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AFIT/GE/ENG/98M-01 

Abstract 

In order to enhance the accuracy of the Global Positioning System (GPS) it is 

proposed to improve the GPS position determination algorithm used in the GPS re- 

ceiver to solve the trilateration equations. The use of direct, or closed-form, solutions 

based on stochastic modeling and estimation techniques is investigated to achieve 

this improvement. The objective of this thesis research is the development and exper- 

imental analysis of new closed-form position determination algorithms that work in 

the presence of pseudorange measurement noise. The mathematical derivation of two 

closed-form solution algorithms, based entirely on linear mathematics, is presented. 

The closed-form algorithms provide an estimate of the GPS solution parameters 

(viz., the user position and the user clock bias) as well as the associated parameter 

estimation error covariance. The experimental results are based on 5000 Monte Carlo 

runs and are produced through realistic simulations of typical NAVSTAR GPS low 

noise, near-earth navigation scenarios and of ground-based pseudolite planar array 

scenarios. Analysis of the experimental results is accomplished through direct com- 

parison to the baseline results from the conventional Iterative Least Squares (ILS) 

algorithm, which is currently used in GPS. To ensure fair comparitive analysis, all 

the algorithms are tested under identical noise and geometry conditions. The closed- 

form algorithms, both of which produce identical results, are extremely sensitive to 

noise in typical NAVSTAR GPS scenarios, making them unsuitable for stand-alone 

use; however, they perform very well at estimating horizontal position parameters 

in ground-based pseudolite planar array scenarios where the ILS algorithm breaks 

down due to poor geometry. For the near-earth GPS scenarios, the use of an addi- 

tional nonlinear measurement in a supplementary algorithm is required to refine the 

solution produced by the closed-form algorithm. Thus, the derivation of two supple- 

mentary algorithms is presented. The first supplementary algorithm is based on a 
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maximum likelihood approach and the second uses a Kalman-like update approach. 

The maximum likelihood algorithm is capable of producing solutions with accuracy 

equivalent to that of the conventional ILS algorithm, both in terms of mean esti- 

mation errors and experimental estimation parameter standard deviations; however, 

the capability to predict its estimation error covariance is lost. The performance 

of the Kaiman update algorithm is marginally degraded, most notably in its user 

clock bias estimation errors, but it is capable of predicting its estimation error co- 

variance. The capability to predict the estimation error covariance is dependent on 

how well the closed-form algorithm estimates the pseudorange measurement noise 

variance, which in turn is a function of satellite availability. The performance of 

the closed-form, supplemented by the Kaiman update, algorithm is comparable to 

the ILS algorithm's performance. The advantages introduced by the developed al- 

gorithm are: 1) The capability to estimate its estimation error covariance, and 2) 

The potential for computational efficiency due to the direct, closed-form, nature of 

the solution. 



IMPROVED MATHEMATICAL MODELING FOR GPS BASED 

NAVIGATION 

/.   Introduction 

1.1    Background 

The NAVSTAR Global Positioning System (GPS) is an extremely accurate 

navigation system; nevertheless, there are errors associated with the GPS position 

fix, leaving room for further improvements. The GPS is a space based satellite radio 

navigation system that provides three dimensional (3-D) user positioning by solving a 

set of nonlinear pseudorange trilateration equations. A common approach to solving 

the nonlinear equations is to linearize the pseudorange equations and calculate the 

user position iteratively, starting with a user provided initial position guess [27]. For 

near-earth navigation, the center of the earth is a good initial guess which guarantees 

that the iterative algorithm will quickly converge towards the correct GPS solution. 

An area of potential improvement, that has been the topic of several papers in 

recent years, is the use of closed-form solutions to the nonlinear GPS pseudorange 

equations. The use of closed-form or direct solutions has been motivated by the fact 

that direct solutions shorten the computational cycle and that they do not depend 

on an initial position guess. Closed-form solution algorithms have been developed by 

Bancroft [2], Krause [14], Abel and Chaffee [1], Chaffee and Abel [6], and Hoshen [11] 

using different approaches. 

The recent derivations of the closed-form solutions considered only the exactly 

determined case in which four of the available pseudorange measurements are used to 

obtain exact positioning solutions. The motivation for considering only four satellites 

is questionable since, if a five degree elevation mask angle is assumed, it has been 
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shown that for near-earth navigation, there are at least five satellites in view at all 

times and at least seven satellites in-view 80 % of the time [28]. An elevation mask 

angle is used to mask satellites close to the horizon. Although satellite vehicles close 

to the horizon are in-view by line-of-sight, their transmitted data is prone to a large 

amount of atmospheric interference caused by the long propagation path through the 

ionosphere and troposphere. In airborne applications, satellite visibility will tend to 

improve with altitude, potentially increasing the number of satellite pseudorange 

measurements available. In addition, some receivers have access to signals from 

the GLONASS constellation, the former USSR's satellite-based global navigation 

system, potentially doubling satellite availability. 

Previous works on closed-form solutions of the GPS pseudorange equations 

did not make use of the pseudorange measurements from all in-view satellites. This 

research differs from previous works in that it will treat an overdetermined system, 

making use of all in-view satellites. Furthermore, the research specifically addresses 

the issue of developing a reliable closed-form solution that works in the presence 

of noise. With the exception of [8], the pseudorange equations have been treated 

as a deterministic set of equations. Benefits can be gained by recognizing that 

pseudorange measurements are noise corrupted; hence, the stochastic nature of the 

measurements should be reflected in the GPS pseudorange equations from the onset 

to develop a stochastically sound position solution estimate. Furthermore, it would 

allow for obtaining an estimate of the covariance of the position estimation error. 

1.2   Research Motivation 

The goal in the design of a navigation system is to obtain the best possible po- 

sitioning accuracy by eliminating or at least minimizing the impact of error sources. 

The GPS system errors can be attributed to seven basic sources of error: satellite 

clock errors, atmospheric delays, group delay, ephemeris errors, receiver noise and 

resolution, multipath errors, and receiver vehicle dynamics [21].   These sources of 
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error are briefly addressed in the discussion of the stochastic modeling of the pseudo- 

range equations in Chapter II. Although not the only, or most intuitive, approach 

to improving positioning accuracy, improvement of the GPS position determination 

algorithm used within the receiver to produce the position estimate from the pseudo- 

range measurements undoubtedly impacts the achievable accuracy of the solution. 

Improvements to the algorithm will complement any other system improvements to 

reduce errors in any of the seven basic error sources. There are numerous potential 

benefits that encourage improvements to the GPS position determination algorithm; 

a few that provided the motivation to this thesis are discussed in this section. 

1.2.1 Improved User Positioning. GPS plays an extremely important role 

in positioning applications, both military and civilian. Regardless of whether precise 

positioning service (PPS) or standard positioning service (SPS) is being used, an 

improved GPS position determination algorithm that provides a closed-form solution 

to the GPS pseudorange equations considering all in-view satellites can improve the 

accuracy of the GPS position fix. The improvement is expected to be achieved as 

a result of computing an exact solution to the nonlinear equation as opposed to 

introducing approximations by linearizing the equations. 

