
Air Force Institute of Technology Air Force Institute of Technology

AFIT Scholar AFIT Scholar

Theses and Dissertations Student Graduate Works

12-1997

Cepstral Processing for GPS Multipath Detection and Mitigation Cepstral Processing for GPS Multipath Detection and Mitigation

Charles D. Ormsby

Follow this and additional works at: https://scholar.afit.edu/etd

 Part of the Electrical and Computer Engineering Commons

Recommended Citation Recommended Citation
Ormsby, Charles D., "Cepstral Processing for GPS Multipath Detection and Mitigation" (1997). Theses and
Dissertations. 5733.
https://scholar.afit.edu/etd/5733

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been
accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more
information, please contact richard.mansfield@afit.edu.

https://scholar.afit.edu/
https://scholar.afit.edu/etd
https://scholar.afit.edu/graduate_works
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F5733&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/266?utm_source=scholar.afit.edu%2Fetd%2F5733&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/5733?utm_source=scholar.afit.edu%2Fetd%2F5733&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:richard.mansfield@afit.edu

AFIT/GE/ENG/97D-19

Cepstral Processing For GPS Multipath Detection and Mitigation

THESIS

Charles D. Ormsby
Captain, USAF

AFIT/GE/ENG/97D-19

199S012S W
Approved for public release; distribution unlimited

DTiC QUALITY mgPSOTED 3

The views expressed in this thesis are those of the author and do not reflect the official policy or

position of the Department of Defense or the United States Government.

AFIT/GE/ENG/97D-19

Cepstral Processing For GPS Multipath Detection and Mitigation

THESIS

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the

Requirements for the Degree of

Master of Science in Electrical Engineering

Charles D. Ormsby, B.S.

Captain, USAF

December, 1997

Approved for public release; distribution unlimited

AFIT/GE/ENG/97D-19

Cepstral Processing For GPS Multipath Detection and Mitigation

Charles D. Ormsby, B.S.

Approved:

Captain, USAF

7

Capt. Stewart DeVilbiss Ph. D.
Thesis Advisor f
Dr. Meir Pachter
Committee

Maj. Michael Temple Ph
Committee Member

Date

3 j)*e ^
Date

f7>~?7
Date

Acknowledgements

The author would like to thank the members of the faculty committee who reviewed this thesis, Dr.

Michael Temple and Dr. Meir Pachter. Thank you for the time and energy you put into reading

and critiquing this work, and for the helpful pointers along the way. Special thanks goes to the

advisor, Dr. Stewart DeVilbiss. Thank you for the freedom to attack this project in my own way,

and for the many hours spent reviewing drafts of this work. Thanks for your conscientious efforts

to cross every t and dot every i, both technically and grammatically. Your help greatly improved

the quality of this thesis. Finally, the author wishes to thank the students of the December 1997

engineering class at the Air Force Institute of Technology, and particularly Fred Baier. Countless

hours were spent working together as a team to ensure we all gained the knowledge necessary to

prepare us for our thesis research and beyond. The team spirit at AFIT has made it a joy to learn

here, thanks to all.

Charles D. Ormsby

Table of Contents

Page

Acknowledgements iii

List of Figures viii

List of Tables xi

List of Abbreviations xii

List of Symbols xiii

Abstract xiv

I. Introduction 1

1.1 Overview 1

1.2 GPS Background 1

1.2.1 The GPS Signal 2

1.2.2 Spreading Code 2

1.2.3 Code Tracking 4

1.3 Multipath Interference 5

1.3.1 Code Tracking in the Presence of Multipath 6

1.4 Previous Efforts in GPS Multipath Mitigation 6

1.4.1 Narrow Correlator Spacing 7

1.4.2 Multipath Estimating Delay Lock Loop 7

1.4.3 Modified RAKE Delay Lock Loop 7

1.4.4 Correlator Reference Waveform Design 8

1.5 Problem Statement 8

1.6 Objectives 9

1.7 Assumptions 10

1.8 Approach 10

iv

Page

II. Cepstral Analysis 11

2.1 Introduction 11

2.2 Definitions of the Power and Complex Cepstra 11

2.2.1 Power Cepstrum Definition 11

2.2.2 Complex Cepstrum Definition 12

2.3 Cepstral Processing of Multipath Signals 13

2.3.1 Power Cepstrum 14

2.3.2 Power Cepstrum Example 22

2.3.3 Complex Cepstrum 23

2.4 Filtering in the Cepstral Domain 27

2.4.1 Multipath Mitigation Example 28

III. Complex Cepstrum Adaptive Filter 32

3.1 Overview 32

3.2 Received Signal Model 32

3.3 Complex Cepstrum Adaptive Filter 32

3.3.1 Overview 32

3.3.2 Zero Padding 33

3.3.3 Cepstra Calculations 34

3.3.4 Peak Detection 34

3.3.5 Adaptive Weighted Comb Filter 35

3.3.6 Inverse Complex Cepstrum 37

3.4 The Non-Coherent Delay Lock Loop 37

3.5 Conclusion 51

IV. Computer Simulations and Results 52

4.1 Overview 52

4.2 Simulation Parameters 52

Page

4.2.1 DS/SS Spreading Code 53

4.2.2 Carrier and Direct, Path Signals 53

4.2.3 Multipath Parameters 53

4.2.4 NCDLL Design 54

4.2.5 Simulation Parameters Summary 54

4.3 Signal-to-Noise Ratio Analysis 55

4.4 Cepstrum Processing Analysis 59

4.4.1 Multipath Detector 59

4.4.2 Multipath Mitigation 69

4.5 Summary 81

V. Conclusion 83

5.1 Recommendations for Future Research 84

5.2 Final Conclusion 85

Appendix A. Matlab Function Files 86

A.l Overview 86

A.2 Thesis-Simulator Function File 86

A.3 Expand Function File 88

A.4 Delay Function File 89

A.5 Fpeak Function File 90

A.6 Meanfilt Function File 90

A.7 Scurve Funtion File 91

A.8 Vector-Shift Function File 92

A.9 Trackpoint Function File 93

A. 10 Maxfind and Minfind Function Files 94

A.11 Interpolate Function File 95

A. 12 Summary 96

Page

Bibliography 97

Vita 98

List of Figures

Figure Page

1. Maximal Length Spreading Code Autocorrelation Function 4

2. The Multipath Signal 5

3. Signals for Power Cepstrum Example 23

4. Power Cepstrum for Example Signal 24

5. Complex Cepstrum Filtering Process 24

6. Power and Complex Cepstrum Multipath Detection and Mitigation Procedure 29

7. Signals for Complex Cepstrum Example 30

8. Complex Cepstrum for Example Signal 31

9. Recovered Direct Path Signal for Example Signal 31

10. A Code Tracking Loop Employing the Complex Cepstrum Adaptive Filter . 33

11. Typical Power Cepstrum Magnitude for a GPS Multipath Composite Signal 35

12. Typical Filtered and Unfiltered Complex Cepstrum for a GPS Multipath Com-

posite Signal 36

13. The Non-Coherent Delay Lock Loop 38

14. The Non-Coherent Delay Lock Loop S-Curve for A = 1 Chip 44

15. The Non-Coherent Delay Lock Loop S-Curve for A = 0.5 Chip 45

16. The Non-Coherent Delay Lock Loop Non-Linear Model 48

17. The Non-Coherent Delay Lock Loop Linear Model 50

18. Complex Cepstrum of Noisy and Ideal Signal 55

19. Recovered Signal from a Noisy Complex Cepstrum Process 56

20. Recovered Signal from a Noisy Complex Cepstrum Process (Expanded Time

Scale) 57

21. SNR Threshold Effect 58

22. Bandpass Filtering Effect on the Complex Cepstrum 59

23. Power Cepstrum for a GPS Multipath Signal SNR = 30 dB, Multipath

Amplitude = 0.5, Multipath Delay = 0.5 60

Figure PaSe

24. Power Cepstrum for a GPS Multipath Signal, SNR = 250 dB, Multipath

Amplitude = 0.5, Multipath Delay = 0.5 61

25. Multipath Detector Test Results for SNR = 1000 dB and Multipath Amplitude

= 0.2 62

26. Multipath Detector Test Results for SNR = 1000 dB and Multipath Amplitude

= 0.4 63

27. Multipath Detector Test Results for SNR = 1000 dB and Multipath Amplitude

= 0.6 63

28. Multipath Detector Test Results for SNR = 1000 dB and Multipath Amplitude

= 0.8 64

29. Multipath Detector Test Results for SNR = 250 dB and Multipath Amplitude

= 0.2 64

30. Multipath Detector Test Results for SNR = 250 dB and Multipath Amplitude

= 0.4 65

31. Multipath Detector Test Results for SNR = 250 dB and Multipath Amplitude

= 0.6 65

32. Multipath Detector Test Results for SNR = 250 dB and Multipath Amplitude

= 0.8 66

33. Multipath Detector Test Results for SNR = 223 dB and Multipath Amplitude

= 0.2 66

34. Multipath Detector Test Results for SNR = 223 dB and Multipath Amplitude

= 0.4 67

35. Multipath Detector Test Results for SNR = 223 dB and Multipath Amplitude

= 0.6 67

36. Multipath Detector Test Results for SNR = 223 dB and Multipath Amplitude

= 0.8 68

37. Non-Coherent Delay Lock Loop Tracking Curves, Multipath Normalized Am-

plitude = 0.6, Multipath Normalized Delay = 0.65 Chips 70

38. Direct Path Estimate Mean Squared Error For Multipath Amplitude = 0.2 70

39. Direct Path Estimate Mean Squared Error For Multipath Amplitude = 0.4 71

IX

Figure Page

40. Direct Path Estimate Mean Squared Error For Multipath Amplitude = 0.6 71

41. Direct Path Estimate Mean Squared Error For Multipath Amplitude = 0.8 72

42. Tracking Bias Comparison for SNR = 1000 dB and Multipath Amplitude

= 0.2 73

43. Tracking Bias Comparison for SNR = 1000 dB and Multipath Amplitude

= 0.4 74

44. Tracking Bias Comparison for SNR = 1000 dB and Multipath Amplitude

= 0.6 74

45. Tracking Bias Comparison for SNR = 1000 dB and Multipath Amplitude

= 0.8 75

46. Tracking Bias Comparison for SNR = 250 dB and Multipath Amplitude = 0.2 75

47. Tracking Bias Comparison for SNR = 250 dB and Multipath Amplitude = 0.4 76

48. Tracking Bias Comparison for SNR = 250 dB and Multipath Amplitude = 0.6 76

49. Tracking Bias Comparison for SNR = 250 dB and Multipath Amplitude = 0.8 77

50. Tracking Bias Comparison for SNR = 223 dB and Multipath Amplitude = 0.2 77

51. Tracking Bias Comparison for SNR = 223 dB and Multipath Amplitude = 0.4 78

52. Tracking Bias Comparison for SNR = 223 dB and Multipath Amplitude = 0.6 78

53. Tracking Bias Comparison for SNR = 223 dB and Multipath Amplitude = 0.8 79

List of Tables

Table Page

1. GPS Spreading Code Characteristics 3

2. Average Data Summary For 1000 dB SNR 81

3. Average Data Summary For 250 dB SNR 81

4. Average Data Summary For 223 dB SNR 82

List of Abbreviations

Abbreviation Page

(GPS) Global Positioning System 1

(DGPS) Differential Global Positioning System 1

(DS/SS) Direct Sequence Spread Spectrum 1

(BPSK) Binary Phase Shift Keying 2

(P-code) Precision Code 2

Y-Code Encrypted P-code 2

(C/A) Coarse/Acquisition 2

(SA) Selective Availability 2

(CDMA) Code Division Multiple Access 3

(PRN) Pseudorandom Noise 3

(NCDLL) Non-Coherent Delay Lock Loop 7

(SPS) Standard Positioning System 7

(MEDLL) Multipath Estimating Delay Lock Loop 7

(MRDLL) Modified RAKE Delay Lock Loop 7

(SNR) Signal to Noise Ratio 8

(AFIT) Air Force Institute of Technology 10

(DTFT) Discrete Time Fourier Transform , 12

(CCAF) Complex Cepstrum Adaptive Filter 32

(IF) Intermediate Frequency 32

(AWGN) Additive White Gaussian Noise 32

(DFT) Discrete Fourier Transform 33

(DLL) Delay Lock Loop 37

(VCO) Voltage Controlled Oscillator 48

(RMS) Root-Mean-Square 50

xn

List of Symbols

Symbol Page

LI 1575.42 MHz Carrier Frequency 2

L2 1227.6 MHz Carrier Frequency 2

RC(T) Autocorrelation Function 3

c(t) DS/SS Spreading Code 3

r(t) Composite Received Signal 6

s(t) Direct Path Signal 6

m(t) Multipath Reflection Signal 6

XpC[nT] Power Cepstrum of x(n) 11

X(z) Z-transform of x(n) 12

x[nT] Complex Cepstrum of x(n) 12

ao Direct Path Attenuation Factor 32

ai Multipath Attenuation Factor 32

6»o Direct Path Signal Phase 32

#i Multipath Reflection Signal Phase 32

Td Direct Path Signal Propagation Delay 32

Tm Multipath Reflection Propagation Delay 32

wo Carrier Angular Frequency c 32

n{t) Additive White Gaussian Noise 32

W Complex Cepstrum Domain Filter Vector 37

K\ RF-to-IF Conversion Loss Constant 39

A NCDLL Correlator Spacing 39

WJF Intermediate Angular Frequency 39

SA(S) NCDLL S-Curve 42

6 NCDLL Tracking Error 42

a Multipath Reflection Normalized Delay in Chips 53

AFIT/GE/ENG/97D-19

Abstract

This work presents a novel approach to code phase multipath mitigation for Global Posi-

tioning System (GPS) receivers. It uses the power and complex cepstra for multipath detection

and mitigation prior to code phase tracking by a standard non-coherent delay lock loop. Cepstral

theory is presented to demonstrate how multipath reflection delays can be detected through the use

of the power cepstrum. Filtering can then be performed on the complex cepstrum to remove mul-

tipath effects in the cepstral domain. Finally, an inverse complex cepstrum is calculated yielding a

theoretically multipath free direct path estimate in the time domain. Simulations are presented to

verify the applicability of cepstral techniques to the problem of GPS multipath mitigation. Results

show that, under noiseless conditions, cepstral processing prior to code tracking by a standard non-

coherent delay lock loop leads to lower code tracking biases than direct tracking of the composite

multipath signal by a narrow correlator receiver. An exception to this general rule occurs at a mul-

tipath reflection delay of exactly 1.0 chip, relative to the direct path, where the cepstral processing

provides no improvement. Additionally, cepstral processing provides little or no improvement over

a narrow correlator non-coherent delay lock loop when the multipath delay is small, approximately

0.1 chip or less. However, this weakness is common for other multipath mitigation techniques as

well. Finally, this work shows that cepstral processing is highly sensitive to additive white Gaussian

noise effects, leading to the conclusion that methods of limiting noise effects must be developed

before this technique will be applicable in actual GPS receivers.

Cepstral Processing For GPS Multipath Detection and Mitigation

/. Introduction

1.1 Overview

Satellite navigation systems have ushered in a new era in precision navigation. The Global

Positioning System (GPS) in particular provides highly accurate position solutions for both civilian

and military applications. This has led to it's use in every arena from personal recreation to highly

precise "smart" bombs. However, a primary error source still exists in GPS, ranging errors caused

by multipath interference. In fact, multipath signals are the dominant error source for Differential

GPS (DGPS). Thus many efforts focus on developing techniques to mitigate multipath errors in

DGPS.

1.2 GPS Background

The Global Positioning System is a direct sequence spread spectrum (DS/SS) satellite nav-

igation system consisting of 24 satellites providing navigation information to passive receivers.

The system operates using the principle of trilateration. Within the received signal, the satellite

transmitter embeds precise timing information. The receiver uses the signal propagation delay to

calculate the distance to the satellite using d — vp * (tr - tt) where d is the distance from the

receiver to the satellite, vp is the velocity of propagation (usually assumed to be the speed of light

in a vacuum), tt is the time of transmission, and tr is the time of receipt.

In addition to transmitting precise timing information, each satellite transmits ephemeris data

which provides the satellite's position. From knowledge of the positions of at least four satellites

and the range to each satellite, a user position solution is calculated. This still leaves two important

questions unanswered. First, how does the receiver distinguish between satellites? Second, how

does the receiver determine the precise time of transit for the signal being transmitted from the

satellite? Both of these questions will be covered in the sections that follow.

1.2.1 The GPS Signal. Before examining the GPS signal, consider a general direct

sequence spread spectrum signal. This signal is represented as

s(t) = V2Pcos(u)0t + ec{t) + ed(t)) (1)

where s(t) is the transmitted signal, P is the carrier power, w0 is the carrier angular frequency, 6C

is the spreading code, 64 is the data stream. Assuming antipodal binary phase shift keying (BPSK)

is used for the spreading code and data modulation, an equivalent form of Equation 1 is given in

Equation 2

s(t) = V2Pc(t)d(t)cos(w0t) (2)

where d(t) is the data stream and c(t) is the spreading code.

The Global Positioning System consists of satellites transmitting two distinct DS/SS signals.

The first signal is called Precision code (P-code). This signal is encrypted, a conversion to Y-

Code, before transmission, and is reserved for military users. The P-code signal provides position

estimates with accuracy on the order of 10 m in the absence of multipath interference. The second,

Coarse/Acquisition (C/A) code, is transmitted for all users. The C/A code signal is subjected to

selective availability (SA), a form of intentional signal degradation. With SA in operation, C/A

code provides position estimates with accuracy on the order of 100 m in the absence of multipath

interference. P-code is transmitted at two carrier frequencies, LI and L2; whereas C/A code is

available only on LI. The properties of the GPS signal are summarized in Table 1 (5).

