been made to balance the advantages and disadvantages of these ex-
tremes. McClinton [9] investigated circular jets at 30°,45°,60°, and 90° downstream angles and
concluded that decreasing the angle increased penetration and mixing and reduced total pressure
losses. Mays, Thomas, and Schetz [5] studied low-angle injection and found that penetration de-
pended strongly on g. They demonstrated that a jet injected at 15° attained the same penetration

as a normally injected jet, given similar dynamic pressure ratios. In addition, they showed that de-

10



creasing the injection angle improves the near-field mixing rate, but has little effect in the far-field.
Continued attempts to decrease the angle, however, eventually produce results approaching the par-

allel injection scheme. No studies were found to indicate the limit of low-angle injection.

2.2.3 Injection Array

The effects of multiple injectors have also been investigated. Rogers [8] injected hydrogen
into a Mach 4 crossflow with a lateral row of injectors at two distinct spacing intervals: 6.25 and
12.5 jet diameters. Interaction of the jets was found to be minimal for the wider array, and thus the
results were comparable to a single jet configuration. The narrower array produced significant jet
interaction, which resulted in 30% greater total pressure losses and decreased mixing efficiency. By
staging two injectors in the axial direction, Hollo ez al. [11] produced a significant .improvement in
initial mixing rate over that of a single injector, and concluded that injector configuration is critical to
near-field mixing. Furthermore, it is noted that mixing is most effectively enhanced through vortex

generation and jet-vortex interaction, which unfortunately lead to increased total pressure losses.

2.3 Optimization

A review of the literature produced scant evidence of scramjet combustor design optimization.
This is not surprising, as most of the efforts to date have focused on understanding and modeling
the complex physical phenomena involved. However, scramjet research is progressing rapidly:
NASAs Hyper-X program is scheduled to fly a hypersonic aircraft powered by a hydrogen-fueled
scramjet engine to Mach 7 in early 1999 [2] .

As basic research is augmented with flight-test data, analytical and CFD modeling will be-
come increasingly reliable. Once sufficient understanding of scramjet combustion is achieved, a
portion of the research effort will shift to optimizing the design. This has certainly been true of other

aerospace disciplines, most notably controls, structures, and more recently, aerodynamics. Opti-

11



mization techniques pioneered in these fields provide an appropriate point of departure for the study

of scramjet optimization.

2.3.1 Mathematical Programming

Early work in engineering design optimization relied primarily on well-established mathemat-
ical programming (MP) techniques. These methods solve the general nonlinear programming prob-
lem by generating a sequence of design points (zg, 1, Z2, ...) using the iterative scheme [12] :

Xp+1 — X + rdg
where k designates the current iteration, Xy, is the design vector at the kth iteration, dy, is the search
direction, and 7y is the step-size taken along the search direction. A framework for the general MP
algorithm can be described as follows [12] :

Step 1: Select an initial design, X,; set & «— 0

Step 2: Determine the search direction, dy,

Step 3: Determine the step-size, 7y

Step 4: Set X41 «— Xg + 7dg

Step 5: Test for convergence

Step 6: If stopping criteria is not met, set k < k& + 1 and go to Ste‘p 2.

MP algorithms are distinguished by the strategies selected to determine dy, and 7y in Steps 2
and 3. Due to their size and complexity, practical engineering design problems require algorithms
that are highly efficient and globally convergent (converge from any initial starting design). One of
the most successfully applied MP techniques is Sequential (or Recursive) Quadratic Programming
(SQP), which has been widely used to solve a variety of problems, including large-scale structural

optimization problems. In this method the search direction is determined by solving a quadratic

12




subproblem at each iteration [13] :
minimize =~ Q =dT - Vf+1d7 H(x,\)-d

subject to:
g;(x)+dT-Vgi(x) <0 j=1,...m

where d is the search direction, V£ is the gradient of the original objective function, \ is a vector
of Lagrange multipliers, H is an approxirﬁation of the Hessian of the Lagrange function (V2L), and
m is the total number of constraints. It can be shown that this subproblem is identical to a Newton-
Raphson solution of the Kuhn-Tucker necessary conditions for the original problem [14] . This
method has been shown to be globally convergent and to converge superlinearly near the solution
point [15] .

Thanedar et al. [14] applied several variations of SQP to seventeen .moderately-sized struc-
tural design problems. SQP efficiency was heavily influenced by the effective use of a potential
constraint strategy. This potential constraint strategy is based on the observation that, for many
problems, only a small number of the total constraints are active at the optimal design point. Thus,
the number of constraint gradient evaluations is significantly reduced by selecting an appropriate
subset of the constraints at each iteration [14] . This is particularly important for problems that rely
on expensive finite element or CFD analyses to obtain gradient information. A thorough discussion
of potential constraint strategies can be found in [16] .

Although SQP methods are globally convergent, they generally perform poorly on problems
that possess multiple local optima. Belegundu and Arora [15] applied a variant of SQF, known as
Pshenichny’s method, to structural design problems known to possess a global optimum, as well as
several local optima. The small step-sizes inherent to Pshenichny’s method (and many other SQP
variants) caused consistent convergence to the local optimum nearest the starting design. In fact,

the algorithm was effective only when the starting design was known to be in the region of the global
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optimum. This constitutes a major disadvantage of MP methods, since multiple local optima are
common in engineering design problems and the location of the globally optimal region is rarely
known a priori.

Belegundu and Arora suggest that a hybrid method could be used to overcome this problem.
Initially, the globally optimal region can be located with a method using a large step-size. Pshenich-
ny’s method can then be used to quickly converge to the minimum [15] . Other MP-based global
optimization techniques include the stochastic approach of Kan and Timmer [17] and the tunneling
method of Levy and Gomez [18] . In the stochastic approach, the objective function is sampled at
a fixed number of points in the design space. Local searches are performed in promising regions,
and the process is repeated to increase the likelihood of locating the global optimum. The tunnel-
ing method also involves repeated local searches. However, each time a local optimum is found,
the method seeks another design point with an equivalent function value. If such a point is found, a
local search is started from that point to locate an improved local optimum. If no such point exists,
then the current local optimum is also the global optimum.

Although global optimization is currently an area of intensive research, the stochastic and
tunneling methods highlight the difficulties yet to be overcome. Global stochastic methods often
involve a large number of function evaluations to achieve a high probability of locating the global
optimum. Since most practical engineering design problems involve complex design evaluation
procedures such as CFD, global stochastic methods are usually extremely expensive. The tunneling
method is significantly more efficient, but currently requires an explicit statement of the objective
function. For most practical design problems, system performance can only be expressed as an

implicit function of the design variables.
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2.3.2 Heuristics

Heuristic methods have been explored as alternatives to MP for locating the global optimum
in problems possessing multiple local optima. In determining the search direction dj, MP methods
only allow directions that result in improvement of the objection function. If an MP algorithm
encounters a local maximum, it cannot escape since all directions away from the local maximum,
within a specified neighborhood, result in an objective function decrease. In essence, the MP
method cannot move downhill to climb an adjacent, higher peak. Heuristic methods are designed
to accept all uphill moves, and also to allow downhill moves in specified circumstances. This
strategy allows the possibility of escaping from local optima, and thereby increases the probability
of locating the global optimum.

Simulated Annealing (SA) is a heuristic method based on the physical process of annealing,
a two-step thermal process for obtaining low (minimal) energy states of a solid in a heated bath.
The solid is first melted by increasing the temperature of the bath to some maximum value. The
temperature is then carefully decreased uhtil the particles are arranged in a highly-structured lattice.
To achieve this minimum energy state, the maximum temperature must be sufficiently high, and the
cooling rate must be sufficiently slow. In 1953, Metropolis developed the following algorithm to
simulate the annealing process (k is Boltzmann’s constant and 7" is the temperature of the heated
bath) [13] :

Step 1: Perturb the system energy from the current state, Ej, to a new state, Eo

Step 2: If the energy of the system drops (Eo < E71), accept Eo

Step 3: If the energy of the system rises (E2 > Ej), accept E with probability:

- (Eli’_; El)]

The simulated annealing optimization algorithm is analogous to the Metropolis algorithm. In

P:exp[

SA, the energy of the system in state ¢ (£;) is represented by the objective function value at a

15



particular design point. Step 3 is the provision that allows deterioration of the objective function
and permits SA algorithms to escape local optima [19] .

Aly et al. [20] recently compared SA to an SQP method in designing the shape of a High
Speed Civil Transport (HSCT). This problem is particularly relevant for two reasons. First, a CFD
solver was used, and thus objective function and constraint evaluations were expensive. Second,
the problem contained several local minima. As expected, the SQP method often converged to
local minima, while the SA algorithm located the global minimum in each of the three design prob-
lems. Both the MP and SA algorithms required a large number of CFD evaluations, and thus were
extremely expensive from a computational standpoint.

Ogot ez al. [21] also conducted a comparison of SA and SQP on three supersonic flow design
problems. In this case, the existence of strong shock waves in the flow combined with CED dis-
cretization errors to produce a non-smooth, noisy objective function. This presented severe prob-
lems for the SQP algorithm, which was unable to locate the global minimum in several instances.
The SA method was unaffected by discontinuities and noise, but also proved to be inefficient. Al-
though several promising modifications to the basic heuristic were explored, the SA consistently
required approximately 150 to 200 CFD runs to converge.

Genetic Algorithms (GA) have also been used extensively in structural and aerodynamic de-
sign. A GA is an intelligent random search method based on Darwin’s theory of survival of the
fittest [22] . In a GA, multiple alternate solutions to the optimization problem represent individuals
in a natural population. Individuals are formed by encoding the decision variables and concatenat-
ing them to yield a single string. This chromosomal structure facilitates the simulation of evolution
through natural selection, mating, crossover, and mutation processes. The fitness of each individ-

ual in the population is represented by the objective function value corresponding to each potential
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solution. Thus, a solution to the optimization problem is found by using the gvolutionary processes
to maximize the fitness of the population.