1.2.2 Test Range Enhancement. The Submeter Accuracy Reference Sys- 

tem (SARS) navigation test reference system being developed at the 746t/l Test 

Squadron at Holoman Air Force Base, is used primarily in the flight testing of in- 

tegrated navigation systems [20]. With the improvement of GPS, the accuracy of 

the integrated aircraft navigation systems is also improving. Since the test refer- 

ence system must provide much higher, accuracy than the system being tested, the 

importance of improved test range accuracy can never be overemphasized. The use 

of an improved GPS position estimation algorithm can enhance the accuracy of the 

SARS. 
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1.2.3 Diversified Applications for GPS. Current iterative GPS algorithms 

are guaranteed to converge to a correct position solution for near-earth users, initial- 

izing the iterations at the earth's center and assuming a zero user clock bias [1]. In 

space applications, inverted GPS applications such as the SARS [25], [20], and un- 

conventional applications that involve the use of both pseudolites and satellites, the 

lack of a sufficiently good initial guess may lead to convergence towards the wrong 

solution. Pseudolite are ground-based transmitters that provide GPS-like position- 

ing data and can be used for augmentation. Inverted GPS applications, and the 

use of pseudolites are applications that are currently being considered by the 746i/l 

Test Squadron for the SARS as a result of work performed at AFIT by McKay [20]. 

The fact that a closed-form solution will not require an initial position guess is an 

advantage for these applications. 

1.2.4 Position Estimate Error Covariance. By stochastically modeling 

the GPS pseudorange equations, solving for position becomes a stochastic estima- 

tion problem. The use of correct stochastic modeling and of Kaiman Filtering like 

techniques to solve the estimation problem will lead to a GPS solution that pro- 

vides accurate estimates of the position estimation error covariance in addition to 

the position estimate itself. This will introduce a new confidence factor into GPS 

positioning and is critical for the integration of GPS with additional sensors for inte- 

grated navigation systems. This will specifically enhance the accuracy of navigation 

systems that are integrated using a federated approach but will not help in deep in- 

tegration schemes as discussed in [16], where the raw pseudorange signals are being 

used for system integration. Federated system integration is done at processed data 

levels using computed positioning data from the navigation sensors. This approach 

is common when system integration is performed as an upgrade on existing sensors 

that do not provide access to raw data signals required for deep integration [9]. 
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1.2.5 Computational Efficiency. The use of direct, or closed-form solu- 

tion algorithms tend to be more computationally efficient than iterative or recursive 

algorithms. This efficiency results in reduction of the computational cycle which 

is most advantageous for fast moving vehicles. The use of a positioning algorithm 

with short computation cycles is of extreme importance to space vehicles where the 

earth's rotation and the vehicle movement, in the computation interval, needs to be 

taken into account. 

1.3   Problem Statement 

The objective of this thesis is to provide a closed-form solution to the GPS 

pseudorange equations and present a way of using it effectively in the presence of 

GPS measurement noise. This thesis work develops an improved closed-form mathe- 

matical solution to the GPS pseudorange equations, implements an algorithm based 

on the mathematical solution, and performs an experimental analysis of the algo- 

rithm using realistic Monte Carlo simulations. The mathematical derivation of the 

closed-form solution used in this research is closely based on notes provided by 

Dr. Meir Pachter [22]. 

The closed-form positioning solution will consider pseudorange measurements 

from all available satellites, to obtain a position fix, since they are readily handled 

by the closed-form solution algorithm. A minimum of five satellites will be needed to 

obtain an initial 3-D position fix using the algorithm developed in this thesis, but this 

is not a serious problem since there are always more than four satellites in-view when 

the NAVSTAR GPS constellation is fully operational. The thesis work will emphasize 

the proper use of stochastic modeling and estimation in order to provide appropriate 

weighting of satellite pseudorange data in producing a positioning solution. 
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1.4 Scope 

The focus of this research is on the improvement of the GPS algorithm to obtain 

better positioning accuracy and to obtain shorter computation cycles. There are 

numerous other factors in GPS receiver design that affect GPS positioning accuracy 

that will not be addressed in this thesis. The GPS will be considered at the system 

level, hence the inner workings of the GPS receiver will not be considered. The 

GPS pseudoranges that will be used in the research are corrected pseudoranges. The 

corrected pseudoranges will represent the pseudoranges as they would be provided by 

the receiver after all known correction factors have been applied and known errors 

modeled out of the raw pseudorange measurements. The corrections of these errors 

are GPS receiver design issues beyond the scope of this thesis. Throughout this 

thesis, the term pseudoranges is treated as meaning corrected pseudoranges. 

The experimental analysis will be limited to obtaining positioning performance 

indexes relative to the conventional ILS GPS algorithm. The experimental analysis 

will not encompass any computational and numerical performance issues that would 

have to be addressed prior to using the algorithm in real-time applications. Due 

to the proprietary nature of the algorithms in current commercially available GPS 

receivers, comparisons to actual GPS receiver performance will not be attempted. 

1.5 Assumptions 

Assumptions must be made about the noise corrupting the pseudorange mea- 

surements in order to allow the use of a simple stochastic model and to simplify the 

stochastic estimation problem. The following assumptions are used in this thesis: 

1. After all known corrections are applied to the pseudorange measurements, the 

residual noise corrupting the pseudorange measurement is a zero-mean Gaus- 

sian distributed noise. 

2. The noises on all the pseudorange measurements have equal variance. 
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3. The noises on the pseudorange measurements are uncorrelated with one an- 

other. 

4. The effects of Selective Availability (SA) on pseudorange noise is not consid- 

ered. 

5. A 10 degree elevation angle is always achievable for determination of in-view 

GPS satellites. 

6. The GPS satellite constellation has 24 fully operational satellites. 

The extent to which the assumptions are valid is not exactly known; con- 

sequently, the impact of using these assumptions can't be determined beforehand. 

Some of the assumptions made are necessary to obtain the solution to the pseudo- 

range equations. Others are required to establish a realistic baseline for satellite 

availability used for the experimental simulations. Attempts will be made to qualify 

the significance of these assumptions on the positioning solution through experimen- 

tal analysis. 

1.6    Methodology 

This thesis contains three distinct phases. The first phase is the development 

of the closed-form solution to the pseudorange equations. The second phase is the 

implementation of the experimental algorithms based on the developed solutions. 

The third phase is the experimental analysis which can only be initiated after the 

algorithms in the second phase are fully completed, implemented, and debugged. 

The approach will be iterative in nature since rework of the mathematical solution 

may be required after some experimental analysis is performed, which in turn will 

require changes to the algorithms and the performing of new simulations. 

1.6.1 Phase 1 - Development of a Closed Form Solution. This phase con- 

sists of the mathematical derivation of a closed-form solution to the GPS pseudorange 
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equations. The solution will consider n > 5 satellites and will capture the stochastic 

nature of the pseudorange measurement. 

The corrected pseudorange can be modeled as the true Euclidean range with an 

unknown clock bias and some measurement noise superimposed; thus, the stochastic 

pseudorange measurement equation is given by 

Ri = sj{ux - Xif + {uy - yi)
2 + (uz - Zif + b + Wi, (1.1) 

where Ri is the corrected pseudorange corresponding to the ith satellite, (ux,uy,uz) 

are the user position coordinates, (x{, yi, Zi) are the known coordinates of the ith satel- 

lite, b is the range-equivalent user clock bias defined as the error in the receiver clock 

times the speed of light, and Wi is zero-mean Gaussian pseudorange measurement 

noise. It is reasonable to assume that all measurements are subject to the same 

noise; therefore, they will have the same variance, a2. However, the noise terms 

are not correlated between satellites. The point of departure for the mathematical 

derivation of the closed-form stochastic solution is Equation (1.1). 