1.2.2 Spreading Code. The Global Positioning System uses orthogonal Gold codes to

spread the signal spectrum. For a discussion of Gold codes see (9, 10). These codes allow GPS

Table 1 GPS Spreading Code Characteristics

Parameter C/A Code P Code
Data Rate 50 Hz 50 Hz

Chip Rate = 1/TC 1.023 Mchips/sec 10.23 Mchips/sec
Code Period = N (chips) 1023 Chips (1 ms) « 6 x W12 Chips (1 week)
Carrier Band Designation LI

1575.42 MHz
LI, L2

1575.42, 1227.6 MHz
respectively

to utilize code division multiple access (CDMA) to distinguish which satellite transmitted a given

signal. Due to the orthogonality of the codes, the correlation of the received signal will be essentially

zero if the locally generated code is not the same as that of the received signal.

GPS receivers exploit knowledge of the spreading code correlation function to synchronize a

locally generated replica of the spreading code to the received spreading code. This synchronization

is needed to determine range to the satellites; additionally, this tracking of the spreading code

accomplishes despreading of the received signal. The code autocorrelation function, Äc(r), is

defined as

1 fNT' RC{T)=NTCL <t)c(t + TT^dt (3)

where r is the independent (time shift) variable, NTC is the code period in seconds, and c(-) is the

spreading code.

For maximal length pseudorandom noise (PRN) codes, the fundamental period of the code

autocorrelation function is (5, 11)

Rc(r)

l-r(l + i) |r|<l

1< \T\ < (N - 1)

- (JV - 1)] (1 + £) - i (N-1)<\T\<N

N
(4)

where TV is the code period in chips.

Since N 3> 1, Equation 4 can be approximated as

Rc{r) « {
1 - \T\ \T\ < 1

0 elsewhere
(5)

A plot of the Equation 5 is shown in Figure 1. Although Figure 1 shows only a single peak,

the periodicity of the spreading code results in a periodic autocorrelation function. Therefore, the

peak of Figure 1 is repeated every N chips.

1.5

0.5
E <

-0.5
-0.5 0 0.5

Tau (chips)
1 1.5

Figure 1 Maximal Length Spreading Code Autocorrelation Function

1.2.3 Code Tracking. As alluded to earlier, code tracking in a DS/SS receiver is accom-

plished by computing the correlation of the received and locally generated spreading codes. The

locally generated code is shifted in time until the correlation is maximized. Maximization of the

correlation function occurs at T = 0. Referring to Equation 3, it is seen that r = 0 implies that, the

locally generated code and the received code are synchronized. By measuring the shift of the local

code necessary to maximize the correlation function, the receiver can estimate the signal propaga-

tion delay. As discussed earlier, the propagation delay is then used to estimate the range to the

satellite.

1.3 Multipath Interference

A multipath signal is a reflection of the direct path signal. The multipath phenonmenon is

illustrated in Figure 2.

Figure 2 The Multipath Signal

From Figure 2 it is seen that the multipath signal traverses a greater distance than the direct

path signal; hence, the multipath signal is a delayed version of the direct path signal. Because

it is assumed that the multipath signal is also attenuated with respect to the direct path signal,

Equation 2 can be used to represent the ith multipath component as

i(t) = at s(t - Tmj) = a,i c(t - Tmi)d(t - rmj) V2P cos [2w0 (* - rmi (6)

where a; is the multipath attenuation coefficient and rmj is the multipath delay relative to the

direct path signal.

Using the superposition of Equations 2 and 6. the total received signal is represented by

Equation 7

M

r(t) = s(t) + m(t) = c(t) d(t) V2P cos (w0 *) + J2 ai c(* ~ Tmi">d^ ~ Tmi^ "^ cos [2w° (* _ Tmi^

(7)

where the summation indicates M > 1 total multipath reflections.

1.3.1 Code Tracking in the Presence of Multipath. When code tracking in the presence

of multipath is performed in the same manner as code tracking in the absence of multipath, the

multipath term(s) in Equation 7 cause a distortion of the autocorrelation function. This degrada-

tion, which will be discussed later, leads to a non-zero tracking bias with respect to the direct path

signal. In other words, rather than tracking the direct path signal perfectly, the multipath compo-

nents cause some tracking error in the receiver. These effects will be discussed more thoroughly in

Chapter III.

1.4 Previous Efforts in GPS Multipath Mitigation

Efforts to eliminate multipath errors in GPS receivers have focused on three main areas:

pre-receiver, receiver-internal, and post-receiver. Pre-receiver techniques typically include antenna

designs that minimize the antenna gain in the expected direction of the multipath signal. Alter-

natively, the antenna can be designed to have a physical barrier, such as a ground plane, blocking

the multipath signal. Such antenna designs work well in static applications where the trajectory

of the multipath signal is relatively constant and can be estimated. However, they do not perform

well in dynamic situations where the multipath environment is changing rapidly. Receiver-internal

techniques typically consist of digital signal processing techniques designed to eliminate the mul-

tipath components from the received signal, or to minimize the negative effects of the multipath

components. These techniques perform well even in highly dynamic multipath environments. This

thesis fits into the receiver-internal category. A brief summary of other receiver-internal design and

signal processing techniques previously developed follows.

I.4.I Narrow Correlator Spacing. The use of a non-coherent delay lock loop (NCDLL)

with a more narrow correlator spacing was one of the first receiver designs for multipath mitigation

(12). This technique employs a code tracking delay lock loop with correlators spaced 0.1 of a

chip duration apart in time rather than the standard 1 chip width. The narrow spacing results in

the delay lock loop tracking a more narrow portion of the correlation peak. This leads to better

performance in a multipath environment with maximum tracking errors being reduced by a factor

of approximately 10 with respect to the standard correlator structure. This technique is currently

used in many production GPS receivers for standard positioning system (SPS) (i. e. C/A code) use.

1.4-2 Multipath Estimating Delay Lock Loop. The multipath estimating delay lock loop

(MEDLL) provides improvements over the narrow correlator spacing receiver (13). In the MEDLL,

the multipath signal amplitudes and delays are estimated, and the multipath signal is removed

through digital signal processing. The MEDLL is implemented using a bank of correlators, each

delayed relative to the other by a fraction of a chip. By correlating the received signal using this

bank, a sampled version of the distorted correlation function is generated. The MEDLL then

uses a maximum likelihood estimator to estimate the multipath signal parameters. Finally, using

digital signal processing, the estimated multipath components are removed from the received signal.

This proprietary technique provides significant improvement over narrow correlator spacing and is

implemented in some production GPS receivers.

I.4.3 Modified RAKE Delay Lock Loop. The modified RAKE delay lock loop (MRDLL)

was proposed in an Air Force Institute of Technology thesis by Mark Laxton (5). The MRDLL has

similarity to the MEDLL, using a bank of correlators and a maximum likelihood estimation unit

to estimate the multipath parameters. The MRDLL employs an adaptive loop controller to adjust

the loop filter gain, maintaining a fixed linearized loop natural frequency and damping ratio. This

technique has a non-zero tracking error in the absence of multipath interference.

I.4.4 Correlator Reference Waveform Design. Correlator reference waveform design is

one of the latest techniques to be suggested for GPS multipath mitigation (14). This technique

recommends correlating the received signal with a waveform designed explicitly to reject multipath

signals. Rather than using a replica of the GPS spreading code for correlation in the delay lock loop,

Weill recommends using the second or fourth derivative of the spreading waveform. This technique

claims to reduce multipath ranging errors by increasing the range resolution of the correlation

process through the use of novel reference waveforms. The advantage of the second and fourth

derivative correlators is that they can be implemented using two correlators, one for code tracking,

and one for acquisition, data recovery, and data removal. This is opposed to a bank of many

correlators for the MEDLL and the MRDLL. Additionally, this technique can be implemented

easily without significant additional signal processing, such as that required by the MEDLL and

the MRDLL. The disadvantages are that this technique requires a slightly higher input signal to

noise ratio (SNR) than the other techniques, and this technique cannot completely remove the

multipath interference. Rather, correlator reference waveform design greatly reduces the error

caused by the multipath signals. Like the MRDLL, this technique is very new, and not likely to

have been implemented in a production model GPS receiver.

1.5 Problem Statement

The complex cepstrum is a tool originally investigated for echo determination in seismic

applications. By virtue of the fact that the cepstrum is a complex quantity, signal magnitude and

phase information is preserved through the application of the complex cepstrum. The signal can

subsequently be reconstructed through an inverse cepstrum process. Since multipath signals are

"echoes" of the direct path signal (see Equation 6), the complex cepstrum will be investigated

as a tool to remove the multipath interference in a composite signal. This thesis will pursue the

complex cepstrum as a means to separate the multipath interference from the composite GPS

signal. The multipath interference will then be removed by filtering (often called littering) in the

cepstral domain. Finally, the signal will be transformed back into the time domain for tracking

by a standard GPS receiver. With the multipath interference thus removed, the induced tracking

error will be removed, allowing accurate tracking of the direct path GPS signal.

1.6 Objectives

This thesis proposes a GPS receiver employing a complex cepstrum process for multipath

removal, followed by a standard delay lock loop for code tracking. This new design modifies

current GPS receivers by employing front end digital signal processing for the removal of multipath

interference. The rest of the design is a standard GPS receiver.

The objectives of this thesis are:

1. Develop a complex cepstrum filtering technique for GPS multipath interference removal.

2. Modify a standard delay lock loop by adding the filtering to the loop input.

3. Characterize the multipath induced tracking error for the modified delay lock loop in a

noiseless environment.

4. Characterize the multipath induced tracking error for the modified delay lock loop

operating with typical GPS signal to noise ratios.

5. Compare and contrast the complex cepstrum receiver performance to that of a narrow

correlator receiver.

1.7 Assumptions

For this thesis, the following assumptions are made:

1. The received signal consists of a direct path and a single reflected signal.

2. The receiver has completed the signal acquisition phase prior to multipath interference

occurring.

3. The GPS signal has been down converted to an intermediate frequency.

4. The received signal is due to only one GPS satellite (i.e. one signal per channel).

5. No special antennas or spatial processing are used for multipath mitigation.

6. Doppler effects are negligible.

1.8 Approach

This thesis presents results of theoretical analysis and simulation of multipath mitigation

using the complex cepstrum and cepstral domain filtering. Analyses and simulations are performed

for a variety of multipath scenarios and in both noiseless and additive white Gaussian noise en-

vironments. Computer simulations are presented in Chapter IV. Simulations are written using

MATLAB computational software from The Mathworks, Inc. of Natick, Massachusetts. Simula-

tions are performed on a stand alone Pentium based PC and on the Sun workstations provided by

the Air Force Institute of Technology (AFIT).

10

II. Cepstral Analysis

2.1 Introduction

In a 1963 paper by Bogert, Healy, and Tukey, entitled "The Quefrency Alanysis of Time

Series for Echoes: Cepstrum, Pseudoautocovariance, Cross-Cepstrum, and Saphe Cracking" (1)

it was observed that a signal composed of a fundamental and echoes of the fundamental could

be decomposed by taking the logarithm of the power spectrum. Bogert et al. found that the

logarithm of the power spectrum contained a periodic component due to the echoes in the composite

signal. This component manifests itself as periodic peaks when the Fourier transform is taken.

Because their technique uses the spectrum of the signal, Bogert et al. rearranged the letters of

spectrum and in naming their new technique the "cepstrum". Since it's original development,

many researchers have developed ways to modify the cepstrum for application to specific signal

decomposition problems. To avoid confusion with these new techniques, what was originally called

the "cepstrum" is now more commonly known as the "power cepstrum". Other forms of the

cepstrum include the complex cepstrum, the phase cepstrum, and the log cepstrum. This thesis will

use the power and complex cepstra. As a final note of introduction, complex cepstrum techniques

fall into a class of nonlinear filtering techniques developed by Oppenheim, Schafer, and Stockham

(7, 8) termed homomorphic deconvolution.

2.2 Definitions of the Power and Complex Cepstra

2.2.1 Power Cepstrum Definition. As previously mentioned, the power cepstrum was the

first cepstral technique developed. This technique was used to estimate the delay and amplitude of

echoes present in a composite signal. Since computer algorithms are typically employed to evaluate

the power cepstrum, xpc\nT], it is usually written in terms of the Z-transform of a sampled signal

11

as shown in Equation 8

xT,[nT\ = (Z-'(log|X(z)|2))2 (8)

= {sji1<,g|xw|2^}!

where X(z) ■= Yl^L-oo xn z~n ls tne Z-transform of the discrete time signal i[nT], n is the sample

number, and T is sampling period. The logarithm can be computed relative to any base; however,

the natural logarithm is most commonly used.

Two things should be noted concerning the power cepstrum. First, if \z\ = 1 is in the region

of convergence of X(z), then the counter clockwise contour of integration is typically chosen to

be the unit circle, so that the Z-transform becomes the discrete time Fourier transform (DTFT).

Unless otherwise noted, the DTFT will be used throughout the rest of this thesis. Second, because

the logarithm acts only on the magnitude of the Z-transform, the phase of the original signal is lost.

Therefore, an inverse power cepstrum operation cannot be applied to recover the original signal.

This weakness in the power cepstrum led to the development of the complex cepstrum which will

now be presented.

2.2.2 Complex Cepstrum Definition. The complex cepstrum was developed out of the

homomorphic system theory of Oppenheim, Schafer, and Stockham (7) and is very similar to the

power cepstrum. The primary difference is that the complex cepstrum uses the complex logarithm of

the Z-transform, maintaining the signal's phase information. The general definition of the complex

logarithm and complex cepstrum, £[nT], are given in Equations 9 and 10, respectively.

logc = In |c|+jZc (9)

12

where c is a complex number, and Lc is the argument of the complex number, c.

x[nT] = -^ <f>\og{X{z))zn-ldz (10)
^3 Jc

where, by definition, x[0] = log(.-r[0]). Finally, as a matter of notation, X(z) will be used to denote

logX(z).

As mentioned earlier, the complex cepstrum is more versatile due to the fact that phase

information is retained; however, carrying this phase information does create some difficulty in the

calculation of the complex cepstrum. The difficulty arises from the fact that the complex logarithm

is multi-valued in phase. If the phase of the logarithm is calculated modulo 2ir (wherein lc is

the principal value of the argument of c), then phase discontinuities result; however, this is not

allowed since log[X(z)] is the z-transform of x[nT] and thus must have a continuous phase. This

difficulty is solved using any of several readily available phase unwrapping techniques. One such

technique, presented by Childers, Skinner, and Kemerait (3) adds a correction term, C(k), to the

phase according to the following algorithm

C(k) = <

0 if k = 0

C{k - 1) - 2*r if P(k) - P(k - 1) > IT

C(k - 1) + 2TT if P(k - 1) - P{k) > 7T

C(k — 1) otherwise

(11)

where P(k) is the phase at point k.

2.3 Cepstral Processing of Multipath Signals

This section presents a typical use of the cepstrum, namely characterization of echoes (such

as multipath) in a composite signal. First, the theory for using the power cepstrum is developed,

followed by the theory of the complex cepstrum. Both of these derivations closely follow those found

13

in (2, 3). Previous work has shown that it is often easier to detect multipath reflections in the power

cepstrum, rather than the complex cepstrum (3). However, the complex cepstrum maintains the

needed phase information contained in the signal. After calculating the complex cepstrum, a signal

can be filtered in the cepstrum domain to remove the previously detected multipath reflection,

then an inverse cepstral operation can be performed to recover the time domain direct path signal

estimate. This process will be described in more detail later.

2.3.1 Power Cepstrum. To see how the power cepstrum can be used to decompose a

signal comprised of a direct path and one multipath reflection, let x[nT] be the signal of interest.

This signal can be represented as follows

x[nT]=f[nT]*g[nT] (12)

where * represents the convolution operation, f\nT] represents the direct path signal, and g\nT] is

defined as

g[nT) = 6[nT] + a0S[nT - n0T] (13)

Referring to Equation 8 for the definition of the power cepstrum, the steps in calculating the power

cepstrum of a;[nT] are completed in the following manner

X(z) = F(z)G(z) (14)

\X(z)\ = \F(z)\-\G(z)\

|X(z)|2 = \F(z)\2-\G(z)\2

= \F(z)\2\(l + a0z-n°)\2

14

Because x[nT] is a causal, stable signal, the DTFT exists and is found by substitution of z = ejut:

|X(e^T)|2 = |J(e'wT)|2|(l+a0e-*,m°T)|2

log |X(e^T)|2 = log \F(e>uT)\3 + log | (l + a0 e^"^) |2

= log \F{ei"T)\2 + log |1 + a0 cos{n0coT) - ja0 sin(n0wT))|2

= log \F(eju,T)\2 + log{[l + aQ cos{n0uT)}2 + [a0 sin(n0wT)]2}

= log \F(e>uT)\2 + log[l + 2a0 cos(n0wT) + a2 cos2(n0uT) + a2 sin2(n0uT)}

log \F(e>wT)\2 + log[l + 2a0 cos(nowT) + a2}

2ap

+ a2o
= log \F(e^T)\2 + log[(l + a2)(l + -^5_ coS(n0u>T)}

= log \F{e^T)\2 + log(l + a2) + log[l + r^ cos(n0ujT)}
i-\- a0

= log \F(e^T)\2 + log(l + a2) + log[l + -5L_(e»"»"T + e"^)] (15)

Next, use the power series expansion, log(l + a;) = 2fcli(_l)fc+1X' to exPand tne tnird term m

Equation 15. Note that this expansion converges only if |a;| < 1, which holds for this application.