As with SA, GAs are often successful in locating global optima, but are also computationally
expensive. Hajela [23] tested a GA on three structural design problems known to exhibit non-
convex and/or disjointed design spaces. In all cases, the GA located the optimal design where MP
techniques failed, but the required number of function evaluations was large. Similarly, Deb [24]
compared a GA with both an MP method and a random search method. As expected, the GA was
slightly more expensive than the MP method and significantly cheaper than the random search.

Obayashi and Tsukahara [25] , Anderson [26] , and Foster and Dulikravich [27] applied GAs
to aerodynamic shape design. Ineach case, the GA proved essential for successfully locating global
optima. Again, however, the number of required function evaluations proved to be quite large in
all cases.

Excessive computational cost in these GA studies is directly related to the need for large popu-
lations, which are required to maintain diversity in the search and prevent premature convergence to
a sub-optimal result. Population sizes between 30 and 200 are typical, and a function evaluation is
required for every individual. Krishnakumar [28] reports impressive results with a micro-genetic
algorithm (uGA) which maintains a very small population of 5 individuals. The uGA was com-
pared to a conventional GA and found to reduce the required number of function evaluations by a
factor of four. In this respect, the £GA represents a significant improvement over conventional SA

and GA algorithms, and is thus a viable candidate for expensive optimization problems.

2.3.3 Response Surface Methodology
Response Surface Methodology (RSM) can be exploited to significantly reduce computational

effort in the optimization process, and is often the only feasible approach to CFD-based design
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problems. A response surface is a polynomial approximation to the actual response of a complex
system. The model used for approximation is [29] :
y=2ZB+¢
where y is a vector of responses, Z is an experimental design matrix, 3 is a vector of unknown
polynomial coefficients, and ¢ is the error. Experiments are conducted to measure the system
response at prescribed points in the design space, and the method of least squares [29] :
B=(2"2)" 2Ty
is used to estimate the polynomial coefficients. In this context, an experiment is one complete
execution of the design evaluation code. The resulting response surface:
g =1p
is typically a low-order polynomial that is easily optimized with a standard MP algorithm. There-
fore, the computational intensity of the problem is determined not by the op_timization method se-
lected, but by the number of experiments required to construct the approximating polynomial.

The fundamental experimental design is a full-factorial design. To construct a second-order
response surface using a full-factorial design, three levels of the n design variables are required to
estimate the coefficients [29] . Thus, 3 experiments are required. Full-factorial designs quickly
lead to a large number of experiments as the number of design variables increases. For example, a
problem containing only four design variables requires 3* = 81 experiments.

The Central Composite Design (CCD) is a popular alternative to full-factorial designs. By
augmenting a first-order design, which requires only 2" experiments, a second-order response sur-
face can be constructed using just 2" +2n+1 design points [29] . This reduces the required number
of experiments for a four-variable problem from 81 to 25.

In some cases, CCDs may still be too expensive, and saturated experimental designs must be

used to further reduce the number of experiments. Box and Draper [30] have developed minimum-
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point second-order designs consisting of %(n +1)(n + 2) design points. For such a design, a four-
variable problem requires just 15 experiments, compared with 81 and 25 for the full-factorial and
CCD designs, respectively [31] . These designs qontain no residual degrees-of-freedom to test for
model inadequacy, and thus should be used only when cost constraints preclude the use of alternate
designs.

Chen et al. [32] applied RSM to the design of an HSCT with two important results. First, the
Flight Optimization System typically used in HSCT design produced noisy objective functions that
often confounded MP optimizers. The response surface approximation yielded a smooth objective
function and thus increased the chances of finding the optimal design. In addition, considerable
computational efficiency was gained (85 vs. 531 experiments) without loss of accuracy through
the judicious use of design of experiments. Unal ef al. [31] used RSM to optimize a dual-fuel
propulsion system problem with four design variables. The optimal design results were in close
agreement with those obtained from a gradient-based optimizer, and were found with significantly
less computational effort.

The most widely used experimental designs, variance-optimal designs, are constructed to min-
imize random error. As such, these designs do not directly address the systematic bias that arises
from approximating a complex response with a low-order polynomial. Roux et al. [33] used
variance-optimal designs for three structural problems of increasing complexity. In each case, the
response surface was constructed several times over successively smaller regions of the design space
using a variance-optimal design. Smaller subregions, which inherently reduce the systematic bias,
were found to significantly increase the accuracy of the response surface approximation.

If the experimentation method is entirely deterministic, such as with JETPEN or CFD, there
is no random error and hence the approximation problem is dominated by systematic bias [32] .

Since systematic bias is of primary concern in such cases, minimum-bias designs should be used
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in lieu of variance-optimal designs to construct response surfaces. Systematic bias results from
approximating a system response with an insufficient model. If the fitted model is expressed as:
y= Zlfal

then the true system response can be written as:

E(y) = 218 + 228,
where 3; and 3, are the unknown coefficients of the true model, z; contains the terms of the true
response that are estimated in the fitted model, and z2 contains the higher-order terms not accounted
for in the model that must be protected against in designing the experiment. Minimum-bias designs
are developed by specifying z; and z; and minimizing the average squared bias over a region of ‘

interest [29] . This results in the following sufficient conditions for minimum-bias designs:
Mn = pg ' (D

Mz = pyo 2

where the design moment matrices are given by:

A 7T 7

My =

and Mo =

and the region moment matrices are:
=k [ aald = 7d
By = z1z1 dx and pyp =K | 7125 dx.
R JR

In these expressions, R is the region of interest, K is the inverse of the region volume, and [V is the
total number of experimental observations.

Venter and Haftka [34] compare variance-optimal and minimum-bias designs for constructing
response surface approximations in structural design problems where bias error is present. In these

cases, the response surfaces constructed from minimum-bias designs were indeed found to be more

“accurate than those based on variance-optimal designs.
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2.4 Variable-Complexity Modeling

Variable-Complexity Modeling (VCM) is an approach that utilizes both simple and complex
system models to combine the best features of MP, heuristic, and RSM optimization methods. Ini-
tially, an MP or heuristic method is used with a simplified system model to quickly locate an approx-
imate global optimum and screen out regions of the design space that obviously do not contain the
optimal design. The complex system model is then run at experimental design points surrounding
the approximate global optimum, and a response surface is constructed. In this manner, use of the
-expensive, complex model is held to an absolute minimum. Finally, the response surface is easily
optimized using a conventional MP algorithm [35] .

VCM was successfully demonstrated by Gangadharan ez al. [35] in the design of a beam
using finite element analysis. An MP method with an active set strategy was used to locate the
approximate global optimum. The design space was reduced from 3% = 243 to 43 design points
with ascreening heuristic and a CCD. A response surface was constructed using the complex model,
and an SQP algorithm was used for subsequent optimization. By constructing response surfaces
from both the full and reduced designs, it was confirmed that using the simple model to reduce the
design space significantly improved the accuracy of the response surface.

Similar variations of VCM have been applied to more complex aerodynamic and structural
optimization problems. Hutchison et al. [36] used VCM to minimize gross weight by optimizing
the aerodynamics of an HSCT wing. VCM significantly reduced computational intensity, yet pre-
served the interdisciplinary design influences typically masked by simplified approaches. Giunta
et al. [37] used a similar problem to compare the accuracy of VCM with a sequential approximate
optimization strategy. Differences in the optimal designs found by each method were negligible.

Kaufman ez al. [38] also used VCM to minimize HSCT wing structural weight, and found that
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screening the design space with simplified models improved response surface accuracy by several
orders of magnitude.

Variable-Complexity Modeling can be applied to scramjet fuel injection design optimization
using the simplified jet penetration analysis, JETPEN, developed by Billig and Schetz [7] . JET-
PEN is based on the well-known case of an underexpanded jet discharged into a quiescent medium
at a known back pressure [39] . Essentially, the effective back pressure in the supersonic crossflow
is modeled with an average of the freestream static pressure and predictions for the pressure on in-
clined bodies based on Newtonian Impact Theory. The jet flowfield is treated as consisting of two
distinct regions, shown in Figure 6 [39], which are divided by a normal shock structure known as the

Mach disk. From the injection port to the Mach disk, the jet is regarded as an intact entity. The jet

— ¢ Barrel Shock
= : Mach Disk

d : Plume Diameter
d’  : Injector Diameter

Jet Boundary

Figure 6. Transverse Injection Model

flow in this region is assumed isentropic, and mixing of the jet with the primary stream is neglected.
Downstream of the Mach disk, the expanded jet flow is turned and mixed with the freestream. Tur-
bulent mixing of the primary stream into the jet plume is modeled with mass continuity, streamwise
momentum conservation, species conservation, and energy conservation equations, as well as an

entrainment relation derived for high-speed flow [7] .
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There are, however, at least two limitations to JETPEN. First, it does not provide total pres-
sure loss data, which is critical in assessing overall combustor efficiency. This limitation essentially
renders JETPEN a preliminary design tool, and highlights the need for CFD and/or experimental
verification in the second stage of VCM. Second, JETPEN is not currently capable of examining
staged injection configurations. Staged configurations have recently been used to produce an aero-
dynamic ramp effect, and thus represent a promising alternative to swept-ramp injection without the
drawbacks of placing a physical ramp in the flow [40] . This limitation restricts the scope of this

investigation to lateral fuel injection arrays.

2.5 Summary

Each of the optimization methods described in this review features characteristics designed to
overcome specific difficulties that often arise in engineering design problems. However, all ex-
hibit disadvantages that preclude their individual use for highly complex, computationally intensive
problems. MP methods are globally convergent and highly efficient when near the design optimum,
but generally perform poorly in the presence of noisy objective functions and/or multiple local op-
tima. Heuristic methods do not require smooth objective functions and can often locate the global
optimum, but at the cost of many objective function evaluations. RSM reduces the required num-
ber of experiments, but accuracy is sacrificed if the design space is not reduced to an appropriate
subregion of interest.

