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Abstract 

This work presents a novel approach to code phase multipath mitigation for Global Posi- 

tioning System (GPS) receivers. It uses the power and complex cepstra for multipath detection 

and mitigation prior to code phase tracking by a standard non-coherent delay lock loop. Cepstral 

theory is presented to demonstrate how multipath reflection delays can be detected through the use 

of the power cepstrum. Filtering can then be performed on the complex cepstrum to remove mul- 

tipath effects in the cepstral domain. Finally, an inverse complex cepstrum is calculated yielding a 

theoretically multipath free direct path estimate in the time domain. Simulations are presented to 

verify the applicability of cepstral techniques to the problem of GPS multipath mitigation. Results 

show that, under noiseless conditions, cepstral processing prior to code tracking by a standard non- 

coherent delay lock loop leads to lower code tracking biases than direct tracking of the composite 

multipath signal by a narrow correlator receiver. An exception to this general rule occurs at a mul- 

tipath reflection delay of exactly 1.0 chip, relative to the direct path, where the cepstral processing 

provides no improvement. Additionally, cepstral processing provides little or no improvement over 

a narrow correlator non-coherent delay lock loop when the multipath delay is small, approximately 

0.1 chip or less. However, this weakness is common for other multipath mitigation techniques as 

well. Finally, this work shows that cepstral processing is highly sensitive to additive white Gaussian 

noise effects, leading to the conclusion that methods of limiting noise effects must be developed 

before this technique will be applicable in actual GPS receivers. 



Cepstral Processing For GPS Multipath Detection and Mitigation 

/.   Introduction 

1.1 Overview 

Satellite navigation systems have ushered in a new era in precision navigation. The Global 

Positioning System (GPS) in particular provides highly accurate position solutions for both civilian 

and military applications. This has led to it's use in every arena from personal recreation to highly 

precise "smart" bombs. However, a primary error source still exists in GPS, ranging errors caused 

by multipath interference. In fact, multipath signals are the dominant error source for Differential 

GPS (DGPS). Thus many efforts focus on developing techniques to mitigate multipath errors in 

DGPS. 

1.2 GPS Background 

The Global Positioning System is a direct sequence spread spectrum (DS/SS) satellite nav- 

igation system consisting of 24 satellites providing navigation information to passive receivers. 

The system operates using the principle of trilateration. Within the received signal, the satellite 

transmitter embeds precise timing information. The receiver uses the signal propagation delay to 

calculate the distance to the satellite using d — vp * (tr - tt) where d is the distance from the 

receiver to the satellite, vp is the velocity of propagation (usually assumed to be the speed of light 

in a vacuum), tt is the time of transmission, and tr is the time of receipt. 

In addition to transmitting precise timing information, each satellite transmits ephemeris data 

which provides the satellite's position. From knowledge of the positions of at least four satellites 

and the range to each satellite, a user position solution is calculated. This still leaves two important 

questions unanswered.   First, how does the receiver distinguish between satellites?   Second, how 



does the receiver determine the precise time of transit for the signal being transmitted from the 

satellite? Both of these questions will be covered in the sections that follow. 

1.2.1 The GPS Signal. Before examining the GPS signal, consider a general direct 

sequence spread spectrum signal. This signal is represented as 

s(t) = V2Pcos(u)0t + ec{t) + ed(t)) (1) 

where s(t) is the transmitted signal, P is the carrier power, w0 is the carrier angular frequency, 6C 

is the spreading code, 64 is the data stream. Assuming antipodal binary phase shift keying (BPSK) 

is used for the spreading code and data modulation, an equivalent form of Equation 1 is given in 

Equation 2 

s(t) = V2Pc(t)d(t)cos(w0t) (2) 

where d(t) is the data stream and c(t) is the spreading code. 

The Global Positioning System consists of satellites transmitting two distinct DS/SS signals. 

The first signal is called Precision code (P-code). This signal is encrypted, a conversion to Y- 

Code, before transmission, and is reserved for military users. The P-code signal provides position 

estimates with accuracy on the order of 10 m in the absence of multipath interference. The second, 

Coarse/Acquisition (C/A) code, is transmitted for all users. The C/A code signal is subjected to 

selective availability (SA), a form of intentional signal degradation. With SA in operation, C/A 

code provides position estimates with accuracy on the order of 100 m in the absence of multipath 

interference. P-code is transmitted at two carrier frequencies, LI and L2; whereas C/A code is 

available only on LI. The properties of the GPS signal are summarized in Table 1 (5). 

1.2.2 Spreading Code. The Global Positioning System uses orthogonal Gold codes to 

spread the signal spectrum.  For a discussion of Gold codes see (9, 10).  These codes allow GPS 



Table 1      GPS Spreading Code Characteristics 

Parameter C/A Code P Code 
Data Rate 50 Hz 50 Hz 

Chip Rate = 1/TC 1.023 Mchips/sec 10.23 Mchips/sec 
Code Period = N (chips) 1023 Chips (1 ms) « 6 x W12 Chips (1 week) 
Carrier Band Designation LI 

1575.42 MHz 
LI, L2 

1575.42, 1227.6 MHz 
respectively 

to utilize code division multiple access (CDMA) to distinguish which satellite transmitted a given 

signal. Due to the orthogonality of the codes, the correlation of the received signal will be essentially 

zero if the locally generated code is not the same as that of the received signal. 

GPS receivers exploit knowledge of the spreading code correlation function to synchronize a 

locally generated replica of the spreading code to the received spreading code. This synchronization 

is needed to determine range to the satellites; additionally, this tracking of the spreading code 

accomplishes despreading of the received signal.    The code autocorrelation function, Äc(r), is 

defined as 

1       fNT' RC{T)=NTCL     <t)c(t + TT^dt (3) 

where r is the independent (time shift) variable, NTC is the code period in seconds, and c(-) is the 

spreading code. 

For maximal length pseudorandom noise (PRN) codes, the fundamental period of the code 

autocorrelation function is (5, 11) 

Rc(r) 

l-r(l + i) |r|<l 

1< \T\ < (N - 1) 

- (JV - 1)] (1 + £) - i    (N-1)<\T\<N 

N 
(4) 

where TV is the code period in chips. 



Since N 3> 1, Equation 4 can be approximated as 

Rc{r) « { 
1 - \T\       \T\ < 1 

0        elsewhere 
(5) 

A plot of the Equation 5 is shown in Figure 1. Although Figure 1 shows only a single peak, 

the periodicity of the spreading code results in a periodic autocorrelation function. Therefore, the 

peak of Figure 1 is repeated every N chips. 

1.5 

0.5 
E < 

-0.5 
-0.5 0 0.5 

Tau (chips) 
1 1.5 

Figure 1      Maximal Length Spreading Code Autocorrelation Function 

1.2.3 Code Tracking. As alluded to earlier, code tracking in a DS/SS receiver is accom- 

plished by computing the correlation of the received and locally generated spreading codes. The 

locally generated code is shifted in time until the correlation is maximized. Maximization of the 

correlation function occurs at T = 0. Referring to Equation 3, it is seen that r = 0 implies that, the 

locally generated code and the received code are synchronized. By measuring the shift of the local 

code necessary to maximize the correlation function, the receiver can estimate the signal propaga- 



tion delay.  As discussed earlier, the propagation delay is then used to estimate the range to the 

satellite. 

1.3    Multipath Interference 

A multipath signal is a reflection of the direct path signal.  The multipath phenonmenon is 

illustrated in Figure 2. 

Figure 2      The Multipath Signal 

From Figure 2 it is seen that the multipath signal traverses a greater distance than the direct 

path signal; hence, the multipath signal is a delayed version of the direct path signal. Because 

it is assumed that the multipath signal is also attenuated with respect to the direct path signal, 

Equation 2 can be used to represent the ith multipath component as 

i(t) = at s(t - Tmj) = a,i c(t - Tmi)d(t - rmj) V2P cos [2w0 (* - rmi (6) 



where a; is the multipath attenuation coefficient and rmj is the multipath delay relative to the 

direct path signal. 

Using the superposition of Equations 2 and 6. the total received signal is represented by 

Equation 7 

M 

r(t) = s(t) + m(t) = c(t) d(t) V2P cos (w0 *) + J2 ai c(* ~ Tmi">d^ ~ Tmi^ "^ cos [2w° (* _ Tmi^ 

(7) 

where the summation indicates M > 1 total multipath reflections. 

1.3.1 Code Tracking in the Presence of Multipath. When code tracking in the presence 

of multipath is performed in the same manner as code tracking in the absence of multipath, the 

multipath term(s) in Equation 7 cause a distortion of the autocorrelation function. This degrada- 

tion, which will be discussed later, leads to a non-zero tracking bias with respect to the direct path 

signal. In other words, rather than tracking the direct path signal perfectly, the multipath compo- 

nents cause some tracking error in the receiver. These effects will be discussed more thoroughly in 

Chapter III. 

1.4    Previous Efforts in GPS Multipath Mitigation 

Efforts to eliminate multipath errors in GPS receivers have focused on three main areas: 

pre-receiver, receiver-internal, and post-receiver. Pre-receiver techniques typically include antenna 

designs that minimize the antenna gain in the expected direction of the multipath signal. Alter- 

natively, the antenna can be designed to have a physical barrier, such as a ground plane, blocking 

the multipath signal. Such antenna designs work well in static applications where the trajectory 

of the multipath signal is relatively constant and can be estimated. However, they do not perform 

well in dynamic situations where the multipath environment is changing rapidly. Receiver-internal 

techniques typically consist of digital signal processing techniques designed to eliminate the mul- 



tipath components from the received signal, or to minimize the negative effects of the multipath 

components. These techniques perform well even in highly dynamic multipath environments. This 

thesis fits into the receiver-internal category. A brief summary of other receiver-internal design and 

signal processing techniques previously developed follows. 

I.4.I Narrow Correlator Spacing. The use of a non-coherent delay lock loop (NCDLL) 

with a more narrow correlator spacing was one of the first receiver designs for multipath mitigation 

(12). This technique employs a code tracking delay lock loop with correlators spaced 0.1 of a 

chip duration apart in time rather than the standard 1 chip width. The narrow spacing results in 

the delay lock loop tracking a more narrow portion of the correlation peak. This leads to better 

performance in a multipath environment with maximum tracking errors being reduced by a factor 

of approximately 10 with respect to the standard correlator structure. This technique is currently 

used in many production GPS receivers for standard positioning system (SPS) (i. e. C/A code) use. 

1.4-2 Multipath Estimating Delay Lock Loop. The multipath estimating delay lock loop 

(MEDLL) provides improvements over the narrow correlator spacing receiver (13). In the MEDLL, 

the multipath signal amplitudes and delays are estimated, and the multipath signal is removed 

through digital signal processing. The MEDLL is implemented using a bank of correlators, each 

delayed relative to the other by a fraction of a chip. By correlating the received signal using this 

bank, a sampled version of the distorted correlation function is generated. The MEDLL then 

uses a maximum likelihood estimator to estimate the multipath signal parameters. Finally, using 

digital signal processing, the estimated multipath components are removed from the received signal. 

This proprietary technique provides significant improvement over narrow correlator spacing and is 

implemented in some production GPS receivers. 

I.4.3 Modified RAKE Delay Lock Loop. The modified RAKE delay lock loop (MRDLL) 

was proposed in an Air Force Institute of Technology thesis by Mark Laxton (5). The MRDLL has 



similarity to the MEDLL, using a bank of correlators and a maximum likelihood estimation unit 

to estimate the multipath parameters. The MRDLL employs an adaptive loop controller to adjust 

the loop filter gain, maintaining a fixed linearized loop natural frequency and damping ratio. This 

technique has a non-zero tracking error in the absence of multipath interference. 

I.4.4 Correlator Reference Waveform Design. Correlator reference waveform design is 

one of the latest techniques to be suggested for GPS multipath mitigation (14). This technique 

recommends correlating the received signal with a waveform designed explicitly to reject multipath 

signals. Rather than using a replica of the GPS spreading code for correlation in the delay lock loop, 

Weill recommends using the second or fourth derivative of the spreading waveform. This technique 

claims to reduce multipath ranging errors by increasing the range resolution of the correlation 

process through the use of novel reference waveforms. The advantage of the second and fourth 

derivative correlators is that they can be implemented using two correlators, one for code tracking, 

and one for acquisition, data recovery, and data removal. This is opposed to a bank of many 

correlators for the MEDLL and the MRDLL. Additionally, this technique can be implemented 

easily without significant additional signal processing, such as that required by the MEDLL and 

the MRDLL. The disadvantages are that this technique requires a slightly higher input signal to 

noise ratio (SNR) than the other techniques, and this technique cannot completely remove the 

multipath interference. Rather, correlator reference waveform design greatly reduces the error 

caused by the multipath signals. Like the MRDLL, this technique is very new, and not likely to 

have been implemented in a production model GPS receiver. 

1.5    Problem Statement 

The complex cepstrum is a tool originally investigated for echo determination in seismic 

applications. By virtue of the fact that the cepstrum is a complex quantity, signal magnitude and 

phase information is preserved through the application of the complex cepstrum.  The signal can 



subsequently be reconstructed through an inverse cepstrum process. Since multipath signals are 

"echoes" of the direct path signal (see Equation 6), the complex cepstrum will be investigated 

as a tool to remove the multipath interference in a composite signal. This thesis will pursue the 

complex cepstrum as a means to separate the multipath interference from the composite GPS 

signal. The multipath interference will then be removed by filtering (often called littering) in the 

cepstral domain. Finally, the signal will be transformed back into the time domain for tracking 

by a standard GPS receiver. With the multipath interference thus removed, the induced tracking 

error will be removed, allowing accurate tracking of the direct path GPS signal. 

1.6    Objectives 

This thesis proposes a GPS receiver employing a complex cepstrum process for multipath 

removal, followed by a standard delay lock loop for code tracking. This new design modifies 

current GPS receivers by employing front end digital signal processing for the removal of multipath 

interference. The rest of the design is a standard GPS receiver. 

The objectives of this thesis are: 

1. Develop a complex cepstrum filtering technique for GPS multipath interference removal. 

2. Modify a standard delay lock loop by adding the filtering to the loop input. 

3. Characterize the multipath induced tracking error for the modified delay lock loop in a 

noiseless environment. 

4. Characterize the multipath induced tracking error for the modified delay lock loop 

operating with typical GPS signal to noise ratios. 