To prove this, let

x = - =■ cos (n0 CJ T)
1 + a2

Then,

which implies

or

0 < (1 - «of = 1 - 2a0 + a2,

2a,o < 1 + ao

2a0 < 1

1 + ag

15

Similarly, (1 + a0) > 0, leads to the conclusion

2a0

1 + af -
> -1

Therefore,

-1 < 2a0

" 1 + «n
< 1

Because | cos (n0 w T) \ < 1, if follows that

(16)

|-4^2 cos (no w T) | < 1
1 + an

(17)

Therefore, the expansion is used for this problem and is given by

log 1 +
a0

l + «o
(e jn0u>T , e~jn0uT' £

ro—1

(-1)
m+l r

m
^0_^ jn0uT

U + «0
(e + e -jnoo (18)

Combining Equations 15 and 18 gives

log|X(e^)|2 = log|F(e^|2+log(l + ^)+^^—[-^(e^T+e-^T)r (19)
771 1 "T" t*A

m=l u

= log \F(e^T)\2 + log(l + a2) + -J_(e>"<>,-r + e^n^T)

1 / «0 \ . jn0u>T , -j«0wTx2 , 1 / a0 A / jn0uT , -jn0a,T\3 _

"2Vl + a2J (C +<? j +3^1 + a2; (6 + ' j -

= log|F(e^r)|2 + log(l + a2) + ~^(ejn°"T +e'^T)
i + a0

1 / a0

2\l + a2
n

j2n0u>T _j_ e-j2n0uT + 2)

_|_I J a°) CeJ3n0wT _|_ e-j3n0uT _j_ g^nowT + ßg-jnowTx _ _ _ _

3 \ 1 + a0 J

Note that each term with an even exponent in the expansion will contain a constant, with decreasing

magnitude as the exponent increases. Also, note that the term log(l + a2,) is a constant. Lumping

these constants together into another constant called K, and taking the inverse Fourier transform,

16

gives the power cepstrum of this signal.

xpc[nT] = F-^log \F(ej"T)\2} + F'^K} + F"1 { j^(ejn^T + e^n^T)

_ 1 f_*_\ (ei2n0WT + e-j2n0«T + y
2 \1 + a0J

1 / «0 \ feJ3n0wT , e-j3n0uT + fejnouiT + ^e-jn0u,T\ _ j

3 V1 + «o /

= F-^log \F{e^T)\2} + KS(t) + -^ [6(t + n0T) + S(t - n0T)}
1 + (In

~(T^)2[6(t + 2n0T)-6(t-2n0T)}

+ u0
+ l(jJlh)3 W* + 3noT) + *(* - 3noT)} -... (20) 6 1 + ai

Examination of Equation 20 shows why the power cepstrum is useful for determining the delay

of a multipath signal. The power cepstrum of the composite signal exhibits periodic peaks which

are delayed at integer multiples of the multipath delay; thus, the power cepstrum can be used to

detect a multipath component in a composite signal. The difficulty occurs when one attempts to

characterize multiple multipath reflections. This difficulty is demonstrated in the derivation that

follows, which parallels a derivation in (3).

The two echo case is derived following a procedure similar to that for a single echo. In this

derivation, arbitrarily many reflections could have been used. However, the two reflection scenario

is useful for highlighting the key points without adding unnecessary complexity.

First, refer to Equation 12 as the starting point. Then, rewrite Equation 13 to account for

two reflections, which yields Equation 21

g[nT] = 6[nT] + a0S[nT - n0T] + ai6[nT - niT] (21)

where a, and ruT are the amplitude and delay, respectively, of the ith reflection.

17

Next, follow the same steps as in the previous derivation.

X{z) = F(z)-G(z) (22)

\X(z)\ = |F(*)|.|G(s)|

|X(z)|2 = \F(z)\2-\G(z)\2

= \F(z)\2\{l + a0z-no+a1z-ni)\2 (23)

|2

Evaluating on the unit circle, z — edUt and taking the logarithm gives

|X(e^T)|2 = |F(ejuT)\2 | (1 + ao e-
jn°"T + ai e^"lwT) |2

log |X(e^T)|2 = log \F(e^T)\2 + log | (l + a0 e^n^T + ttl e~^uT) |2

= log|F(e>"T)|2

+ log |1 + ao cos(nowT) + a\ cos(nia;T) — j[ao sin(nowT) + a\ sin(aiwT)]|2

= log|*VT)|2

+ log{[l + a0 cos(n0wT) + a-i cos(?XiwT)]2 + [ao sin(nowT) + aj sin(niUJT)]
2
}

= log \F(ejwT)\2 + log[l + 2a0 cos(n0wT) + 2«i cos(niwT) + a2
0 cos2(n0uT)

+2aoai cos(nowT') cos(niwT) + a2 cos2 (njwT) + a2 sin2 (novT)

+2aofli sin(nowT') sin(n-iwT) + a2 sin(niwT)]

= log \F(ejwT)\2 + log[l + a2
0 + a2 + 2a0 cos(7i0wT) + 2at cos(niujT)

+2a0ai{cos[(ni — no)uT] + cos[(?xi + no)u)T]

+ cos[(ni - n0)ojT] - cos[(ni + n0)wT]}]

= \og\F{eJ«T)\2

+ log{l + a2 + a2 + 2ao cos(n0wT) + 2«i cos(niwT) + 2a0ai cos[(ni — nQ)ujT]}

18

= log |F(e^)|2 + log { [1 + a\ + a2][l + ^° cos(n0a;T)

+ 1 ■ „2 ■ ni cos(nlWT) + cos{(ni - n0)u>T}} }

= log|F(e^T)|2 + log(l + a2 + a2)

+ lo§ 1 X + i ■ „?°, „2 cos(nowT) + " * 2 cos(mwT)

2a0ai
1-TäfTa2 + , , J ^„a cos{(m - n0)uT}]

= log |F(e^)|2 + log(l + flg + a2) + log { 1 + [a0(e^ + e-^"r)

+ai(eJ'niwT + e-J'™ia,T) + a0ai(ei(ni""o)wT + e^^-"»)«^) j j (24)

Next, the final term of Equation 24 can be expanded in a similar manner as for the single reflection

case. Incorporating the expansion into Equation 24 gives

F-1{log|X(eJ'"T)|2} = F-1{log|F(e^T)|2} + JF-1{log(l + a2+a2)}

[ao(einowT + e-jn°"T) + a1(ejn^T + e-
jn^T)

+a0a1(ej{ni-no)uT + e-J(»i-"o)«Tjj

= F-^log |iV"T)|2} + ^-a{log(l + «2 + «2)}

1 + aj + a\

+a0ai(ej("1_"o)wT + e-:>("i-"°)"T)]

--(\ 2-)2[a0(eJ'"<'wT + e-
jn°"T) + ai(ejn^T + e-

jn^T)

+a0a1(ej{n'-no)u'T + c-i("i-«o)'-T)]2

+ i(- 1 2-)3[ao(^'"owT + e^n°wT) + ai(eJn^T + e^
n^T)

= F-^log |F(e^T)|2} + F-1 { log(l + a2 + a2)}

1
+J,_1{ i 2 2 K(einowT + e-^°wT) + «!(e^wT + e~>niuT)

1 + WQ "I" al

19

+a0a1(eji^-no^T + e-
j{ni-n°)ujT)]

-^TT-4—2 YH{ej2no"T + e-^°»T + 2)

+al(ej2ni"T + e-j2n^T + 2)

+ala\{eJ2(n'~no)uT + e~^n^na)uT + 2)

+a0a
2

1(ejn°uT + e-^
uT + ei(2«i-«oVr + c-j(2n1-n0)«rj]

+ -(1 2?\.aKeJZn°"T + e~j3n°wT + 3ejn°uT + 3e-jno"T)

+a\{ei3n^T + e~j3n^T + 3e^wT + 3e-jn^T)

+ala3
1(ej3{ni-no)uT + e-i3("i-"°VT + Zejn°"T + 3e-jn°uT)

+3a2a1(2e:>n^T + 2e~in^T + ei(2"o+«1)«T + e-j(2n0+ni)u,T

+ei(2no-ni)«T + e-j(2«0-m)"T) + 3aoa^2ejn°U'T + 2e-J'"°wT

i ei(2«i +n0)uT _|_ e-j(2tii+n0)uT _|_ eJ(2ni-n0)uT _|_ c-i(2n,-n0)uT^

_|_3a a3/2ei(ni-"o)wT _|_ 2e-j("i-«o)wT _|_ gjf(3Tii-no)wT _|_ e-j(3m-n0)wT

+eJ(m+noVT + g-jXm+no)«!-) + 3o^a? (2e^lwT + 2e^'niwT

i ei(3n1-2n0)wT , e-j(3n1-2n0)uT _|_ ej(ni -2n0)wT _|_ g-j(™i -2n0)wT\

+o3a (2e^ni~"°-)wT + 2e~ttn^~n°}"T + e^ni+n°"luT + e~^ni+n°^uT

iei(m-3"o)wT _|_ g-j(K1-3n0)wT'j _|_ ß3ß2 ^gjno^T _|_ 2g-jn0wT _j_ eJ(2m -3n0)wT

_(_e-i(2«i-no)wT + ei(2ni-n0)«T + e-j(2ni-n0)wT\ + 4a
2
a

2(e32n°uT + g-J2n0wT

_|_eJ2nlWT _|_ e-j2niwT _^_ ei2(n,-n0)uT _|_ g-J^rij -n0)uT _|_ 2)1 - . . . }

(25)

20

Next, the inverse Fourier transforms are evaluated to yield the power cepstrum. After collecting

like terms, the equation above becomes the following.

Xpc[nT) = i^ilogljy^)!2}

\og{l + a2
0 + al) +

(26)

*o(! + ai) + at(1 + ao) + 3aoai+ao + ai
(1 + al+aiy

6a5
0 + 18a3

0 + 6a0 + a3, (6a? + 13a?) + a0(3af + 21a?)

6(t)

6(1 + a2
0+al)3

6a? + 12a? + 6a3, + 6aa - a0(3a? - 6ai) + ao(6a? + 4a?
6(l + a2 + a2)3

-ag(3af - 12a? + 3a? - 12ai) + 12a0ai

[Ä(i - n0T) + 6(t + n0T)]

6(l + a2+a?)3

5aQai — 3aQ — 3ag
6(l + ag+a?)3)

5aga? - Za\ - 3a?

[«(* - mT) + «(t + niT)]

6(l + ag+a?)3)

0 [o(i - 2n0T) + S(t + 2n0T)]

[5(t-2n!T) + «(t + 2niT)]

an
2 + a2^3

a''

3(l + ajj + a?)
3

[6(t - 3n0T) + 6(t + 3n0T)}

3(l + a2 + a?)3

+ 6aga1+ao(12a3 + l7ai) + a(6ftf + 21a3+3ai) _ _ + + _
6(1 + ag + af)3

5aga? — 3aga? — 3aoaf
6(1 + al + a? 2\3 [«(* - 2(m - n0)T) + <5(i + 2(m - no)T)]

,3„3

3(l + a2 + a?)3

3a0(a? — ai) - a^ai
6(l+ag+a?)3

2a0a? — 3aQai — 3ag(a? + «i)
6(l + ag+a?)3

3ao(a? — a?) — a3, a?

[6(i - 3(na - n0)T) + 6(t + 3(m - n0)T)]

[o(t - (m + n0)T) + 6(t + (m + no)T)]

[6(t - (ni - 2n0)T) + «(* + (m - 2n0)T)]

6(l + a2+a?)3 [S(t - (2m - n0)T) + 6(t + (2m - n0)T)]

«oai
(1 + al + a? 2\3

a2
0a,i

(1+ag+a?) 2\3

ao«?
(l+a§+af)3

aQa\
(1+ag+a?) 2\3

[6(t - (2n0 + m)r) + «(« + (2n„ + m)T)]

[«(t - (2n0 - m)T) + S(t - (2n0 + m)T)]

[6(t - (2m + n0)r) + <$(* + (2ni + n0)T)]

[*(t - (3m - nx)T) + <5(* + (3m - n0)T)}

21

«0«!

(1 + a0 + a1)

«oai
+ 0/1 , „V, 2^3 [«(* " K - 3wo)T) + *(* + (»i - 3no)^)] 3(1 + al+a\)

3 2

•in-L.^"! 2V. W - (2"i " 3™°)T) + *(* + (2rii - 3w°)T)l + • • ■ O^J. + Ctg -\- «j J

From Equation 26 it is seen that the power cepstrum will contain peaks at the delays of each

reflection, just as it did in the single reflection case. However, it is also seen that the reflections

will interact with each other causing peaks at sums and differences of the delays. It is these peaks

that cause the difficulty in determining the true multipath delays. If a sufficiently small number of

multipath reflections exist, the true delays can be distinguished from these interference delays using

an exhaustive search. This method would involve comparing the delay associated with every peak

to the sums and differences of the other delays, and determining which delays are true multipath

delays. Using a computer algorithm, this procedure could probably be implemented for cases

where only a few reflections exist. However, this method would become very time consuming if

many reflections exist. Therefore, rather than dealing with this difficulty, this thesis will focus on

using the complex cepstrum to remove all reflections without necessarily estimating the parameters

associated with the reflections.

2.3.2 Power Cepstrum Example. To see how the power cepstrum can be used to determine

the delay in a single multipath reflection case, consider the following simple example. Let x[nT] be

the direct path signal

x[nT] = e-nT (27)

where T is the sampling period, n is the sample number, and the signal is given an initial amplitude

of 1 so that everything is normalized to the direct path.

Next, let a single multipath reflection occur three time units later than the direct path, with

an amplitude of one half with respect to the direct path. Then, from Equation 6 the composite

22

signal is given by

c[nT] = e-"T+0.5e-<"T-3> (28)

where c[nT] is the composite signal. A plot of these signals is shown in Figure 3.

Composite Signal

0.9-

0.7-

0.6-

10.5-
e <

0.4-

0.3-

0.2-

0.1

) 1 1 1 1 1 1 1

 Direct Path signal

 Multipath signal ■-

■ ■

\ j 1 i
\ i
\

K. !
I 1 ~ i - i ~ ' ■ i- 1 i

01 23456789 10
Time

Figure 3 Signals for Power Cepstrum Example

Following the procedures previously developed, the power cepstrum of the composite signal

was calculated and is shown in Figure 4. It is seen in Figure 4 that the power cepstrum contains

peaks at ±3 time units, as predicted by Equation 20.

2.3.3 Complex Cepstrum. The development of the complex cepstrum in a multipath

environment is very similar to that of the power cepstrum. The difference lies in the fact that the

complex logarithm is used to retain phase information. As mentioned earlier, this allows one to

filter the signal in the cepstral domain, then perform an inverse operation to return to the time

domain. This process is shown in Figure 5. The single reflection complex cepstrum derivation

follows. As before, this derivation parallels those in (2, 3).

23

Real Cepstrum of Composite Signal

x[nT]

Figure 4 Power Cepstrum for Example Signal

Forward
DFT

Complex
Logarithm

Inverse
DFT

Cepstrum
Filter

Forward
DFT

Complex
Exponential

Inverse
DFT

xp[nT]

Figure 5 Complex Cepstrum Filtering Process

For the complex cepstrum derivation, begin with a signal which is the convolution of two

other signals.

x[nT\ = f[nT*g[nT\ (29)

where * represents the convolution operation, f[nT] represents the direct path signal, and, for a

single reflection, g[nT] is defined as

g[nT] = 6[nT] + a06[nT - n0T] (30)

24

Referring to Equation 10, the steps in computing the complex cepstrum are completed as follows.

X(z) = F(z)G(z) (31)

= F(z){l + a0z~n°)

Evaluating the Z-transform on the unit circle and taking the logarithm yields

X{eiuT) = F(eju,T)(l + a0e-i"noT) (32)

log[X(e^T)] = log[F(e^T)]+log[(l + a0e-^oT)]

(33)

Again, a power series expansion is used for the final term above, provided that \ao e~iwn°T\ —

|ao| < 1, which requires that reflections be attenuated relative to the direct path signal. This

generally is true due to the conservation of energy, but can be violated when many reflections

combine in phase to form a composite reflection of greater magnitude.

ju>no T\k In C-J™0TU

log[(l + aoe-i^)] = EM)"*1 h (34)
fc=i

Using the expansion yields

log[X(e^)] = log[F(e^)] + E(-l)t+l(u } (35) k
k=i

Finally, the inverse Fourier transform is taken to give the complex cepstrum.

F-l{log[X(e^T))} = jr1{log[F(e*"T)]}

a: 3

= F-l{log[F(e^T)}} + a0S(t - n0T) - ^6(t - 2n0T) + -±6(t - 3n0T)

25

Just as in the power cepstrum case, it is seen that the complex cepstrum will contain peaks at

integer multiples of the multipath delay. However, unlike with the power cepstrum, these peaks

can be removed from the complex cepstrum by filtering. Following this filtering operation with an

inverse complex cepstrum will then yield a multipath free signal in the time domain.

The same procedure as above can be followed for the multiple echo scenario (3). Again, as in

the power cepstrum case, a two echo case will be presented for illustration purposes. However, the

analysis could be extended to the case of arbitrarily many echoes.

Again, start with a signal which is the convolution of two signals, as given in Equation 29.

However, in this case define g[nT] as

g[nT] = 6[nT] + a0S[nT - n0T] + a^nT - nxT] (37)

where aj and WjT are the amplitude and delay, respectively, of the ith multipath signal.

Then, the derivation follows as before.