One such measurement equation is available for each of the n in-view satel- 

lites. The n equations will be referred to as the GPS pseudorange equations. All 

positions used in the derivation will be expressed in Earth Centered Earth Fixed 

(ECEF) coordinates. These n nonlinear equations will be solved algebraically for 

the estimated user position, (ux,uy,uz) and user clock bias, b. This will be achieved 

through algebraic manipulation to reduce the GPS pseudorange equations into a 

linear regression in the form of the standard linear measurement model as defined 

in [18]. The linear regression is given by 

Z = HX + V, (1.2) 

where Z is the measurement vector, X is the vector of unknown quantities com- 

prising the user position coordinates (ux,uy,uz) and the user clock bias (6), H is 
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the regressor, an (n x 4) measurement matrix, and V is a Gaussian noise vector, or 

equation error vector, whose covariance matrix must be determined. The solution is 

obtained by solving the static estimation problem. The covariance of the estimation 

error of the user position and user clock bias is also obtained. 

1.6.2 Phase 2 - Implementation of the Algorithms. Matlab [17] algorithms 

based on the solution processes to the GPS pseudorange equations developed in 

Phase 1 are implemented. The main algorithm will be referred to as the closed-form 

algorithm to distinguish it from conventional iterative algorithms. The closed-form 

algorithm will expect as inputs pseudorange measurements from n > 5 satellites 

and will provide as a solution the estimates of the user position coordinates, user 

clock bias, and the associated estimation error covariance matrix. The closed-form 

algorithm, as implied by its name, will be non-iterative in nature; hence, will not be 

using an initial guess of the receiver position and clock bias. 

Two additional algorithms based on conventional iterative solutions to the GPS 

pseudorange equations will also be implemented in Matlab. Both algorithms will be 

iterative in nature and will both use the linearized pseudorange equation approach 

described in [27]. These algorithms will expect the same input that was provided 

to the direct algorithm, the pseudorange measurements from n > 5 satellites. Since 

these algorithms require an initial guess of the receiver position and clock bias, the 

initial guess will be built into the algorithms. Due to the lack of a better guess it is 

common practice to use the center of the earth as the initial position guess and zero 

as the initial clock bias guess. 

The first iterative algorithm will use all available pseudorange measurements 

to calculate a least squares solution; the algorithm will be referred to as the Iterative 

Least Squares (ILS) algorithm. The second algorithm will provide a solution based on 

only the best four pseudorange measurements based on geometry strength. Dilution 

of Precision (DOP) is used as a measure of geometrical strength [5]; thus, a frequently 
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used approach is to select the four satellites whose geometry yields the smallest 

Position Dilution of Precision (PDOP), which considers only the effect of the three 

ECEF axis position errors [27]. To simplify the experimental data collection, the 

Geometric Dilution of Precision (GDOP) will be used to evaluate the geometry 

since GDOP will be the same as PDOP if a zero receiver clock drift rate is assumed. 

GDOP is defined as, 

GDOP = ^tr{(HTH)-1}, (1.3) 

where H is the matrix of direction cosines associated with the conventional iterative 

algorithms. The algorithm which considers only the four satellites which yield the 

lowest GDOP is referred to as the Iterative Best Four (IBF) algorithm. Both algo- 

rithms provide a solution that includes the estimated receiver position coordinates, 

and the receiver clock bias. These algorithms do not have the capability of providing 

an indication of how good the calculated estimates actually are unless they are arti- 

ficially informed of the pseudorange noise strength. Since in a simulated experiment 

the noise strength is known, it is possible to inform the algorithm of the value of 

a to verify how well the algorithm's predicted performance compares to its actual 

performance based on the experimentally obtained covariance yielded over the 5000 

Monte Carlo runs. A discussion of how the number of Monte Carlo runs was selected 

is presented in Chapter IV. 

1.6.3 Phase 3 - Experimental Analysis. The experimental analysis phase 

will contain the bulk of the work of this study. The object of this phase is to 

provide thorough and realistic performance analyses of the closed-form algorithm 

implemented in the second phase. In addition to evaluating how good the position 

and clock bias estimates are, particular emphasis will be placed on how well the algo- 

rithm believes it is doing. The provision of the estimation error covariance is the key 

innovation to the algorithm developed in this thesis; hence, it is of extreme impor- 

tance that the validity of this feature be established. Some performance comparisons 
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between the direct algorithm and the two iterative algorithms will be performed to 

provide an appreciation of the relative performance. 

GPS ephemeris data will be generated using GPS simulation tools available in 

the GPSoft Satellite Navigation Toolbox for Matlab [10]. This will provide realistic 

data from which true ranges from all in-view GPS satellites to an arbitrarily selected 

receiver position can be calculated. After adding an arbitrary clock bias to all the 

ranges, a zero-mean random noise of preselected variance is superimposed to repre- 

sent the Gaussian measurement noise. These generated pseudoranges will serve to 

perform the analysis of the GPS algorithm through the running of 5000 Monte Carlo 

trials. Using the Satellite Navigation Toolbox, the capability exists of simulating 

realistic noise corrupted pseudorange measurements which could be applied directly 

to the GPS position determination algorithm as would be the case in a real world 

scenario. The approach used of simulating just the GPS satellite ephemeris data and 

producing the simulated pseudoranges was preferable for the following reasons: 

1. It provides a more structured data set for analysis of the algorithms since only 

the desired effects are being considered and the amount of corruption on the 

pseudorange measurements is exactly known; and 

2. Since the pseudoranges are produced starting from exactly known position 

coordinates, comparisons against the true position for determining accuracy 

are possible. 

Numerous trials will be run under different scenarios to provide a thorough 

picture of the performance. As an end result of the Monte Carlo simulations in 

Matlab, an estimate of the position fix accuracy attainable using the developed 

algorithm will be obtained and consequently compared to that achievable using the 

conventional algorithms. Recognizing that a large number of Monte Carlo trials are 

required to achieve statistically reliable experimental results, all simulations will be 

based on 5000 Monte Carlo runs. 
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Through the experimental trials the issue of geometry will also be analyzed. 

Experimental scenarios with varying degrees of GDOP will be used for the trials 

to bring out the effects of geometry on GPS positioning. GDOP is commonly used 

as a measure of GPS satellite geometry, whereby a lower GDOP is an indication 

of better geometry; hence, lower positioning error. As suggested by McKay, GDOP 

may not be the best measure of geometry [20]; therefore, the condition number of the 

regressor matrix will also be examined and attempts will be made to bring forth any 

relationships to the accuracy bounds. It is expected that, through the investigation 

of satellite geometry, some interesting issues related to the accuracy of the GPS 

positioning calculations will arise. The validity of considering only the four satellites 

that yield the best GDOP to calculate a position fix, as well as the validity of using 

GDOP as the measure of geometry, will be examined. 

1.7    Thesis Overview 

Chapter II presents the background theory upon which this research will be 

based. The first part includes a thorough literature review that provides a summary 

of current knowledge in the field of closed-form GPS algorithms and the application 

of stochastic modeling to the GPS pseudorange equations. The second part discusses 

the basic concepts of GPS technology. Particular emphasis is placed on the formula- 

tion of the GPS pseudorange equations and the theory behind the current iterative 

algorithms. 

Chapter III presents a thorough development of the closed-form mathematical 

solution to the GPS pseudorange equations. The development of supplementary al- 

gorithms that make use of a nonlinear measurement equation and that were deemed 

essential to enhance the performance of the closed-form algorithm is also addressed. 

The purpose of these enhanced algorithms is to produce an improvement to the solu- 

tion achieved by the closed-form algorithm; they are not capable of providing, nor are 

they intended to provide, stand-alone solutions. The two stage algorithms that are 
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presented are the Maximum Likelihood approach and the Kaiman Update approach. 

The background theory and the operating concept behind each approach is discussed 

and the complete mathematical derivations are presented. The development of an 

alternate closed-form algorithm is also presented. 