In Variable-Complexity Modeling, MP heuristics, and RSM are selectively combined to miti-
gate the respective shortcomings of each method. The objective of this investigation is to develop
an appropriate combination of these methods and demonstrate a VCM approach to scramjet fuel

injection array design.
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Chapter 3 - Scramjet Fuel Injection Array Design

3.1 Overview

Fuel injection in a supersonic crossflow is still a challenging research problem, and thus little
effort has been devoted to array design in the context of traditional optimization. The objective of
this chapter is to develop and present both a formal statement of the lateral transverse fuel injection
array design problem, and a method for evaluating design performance. Design problem formula-
tion is the process of developing a mathematical model to describe the physical system of interest.
The general form of this mathematical description is:

minimize f(x)
subjectto: gj(x) < 0,5=1,..m

where X is a vector of n design variables and m is the number of constraints on the system. The solu-
tion to this problem provides a design vector x that optimizes some measure of system performance
f(x) within prescribed limitations on system behavior, g;(x), j = 1, ..., m. Both minimization and
maximization problems may be treated, since minimizing f(x) is equivalent to maximizing — f(x).

The development of a mathematical model for scramijet fuel injection array design is presented
in five sections: a general description of the array configuration and detailed presentations of design
variable selection, system constraint description, performance measure identification, and objective
function development. The chapter concludes with a formal statement of the scramjet fuel injection

array design problem and a description of the approach used to evaluate design performance.

3.2 Problem Description
The focus of this investigation is the design of a transverse fuel injection array for the AFRL/PRSS
scramjet combustor shown in Figure 1. The general design concept, illustrated in Figure 7, consists

of several (IV) injectors arranged laterally across the width (I) of a rectangular combustor. The in-
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jectors are circular, with diameter d;, and are located at evenly-spaced intervals (w) in the array. In
addition to the total combustor width (I), a non-fueled width (I, #) 1s defined to account for cases
in which manufacturing limitations prevent the installation of injectors within a prescribed distance
from the combustor sidewalls. If no such restriction exists, then ,, s =0.

The flow conditions are symmetric for this design, and thus the analysis is conducted only for
the bottom half of the combustor (h/2). Although Figure 7 shows injectors at the bottom only, the
final design will also have a second array to inject gas from the top of the combustor downward into

the flow.
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Legend:

1 combustor width
Iy non-fueled width
h combustor height
w jet spacing

d®  jetdiameter

Figure 7. Injection Array Cross-Section

3.3 Design Variables

Formulation of the design problem begins with the selection of appropriate design variables.
There are, in general, many potential design variables for this problem. However, the fuel injection
array is to be designed to meet a specific mission requirement, and thus several potential variables
must be considered fixed mission parameters. The mission requirement for this investigation, de-
fined by AFRL/PRSS, is summarized by the parameters in Appendix A. These parameters include

the fuel type, combustor size, and primary flow conditions in the combustor.
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Given the mission parameters, the set of design variables for this problem is limited to the
variables required to specify the injection array configuration and the jet flow conditions. Two
additional values are sufficient to completely specify the lateral array design: the angle of fuel
injection (6;) and the number of fuel injectors in the array. (N). The injection angle is a direct
JETPEN input parameter, and is therefore a convenient design variable. The number of injectors

must be determined from Equation 22 (see Appendix B):

2
I
2
()
where
l
A = Tf
Q = 4f muor /T,
- WC;PT].

The fueled combustor width (I; = [ — l,,5) and the ratio of fueled-to-total width (A,) are known
parameters. The quantity () (derived in Appendix B) is a function of the primary flow conditions,
which are also known, and the jet flow conditions. Therefore, N may be calculated once the jet
flow conditions and the non—dimensionél spacing between the jets (w/ d;) are specified.

Since the injectant is assumed to behave as a perfect gas, only two independent intrinsic prop-
erties are required to completely specify the jet flow conditions. The jet total pressure (Pr;) and
total temperature (77;) are convenient choices, as they are direct JETPEN input-parameters. The
non-dimensional jet spacing (w/ d;f) is also aJETPEN input parameter, and is thus the final variable

needed to specify the design. The four design variables (z) are listed in Table 2.

Table 2. Design Variables

[ z | Description | Units |
0; Injection Angle deg
w/d; || Jet Lateral Spacing
Pr, Jet Total Pressure psia
Tr, Jet Total Temperature | °R
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3.4 Constraints

3.4.1 Behavioral Constraints

The performance of a particular fuel injection array is measured by the flow behavior predicted
by JETPEN for a given set of design variables. JETPEN predicts the flow behavior by solving the
governing continuity, momentum, and energy equations with respect to the prescribed conditions.
Thus, constraints on the behavior of the flow are implicit in JETPEN design evaluation. This
implicit relationship is expressed in the following equality constraint:

w
X=g {5_7':%7PT,~,TTJ-
J

where x is the vector of performance measures and g is a function that represents the governing

equations imposed by JETPEN.

3.4.2 Side Constraints

Experimental data in [8] and [9] indicate that high-angle injection yields good penetration,
but also results in a significant loss of total pressure in the primary stream. The magnitude of this
loss increases as the injection angle increases. Since the total pressure loss is not accounted for in
JETPEN, the injection angle is limited to a maximum of 70° for this investigation.

Low-angle injection produces comparable far-field penetration and mixing without incurring
the severe total pressure losses associated with high-angle injection. However, lower injection
angles require longer injectors, which result in greater total pressure losses in the jet. At extremely
low angles, it is both difficult and expensive to achieve a high total pressure at the injection point.
Thus, the injection angle is limited to a minimum of 10°, and the high- and low-angle injection
limits are bounded by the constraint:

10° < 6; < 70°. 3)
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At each design iteration, the jet specific heat at constant pressure (cp,) and ratio of specific
heats (y;) must be determined based on the proposed values of jet total pressure (Pr;) and total
temperature (1;). These calculations are accomplished using polynomial approximations derived
from tabular data provided by AFRL/PRSS. As a result, the ranges of Pr; and T, are limited by
the range over which the polynomial approximations are valid. In addition, the jet total temperature
must be high enough to ensure that the fuel (ethylene) is in a gaseous state during sonic injection.
These restrictions dictate the following constraints on the jet flow conditions:

20 psia < Pr,

7

< 650 psia “4)
850°R < Tr, < 1500°R. )

The non-dimensional spacing of jets within the combustor can be expressed by the following

analytical expression (derived in Appendix B):

w lf
Pl e— (©6)
4G NAQ)”

Since the combustor dimensions and primary flow conditions are known, limits on the jet spacing
can be determined from NN and the constraints on Pr; and Trr;.  The total number of jets in the
injection array (IV) is limited by the geometric restriction of fitting jets of finite diameter within a
prescribed combustor width. For this investigation, the feasible range.of N is constrained to:

3<N <10 D
The bounds in constraints 4, 5, and 7 are thus easily combined with Equation 6 to produce the
folléwing jet spacing constraint:

2.25
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3.5 Performance Measures
The merit of a fuel injection array design is measured by the distance downstream of the injec-

tors where sufficient fuel-air mixing has occurred and combustion may begin. Since the residence
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time of the combustion constituents is extremely short in a scramjet combustor, mixing must occur
as rapidly as possible. Thus, the optimal injection array design is the combination of §;, w/ d;, Pr,
and T, that produces sufficient fuel-air mixing over the shortest axial distance downstream of the
injection point.

The mixing characteristics of a particular design are measured by the penetration of the jet into
the primary stream, the expansion of the jet plumes, and the decay of fuel concentration in the jet.
Three criteria are used to define the levels of these characteristics that constitute sufficient mixing.
The axial distances where these criteria are satisfied thus comprise the performance measures for
the design. For convenience, non-dimensional performance measures, obtained by normalizing all
axial distances with respect to the combustor height, are used throughout this investigation; that is,

x __ Ti

represents performance measure (¢). For simplicity, the asterisk is hereafter omitted.
3.5.1 Jet Penetration

To maximize the time available for mixing, the jet must penetrate to the combustor centerline
as rapidly as possible. Therefore, the first injection array performance measure is the axial distance

required for centerline penetration. As illustrated in Figure 8, penetration of the jet is defined by

M,>1

—

Combustor Centerline

Figure 8. Jet Penetration
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the height of the uppermost edge of the jet plume (y) at a given axial station. Thus, the jet reaches

the centerline when:

h
y(z) > 3

where h is the total combustor height. In JETPEN, variables with dimensions of length are nor-
malized with respect to the injector diameter. Accordingly, the required penetration criterion is

expressed as:
y(@) o h/2

w2 g ®)

to facilitate design evaluation with JETPEN. The first performance measure z; is the axial station

where this penetration criterion is satisfied.

3.5.2 Plume Expansion

Mixing is also characterized by the rate of fuel plume expansion in the combustor. For a
lateral array of injectors, the axial distance where adjacent fuel plumes merge is an indicator of
the expansion rate. Figure 9 provides an overhead view of the injection array to illustrate plume

expansion.

Combustor Sidewall

Injector Array
1 ‘Plme Boundary

Legend:
w jet spacing
D(x) plume diameter

Figure 9. Plume Expansion
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Adjacent plumes merge when the plume diameter (D) is greater than the spacing between

injectors. Thus, the criterion for merging plumes is:
D(z w
2 g
3 3

The second performance measure xj is the axial station where the plume expansion criterion is

(10)

satisfied.

3.5.3 Fuel Concentration Decay
From the injection port to the Mach disk, the jet is composed entirely of fuel. Beyond the
Maéh disk, mixing progresses and the average concentration of fuel (cqy4) in the jet decreases as

the primary stream is entrained. Figure 10 is a typical plot of the average fuel concentration decay.