X(z) = F(z)G(z) (38)

= F(z)(l + aoZ~n° +GHZ-™1)

Evaluating the Z-transforms on the unit circle and taking the logarithm yields

X(ej"T) = F(e>wT)(l + a0e->wn°T + a1e->un*T) (39)

log[X(e>T)] = log[JF(e^T)]+log[(l + aoe^'w"''T + a1e-^"lT)]

Using the power series expansion for the last term, when | «o e~^wn°T + a,i e~JU'niT \ < 1, gives the

following

M^I=iog[^(e-
T)]+^(-ir1^—i^—L (40)

26

Finally, taking the inverse Fourier transform yields the complex cepstrum.

-1{log[X(e>vr)]} = F-1{log[F(e"T)]} (41)

= +F-1{«oe-«T + a1e-«
r-^ ±^ >-

(a0e-Jw°T + aie~jWlT)3 , + _ ...)

= *'-1{log[F(eJ'wT)]} + F-1 { a0er
jun°T + a^"^ - \a2

0e-
jun°T

--a\e-^^T - l-aoaie-^
n°+n^T + ±a*e-i3un°T + \a\e-^^T

2 2> o ö

+a2
0a1e-^

2n'>+n^T + a0a
2
e-^

n°+2n^T...}

= F-1{log[F(ej"T)]} + a06(t - n0T) + aiS(t - mT)

-\a2
08{t - 2n0T) - \a\6{t - 2mT) - a2

oai6{t - (n0 + m)T)

+ \<46(t - 3n0T) + \a\8{t - 3nxT) + aga^i - (2n0 + nt)T)
ö O

+a0ai5(*-(no+2ni)T)-...

As in the single reflection case, it is seen from Equation 41 that the complex cepstrum will contain

peaks with amplitudes and delays proportional to those of the multipath signals. Also, like the

power cepstrum, it is seen that the multiple reflections will interact causing difficulty in using the

complex cepstrum to characterize the multipath signals. However, unlike in the power cepstrum

case, the complex cepstrum can be filtered in the cepstral domain, then inverted back to the

time domain. Using this technique, the multipath signals are removed and the direct path signal

recovered without needing to fully characterize the multipath signals.

2.4 Filtering in the Cepstral Dom.ain

Three methods for filtering a cepstral domain signal are long pass, short pass, and comb

filtering. Each of these methods has advantages and disadvantages depending upon the goals of

the designer. The long pass filter is the cepstral equivalent to a frequency domain high pass filter.

27

The long pass filter is designed to set all points in the cepstrum prior to the first echo peak equal to

zero. Thus using a long pass filter preserves the multipath signals while filtering out the direct path

signal. Similarly, the short pass filter is the cepstral equivalent of a low pass filter. The short pass

filter replaces everything from the first echo peak forward (in time) with a zero. Thus, the short

pass filter removes all multipath signals while passing the direct path signal. The disadvantage

of both the long pass and short pass filters is that, by zeroing out large portions of the complex

cepstrum, these filters may cause significant degradation to the signal(s) of interest. An alternative

to these methods is the comb filter. This filter is the cepstral equivalent to a notch filter. The

comb filter replaces multipath peaks in the complex cepstrum with the average of the two (or

more) points immediately adjacent to the peaks. In this manner, the comb filter removes the delta

functions in the complex cepstrum which are caused by the multipath interference. Thus, when

the filtered signal is converted back to the time domain, the direct path signal is recovered. The

difficulty with this technique lies in detecting the peaks in the complex cepstrum. As previously

mentioned, researchers (3) have found that it is often easier to detect multipath peaks by using the

power cepstrum rather than the complex cepstrum. A parallel process is employed to detect and

mitigate multipath effects; the power cepstrum is used to detect multipath delays and the complex

cepstrum is used to filter out the multipath reflection. A block diagram of this process is shown in

Figure 6. A simple example using the complex cepstrum to filter out multipath follows.

2.4-1 Multipath Mitigation Example. As an example of the theory that has been presented

consider again the decaying exponential signal, x[nT]

x[nT) = e~nT (42)

where T is the sampling period, n is the sample number, and the signal was given an initial

amplitude of 1 so that everything is normalized to this signal.

28

x[nT]

101*2 Logarithm Inverse
DFT

Power Cepstrum

Peak
Detector

Forward
DFT

Complex
Logarithm

Inverse
DFT

Cepstrum
Filter

*— Complex Cepstrum

Forward
DFT

Complex
Exponential

Inverse
DFT

xp

Figure 6 Power and Complex Cepstrum Multipath Detection and Mitigation Procedure

If x[nT] is the direct path signal, and a multipath reflection occurs three time units later with

an amplitude of one half with respect to the direct path, then the composite signal is represented

as follows.

c[nT] = x[nT] + 0.5x[nT - 3]

c[nT] = e~nT + 0.5e-("T"3)

(43)

where c[nT] is the composite signal. A plot of these signals is shown in Figure 7.

Recall that the procedure for removing the multipath signal is shown in Figure 5. The first step is

to calculate the complex cepstrum of the composite signal as previously presented. A plot of the

complex cepstrum for this example is shown in Figure 8. Note that the complex cepstrum contains

peaks at 3, 6, and 9 time units as predicted by the theory previously presented. The next step

in removing the multipath signal is to comb filter the complex cepstrum at time units 3, 6, and

9. This is accomplished by replacing complex cepstrum values at those times with the averages of

the two points on either side of the peaks. The complex cepstrum of the multipath signal and the

comb filtered complex cepstrum are both shown in Figure 8. Finally, the comb filtered complex

29

Composite Signal

0.9-

0.8-

0.7

1.0.5-
E <

0.3-

0.2-

0.1

I I I I I I I

 Direct Path signal

 Multipatn signal

- \
A
A A
\\
A
\Y :
\\

i I

^^^
- 1 L._

5 6
Time

10

Figure 7 Signals for Complex Cepstrum Example

cepstrum is transformed back into the time domain using an inverse complex cepstrum operation

to recover the direct path signal. The recovered direct path signal for this example is shown in

Figure 9 along with a plot of the original direct path signal. The mean squared error between the

recovered direct path signal and the actual direct path signal is 1.16 x 10~6, demonstrating that

this method is effective for multipath mitigation for this signal.

30

Complex Cepstrum of Composite Signal

Figure 8 Complex Cepstrum for Example Signal

1.2 -i j-

Recovered Direct Path Signal
-i 1 1 r~

Original Direct Path Signal
x x Recovered Direct Path Signal

'OPOOOOOOtX)OOOOOOOOOOOQOOOQOOOOOOOOOOOQQOQQOOOOOOOOOOOO

J 1
2 3 4 5

Time
8 9 10

Figure 9 Recovered Direct, Path Signal for Example Signal

31

III. Complex Cepstrum Adaptive Filter

3.1 Overview

This chapter describes the Complex Cepstrum Adaptive Filter (CCAF) and the non-coherent

delay lock loop, also commonly called an early-late gate. Additionally, the chapter describes the

input signal model. The first section covers the signal model. The subsequent sections discuss the

CCAF and it's components. The final section describes the NCDLL.

3.2 Received Signal Model

Prior to processing the received signal for multipath mitigation, it is assumed that the signal

has been mixed down to some convenient intermediate frequency (IF). If the received multipath

signal is assumed to have one reflection, the received signal can be described by the following

equation:

s(t) = V2Pa0c(t - Td) cos{wIFt + 0O) + V2Pa^.c{t - Tm) cos(u>IFt + 6>i) + n(t) (44)

where ao, fti are the direct path and multipath amplitudes, respectively, 0o = —woT~d, #i = — woTm

are the direct path and multipath phases, respectively, T<J and Tm are the direct path and multipath

propagation delays, respectively, WQ is the carrier angular frequency, and n(t) is additive white

Gaussian noise (AWGN). Both phases are measured relative to the phase of the transmitter at the

time of transmission, which is assumed to be zero without loss of generality.

3.3 Complex Cepstrum Adaptive. Filter

3.3.1 Overview. A block diagram of the CCAF is shown in Figure 10. This unit uses

the complex cepstrum in parallel with the power cepstrum as described in Chapter II. The system

calculates the power cepstrum for detection of the peaks associated with the multipath signal. The

32

peak delays are then provided to the adaptive weighted comb filter which removes the corresponding-

peaks from the complex cepstrum. An inverse complex cepstrum is calculated, yielding a replica of

the direct path signal. The fidelity of the direct path replica depends on several factors including

signal-to-noise ratio and aliasing effects. These factors will be discussed in the sections that follow.

It is proposed that the CCAF be inserted into a typical GPS receiver code tracking loop as shown

by the dotted box in Figure 10. By placing the CCAF in this position, multipath interference can

be removed from the composite signal prior to code tracking, thus eliminating code tracking error

caused by the multipath.

Zero
Pad

Power
Cepstrum

Peak
Detector

Complex
Cepstrum

Comb
Filter

Inverse
Cepstrum

NCDLL

Complex Cepstrum Adaptive Filter

Figure 10 A Code Tracking Loop Employing the Complex Cepstrum Adaptive Filter

3.3.2 Zero Padding. The zero padding block in Figure 10 inputs a block of data (taken

to be one period of code for this work), and appends zeros to the end of the data record. This

has two effects on the data processing. First, if the correct number of zeros are appended, the

record length can be increased to be a power of two. This allows computation of the discrete

Fourier transform (DFT) and the inverse DFT using faster computation algorithms, thus speeding

up processing time. Second, as discussed in (3), appending zeros increases the frequency domain

resolution. This increase reduces or eliminates cepstral (pseudo-time) domain aliasing, and reduces

phase unwrapping errors.

33

3.3.3 Cepstra Calculations. Following zero padding, the power and complex cepstra of

the data record are calculated. As mentioned earlier, both cepstra are calculated because it is

often easier to detect multipath peaks using the power cepstrum rather than the complex cepstrum

(3); however, the complex cepstrum must be used for time domain signal reconstruction following

filtering. These calculations are performed using the definitions given in Equations 8 and 10. The

calculations are covered extensively in Chapter II, and will not be discussed again here.

3.3.4 Pzak Detection. In order to remove the reflection from the complex cepstrum, the

first peak associated with the reflected signal must be detected. A magnitude plot of a typical

power cepstrum for a GPS multipath signal is shown in Figure 11. The first delta function in the

power cepstrum corresponds to the delay of the reflected signal, assuming a single reflection, and

provides all the information necessary to filter out the reflection. The peak detector, of Figure 10,

performs the function of determining the delay associated with the first peak. In Chapter II, it is

shown that the power and complex cepstra contain delta functions at the multipath delay and all

integer multiples of the delay. Therefore, the peak detector must be able to detect the first delta

function for the single reflection case. To perform this task, the peak detector compares the power

cepstrum value at each point to the two adjacent points. A point which has a magnitude exceeding

those of the two adjacent points by more than some user set threshold is declared a multipath

peak. In Equation 20, it is seen that the first delta function in the power cepstrum will have

magnitude |oo/ (l + a%) \ < 1/2 (see Equation 16) and each subsequent delta will have magnitude

[ao/ (l + öQ)] where k is an integer corresponding to the harmonic number of the delta function

(ie. k = 1, 2, 3 ...). Therefore, the first peak will have a greater magnitude than each subsequent

peak. The peak detector searches for the first peak present and declares the corresponding delay

to be that of the reflection. As shown in Figure 11, the power cepstrum will contain peaks at the

chip interval as well as the multipath delay. However, as discussed in the next section, the adaptive

34

weighted comb filter is designed not to filter these peaks. Therefore, the detector is designed not

to detect a delay of exactly 1.0 chip.

Magnitude Plot of the Power Cepstium
i 1 1

3.5

2.5

1.5

1 -

0.5-

-0.5

I I I I I

am = 0.5

tm = 0.4 chip

A A A A

1 1 1 1 1

0.5 1 1.5
Quefrency (chips)

2.5

Figure 11 Typical Power Cepstrum Magnitude for a GPS Multipath Composite Signal

3.3.5 Adaptive Weighted Comb Filter. The adaptive weighted comb filter performs the

function of removing the reflected signal from the complex cepstrum. Following detection by the

peak detector, the delay of the reflection is provided to the adaptive weighted comb filter. This

filter then replaces the complex cepstrum data point at the detected delay with the average of the

previous point and the next point. Additionally, the comb filter replaces the data points at each

integer multiple of the multipath delay with the average of the two adjacent points. In this manner

the delta functions in the complex cepstrum, due to the reflected signal, are replaced by linearly

interpolated estimates of the complex cepstrum values for the direct path signal. A portion of a

typical filtered and unfiltered complex cepstrum is shown in Figure 12. Observe in Figure 12 that

the complex cepstrum contains delta functions at the chip interval, as well as those due to the

35

multipath signal. Simulations show that these peaks are important for proper reconstruction of

the direct path estimate. Therefore, the adaptive weighted comb filter is designed not to filter the

complex cepstrum at the chip interval.

Filtered and Unfiltercd Complex Cepstrum

Oh Unfiltered
 Filtered

-0.5

S <:

-1.5
1.5

Quefrency (chips)

Figure 12 Typical Filtered and Unfiltered Complex Cepstrum for a GPS Multipath Composite
Signal

To better understand the adaptive weighted comb filter, consider a complex cepstrum data

sequence, x(nT), where n is the sample number and T is the sampling interval. Assume that x(nT)

is N samples long, and contains an initial multipath peak in the Ck element. Then, £(nT) could be

written as follows:

x(nT) - [ci c2 ... Cjt_i ck ck+1 ... c2k-i c2k c2k+i ■■■ cN]

where Cj is the ith data point in the complex cepstrum.

36

Next, a filter vector W, also of length N, is defined as follows:

W 1 1 1 °k~1 + Cfc+1 i i c2fc-l + C2fc+i

2cfc '" 2c2fc

where W consists of ones for all elements except those corresponding to the multipath peaks in

x(nT) (i. e. the elements k, 2k, 3k, etc.). It is easily shown that if the vectors x(nT) and W

are multiplied in a point-wise fashion, the result is a filtered complex cepstrum vector with the

multipath reflections removed.

3.3.6 Inverse Complex Cepstrum. After removing the multipath reflection, a time domain

estimate of the direct path signal is recovered through an inverse complex cepstrum operation. The

steps of this calculation are shown in Figure 5 of Chapter II. The process is simply the inverse of the

complex cepstrum process. First, a forward Fourier transform is calculated, followed by a complex

exponentiation (with phase wrapping), and finally an inverse Fourier transform is calculated yielding

a time domain signal. The phase wrapping procedure is the inverse of the chosen phase unwrapping

procedure used in the complex cepstrum calculation, as discussed in Section 2.2.2.

3.4 The Non-Coherent Delay Lock Loop

Tracking of the GPS spreading code is a primary function of the GPS receiver. This tracking

provides a method of determining the line-of-sight distance from the receiver to the satellite, and

also acts to despread the received signal. Code tracking is typically accomplished using a delay

lock loop (DLL), frequently called an early-late gate. The delay lock loop may operate in either

a coherent or non-coherent fashion. Since coherent DLLs require an estimate of carrier phase,

considerable interaction between the carrier and code tracking loops is necessary for a coherent

DLL to function properly. Additionally, cycle slips in the carrier tracking loop can cause a loss of

code tracking lock when a coherent DLL is used. For these reasons, the coherent DLL is considered

37

somewhat fragile and typically not used for GPS applications (9). Therefore, the non-coherent

delay lock loop will be presented here. For analysis purposes, a block diagram of a simplified

Square Law Detector

r (t)

V*(t)
BPF;J

*B(0

»• ()2 »- LPP

•«(

*• Power Divider

m(«)

^(«-fd+frc)'

aB(t)

VL(t)

- BPF„

Square Law Detector

zi(lt) , , , 1 xL(

(f

■((,«)

Loop Fitter

v(t)

Power Divider

r.(t-fd -fTc)

Code Generate

Clock Signal

Figure 13 The Non-Coherent Delay Lock Loop

NCDLL is shown in Figure 13. In this DLL, the received signal is cross correlated with early and

late versions of the locally generated spreading code replica. The results of these correlations are

then bandpass filtered, squared, lowpass filtered, and subtracted to form the discriminator output

for the loop. To close the tracking loop, the discriminator output is filtered via a loop filter, then

input to a voltage controlled clock which triggers the PN sequence generator producing the on time

code replica.

3.4.O.I Signal Component NCDLL Analysis. The following analysis patterns the

development of (10). Consider a DS/SS signal

(i) = V2Pc(t - Td) cos [w0t + 6d(t - rrf) + 4>] + n(t) (45)

38

where r(t) is the received signal, P is the received power, rd is the signal propagation delay,

c(t - Td) is the delayed spreading code, w0 is the carrier radian frequency, 0d(t - TO) is the delayed

data signal, <f> is an arbitrary carrier phase angle, and n(t) is bandlimited zero mean white Gaussian

noise, introduced by the channel.

Assuming a two sided noise power spectral density of N0/2 W/Hz, the noise can be represented

in terms of its in-phase, n/(t), and quadrature, nq(t), components.

n(t) = y/2ni(t) cos(u)0t) - y/2nQ(t) sin(w0*) (46)

After power division, the received signal in each correlator arm becomes

r'(t) = VPc(t - Trf) cos [u>0t + 0d(t - Td) + <!>}+ ni(t) cos(w0*) - nQ{t) sin(w0*) (47)

This signal is subsequently correlated with early and late replicas of the spreading code. Assuming

that the NCDLL operates at a fixed intermediate frequency, the early and late locally generated

signals are given by Equations 48

aE(t) = y/Klc U-td+ -Tcj cos [(w0 - uiF)t + <t>'] (48)

aL(t) = VK[C (t - rd - —Tc\ cos [(wo - wIF)t + 4>']

where as and aj, are the early and late correlation signals, respectively, K\ is an RF-to-IF conversion

loss constant, td is the loop's estimate of the propagation delay, A is the correlator spacing in chips,

and uiip is an intermediate frequency.