Chapter IV presents the experimental portion of the thesis. The first part 

discusses how the experiment was set up and how the Monte Carlo trials were run. 

Next is presented a brief discussion of how the results are intended to be interpreted. 

The experimental results are then presented and the chapter sums up with a detailed 

analysis of the results. 

Chapter V presents a brief summary of the performance related issues of the 

closed-form algorithm and the supporting algorithms developed for this thesis re- 

search. Emphasis is placed on the identifying the areas of strength for the algorithms 

and suggesting applications for which they are best suited. The shortcomings seen 

in the Chapter IV related to algorithm deficiency and inconclusive findings are dis- 

cussed, and potential approaches to correcting the problems are presented. The 

chapter sums up with recomendations for future work that can prove rewarding in 

bringing the concept of using a stochastic closed-form GPS position determination 

algorithm closer to reality. 
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II.   Background 

This chapter presents the background theory upon which this research will be 

based. The first part includes a thorough literature review that provides a summary 

of current knowledge in the field of closed-form GPS algorithms and the application 

of stochastic modeling to the GPS pseudorange equations. The second part discusses 

the basic concepts of GPS technology. Particular emphasis is placed on the formula- 

tion of the GPS pseudorange equations and the theory behind the current iterative 

algorithms. 

2.1    The Global Positioning System 

This section presents an overview of the Global Positioning System to provide 

some insight into the complexity of the system. This section serves to focus atten- 

tion to the specific portions of GPS of interest in this thesis, namely the position 

determination algorithm within the GPS receiver, and shows how it fits into context 

of the overall GPS system. GPS specific terminology and the coordinate systems 

used in this thesis are discussed as well. 

2.1.1    GPS System Overview. GPS is a satellite based radio-navigation 

system that provides worldwide, virtually continuous, three-dimensional (3-D) posi- 

tioning and accurate timing. The beauty of the system is in its apparent simplicity 

since, from the user's perspective, extremely accurate positioning can be achieved 

with the use of a simple, fairly inexpensive GPS receiver. For these reasons, GPS 

is rapidly becoming the positioning sensor of choice for both military and civilian 

users. The continuous worldwide coverage provided by GPS makes it ideally suited 

for air, land, and sea navigation applications. It must be recognized that there is 

much more to GPS than the portion that the typical user is dealing with in obtain- 

ing a GPS position fix. GPS is composed of three segments: the space segment, 

the control segment, and the user segment. Each segment is essential to the proper 
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functioning of GPS as an accurate and reliable navigation tool.   The typical GPS 

user is concerned with the user segment only. 

The GPS space segment refers to the GPS satellite constellation. The GPS 

constellation consists of 24 satellites, 21 active satellites plus three active spares, in 

six orbital planes. Each of the satellites has an orbital period of approximately 12 

hours (half a sidereal day). A healthy GPS constellation provides satellite coverage 

such that, for near-earth locations, there are always at least five satellites in-view and 

at least seven satellites in-view 80 percent of the time [28]. The satellites transmit 

time-tagged navigation messages which the GPS receivers (user segment) use to cal- 

culate their positions. The navigation message information required by the receivers 

to perform their function, includes GPS time, satellite ephemeris data, correction 

data, and system almanac data [27]. 

The control segment is composed of five stations spread over the world, which 

monitor and control the satellite orbits and GPS time. Only one of the five sta- 

tions is the master control station and only three of the remaining four stations are 

uplink stations capable of transmitting data back to the satellites. The five sta- 

tions receive the same signals seen by all users and collect pseudoranges to all the 

satellites. All pseudorange measurements collected by the stations are transmitted 

to the master control station which then computes the true satellite positions and 

true GPS time. This is possible since the stations are situated at very well surveyed 

positions. The master control station then calculates corrections for the satellites 

and transmits them to the uplink stations where the corrections are transmitted to 

the satellites [26]. 

The user segment is the GPS receiver. The receiver receives the navigation 

message, extracts the data and applies the corrections to obtain the pseudorange 

and pseudorange rate measurements. The user position, velocity, and time are then 

obtained through an algorithm that calculates a solution from the corrected pseudo- 
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range measurements. The proposed research will specifically address an algorithm 

that can be used by a GPS receiver to obtain a position fix. 

2.1.2 The Earth Centered Earth Fixed (ECEF) Coordinate Frame. The 

ECEF coordinate frame is an orthogonal frame with its origin at the earth's center 

of mass. The ECEF frame is fixed to the earth and therefore rotates with the earth. 

This frame consists of three axes: x, y, and z. The z axis is aligned with the earth's 

spin axis directed north and the x and y axes lie in the equatorial plane. The x axis is 

directed through the Greenwich Meridian (0 longitude) and the y axis through the 90 

east longitude [27]. ECEF coordinatization is commonly used in GPS since, in near- 

earth navigation, the navigator wants to know his positioning with respect to the 

earth. Calculations in the GPS receiver are normally performed in the ECEF frame 

for convenience but are converted, in the GPS receiver, to a coordinate system the 

user selects for display. Geographic coordinates (Latitude, Longitude and Altitude) 

are commonly used for display purposes. 

2.2    Summary of Current Knowledge 

The proposed thesis research involves the development and evaluation of a 

closed-form solution to the GPS pseudorange equations using stochastic modeling 

and estimation. A thorough literature review was required to identify areas and 

approaches that have not yet been explored in the field of closed-form GPS solutions 

and to establish the framework for this thesis research. This review of current liter- 

ature on the NAVSTAR GPS emphasizes the development of closed-form solutions 

to the pseudorange equations and stochastic estimation. 

Relevant papers related to GPS closed-form solutions published over the past 

twelve years, past theses, articles, and books covering more general aspects of GPS, 

were reviewed. The information collected is critical to establishing that a problem 

exists and that the proposed thesis research is a potential solution for improved 
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mathematical modeling for GPS. The literature review covers the following areas: 

GPS Overview, GPS equations, conventional GPS positioning solutions, and recent 

alternate approaches to GPS positioning solutions. Upon completion of the literature 

review, areas of interest that have not yet been addressed will be identified and the 

viability of pursuing the thesis research will be confirmed. 

2.2.1 The GPS Pseudorange Equations. GPS uses radio signal timing to 

measure the ranges between the satellites and the GPS receiver, making it a time- 

difference-of-arrival system. If ranges were being measured directly, we would be 

dealing with a multilateration system described by a spherical geometry and obtain- 

ing a position fix would be trivial [6]. Under ideal error and noise-free conditions, if 

both the satellite and the GPS receiver's clock were perfectly synchronized on GPS 

time with no error, then the measured range would be the true range [29]. The GPS 

receiver actually measures pseudoranges which are corrupted by the receiver clock 

bias, noise, and other error sources. The errors include atmospheric delays, satellite 

clock errors, ephemeris errors, and receiver induced errors. The receiver clock bias 

caused by the difference between the receiver clock time and GPS time is by far 

the largest contributor to the difference between pseudorange and range. However, 

the receiver clock bias is common to a set of simultaneous measurements, making it 

possible to treat it as an unknown variable to be estimated along with the receiver 

position, hence the GPS solution considers space and time. 

According to Parkinson [24], the GPS pseudorange equation that reflects all 

the known sources of error is given by 

Ri = y/(ux - Xif + (uy - yiy + (uz - Zif + c(bu - Bi) + c{T + I) + E + W,   (2.1) 

where Ri is the raw pseudorange from the user to the ith satellite, (ux,uy,uz) are 

the user position ECEF coordinates, (a:,-,yt-, 2j) are the ECEF coordinates of the ith 

satellite as calculated from the Keplerian parameters in the satellite's ephemeris data, 
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c is the speed of light in vacuum, bu is the receiver clock bias, Bi is the error in satellite 

time, T is the tropospheric delay, I is ionospheric delay, E are ephemeris errors, and 

W represents other errors that can attributed to the receiver including receiver noise, 

code loop quantization error, multipath effects, and interchannel errors. 