Fuel Ct vs Axial D

0.01

100 1000

Figure 10. Fuel Concentration Decay

To maximize combustion efficiency, the average fuel concentration in the jet must decay to
stoichiometric proportions. This criterion is expressed as:

Qavg(7) < for. (11)

The third performance measure x3 is the axial station where the fuel concentration decay criterion

is satisfied.
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3.6 Objective Function
Since mixing must occur as rapidly as possible, short axial distances, and thus smaller perfor-
mance measures, indicate better designs. Consequently, the objective of fuel injection array design
is to minimize some functional combination of the performance measures. This is expressed in an
objective function as:
minimize f = f(x)

where x = [z 22 :cg]T is the vector of the performance measures:

e 1z = the axial distance to combustor centerline penetration
e 1, = the axial distance to merge of adjacent jet plumes
e z3 = the axial distance to stoichiometric fuel concentration decay.

Since this problem has not been previously studied, the most appropriate functional form of f
is not known a priori. As such, six objective functions are used during the optimization process.
Each of the three performance measures is used as an objective function separately, thus optimizing
the design based on a single characteristic. Two additional objective functions are formed by using
the 1- and 2-norms of the performance vector x. Finally, a pareto-optimal solution is found by»
successively optimizing with respect to each performance measure. The value of the optimized
performance measure is added as a constraint in each subsequent optimization.

Multiple objective functions are tested only in the first stage of VCM to maintain a feasible
level of computational effort. Based on the preliminary analysis, a suitable objective function is

recommended for use with more complex analysis methods.
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3.7 Problem Statement
The design problem for a lateral scramjet fuel injection array is summarized as:
minimize f=rf(x)

subject to:
X=g [6j,-§uj;,P;r*j,Tq§}

10° < 6; < 90°

20 psia < Pr; < 650 psia
850 °R < T, <1500 °R

3<N<L10

T
The solution to this problem is the design vector, z = [6j w /d; Pr, TTj] , that optimizes some
measure of fuel injection array performance, f(x), within the prescribed limitations on system be-

havior.

3.8 Design Evaluation

The solution to the scramjet fuel injection design problem requires an evaluation of design
performance at each iteration of the optimization process; that is, x = g [z] must be computed
for each proposed design vector z. Design evaluation is accomplished with the jet penetration
analysis software, JETPEN, developed by Billig and Schetz [7] . Two shell routines are used to
integrate JETPEN with the optimization routines. The first shell routine is a pre-processor designed
to accept a vector of design variables from an optimization program and prepare all required JETPEN
input data. The second routine is a post-processor that collects JETPEN output data, evaluates the
performance of the design, and returns an objective function value to the optimization software. An

illustration of the integrated routines follows.
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3.8.1 Pre-Processor

The pre-processor is designed to accomplish three primary functions. First, it collects all input
data required for the design evaluation procedure. This data includes the design vector provided
by the optimization program at each iteration, as well as the mission parameters specified by the
user prior to optimization. Second, the pre-processor calculates both the dependent flow variables
required for JETPEN input and the fuel injector design requirements necessary for performance
evaluation. Two subroutines, described in detail, are used to perform these computations. Finally,
the pre-processor generates an input file for JETPEN and a file containing the combustor design re-
quirements to be used by the post-processor. The following diagram provides a graphical summary

of this routine.

Pre-Processor

From Optimizer U.s'er-S);ec(’ﬁed
)

Design Mission
Vector Parameters
Compute
Dependent Variables

|

Compute Fuel Injector
Design Requirements
Flowfield Combustor
Input Data Design Data
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3.8.1.1 Dependent Flow Variables

The dependent flow variable subroutine is used to calculate the jet specific heat at constant
pressure (cp,;) and specific heat ratio (7;), which are required JETPEN input variables. These
quantities are functions of two design variables and two parameters: the jet total pressure (Pr,)
and total temperature (77;), and the molecular weight (w;) and Mach number (M) of the injected
fuel. This subroutine uses polynomial approximations to empirical data for ethylene provided by
AFRL/PRSS to represent the functional relationship between these quantities.

Given Pr;, I7;, wj, and M;, the following algorithm is used in conjunction with a simple
bisection method to calculate corresponding values of ¢, and v;:

Step 1: Compute R = %;L where R, is the universal gas constant

Step 2: Guess 7

Step 3: Convert to static conditions using isentropic relations:

Pr,
P = 7,__31] o
[1+—12—-Mj]'7j—1
Tr,
T; T

1+ 25~ M)
Step 4: Approximate c,, = f(P;, T;) with AFRL/PRSS polynomials

Step 5: Calculate v, = ¢p,/(cp, — R)

Step 6: Compare 7;, to y; and iterate to convergence

3.8.1.2 Fuel Injector Design Requirements

The fuel injector design subroutine is used to calculate the injector diameter (d}) and number
of injectors (V) required by the design. Appendix B presents a detailed description of the analysis
used in this subroutine to calculate these two quantities. The number of injectors is computed to
evaluate the constraint given by Inequality 7:

3<NL10
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using Equation 22 (derived in Appendix B):

212
—_—
4 (2)

Subsequently, the injector diameter is computed to evaluate the penetration performance criterion,

given by Inequality 9:
h/2
2, Y
3 J

using Equation 21 (derived in Appendix B):
d; L :
1= |an A9
In these equations, 5 is the width of the combustor to be fueled by injectors and A, is the ratio of
fueled width to total width, given by A, = Iy /. The quantity @ (derived in Appendix B) is a

function of the design variables and primary flow conditions.

3.8.2 Post-Processor

The post-processor is also designed to perform three functions. First, it collects the JETPEN
output data and fuel injector design requirements needed for design evaluation. Second, a sub-
routine evaluates the performance criteria, identifies the corresponding performance measures (%),
and calculates the objective function for the given design. Finally, the post-processor generates
an output file containing the performance information required by the optimization software. The

following diagram illustrates this process.

Post-Processor

From JETPEN From Pre-Processor
i )
Output Data Design Data

Evaluate Design

Performance

Objective
Function

To Optimizer
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3.8.2.1 Performance Analysis
The performance analysis subroutine is used to evaluate the performance measures and com-
pute the objective function. To do so, JETPEN is modified to produce an output file containing
penetration data (y/ d;f), plume spread data (D/ cl;f), and fuel concentration decay data (0q,4) at each
axial station. This information is used to determine the axial stations at which the performance cri-
teria (Inequalities 9, 10, and 11) are met. Subsequently, the resulting performance vector:
X = [z1 Z2 :1:3]T

is used to compute two objective functions:

3
Ixfy, = >
i=1
s 3
%]l = {Z-’L‘E]
i=1

The performance vector and objective functions are returned to the optimization program by the

post-processor to complete the design evaluation procedure.

3.9 Summary

This chapter presents the first formal statement of a lateral transverse fuel injection array design
problem. Four design variables are used to propose possible designs: the fuel injection angle (6,),
non-dimensional injector spacing (w/ d3), fuel jet total pressure (Pr;), and fuel jet total temperature
(Tr;). Design performance is based on the penetration of the jet into the crossflow, the expansion
of the fuel plume, and the decay of average fuel concentration in the jet. The problem is constrained
by physical and manufacturing limitations on the design variables, and by the governing differential
equations used in design evaluation to predict flow behavior. Finally, a design evaluation method

is developed to facilitate optimization of the fuel injection array.
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Chapter 4 - Optimization

4.1 Overview

This chapter presents the first stage of a VCM approach to scramjet fuel injection array design.
Two optimization methods, Sequential Quadratic Programming and a Genetic Algorithm, are used
in conjunction with JETPEN to seek an optimal design. As an initial step, a parametric analysis
is conducted to explore the feasible design region. The information gained in this preliminary
analysis is used to develop intelligent initial designs for the Sequential Quadratic Programming

algorithm. The chapter concludes with a discussion of optimization algorithm performance and

recommendations for future research.

4.2 Parametric Analysis

A parametric analysis of the scramjet fuel injection array problem is made possible by the
simplicity and relative speed of design evaluation using the JETPEN software. Design performance
is evaluated over a wide range of potential operating conditions to observe the behavior of, and
interactions between, the design variables. In addition, parametric projections of the design space
provide a sense of its topography, which is crucial to the selection, application, and evaluation of
optimization algorithms.

There are six possible parametric combinations of the four design variables §;, w/ d;, Pr,, and
Tr,. For each combination, two design variablés are held constant while two are varied over a

specified range. The constant values and ranges of variation for each design variable (z) are shown

Table 3. Parametric Ranges

| =z Constant | Minimum | Maximum | Increment | Units |
0; 30.0 15.0 60.0 30| deg
w/d} 8.5 4.5 10.0 0.5
Pr. 200.0 100.0 640.0 30.0 | psia
Ir, 900.0 850.0 1510.0 300 °R
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in Table 3.

The responses for each performance measure and for the norms ||x||; and ||x|, are evaluated
over the appropriate range for each parametric combination. Figures 11, 12, and 13 present surface
plots of the variation of Pr, and T7,, with §; and w/ d; held constant at 30° and 8.5, respectively.
Several trends are illustrated. First, the axial distance to centerline penetration (z;) is minimized
by operating at the minimum T7;,. Increasing the injectant total temperature to a maximum of
1500°R moves centerline penetration approximately one and one-half combustor heights (1.5k)
downstream. Plume expansion (z2) and fuel concentration decay (x3) also occur more rapidly at
lower T, though the dependence is somewhat weaker.

Second, there is an optimal Pr, with respect to z; at approximately 130 psia. However, x5 and
x3 are minimized at much larger values of Pr;, and are extremely sensitive to pressure reductions.
Consequently, decreasing Pr, from 640 to 130 psia moves z; approximately 0.5k upstream, but
also moves x2 and x3 more than 5.0h downstream. This indicates that Pr; must remain relatively
high, and the corresponding slight reduction in penetration must be accepted in order to prevent
major degradation of plume expansion and fuel concentration decay.