39

The early correlator output, is

yB(t) = r'(t)-aE(t) (49)

= VPc(t - rd) cos [w0t + 6d(t - Td) + <j>\ + ni(t) cos(u0t) - nQ(t) sin(w0t) •

'K'lC (t-Td+ -TA COS [(WO - UJF)t + <j)'}

Using appropriate trigonometric identities, the above equation may be simplified by noting that

ys {t) is filtered by a bandpass filter centered at the intermediate frequency to obtain zF (*)• There-

fore, only the difference terms of the simplification need be considered. Thus, the early correlator

output, ZE (t), becomes

zE(t) = y/PKlc(t - Td) c(t -Td + -Tc) cos (uIFt + 0d(t - Td) + 4> - <t>') (50)

+ y/K^c(t-fd + —Tc) \m{t) cos(uIFt - 4?) - nq(t) sin (wIFt - <f>')]

Using a similar process, the late correlator signal, zi(t), may be expressed as

ZL(t) = y/PKlc(t - Td) C(t -Td- -Tc) COS {üJIFt + ed(t - Td) + <f> - (j)')

+ y/K[c(t-Td - —Tc) \ni(t) cos(wIFt - $) - nq(t) sm(viFt - <p')]

(51)

From the previous two equations, it seen that the signals zF (t) and zi (t) are composed of

the desired signal and the noise terms, including code self noise1. If the spread spectrum processing

gain is sufficiently high (typically greater than 10), the self noise term can be neglected. According

to (10), "The amount of performance improvement that is achieved through the use of spread

spectrum is defined as the processing gain of the spread spectrum system." The processing gain is

1Self noise is defined as sn = E [c(t + r) c'(l. + f)] - c(t + r) c'(i + f) where E is the expected value, c(t + r)
is the spreading code, c'(t + f) is the derivative of the spreading code with respect to time, T is the propagation
delay, and f is the NCDLL estimate of the propagation delay. Self noise is a broadband noise-like waveform (9).

40

typically defined to be the spread spectrum bandwidth divided by the data bandwidth. Using this

definition, the processing gain for GPS C/A code can be calculated as follows

Gn
T_

Tr.
(52)

50
1

1.023 X 106

20460

where T is the data bit time, and Tc is the chip width, both in seconds.

Prom Equation 52, it is seen that the processing gain for GPS C/A code is indeed high, and

therefore the code self noise component can be neglected. Ignoring the self noise component and

the AWGN, the noise-free components of ZE and zj, are

zaB (*) = VKPc(t - Td)c(t - fd + Tc) cos[u)IFt + 0d(t - Td) + <j> - </>'} (53)

zsL (t) = VKPc(t - Td)c(t - Td - Tc) cos[(jIFt + 6d(t - Td) + (f> - (/>'}

where the "s" notation is used to distinguish from the more complete signals of Equations 50 and

51.

The dc component of the spreading code multiplication, by definition, is the code autocorre-

lation, Rc(r), evaluated at r = rd — fd + (A/2) Tc in the case of zg, and r — Td — fd — (A/2) Tc

in the case of ZL', Td is the propagation delay, fd is an estimate of the propagation delay, and A is

the correlator spacing in chips. Defining the NCDLL tracking error as 6 = (rd — fd) jTCl

zsE{t) = VKPRc

zaL(t) = VKPR.C

COS [uIFt + ed{t - Td) + 4> - </>']

cos [uIFt + 6d(t - Td) + 4> - 4>']

(54)

41

Assuming the bandpass niters are designed to pass IF signals with no distortion of the messages,

the input to the square-law envelope detectors is given by Equation 54 above. Also, assuming

that the low pass filters completely block signal components at 2w/jr, the signal component of the

NCDLL discriminator can be shown to be (10)

e(t,S) = [x\{t) - x%(t)]

^PiR* {*[('-!)^*[('+fH}
(55)

Defining the NCDLL "S-Curve," SA(6), as

SA(6) = R2
C -t) Rl S+^)TC (56)

which represents the loop's tracking curve. The expected loop discriminator output is consequently

e(t,6) = -KiPS^iS) (57)

where 6 is the NCDLL tracking error.

Recall that Equation 4 is the autocorrelation function for a maximal length PRN sequence.

Upon substitution of Equation 4 into Equation 56, and after some simplification (10), the S-Curve

42

is given as

SA(S)

0 for -N + 1 + f < 6 < - (l + f)

^-[l+(l+£)(* + f)]2 for-(l+f) <«<-f

£" [l-(l+^)(^ + f)]2 for-f <«<-(l-f)

2(1 + i) [2 - (1 + i) A] 5 for-(l - f) < 8 < (l - f)

[l+(l + ^)(^-f)]2-^ for(l-f)<«5<f

[1 - (1 + ^) (.5- f)]2 - ^ forf <*<l+f

0 'forl+f<«<JV-l-f

(58)

for A > 1.0, or

SA(S) = I

0 for -N + 1 + f <

2 f0r-(l + f) <«5< (f

for-f < 6 < T

fr - [1 + (« + f) (1 + *)]

(1 + i) A [1 + (1 + A

+ + £) [2- (1+ä) V ^-2 ..

2(1 + ^) A [1- (l+&)«] forf <6<_ _ _

[l-(l+£)(*-f)]2-^ for(l-f) <*<(l + f

0 for 1 + f < «5 < iV - 1

6] for - (f - 1) < S < -

2(1 + £) [2-(l+i) A]6

0

*<-(l+f

f -1)

A

for A < 1.0.

(59)

Recall from Chapter I that the autocorrelation function of a periodic maximal length spread-

ing code of period N is also periodic with period N. Therefore, the S-Curve defined above is

periodic with period N. Equations 58 and 59 give principal function values which repeat every N

chips. Plots of Equations 58 and 59 are shown in Figures 14 and 15, respectively.

It is important to note, as evident in Figures 14 and 15, that the slope of the S-curve near

S = 0 is dependent upon the correlator spacing, A. This slope is zero for a correlator spacing of

43

S-Curve
1 A

0.8 / \
Correlator Spacing (chips) = 1 / \

0.6

/ \
0.4

/ \
0.2

to 0
/ V "

~-\ /
-0.2

\ /
-0.4

\ /
-0.6

\ /
-0.8

-1 i . V i i i i
-1.5 -0.5 0 0.5

Tracking Error (chips)
1.5

Figure 14 The Non-Coherent Delay Lock Loop S-Curve for A = 1 Chip

2 chips; therefore, a correlator spacing of less than 2 chips is always used. Additionally, note from

Figures 14 and 15 that the size of linear tracking region about 6 = 0 decreases with decreasing A.

A larger linear tracking region aids in code acquisition (prior to code lock and tracking) because

the tracking loop is able to tolerate larger tracking errors while establishing code lock. For this

reason, many receivers employ NCDLL's with variable correlator spacing. During code acquisition,

the correlator spacing is set at more than 1 chip. Then, once code lock is achieved, the correlator

spacing is decreased to some smaller value (usually 1 chip for a typical receiver or 0.1 chip for a

narrow correlator receiver).

3.4.0.2 Additive White Gaussian Noise NCDLL Analysis. Having determined the

signal component of the discriminator output, next consider the component due to noise. Recall

that the noise components at the correlator outputs were given in Equations 50 and 51. Referring

44

S-Curve

to 0

Figure 15 The Non-Coherent Delay Lock Loop S-Curve for A = 0.5 Chip

back to those equations, define the noise as follows.

n>E,in{t) ^c[t-fd+^Tc)n\t)

nL,in(t) = /fc (t-rd- |TC) n'(t)

(60)

(61)

where the "E" and "L" subscripts denote the early and late correlator arms, respectively, the "in"

subscript denotes noise at the NCDLL input, and

%'(t) = V^n^t) cos{cjIFt - (j)') - V2nQ(t) sin (wIFt - <f>') (62)

Next, to find the noise component at the bandpass filter output, the noise power spectral density at

the input is needed. Let S„i and Sc be the power spectral densities of the noise process, n'(t), and

the spreading code, c(t), respectively, and * represent the convolution operator. Since the noise

and the spreading code are assumed to be independent, the power spectral densities of nE,in(t) and

45

nL,in(t) are found by convolving the spreading code power spectral density with that of n'(t)

Snj,ln M = t S* (") * Sc (w) j = E,L (63)

where j designates either the early or late arm of the NCDLL.

Since the spreading code has a large bandwidth, the effect of the convolution of Equation 63

is to spread the noise power over a bandwidth wider .than the original. The bandpass filter has

a smaller bandwidth with respect to the spreading code and only passes a small fraction of the

(spread) noise power spectrum. Consequently, the power spectrum in Equation 63 only needs to

be evaluated at frequencies near the intermediate frequency, (Vjp (10). Thus, Equation 63 can be

approximated by

Sni,„» « Sn„n(o>iF) (64)

^ (f-) \(j ± uIF\ < -KBN

0 otherwise

where BN is the one sided bandwidth of the noise process, Ki/2 accounts for the RF-IF conversion

loss and the power division, and N0/2 is the power spectral density magnitude of n (t), for all w.

With the approximate noise power spectrum given in Equation 64, the output of the bandpass

filters can be calculated using the relationship

Smt(u) = Sin(u,)\H(<j)\2 (65)

where Sout(u)) and Sin(uj) are the power spectra at the output and input, respectively, of a filter with

transfer function H(UJ). Assuming that the bandpass filter is an ideal filter with noise bandwidth

46

BN yields the following power spectrum for the noise at the filter output.

Sn^M = f (f1) 1112 for \w±wIF\ < *BN

= \ Ki No for \w ± cvIF\ < 7r5jv

(66)

With the noise at the bandpass filter output thus characterized, the discriminator output due to

the signal and the noise can be calculated as

e(t,S) = \zaL{t) + znL(t)}2
lp - \zsE{t) + znE(t)] ip (67)

where ZSL (t) and ZSE (t) are the signal components at the output of the late and early arm bandpass

filters, respectively, znL and znE are the corresponding noise components, and the Ip denotes the

lowpass component of the signals.

It can be shown (10) that the discriminator output of Equation 67 is equivalently

e(t,6)
1

K!P 1R, R„ S+^)TC

n'LbAt) - R\ S+^)TC + V2K1P{R2
C[(S- ^JTt

x cos [<t> - 4>' + ed(t - Td)\

+ ^2K^\R\ [(« - I) Tc] n'LbpQ(t) - Rl [(« + |) Tc

x sin \<f> - 4>' + 9d(t - Td)}

[nLbpi]2 + [nLbpo\ - [nEbpi] ~ [nEbpQ]

nk„/(*)

lEbpQ (*)

(68)

where nEbpi, nEbpQ, nLbpi, and riLbpQ are the in-phase and quadrature components of the noise

signals in the early and late correlator arms, respectively.

47

If the noise components of the discriminator output are denoted by ne(t), the discriminator

of Equation 68 can be written more succinctly as

e(t,6) = -ÜTIPSA(Ä) + »«(*) (69)

where 5A (<5) is the loop S-Curve defined in Equation 56 and 8 was previously defined to be the

normalized tracking error, 8 = (T^ — f^) /Tc.

Assuming no data modulation is present, the NCDLL can be represented (10) by the equiv-

alent model shown in Figure 16. Although it is unrealistic to assume no data modulation exists,

this assumption leads to a simpler model. Additionally, this assumption leads to a worst case

performance model in the sense that this model will have the maximum possible noise component

at the discriminator output. Therefore, this model is valuable for analyzing the performance of the

NCDLL.

ne(t)

Td«)

DA(«)
e(t,S)

Loop Filter

3"c

vco
v(t)

Figure 16 The Non-Coherent Delay Lock Loop Non-Linear Model

In Figure 16, the voltage controlled oscillator (VCO) is described by the following input/output

relationship.

= gc [' v(X)d\ (70)
./o

Mt)

where gc is the VCO gain with units of Hz/V. Noting from Figure 16 that v(X) is the loop filter

output and that the loop filter input is the discriminator, Equation 70 can be re-written as

Td(t) 9c e(a,S)f(X - a) da
Jo J-ca

dX (71)

where v(X) from Equation 70 has simply been replaced by the convolution of the discriminator

output, e(t, 6), and the loop filter impulse response, f(t).

Substituting e(t, 6) from Equation 69 yields

«(*)
t /-A 17 -K1PSA (6(a)) + ne(a) /(A — a)dadX (72)

Equation 72 can be linearized if the tracking error, 6, is small. Under this assumption, the

non-linear S-curve can be replaced with the following linear approximation (10)

SA(S) 1+N
1 - 1 +

TV
(73)

where Equation 73 comes from Equation 56 evaluated in the region about 6 — 0.

Replacing the non-linear element 5A (6) in Figure 16 with the approximation of Equation

73 yields the linear model of Figure 17. In this model, the S-curve element, SA(6), and the gain

element, ^KiP, from Figure 16 are replaced by a single equivalent gain element, Ka, where

Kd = 4 1 +
N

1 -
1\ A

1 + N)J
*P (74)

49

T<i(0 , n«(f)

+ *

= (*.«) Loop Filter

Tj(«)

vco

«(f)

Figure 17 The Non-Coherent Delay Lock Loop Linear Model

Let F(s) denote the Laplace transform of f(t). Using the linear model of Figure 17, the closed

loop transfer function, H(s), for the NCDLL is

H(s)
KdgcF(s) Td(s)

s + KdgcF(s) rd(s)
(75)

Additionally, the Laplace transform of the tracking error can be shown (10) to be

6(s) =
Td(S)

s + KdgcF(s)
(76)

Finally, the root-mean-square (RMS) tracking jitter for a loop with two-sided noise bandwidth of

WL is given by (10)

* = T2iWL <77)

where rj/2 is the discriminator noise component power spectral density, approximately given as (10)

|= l-{KlN0fBN+l-KlN0P [RI S-^T. + R2
C 6 + ±)Tc (78)

50

3.5 Conclusion

This chapter describes the complex cepstrura adaptive filter. It begins with the input signal

model, which consists of a direct path component, and a delayed and attenuated reflection of

the direct path. Next, each component of the CCAF is described. Detail is given concerning

the function and design of the CCAF. Finally, an analysis of the non-coherent delay lock loop is

presented. The non-linear and linear models of the NCDLL are given. The chapter concludes by

presenting the NCDLL transfer function, tracking error, and RMS tracking jitter.

51

IV. Computer Simulations and Results

4-1 Overview

This chapter presents computer simulations of the theory presented in the previous chapters.

The purpose of these simulations is to verify the functionality of the complex cepstrum adaptive

filter for multipath mitigation, to characterize the noise performance of the CCAF, and to compare

the CCAF performance to that of a narrow correlator non-coherent delay lock loop. Two series of

simulations are run as follow:

1. CCAF noise performance characterization. Simulations are run with constant multipath

parameters and various SNR levels to determine the noise sensitivity of the CCAF.

2. CCAF performance comparison with a narrow correlator NCDLL. These simulations

are run using the CCAF in conjunction with a standard non-coherent delay lock loop,

employing a 1.0 chip correlator spacing. The performance of the CCAF is compared

with that of a narrow correlator NCDLL employing a 0.1 chip correlator spacing.

All simulations are written for Matlab version 5 and run on the Sun workstations available

at the Air Force Institute of Technology or on a stand alone personal computer. Simulation results

are analyzed using Matlab. All Matlab function files used for the simulations are included in

Appendix A.

4-2 Simulation Parameters

For all simulations, an attempt is made to make all parameters consistent with actual GPS

parameters. In cases where actual GPS receiver parameters are unknown, simulation parameters

are chosen to be values which could reasonably be expected for a GPS receiver. Additionally, when

some freedom of choice is available, parameters are chosen to satisfy certain desirable qualities to

52

enhance simulations (for instance, decreased run times). The subsections that follow discuss the

simulation parameters chosen.

4.2.1 DS/SS Spreading Code. Actual GPS C/A spreading code is used for these simula-

tions. The code is generated using the GPS toolbox for Matlab, available from the Electrical and

Computer Engineering Department at AFIT. The code period is 1023 chips long (approximately 1

ms). Each chip is divided into 100 samples to achieve a resolution of 0.01 chips. Thus, the sampling

frequency for all simulations is 102.3 MHz.

4.2.2 Carrier and Direct Path Signals. Since actual GPS receivers typically operate at an

intermediate frequency, the "carrier" frequency for all simulations is an appropriate intermediate

frequency. In order to keep vector sizes manageable, thus reducing run times, the intermediate

frequency for these simulations is chosen to be 5 times the chipping rate, or 5.115 MHz. For

convenience, the carrier is chosen to have a power of 1/2 W at the receiver. Also for convenience, the

carrier phase, 60, and direct path propagation delay, Td, are both chosen to equal zero. Finally, the

direct path attenuation, a0 is chosen to equal 1. The choices of direct path phase, propagation delay,

and attenuation factor have the effect of normalizing the multipath parameters to the direct path

values. Thus, these simulations could represent any actual values for these direct path parameters

if the multipath parameters are scaled by appropriate values.

4.2.3 Multipath Parameters. As mentioned in the previous paragraph, the direct path

parameters are chosen such that the multipath signal will be normalized to the direct path. As such,

the multipath attenuation factor, ax is chosen to vary between zero and one. For most simulations,

0.2 < ai < 0.8 is used. Additionally, the multipath delay, rm is varied between approximately

10 nanosecond and 1.5 microseconds. These delays correspond to a normalized delay (in chips) of

0.1 < a < 1.5.