Ephemeris corrections provided to the satellites from the control segment can 

be used to eliminate the satellite time error and the ephemeris errors partially. 

Known tropospheric and ionospheric error model corrections can be applied to com- 

pensate for tropospheric and ionospheric delay errors partially. Improved receiver 

design techniques are used to minimize the effects of the receiver related errors, 

including multipath errors. Given the current state of GPS receiver design technol- 

ogy, the residual errors that remain uncompensated can be assumed to be negligibly 

small. Furthermore, if the residual errors are grouped together under one random 

variable w the equation reduces to the expression presented as Equation (1.1) known 

as the GPS pseudorange equation. If the residual errors are neglected entirely, the 

ideal GPS pseudorange equation can be expressed as: 

Ri « y/(ux - Xiy + (uy - Viy + {uz - Zif + b. (2.2) 

The ideal GPS pseudorange equation is a nonlinear equation in four unknowns, 

the three receiver position coordinates, (ux, uy,uz) and the receiver clock bias, b. This 

equation is the basis for deriving the conventional iterative GPS position solutions. 

At least four GPS pseudorange equations are required to calculate the four unknowns, 

(ux,uy,uz,b) and obtain a solution. 

2.2.2    Conventional Iterative Solution to the GPS Pseudorange Equations. 

The conventional approach to solving the GPS pseudorange equations is to linearize 

Equation (2.2) about a nominal solution for the vector of unknowns. The vector of 
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unknowns, and its associated nominal values, are defined as: 

X =  [ux uy uz bf 

and 
—* r 

respectively. 

As described in [27], performing a Taylor series expansion of the GPS pseudo- 

range equation and ignoring the second and higher order terms, the following equa- 

tion is obtained: 
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The aij entries in the H matrix are recognized as the cosine of the angle between 

the line-of-sight vector from the receiver to the ith satellite and the jth axis of the 

ECEF coordinate frame [27]. 

The linearized pseudorange equations can be written in a more compact form 

as HAX = AR. Solving for AX gives the result AX = H~XAR. This equation can 

be solved iteratively using the following procedure: 

1. Estimate an initial Xn, a nominal receiver position and clock bias. 

2. Calculate nominal pseudoranges and difference them with measured pseudo- 

ranges to obtain AR. 

3. Compute direction cosines to form the H matrix. 

4. Compute AX = H^AR. 

5. Add AX to Xn forming a new corrected Xn and go back to step 2. 

6. Continue process until convergence to a solution is achieved by verifying that 

||AX|| «Oor that an established threshold is attained. 

Upon completion, Xn, the nominal position and bias, represents the best esti- 

mate of receiver position and receiver clock bias. This method converges to a solution 

within three to five iterations even when the initial position guess is nowhere close 

to the true position [14], for instance the center of the earth. Drawbacks of using 

this iterative approach include the approximative nature of the linearized equations, 

computational loading associated with the inversion of a four by four matrix, the re- 

quirement for an initial guess, and the possibility of converging to the wrong solution 

if the initial position guess were not sufficiently close to the true position [1] [14]. 

The last concern is not an issue for near-earth navigation since a unique solution is 

guaranteed if the earth's center is used as the initial position guess and a zero initial 

clock bias is assumed, but is a serious concern if the receiver position is outside the 

GPS satellite constellation where a unique solution is not guaranteed.   The same 
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applies to certain inverted GPS arrangements.   To alleviate such concerns, direct 

closed-form solutions to the GPS pseudorange equations are sought. 

2.2.3 Closed-Form Solutions to the GPS Pseudorange Equations. Although 

closed-form solutions to the GPS pseudorange equations are attractive, the concept is 

not new. Joseph Hoshen [11] proposed that a closed-form solution to two-dimensional 

equations in the form of the GPS pseudorange equations may have been available 

since the third century BC in the form of the Problem of Apollonius. Since GPS is 

a fairly recent system, the first article in the open literature concerned with closed- 

form solutions specifically tailored to the GPS pseudorange equations is Stephen 

Bancroft's in 1985 [2]. Bancroft [2] developed an algebraic solution to the GPS 

pseudorange equations that was noniterative in nature. His method provides an ex- 

act solution in the exactly determined system using four satellites; like the iterative 

solution, however, it provides a least squares solution in an overdetermined system. 

The motivation to this solution was accuracy improvement and the possibility of 

space applications since an initial position-clock bias guess was not required. Ban- 

croft's solution involves solving a quadratic equation, where each of the two roots 

leads to a potential solution, one of which does not satisfy the pseudorange equa- 

tions and can be readily eliminated. This solution had a great deal of merit and 

motivated a number of papers in the years that followed. Driven by accuracy and 

computational issues including lower dimensionality and speed, Lloyd Krause [14] 

formulated a direct solution to the GPS pseudorange equation of the exactly deter- 

mined system based on difference linearization. By differencing the satellite position 

vectors, a new basis is formed by using any two adjacent difference vectors, forming 

a measurement plane, and a vector orthogonal to the plane. The four nonlinear 

pseudorange equations expressed in the new basis are reduced to three linear equa- 

tions that are independent of the user clock bias and are used to solve for the user 

position directly. A quadratic auxiliary equation is then formed to solve for the user 

clock bias. Krause's paper demonstrated a brilliant approach by which differencing 
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is used to linearize quadratic equations and remove dependence on variables. A sim- 

ilar approach will be used in the development of the closed-form algorithm for this 

thesis research. 

Abel and Chaffee [1] demonstrated that in both closed-form solutions presented 

by Bancroft [2]and by Krause [14], a position fix may not exist and if it does exist, it 

may not be unique. Abel and Chaffee's paper concluded that, in order to guarantee 

a unique position fix, an overdetermined system using at least five satellites must be 

considered. In a subsequent paper [6], Abel and Chaffee suggest that in a pseudo- 

range system such as GPS, the geometry is hyperbolic, unlike the spherical geometry 

of a ranging system. In a ranging system, ranges are measured directly, unlike the 

case for GPS in which the pseudoranges include the unknown receiver clock bias. 

The solution to range equations is obtained geometrically through the intersection 

of spheres, but this method does not generalize to pseudorange equations because 

of the unknown bias in each pseudorange; hence, it is not possible to determine the 

spheres. In view of the fact that the pseudoranges are not only corrupted by an 

unknown clock bias but also by some measurement noise, caution must be taken in 

dealing with the pseudorange equations when it comes to the use of solutions based 

on spherical geometry. 

2.2.4 Stochastic Modeling. Pseudorange noise that corrupts the pseudo- 

range measurements is caused by the residual errors discussed earlier. In order to 

model the GPS pseudorange equations statistically, tremendous effort would have to 

be dedicated towards the development of reliable noise models. This noise is actually 

the manifestation of receiver noise and residuals of various measurement errors that 

remain unmodelled and uncompensated. The major contributors to pseudorange 

noise that warrant consideration will be discussed. 
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Although Gaussian-like, receiver noise is better modeled by a longer tailed 

mixture of Gaussian distributions that can be expressed as: 

F(x) = (1 - e)$(x) + e$(^), 

where $ is a Gaussian distribution and the parameter e is generally between 0.01 and 

0.1 [7]. In a multichannel receiver, receiver noise can be considered to be uncorrelated 

across satellites. Consideration must also be given to the receiver clock bias which 

tends to correlate the pseudorange measurements. The uncompensated residuals of 

tropospheric and ionospheric errors may have nonzero means that also add to the 

modeling difficulties. Noise on the satellite position from the ephemeris data will 

also have some effect on pseudorange noise, but it is likely to be non-Gaussian and 

have a nonzero mean. 