5. Compare and contrast the complex cepstrum receiver performance to that of a narrow 

correlator receiver. 



1.7 Assumptions 

For this thesis, the following assumptions are made: 

1. The received signal consists of a direct path and a single reflected signal. 

2. The receiver has completed the signal acquisition phase prior to multipath interference 

occurring. 

3. The GPS signal has been down converted to an intermediate frequency. 

4. The received signal is due to only one GPS satellite (i.e. one signal per channel). 

5. No special antennas or spatial processing are used for multipath mitigation. 

6. Doppler effects are negligible. 

1.8 Approach 

This thesis presents results of theoretical analysis and simulation of multipath mitigation 

using the complex cepstrum and cepstral domain filtering. Analyses and simulations are performed 

for a variety of multipath scenarios and in both noiseless and additive white Gaussian noise en- 

vironments. Computer simulations are presented in Chapter IV. Simulations are written using 

MATLAB computational software from The Mathworks, Inc. of Natick, Massachusetts. Simula- 

tions are performed on a stand alone Pentium based PC and on the Sun workstations provided by 

the Air Force Institute of Technology (AFIT). 
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II.   Cepstral Analysis 

2.1 Introduction 

In a 1963 paper by Bogert, Healy, and Tukey, entitled "The Quefrency Alanysis of Time 

Series for Echoes: Cepstrum, Pseudoautocovariance, Cross-Cepstrum, and Saphe Cracking" (1) 

it was observed that a signal composed of a fundamental and echoes of the fundamental could 

be decomposed by taking the logarithm of the power spectrum. Bogert et al. found that the 

logarithm of the power spectrum contained a periodic component due to the echoes in the composite 

signal. This component manifests itself as periodic peaks when the Fourier transform is taken. 

Because their technique uses the spectrum of the signal, Bogert et al. rearranged the letters of 

spectrum and in naming their new technique the "cepstrum". Since it's original development, 

many researchers have developed ways to modify the cepstrum for application to specific signal 

decomposition problems. To avoid confusion with these new techniques, what was originally called 

the "cepstrum" is now more commonly known as the "power cepstrum". Other forms of the 

cepstrum include the complex cepstrum, the phase cepstrum, and the log cepstrum. This thesis will 

use the power and complex cepstra. As a final note of introduction, complex cepstrum techniques 

fall into a class of nonlinear filtering techniques developed by Oppenheim, Schafer, and Stockham 

(7, 8) termed homomorphic deconvolution. 

2.2 Definitions of the Power and Complex Cepstra 

2.2.1 Power Cepstrum Definition. As previously mentioned, the power cepstrum was the 

first cepstral technique developed. This technique was used to estimate the delay and amplitude of 

echoes present in a composite signal. Since computer algorithms are typically employed to evaluate 

the power cepstrum, xpc\nT], it is usually written in terms of the Z-transform of a sampled signal 
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as shown in Equation 8 

xT,[nT\    =    (Z-'(log|X(z)|2))2 (8) 

= {sji1<,g|xw|2^}! 

where X(z) ■= Yl^L-oo xn z~n ls tne Z-transform of the discrete time signal i[nT], n is the sample 

number, and T is sampling period. The logarithm can be computed relative to any base; however, 

the natural logarithm is most commonly used. 

Two things should be noted concerning the power cepstrum. First, if \z\ = 1 is in the region 

of convergence of X(z), then the counter clockwise contour of integration is typically chosen to 

be the unit circle, so that the Z-transform becomes the discrete time Fourier transform (DTFT). 

Unless otherwise noted, the DTFT will be used throughout the rest of this thesis. Second, because 

the logarithm acts only on the magnitude of the Z-transform, the phase of the original signal is lost. 

Therefore, an inverse power cepstrum operation cannot be applied to recover the original signal. 

This weakness in the power cepstrum led to the development of the complex cepstrum which will 

now be presented. 

2.2.2 Complex Cepstrum Definition. The complex cepstrum was developed out of the 

homomorphic system theory of Oppenheim, Schafer, and Stockham (7) and is very similar to the 

power cepstrum. The primary difference is that the complex cepstrum uses the complex logarithm of 

the Z-transform, maintaining the signal's phase information. The general definition of the complex 

logarithm and complex cepstrum, £[nT], are given in Equations 9 and 10, respectively. 

logc = In |c|+jZc (9) 
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where c is a complex number, and Lc is the argument of the complex number, c. 

x[nT] = -^ <f>\og{X{z))zn-ldz (10) 
^3 Jc 

where, by definition, x[0] = log( .-r[0]). Finally, as a matter of notation, X(z) will be used to denote 

logX(z). 

As mentioned earlier, the complex cepstrum is more versatile due to the fact that phase 

information is retained; however, carrying this phase information does create some difficulty in the 

calculation of the complex cepstrum. The difficulty arises from the fact that the complex logarithm 

is multi-valued in phase. If the phase of the logarithm is calculated modulo 2ir (wherein lc is 

the principal value of the argument of c), then phase discontinuities result; however, this is not 

allowed since log[X(z)] is the z-transform of x[nT] and thus must have a continuous phase. This 

difficulty is solved using any of several readily available phase unwrapping techniques. One such 

technique, presented by Childers, Skinner, and Kemerait (3) adds a correction term, C(k), to the 

phase according to the following algorithm 

C(k) = < 

0 if k = 0 

C{k - 1) - 2*r if P(k) - P(k - 1) > IT 

C(k - 1) + 2TT if P(k - 1) - P{k) > 7T 

C(k — 1) otherwise 

(11) 

where P(k) is the phase at point k. 

2.3    Cepstral Processing of Multipath Signals 

This section presents a typical use of the cepstrum, namely characterization of echoes (such 

as multipath) in a composite signal. First, the theory for using the power cepstrum is developed, 

followed by the theory of the complex cepstrum. Both of these derivations closely follow those found 
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in (2, 3). Previous work has shown that it is often easier to detect multipath reflections in the power 

cepstrum, rather than the complex cepstrum (3). However, the complex cepstrum maintains the 

needed phase information contained in the signal. After calculating the complex cepstrum, a signal 

can be filtered in the cepstrum domain to remove the previously detected multipath reflection, 

then an inverse cepstral operation can be performed to recover the time domain direct path signal 

estimate. This process will be described in more detail later. 

2.3.1 Power Cepstrum. To see how the power cepstrum can be used to decompose a 

signal comprised of a direct path and one multipath reflection, let x[nT] be the signal of interest. 

This signal can be represented as follows 

x[nT]=f[nT]*g[nT] (12) 

where * represents the convolution operation, f\nT] represents the direct path signal, and g\nT] is 

defined as 

g[nT) = 6[nT] + a0S[nT - n0T] (13) 

Referring to Equation 8 for the definition of the power cepstrum, the steps in calculating the power 

cepstrum of a;[nT] are completed in the following manner 

X(z)    = F(z)G(z) (14) 

\X(z)\    = \F(z)\-\G(z)\ 

|X(z)|2    = \F(z)\2-\G(z)\2 

= \F(z)\2\(l + a0z-n°)\2 
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Because x[nT] is a causal, stable signal, the DTFT exists and is found by substitution of z = ejut: 

|X(e^T)|2    = |J(e'wT)|2|(l+a0e-*,m°T)|2 

log |X(e^T)|2    = log \F(e>uT)\3 + log | (l + a0 e^"^) |2 

= log \F{ei"T)\2 + log |1 + a0 cos{n0coT) - ja0 sin(n0wT))|2 

= log \F(eju,T)\2 + log{[l + aQ cos{n0uT)}2 + [a0 sin(n0wT)]2} 

= log \F(e>uT)\2 + log[l + 2a0 cos(n0wT) + a2 cos2(n0uT) + a2 sin2(n0uT)} 

log \F(e>wT)\2 + log[l + 2a0 cos(nowT) + a2} 

2ap 

+ a2o 
=    log \F(e^T)\2 + log[(l + a2)(l + -^5_ coS(n0u>T)} 

=    log \F{e^T)\2 + log(l + a2) + log[l + r^ cos(n0ujT)} 
i-\- a0 

=    log \F(e^T)\2 + log(l + a2) + log[l + -5L_(e»"»"T + e"^)] (15) 

Next, use the power series expansion, log(l + a;) = 2fcli(_l)fc+1X' to exPand tne tnird term m 

Equation 15. Note that this expansion converges only if |a;| < 1, which holds for this application. 

To prove this, let 

x = - =■ cos (n0 CJ T) 
1 + a2 

Then, 

which implies 

or 

0  <   (1 - «of   =   1 - 2a0 + a2, 

2a,o   <   1 + ao 

2a0      <   1 

1   +   ag 
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Similarly, (1 + a0)    > 0, leads to the conclusion 

2a0 

1 + af   - 
>   -1 

Therefore, 

-1   < 2a0 

"    1 + «n 
< 1 

Because | cos (n0 w T) \   <   1, if follows that 

(16) 

|-4^2 cos (no w T) |   <   1 
1 + an 

(17) 

Therefore, the expansion is used for this problem and is given by 

log   1 + 
a0 

l + «o 
(e jn0u>T   ,   e~jn0uT' £ 

ro—1 

(-1) 
m+l   r 

m 
^0_^ jn0uT 

U + «0 
(e + e -jnoo (18) 

Combining Equations 15 and 18 gives 

log|X(e^)|2    =    log|F(e^|2+log(l + ^)+^^—[-^(e^T+e-^T)r (19) 
771 1  "T" t*A 

m=l u 

=    log \F(e^T)\2 + log(l + a2) + -J_(e>"<>,-r + e^n^T) 

1  /     «0      \     .  jn0u>T   ,      -j«0wTx2   ,   1 /     a0     A     /   jn0uT   ,      -jn0a,T\3 _ 

"2Vl + a2J   (C +<? j   +3^1 + a2;   (6 + ' j       - 

=    log|F(e^r)|2 + log(l + a2) + ~^(ejn°"T +e'^T) 
i + a0 

1 /    a0 

2\l + a2
n 

j2n0u>T _j_ e-j2n0uT + 2) 

_|_I J       a°        )     CeJ3n0wT _|_ e-j3n0uT _j_ g^nowT + ßg-jnowTx _ _ _ _ 

3 \ 1 + a0 J 

Note that each term with an even exponent in the expansion will contain a constant, with decreasing 

magnitude as the exponent increases. Also, note that the term log(l + a2,) is a constant. Lumping 

these constants together into another constant called K, and taking the inverse Fourier transform, 
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gives the power cepstrum of this signal. 

xpc[nT]    =    F-^log \F(ej"T)\2} + F'^K} + F"1 { j^(ejn^T + e^n^T) 

_ 1   f_*_\     (ei2n0WT + e-j2n0«T + y 
2 \1 + a0J 

1  /     «0     \     feJ3n0wT   ,   e-j3n0uT + fejnouiT + ^e-jn0u,T\ _ j 

3 V1 + «o / 

=    F-^log \F{e^T)\2} + KS(t) + -^ [6(t + n0T) + S(t - n0T)} 
1  + (In 

~(T^)2[6(t + 2n0T)-6(t-2n0T)} 

+ u0 
+ l(jJlh)3 W* + 3noT) + *(* - 3noT)} -... (20) 6  1 + ai 

Examination of Equation 20 shows why the power cepstrum is useful for determining the delay 

of a multipath signal. The power cepstrum of the composite signal exhibits periodic peaks which 

are delayed at integer multiples of the multipath delay; thus, the power cepstrum can be used to 

detect a multipath component in a composite signal. The difficulty occurs when one attempts to 

characterize multiple multipath reflections. This difficulty is demonstrated in the derivation that 

follows, which parallels a derivation in (3). 

The two echo case is derived following a procedure similar to that for a single echo. In this 

derivation, arbitrarily many reflections could have been used. However, the two reflection scenario 

is useful for highlighting the key points without adding unnecessary complexity. 

First, refer to Equation 12 as the starting point. Then, rewrite Equation 13 to account for 

two reflections, which yields Equation 21 

g[nT] = 6[nT] + a0S[nT - n0T] + ai6[nT - niT] (21) 

where a, and ruT are the amplitude and delay, respectively, of the ith reflection. 
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Next, follow the same steps as in the previous derivation. 

X{z)    = F(z)-G(z) (22) 

\X(z)\    = |F(*)|.|G(s)| 

|X(z)|2    = \F(z)\2-\G(z)\2 

= \F(z)\2\{l + a0z-no+a1z-ni)\2 (23) 

|2 

Evaluating on the unit circle, z — edUt and taking the logarithm gives 

|X(e^T)|2    =    |F(ejuT)\2 | (1 + ao e-
jn°"T + ai e^"lwT) |2 

log |X(e^T)|2    =    log \F(e^T)\2 + log | (l + a0 e^n^T + ttl e~^uT) |2 

=    log|F(e>"T)|2 

+ log |1 + ao cos(nowT) + a\ cos(nia;T) — j[ao sin(nowT) + a\ sin(aiwT)]|2 

=    log|*VT)|2 

+ log{[l + a0 cos(n0wT) + a-i cos(?XiwT)]2 + [ao sin(nowT) + aj sin(niUJT)]
2
} 

=    log \F(ejwT)\2 + log[l + 2a0 cos(n0wT) + 2«i cos(niwT) + a2
0 cos2(n0uT) 

+2aoai cos(nowT') cos(niwT) + a2 cos2 (njwT) + a2 sin2 (novT) 

+2aofli sin(nowT') sin(n-iwT) + a2 sin(niwT)] 

=    log \F(ejwT)\2 + log[l + a2
0 + a2 + 2a0 cos(7i0wT) + 2at cos(niujT) 

+2a0ai{cos[(ni — no)uT] + cos[(?xi + no)u)T] 

+ cos[(ni - n0)ojT] - cos[(ni + n0)wT]}] 

=    \og\F{eJ«T)\2 

+ log{l + a2 + a2 + 2ao cos(n0wT) + 2«i cos(niwT) + 2a0ai cos[(ni — nQ)ujT]} 

18 



=    log |F(e^)|2 + log { [1 + a\ + a2][l +        ^°        cos(n0a;T) 

+ 1   ■ „2  ■ ni cos(nlWT) + cos{(ni - n0)u>T}} } 

=    log|F(e^T)|2 + log(l + a2 + a2) 

+ lo§ 1 X + i   ■ „?°, „2 cos(nowT) + " *     2 cos(mwT) 

2a0ai 
1-TäfTa2 + ,   , J ^„a cos{(m - n0)uT} ] 