Further insights are gained from Figures 14, 15, and 16, in which 63 and w/ d; are varied while
Pr, and T, are held constant at 200 psia and 900°R, respectively. In particular, a reduction of
more than 1.0A can be gained in both z; and 3 by injecting at a relatively low angle. Extreme low
anglés, however, do not appear profitable as the benefits of decreasing §,; much below 30° are not
significant. In addition, optimal w/ d; involves a trade-off between x; and 3. Widely-spaced jets
appear to result in more rapid penetration, while closely-spaced jets facilitate improved mixing.

Both sets of plots clearly indicate that the design space contains multiple local minima. A
descent-based optimization method, such as Sequential Quadratic Programming (SQP), will gener-

ally converge to the local minimum closest to the initial design. Thus, to locate a global optimum,
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Figure 13. z3 vs. Total Pressure and Total Temperature
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Figure 14. z; vs. Angle and Spacing

Figure 15. x5 vs. Angle and Spacing

DELTA]

Figure 16. z3 vs. Angle and Spacing
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Figure 17. ||x]|, vs. Total Pressure and Total Temperature

800 800

Figure 18. ||x||, vs. Total Pressure and Total Temperature
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the SQP algorithm must begin with a design in the neighborhood of the global minimum. A rough
estimate of the globally optimal neighborhood, developed from the parametric results, is provided

in Table 4. This estimate is used in the following section to provide an initial design for the SQP

Table 4. Global Optimum Neighborhood

z | Region |
5, | <30°
L7590
Pr, | £ 250 psia
Tr, [~ 850°R

algorithm.

The plots of the performance vector norms are shown for Pr; and T, variation in Figures 17 -
and 18. These norm surfaces contain far fewer local optima than those of the individual performance

criteria. Consequently, a choice of either ||x||, or |x||,, should outperform any single criterion as

an objective function for this problem.

4.3 Sequential Quadratic Programming

Sequential Quadratic Programming (SQP) is a popular optimization method that has been used
extensively in structural design [14] . While it is robust and efficient—particularly for large-scale
problems—SQP is strictly a descent-based, local search method. Given a random starting design,
the SQP algorithm will converge to the nearest local minimum. Because the preceding parametric
analysis suggests the presence of multiple local minima, the success of SQP hinges on the selection
of an initial design in the neighborhood of the global optimum.

One method of improving the chance of success is to employ SQP from multiple starting loca-
tions. This method usually requires a large number of starting designs to ensure sufficient coverage
of the design space. A priori knowledge gained through the parametric analysis can, however, be

used to significantly reduce the required number of initial designs.
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4.3.1 Initial Designs

It is clear from Figures 11 through 16 and Table 4 that appropriate initial values for injection
angle and jet total temperature are §; = 30° and T, = 850°R, respectively. Appropriate values for
jet spacing and total pressure are not as obvious. The parametric results suggest that high injection
pressures such as Pr; = 600 psia will most likely produce the best designs. However, there is some
indication that a lower total pressure combined with a relatively close jet spacing may also yield a
good design. These observations are used to select two initial designs for the SQP algorithm, which

are listed in Table 5.

Table 5. SQP Initial Designs

| Design | 6, (°) | w/d; | Pr, (psia) | T1, (°R) |
1 30.0 | 5.75 300.0 850.0
2 30.0 | 8.50 600.0 850.0

4.3.2 Results

The SQP algorithm is executed 12 times: once with each of the six objective functions from
both initial designs. The sequence f = (z3, x1, 2) is selected for the pareto objective function
to ensure the most sensitive measures are optimized first. This ensures that concentration decay is
not sacrificed for penetration, a situation revealed during the parametric analysis to produce sub-
optimal results. The performance measures are used to compare the optimal designs obtained with
the different objective functions. The decay of fuel concentration (z3) provides the most direct
indication of the point where ignition is possible, and is therefore considered the most important
indicator of a good design. The remaining measures, however, are also important in assessing the
overall progress of fuel-air mixing. Thus, superior designs are those with the smallest value of x3,

provided that the values =1 and z3 are also comparably small.
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Optimization results from the first initial design are listed in Table 6. The left-hand column
(Obj F) indicates the form of the objective function used, and each row is the resulting optimal
design. The right-hand column (#F) is the number of function evaluations required to converge to

the optimal design. As expected, objective functions that include all of the performance measures,

Table 6. SQP Initial Design 1 Results

ObjF | 6; |w/d;[ Pr Tr, | xa [ xo | x3 | #F|
X1 30.594 | 5.716 | 32140 | 852.13 | 2.274 | 0.404 | 2.114 | 199
X2 30.850 | 5.738 | 326.41 | 850.03 | 2.308 | 0.401 | 2.096 | 145
X3 30.034 | 5.750 | 306.36 | 850.01 | 2.326 | 0.412 | 1.998 | 148
x||; 30.028 | 8.540 | 631.94 | 850.00 | 2.207 | 0.365 | 1.967 | 42
X||o 30.071 | 5.757 | 326.19 | 850.08 | 2.256 | 0.402 | 2.045 | 153

Pareto || 30.127 | 7.993 | 531.40 | 850.00 { 2.270 | 0.392 | 1.964 | 360

namely |x||; , ||x||5 ;,and the pareto approach, generally perform better than those based solely on
individual criteria. The optimal design is produced by using ||x||,as the objective function. The
penetration and plume expansion distances are the shortest, and the fuel concentration decay is not
significantly different than that achieved by the pareto approach. Furthermore, the pareto approach
requires significantly more function evaiuations (360) than the ||x||; objective function (42).

Interestingly, the ||x||; surface appears not to have a local optimum near Pr, = 300 psia, as
exhibited by the other objective functions. Instead, an optimal design is located near Pr, ~ 632
psia. While the higher pressure design is indeed superior, the performance increase is only slight.
A comparison of the ||x||; and ||x]||, designs indicates that doubling the injection pressure yields
only a 4% improvement in fuel concentration decay.

The results from the second initial design are shown in Table 7. In this case, the best designs
are produced by z3 and the pareto approach. These objective functions do not, however, exhibit the
best performance under general conditions. The parametric analysis clearly shows that exclusive

focus on one performance measure can result in significant degradation of the others, indicating that
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a choice of x3 is not preferred. Furthermore, the x3 surface contains far more local minima than the
||Ix|; and ||x||, surfaces, and thus is more likely to result in convergence to a sub-optimal result from

a random starting location. The pareto approach is also not acceptable as it consistently requires a

Table 7. SQP Initial Design 2 Results

ObjF | 6j | W/d;< | PTJ. TTj X1 X2 | X3 | #F |
X3 30.000 | 8.500 | 600.003 { 850.000 | 2.263 | 0.414 | 1.935 11
Xa 33.962 | 8.042 | 618.718 | 853.682 | 2.346 | 0.347 | 2.038 | 100
X3 30.000 | 8.591 | 615.111 | 850.000 | 2.236 | 0.410 | 1.912 | 42
x|ly 30.000 | 8.488 | 650.000 | 850.000 | 2.289 | 0.343 | 1.915 | 21
x|l, || 30.032 | 7.854 | 607.960 | 850.000 | 2.211 | 0.352 [ 1.979 | 44

Pareto || 30.000 | 8.591 | 615.121 | 850.000 | 2.236 | 0.410 | 1.912 | 109

relatively large number of function evaluations and is thus unsuitable for use with more complex
analysis methods. Thus, ||x||, is the preferred objective function for use with the SQP algorithm.
The results obtained from the second initial design are superior to those obtained from the first
initial design. This confirms that the first initial design is in the neighborhood of a local minimum.
Although it cannot be proven, the second initial design may be near the global minimum. Two
observations support this assertion. First, the initial design was selected based on the parametric
analysis results, and thus is suspected to be near-optimal. Second, |x||; converged to virtually the

same optimum from the two significantly different initial designs.

4.4 Genetic Algorithm

The parametric analysis provides a wealth of information regarding the design space of this
problem. In fact, a feel for the topography is crucial to the success of the SQP algorithm. Parametric
information, however, is available only at a high computational price: 1805 function evaluations
were required to produce surface plots for the six parametric combinations. This was feasible

using JETPEN for design evaluation, but would be nearly impossible with more elaborate analysis
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methods such as CFD. Moreover, future studies will require an optimization method that does not
rely on extensive parametric analysis to provide an initial design.

In this regard, genetic algorithms (GAs) represent a viable alternative to SQP. Since GAs do
not rely on gradient information to improve the objective function, they are capable of avoiding
local optima and thus succeeding where an SQP algorithm might fail. This section presents the

application of a GA to the scramjet fuel injection array design problem.

4.4.1 Fitness Function
GAs converge to optima using a “survival of the fittest” strategy, and thus are naturally de-
signed to maximize the performance, or fitness, of a system. To optimize the scramjet fuel injection
array with a GA, the objective function is replaced with the following fitness function:
maximize F' = Fipax — f(x)
where Fiax is a constant selected to maintain a non-negative fitness function. Flax = 10.0 is
larger than the largest possible value of f(x), and is thus a suitable choice for this problem. The

performance measure norms ||x||; and ||x||, are used for f (x) in the GA fitness function.

4.4.2 Constraints

GAs typically handle constraints by assigning a penalty to the fitness function if the proposed
design violates a constraint. The proposal and evaluation of infeasible designs is not preveﬂted by
this method, and in fact may be encouraged by the GA during diversification of the search (muta-
tion). This approach proved incompatible with JETPEN design evaluation, as extreme violations
of the injector constraint, 3 < N < 10, caused the software to abort.