Given the number of contributing factors to pseudorange noise and our lack 

of knowledge of their characteristics, it is reasonable to propose that the overall 

pseudorange noise will have a zero-mean Gaussian distribution by invoking the Cen- 

tral Limit Theorem. The Central Limit Theorem states that the sum of many inde- 

pendent random variables, regardless of their distribution, will approach a Gaussian 

distribution [18]. The Gaussian pseudorange noise will not be white due to the 

correlated nature of the encompassed errors and noise. This concern is alleviated 

since there is no requirement for the pseudorange measurements to be uncorrelated 

in time because the positioning problem will be treated as a static estimation prob- 

lem, where each snapshot in time is treated as a new static estimation problem. 

On the other hand, it is desirable to the development of the stochastic estimation 

that pseudorange noise be uncorrelated across satellites. A solid argument for this is 

not available, but this will not hinder the development of the stochastic closed-form 

solution to the GPS pseudorange equations in this thesis since the pseudorange mea- 

surements will be differenced, thereby eliminating some of the effects of correlated 

noise.  The uncorrelated noise after differencing can only be justified if the effects 
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of Selective Availability (SA) that are highly time correlated in nature are not con- 

sidered [30]. The choice to overlook the effects of SA in this thesis is not overly 

restrictive since authorized military users of GPS are not subject to the effects of 

SA and it is believed that the use of SA will be abolished in the near future. 

The assumption that the noise across pseudoranges can be modeled as an 

independent zero-mean, a2 variance random variable is used by Dailey and Bell [8] 

without any solid justification. The assumption is used to derive statistics for the 

pseudorange equations position solution errors similar to what is being proposed for 

this thesis research; however, their approach does not consider a closed-form solution. 

2.2.5 The Stochastic Estimation Problem. The components of an estima- 

tion problem are the variables to be estimated, the measurements, and a mathemat- 

ical model describing relationship between the measurements and the variables to 

be estimated [18]. Given the lack of dynamics in the GPS pseudorange equations 

at any given time instant, a static estimation problem can be formulated from the 

stochastically modeled pseudorange equations. The variables to be estimated and 

the measurement noise on the pseudoranges can be represented by random variables. 

The stochastic estimation process will not only provide an optimal estimate of the 

unknown variables, the user coordinates and user clock bias; but, will also provide 

the estimation error covariance. This is the most significant motivation to pursuing 

a stochastic approach to solving the GPS pseudorange equations. However, the error 

covariance accuracy will be limited by the quality of the measurement noise statis- 

tics. In a stochastic estimation problem, this emphasizes the requirement for good 

noise models. In this research the measurement noise is modeled as a zero-mean, 

<T
2
 variance Gaussian noise, which is believed to be adequate. Due to the lack of 

knowledge of the variance a2 and the fact that it is dependent on receiver design, 

location, orientation and time of day, attempting to model the noise variance is not 

a viable option. The approach that is proposed in this research is to determine the 

variance, (cr2), of the Gaussian measurement noise, by using the return difference or 
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measurement residual. It is suggested that, if sufficient measurements are available, 

reliable data-driven noise statistics can be extracted by evoking ergodic approxitions. 

The question at hand is determining how many measurements are sufficient and if 

that is a reasonable number in the context of the NAVSTAR GPS constellation. 

2.2.6    Conclusion of Literature Review. The literature review supports 

the proposed approach for this thesis research. There are problems associated with 

the currently used iterative approach to GPS positioning and there is potential for 

improvement with an exact closed-form solution. With the exception of one recent 

paper [8], the pseudorange equations have generally been treated as a determinis- 

tic set of equations. The lack of effort in the area of stochastic modeling applied 

to GPS pseudorange equations is evident from the lack of literature on the sub- 

ject. Previous works on closed-form solutions for the GPS pseudorange equations 

did not make use of the pseudorange measurements from all in-view satellites; the 

derivations considered the exactly determined case using only four of the available 

pseudorange measurements to obtain positioning solutions. Based on the litera- 

ture review, the development and evaluation of a closed-form solution to the GPS 

pseudorange equations using stochastic modeling and estimation, and making use of 

all in-view satellites, is warranted. 
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III.   Mathematical Derivations 

This chapter presents a thorough development of the closed-form mathematical 

solution to the GPS pseudorange equations. The development of supplementary al- 

gorithms that make use of a nonlinear measurement equation and that were deemed 

essential to enhance the performance of the closed-form algorithm is also addressed. 

The purpose of these enhanced algorithms is to produce an improvement to the solu- 

tion achieved by the closed-form algorithm; they are not capable of providing, nor are 

they intended to provide, stand-alone solutions. The two stage algorithms that are 

presented are the Maximum Likelihood approach and the Kaiman Update approach. 

The background theory and the operating concept behind each approach is discussed 

and the complete mathematical derivations are presented. The development of an 

alternate closed-form algorithm is also presented. 

3.1    Stochastic Closed-Form Solution 

The mathematical derivation of the stochastic closed-form solution is developed 

in four parts. The first part presents the algebraic manipulations to transform the 

stochastic GPS pseudorange equation as shown in Equation (1.1) into the desired 

matrix linear regression form as shown in Equation (1.2). The second part involves 

the derivation of statistics for the equation error in the linear regression. The third 

part presents the development of the static stochastic estimator based on a minimum 

variance estimate that will provide an estimate of the user position coordinates 

and user clock bias. The final part presents the derivation of the estimation error 

covariance matrix. 

3.1.1 Basic Concepts. Prior to initiating the mathematical derivation, it 

is necessary to present some basic concepts and notation that will be used in the 

sequel: 
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• x ~ N(ß,a2) is the notation used to represent a random variable (x) that 

has a Gaussian (Normal) probability distribution function with mean (//) and 

variance (a2). 

• E is used to represent the expectation operator. The expectation of a random 

variable y is given by E{y} = /!^ pfy(p)dp, where fy(p) is the density of y [18]. 

This also defines the mean (//), the first moment of the random variable. 

• Expectation is a linear operation; therefore, for any two random variables x 

and y, then E{x + y} = E{x} + E{y}. 

• If two random variables x and y are uncorrelated, then E{xy} = E{x}E{y}. 

• The variance of the ith element of a random vector x can be expressed as, 

Pa = E{(xi — m)2}, which make up the diagonal elements of the covariance 

matrix. The off-diagonal elements Pij are zero if the ith and jth elements of 

the random vector x are uncorrelated. 

• For a random variable x ~ N(0, a2), the moments of x are expressed as E{xk} 

for k = (1,2, • • •, oo). An odd k denotes an odd moment and an even k denotes 

an even moment. All odd moments are zero and even moments are given by 

(k - l)ak [23]. 

3.1.2 Linear Regression. The derivation of the closed-form solution to the 

pseudorange equations begins with Equation (1.1). The general form solution with 

n > 5 satellites is presented. 