53

4.2.4 NCDLL Design. The non-coherent delay lock loop used for these simulations is

an open-loop design. This open-loop design uses the NCDLL S-curve, discussed in Chapter III, to

characterize the tracking bias present after processing by the CCAF. The CCAF tracking bias, using

an NCDLL with standard 1 chip correlator spacing is compared with the tracking bias of a narrow

correlator NCDLL, with 0.1 chip spacing, which does not employ CCAF processing. The open loop

design is chosen because tracking bias is the primary metric for comparing one multipath mitigation

technique to another. Additionally, since this thesis focuses on a signal processing technique used

prior to tracking in the NCDLL, and not on processing techniques within the NCDLL itself, the

performance of the NCDLL is not in question for this work. Rather, the amount of improvement

provided by the pre-processing of the CCAF is the parameter to be studied. Therefore, closed-loop

analysis of the NCDLL, to study parameters such as tracking jitter, is not important for this work.

4-2.5 Simulation Parameters Summary. The simulation parameters from the previous

subsections are summarized below.

• Spreading Code: Actual GPS C/A code

• Spreading Code Period: 1023 chips

• Sampling Frequency: 102.3 MHz (100 samples/chip)

• Carrier Intermediate Frequency: 5.115 MHz (5 times chipping rate)

• Carrier Received Power: 1/2 W

• Direct Path Phase, 6Q: 0 rad

• Direct Path Propagation Delay, r^: 0 sec

• Direct Path Attenuation Factor, «0: 1

• Multipath Reflection Attenuation Factor, ai: 0.2 < fti < 0.8

• Multipath Reflection Normalized Delay, a: 0.1 < a < 1.5 chips

54

• NCDLL Correlator Standard Spacing: 1 chip

• NCDLL Correlator Narrow Spacing: 0.1 chip

4-3 Signal-to-Noise Ratio Analysis

Signal-to-noise ratio is a fundamental concern for all communication systems. SNRs must be

sufficiently high to allow receivers to perform the necessary processing to extract the information

from the signal. For GPS C/A code, the typical SNR is -14.9 dB at the spectral peak (9). For

most communication systems, a negative SNR would prevent communication; however, for spread

spectrum systems, such as GPS, the processing gain allows for communication even when negative

SNRs exist. In this research, though, it is found that cepstral processing requires extremely high

SNR prior to any processing gain being achieved.

20

15

10

Noisy and Ideal Complex Cepstra

=ä o-

-5-

-10

-15

-20

SNR = 100 dB

tm = 0.5

am = 0.5

Noisy Signal Complex Cepstrum
Ideal Signal Complex Cepstrum

M" i, i I"

«■ U—■ i

'/1'- i.

n
ii

ii

»

y7>iVvV-y,,J'

0.5 1.5
Quefiency (chips)

Figure 18 Complex Cepstrum of Noisy and Ideal Signal

For the signal model presented in Chapter III, simulation results show that the SNR must be

approximately 225 dB or higher to achieve good signal reconstruction for the direct path estimate.

Figure 18 demonstrates the effects of AWGN on the complex cepstrum. In Figure 18 the complex

cepstrum of a signal in the absence of AWGN is compared to that for a signal in AWGN with

an SNR of 100 dB. It is seen that the noise causes the complex cepstrum to appear very noisy

even with such a high input SNR. This random noise in the complex cepstrum causes errors in the

multipath filtering process which lead to errors in the recovered signal. Due to the randomness of

the data points in the complex cepstrum, the filtered values, which are the average of the adjacent

points, also have a certain randomness. This has the effect of causing multipath-like amplitude

changes in the recovered signal. Plots demonstrating this effect are shown in Figures 19 and 20

. These amplitude changes greatly degrade or even prevent tracking of the received signal by the

code tracking loop. For this reason, the complex cepstrum is found to be applicable for code loop

multipath mitigation only under unreasonably high SNR conditions.

Recovered Signal

n n

j i

0 200 400 800 1000 1200 1400 1600 1800 2000
Time (chips)

Figure 19 Recovered Signal from a Noisy Complex Cepstrum Process

56

Recovered Signal

1 1.5
Time (chips)

Figure 20 Recovered Signal from a Noisy Complex Cepstrum Process (Expanded Time Scale)

The SNR threshold effect is demonstrated in Figure 21. In this figure, the mean squared

amplitude error of the recovered signal is plotted on a semilog scale against the input SNR. Figure 21

shows an exponential increase in mean squared amplitude error for SNRs which are below 160 dB. In

this region, the recovered signal is severely degraded, preventing tracking by the NCDLL. However,

for good tracking performance the SNR threshold is somewhere near 225 dB, considerably higher

than the 160 dB threshold. This is because even very small differences between the recovered signal

and the actual direct path signal lead to poor tracking performance by the NCDLL, as compared

to a NCDLL tracking the multipath signal. Figure 21 shows that the mean squared amplitude

error begins to increase for SNR levels below approximately 225 dB. Although the MSE is still

fairly small in the region around 225 dB SNR, it, is large enough that the cepstrum processing leads

to tracking biases which are larger than those for the same non-coherent delay lock loop tracking

57

the multipath signal without cepstrum processing. For this reason, the input SNR must be above

approximately 225 dB to achieve good multipath mitigation using cepstrum processing.

Mean Square Error vs. SNR for am = 0.5, tm = 0.5

150 160 170 180 190 200 210 220 230 240 250
Signal to Noise Ratio (dB)

Figure 21 SNR Threshold Effect

To improve noise performance, an input filter would typically be used. However, in this case,

filtering the input signal causes severe degradation of the recovered signal. To understand why

this is so, refer back to the basic signal model of Equations 29 and 30. Recall that, using these

signal models, and following the derivation for calculating the complex and power cepstra, these

cepstra are actually time domain deconvolution tools. If the signal is filtered prior to calculating

the cepstra, the model of Equations 29 and 30 no longer applies. The new model must account for

the fact that the signal has been convolved with the time domain impulse response of the filter.

This second convolution (filtering), changes the complex cepstrum, and prevents proper multipath

mitigation using the techniques described in Chapters II and III. Figure 22 shows a plot of the

complex cepstrum of a multipath signal calculated before and after bandpass filtering the time

domain signal to demonstrate this point. The signal in Figure 22 has no noise added so that the

effect is due solely to the input filter.

58

10

6-

Typical Complex Cepstrum

E <

-4-

-10

 ■ I

-

-
in#-»u_ i i .* r-:u__

 With Input Filter

-

- f -

0.5 1
Quefrency (chips)

1.5

Figure 22 Bandpass Filtering Effect on the Complex Cepstrum

4-4 Cepstrum Processing Analysis

The cepstrum processing for multipath mitigation consists of two steps, as described in Chap-

ter III. First, the power cepstrum is used to detect the multipath signal. Then, the complex cep-

strum is used to filter out the multipath. Although both these steps are sensitive to the input

SNR, the minimum SNR is set using the complex cepstrum. The power cepstrum is significantly

less sensitive to noise effects than the complex cepstrum. This observation will be discussed more

in the section that follows.

4-4-1 Multipath Detector. As described in Chapter III, the power cepstrum magnitude

can be used to detect the multipath delay by searching for the first delta funtion in the power

cepstrum. Simulation shows this process is relatively immune to noise effects assuming the input

SNR is about 30 dB or higher, and the threshold for declaring a multipath peak is set appropriately.

Magnitude plots of the power cepstrum for typical GPS multipath signals are shown in Figures 23

and 24.

59

Typical Power Cepstrum Magnitude Plot

0.5 1
Quefrency (chips)

Figure 23 Power Cepstrum for a GPS Multipath Signal, SNR = 30 dB, Multipath Amplitude
= 0.5, Multipath Delay = 0.5

Analysis of Figures 23 and 24 reveals two important observations. First, the power cepstrum

of a GPS multipath signal contains "rolling hill" type peaks at low quefrencies. These rolling hill

peaks, although not caused by multipath, sometimes cause the multipath delay to be incorrectly

detected. This effect will be observed later. The second observation is that, as the SNR decreases,

the magnitude of the delta functions in the power cepstrum decreases. This decrease drives the

detection threshold. As the delta function peaks become smaller, it becomes more difficult to

accurately detect the multipath peaks. For the simple detector used in this work, the detection

SNR threshold is approximately 30 dB SNR.

To demonstrate that cepstral processing can be used for multipath mitigation, a series of

simulations tests the cepstrum system of Chapter III over a variety of multipath scenarios, for

SNRs which are above the threshold mentioned earlier in this chapter. For these simulations, the

multipath delay is varied from 0.1 chip to 1.5 chips, for multipath amplitudes equal to 0.2, 0.4, 0.6,

and 0.8, relative to the direct path amplitude. For each pair of multipath delays and amplitudes,

60

Typical Power Cepstrum Magnitude Plot

Quefrency (chips)

Figure 24 Power Cepstrum for a GPS Multipath Signal, SNR = 250 dB, Multipath Amplitude
= 0.5, Multipath Delay = 0.5

10 trials are run adding independent white Gaussian noise to the input signal. Plots of the detected

multipath delay (dots) versus the actual multipath delay (line) are shown in Figures 25 through 36.

Four observations should be made concerning these plots. First, the detector works well over a wide

variety of multipath scenarios. Three points are observed when the multipath detector performance

is not ideal, corresponding to delays of 0.1 chip, 0.3 chip, and 1.0 chip. The first two problem spots

are due to the rolling hill peaks in the power cepstrum at these low quefrencies. The problem at

1.0 chip is actually the way the detector is designed. As discussed in Chapter III, the power and

complex cepstrum both contain natural peaks at the chip interval. Simulations demonstrated that

these peaks are important for signal reconstruction, and should not be filtered out. Therefore,

since the adaptive weighted comb filter is designed not to filter at the chip interval, the multipath

detector is designed not to detect multipath delays of 1.0 chip. This design has the weakness that

when a multipath reflection exists at exactly 1.0 chip delay, this cepstrum process cannot remove

the multipath. This weakness will be demonstrated in the next section. Finally, when the multipath

61

reflection delay is incorrectly detected, the detected delay is always 2.0 chips. This is due to the

first harmonic of the natural peak at 1.0 chip delay being detected as the multipath signal, and is

due to the fact that the detector is designed with the assumption that a multipath reflection exists

at some delay.

Detected vs. Actual Multipath Delay

2 X

1 1 i

X

1 I 1

X

1.8 - -

1.6 - -

1.4 _ ■x^

<D
Q 1.2 x:
a
1 1 2

- -

■D

tfO.8 _
15

0.6 ~

0.4 -

0.2 -

0 -

0.6 0.8 1
Actual Multipath Delay

1.2

Figure 25 Multipath Detector Test Results for SNR = 1000 dB and Multipath Amplitude = 0.2

62

Detected vs. Actual Multipath Delay

2

 1 1 1 i i i

X X

I

1.8 - -

1.6 - -

1.4 x^

cd
<D
Q 1.2 '
SZ
cö
Q.

3 1
2
■o
CD

Ü0.8 -
Q
D

0.6 "

0.4 -

0.2 ^r -

0
1

0.4 0.6 0.8 1
Actual Multipath Delay

Figure 26 Multipath Detector Test Results for SNR = 1000 dB and Multipath Amplitude = 0.4

Detected vs. Actual Multipath Delay

2 X x -

1.8 -

1.6 -

1.4 ■*>-** _

i?
CD
Q 1.2

n)
.9-
'%% 1

; s^ ;
CD

?S 0.8
3 ^^

0.6 x^
0.4 ^^

0.2
' ^^

0

0.2 0.4 0.6 0.8 1
Actual Multipath Delay

1.6

Figure 27 Multipath Detector Test Results for SNR = 1000 dB and Multipath Amplitude = 0.6

63

Detected vs. Actual Multipath Delay

0.6 0.8 1
Actual Multipath Delay

Figure 28 Multipath Detector Test Results for SNR = 1000 dB and Multipath Amplitude = 0.8

Detected vs. Actual Multipath Delay

2 X X X

i

1.8 - -

1.6 - -

1.4 _ j^

5"
° 1.2
(0
.9-
3 1
5

- -

CD

§0.8
a>
Q

-

0.6 -

0.4 -

0.2 ^> -

0

0.2 0.4 0.6 0.8 1
Actual Multipath Delay

1.6

Figure 29 Multipath Detector Test Results for SNR = 250 dB and Multipath Amplitude = 0.2

64

Detected vs. Actual Multipath Delay

2

i

X

1.8 - -

1.6 - -

1.4 _ v^^

0)
u 1.2 - s*

Q.

3 1 > s^

(D

8 0.8 s*
en

0.6 - ^^

0.4 - s^

0.2 j>r -

0

0.6 0.8 1
Actual Multipath Delay

1.2 1.4 1.6

Figure 30 Multipath Detector Test Results for SNR = 250 dB and Multipath Amplitude = 0.4

Detected vs. Actual Multipath Delay

2 X

i i i i i i

X

1.8 - -

1.6 - -

1.4 _ XT

>.
m
0)
Q 1.2 - J*T
.C
t3 a.
3 1
2
"8
§0.8 s*
'S
D

0.6 ^*

0.4 - ^^

0.2 s>S "

0 -
i i i i i i

0.2 0.6 0.8 1
Actual Multipath Delay

1.2

Figure 31 Multipath Detector Test Results for SNR = 250 dB and Multipath Amplitude = 0.6

65

Detected vs. Actual Multipath Delay

0.6 0.8 1
Actual Multipath Delay

Figure 32 Multipath Detector Test Results for SNR = 250 dB and Multipath Amplitude = 0.8

Detected vs. Actual Multipath Delay

2 X X X

1.8 - -

1.6 - -

1.4 >>
CO

CD

Q 1.2
SI
CD
_Q.

3 1

T>

I0-8

a

- -

0.6 -

0.4 -

0.2 -

0 -
0.2 0.4 0.6 0.8 1

Actual Multipath Delay
1.2 1.6

Figure 33 Multipath Detector Test Results for SNR = 223 dB and Multipath Amplitude = 0.2

66

Detected vs. Actual Multipath Delay

0.6 0.8 1
Actual Multipath Delay

Figure 34 Multipath Detector Test Results for SNR = 223 dB and Multipath Amplitude = 0.4

Detected vs. Actual Multipath Delay

2

i

X X -

1.8 - -

1.6 - -

1.4 _ v-^

CO

CD
Q 1.2
SZ

Q.

3 1
2

-

■o

Jj0.8
Q

-

0.6 ~

0.4 -

0.2 -

0 -
0.2 0.4 0.6 0.8 1

Actual Multipath Delay

Figure 35 Multipath Detector Test Results for SNR = 223 dB and Multipath Amplitude = 0.6

67

Detected vs. Actual Multipath Delay

2
i

X

1.8 - -

1.6 - -

1.4 _ *^
to
o>

° 1.2
J=
0J
.0-
3 1
2

s>^

•o

§0.8

o

sr^

0.6 " s*K

0.4 j^

0.2 -

0
1 l l 1 1 1

0.2 0.4 0.6 0.8 1
Actual Multipath Delay

1.2 1.4

Figure 36 Multipath Detector Test Results for SNR = 223 dB and Multipath Amplitude = 0.8

68

4-4-2 Multipath Mitigation. Following multipath detection, the complex cepstrum and the

adaptive weighted comb filter are used to remove the reflected signal in the cepstral domain. Then,

a direct path estimate is obtained through an inverse complex cepstrum process. To determine the

effectiveness of the complex cepstrum filtering process, two figures of merit are used. First, the

mean squared amplitude error between the direct path estimate, and the actual direct path signal

is calculated from the following formula

w-i
MSE=NH [*(«)-*(»)]2 (79)

n = 0

where x(n) and x(n) are the nth data points of the direct path signal and the direct path estimate,

respectively.

The second figure of merit is the non-coherent delay lock loop tracking bias. This bias

is calculated from the S-curve presented in Chapter III. The tracking bias is defined to be the

magnitude of the delay or advance of the recovered signal S-curve relative to the direct path S-

curve. The advance or delay is measured at the point where the S-curves are equal to zero. This is

illustrated in Figure 37 which shows a typical, noise-free S-curve plot with the appropriate tracking

biases noted on the figure.

4-4-2.1 Mean Squared Error Analysis. Figures 38 through 41 show the average

mean squared amplitude error in the direct path estimate for multipath amplitudes of 0.2, 0.4, 0.6,

and 0.8, and multipath delays from 0.1 chip to 1.5 chips, both relative to the direct path signal.

For each pair of multipath amplitudes and delays, 10 trials are run at each of three different SNR

levels, 1000 dB, 250 dB, 223 dB; the figures show the average values. The SNRs are chosen to

collect data well above, slightly above, and near the threshold previously discussed. This gives an

idea of how sensitive the complex cepstrum filtering process is to input SNR, assuming the SNR is

above the threshold.

69

Non-Coherent Delay Lock Loop Tracking Curves

1.5-

1 -

0.5

-0.5 ■

-1

-1.5

I 1 -i r i i i

Direct Path
 Cepstrum Process, Bias = 0.0079 Chips

- Narrow Correlator, Bias = 0.0520 Chips -
 Standard Correlator, Bias = 0.1531 Chips

-
•"•. /7~\-

-
■•.//' \\

-

7 •' • ■■■' V 'N

"""'v.