=    log |F(e^)|2 + log(l + flg + a2) + log { 1 + [ a0(e^ + e-^"r) 

+ai(eJ'niwT + e-J'™ia,T) + a0ai(ei(ni""o)wT + e^^-"»)«^) j j (24) 

Next, the final term of Equation 24 can be expanded in a similar manner as for the single reflection 

case. Incorporating the expansion into Equation 24 gives 

F-1{log|X(eJ'"T)|2}    =    F-1{log|F(e^T)|2} + JF-1{log(l + a2+a2)} 

[ao(einowT + e-jn°"T) + a1(ejn^T + e-
jn^T) 

+a0a1(ej{ni-no)uT + e-J(»i-"o)«Tjj 

=    F-^log |iV"T)|2} + ^-a{log(l + «2 + «2)} 

1 + aj + a\ 

+a0ai(ej("1_"o)wT + e-:>("i-"°)"T)] 

--( \ 2-)2[a0(eJ'"<'wT + e-
jn°"T) + ai(ejn^T + e-

jn^T) 

+a0a1(ej{n'-no)u'T + c-i("i-«o)'-T)]2 

+ i(- 1 2-)3[ao(^'"owT + e^n°wT) + ai(eJn^T + e^
n^T) 

=    F-^log |F(e^T)|2} + F-1 { log(l + a2 + a2)} 

1 
+J,_1{ i 2 2 K(einowT + e-^°wT) + «!(e^wT + e~>niuT) 

1 + WQ "I" al 
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+a0a1(eji^-no^T + e-
j{ni-n°)ujT)] 

-^TT-4—2 YH{ej2no"T + e-^°»T + 2) 

+al(ej2ni"T + e-j2n^T + 2) 

+ala\{eJ2(n'~no)uT + e~^n^na)uT + 2) 

+a0a
2

1(ejn°uT + e-^
uT + ei(2«i-«oVr + c-j(2n1-n0)«rj] 

+ -( 1 2?\.aKeJZn°"T + e~j3n°wT + 3ejn°uT + 3e-jno"T) 

+a\{ei3n^T + e~j3n^T + 3e^wT + 3e-jn^T) 

+ala3
1(ej3{ni-no)uT + e-i3("i-"°VT + Zejn°"T + 3e-jn°uT) 

+3a2a1(2e:>n^T + 2e~in^T + ei(2"o+«1)«T + e-j(2n0+ni)u,T 

+ei(2no-ni)«T + e-j(2«0-m)"T) + 3aoa^2ejn°U'T + 2e-J'"°wT 

i ei(2«i +n0)uT _|_ e-j(2tii+n0)uT _|_ eJ(2ni-n0)uT _|_ c-i(2n,-n0)uT^ 

_|_3a a3/2ei(ni-"o)wT _|_ 2e-j("i-«o)wT _|_ gjf(3Tii-no)wT _|_ e-j(3m-n0)wT 

+eJ(m+noVT + g-jXm+no)«!-) + 3o^a? (2e^lwT + 2e^'niwT 

i ei(3n1-2n0)wT   ,   e-j(3n1-2n0)uT _|_ ej(ni -2n0)wT _|_ g-j(™i -2n0)wT\ 

+o3a (2e^ni~"°-)wT + 2e~ttn^~n°}"T + e^ni+n°"luT + e~^ni+n°^uT 

iei(m-3"o)wT _|_ g-j(K1-3n0)wT'j _|_ ß3ß2 ^gjno^T _|_ 2g-jn0wT _j_ eJ(2m -3n0)wT 

_(_e-i(2«i-no)wT + ei(2ni-n0)«T + e-j(2ni-n0)wT\ + 4a
2
a

2(e32n°uT + g-J2n0wT 

_|_eJ2nlWT _|_ e-j2niwT _^_ ei2(n,-n0)uT _|_ g-J^rij -n0)uT _|_ 2)1 - . . . } 

(25) 
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Next, the inverse Fourier transforms are evaluated to yield the power cepstrum. After collecting 

like terms, the equation above becomes the following. 

Xpc[nT)    =    i^ilogljy^)!2} 

\og{l + a2
0 + al) + 

(26) 

*o(! + ai) + at(1 + ao) + 3aoai+ao + ai 
(1 + al+aiy 

6a5
0 + 18a3

0 + 6a0 + a3, (6a? + 13a?) + a0(3af + 21a?) 

6(t) 

6(1 + a2
0+al)3 

6a? + 12a? + 6a3, + 6aa - a0(3a? - 6ai) + ao(6a? + 4a? 
6(l + a2 + a2)3 

-ag(3af - 12a? + 3a? - 12ai) + 12a0ai 

[Ä(i - n0T) + 6(t + n0T)] 

6(l + a2+a?)3 

5aQai — 3aQ — 3ag 
6(l + ag+a?)3) 

5aga? - Za\ - 3a? 

[«(* - mT) + «(t + niT)] 

6(l + ag+a?)3) 

0 [o(i - 2n0T) + S(t + 2n0T)] 

[5(t-2n!T) + «(t + 2niT)] 

an 
2 + a2^3 

a'' 

3(l + ajj + a?) 
3 

[6(t - 3n0T) + 6(t + 3n0T)} 

3(l + a2 + a?)3 

+ 6aga1+ao(12a3 + l7ai) + a(6ftf + 21a3+3ai)        _        _ +       +        _ 
6(1 + ag + af)3 

5aga? — 3aga? — 3aoaf 
6(1 + al + a? 2\3 [«(* - 2(m - n0)T) + <5(i + 2(m - no)T)] 

,3„3 

3(l + a2 + a?)3 

3a0(a? — ai) - a^ai 
6(l+ag+a?)3 

2a0a? — 3aQai — 3ag(a? + «i) 
6(l + ag+a?)3 

3ao(a? — a?) — a3, a? 

[6(i - 3(na - n0)T) + 6(t + 3(m - n0)T)] 

[o(t - (m + n0)T) + 6(t + (m + no)T)] 

[6(t - (ni - 2n0)T) + «(* + (m - 2n0)T)] 

6(l + a2+a?)3 [S(t - (2m - n0)T) + 6(t + (2m - n0)T)] 

«oai 
(1 + al + a? 2\3 

a2
0a,i 

(1+ag+a?) 2\3 

ao«? 
(l+a§+af)3 

aQa\ 
(1+ag+a?) 2\3 

[6(t - (2n0 + m)r) + «(« + (2n„ + m)T)] 

[«(t - (2n0 - m)T) + S(t - (2n0 + m)T)] 

[6(t - (2m + n0)r) + <$(* + (2ni + n0)T)] 

[*(t - (3m - nx)T) + <5(* + (3m - n0)T)} 
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«0«! 

(1 + a0 + a1) 

«oai 
+ 0/1   , „V,    2^3 [«(* " K - 3wo)T) + *(* + (»i - 3no)^)] 3(1 + al+a\) 

3   2 

•in-L.^"! 2V. W - (2"i " 3™°)T) + *(* + (2rii - 3w°)T)l + • • ■ O^J.   +  Ctg   -\-  «j J 

From Equation 26 it is seen that the power cepstrum will contain peaks at the delays of each 

reflection, just as it did in the single reflection case. However, it is also seen that the reflections 

will interact with each other causing peaks at sums and differences of the delays. It is these peaks 

that cause the difficulty in determining the true multipath delays. If a sufficiently small number of 

multipath reflections exist, the true delays can be distinguished from these interference delays using 

an exhaustive search. This method would involve comparing the delay associated with every peak 

to the sums and differences of the other delays, and determining which delays are true multipath 

delays. Using a computer algorithm, this procedure could probably be implemented for cases 

where only a few reflections exist. However, this method would become very time consuming if 

many reflections exist. Therefore, rather than dealing with this difficulty, this thesis will focus on 

using the complex cepstrum to remove all reflections without necessarily estimating the parameters 

associated with the reflections. 

2.3.2 Power Cepstrum Example. To see how the power cepstrum can be used to determine 

the delay in a single multipath reflection case, consider the following simple example. Let x[nT] be 

the direct path signal 

x[nT] = e-nT (27) 

where T is the sampling period, n is the sample number, and the signal is given an initial amplitude 

of 1 so that everything is normalized to the direct path. 

Next, let a single multipath reflection occur three time units later than the direct path, with 

an amplitude of one half with respect to the direct path.  Then, from Equation 6 the composite 
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signal is given by 

c[nT] = e-"T+0.5e-<"T-3> (28) 

where c[nT] is the composite signal. A plot of these signals is shown in Figure 3. 
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Figure 3      Signals for Power Cepstrum Example 

Following the procedures previously developed, the power cepstrum of the composite signal 

was calculated and is shown in Figure 4. It is seen in Figure 4 that the power cepstrum contains 

peaks at ±3 time units, as predicted by Equation 20. 

2.3.3    Complex Cepstrum. The development of the complex cepstrum in a multipath 

environment is very similar to that of the power cepstrum. The difference lies in the fact that the 

complex logarithm is used to retain phase information. As mentioned earlier, this allows one to 

filter the signal in the cepstral domain, then perform an inverse operation to return to the time 

domain. This process is shown in Figure 5. The single reflection complex cepstrum derivation 

follows. As before, this derivation parallels those in (2, 3). 
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Figure 5      Complex Cepstrum Filtering Process 

For the complex cepstrum derivation, begin with a signal which is the convolution of two 

other signals. 

x[nT\ = f[nT\*g[nT\ (29) 

where * represents the convolution operation, f[nT] represents the direct path signal, and, for a 

single reflection, g[nT] is defined as 

g[nT] = 6[nT] + a06[nT - n0T] (30) 
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Referring to Equation 10, the steps in computing the complex cepstrum are completed as follows. 

X(z)    =    F(z)G(z) (31) 

=    F(z){l + a0z~n°) 

Evaluating the Z-transform on the unit circle and taking the logarithm yields 

X{eiuT)    =    F(eju,T)(l + a0e-i"noT) (32) 

log[X(e^T)]    =    log[F(e^T)]+log[(l + a0e-^oT)] 

(33) 

Again, a power series expansion is used for the final term above, provided that \ao e~iwn°T\ — 

|ao| < 1, which requires that reflections be attenuated relative to the direct path signal. This 

generally is true due to the conservation of energy, but can be violated when many reflections 

combine in phase to form a composite reflection of greater magnitude. 

ju>no T\k In   C-J™0TU 

log[(l + aoe-i^)] = EM)"*1 h (34) 
fc=i 

Using the expansion yields 

log[X(e^)] = log[F(e^)] + E(-l)t+l( u      } (35) k 
k=i 

Finally, the inverse Fourier transform is taken to give the complex cepstrum. 

F-l{log[X(e^T))}    =    jr1{log[F(e*"T)]} 

a: 3 

=    F-l{log[F(e^T)}} + a0S(t - n0T) - ^6(t - 2n0T) + -±6(t - 3n0T) 
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Just as in the power cepstrum case, it is seen that the complex cepstrum will contain peaks at 

integer multiples of the multipath delay. However, unlike with the power cepstrum, these peaks 

can be removed from the complex cepstrum by filtering. Following this filtering operation with an 

inverse complex cepstrum will then yield a multipath free signal in the time domain. 

The same procedure as above can be followed for the multiple echo scenario (3). Again, as in 

the power cepstrum case, a two echo case will be presented for illustration purposes. However, the 

analysis could be extended to the case of arbitrarily many echoes. 

Again, start with a signal which is the convolution of two signals, as given in Equation 29. 

However, in this case define g[nT] as 

g[nT] = 6[nT] + a0S[nT - n0T] + a^nT - nxT] (37) 

where aj and WjT are the amplitude and delay, respectively, of the ith multipath signal. 

Then, the derivation follows as before. 

X(z)    =    F(z)G(z) (38) 

=    F(z)(l + aoZ~n° +GHZ-™1) 

Evaluating the Z-transforms on the unit circle and taking the logarithm yields 

X(ej"T)    =    F(e>wT)(l + a0e->wn°T + a1e->un*T) (39) 

log[X(e>T)]    =    log[JF(e^T)]+log[(l + aoe^'w"''T + a1e-^"lT)] 

Using the power series expansion for the last term, when | «o e~^wn°T + a,i e~JU'niT \ < 1, gives the 

following 

M^I=iog[^(e-
T)]+^(-ir1^—i^—L       (40) 
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Finally, taking the inverse Fourier transform yields the complex cepstrum. 

*-1{log[X(e>vr)]}    =    F-1{log[F(e*"T)]} (41) 

=    +F-1{«oe-«T + a1e-«
r-^ ±^ >- 

(a0e-Jw°T + aie~jWlT)3 , + _ ... ) 

=    *'-1{log[F(eJ'wT)]} + F-1 { a0er
jun°T + a^"^ - \a2

0e-
jun°T 

--a\e-^^T - l-aoaie-^
n°+n^T + ±a*e-i3un°T + \a\e-^^T 

2 2> o ö 

+a2
0a1e-^

2n'>+n^T + a0a
2
e-^

n°+2n^T...} 

=    F-1{log[F(ej"T)]} + a06(t - n0T) + aiS(t - mT) 

-\a2
08{t - 2n0T) - \a\6{t - 2mT) - a2

oai6{t - (n0 + m)T) 

+ \<46(t - 3n0T) + \a\8{t - 3nxT) + aga^i - (2n0 + nt)T) 
ö O 

+a0ai5(*-(no+2ni)T)-... 

As in the single reflection case, it is seen from Equation 41 that the complex cepstrum will contain 

peaks with amplitudes and delays proportional to those of the multipath signals. Also, like the 

power cepstrum, it is seen that the multiple reflections will interact causing difficulty in using the 

complex cepstrum to characterize the multipath signals. However, unlike in the power cepstrum 

case, the complex cepstrum can be filtered in the cepstral domain, then inverted back to the 

time domain. Using this technique, the multipath signals are removed and the direct path signal 

recovered without needing to fully characterize the multipath signals. 