Ri = \J(ux - Xi)2 + (uy - yi)2 + (uz - Zi)2 + b + Wi, 

represents the ith pseudorange equation of n equations where to,- is Gaussian mea- 

surement noise with statistics it>,- ~ Af(0,(T2) and E{wiWj} = 0 for (i ^ j).   The 
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pseudorange equation can also be rewritten as: 

(ux - Xif + (uy - yif + {uz - Zif = (Ri-b- Wif 

By expanding both sides of the above equation and rearranging the terms such that 

only the known terms and the noise terms are on the left hand side, the equation 

becomes: 

u2
x + ul + u\ - & ~ 2xiux - 2yiUy - 2ziUz + 2R{b = 

R2 - x2 - y2 - z2 - 2RiWi + 2bWi + w2 (3.1) 

It is noted that the first four terms in Equation (3.1) are simply the unknown vari- 

ables squared and that they are common to all n equations. This presents an oppor- 

tunity of eliminating the nonlinear terms by differencing; hence, the nth equation is 

subtracted from the remaining n — 1 equations. The resulting n — 1 equations are 

linear in the unknown variables and can be expressed as: 

(xn - Xi)ux + (yn - yi)uy + (zn - Zi)uz + (Ri - Rn)b = 

^(R2
i-R2

n + x2
n-x2 + y2

n-y2 + z2
n-z2) + Rnwn-Riwi + bwi-bwn + -(w2-w2

n) (3.2) 

As a by-product of the preceding operation, the nonlinear nth pseudorange equation 

remains. 

Rn = \[{ux - xn)2 + (uy - yn)2 + (uz - zny + b + wn (3.3) 

The nth equation will remain unused for this section of the derivation but will be used 

subsequently as an auxiliary equation for developing a maximum likelihood solution 

and for use in the Kaiman update solution. 

To simplify Equation (3.2) further, an average pseudorange expression is in- 

troduced by defining: 

R=-Y,Ri (3-4) n r—r 
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The following approximation is also introduced as a first attempt at reducing 

Equation (3.2) by simplifying the noise terms Rnwn — RiWi\ 

Ri ~ Rn ~ R (3-5) 

In the GPS constellation it is not possible to produce a scenario with more than 

five satellites in which all pseudoranges are the same; therefore, the approximation 

in Equation (3.5) introduces a source of error whereby some geometrical scenarios 

will be more prone to errors than others. The impact of introducing the approxi- 

mation is not known but it will undoubtedly affect the accuracy of the closed-form 

solution being developed. If the effect is found to be significant through experimen- 

tal analysis, this approximation must be revisited. To minimize the impact of the 

approximation in Equation (3.5), the measured pseudoranges will be ordered such 

that the pseudorange closest to R will be used as the nth measurement. By intro- 

ducing the approximation in Equation (3.5) into the noise terms of Equation (3.2), 

the equation becomes: 

(xn - Xi)ux + (yn - yi)uy + (zn - Zi)uz + (Ri - Rn)b & 

i(£? -Rl + x2
n- xl + y2

n- y] + z2
n- zf) - R(Wi - wn) + b(wt - wn) + -{w* - w2

n) 

From this point on in the derivation, the exactness of the solution has been lost due 

to the approximation that has been introduced. The equation is further reduced to 

obtain: 

(xn - Xi)ux + (yn - yi)uy + (zn - Zi)uz + (Ri - Rn)b « 

\(Rl -Rl + xl-xl + yl- yf + 4- A) + {b- £)(«>.■ - ^) + \(w1 - «£) 

The following noise terms are redefined to allow for further simplification of the 

equation: 
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• (tu; — Wn)=> V{ 

• (wl - wl) =>■ ™i 

The equation can then be rewritten as: 

(xn - X{)ux + (yn - yi)uy + (zn - Zi)uz + (Ri - Rn)b 

(%-K+<-*2i+vi-v:+<- *?)+(*- m+ Wi 

By redefining the following terms: 

• (b — R)vi + Wi =» Ks 

the equation reduces to a linear regression form of (n — 1) equations in four unknowns 

and is expressed as: 

(xn - Xi)ux + (yn - yi)uy + (zn - zi)uz + (Ri - Rn)b « Zt + V; (3.6) 

The linear regression in Equation (3.6) can be compactly written in matrix notation 

form as: 

Z = HX + V, (3.7) 

where 

• Z is the (n — l)-dimensional measurement vector given by: 

Zx 

Z2 

Z 

Zn-\ 
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H is the (n — 1) x 4 regressor matrix given by: 

H 

Xn - Xl Vn- 2/1 Zn - Z\ R\ ~ Rn 

Xn -X2 Vn- V2 Zn - Z2 R2~ Rn 

Xn       Xn—\     yn       ])n—1      Zn       Zn—\     _itn_i        ltn 

X is the vector of unknowns given by: 

X 
Uy 

V is the (re — 1) equation error vector given by: 

v2 

V 

K-i 

3.1.S    Noise Statistics.      Using the linear regression obtained in Section 3.1.2 
—* 

as shown in Equation (3.7), it is possible to obtain an estimate of X if the statistics 

of the noise vector V are given. The noise vector statistics are not known; however, 
—*■ 

the composition of the noise vector elements is known. The statistics of V must be 

derived from the known statistics of the pseudorange measurements noise, to;. 

For the statistical derivations that follow, when the subscript i and the sub- 

script j are used together it is implied that (i ^ j). 
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Statistics for w where (i, j = 1,2, ■ • •, re) : 

E{wt}   =   0 

E{w2}   =   a2 

E{wiWj}   =   O(i^j) 

Statistics for ü and 10 where (i,j = 1,2, • • •, re — 1) : 

Üj    =    (lüi - wn) 

      -!■ /    2 2\ 

Wi   =    2^« _ ^ 

J5{6i}   =   £{(w; - wn)} 

=   E{Wi}-E{wn} 

=   0-0 = 0 

E{v2}   =   E{(wz-wn)2} 

=   E{w2} + E{w2
n} - 2E{wiWn} 

=   a2 + a2 - 0 = 2a2 

E{viVj}   =   E{(wi - wn)(wj - wn)} 

=   E{wiWj} - E{wiWn} - E{wjWn} + E{w2
n) 

=   0 - 0 - 0 + a2 = a2 (i^ j) 
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E{wz}   =   -E{{w]-wl)} 

{E{wl) - E{wD) 

=   §(*W) 0 

Em   =   E{(-(w> - wl)f} 

(E{wt} + E{wtl}-2E{w?wl}) 
1 
4 

\(3a4 + 3(74 - 2a4) = a4 

4 

E{wiWj}   =   Ei^w'-wD^wj-wl)} 

4 

=    \(a4 + 3a4 - a4 - a4) 
4 -y (i ± j) 

E{viWi}   =   E{(wi - wn)-{w* - w2
n)} 

1 
(E{w*} + E{w3

n} - E{wiW
2

n} - E{w?wn}) 

(0 + 0-0-0) = 0 

E{viWj}   =   E{{Wi-wn)-{w}-wl)} 

=   \{E{Wiw)} + E{wl) - E{Wiw
2J - E{w)wn}) 

=   I(o + 0-0-0) = 0(t^j) 

3-8 



Statistics for V where (i, j = 1,2, • • •, n — 1) : 

Vi = (6 - R)vi + ibi 

E{Vi]   =   E{(b-R)vi + Wi} 

=   (b-R)E{vi} + E{wi} 

=   0+0=0 

E{V2}   = Eiiib-Rfc + WiXib-fyvi + Wi)} 

= (b - R)2E{v2} + 2(6 - R)E{vm} + E{w2} 

= (b-R)2(2a2) + 2(b-R)(0) + a4 

= 2(6 - Ä)V + a4 (3.8) 

£{V^}   =   Eiiib-R^ + w^ib-Rjvj + Wj)} 

=   (6 - Ä)2^-^} + (6 - .R)£{{^} + (6 - #)£{£>;} + £{«;,■«;,•} 

=   (6 - E)2(a2) + (6 - Ä)(0) + (6 - R){0) + ^a4 

=   (6-Ä)V + i^(«^i) (3-9) 