/ :/

/ '
\ 1 ' ■
\ i :

\ 1

\ 1
\
/■ \

1 1 i i i i i

-0.5 0 0.5
Tracking Error (&) in Chips

1.5

Figure 37 Non-Coherent Delay Lock Loop Tracking Curves, Multipath Normalized Amplitude
= 0.6, Multipath Normalized Delay = 0.65 Chips

Mean Squared Amplitude Errror of Recovered Signal

0.1

!0.04

i

"

SNR = 1000dB

SNR = 250dB

SNR = 223 dB

Multipath Amplitude = 0.2

0.5 1
Multipath Delay (Chips)

Figure 38 Direct, Path Estimate Mean Squared Error For Multipath Amplitude = 0.2

70

Mean Squared Amplitude Errror of Recovered Signal

0.1

S. 0.08 -

c
(0

2
0.04

0.02

I i

I1

ll SNR = 250 dB

I1

ll
1'

 SNR = 223 dB

Multipath Amplitude = 0.4

-

11
1 '

1 '
1 '

1 '
1 '
It1

I/1'
1/'.'

M

-

H^^w L
0.5 1

Multipath Delay (Chips)

Figure 39 Direct Path Estimate Mean Squared Error For Multipath Amplitude = 0.4

0.25
Mean Squared Amplitude Errror of Recovered Signal

m 0.1

1

SNR = 1000 dB
 SNR = 250 dB
 SNR = 223 dB

1 Multipath Amplitude = 0.6 -
I1

l>
11

1 '
1 1

1 1
1 1

1 1
1 1

1 1
1 1

1 1

\ '
\\ 1

\'\ '
- r-

A

-

\ "-V./ 1 \
\ V\ \ 1 \
\^ \ V \ / „ \

-p

l\==_?^^~ —•=^-z^~- ~y , i_J_—~-__~ ___-^^
0.5 1

Multipath Delay (Chips)

Figure 40 Direct Path Estimate Mean Squared Error For Multipath Amplitude = 0.6

71

Mean Squared Amplitude Errror of Recovered Signal

10' r

10"

10' r

10"'

10"

: 1 1 •
■

i SNR =1000 dB ■

1 —
SNR = 250 dB

SNR = 223 dB

Multipath Amplitude = 0.8

1

r I .

\ 1 /

1

\U / \ /*
W / \ / ' _
\ V * / ' :

, 1 •
'S N.

Vs'
fi \

/h

\v/ V V.S, x/\ ,;—'
, . ^' V \ i ■

0.5
Multipath Delay

Figure 41 Direct Path Estimate Mean Squared Error For Multipath Amplitude = 0.8

Examination of Figures 38 through 41 reveals that the mean squared error is reasonably

insensitive to SNR, assuming the threshold condition is met. In Figure 41, a condition where the

SNR threshold is not met is observed. In this plot, the amplitude MSE for a multipath signal

delayed 0.1 chip relative to the direct path, with an input SNR of 223 dB is extremely large. This

is a direct result of the SNR threshold not being met for that pair of multipath parameters. In

the next subsection, it will be seen that this large mean squared amplitude error in the estimated

direct path signal amplitude leads to a large tracking bias. This figure also shows that 223 dB is

near the SNR threshold also for a multipath delay of 0.15 chips. Other than those two data points,

the mean squared error performance is adequate for all other delays at all three SNRs.

4-4-2.2 Tracking Bias Analysis. The second figure of merit for characterizing the

cepstrum multipath mitigation process is the tracking bias. To perform this analysis, simulations

are run for multipath amplitudes of 0.2, 0.4, 0.6. and 0.8 at SNRs of 1000 dB, 250 dB, and 223 dB.

For each multipath amplitude and SNR, the multipath delay is varied from 0.1 to 1.5 chips. Again,

72

10 trials are run for each set of multipath parameters, and the data presented is the average for

those 10 experiments. To characterize the cepstrum performance, the tracking bias of the cepstrum

process is calculated and compared to the tracking bias for a narrow correlator non-coherent delay

lock loop employing 0.1 chip correlator spacing. This comparison is performed to characterize the

cepstrum process in relation to a current, commercially available, method of multipath mitigation.

The performance of the cepstrum process is compared to that of the narrow correlator in Figures

42 through 53.

0.09

0.07

Tracking Bias vs. Multipath Delay

°>0.04

0.01

Cepstrum Process
Narrow Correlator

Multipath Delay

Figure 42 Tracking Bias Comparison for SNR = 1000 dB and Multipath Amplitude = 0.2

73

0.14

0.12

Tracking Bias vs. Multipath Delay

Cepstrum Process
Narrow Correlator

§■0.08
s

;o.06

0.04

0.5 1
Multipath Delay

Figure 43 Tracking Bias Comparison for SNR = 1000 dB and Multipath Amplitude = 0.4

Tracking Bias vs. Multipath Delay

? 0.15

Cepstrum Process
Narrow Correlator

0.5 1
Multipath Delay

Figure 44 Tracking Bias Comparison for SNR = 1000 dB and Multipath Amplitude = 0.6

74

0.8

0.7-

0.6-

S0.4-

S0.3

Tracking Bias vs. Multipath Delay
1

^ ^ _ n

. Narrow Correlator .

-
/

/
/

;
/

/

,11 1
i ',

/ i Ü 1
, i .'i

! !i . :
' ' '' '
' ' '' ''
i ' i i
i ' ii
i ' II
\ ' i.i

/' \ .-./' \ ' i 'Mi

^-—^ \/ r

\i if i
0.5 1

Multipath Delay

Figure 45 Tracking Bias Comparison for SNR = 1000 dB and Multipath Amplitude = 0.8

0.09
Tracking Bias vs. Multipath Delay

1 '
^ . „ n

0.08 I Narrow Correlator

- 0.07 -

o, °-06 \\ \ -
D ' ' ' ' ' t ' i
C
CD
« 0.05 -

S //■ / ' M / '" I g>0.04

1 ■•-..

0.03
7< ■ M A '■ ' i ' \ ; '

0.02 - ' ■ ' / \ , ' i ' rJ -

0.01
v \ V «' / -

Multipath Delay

Figure 46 Tracking Bias Comparison for SNR = 250 dB and Multipath Amplitude = 0.2

75

Tracking Bias vs. Multipath Delay
0.14

0.04

0.02

Cepstrum Process
Narrow Correlator

Multipath Delay

Figure 47 Tracking Bias Comparison for SNR = 250 dB and Multipath Amplitude = 0.4

0.25
Tracking Bias vs. Multipath Delay

0.05

Cepstrum Process
Narrow Correlator

Multipath Delay

Figure 48 Tracking Bias Comparison for SNR = 250 dB and Multipath Amplitude = 0.6

76

Tracking Bias vs. Multipath Delay

0.5 1
Multipath Delay

Figure 49 Tracking Bias Comparison for SNR = 250 dB and Multipath Amplitude = 0.8

Tracking Bias vs. Multipath Delay
0.09

0.08

0.07

"0.04

0.02

0.01

Cepstrum Process
Narrow Correlator

0.5 1
Multipath Delay

Figure 50 Tracking Bias Comparison for SNR = 223 dB and Multipath Amplitude = 0.2

77

Tracking Bias vs. Multipath Delay
0.14

0.1

s>0.0

= 0.06

0.04

0.5 1
Multipath Delay

Figure 51 Tracking Bias Comparison for SNR = 223 dB and Multipath Amplitude = 0.4

Tracking Bias vs. Multipath Delay

m 0.15

0.1 ■

 1 i

-

Cepstrum Process
Narrow Correlator

-

-

A
1

/ 1

' / / /
A v l '

■\A y\
i /1

y

/ 1

I

0.5 1
Multipath Delay

Figure 52 Tracking Bias Comparison for SNR = 223 dB and Multipath Amplitude 0.6

78

0.8
Tracking Bias vs. Multipath Delay

i 0.5

10.4

.2 0.3

0.1

Cepstrum Process
Narrow Correlator

0.5 1
Multipath Delay

Figure 53 Tracking Bias Comparison for SNR = 223 dB and Multipath Amplitude = 0.8

79

Examination of Figures 42 through 53 reveals that the cepstrum process generally exhibits

lower tracking bias than the narrow correlator, when the SNR threshold requirement is met. Ex-

ceptions to this general rule occur when the multipath delay is small and when it equals 1 chip.

For small multipath delay, the adaptive comb filter must filter the complex cepstrum at more data

points, introducing more opportunity for degradation in the recovered signal. For instance, if the

multipath delay is 0.1 chip, the complex cepstrum must be filtered at every integer multiple of 0.1

chip. If, on the other hand the delay is 0.5 chip, it will be filtered at every integer multiple of 0.5

chip. The first example will be filtered at 5 times as many quefrencies as the second, introducing

more opportunities for filtering error in the recovered signal. Additionally, it has been seen that,

at small multipath delays, the detector frequently misdetects the multipath delay. This leads to

the recovered direct path estimate more closely resembling the composite multipath signal rather

than the direct path signal. However, all current multipath mitigation techniques exhibit poor

performance for small reflection delays.

As previously mentioned, the second exception occurs when the reflection delay is 1.0 chip.

Due to the importance of the cepstral peaks at each integer multiple of 1.0 chip, as discussed

previously, the adaptive weighted comb filter is designed not to filter the cepstrum at multiples

of the chip interval. Therefore, by design, if the multipath signal is delayed exactly 1.0 chip,

relative to the direct path, the cepstrum process performs no-filtering, and the original composite

multipath signal is sent to the tracking loop. This weakness degrades performance, compared to

the narrow correlator, in the one case where the multipath delay is 1.0 chip; however, it ensures

better performance at all other multipath delays.

Finally, examination of Figure 53 reveals that the maximum tracking bias for the cepstrum

process, when the input SNR is 223 dB and the multipath amplitude is 0.8, occurs at 0.1 chip

multipath delay. Recall that the mean squared error of the recovered signal in that case is large

due to the threshold effect. The poor quality of the recovered signal at this point leads to poor

80

track»^Performailceasexpecfed

"^ Summary

In ««is chapter dah, • F ' data is presented fro ■
strum process for milu■ „ " SlnU,Jatio«« character^ *h

"»«Ifapath detection and ffl, • +. ^ "le Nation of the ceD

TaWe3 Average Data S

A s«mniary of th* „
he aVei'a^ Performance takp

81

Table 4 Average Data Summary For 223 dB SNR

Parameter Multipath Amplitude
0.2 0.4 0.6 0.8

Mean Squared Error 0.0105 0.0143 0.0229 0.0577 (edited)
Cepstrum Bias (chips) 0.0165 0.0195 0.0286 0.0556

Narrow Correlator Bias (chips) 0.0379 0.0445 0.0584 0.1540
Standard Correlator Bias (chips) 0.0322 0.0713 0.1183 0.2648

well over a wide variety of multipath scenarios using very high input SNRs. The "edited" line in

Table 4 presents the average mean squared error with the one outlying data point (shown in Figure

41) removed.

82

V. Conclusion

This thesis seeks to provide a new method for GPS multipath mitigation. It proposes use of the

cepstrum to detect and remove multipath effects prior to code tracking by a non-coherent delay

lock loop. In Chapter II, the theory of the cepstrum is presented. Chapter III discusses the signal

model, the cepstrum process, and the non-coherent delay lock loop. Chapter IV presents the results

of simulations using the cepstrum for multipath mitigation.

Recall from Chapter I that the objectives of this thesis are:

1. Develop a complex cepstrum filtering technique for GPS multipath interference removal.

2. Modify a standard delay lock loop by adding the filtering to the loop input.

3. Characterize the multipath induced tracking error for the modified delay lock loop in a

noiseless environment.

4. Characterize the multipath induced tracking error for the modified delay lock loop

operating with typical GPS SNRs.

5. Compare and contrast the complex cepstrum receiver performance to that of a narrow

correlator receiver.

These objectives were met through the theory of Chapters II and III, and demonstrated

through the simulations of Chapter IV. Based on the results of Chapter IV, several conclusions can

be made.

1. The power cepstrum can be used to detect multipath interference prior to GPS code

tracking.

2. The complex cepstrum can be used to remove multipath interference prior to GPS code

tracking.

83

3. Both the complex and power cepstra are sensitive to input SNR, with the complex

cepstrum being extremely sensitive to input noise.

4. Time domain filtering to improve input SNR causes serious degradations in the cepstral

domain.

5. Due to the noise sensitivity of the complex cepstrum, this technique is not viable at this

time for use in actual GPS receivers where the input SNR is typically -14.9 dB.

Although the noise sensitivity of the complex cepstrum makes it unusable for GPS multipath

mitigation, this research shows that the complex cepstrum is a viable technique for multipath

mitigation in other circumstances. This technique may be applicable to other communication

systems with different input signal structures and higher SNRs. One example of such a system may

be overseas telephony where users often hear echoes while talking.

5.1 Recommendations for Future Research

Despite the fact that these cepstrum techniques do not appear viable for GPS multipath

mitigation at this time, further research is warranted to investigate possible improvements to make

the cepstrum a viable tool for GPS applications. This research includes the following:

1. Investigate cepstral processing for multipath mitigation within or following a non-

coherent or, perhaps more promisingly, a coherent delay lock loop, rather than strictly

prior to a NCDLL. Correlation prior to cepstral processing may lead to the signal to

noise improvements necessary to make this technique applicable for GPS signals. A post

delay lock loop cepstral algorithm has the advantage of greatly enhanced SNR at the

expense of a distorted measured autocorrelation function (via a bank of evenly spaced

correlators as in the MEDLL or MRDLL designs). Cepstral techniques could then be

used to deconvolve the primary path autocorrelation function from the contribution of

any component reflections.

84

2. Develop a new multipath signal model that accounts for the time domain convolution

of an input filter impulse response. Characterize the filter influence in the cepstral

domain, and develop methods of detecting and removing multipath despite the effects

of the input filter.

3. Develop methods of cepstral domain filtering to minimize input noise effects prior to

multipath detection and mitigation.

4. Using the theory of Chapter II, extend this research to include multiple reflections.

5. Improve the signal model to include effects of the carrier tracking loop, and characterize

the performance of the cepstrum process on this signal.

6. Characterize the cepstrum process when doppler effects are taken into account.

7. Characterize the cepstrum process for GPS carrier tracking multipath mitigation.

5.2 Final Conclusion

This work shows the cepstrum is viable for multipath mitigation under ideal, noiseless con-

ditions. The simulations show that the cepstrum process requires an extremely high input SNR.

Further research is necessary to improve noise performance before this will be a viable technique

for GPS code tracking multipath mitigation.

Appendix A. Matlab Function Files

A.l Overview

The Appendix contains copies of all Matlab (version 5) function filestsed for simulation of

multipath mitigation via cepstral techniques. Each file is a separate secfaaof the Appendix. A

short introduction to each section is given, followed by a listing of the fundm file.

A.2 Thesis_Sim,ulator Function File

The function file thesis.simulator is the primary file used for simulatk»f cepstral processing

for multipath mitigation. This file creates the composite multipath signal, dulates the power and

complex cepstra, calls the detector subroutine to detect the reflection delay,amoves the multipath

effects in the cepstral domain, and produces the direct path estimate threap an inverse complex

cepstrum operation. Additionally, this file calculates the mean squared ampitde error in the direct

path estimate, compared to the actual direct path signal. Finally, it caldktes the S-curves for

the direct path signal, the direct path estimate, the narrow correlator NCSL, and the standard

correlator NCDLL. These S-curves are then used to calculate the trackingfeses of the cepstrum

process, the narrow correlator NCDLL, and the standard correlator NCDLEThe Matlab function

file follows:

function [results]=thesis_simulator(am,tm,SNR)

7. THESIS_SIMULATOR uses the cepstrum to detect and remove a muMpath reflection from a

7, composite signal. The direct path signal is modeled as a cosäe modulated by a BPSK

7, spreading code. The multipath reflection is modeled as an asfitude scaled and time

7, delayed version of the direct path signal. The composite sigjl is the sum of the

7, direct path and reflection signals.

7.
7. Usage:
7o results=thesis_simulator(am,tm,SNR)

7.
7, Where:
7o am = multipath reflection normalized amplitude

°l, tm = multipath reflection normalized delay (in chips)
7» SMR = the input signal to noise ratio in dB

7.