2.4    Filtering in the Cepstral Dom.ain 

Three methods for filtering a cepstral domain signal are long pass, short pass, and comb 

filtering. Each of these methods has advantages and disadvantages depending upon the goals of 

the designer. The long pass filter is the cepstral equivalent to a frequency domain high pass filter. 
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The long pass filter is designed to set all points in the cepstrum prior to the first echo peak equal to 

zero. Thus using a long pass filter preserves the multipath signals while filtering out the direct path 

signal. Similarly, the short pass filter is the cepstral equivalent of a low pass filter. The short pass 

filter replaces everything from the first echo peak forward (in time) with a zero. Thus, the short 

pass filter removes all multipath signals while passing the direct path signal. The disadvantage 

of both the long pass and short pass filters is that, by zeroing out large portions of the complex 

cepstrum, these filters may cause significant degradation to the signal(s) of interest. An alternative 

to these methods is the comb filter. This filter is the cepstral equivalent to a notch filter. The 

comb filter replaces multipath peaks in the complex cepstrum with the average of the two (or 

more) points immediately adjacent to the peaks. In this manner, the comb filter removes the delta 

functions in the complex cepstrum which are caused by the multipath interference. Thus, when 

the filtered signal is converted back to the time domain, the direct path signal is recovered. The 

difficulty with this technique lies in detecting the peaks in the complex cepstrum. As previously 

mentioned, researchers (3) have found that it is often easier to detect multipath peaks by using the 

power cepstrum rather than the complex cepstrum. A parallel process is employed to detect and 

mitigate multipath effects; the power cepstrum is used to detect multipath delays and the complex 

cepstrum is used to filter out the multipath reflection. A block diagram of this process is shown in 

Figure 6. A simple example using the complex cepstrum to filter out multipath follows. 

2.4-1    Multipath Mitigation Example.      As an example of the theory that has been presented 

consider again the decaying exponential signal, x[nT] 

x[nT) = e~nT (42) 

where T is the sampling period, n is the sample number, and the signal was given an initial 

amplitude of 1 so that everything is normalized to this signal. 
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Figure 6      Power and Complex Cepstrum Multipath Detection and Mitigation Procedure 

If x[nT] is the direct path signal, and a multipath reflection occurs three time units later with 

an amplitude of one half with respect to the direct path, then the composite signal is represented 

as follows. 

c[nT]    =    x[nT] + 0.5x[nT - 3] 

c[nT]    =    e~nT + 0.5e-("T"3) 

(43) 

where c[nT] is the composite signal. A plot of these signals is shown in Figure 7. 

Recall that the procedure for removing the multipath signal is shown in Figure 5. The first step is 

to calculate the complex cepstrum of the composite signal as previously presented. A plot of the 

complex cepstrum for this example is shown in Figure 8. Note that the complex cepstrum contains 

peaks at 3, 6, and 9 time units as predicted by the theory previously presented. The next step 

in removing the multipath signal is to comb filter the complex cepstrum at time units 3, 6, and 

9. This is accomplished by replacing complex cepstrum values at those times with the averages of 

the two points on either side of the peaks. The complex cepstrum of the multipath signal and the 

comb filtered complex cepstrum are both shown in Figure 8.   Finally, the comb filtered complex 
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Figure 7      Signals for Complex Cepstrum Example 

cepstrum is transformed back into the time domain using an inverse complex cepstrum operation 

to recover the direct path signal. The recovered direct path signal for this example is shown in 

Figure 9 along with a plot of the original direct path signal. The mean squared error between the 

recovered direct path signal and the actual direct path signal is 1.16 x 10~6, demonstrating that 

this method is effective for multipath mitigation for this signal. 
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III.   Complex Cepstrum Adaptive Filter 

3.1 Overview 

This chapter describes the Complex Cepstrum Adaptive Filter (CCAF) and the non-coherent 

delay lock loop, also commonly called an early-late gate. Additionally, the chapter describes the 

input signal model. The first section covers the signal model. The subsequent sections discuss the 

CCAF and it's components. The final section describes the NCDLL. 

3.2 Received Signal Model 

Prior to processing the received signal for multipath mitigation, it is assumed that the signal 

has been mixed down to some convenient intermediate frequency (IF). If the received multipath 

signal is assumed to have one reflection, the received signal can be described by the following 

equation: 

s(t) = V2Pa0c(t - Td) cos{wIFt + 0O) + V2Pa^.c{t - Tm) cos(u>IFt + 6>i) + n(t)       (44) 

where ao, fti are the direct path and multipath amplitudes, respectively, 0o = —woT~d, #i = — woTm 

are the direct path and multipath phases, respectively, T<J and Tm are the direct path and multipath 

propagation delays, respectively, WQ is the carrier angular frequency, and n(t) is additive white 

Gaussian noise (AWGN). Both phases are measured relative to the phase of the transmitter at the 

time of transmission, which is assumed to be zero without loss of generality. 

3.3 Complex Cepstrum Adaptive. Filter 

3.3.1 Overview. A block diagram of the CCAF is shown in Figure 10. This unit uses 

the complex cepstrum in parallel with the power cepstrum as described in Chapter II. The system 

calculates the power cepstrum for detection of the peaks associated with the multipath signal. The 
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peak delays are then provided to the adaptive weighted comb filter which removes the corresponding- 

peaks from the complex cepstrum. An inverse complex cepstrum is calculated, yielding a replica of 

the direct path signal. The fidelity of the direct path replica depends on several factors including 

signal-to-noise ratio and aliasing effects. These factors will be discussed in the sections that follow. 

It is proposed that the CCAF be inserted into a typical GPS receiver code tracking loop as shown 

by the dotted box in Figure 10. By placing the CCAF in this position, multipath interference can 

be removed from the composite signal prior to code tracking, thus eliminating code tracking error 

caused by the multipath. 

Zero 
Pad 

Power 
Cepstrum 

Peak 
Detector 

Complex 
Cepstrum 

Comb 
Filter 

Inverse 
Cepstrum 

NCDLL 

Complex Cepstrum Adaptive Filter 

Figure 10      A Code Tracking Loop Employing the Complex Cepstrum Adaptive Filter 

3.3.2 Zero Padding. The zero padding block in Figure 10 inputs a block of data (taken 

to be one period of code for this work), and appends zeros to the end of the data record. This 

has two effects on the data processing. First, if the correct number of zeros are appended, the 

record length can be increased to be a power of two. This allows computation of the discrete 

Fourier transform (DFT) and the inverse DFT using faster computation algorithms, thus speeding 

up processing time. Second, as discussed in (3), appending zeros increases the frequency domain 

resolution. This increase reduces or eliminates cepstral (pseudo-time) domain aliasing, and reduces 

phase unwrapping errors. 
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3.3.3 Cepstra Calculations. Following zero padding, the power and complex cepstra of 

the data record are calculated. As mentioned earlier, both cepstra are calculated because it is 

often easier to detect multipath peaks using the power cepstrum rather than the complex cepstrum 

(3); however, the complex cepstrum must be used for time domain signal reconstruction following 

filtering. These calculations are performed using the definitions given in Equations 8 and 10. The 

calculations are covered extensively in Chapter II, and will not be discussed again here. 

3.3.4 Pzak Detection. In order to remove the reflection from the complex cepstrum, the 

first peak associated with the reflected signal must be detected. A magnitude plot of a typical 

power cepstrum for a GPS multipath signal is shown in Figure 11. The first delta function in the 

power cepstrum corresponds to the delay of the reflected signal, assuming a single reflection, and 

provides all the information necessary to filter out the reflection. The peak detector, of Figure 10, 

performs the function of determining the delay associated with the first peak. In Chapter II, it is 

shown that the power and complex cepstra contain delta functions at the multipath delay and all 

integer multiples of the delay. Therefore, the peak detector must be able to detect the first delta 

function for the single reflection case. To perform this task, the peak detector compares the power 

cepstrum value at each point to the two adjacent points. A point which has a magnitude exceeding 

those of the two adjacent points by more than some user set threshold is declared a multipath 

peak. In Equation 20, it is seen that the first delta function in the power cepstrum will have 

magnitude |oo/ (l + a%) \ < 1/2 (see Equation 16) and each subsequent delta will have magnitude 

[ao/ (l + öQ)] where k is an integer corresponding to the harmonic number of the delta function 

(ie. k = 1, 2, 3 ...). Therefore, the first peak will have a greater magnitude than each subsequent 

peak. The peak detector searches for the first peak present and declares the corresponding delay 

to be that of the reflection. As shown in Figure 11, the power cepstrum will contain peaks at the 

chip interval as well as the multipath delay. However, as discussed in the next section, the adaptive 
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weighted comb filter is designed not to filter these peaks. Therefore, the detector is designed not 

to detect a delay of exactly 1.0 chip. 
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Figure 11      Typical Power Cepstrum Magnitude for a GPS Multipath Composite Signal 

3.3.5 Adaptive Weighted Comb Filter. The adaptive weighted comb filter performs the 

function of removing the reflected signal from the complex cepstrum. Following detection by the 

peak detector, the delay of the reflection is provided to the adaptive weighted comb filter. This 

filter then replaces the complex cepstrum data point at the detected delay with the average of the 

previous point and the next point. Additionally, the comb filter replaces the data points at each 

integer multiple of the multipath delay with the average of the two adjacent points. In this manner 

the delta functions in the complex cepstrum, due to the reflected signal, are replaced by linearly 

interpolated estimates of the complex cepstrum values for the direct path signal. A portion of a 

typical filtered and unfiltered complex cepstrum is shown in Figure 12. Observe in Figure 12 that 

the complex cepstrum contains delta functions at the chip interval, as well as those due to the 
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multipath signal. Simulations show that these peaks are important for proper reconstruction of 

the direct path estimate. Therefore, the adaptive weighted comb filter is designed not to filter the 

complex cepstrum at the chip interval. 

Filtered and Unfiltercd Complex Cepstrum 

Oh              Unfiltered 
        Filtered 

-0.5 

S <: 

-1.5 
1.5 

Quefrency (chips) 

Figure 12      Typical Filtered and Unfiltered Complex Cepstrum for a GPS Multipath Composite 
Signal 

To better understand the adaptive weighted comb filter, consider a complex cepstrum data 

sequence, x(nT), where n is the sample number and T is the sampling interval. Assume that x(nT) 

is N samples long, and contains an initial multipath peak in the Ck element. Then, £(nT) could be 

written as follows: 

x(nT) - [ ci c2 ... Cjt_i ck ck+1 ... c2k-i c2k c2k+i ■■■ cN ] 

where Cj is the ith data point in the complex cepstrum. 
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Next, a filter vector W, also of length N, is defined as follows: 

W 1   1 1   °k~1  + Cfc+1   i i   c2fc-l   + C2fc+i 

2cfc '" 2c2fc 

where W consists of ones for all elements except those corresponding to the multipath peaks in 

x(nT) (i. e. the elements k, 2k, 3k, etc.). It is easily shown that if the vectors x(nT) and W 

are multiplied in a point-wise fashion, the result is a filtered complex cepstrum vector with the 

multipath reflections removed. 

3.3.6 Inverse Complex Cepstrum. After removing the multipath reflection, a time domain 

estimate of the direct path signal is recovered through an inverse complex cepstrum operation. The 

steps of this calculation are shown in Figure 5 of Chapter II. The process is simply the inverse of the 

complex cepstrum process. First, a forward Fourier transform is calculated, followed by a complex 

exponentiation (with phase wrapping), and finally an inverse Fourier transform is calculated yielding 

a time domain signal. The phase wrapping procedure is the inverse of the chosen phase unwrapping 

procedure used in the complex cepstrum calculation, as discussed in Section 2.2.2. 

3.4    The Non-Coherent Delay Lock Loop 

Tracking of the GPS spreading code is a primary function of the GPS receiver. This tracking 

provides a method of determining the line-of-sight distance from the receiver to the satellite, and 

also acts to despread the received signal. Code tracking is typically accomplished using a delay 

lock loop (DLL), frequently called an early-late gate. The delay lock loop may operate in either 

a coherent or non-coherent fashion. Since coherent DLLs require an estimate of carrier phase, 

considerable interaction between the carrier and code tracking loops is necessary for a coherent 

DLL to function properly. Additionally, cycle slips in the carrier tracking loop can cause a loss of 

code tracking lock when a coherent DLL is used. For these reasons, the coherent DLL is considered 
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somewhat fragile and typically not used for GPS applications (9).   Therefore, the non-coherent 

delay lock loop will be presented here.   For analysis purposes, a block diagram of a simplified 
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Figure 13      The Non-Coherent Delay Lock Loop 

NCDLL is shown in Figure 13. In this DLL, the received signal is cross correlated with early and 

late versions of the locally generated spreading code replica. The results of these correlations are 

then bandpass filtered, squared, lowpass filtered, and subtracted to form the discriminator output 

for the loop. To close the tracking loop, the discriminator output is filtered via a loop filter, then 

input to a voltage controlled clock which triggers the PN sequence generator producing the on time 

code replica. 

3.4.O.I    Signal Component NCDLL Analysis.       The following analysis patterns the 

development of (10). Consider a DS/SS signal 

(i) = V2Pc(t - Td) cos [w0t + 6d(t - rrf) + 4>] + n(t) (45) 
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where r(t) is the received signal, P is the received power, rd is the signal propagation delay, 

c(t - Td) is the delayed spreading code, w0 is the carrier radian frequency, 0d(t - TO) is the delayed 

data signal, <f> is an arbitrary carrier phase angle, and n(t) is bandlimited zero mean white Gaussian 

noise, introduced by the channel. 