As an alternative, N is calculated prior to design evaluation. If the proposed design violates

the injector constraint, the evaluation routines are bypassed and the design is automatically assigned
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a fitness value F' = 0. Equation 22 (Appendix B), is rearranged and used to compute N:

Pr
N = ﬁ_2TJ_._.
(8) v
where
7rc’;-lf
K = ————te—
2fA; Myo

Since N is computed prior to design evaluation, an estimate of the ratio of specific heats (v; =
1.113) is used to calculate the jet discharge coefficient (c;)- The true value of v, varies from
approximately 1.1 to 1.4 over the range of Pr, and T, and thus some accuracy is sacrificed in the
calculation of N. The injector constraint is relaxed to 2 < N < 11 to allow for error in the estimate

without eliminating potentially feasible designs.

4.4.3 Tuning Parameters

The GA used in this study [41] provides several options to improve algorithm performance.
First, and perhaps most importantly, the user must specify the number of solutions to be maintained
by the algorithm. Large populations are often used to maintain diversity and prevent the algorithm
from converging prematurely to a sub-optimal result [22] . Population sizes ranging from 30 to 200
individuals are typical for this implementation, commonly known as a Simple Genetic Algorithm
(SGA).

The primary drawback to SGAs is that large populations require a large number of Adesign
evaluations. As a result, modifications to the SGA have been proposed to reduce the required
population size. Krishnakumar [28] reports impressive results with much smaller populations
using a micro-Genetic Algorithm (#GA). The £GA maintains only 5 individuals, but monitors the
population to detect premature convergence. Once the micro-population begins to converge, the
most fit member is carried to the next generation and the remaining four members are replaced with

new, randomly generated individuals. Thus, diversity is maintained in a small population without
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the need for mutation. This method has reduced the number of required function evaluations by a
factor of four in some cases [28] , [41] .

Both an SGA and a uGA are used to optimize the scramjet fuel injection array design. Popu-
lation sizes of 32 and 5 are used for the SGA and uGA, respectively. Parent designs are identified
by tournament selection and single-point crossover is used for reproduction. Only one child design
per pair is produced in an effort to minimize the required number of function evaluations. Elitism
is invoked in both cases to ensure the best known design is always passed to the next generation.
Finally, both the SGA and ©GA are initiated from several random populations to ensure the results

are independent of the initial conditions.
4.4.4 Results

The GA optimization results are displayed in Table 8. The two left-most columns indicate the

selected algorithm and fitness function; the rows contain the corresponding optimal solutions. In all

Table 8. GA Results

Algorithm [ObjF | 6, [w/d;| Pr, | Tr, | 1 | % | x | #F |
SGA [ [IxI, | 12.041 | 8.068 | 635.27 | 85243 | 2.177 | 0.284 | 1.950 | 682
x|[, | 17.011 | 8.397 | 649.87 | 85841 | 2.228 | 0.316 | 1.891 | 580
uGA X[l | 11.739 | 7.797 | 580.14 | 855.49 | 2.237 | 0.333 | 1.960 | 368
x[l, | 15.116 | 7.803 | 60341 | 850.06 | 2.151 | 0.325 | 1.956 | 159

cases, the algorithms converged to the same optimal design regardless of the random initial popula-
tion. Superior designs are produced using ||x||, in the fitness function for both algorithms. From
a practical standpoint, however, the designs are essentially equivalent. The optimal configurations
are quite similar, and the fuel concentration decay performance of the best and worst designs differ
by only 0.07h, or roughly 4%. Thus both ||x||, and ||x||, are appropriate for use in a GA fitness

function.
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There is a dramatic difference in algorithm performance. Consider the two runs for which
||x||;is in the fitness function. The pGA requires 46% fewer function evaluations than the SGA to
converge to an optimum. The reduction is nearly 73% for the runs containing ||x||, in the fitness
function. Since the optimal designs are essentially equivalent, the GA clearly outperforms the

SGA for this problem.

4.5 Summary

The results for each optimization algorithm are summarized for comparison in Table 9. The

Table 9. Results Comparison

Algorithm | Obj F 6; w/ d; Pz, T, X1 X2 X3 #F
sSQP x||; | 30.000 | 8.488 | 650.00 | 850.00 | 2.289 | 0.343 | 1.915 | 1826
SGA x|l, | 17.011 | 8.397 | 649.87 | 858.41 | 2.228 | 0.316 | 1.891 [ 580
pGA | ||x]l, | 15.116 | 7.803 | 603.41 | 850.06 | 2.151 | 0.325 | 1.956 | 159

performance characteristics of the three designs are remarkably similar; x;, x9, and z3 differ at .
most by only 0.138h, 0.027h, and 0.065h, respectively. The minimum axial distance required for
fuel-air mixing is found to be approximately two combustor heights downstream of the injection
point. In all cases, the optimal designs are characterized by a near-minimum jet total temperature
(850°R), a near-maximum jet total pressure (650 psia), and a maximum number of injectors (10).
Furthermore, the SQP design, with an injection angle of 30°, yields comparable performance to the
lower-angle GA designs.

There is significant variation in the effort required by these algorithms to obtain an optimal
solution. Although SQP appears to be most efficient, 1805 function evaluations are required to
develop the initial design, and 21 additional evaluations are needed to locate the optimum. If, for
example, the primary flow conditions are changed, a new parametric analysis is required to initiate
the SQP algorithm. Thus, from a computational standpoint, SQP is prohibitively expensive and

hence not a viable alternative for future research. The GAs are able to locate an optimal design
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from random starting locations, and thus dramatically reduce computational cost. While both GA
implementations represent a significant improvement over SQP, the ©GA is two to four times more
efficient than the SGA. This improvement will be crucial to integrating more sophisticated analysis
methods with the design process. Moreover, the uGA is a particularly promising candidate for

future research.
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Chapter S - Response Surface Analysis

5.1 Overview

The objective of this chapter is to demonstrate a response surface methodology (RSM) ap-
proach to scramjet fuel injection array design. An appropriate experimental design is presented
and used to construct a second-order meta-model of injector array performance. The meta-mbdel
is used to estimate an optimal design and predict the effects of design variable changes on overall
system performance.

The most sophisticated design evaluation methods are typically used in this stage of VCM to
maximize the quality of the final design. In this investigation, however, JETPEN is used for final-
stage design evaluation since it is capable of providing reliable design assessments rapidly [7] ; time
limitations precluded the use of CFD and/or experimental analysis methods in this study. This does
not affect the RSM approach, but does limit the quality of the design solution to the accuracy of
JETPEN. As such, the approach presented in this chapter is intended to serve as a basis for future
research aimed at improving the design solution quality with CFD and/or experimental research

methods.

5.2 Experimental Design

5.2.1 Design Region

The experimental design region is usually centered on the preliminary optimum design. In
this case, however, both the SQP and GA designs (Table 9) are in close proximity to several con-
straint boundaries (Inequalities 4, 5, and 7). Since response data would be invalid in the infeasible
regions, the design region is selected to include the SQP and GA optima, but encompass only feasi-

ble designs. For convenience in constructing the experimental design, the natural design variables
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(Z;,© = 1..4) are transformed to coded variables (z;) using the relation

Zi - Zi,center
1 .
'Q'(Zi,max - Zi,min)

2; =

The transformation maps the design center to 0 and the design region limits to [—1, +1]. The design
region is summarized in Table 10.

Table 10. Design Region

¢ | Natural DV (Z;) | Coded DV (z;) | Minimum | Maximum | Units
1 o; A 10.0 30.0 deg

2 w d;f B 7.5 9.5

3 Pr, C 550 650 psia
4 Tr, D 850 950 °R

5.2.2 Design Criteria

Two criteria are used to select an experimental design for scramjet fuel injection array inves-
tigation. First, both JETPEN and CFD analysis methods predict flowfield behavior by solving a
deterministic set of governing differential equations. Since no random error is present in the so-
lution algorithm, the experimental design is constructed to minimize the systematic bias. Second,
this stage of VCM is intended to minimize the number of expensive design evaluations required to
find an optimal solution. Thus, the number of experimental design points is held to a minimum.

To develop a minimum-bias design, the degree of the polynomial terms (z1) in the meta-model

y= z1’/6\1
must be specified. The higher-order terms (z2) to be protected against in the true model
E(y) = 218, + 220,

must also be defined. Figures 17 and 18 provide strong evidence to suggest that a second-order
polynomial is sufficient to approximate the ||x||; and ||x||, responses. Although higher-order effects
are present, the predominant features of these surfaces are clearly second-order in nature. Thus,
all possible first- and second-order combinations of the four design variables are included as model
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terms in z;. 'To protect against third-order bias, the z; model terms contain all third-order design
variable combinations.

Given z; and z2, a minimum-bias design is achieved with design moments set as follows

(derived in Appendix C):
1 1
] = Zzzfu=§
u=1
L
[iid] = %szu——l-
u=1
1 & 1
i) = 7Y Adgu=g i#i
u=1
all odd moments = 0
i,7 = 1,2,3,4

where 7 and j are design variable indices and L is the number of experimental levels. To ensure
all odd moments are equal to zero, the design must be symmetric about its center. The number
of experimental levels (L) must be specified to satisfy the remaining requirements. At least three
levels are required to estimate the coefficients for a second-order model. For a symmetric three-

level design (—g, 0, g), the condition [i7] = % yields

1
g= \/; ~ 0.7071

g= (_3_> " ~0.7401.

and [iiii] = £ requires that

10
Since no unique solution to these conditions exists, an absolute minimum-bias design cannot be
constructed with only three levels of each design variable. Four design variable levels, set at
+f = £0.7947 and +g = +0.1876, are necessary to satisfy all design moment requirements (see

Appendix C).
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A design constructed with four levels of each variable obviously requires more experiments
than a three-level design. Because design evaluation is so expensive, it is more important to mini-
mize the number of experiments than to achieve absolute minimum-bias in the experimental design.
The minimum-bias criterion is therefore relaxed, and a near minimum-bias design, with L = 3, is
developed and used for this problem (see Appendix C). The result is a central composite design for

n = 4 design variables with the following 25 experimental design points:

e 2™ = 16 factorial points at +g = :l:\/;,
e 2n = § axial points at +a = 1, and
e 1 center point.