86

7, This file calls the following subroutines:

7,
'/, expand, delay, fpeak, meanfilt, scurve, trackpoint

7.
*/, This function and all subroutines were written by Chuck Ormsby

7.
load cacode 7, Load pre-stored C/A code generated using the GPS toolbox for Matlab

fs=100; '/, fs is the sampling frequency (ie 100 samples/chip)
ca=[expand(ca,fs)] ; 7, Produces 100 samples per chip
ca=[ca zeros(size(ca))] ; '/, Zero pad the signal for cepstral processing

t=linspace(0,2*pi*1023*2,length(ca)); 7. Time scale for the carrier

carrier=cos(5*t);
y=ca.*carrier; '/, Direct path signal

n=(0:length(ca)-l)/100;

% Add a multipath signal
d=round(tm*f s); */, Reflection delay Note: Round is necessary to make sure d is an integer.

a=am; */, Reflection Amplitude

mp=a*delay(y,d); '/, Multipath reflection signal

cs=y+mp; 7, Composite signal

7, Convert the SNR in dB to a noise amplitude

na=exp(-SNR/20);

7. Generate a Gaussian random sequence

randnCstate' ,sum(100*clock)); */, Reset the random number generator.

rv=na*randn(size(cs));

7. Add the noise to the signal
cs=cs+rv; 7o Noisy composite signal

7(Caculate the power and complex cepstra
[CS,nd]=cceps(cs); 7o Complex cepstrum; nd is delay which must be removed later

RCS=rceps(cs) ; '/, Power cepstrum

7, Use the power cepstrum to detect the multipath delay
first_peak=fpeak(abs(RCS),.6); 7. Detect the multipath peak

detected_delay=(first_peak-l)/fs; '/, Detected delay in chips

'/, Filter the multipath out

max_multiplier=floor(length(CS)/first_peak);

multipliers=l:max_multiplier;
filter_points=first_peak*multipliers;

for index=l:length(filter_points)
if rem(filter_points(index)-index+l,100)"=l '/, Do not filter at the chip times

CS=meanfilt(CS,filter_points(index)-index+l,2); 7. Filters out the delta functions

87

end

end

'/, Recover the direct path estimate
cal=icceps(CS,nd); '/, Inverse cepstrum calculation

7, Calculate the mean squared amplitude error in the recovered signal

mse=mean((y-cai) ."2); '/, MSE in the recovered signal

7, Calculate the s-curves of the actual direct path, the direct path

7, estimate, the narrow correlator receiver and the standard NCDLL

[sdp,t]=scurve(y,y,fs,l); '/. Direct path s-curve and tracking error scale (t)

sc=scurve(cal,y,fs,l); 7, Cepstrum process s-curve

snc=scurve(cs,y,fs, .1); 7. Narrow correlator s-curve
sncdll=scurve(cs,y,fs,i); '/, Standard correlator s-curve

7, Calculate the tracking biases for the direct path estimate, the

7« narrow
7, correlator receiver, and the standard NCDLL relative to the direct path signal

tpdp=trackpoint(sdp); '/, Find the zero crossing point of the direct path s-curve
tpcep=trackpoint(sc); '/, Find the zero crossing point of the cepstrum process s-curve
tpnc=trackpoint(snc); '/, Find the zero crossing point of the narrow correlator s-curve
tpncdll=trackpoint(sncdll); % Find the zero crossing point of the standard correlator s-curve
cep_bias=(tpcep-tpdp)/fs; */, Calculate the cepstrum tracking bias in chips
nar_bias=(tpnc-tpdp)/fs; '/, Calculate the narrow correlator tracking bias in chips
stan_bias=(tpncdll-tpdp)/fs; */, Calculate the standard correlator tracking bias in chips

7, Report the results of the simulation.
results=[SNR am tm detected_delay mse cep_bias nar_bias stan_bias];

A.3 Expand Function File

Expand is the first function file called by thesis-simulator. Expand expands an input vector

containing one sample per time unit, to one containing fs samples per time unit, where /s is

the sampling frequency. For this specific application, expand takes an input vector of GPS C/A

spreading code containing one sample per chip, and expands the vector to contain 100 samples per

chip. The Matlab function file follows:

function yp=expand2(y,expan)

7, EXPAND will expand a vector by an input factor. This expansion is equivalent to producing

7. more samples per time unit.

7.
7. ex. y=[l 2 3 4]
'/, yp=expand(y,2)
'/„ yp=[l 1 2 2 3 3 4 4]

%
'I' yp=expand(y,expansion factor)
%
7» Written by Chuck Ormsby

'/. April 20, 1997

%

yp=zeros(l,length(y)*expan);

count=l;

count2=i;

while count2<=length(y)
yp(count:count+expan-l)=y(count2)*ones(l,expan);

count2=count2+l;
count=count+expan;

end

A.4 Delay Function File

The function file delay adds a delay to the input vector by prepending zeros to the beginning

of the vector. This function is used to delay the direct path signal vector for creation of the reflection

signal vector. The Matlab function file follows:

function y=delay(x,s)

% DELAY prepends zeros to the beginning of the input vector. This can be thought of as

'/, adding a time delay to the input vector.

%
'/, y=delay(x,s)

%
% y is the delayed vector, x is the input vector, s is the length of the delay and must

% be positive

7,

left=zeros(l,s);

right=x(l:length(x)-s);

y= [left right];

89

A. 5 Fpeak Function File

The function file fpeak detects the multipath reflection delay. This function compares each

data point in the input vector to the two adjacent data points as described in Chapter III. When

a delta function peak is detected, the function reports the associated delay as the reflection delay.

The Matlab function file follows:

function first_peak=fpeak(x,multiple)

'/, FPEAK detects the first peak in a function. It is designed to work with the CCAF.
'/, A peak is declared if a point exceeds the points on either side of it by more than
'/, an input multiple which is a percentage (ie multiple = .5 means a point must be

X 2 times larger than the adjacent point). By default, the first point cannot be a peak.

X
X first_peak = fpeak(x,multiple)

X
*/. Written By:

X Chuck Ormsby
*/, 27 Oct 97

X

stop=0;

index=2;
while stop==0

if x(index)>=(i/multiple)*x(index-l) & x(index)>=(l/multiple)*x(index+l)

if index"=101 '/, Do not declare an mp delay of 1 chip

first_peak=index;

stop=l;

else
index=index+l;

end
else

end

index=index+l;

end

A.6 Meanfilt Function File

The meanfilt function file accomplishes the removal of the multipath reflection effects from

the complex cepstrum. This function replaces the appropriate data points in the complex cepstrum

with the average of the adjacent data points. The Matlab function file follows:

function xf=meanfilt(x,m,N)

90

7, MEANFILT is a "mean" comb filter designed for use with the complex cepstrum. This
7, filter replaces element m of the vector, x, with the mean of the N surrounding points.
7o N must be even.
7.
I Ex: x= [5 2 3 4 5 6]
7.
7, xf=meanfilt(x,3,4)
'/, x(3)=(5+2+4+5)/4
7. x(3)= 4
7. xf=[5 2 4 4 5 6]

7,
7, Mote: x and m must be specified. If N is not entered, a default value of N=2 is used.

7.
7. Written by Chuck Ormsby
7.
if nargin==2

N=2;
end
7. Test N
while rem(N,2)"=0

N=input('N must be even. Please enter a new N. ');
end
x(m)=(sum(x(m-N/2:m-l))+sum(x(m+l:m+N/2)))/N;
xf=x;

A. 7 Scurve Funtion File

Scurve calculates the S-Curve for an input sequence as defined in Chapter III. Scurve cor-

relates an input signal with a locally generated signal, which is also an input to the function.

This function allows for variable correlator spacing so that narrow or standard correlator NCDLL

S-curves can be calculated using the same function file. The Matlab function file follows:

function [sc,t]=scurve(x,c,fs,s)

7, SCURVE computes the tracking curve (s-curve) for a non-coherent delay lock loop where x
7, is the input signal, c is the correlation signal, fs is the sampling frequency,
7, and s is the correlator spacing. If s is not specified, the default is 1 chip.
7 If two output variables are used, a time scale for the s-curve is also returned.

7.
'/, [sc,t]=scurve(x,c,fs,s)
y.
y, Written by Chuck Ormsby
'/, August 19, 1997

%
7, This function calls the vector_shift subroutine:

91

I

% Note: Signal names used in this file refer to the names in fig» 4-9, pg 165 of

7, Peterson, Ziemer, and Borth: Introduction to Spread Spectrum Craamications

if nargin==3

s=l;
end

if rem(s*fs,2)==0

space=s*fs/2;

else
space=(s*fs+l)/2;

end
'/, Test the length of the correlation signals
len=length(x);

if len>=50000
trun=5e4; % For very long sequences, the input signal must be »uncated to decrease

7, run times

else
trun=length(x);

end

end

x=x(l:trun);

c=c(l:trun);

% Produce the early and late codes
early=vector_shift(c,space);
late=vector_shift(c,-space);

7, Produce the early and late correlator outputs

yl=xcorr(early,x);

y2=xcorr(late,x);
7. Square the correlator outputs

zi=yi.~2;
z2=y2.~2;
'/, Low pass filter
wcut=0.035;
[b,a]=butt er(5,wcut);
zllp=filter(b,a,zl);

z21p=filter(b,a,z2);
7, Create the s-curve

sc=zllp-z21p;
sc=sc./max(sc); '/, Normalize the s-curve
t=linspace(-length(x),length(x),length(sc))/fs;

A.8 Vector-Shift Function File

The function file vectorshift produces the time shift necessary for the e«$T and late locally

generated codes in the NCDLL. This function assumes the input vector is oneyiod of a periodic

92

spreading code. The function then shifts the elements of the vector circularly left or right to create

an advanced or delayed version of the input vector. The Matlab function file follows:

function yp=vector_shift2(y,s)

*/, VECTOR_SHIFT shifts the entries in the vector y by some advance or delay. A delay is

t entered as a negative number while an advance is entered as a positive number.

I
°l> yp=vector_shift(y,s)

7.
'/, Note: The vector y is assumed to be periodic, with the elements of y comprising an integer
'/, number of periods.
%
s=mod(s,length(y));
if s>=0

right=y(l:abs(s));
left=y(abs(s)+l:length(y));

else
right=y(l:length(y)+s);
left=y(length(y)+s+l:length(y));

end
yp=[left right];

A.9 Trackpoint Function File

The trackpoint function file searches for the tracking point in a vector representing the NCDLL

S-curve. This function searches for the point where the S-curve crosses the S(5) = 0 axis between

the minimum and maximum points of the S-curve. The function then reports the index of the

data element of the zero crossing which can be related to a time delay through knowledge of the

sampling frequency. The Matlab function file follows:

function z=trackpoint(x)

*/, Trackpoint searches for the tracking point of an input S-curve vector. The
7, tracking point is the point where the S-curve crosses the S=0 axis between

7, the minimum and maximum values of the S-curve. If the vector does not contain

% an element which is identically zero, a linear interpolation between the two

7. nearest elements is performed.

7.
7. z = trackpoint (x)

7.
7. Written by Chuck Qrmsby

7,
7o This function calls the subroutines:

93

'/, maxfind.m, minfind.m, and interpolate.m

7.
max_index=maxfind(x);

min_index=minfind(x);

if min_index>max_index

start=max_index;

stop=min_index;

count=l;

for index=start:stop

if x(index-l)>=0 & x(index)<=0
a(count,:)=[index-1 index];

count=count+l;

end

end

else
start=min_index;

stop=max_index;

count=l;
for index=start:stop

if x(index-i)<=0 & x(index)>=0
a(count,:)=[index-1 index];
count=count+1;
end

end
end
[m,b]=interpolate(a(D,x(a(l)),a(2),x(a(2)));
z=-b/m;

A. 10 Maxfind and Minfind Function Files

The maxfind and minfind function files search for the maximum and minimum points, re-

spectively, in an input vector. These functions report the index of the maximum and minimum

values of the input vectors. The Matlab function files follow:

function index=maxfind(x)

7, MAXFIND returns the index associated with the maximum value of a vector.

7.
7. index=maxfind(x)

7.
'/, Written by Chuck Ormsby
7, July 24, 1997

7.
maxi=max(x);

for count=l:length(x)

if x(count)==maxi;
index=count;

94

end

end

function index=minfind(x)

7, MINFIND returns the index associated with the minimum value of a vector.

7,
7. index=minf ind(x)

7.
'/, Written by Chuck Ormsby
7. October 1, 1997

7,

mini=min(x);
for count=i:length(x)

if x(count)==mini;
index=count;

end

end

A. 11 Interpolate Function File

The interpolate function file is used in conjunction with the trackpoint function to determine

the tracking point of an input S-curve vector. Interpolate returns the slope and y-intercept of a

line joining two input data points. This file is used by the trackpoint function to calculate the slope

and y-intercept of a line joining two adjacent data points, one negative and one positive, in the

S-curve vector. From knowledge of the slope and y-intercept of this line, the exact zero crossing

point can be calculated. This linear interpolation is justified because, as shown in Chapter III, for

small tracking errors, the S-curve is approximately linear. The Matlab function file follows:

function [m,b] interpolate(xl,yl,x2,y2)

7, INTERPOLATE returns the slope and y-intercept for a line connecting the points (xl.yl) and
7. (x2,y2).
7.
7. [m b]=interpolate(xl,yl,x2,y2)
7.
m=(y2-yl)/(x2-xl);
b=yl-m*xl;

A. 12 Summary

This Appendix presents the Matlab function files used for simulation of multipath mitigation

using cepstral techniques. All function files used for this thesis are included in this Appendix. Any

functions not specifically included are built-in Matlab (version 5) functions. The intent of including

the function files is to give the reader a better understanding of the function of the cepstral process

for multipath mitigation. Additionally, by including these function files, a reader familiar with

Matlab should be able to reproduce the work of this thesis.

96

Bibliography

1. Bogert, B. P., et al. Time Series Analysis, chapter 15, 209-243. Wiley, 1963.

2. Childers, Donald G. and Robert C. Kemerait. "Signal Detection and Extraction bffepstrum
Techniques," IEEE Transactions on Information Theory, JT-i<S (6):745-759 (Noverifer 1972).

3. Childers, Donald G., et al. "The Cepstrum: A Guide to Processing," Proceedings oße IEEE,
£5(10):1428-1443 (October 1977).

4. Fisher, Stephen D. Complex Variables, chapter 1, 45-48. Wadsworth and Brooks/Cue, 1990.

5. Laxton, Mark L. Analysis and Simulation of a New Code Tracking Loops for GPMultipath
Mitigation. MS thesis, Air Force Institute of Technology, 1996.

6. Lee, James K., et al. "The Complex Cepstrum Applied to Two-Dimensional Imagdf Pattern
Recognition, jgtf(10):1579-1592 (1993).

7. Oppenheim, Alan V., et al. "Nonlinear Filtering of Multiplied and Convolved Sipis," Pro-
ceedings of the IEEE, 5tf(8):1264-1291 (August 1968).

8. Oppenheim, Alan V. and Ronald W. Schäfer. Discrete-Time Signal Processing, Apter 12,
768-825. Prentice Hall, Inc., 1989.

9. Parkinson, Bradford W. and James J. Spilker Jr., editors. Global Positioning System Theory
and Applications, 1, chapter 3, 118. American Institute of Aeronautics and Astronafics, Inc.,
1996.

10. Peterson, Roger L., et al. Introduction to Spread Spectrum Communications, chapfc 3, 135-
138. Prentice Hall, 1995.

11. Sklar, Bernard. Digital Communications Fundamentals and Applications, chapter©, 548 -
549. Prentice Hall, Inc., 1988.

12. van Dierendonck, A. J., et al. "Theory and Performance of Narrow Correlator Spring in a
GPS Receiver," Navigation: Journal of the Institute of Navigation, 39 (3):265-283 (SI 1992).

13. van Nee, Richard D. J., et al. "The Multipath Estimating Delay Lock Loop: Ajpoaching
Theoretical Accuracy Limits." Proceedings of 1994 IEEE Position, Location, and imigation
Symposium - PLANS 94. 246-250. April 1994.

14. Weill, Lawrence R. "GPS Multipath Mitigation by Means of Correlator Reference'feveform
Design." Proceedings of the National Technical Meeting of the Institute of Navigationl97-2Q().
January 1997.

97

Vita

Charles D. Ormsby was born on in He was commissioned

as a U.S. Air Force officer on May 22, 1992, and received a B.S. degree in Electrical Engineering

from Rose-Hulman Institute of Technology on May 23, 1992. Since receiving his commission,

he has worked as a foreign microelectronics materials analyst and a foreign materiel exploitation

engineer at the National Air Intelligence Center, Wright-Patterson AFB, OH. Immediately following

completion of his M.S. degree in Electrical Engineering from the Air Force Institute of Technology,

he will relocate to Holloman AFB, NM to perform GPS system testing.

Charles Ormsby is a member of Pi Kappa Alpha, Tau Beta Pi, and Eta Kappa Nu.

Permanent address:

98

REPORT DOCUMENTATION PAGE Form Approved

OMB No. 0704-0188

1. AGENCY USE ONLY (Leave blank)
anagement and Budget. Paperwork Reduction Project (0704-0188), Washin- gton. DC 20503.

2. REPORT DATE
December 1997 REPORT TYPE AND DATES COVERED

Master s Thesis

4. TITLE AND SUBTITLE

Cepstral Processing For GPS Multipath Detection and Mitigation

6. AUTHOR(S)

Charles D. Ormsby

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRtSS(ES)

Air Force Institute of Technology, WPAFB OH 45433-6583

9. SPONSORING/MONITORING AGENCY NAMI(S) AND ADDRESS(ES)

WL/AAMW
2241 Avionics Cirlce
WPAFB OH 45433

8. PERFORMING ORGANIZATION
REPORT NUMBER

AFIT/GE/ENG/97D-19

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION /AVAILABILITY STATEMENT

Distribution Unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words) ~~ " " ~—~

This work presents a novel approach to code phase multipath mitigation for Global Positioning System (GPS)
receivers. It uses the power and complex cepstra for multipath detection and mitigation prior to code phase
tracking by a standard non-coherent delay lock loop. Cepstral theory is presented to demonstrate how multipath
reflection delays can be detected through the use of the power cepstrum. Filtering can then be performed on
the complex cepstrum to remove multipath effects in the cepstral domain. Finally, an inverse complex cepstrum
is calculated yielding a theoretically multipath free direct path estimate in the time domain. Simulations are
presented to verify the applicability of cepstral techniques to the problem of GPS multipath mitigation. Results
show that, under noiseless conditions, cepstral processing prior to code tracking by a standard non-coherent
delay lock loop leads to lower code tracking biases than direct tracking of the composite multipath signal by a
narrow correlator receiver. Finally, this work shows that cepstral processing is highly sensitive to additive white
Gaussian noise effects, leading to the conclusion that methods of limiting noise effects must be developed before
this technique will be applicable in actual GPS receivers.

14. SUBJECT TCRS'ii " ' ' * " —— , , _

Global Positioning System, GPS, Coarse/Acquisition Code, C/A Code, Multipath
Mitigation, Multipath Detection, Cepstrum, Power Cepstrum, Complex Cepstrum

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

I 18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED
NSN 7540-01-280-5500

15. NUMBER OF PAGES
115

16. PRICE CODE

20. LIMITATION OF ABSTRACT

UL

St.inil.nd Fcidi :-n\ .i.Vv

	Cepstral Processing for GPS Multipath Detection and Mitigation
	Recommended Citation

	/tardir/mig/a336668.tiff