Assuming a two sided noise power spectral density of N0/2 W/Hz, the noise can be represented 

in terms of its in-phase, n/(t), and quadrature, nq(t), components. 

n(t) = y/2ni(t) cos(u)0t) - y/2nQ(t) sin(w0*) (46) 

After power division, the received signal in each correlator arm becomes 

r'(t) = VPc(t - Trf) cos [u>0t + 0d(t - Td) + <!>}+ ni(t) cos(w0*) - nQ{t) sin(w0*) (47) 

This signal is subsequently correlated with early and late replicas of the spreading code. Assuming 

that the NCDLL operates at a fixed intermediate frequency, the early and late locally generated 

signals are given by Equations 48 

aE(t)    =    y/Klc U-td+ -Tcj cos [(w0 - uiF)t + <t>'] (48) 

aL(t)    =    VK[C (t - rd - —Tc\ cos [(wo - wIF)t + 4>'] 

where as and aj, are the early and late correlation signals, respectively, K\ is an RF-to-IF conversion 

loss constant, td is the loop's estimate of the propagation delay, A is the correlator spacing in chips, 

and uiip is an intermediate frequency. 
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The early correlator output, is 

yB(t)    =    r'(t)-aE(t) (49) 

=      VPc(t - rd) cos [w0t + 6d(t - Td) + <j>\ + ni(t) cos(u0t) - nQ(t) sin(w0t)   • 

'K'lC (t-Td+  -TA  COS [(WO  - UJF)t + <j)'} 

Using appropriate trigonometric identities, the above equation may be simplified by noting that 

ys {t) is filtered by a bandpass filter centered at the intermediate frequency to obtain zF (*)• There- 

fore, only the difference terms of the simplification need be considered. Thus, the early correlator 

output, ZE (t), becomes 

zE(t)    =    y/PKlc(t - Td) c(t -Td + -Tc) cos (uIFt + 0d(t - Td) + 4> - <t>') (50) 

+ y/K^c(t-fd + —Tc) \m{t) cos(uIFt - 4?) - nq(t) sin (wIFt - <f>')] 

Using a similar process, the late correlator signal, zi(t), may be expressed as 

ZL(t)      =      y/PKlc(t - Td) C(t -Td- -Tc) COS {üJIFt + ed(t - Td)   +  <f>  -   (j)' ) 

+ y/K[c(t-Td - —Tc) \ni(t) cos(wIFt - $) - nq(t) sm(viFt - <p')] 

(51) 

From the previous two equations, it seen that the signals zF (t) and zi (t) are composed of 

the desired signal and the noise terms, including code self noise1. If the spread spectrum processing 

gain is sufficiently high (typically greater than 10), the self noise term can be neglected. According 

to (10), "The amount of performance improvement that is achieved through the use of spread 

spectrum is defined as the processing gain of the spread spectrum system." The processing gain is 

1Self noise is defined as sn = E [c(t + r) c'(l. + f)] - c(t + r) c'(i + f) where E is the expected value, c(t + r) 
is the spreading code, c'(t + f) is the derivative of the spreading code with respect to time, T is the propagation 
delay, and f is the NCDLL estimate of the propagation delay. Self noise is a broadband noise-like waveform (9). 
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typically defined to be the spread spectrum bandwidth divided by the data bandwidth. Using this 

definition, the processing gain for GPS C/A code can be calculated as follows 

Gn 
T_ 

Tr. 
(52) 

50 
1 

1.023 X 106 

20460 

where T is the data bit time, and Tc is the chip width, both in seconds. 

Prom Equation 52, it is seen that the processing gain for GPS C/A code is indeed high, and 

therefore the code self noise component can be neglected. Ignoring the self noise component and 

the AWGN, the noise-free components of ZE and zj, are 

zaB (*)    =    VKPc(t - Td)c(t - fd + Tc) cos[u)IFt + 0d(t - Td) + <j> - </>'} (53) 

zsL (t)    =    VKPc(t - Td)c(t - Td - Tc) cos[(jIFt + 6d(t - Td) + (f> - (/>'} 

where the "s" notation is used to distinguish from the more complete signals of Equations 50 and 

51. 

The dc component of the spreading code multiplication, by definition, is the code autocorre- 

lation, Rc(r), evaluated at r = rd — fd + (A/2) Tc in the case of zg, and r — Td — fd — (A/2) Tc 

in the case of ZL', Td is the propagation delay, fd is an estimate of the propagation delay, and A is 

the correlator spacing in chips. Defining the NCDLL tracking error as 6 = (rd — fd) jTCl 

zsE{t)    =    VKPRc 

zaL(t)  =  VKPR.C 

COS [uIFt + ed{t - Td) + 4> - </>'] 

cos [uIFt + 6d(t - Td) + 4> - 4>'] 

(54) 
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Assuming the bandpass niters are designed to pass IF signals with no distortion of the messages, 

the input to the square-law envelope detectors is given by Equation 54 above. Also, assuming 

that the low pass filters completely block signal components at 2w/jr, the signal component of the 

NCDLL discriminator can be shown to be (10) 

e(t,S)    =    [x\{t)  - x%(t)] 

^PiR* {*[('-!)^*[('+fH} 
(55) 

Defining the NCDLL "S-Curve," SA(6), as 

SA(6) = R2
C -t) Rl S+^)TC (56) 

which represents the loop's tracking curve. The expected loop discriminator output is consequently 

e(t,6) = -KiPS^iS) (57) 

where 6 is the NCDLL tracking error. 

Recall that Equation 4 is the autocorrelation function for a maximal length PRN sequence. 

Upon substitution of Equation 4 into Equation 56, and after some simplification (10), the S-Curve 

42 



is given as 

SA(S) 

0 for -N + 1 + f < 6 < - (l + f) 

^-[l+(l+£)(* + f)]2 for-(l+f)  <«<-f 

£"  [l-(l+^)(^ + f)]2 for-f <«<-(l-f) 

2(1 + i) [2 - (1 + i) A] 5 for-(l - f) < 8 <  (l - f) 

[l+(l + ^)(^-f)]2-^ for(l-f)<«5<f 

[1 - (1 + ^) (.5- f)]2 - ^ forf <*<l+f 

0 'forl+f<«<JV-l-f 

(58) 

for A > 1.0, or 

SA(S) = I 

0 for -N + 1 + f < 

2    f0r-(l + f)  <«5<  (f 

for-f < 6 < T 

fr - [1 + (« + f) (1 + *)] 

(1 + i) A [1 + (1 + A 

+ + £) [2- (1+ä) V ^-2   .. 

2(1 + ^) A [1- (l+&)«] forf <6<_    _ _ 

[l-(l+£)(*-f)]2-^ for(l-f)  <*<(l + f 

0 for 1 + f < «5 < iV - 1 

6]     for - (f - 1)  < S < - 

2(1 + £) [2-(l+i) A]6 

0 

*<-(l+f 

f -1) 

A 

for A < 1.0. 

(59) 

Recall from Chapter I that the autocorrelation function of a periodic maximal length spread- 

ing code of period N is also periodic with period N. Therefore, the S-Curve defined above is 

periodic with period N. Equations 58 and 59 give principal function values which repeat every N 

chips. Plots of Equations 58 and 59 are shown in Figures 14 and 15, respectively. 

It is important to note, as evident in Figures 14 and 15, that the slope of the S-curve near 

S = 0 is dependent upon the correlator spacing, A. This slope is zero for a correlator spacing of 
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Figure 14      The Non-Coherent Delay Lock Loop S-Curve for A = 1 Chip 

2 chips; therefore, a correlator spacing of less than 2 chips is always used. Additionally, note from 

Figures 14 and 15 that the size of linear tracking region about 6 = 0 decreases with decreasing A. 

A larger linear tracking region aids in code acquisition (prior to code lock and tracking) because 

the tracking loop is able to tolerate larger tracking errors while establishing code lock. For this 

reason, many receivers employ NCDLL's with variable correlator spacing. During code acquisition, 

the correlator spacing is set at more than 1 chip. Then, once code lock is achieved, the correlator 

spacing is decreased to some smaller value (usually 1 chip for a typical receiver or 0.1 chip for a 

narrow correlator receiver). 

3.4.0.2 Additive White Gaussian Noise NCDLL Analysis. Having determined the 

signal component of the discriminator output, next consider the component due to noise. Recall 

that the noise components at the correlator outputs were given in Equations 50 and 51. Referring 

44 



S-Curve 

to     0 

Figure 15      The Non-Coherent Delay Lock Loop S-Curve for A = 0.5 Chip 

back to those equations, define the noise as follows. 

n>E,in{t) ^c[t-fd+^Tc)n\t) 

nL,in(t) = /fc (t-rd- |TC) n'(t) 

(60) 

(61) 

where the "E" and "L" subscripts denote the early and late correlator arms, respectively, the "in" 

subscript denotes noise at the NCDLL input, and 

%'(t) = V^n^t) cos{cjIFt - (j)') - V2nQ(t) sin (wIFt - <f>') (62) 

Next, to find the noise component at the bandpass filter output, the noise power spectral density at 

the input is needed. Let S„i and Sc be the power spectral densities of the noise process, n'(t), and 

the spreading code, c(t), respectively, and * represent the convolution operator. Since the noise 

and the spreading code are assumed to be independent, the power spectral densities of nE,in(t) and 
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nL,in(t) are found by convolving the spreading code power spectral density with that of n'(t) 

Snj,ln M = t S* (") * Sc (w)   j = E,L (63) 

where j designates either the early or late arm of the NCDLL. 

Since the spreading code has a large bandwidth, the effect of the convolution of Equation 63 

is to spread the noise power over a bandwidth wider .than the original. The bandpass filter has 

a smaller bandwidth with respect to the spreading code and only passes a small fraction of the 

(spread) noise power spectrum. Consequently, the power spectrum in Equation 63 only needs to 

be evaluated at frequencies near the intermediate frequency, (Vjp (10). Thus, Equation 63 can be 

approximated by 

Sni,„»    «    Sn„n(o>iF) (64) 

^ (f-)     \(j ± uIF\ < -KBN 

0 otherwise 

where BN is the one sided bandwidth of the noise process, Ki/2 accounts for the RF-IF conversion 

loss and the power division, and N0/2 is the power spectral density magnitude of n (t), for all w. 

With the approximate noise power spectrum given in Equation 64, the output of the bandpass 

filters can be calculated using the relationship 

Smt(u) = Sin(u,)\H(<j)\2 (65) 

where Sout(u)) and Sin(uj) are the power spectra at the output and input, respectively, of a filter with 

transfer function H(UJ).  Assuming that the bandpass filter is an ideal filter with noise bandwidth 
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BN yields the following power spectrum for the noise at the filter output. 

Sn^M    =    f (f1) 1112    for    \w±wIF\ < *BN 

=    \ Ki No for    \w ± cvIF\ < 7r5jv 

(66) 

With the noise at the bandpass filter output thus characterized, the discriminator output due to 

the signal and the noise can be calculated as 

e(t,S) = \zaL{t) +   znL(t)}2
lp - \zsE{t) +   znE(t)] ip (67) 

where ZSL (t) and ZSE (t) are the signal components at the output of the late and early arm bandpass 

filters, respectively, znL and znE are the corresponding noise components, and the Ip denotes the 

lowpass component of the signals. 

It can be shown (10) that the discriminator output of Equation 67 is equivalently 

e(t,6) 
1 

K!P 1R, R„ S+^)TC 

n'LbAt) - R\ S+^)TC + V2K1P{R2
C[(S- ^JTt 

x cos [<t> - 4>' + ed(t - Td)\ 

+ ^2K^\R\ [(« - I) Tc] n'LbpQ(t) - Rl [(« + |) Tc 

x sin \<f> - 4>' + 9d(t - Td)} 

[nLbpi]2 + [nLbpo\    - [nEbpi]    ~ [nEbpQ] 

nk„/(*) 

lEbpQ (*) 

(68) 

where nEbpi, nEbpQ, nLbpi, and riLbpQ are the in-phase and quadrature components of the noise 

signals in the early and late correlator arms, respectively. 
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If the noise components of the discriminator output are denoted by ne(t), the discriminator 

of Equation 68 can be written more succinctly as 

e(t,6) = -ÜTIPSA(Ä) + »«(*) (69) 

where 5A (<5) is the loop S-Curve defined in Equation 56 and 8 was previously defined to be the 

normalized tracking error, 8 = (T^ — f^) /Tc. 

Assuming no data modulation is present, the NCDLL can be represented (10) by the equiv- 

alent model shown in Figure 16. Although it is unrealistic to assume no data modulation exists, 

this assumption leads to a simpler model. Additionally, this assumption leads to a worst case 

performance model in the sense that this model will have the maximum possible noise component 

at the discriminator output. Therefore, this model is valuable for analyzing the performance of the 

NCDLL. 

ne(t) 

Td«) 

DA(«) 
e(t,S) 

Loop Filter 

3"c 

vco 
v(t) 

Figure 16      The Non-Coherent Delay Lock Loop Non-Linear Model 

In Figure 16, the voltage controlled oscillator (VCO) is described by the following input/output 

relationship. 

= gc  [' v(X)d\ (70) 
./o 

Mt) 



where gc is the VCO gain with units of Hz/V. Noting from Figure 16 that v(X) is the loop filter 

output and that the loop filter input is the discriminator, Equation 70 can be re-written as 

Td(t) 9c e(a,S)f(X - a) da 
Jo     J-ca 

dX (71) 

where v(X) from Equation 70 has simply been replaced by the convolution of the discriminator 

output, e(t, 6), and the loop filter impulse response, f(t). 

Substituting e(t, 6) from Equation 69 yields 

*«*(*) 
t     /-A 17 -K1PSA (6(a)) + ne(a) /(A — a)dadX (72) 

Equation 72 can be linearized if the tracking error, 6, is small.  Under this assumption, the 

non-linear S-curve can be replaced with the following linear approximation (10) 

SA(S) 1+N 
1 -    1 + 

TV 
(73) 

where Equation 73 comes from Equation 56 evaluated in the region about 6 — 0. 

Replacing the non-linear element 5A (6) in Figure 16 with the approximation of Equation 

73 yields the linear model of Figure 17. In this model, the S-curve element, SA(6), and the gain 

element, ^KiP, from Figure 16 are replaced by a single equivalent gain element, Ka, where 

Kd = 4    1 + 
N 

1 - 
1\ A 

1 + N)J 
\*P (74) 
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Figure 17      The Non-Coherent Delay Lock Loop Linear Model 

Let F(s) denote the Laplace transform of f(t). Using the linear model of Figure 17, the closed 

loop transfer function, H(s), for the NCDLL is 

H(s) 
KdgcF(s) Td(s) 

s + KdgcF(s)       rd(s) 
(75) 

Additionally, the Laplace transform of the tracking error can be shown (10) to be 

6(s) = 
Td(S) 

s + KdgcF(s) 
(76) 

Finally, the root-mean-square (RMS) tracking jitter for a loop with two-sided noise bandwidth of 

WL is given by (10) 

* = T2iWL <77) 

where rj/2 is the discriminator noise component power spectral density, approximately given as (10) 

|=  l-{KlN0fBN+l-KlN0P [RI S-^T. + R2
C 6 + ±)Tc (78) 

50 



3.5    Conclusion 

This chapter describes the complex cepstrura adaptive filter. It begins with the input signal 

model, which consists of a direct path component, and a delayed and attenuated reflection of 

the direct path. Next, each component of the CCAF is described. Detail is given concerning 

the function and design of the CCAF. Finally, an analysis of the non-coherent delay lock loop is 

presented. The non-linear and linear models of the NCDLL are given. The chapter concludes by 

presenting the NCDLL transfer function, tracking error, and RMS tracking jitter. 
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IV.   Computer Simulations and Results 

4-1    Overview 

This chapter presents computer simulations of the theory presented in the previous chapters. 