5.3 Meta-Model

Performance data is collected with JETPEN at each of the experimental design points and least-
squares regression is used to construct a surface to approximate the Hx||2 response. The resulting
meta-model is described by

lixll; = 2B (12)
where the model terms (z) and estimated coefficients (B) are summarized in Table 11.

Table 11. Response Surface Coefficients

| Bi Zii | Bii Zij By

A | 0.012788 A% | 0.008614 AB | -0.004340

B | 0.017691 B2 | 0.010649 AC | 0.012024

C [ -0.016210 C? | 0.015703 AD | -0.005240

D | 0.096396 D? | -0.001230 BC | -0.013510
BD | 0.001231
CD | -0.001540

Intercept z;
3.054682

=

5.3.1 Model Adequacy
The statistical methods typically used to evaluate model adequacy and estimate effects are not
applicable in this case due to the absence of random error. There are, however, two important

indicators of model adequacy. First, the coefficient of determination (r?) is a measure of the total
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variation explained by the model. In this case, 72 = 0.990545 indicating that the model accounts
for over 99% of the variation. Second, the residuals, defined as the difference between actual and
predicted responses (|[x|l, — ||;E), are used to identify model misspecification. Figure 19 is a
plot of the residuals as a function of the predicted response (”/XE)- The residuals appear to be

randomly distributed about zero, which indicates the model is adequately specified.
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Figure 19. Residuals vs. Predicted Response

5.3.2 Optimization Results

An optimal solution to the second-order polynomial described by Equation 12 is shown in
Table 12 (RSM). The fuel injection array designs from SQP and GA optimization are included
for comparison. The RSM array design is quite similar to the SQP and GA designs, providing
further evidence that the RSM meta-model is a good approximation to the true array performance
within this design region. The similarity of these designs also indicates that the use of a near, rather
than absolute, minimum-bias experimental design does not significantly affect the results. Most
importantly, RSM yields a comparable fuel injection array design with only 25 experiments—just

16% of the design evaluations required by the most efficient optimization algorithm.

56



5.3.3 Sensitivity

The results in Table 12 suggest that design performance depends strongly on the jet total tem-
perature, as T7; =~ 850°R in all four cases. Furthermore, the performance is relatively insensitive
to injection angle changes between 10° and 30°. These assertions are tested by changing each de-
sign variable independently at equal coded-space increments (0, %, 2,1) and evaluating the design

performance (||x]|,). The results, illustrated in Figure 20, confirm that design performance in this

Table 12. Response Surface Results

Algorithm | ObjF | §6; w/d; | Pr, T, X1 X9 x3 | #F
sSQP x|[; | 30.000 | 8.488 | 650.00 | 850.00 | 2.289 [ 0.343 [ 1.915 | 1826
SGA x|, | 17.011 | 8.397 | 649.87 | 858.41 | 2.228 | 0.316 | 1.891 | 580
LGA x|, | 15.116 | 7.803 | 603.41 | 850.06 | 2.151 | 0.325 | 1.956 159
RSM x|, | 10.000 | 7.898 | 629.56 | 850.00 | 2.229 | 0.273 | 1.903 25

region is affected most by changes in T, and is unaffected by changes in §;. Even changes in Tr,,
however, reduce the performance by less than 0.07h over this range. Thus, there is considerable
flexibility in the design variable settings in the region surrounding the optimal design.

A canonical analysis of the meta-model provides similar information in the absence of para-

metrics and conventional optimization results. The eigenvalues of the symmetric matrix:
Bin - Pu
B=| : -
Bia -+ P
characterize the nature of the response surface at the design center: larger eigenvalues imply greater

sensitivity in the direction of the corresponding eigenvector. In this case, the eigenvalues of B are

all extremely small:

—0.00098
—0.00518
0.00642
0.03300

A=

indicating that the response surface is nearly flat. Thus, design performance is relatively constant

over the design region. The relative magnitudes of the coefficients are indicators of performance
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sensitivity to the individual factors. The jet total temperature coefficient (§4) is roughly an order
of magnitude larger than the coefficients of the other first-order terms. This reflects the strong
relative influence of 7’7, in the design region. Finally, optimization of the meta-model provides the
Lagrange multipliers —0.0105 and —0.1024 for the constraints on &; and T7,, respectively. The
absolute and relative magnitudes of these multipliers confirm that the design region is relatively
flat, and that a jet total temperature increase will degrade performance more than an increase in the

injectant angle.

f.n (Combustor Helghts)
0 1

—a—DELTA]
—x—W/DJ*
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Figure 20. Performance Sensitivity

5.4 Summary

The RSM approach results in an adequate second-order meta-model of the true fuel injection
array performance. The meta-model optimum is remarkably similar to the designs found with the
SQP and GA algorithms. An axial distance of approximately two combustor heights is required
to meet the three performance criteria, and the design is characterized by a minimum jet total tem-
perature and a near-maximum jet total pressure. Furthermore, a canonical analysis reveals that the
design variables can be altered within the design region limits without significantly affecting per-

formance.
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In contrast to the SQP and GA methods, RSM requires only 25 experiments to locate the
optimal design. RSM is thus established as a feasible method for use in conjunction with CFD and
experimental research. However, RSM accuracy is contingent on the use of SQP and GA results
to select an appropriate experimental design region. The VCM approach is therefore necessary to

obtain accurate results while capitalizing on the efficiency of RSM.
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Chapter 6 - Conclusion

6.1 Summary

Fuel injection in a supersonic crossflow is still a challenging research problem, and thus little
effort has been devoted to array design in the context of traditional optimization. This research
presents the first formal statement of a lateral transverse fuel injection array design problem. Four
design variables are used to propose possible designs: the fuel injection angle (6 7), non-dimensional
injector spacing (w/ d;), fuel jet total pressure (Pr;), and fuel jet total temperature (IT;). Design
performance is based on the penetration of the jet into the crossflow, the expansion of the fuel
plume, and the decay of average fuel concentration in the jet. The problem is constrained by
physical limitations on the design variables, and by the governing differential equations used in
design evaluation to predict flow behavior.

Design evaluation is typically accomplished with computational fluid dynamics (CFD) meth-
ods and/or experimental research, both of which are extremely time-consuming and ex.pensive.
However, these methods are not suitable for use with conventional optimization methods, which
often require thousands of evaluations to reach an optimal solution. This research presents a two-
stage Variable-Complexity Modeling (VCM) approach designed to minimize the cost of optimizing
the scramjet fuel injection array.

In the first stage, a simplified analysis method, JETPEN, is used to provide rapid, inexpensive
design performance evaluations. An initial parametric analysis illuminates three important trends.
First, array performance, and particularly penetration, is improved by minimizing the jet total tem-
perature. Second, fuel concentration decay and plume expansion occur more rapidly, and penetra-
tion to the combustor centerline is delayed, at higher jet total pressures. The penetration delay is

slight, however, and must be accepted in order to prevent major degradation of plume expansion and
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fuel concentration decay. Finally, relatively low injection angles yield superior array performance,

but gains realized for §; much below 30° are not significant.

Two optimization methods, Sequential Quadratic Programming (SQP) and a Genetic Algo-
rithm (GA), are used in the first stage to develop a preliminary optimal design. The minimum axial
distance required for fuel-air mixing is found to be approximately two combustor heights down-
stream of the injection point. Both algorithms yield designs that are consistent with the parametric
analysis results. In all cases, the optimal designs are characterized by a near-minimum jet total
temperature (850°R), a near-maximum jet total pressure (650 psia), and a maximum number of
injectors (10). Furthermore, the SQP design, with an injection angle of 30°, yields comparable
performance to the lower-angle GA designs.

In the second stage, response surface methodology (RSM) is used to minimize the required
number of expensive, complex analyses required to verify initial stage results and finalize the de-
sign. A near minimum-bias experimental design is developed and used to construct a second-order
meta-model of fuel-injection array performance. The meta-model yields an optimal design similar
to those found with the SQP and GA algorithms. In addition, the response surface illuminates a rel-
atively flat region in the neighborhood of the optimal design. As desién performance is relatively
constant over this region, there is considerable flexibility in the design variable settings. Perfor-
mance is found to be most sensitive to jet total temperature changes, and relatively unaffected by
changes to the injection angle.

There is significant variation in the effort required by these algorithms to obtain an optimal
solution. SQP success depends heavily on the initial design developed through parametric analysis.
Thus, from a computational standpoint, SQP is prohibitively expensive. The GAs locate an optimal
design from random starting locations, and thus dramatically reduce computational cost. A uGA is

used to locate an optimum in 159 design evaluations, as compared to 1826 and 580 required by SQP
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and an SGA, respectively. The RSM approach requires just 25 experiments to locate an optimal

design, but relies on initial stage information to define the design region.

6.2 Recommendations

This investigation clearly establishes the potential of a Variable-Complexity Modeling ap-
proach to scramjet fuel injection array désign. Continued research must begin with a verification
of the results and an evaluation of JETPEN effectiveness. The response surface approach demon-
strated in this investigation should be used in conjunction with both CFD and experimental research
techniques to quantify the effects of total pressure losses on the optimal design. Recommendations
for such an investigation are described below.

Preliminary Optimum Verification. An initial experiment should be conducted to verify the

performance of the preliminary optimal design. The ©GA design:

Obj F 6j W/d’; PT,- 'I‘TJ X1 X9 X3 N d’;

Ixll, | 15.116 | 7.803 | 603.41 | 850.06 | 2.151 | 0.325 | 1.956 | 10 | 0.0734”

should be verified, as the uGA will most likely be the algorithm of choice for future research.
Response Surface Analysis. Since CFD, like JETPEN, is a deterministic design evaluation
procedure, the near minimum-bias experimental design derived in Appendix C should be used to
construct a meta-model of injection array performance. A similar surface should be construct using
experimental methods, but the introduction of measurement error will require the use of an alternate
experimental design. For this effort, the CCD structure with factorial points at £g = +1 and
axial points at +a = /2 provides a more appropriate, variance-optimal design. The experimental
investigation results should be used to validate and/or suggest modifications to the JETPEN and

CFD software.
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An important extension to this research is the investigation of different mission parameters and
array configurations. The effects of the following parameters on the optimal design are of particular
interest.