The purpose of these simulations is to verify the functionality of the complex cepstrum adaptive 

filter for multipath mitigation, to characterize the noise performance of the CCAF, and to compare 

the CCAF performance to that of a narrow correlator non-coherent delay lock loop. Two series of 

simulations are run as follow: 

1. CCAF noise performance characterization. Simulations are run with constant multipath 

parameters and various SNR levels to determine the noise sensitivity of the CCAF. 

2. CCAF performance comparison with a narrow correlator NCDLL. These simulations 

are run using the CCAF in conjunction with a standard non-coherent delay lock loop, 

employing a 1.0 chip correlator spacing. The performance of the CCAF is compared 

with that of a narrow correlator NCDLL employing a 0.1 chip correlator spacing. 

All simulations are written for Matlab version 5 and run on the Sun workstations available 

at the Air Force Institute of Technology or on a stand alone personal computer. Simulation results 

are analyzed using Matlab.   All Matlab function files used for the simulations are included in 

Appendix A. 

4-2    Simulation Parameters 

For all simulations, an attempt is made to make all parameters consistent with actual GPS 

parameters. In cases where actual GPS receiver parameters are unknown, simulation parameters 

are chosen to be values which could reasonably be expected for a GPS receiver. Additionally, when 

some freedom of choice is available, parameters are chosen to satisfy certain desirable qualities to 
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enhance simulations (for instance, decreased run times).  The subsections that follow discuss the 

simulation parameters chosen. 

4.2.1 DS/SS Spreading Code. Actual GPS C/A spreading code is used for these simula- 

tions. The code is generated using the GPS toolbox for Matlab, available from the Electrical and 

Computer Engineering Department at AFIT. The code period is 1023 chips long (approximately 1 

ms). Each chip is divided into 100 samples to achieve a resolution of 0.01 chips. Thus, the sampling 

frequency for all simulations is 102.3 MHz. 

4.2.2 Carrier and Direct Path Signals. Since actual GPS receivers typically operate at an 

intermediate frequency, the "carrier" frequency for all simulations is an appropriate intermediate 

frequency. In order to keep vector sizes manageable, thus reducing run times, the intermediate 

frequency for these simulations is chosen to be 5 times the chipping rate, or 5.115 MHz. For 

convenience, the carrier is chosen to have a power of 1/2 W at the receiver. Also for convenience, the 

carrier phase, 60, and direct path propagation delay, Td, are both chosen to equal zero. Finally, the 

direct path attenuation, a0 is chosen to equal 1. The choices of direct path phase, propagation delay, 

and attenuation factor have the effect of normalizing the multipath parameters to the direct path 

values. Thus, these simulations could represent any actual values for these direct path parameters 

if the multipath parameters are scaled by appropriate values. 

4.2.3 Multipath Parameters. As mentioned in the previous paragraph, the direct path 

parameters are chosen such that the multipath signal will be normalized to the direct path. As such, 

the multipath attenuation factor, ax is chosen to vary between zero and one. For most simulations, 

0.2 < ai < 0.8 is used. Additionally, the multipath delay, rm is varied between approximately 

10 nanosecond and 1.5 microseconds. These delays correspond to a normalized delay (in chips) of 

0.1 < a < 1.5. 
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4.2.4 NCDLL Design. The non-coherent delay lock loop used for these simulations is 

an open-loop design. This open-loop design uses the NCDLL S-curve, discussed in Chapter III, to 

characterize the tracking bias present after processing by the CCAF. The CCAF tracking bias, using 

an NCDLL with standard 1 chip correlator spacing is compared with the tracking bias of a narrow 

correlator NCDLL, with 0.1 chip spacing, which does not employ CCAF processing. The open loop 

design is chosen because tracking bias is the primary metric for comparing one multipath mitigation 

technique to another. Additionally, since this thesis focuses on a signal processing technique used 

prior to tracking in the NCDLL, and not on processing techniques within the NCDLL itself, the 

performance of the NCDLL is not in question for this work. Rather, the amount of improvement 

provided by the pre-processing of the CCAF is the parameter to be studied. Therefore, closed-loop 

analysis of the NCDLL, to study parameters such as tracking jitter, is not important for this work. 

4-2.5 Simulation Parameters Summary. The simulation parameters from the previous 

subsections are summarized below. 

• Spreading Code: Actual GPS C/A code 

• Spreading Code Period: 1023 chips 

• Sampling Frequency: 102.3 MHz (100 samples/chip) 

• Carrier Intermediate Frequency: 5.115 MHz (5 times chipping rate) 

• Carrier Received Power: 1/2 W 

• Direct Path Phase, 6Q: 0 rad 

• Direct Path Propagation Delay, r^: 0 sec 

• Direct Path Attenuation Factor, «0: 1 

• Multipath Reflection Attenuation Factor, ai: 0.2 < fti < 0.8 

• Multipath Reflection Normalized Delay, a: 0.1 < a < 1.5 chips 
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• NCDLL Correlator Standard Spacing: 1 chip 

• NCDLL Correlator Narrow Spacing: 0.1 chip 

4-3    Signal-to-Noise Ratio Analysis 

Signal-to-noise ratio is a fundamental concern for all communication systems. SNRs must be 

sufficiently high to allow receivers to perform the necessary processing to extract the information 

from the signal. For GPS C/A code, the typical SNR is -14.9 dB at the spectral peak (9). For 

most communication systems, a negative SNR would prevent communication; however, for spread 

spectrum systems, such as GPS, the processing gain allows for communication even when negative 

SNRs exist. In this research, though, it is found that cepstral processing requires extremely high 

SNR prior to any processing gain being achieved. 

20 

15 

10 

Noisy and Ideal Complex Cepstra 

=ä   o- 

-5- 

-10 

-15 

-20 

SNR = 100 dB 

tm = 0.5 

am = 0.5 

Noisy Signal Complex Cepstrum 
Ideal Signal Complex Cepstrum 

M"       i,   i I" 

«■ U—■   i 

'/1'- i. 

n 
ii 

ii 

» 

y7>iVvV-y,,J' 

0.5 1.5 
Quefiency (chips) 

Figure 18      Complex Cepstrum of Noisy and Ideal Signal 



For the signal model presented in Chapter III, simulation results show that the SNR must be 

approximately 225 dB or higher to achieve good signal reconstruction for the direct path estimate. 

Figure 18 demonstrates the effects of AWGN on the complex cepstrum. In Figure 18 the complex 

cepstrum of a signal in the absence of AWGN is compared to that for a signal in AWGN with 

an SNR of 100 dB. It is seen that the noise causes the complex cepstrum to appear very noisy 

even with such a high input SNR. This random noise in the complex cepstrum causes errors in the 

multipath filtering process which lead to errors in the recovered signal. Due to the randomness of 

the data points in the complex cepstrum, the filtered values, which are the average of the adjacent 

points, also have a certain randomness. This has the effect of causing multipath-like amplitude 

changes in the recovered signal. Plots demonstrating this effect are shown in Figures 19 and 20 

. These amplitude changes greatly degrade or even prevent tracking of the received signal by the 

code tracking loop. For this reason, the complex cepstrum is found to be applicable for code loop 

multipath mitigation only under unreasonably high SNR conditions. 
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Figure 19      Recovered Signal from a Noisy Complex Cepstrum Process 
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Figure 20      Recovered Signal from a Noisy Complex Cepstrum Process (Expanded Time Scale) 

The SNR threshold effect is demonstrated in Figure 21. In this figure, the mean squared 

amplitude error of the recovered signal is plotted on a semilog scale against the input SNR. Figure 21 

shows an exponential increase in mean squared amplitude error for SNRs which are below 160 dB. In 

this region, the recovered signal is severely degraded, preventing tracking by the NCDLL. However, 

for good tracking performance the SNR threshold is somewhere near 225 dB, considerably higher 

than the 160 dB threshold. This is because even very small differences between the recovered signal 

and the actual direct path signal lead to poor tracking performance by the NCDLL, as compared 

to a NCDLL tracking the multipath signal. Figure 21 shows that the mean squared amplitude 

error begins to increase for SNR levels below approximately 225 dB. Although the MSE is still 

fairly small in the region around 225 dB SNR, it, is large enough that the cepstrum processing leads 

to tracking biases which are larger than those for the same non-coherent delay lock loop tracking 
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the multipath signal without cepstrum processing. For this reason, the input SNR must be above 

approximately 225 dB to achieve good multipath mitigation using cepstrum processing. 

Mean Square Error vs. SNR for am = 0.5, tm = 0.5 

150 160 170 180 190 200 210 220 230 240 250 
Signal to Noise Ratio (dB) 

Figure 21      SNR Threshold Effect 

To improve noise performance, an input filter would typically be used. However, in this case, 

filtering the input signal causes severe degradation of the recovered signal. To understand why 

this is so, refer back to the basic signal model of Equations 29 and 30. Recall that, using these 

signal models, and following the derivation for calculating the complex and power cepstra, these 

cepstra are actually time domain deconvolution tools. If the signal is filtered prior to calculating 

the cepstra, the model of Equations 29 and 30 no longer applies. The new model must account for 

the fact that the signal has been convolved with the time domain impulse response of the filter. 

This second convolution (filtering), changes the complex cepstrum, and prevents proper multipath 

mitigation using the techniques described in Chapters II and III. Figure 22 shows a plot of the 

complex cepstrum of a multipath signal calculated before and after bandpass filtering the time 

domain signal to demonstrate this point. The signal in Figure 22 has no noise added so that the 

effect is due solely to the input filter. 
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Figure 22      Bandpass Filtering Effect on the Complex Cepstrum 

4-4    Cepstrum Processing Analysis 

The cepstrum processing for multipath mitigation consists of two steps, as described in Chap- 

ter III. First, the power cepstrum is used to detect the multipath signal. Then, the complex cep- 

strum is used to filter out the multipath. Although both these steps are sensitive to the input 

SNR, the minimum SNR is set using the complex cepstrum. The power cepstrum is significantly 

less sensitive to noise effects than the complex cepstrum. This observation will be discussed more 

in the section that follows. 

4-4-1 Multipath Detector. As described in Chapter III, the power cepstrum magnitude 

can be used to detect the multipath delay by searching for the first delta funtion in the power 

cepstrum. Simulation shows this process is relatively immune to noise effects assuming the input 

SNR is about 30 dB or higher, and the threshold for declaring a multipath peak is set appropriately. 

Magnitude plots of the power cepstrum for typical GPS multipath signals are shown in Figures 23 

and 24. 
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Typical Power Cepstrum Magnitude Plot 
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Figure 23      Power Cepstrum for a GPS Multipath Signal, SNR  =   30 dB, Multipath Amplitude 
=  0.5, Multipath Delay  =  0.5 

Analysis of Figures 23 and 24 reveals two important observations. First, the power cepstrum 

of a GPS multipath signal contains "rolling hill" type peaks at low quefrencies. These rolling hill 

peaks, although not caused by multipath, sometimes cause the multipath delay to be incorrectly 

detected. This effect will be observed later. The second observation is that, as the SNR decreases, 

the magnitude of the delta functions in the power cepstrum decreases. This decrease drives the 

detection threshold. As the delta function peaks become smaller, it becomes more difficult to 

accurately detect the multipath peaks. For the simple detector used in this work, the detection 

SNR threshold is approximately 30 dB SNR. 

To demonstrate that cepstral processing can be used for multipath mitigation, a series of 

simulations tests the cepstrum system of Chapter III over a variety of multipath scenarios, for 

SNRs which are above the threshold mentioned earlier in this chapter. For these simulations, the 

multipath delay is varied from 0.1 chip to 1.5 chips, for multipath amplitudes equal to 0.2, 0.4, 0.6, 

and 0.8, relative to the direct path amplitude. For each pair of multipath delays and amplitudes, 
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Typical Power Cepstrum Magnitude Plot 
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Figure 24      Power Cepstrum for a GPS Multipath Signal, SNR =  250 dB, Multipath Amplitude 
=   0.5, Multipath Delay  =  0.5 

10 trials are run adding independent white Gaussian noise to the input signal. Plots of the detected 

multipath delay (dots) versus the actual multipath delay (line) are shown in Figures 25 through 36. 

Four observations should be made concerning these plots. First, the detector works well over a wide 

variety of multipath scenarios. Three points are observed when the multipath detector performance 

is not ideal, corresponding to delays of 0.1 chip, 0.3 chip, and 1.0 chip. The first two problem spots 

are due to the rolling hill peaks in the power cepstrum at these low quefrencies. The problem at 

1.0 chip is actually the way the detector is designed. As discussed in Chapter III, the power and 

complex cepstrum both contain natural peaks at the chip interval. Simulations demonstrated that 

these peaks are important for signal reconstruction, and should not be filtered out. Therefore, 

since the adaptive weighted comb filter is designed not to filter at the chip interval, the multipath 

detector is designed not to detect multipath delays of 1.0 chip. This design has the weakness that 

when a multipath reflection exists at exactly 1.0 chip delay, this cepstrum process cannot remove 

the multipath. This weakness will be demonstrated in the next section. Finally, when the multipath 
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reflection delay is incorrectly detected, the detected delay is always 2.0 chips. This is due to the 

first harmonic of the natural peak at 1.0 chip delay being detected as the multipath signal, and is 

due to the fact that the detector is designed with the assumption that a multipath reflection exists 

at some delay. 
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Figure 25      Multipath Detector Test Results for SNR = 1000 dB and Multipath Amplitude = 0.2 
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Figure 26      Multipath Detector Test Results for SNR = 1000 dB and Multipath Amplitude = 0.4 
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Figure 27      Multipath Detector Test Results for SNR = 1000 dB and Multipath Amplitude = 0.6 
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Figure 28      Multipath Detector Test Results for SNR = 1000 dB and Multipath Amplitude = 0.8 
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Figure 29      Multipath Detector Test Results for SNR = 250 dB and Multipath Amplitude = 0.2 
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Figure 30      Multipath Detector Test Results for SNR = 250 dB and Multipath Amplitude = 0.4 
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Figure 31      Multipath Detector Test Results for SNR = 250 dB and Multipath Amplitude = 0.6 

65 



Detected vs. Actual Multipath Delay 

0.6 0.8 1 
Actual Multipath Delay 

Figure 32      Multipath Detector Test Results for SNR = 250 dB and Multipath Amplitude = 0.8 
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Figure 33      Multipath Detector Test Results for SNR = 223 dB and Multipath Amplitude = 0.2 
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Detected vs. Actual Multipath Delay 
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Figure 34      Multipath Detector Test Results for SNR = 223 dB and Multipath Amplitude = 0.4 
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Figure 35      Multipath Detector Test Results for SNR = 223 dB and Multipath Amplitude = 0.6 
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Figure 36      Multipath Detector Test Results for SNR = 223 dB and Multipath Amplitude = 0.8 
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4-4-2 Multipath Mitigation. Following multipath detection, the complex cepstrum and the 

adaptive weighted comb filter are used to remove the reflected signal in the cepstral domain. Then, 

a direct path estimate is obtained through an inverse complex cepstrum process. To determine the 

effectiveness of the complex cepstrum filtering process, two figures of merit are used. First, the 

mean squared amplitude error between the direct path estimate, and the actual direct path signal 

is calculated from the following formula 

w-i 
MSE=NH [*(«)-*(»)]2 (79) 

n = 0 

where x(n) and x(n) are the nth data points of the direct path signal and the direct path estimate, 

respectively. 

The second figure of merit is the non-coherent delay lock loop tracking bias. This bias 

is calculated from the S-curve presented in Chapter III. The tracking bias is defined to be the 

magnitude of the delay or advance of the recovered signal S-curve relative to the direct path S- 

curve. The advance or delay is measured at the point where the S-curves are equal to zero. This is 

illustrated in Figure 37 which shows a typical, noise-free S-curve plot with the appropriate tracking 

biases noted on the figure. 

4-4-2.1    Mean Squared Error Analysis. Figures 38 through 41 show the average 

mean squared amplitude error in the direct path estimate for multipath amplitudes of 0.2, 0.4, 0.6, 

and 0.8, and multipath delays from 0.1 chip to 1.5 chips, both relative to the direct path signal. 

For each pair of multipath amplitudes and delays, 10 trials are run at each of three different SNR 

levels, 1000 dB, 250 dB, 223 dB; the figures show the average values. The SNRs are chosen to 

collect data well above, slightly above, and near the threshold previously discussed. This gives an 

idea of how sensitive the complex cepstrum filtering process is to input SNR, assuming the SNR is 

above the threshold. 
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Figure 37      Non-Coherent Delay Lock Loop Tracking Curves, Multipath Normalized Amplitude 
=   0.6, Multipath Normalized Delay   =   0.65 Chips 
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Figure 40      Direct Path Estimate Mean Squared Error For Multipath Amplitude  =   0.6 
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Figure 41      Direct Path Estimate Mean Squared Error For Multipath Amplitude  =  0.8 

Examination of Figures 38 through 41 reveals that the mean squared error is reasonably 

insensitive to SNR, assuming the threshold condition is met. In Figure 41, a condition where the 

SNR threshold is not met is observed. In this plot, the amplitude MSE for a multipath signal 

delayed 0.1 chip relative to the direct path, with an input SNR of 223 dB is extremely large. This 

is a direct result of the SNR threshold not being met for that pair of multipath parameters. In 

the next subsection, it will be seen that this large mean squared amplitude error in the estimated 

direct path signal amplitude leads to a large tracking bias. This figure also shows that 223 dB is 

near the SNR threshold also for a multipath delay of 0.15 chips. Other than those two data points, 

the mean squared error performance is adequate for all other delays at all three SNRs. 

4-4-2.2 Tracking Bias Analysis. The second figure of merit for characterizing the 

cepstrum multipath mitigation process is the tracking bias. To perform this analysis, simulations 

are run for multipath amplitudes of 0.2, 0.4, 0.6. and 0.8 at SNRs of 1000 dB, 250 dB, and 223 dB. 

For each multipath amplitude and SNR, the multipath delay is varied from 0.1 to 1.5 chips. Again, 
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10 trials are run for each set of multipath parameters, and the data presented is the average for 

those 10 experiments. To characterize the cepstrum performance, the tracking bias of the cepstrum 

process is calculated and compared to the tracking bias for a narrow correlator non-coherent delay 

lock loop employing 0.1 chip correlator spacing. This comparison is performed to characterize the 

cepstrum process in relation to a current, commercially available, method of multipath mitigation. 

The performance of the cepstrum process is compared to that of the narrow correlator in Figures 

42 through 53. 
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Figure 42      Tracking Bias Comparison for SNR  =   1000 dB and Multipath Amplitude  =   0.2 
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Figure 43      Tracking Bias Comparison for SNR  =   1000 dB and Multipath Amplitude  =  0.4 
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Figure 44      Tracking Bias Comparison for SNR  =   1000 dB and Multipath Amplitude  =   0.6 
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Figure 45      Tracking Bias Comparison for SNR  =   1000 dB and Multipath Amplitude  =   0.8 
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Figure 46      Tracking Bias Comparison for SNR  =   250 dB and Multipath Amplitude =  0.2 
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Figure 47      Tracking Bias Comparison for SNR  =   250 dB and Multipath Amplitude =   0.4 
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Figure 48      Tracking Bias Comparison for SNR  =   250 dB and Multipath Amplitude  =   0.6 
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Figure 49      Tracking Bias Comparison for SNR  =   250 dB and Multipath Amplitude  =  0.8 
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Figure 50      Tracking Bias Comparison for SNR  =   223 dB and Multipath Amplitude  =   0.2 
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Figure 51      Tracking Bias Comparison for SNR  =   223 dB and Multipath Amplitude  =   0.4 
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Figure 52      Tracking Bias Comparison for SNR  =   223 dB and Multipath Amplitude 0.6 
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Figure 53      Tracking Bias Comparison for SNR  =   223 dB and Multipath Amplitude  =   0.8 
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Examination of Figures 42 through 53 reveals that the cepstrum process generally exhibits 

lower tracking bias than the narrow correlator, when the SNR threshold requirement is met. Ex- 

ceptions to this general rule occur when the multipath delay is small and when it equals 1 chip. 

For small multipath delay, the adaptive comb filter must filter the complex cepstrum at more data 

points, introducing more opportunity for degradation in the recovered signal. For instance, if the 

multipath delay is 0.1 chip, the complex cepstrum must be filtered at every integer multiple of 0.1 

chip. If, on the other hand the delay is 0.5 chip, it will be filtered at every integer multiple of 0.5 

chip. The first example will be filtered at 5 times as many quefrencies as the second, introducing 

more opportunities for filtering error in the recovered signal. Additionally, it has been seen that, 

at small multipath delays, the detector frequently misdetects the multipath delay. This leads to 

the recovered direct path estimate more closely resembling the composite multipath signal rather 

than the direct path signal. However, all current multipath mitigation techniques exhibit poor 

performance for small reflection delays. 

As previously mentioned, the second exception occurs when the reflection delay is 1.0 chip. 

Due to the importance of the cepstral peaks at each integer multiple of 1.0 chip, as discussed 

previously, the adaptive weighted comb filter is designed not to filter the cepstrum at multiples 

of the chip interval. Therefore, by design, if the multipath signal is delayed exactly 1.0 chip, 

relative to the direct path, the cepstrum process performs no-filtering, and the original composite 

multipath signal is sent to the tracking loop. This weakness degrades performance, compared to 

the narrow correlator, in the one case where the multipath delay is 1.0 chip; however, it ensures 

better performance at all other multipath delays. 

Finally, examination of Figure 53 reveals that the maximum tracking bias for the cepstrum 

process, when the input SNR is 223 dB and the multipath amplitude is 0.8, occurs at 0.1 chip 

multipath delay. Recall that the mean squared error of the recovered signal in that case is large 

due to the threshold effect.  The poor quality of the recovered signal at this point leads to poor 
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Table 4      Average Data Summary For 223 dB SNR 

Parameter Multipath Amplitude 
0.2 0.4 0.6 0.8 

Mean Squared Error 0.0105 0.0143 0.0229 0.0577 (edited) 
Cepstrum Bias (chips) 0.0165 0.0195 0.0286 0.0556 

Narrow Correlator Bias (chips) 0.0379 0.0445 0.0584 0.1540 
Standard Correlator Bias (chips) 0.0322 0.0713 0.1183 0.2648 

well over a wide variety of multipath scenarios using very high input SNRs. The "edited" line in 

Table 4 presents the average mean squared error with the one outlying data point (shown in Figure 

41) removed. 
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V.   Conclusion 

This thesis seeks to provide a new method for GPS multipath mitigation. It proposes use of the 

cepstrum to detect and remove multipath effects prior to code tracking by a non-coherent delay 

lock loop. In Chapter II, the theory of the cepstrum is presented. Chapter III discusses the signal 

model, the cepstrum process, and the non-coherent delay lock loop. Chapter IV presents the results 

of simulations using the cepstrum for multipath mitigation. 

Recall from Chapter I that the objectives of this thesis are: 

1. Develop a complex cepstrum filtering technique for GPS multipath interference removal. 

2. Modify a standard delay lock loop by adding the filtering to the loop input. 

3. Characterize the multipath induced tracking error for the modified delay lock loop in a 

noiseless environment. 

4. Characterize the multipath induced tracking error for the modified delay lock loop 

operating with typical GPS SNRs. 

5. Compare and contrast the complex cepstrum receiver performance to that of a narrow 

correlator receiver. 

These objectives were met through the theory of Chapters II and III, and demonstrated 

through the simulations of Chapter IV. Based on the results of Chapter IV, several conclusions can 

be made. 

1. The power cepstrum can be used to detect multipath interference prior to GPS code 

tracking. 

2. The complex cepstrum can be used to remove multipath interference prior to GPS code 

tracking. 
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3. Both the complex and power cepstra are sensitive to input SNR, with the complex 

cepstrum being extremely sensitive to input noise. 

4. Time domain filtering to improve input SNR causes serious degradations in the cepstral 

domain. 

5. Due to the noise sensitivity of the complex cepstrum, this technique is not viable at this 

time for use in actual GPS receivers where the input SNR is typically -14.9 dB. 

Although the noise sensitivity of the complex cepstrum makes it unusable for GPS multipath 

mitigation, this research shows that the complex cepstrum is a viable technique for multipath 

mitigation in other circumstances. This technique may be applicable to other communication 

systems with different input signal structures and higher SNRs. One example of such a system may 

be overseas telephony where users often hear echoes while talking. 

5.1    Recommendations for Future Research 

Despite the fact that these cepstrum techniques do not appear viable for GPS multipath 

mitigation at this time, further research is warranted to investigate possible improvements to make 

the cepstrum a viable tool for GPS applications. This research includes the following: 

1. Investigate cepstral processing for multipath mitigation within or following a non- 

coherent or, perhaps more promisingly, a coherent delay lock loop, rather than strictly 

prior to a NCDLL. Correlation prior to cepstral processing may lead to the signal to 

noise improvements necessary to make this technique applicable for GPS signals. A post 

delay lock loop cepstral algorithm has the advantage of greatly enhanced SNR at the 

expense of a distorted measured autocorrelation function (via a bank of evenly spaced 

correlators as in the MEDLL or MRDLL designs). Cepstral techniques could then be 

used to deconvolve the primary path autocorrelation function from the contribution of 

any component reflections. 
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2. Develop a new multipath signal model that accounts for the time domain convolution 

of an input filter impulse response. Characterize the filter influence in the cepstral 

domain, and develop methods of detecting and removing multipath despite the effects 

of the input filter. 

3. Develop methods of cepstral domain filtering to minimize input noise effects prior to 

multipath detection and mitigation. 

4. Using the theory of Chapter II, extend this research to include multiple reflections. 

5. Improve the signal model to include effects of the carrier tracking loop, and characterize 

the performance of the cepstrum process on this signal. 

6. Characterize the cepstrum process when doppler effects are taken into account. 

7. Characterize the cepstrum process for GPS carrier tracking multipath mitigation. 

5.2    Final Conclusion 

This work shows the cepstrum is viable for multipath mitigation under ideal, noiseless con- 

ditions. The simulations show that the cepstrum process requires an extremely high input SNR. 

Further research is necessary to improve noise performance before this will be a viable technique 

for GPS code tracking multipath mitigation. 



Appendix A.   Matlab Function Files 

A.l    Overview 

The Appendix contains copies of all Matlab (version 5) function filestsed for simulation of 

multipath mitigation via cepstral techniques. Each file is a separate secfaaof the Appendix. A 

short introduction to each section is given, followed by a listing of the fundm file. 

A.2    Thesis_Sim,ulator Function File 

The function file thesis.simulator is the primary file used for simulatk»f cepstral processing 

for multipath mitigation. This file creates the composite multipath signal, dulates the power and 

complex cepstra, calls the detector subroutine to detect the reflection delay,amoves the multipath 

effects in the cepstral domain, and produces the direct path estimate threap an inverse complex 

cepstrum operation. Additionally, this file calculates the mean squared ampitde error in the direct 

path estimate, compared to the actual direct path signal.   Finally, it caldktes the S-curves for 

the direct path signal, the direct path estimate, the narrow correlator NCSL, and the standard 

correlator NCDLL. These S-curves are then used to calculate the trackingfeses of the cepstrum 

process, the narrow correlator NCDLL, and the standard correlator NCDLEThe Matlab function 

file follows: 

function [results]=thesis_simulator(am,tm,SNR) 

7. THESIS_SIMULATOR uses the cepstrum to detect and remove a muMpath reflection from a 

7, composite signal. The direct path signal is modeled as a cosäe modulated by a BPSK 

7, spreading code. The multipath reflection is modeled as an asfitude scaled and time 

7, delayed version of the direct path signal. The composite sigjl is the sum of the 

7, direct path and reflection signals. 