Primary Flow Conditions. The conditions at the combustor entrance significantly affect mix-
ing and penetration performance. The uGA and JETPEN software should be used to investigate
combinations of the primary flow Mach number, total pressure, and total temperature that are of
current interest.

Fuels. Alternate fuel types may also affect design performance. To investigate the effects
of different fuels, such as JP-7, additional polynomial approximations must be added to the pre-
processing routine to calculate the ratio of specific heats from proposed fuel conditions.

Injection Array Configuration. The staged-array, or aero-ramp, configuration is one of the
most promising developments in this field of research. To study an aero-ramp configuration, the
design problem must be revised to include at least two additional design variables: the injection
angle of the aero-ramps, and the spacing between the primary and aero-ramp fuel injectors. Cur-
rently, aero-ramp design evaluation is possible only with CFD and experimental research methods.
A simplified analysis method, perhaps an extension to JETPEN, is needed to fully study aero-ramp
configurations in an optimization context. In the interim, the response surface approach presented

in this investigation can be readily applied to aero-ramp configurations.
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APPENDIX A . Design Problem Parameters

The following tables contain the parameters used for this optimization study. All parame-
ter values were specified by the High Speed Systems Development Branch, Propulsion Sciences
and Advanced Concepts Division, Propulsion Directorate, Air Force Research Laboratory, Wright-

Patterson AFB, OH (AFRL/PRSS).

A.1 Primary Flow Conditions

Parameter | Description Value | Units |
M, Mach Number 1.80

Pr, Total Pressure 141.10 | psia
T, Total Temperature 3140.00 | °R

Yo Ratio of Specific Heats 1.35

Cp, Specific Heat 027 | o
Wq Molecular Weight 28.37

A.2 Combustion Parameters

Parameter | Description Value
Fuel Ethylene

wy Fuel Molecular Weight 28.05400
fsT Stoichiometric Fuel/Air Ratio | 0.06809
® Equivalence Ratio 0.90000

A.3 Combustor Geometry

Parameter | Description Value | Units
l Combustor Width 7.000 | in
lg Fueled Combustor Width 6.000 | in
lng Unfueld Combustor Width | 1.000 | in
h Combustor Height 2.567 | in
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APPENDIX B - Fuel Injector Design Equations

This section presents the analysis method used by the fuel injector design subroutine to calcu-

late the required injector diameter (d;?) and number of injectors (V).

B.1 Primary Flow Total Mass Flow Rate
The total mass flow rate of the primary flow is given by:
Myo= oU A

Assuming the flow behaves as a perfect gas, this can be written:

. P,
Myiot= mMaaaA (13)
where:
R, = I
Wq
Qg = [’)’aRaTa]%
A = lh

and [ is the combustor width and A is the combustor height. The primary flow static conditions are

calculated with the following isentropic relations:
Tr,

T, = — T (14)
T Rt
P = Pr. (15)

—1 o
[1+ Lag= 2]

Thus, the total mass flow rate can be calculated using equation 13 with the specified primary flow

conditions My, Pr,, T, , 74, We and the combustor dimensions I, h.

B.2 Injector Diameter
Once the total mass flow rate is known, the proportion of air mass flow fueled by each injector

is calculated. The area fueled by a single injector (A;) is given by:
_[A— A
Ai = 2N
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where Ay is included in case of any non-fueled area in the combustor. The distinction between
fueled and non-fueled area is included to account for cases in which manufacturing restrictions
prevent the installation of injectors within a prescribed distance from the combustor sidewalls. If no
such restriction exists, A,y = Aand A; = (2N)~1. The factor of 2 is included in the denominator
because NV represents only half of the total injectors due to the symmetry assumption. It follows

that the fractional mass flow rate for a single injector is:
A; . 1

Me= 7 Mot= 'QWAT Mot (16)
where:
Ang
Ar=1-—

The required fuel mass flow rate for each injector is simply:

rg= f a7
where:

f=2fsr
Recall that the equivalence ratio (®) and stoichiometric fuel-air ration (fg7) are specified parame-

ters. Substituting equation 16 into equation 17 yields:

. 1 .
my= mfAr Mot (18)
The fuel mass flow rate may also be derived from continuity, yielding:
i Pr, Ac;
my= ——=4 19
f T (19)

7

Equating 18 and 19 and solving for the jet area yields:

At — fAr My /T,
7 2N Pryc;

This equation is then substituted into the geometric definition of the injector diameter:

5= [

J T
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to yield an equation for the jet diameter based on the design variables, prescribed combustor size,

primary flow conditions:

d* = |:4fAr mtot V TTj:' :

J 7T2NPTJ. C;

To simplify the ensuing presentation, let:

Q= M__ VI, (20)

TPr, c;f

such that the jet diameter may be conveniently expressed as:

1 P
dj = [WATQ] @1)

B.3 Number of Injectors
In general, the number of injectors (V) is given by:

!
N=Z1
w

where [f is the width the combustor allowed to contain injectors and w is the distance between
adjacent jets. Dividing the numerator and denominator by d; and using equation 21 yields:

l

Ne ot
# [2pAQ)7

Finally, solving this for the number of injectors yields:

2%

2
A (2)

The number of injectors can now be calculated directly from the design variables and prescribed

(22)

parameters using Equation 22. Subsequently, the injector diameter can be calculated with Equation

21.
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APPENDIX C - Experimental Design

This appendix presents the development of the near minimum-bias design used to construct

the scramjet fuel injection array performance meta-model.

C.1 Definitions
The design region (R) is defined to be cuboidal in coded space, such that:
zi€[-1,1],i=1.4
The meta-model:
§=ub
is assumed to be a second-order approximation to the true model:

E(y) = 2101 + 220,

such that the design matrix is defined as:

2 2
1 21, 24, R122, ‘' 2324, 21, Ry,
Zn=1: : : : : :
1 s .- 2 L. P2
21, 24, R122, 2324, zlL Z4L

where L is the number of experimental observations. The design is constructed to protect against

third-order bias given by the matrix:

2129223, *** 222324, zi’l s 221
Zy = : : : :
3 3

zlzgsz e 222324L zlL e Z4L

C.2 Derivation

The average squared bias (ASB) of a design is given by:

VI

ASB = TLﬂg [(#22 — plapiy o) + (M Mag - H1_11H12)T pa1 (Mg Mg — Mﬁl#u)] %—éﬁg
Sufficient conditions for minimizing the ASB over the region of interest are [29] :
My = pyy and My = pyo
such that the quantity (B):
B = (Mp; M2 — prp)” pn (M Maz — K11 H2)
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is equal to zero for a minimum-bias design. Thus, development of the experimental design consists

of setting the design moment matrices:

T T
2y 2y and My = Z1LZ2

My, =

equal to the region moment matrices:

M1 =K/zlz{dz and g, =K/ 2173 dz
JR JR

K is the inverse of the region volume, such that:

{ / | / / /_ 11 dzldzgdz3dz4] B

1
16

K

Thus,
1 T 1 / T
= — [ z1z7dz and =— [ z125dz
M1 16/Rl1 H12 163.12
The integration over R cancels out all terms in the region moment matrices that contain a design
variable raised to an odd power, since:
1
/ z'dz; = 0,V odd n.
-1
Similarly, all pure quadratic terms integrate to % pure fourth-order terms integrate to % and the

interaction of pure quadratic terms integrates to %.
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Since M7 and Mo are matrices containing the design moments, the sufficient conditions
yield:
[¢4]

1]
b~ =
M=
38

Il
Ll —

[#4i]

I}
] =
M=
2N

|

| —=

u=1
L
s 1 1
[iijg] = -I—Jszuz?u =35 ¢ # j
u=1
all odd moments = 0
i,j = 1.4

For a symmetric three-level design (—g, 0, g), the condition [iz] = § yields:

1 2024 2 1
(= 0 =
79’ +0°+g7 = 3
1
= -~ 0.7071
g 2
and [ii43] = 1 requires that:
1 s a4 - L
;19" +0%+4"] = ¢

3 0.7401
- (@)

yielding no unique solution. A unique, minimum-bias solution does exist for a four-level design:

+f = £0.7947
+g = +0.1876

However, a three-level design is preferred to minimize the required number of experiments. The

minimume-bias criterion is relaxed by setting g = \/g, thereby violating the condition [ii] =

U=

This compromise yields [iii] = 1 and results in:
- - T - -
B = (My'M—piim) w1 (MM — pi )
1
= — = 0.0033
300

Since B # 0, the ASB is not minimized and this design is described as near minimum-bias.
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C.3 Structure

The familiar Central Composite Design structure is used for experimentation in this investi-
gation. Factorial and axial points are located at g = \/g and £a = 1, respectively. The full

experimental design is shown below.
[ +9 +9 +g9 +g ]
-9 +g9 +g +g
t9 —9 +9 +g
-9 —9 +9 +g
+t9 +9 —9 +g
-9 +9 -9 +g
+t9 -9 -9 +g9
-9 -9 -9 9
+9 t9 +9 -9
-9 +9 +t9 —g
+9 -9 +9 —g
-9 -9 t9 —9
+9 +9 —9 —g
-9 +9 -9 —g
+9 -9 -9 -9

-9 —9 —9 —g

+a 0 0 O

-a 0 0 O
0 4a 0 O
0 —-a 0 O
0 0 4a O
0 0 —-a 0
0 0 0 4a
0 0 0 =-a
0O 0 0 O
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