7. 
7. Usage: 
7o results=thesis_simulator(am,tm,SNR) 

7. 
7, Where: 
7o am = multipath reflection normalized amplitude 

°l,  tm = multipath reflection normalized delay (in chips) 
7» SMR = the input signal to noise ratio in dB 

7. 
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7, This file calls the following subroutines: 

7, 
'/,  expand, delay, fpeak, meanfilt, scurve, trackpoint 

7. 
*/, This function and all subroutines were written by Chuck Ormsby 

7. 
load cacode 7, Load pre-stored C/A code generated using the GPS toolbox for Matlab 

fs=100; '/,  fs is the sampling frequency (ie 100 samples/chip) 
ca=[expand(ca,fs)] ; 7,  Produces 100 samples per chip 
ca=[ca zeros(size(ca))] ; '/, Zero pad the signal for cepstral processing 

t=linspace(0,2*pi*1023*2,length(ca)); 7. Time scale for the carrier 

carrier=cos(5*t); 
y=ca.*carrier; '/, Direct path signal 

n=(0:length(ca)-l)/100; 

%  Add a multipath signal 
d=round(tm*f s); */, Reflection delay Note: Round is necessary to make sure d is an integer. 

a=am; */, Reflection Amplitude 

mp=a*delay(y,d); '/, Multipath reflection signal 

cs=y+mp; 7,  Composite signal 

7, Convert the SNR in dB to a noise amplitude 

na=exp(-SNR/20); 

7. Generate a Gaussian random sequence 

randnCstate' ,sum(100*clock)); */, Reset the random number generator. 

rv=na*randn(size(cs)); 

7. Add the noise to the signal 
cs=cs+rv;      7o Noisy composite signal 

7( Caculate the power and complex cepstra 
[CS,nd]=cceps(cs); 7o Complex cepstrum; nd is delay which must be removed later 

RCS=rceps(cs) ; '/,  Power cepstrum 

7, Use the power cepstrum to detect the multipath delay 
first_peak=fpeak(abs(RCS),.6); 7. Detect the multipath peak 

detected_delay=(first_peak-l)/fs; '/, Detected delay in chips 

'/,  Filter the multipath out 

max_multiplier=floor(length(CS)/first_peak); 

multipliers=l:max_multiplier; 
filter_points=first_peak*multipliers; 

for index=l:length(filter_points) 
if rem(filter_points(index)-index+l,100)"=l '/,  Do not filter at the chip times 

CS=meanfilt(CS,filter_points(index)-index+l,2); 7. Filters out the delta functions 
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end 

end 

'/,  Recover the direct path estimate 
cal=icceps(CS,nd); '/,  Inverse cepstrum calculation 

7, Calculate the mean squared amplitude error in the recovered signal 

mse=mean((y-cai) ."2);  '/, MSE in the recovered signal 

7, Calculate the s-curves of the actual direct path, the direct path 

7,  estimate, the narrow correlator receiver and the standard NCDLL 

[sdp,t]=scurve(y,y,fs,l); '/.  Direct path s-curve and tracking error scale (t) 

sc=scurve(cal,y,fs,l); 7, Cepstrum process s-curve 

snc=scurve(cs,y,fs, .1); 7. Narrow correlator s-curve 
sncdll=scurve(cs,y,fs,i); '/, Standard correlator s-curve 

7, Calculate the tracking biases for the direct path estimate, the 

7« narrow 
7, correlator receiver,   and the standard NCDLL relative to the direct path signal 

tpdp=trackpoint(sdp);  '/, Find the zero crossing point of the direct path s-curve 
tpcep=trackpoint(sc);  '/, Find the zero crossing point of the cepstrum process s-curve 
tpnc=trackpoint(snc);  '/, Find the zero crossing point of the narrow correlator s-curve 
tpncdll=trackpoint(sncdll);   % Find the zero crossing point of the standard correlator s-curve 
cep_bias=(tpcep-tpdp)/fs;   */, Calculate the cepstrum tracking bias in chips 
nar_bias=(tpnc-tpdp)/fs;   '/, Calculate the narrow correlator tracking bias in chips 
stan_bias=(tpncdll-tpdp)/fs;   */, Calculate the  standard correlator tracking bias in chips 

7, Report the results of the  simulation. 
results=[SNR am tm detected_delay mse cep_bias nar_bias stan_bias]; 

A.3    Expand Function File 

Expand is the first function file called by thesis-simulator. Expand expands an input vector 

containing one sample per time unit, to one containing fs samples per time unit, where /s is 

the sampling frequency. For this specific application, expand takes an input vector of GPS C/A 

spreading code containing one sample per chip, and expands the vector to contain 100 samples per 

chip. The Matlab function file follows: 

function yp=expand2(y,expan) 

7, EXPAND will expand a vector by an input factor. This expansion is equivalent to producing 

7. more samples per time unit. 



7. 
7. ex.    y=[l 2 3 4] 
'/, yp=expand(y,2) 
'/„ yp=[l  1 2 2 3 3 4 4] 

% 
'I' yp=expand(y,expansion factor) 
% 
7» Written by Chuck Ormsby 

'/. April 20, 1997 

% 

yp=zeros(l,length(y)*expan); 

count=l; 

count2=i; 

while count2<=length(y) 
yp(count:count+expan-l)=y(count2)*ones(l,expan); 

count2=count2+l; 
count=count+expan; 

end 

A.4    Delay Function File 

The function file delay adds a delay to the input vector by prepending zeros to the beginning 

of the vector. This function is used to delay the direct path signal vector for creation of the reflection 

signal vector. The Matlab function file follows: 

function y=delay(x,s) 

% DELAY prepends zeros to the beginning of the input vector. This can be thought of as 

'/,  adding a time delay to the input vector. 

% 
'/,  y=delay(x,s) 

% 
%  y is the delayed vector, x is the input vector, s is the length of the delay and must 

%  be positive 

7, 

left=zeros(l,s); 

right=x(l:length(x)-s); 

y= [left right]; 
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A. 5    Fpeak Function File 

The function file fpeak detects the multipath reflection delay. This function compares each 

data point in the input vector to the two adjacent data points as described in Chapter III. When 

a delta function peak is detected, the function reports the associated delay as the reflection delay. 

The Matlab function file follows: 

function first_peak=fpeak(x,multiple) 

'/,  FPEAK detects the first peak in a function.  It is designed to work with the CCAF. 
'/,  A peak is declared if a point exceeds the points on either side of it by more than 
'/,  an input multiple which is a percentage (ie multiple = .5 means a point must be 

X  2 times larger than the adjacent point). By default, the first point cannot be a peak. 

X 
X first_peak = fpeak(x,multiple) 

X 
*/. Written By: 

X Chuck Ormsby 
*/, 27 Oct 97 

X 

stop=0; 

index=2; 
while stop==0 

if x(index)>=(i/multiple)*x(index-l) & x(index)>=(l/multiple)*x(index+l) 

if index"=101 '/,  Do not declare an mp delay of 1 chip 

first_peak=index; 

stop=l; 

else 
index=index+l; 

end 
else 

end 

index=index+l; 

end 

A.6    Meanfilt Function File 

The meanfilt function file accomplishes the removal of the multipath reflection effects from 

the complex cepstrum. This function replaces the appropriate data points in the complex cepstrum 

with the average of the adjacent data points. The Matlab function file follows: 

function xf=meanfilt(x,m,N) 
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7, MEANFILT is a "mean" comb filter designed for use with the complex cepstrum. This 
7, filter replaces element m of the vector, x, with the mean of the N surrounding points. 
7o N must be even. 
7. 
I  Ex: x= [5 2 3 4 5 6] 
7. 
7, xf=meanfilt(x,3,4) 
'/,  x(3)=(5+2+4+5)/4 
7. x(3)= 4 
7. xf=[5 2 4 4 5 6] 

7, 
7, Mote: x and m must be specified.  If N is not entered, a default value of N=2 is used. 

7. 
7. Written by Chuck Ormsby 
7. 
if nargin==2 

N=2; 
end 
7. Test N 
while rem(N,2)"=0 

N=input('N must be even. Please enter a new N.  '); 
end 
x(m)=(sum(x(m-N/2:m-l))+sum(x(m+l:m+N/2)))/N; 
xf=x; 

A. 7   Scurve Funtion File 

Scurve calculates the S-Curve for an input sequence as defined in Chapter III. Scurve cor- 

relates an input signal with a locally generated signal, which is also an input to the function. 

This function allows for variable correlator spacing so that narrow or standard correlator NCDLL 

S-curves can be calculated using the same function file. The Matlab function file follows: 

function  [sc,t]=scurve(x,c,fs,s) 

7, SCURVE computes the tracking curve (s-curve) for a non-coherent delay lock loop where x 
7,  is the input signal, c is the correlation signal, fs is the sampling frequency, 
7,  and s is the correlator spacing.  If s is not specified, the default is 1 chip. 
7  If two output variables are used, a time scale for the s-curve is also returned. 

7. 
'/,   [sc,t]=scurve(x,c,fs,s) 
y. 
y, Written by Chuck Ormsby 
'/, August 19, 1997 

% 
7, This function calls the vector_shift subroutine: 
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I 

%  Note: Signal names used in this file refer to the names in fig» 4-9, pg 165 of 

7, Peterson, Ziemer, and Borth: Introduction to Spread Spectrum Craamications 

if nargin==3 

s=l; 
end 

if rem(s*fs,2)==0 

space=s*fs/2; 

else 
space=(s*fs+l)/2; 

end 
'/,  Test the length of the correlation signals 
len=length(x); 

if len>=50000 
trun=5e4; %  For very long sequences, the input signal must be »uncated to decrease 

7, run times 

else 
trun=length(x); 

end 

end 

x=x(l:trun); 

c=c(l:trun); 

% Produce the early and late codes 
early=vector_shift(c,space); 
late=vector_shift(c,-space); 

7, Produce the early and late correlator outputs 

yl=xcorr(early,x); 

y2=xcorr(late,x); 
7. Square the correlator outputs 

zi=yi.~2; 
z2=y2.~2; 
'/,  Low pass filter 
wcut=0.035; 
[b,a]=butt er(5,wcut); 
zllp=filter(b,a,zl); 

z21p=filter(b,a,z2); 
7, Create the s-curve 

sc=zllp-z21p; 
sc=sc./max(sc); '/,  Normalize the s-curve 
t=linspace(-length(x),length(x),length(sc))/fs; 

A.8    Vector-Shift Function File 

The function file vectorshift produces the time shift necessary for the e«$T and late locally 

generated codes in the NCDLL. This function assumes the input vector is oneyiod of a periodic 
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spreading code. The function then shifts the elements of the vector circularly left or right to create 

an advanced or delayed version of the input vector. The Matlab function file follows: 

function yp=vector_shift2(y,s) 

*/, VECTOR_SHIFT shifts the entries in the vector y by some advance or delay. A delay is 

t      entered as a negative number while an advance is entered as a positive number. 

I 
°l>  yp=vector_shift(y,s) 

7. 
'/, Note:    The vector y is assumed to be periodic,  with the elements of y comprising an integer 
'/,      number of periods. 
% 
s=mod(s,length(y)); 
if s>=0 

right=y(l:abs(s)); 
left=y(abs(s)+l:length(y)); 

else 
right=y(l:length(y)+s); 
left=y(length(y)+s+l:length(y)); 

end 
yp=[left right]; 

A.9    Trackpoint Function File 

The trackpoint function file searches for the tracking point in a vector representing the NCDLL 

S-curve. This function searches for the point where the S-curve crosses the S(5) = 0 axis between 

the minimum and maximum points of the S-curve.   The function then reports the index of the 

data element of the zero crossing which can be related to a time delay through knowledge of the 

sampling frequency. The Matlab function file follows: 

function z=trackpoint(x) 

*/, Trackpoint searches for the tracking point of an input S-curve vector. The 
7, tracking point is the point where the S-curve crosses the S=0 axis between 

7, the minimum and maximum values of the S-curve.  If the vector does not contain 

%  an element which is identically zero, a linear interpolation between the two 

7. nearest elements is performed. 

7. 
7. z = trackpoint (x) 

7. 
7. Written by Chuck Qrmsby 

7, 
7o This function calls the subroutines: 
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'/, maxfind.m, minfind.m, and interpolate.m 

7. 
max_index=maxfind(x); 

min_index=minfind(x); 

if min_index>max_index 

start=max_index; 

stop=min_index; 

count=l; 

for index=start:stop 

if x(index-l)>=0 & x(index)<=0 
a(count,:)=[index-1 index]; 

count=count+l; 

end 

end 

else 
start=min_index; 

stop=max_index; 

count=l; 
for index=start:stop 

if x(index-i)<=0 & x(index)>=0 
a(count,:)=[index-1  index]; 
count=count+1; 
end 

end 
end 
[m,b]=interpolate(a(D,x(a(l)),a(2),x(a(2))); 
z=-b/m; 

A. 10    Maxfind and Minfind Function Files 

The maxfind and minfind function files search for the maximum and minimum points, re- 

spectively, in an input vector. These functions report the index of the maximum and minimum 

values of the input vectors. The Matlab function files follow: 

function index=maxfind(x) 

7, MAXFIND returns the index associated with the maximum value of a vector. 

7. 
7. index=maxfind(x) 

7. 
'/,  Written by Chuck Ormsby 
7, July 24, 1997 

7. 
maxi=max(x); 

for count=l:length(x) 

if x(count)==maxi; 
index=count; 
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end 

end 

function index=minfind(x) 

7, MINFIND returns the index associated with the minimum value of a vector. 

7, 
7. index=minf ind(x) 

7. 
'/,  Written by Chuck Ormsby 
7. October 1, 1997 

7, 

mini=min(x); 
for count=i:length(x) 

if x(count)==mini; 
index=count; 

end 

end 

A. 11    Interpolate Function File 

The interpolate function file is used in conjunction with the trackpoint function to determine 

the tracking point of an input S-curve vector. Interpolate returns the slope and y-intercept of a 

line joining two input data points. This file is used by the trackpoint function to calculate the slope 

and y-intercept of a line joining two adjacent data points, one negative and one positive, in the 

S-curve vector. From knowledge of the slope and y-intercept of this line, the exact zero crossing 

point can be calculated. This linear interpolation is justified because, as shown in Chapter III, for 

small tracking errors, the S-curve is approximately linear. The Matlab function file follows: 

function  [m,b] interpolate(xl,yl,x2,y2) 

7, INTERPOLATE returns the slope  and y-intercept for a line connecting the points  (xl.yl)  and 
7.  (x2,y2). 
7. 
7.   [m b]=interpolate(xl,yl,x2,y2) 
7. 
m=(y2-yl)/(x2-xl); 
b=yl-m*xl; 



A. 12    Summary 

This Appendix presents the Matlab function files used for simulation of multipath mitigation 

using cepstral techniques. All function files used for this thesis are included in this Appendix. Any 

functions not specifically included are built-in Matlab (version 5) functions. The intent of including 

the function files is to give the reader a better understanding of the function of the cepstral process 

for multipath mitigation. Additionally, by including these function files, a reader familiar with 

Matlab should be able to reproduce the work of this thesis. 
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