From the results obtained in Equation (3.8) and Equation (3.9) it can be seen 

that the covariance of the noise vector V has diagonal elements that are twice the 

off-diagonal elements. Indeed, the covariance matrix of the equation error vector, V, 

can be expressed as: 

Pv = a2(i<T2 + (6-J?)2)En, (3.10) 
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where Rn is a (n — 1) x (n — 1) matrix defined as follows: 

R-n 

2 1 1 ••• 1 

12 1 ••• 1 

112 : 

1   1 ••   2 

(3.11) 

An interesting characteristic of the Rn matrix is that its determinant is always equal 

to n which allows it to be easily inverted analytically. The inverse of Rn is required 

to find the inverse covariance matrix that is given by: 

p-i _ 
a\\a^(b-Rf) 

-l 
2\"ra   > R. 

and where Rn
l is the matrix inverse of Rn explicitly given by: 

R:1 = - 

n-l     -1 -1 

-1 n-l -1 

-1        -1 n-l 

-1        -1 n-l 

(3.12) 

(3.13) 

3.1-4 Minimum Variance Estimate Solution. Using the linear regression 

from Equation (3.7) as a starting point, the aim is to obtain an estimate X of the 

vector of unknown parameters X. The X that minimizes the estimation error as 

weighted by the inverse covariance of the noise must be obtained. Recognizing that 

the estimation error, also known as the return difference or measurement residual, 

is (Z — HX), the estimation problem can be formulated as follows: 

mint\{Z - HXyPyl{Z - HX)} (3.14) 
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Equation (3.14) can be expanded to obtain: 

ZTPylZ + jF&PfHJt - 2XTHTPy1Z (3.15) 

Since a minimization over X is needed, Equation (3.15) is differentiated with respect 

to X and set equal to zero yielding the following expression: 

0 + 2HTPy1HX - 2RTPyXZ = 0 

—* 
Rearranging the expression and solving for X produces the desired solution: 

k = (H7'Py1 H)-1 HJ'Py1 Z (3.16) 

In order to demonstrate that the stationary point solution in Equation (3.16) is 

indeed a minimum, the hessian matrix of Equation (3.15) must be verified. The re- 

sulting hessian matrix is (HTPy lH), which by definition is always positive definite, 

providing the necessary and sufficient conditions for minimization. Furthermore, 

since the existance of the hessian inverse in Equation (3.16) is guaranteed, the exis- 

tance of a solution is also guaranteed. 

Equation (3.16) is a closed-form solution to the GPS pseudorange equations. 

The solution is not dependent on a, the pseudorange measurement noise standard de- 

viation. To simplify the solution for implementation, it is noted that Equation (3.10) 

shows the noise covariance Py as simply Rn premultiplied by a scalar quantity. In 

Equation (3.16) the scalar premultiplier of Py will cancel out; therefore, the esti- 

mation solution shown in Equation (3.16) can be rewritten in an equivalent form 

as: 

X = (HT R-1 H)~x HT R-1 Z (3.17) 

Equation (3.17) is used for coding the experimental Matlab algorithm. It 

must be noted that there are no big matrix inversions associated with this solution 
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since R'1 has been determined analytically and can be coded directly into the algo- 

rithm. The only inversion that needs to be performed is that of the (4 x 4) matrix, 

(H^-R'1!!), which can be hardwired into the receiver's algorithm. 

3.1.5   Estimate Error Covariance.        It follows from Equations (3.14) and 

(3.16) that the covariance of the estimate error is given by: 

Px   =   E{(X - X)(X - Xf] 

=   A^ + Cb-Rf^R-'HY' (3.18) 

Unlike the solution estimate, the covariance Px is dependent on <r; hence, o must be 

known or estimated, in order to compute the error covariance. If a sufficiently large 

number of GPS pseudorange measurements are available, the following approach of 

using an ergodic assumption, whereby an ensemble average is approximated by a 

time average, can attempted: 

E{VTV}   =   ££{K2} 

=   \n-l)E{V2} 

=   (n-l)(2(6-Ä)V + a4) (3.19) 

Using the return difference from the measurement data and using an ergodic ap- 

proximation, an expression equivalent to Equation (3.19) can also be obtained as 

follows: 

E{VTV}n(Z-HX)T(Z-HX) (3.20) 

By equating Equations (3.19) and (3.20) and re-arranging the terms, a quadratic 

equation in a2 is obtained: 

a4 + 2(6 - R)2cr2 - -^—{Z - HJC)T(Z - HX) = 0 
lb X 
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Solving the quadratic equation yields the following data driven estimate of a2: 

a2 = -(R - bf + J(R - I)4 + ~^-r{Z - HX)T{Z - HX) (3.21) 
V lb A. 

If Equations (3.19) and (3.20) are accepted as being equivalent through evoking 

ergodicity, the expression for the error covariance matrix given in Equation (3.18) 

can be rewritten in terms of the measurement data driven return difference as follows: 

■T D-i m-i 
l[n — l) 

(3.22) 

It must be recognized that the validity of Equation (3.22) is dependent on the 

validity of the ergodic approximation introduced at Equation (3.20); hence, a yet-to- 

be-determined minimum satellite availability (nm,-„) must be present to validate this 

solution for the estimation error covariance. An acceptable value for (nmt-n) must be 

determined experimentally. 

3.2   Maximum Likelihood Estimate 

This section presents the background theory behind the maximum likelihood 

solution and a potential estimation algorithm is developed. It is important to note 

that the solution that is presented in this section is not a stand-alone solution to 

the GPS pseudorange equations; it is a supplementary process that improves on the 

closed-form solution presented in Section 3.1. 

3.2.1 Maximum Likelihood Concept. The concept behind the maximum 

likelihood solution approach is simple and ideally suited as a natural continuation to 

the closed-form solution. Given a known probability density function of a random 

vector and some equality constraint(s) on the random vector, it is possible using op- 

timization techniques to find the maximum value of the density function subject to 

the constraint (s). The optimized maximum value of the probability density function 
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corresponds to the most likely realizations of the random vector. Hence the solution 

approach will be referred to as Maximum Likelihood. The concept is clearly demon- 

strated in the two dimensional illustration in Figure 3.1. Figure 3.1 shows a Gaussian 

probability distribution function in two variables subject to a linear constraint on 

the two variables. Given the constraint, the values for the two random variables 

that maximize the probability function is readily observed as the intersection of the 

constraint with the highest constant probability contour line. 

-4    -4 

Figure 3.1    Maximum Likelihood of Gaussian Probability Distribution Subject to a 
Linear Constraint 

The closed-form solution to the GPS pseudorange equations developed in Sec- 
—* 

tion 3.1 of this thesis proposed that the four dimensional random vector X has a 

Gaussian probability density function. The closed-form solution provided the mean 

X and covariance Px which can be represented as: 

X ~ N{X, Px), 
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or in expanded form as: 

[ux, uy, uz, bf ~ N([üx, üy, uz, b]T, Px). 

A Gaussian probability density function is fully described by its first two mo- 

ments; hence, although it is impossible to visualize the four dimensional density 

function in our three dimensional world, it can be represented mathematically along 

with an equality constraint to formulate an optimization problem. 

3.2.2 Mathematical Development. The Gaussian probability density func- 

tion of a ^-dimensional random vector (Y) whose realizations are represented by the 

vector 7 is described by [18]: 

A(7) = ,0 xL,i c<-*^lTp-1[*-*1}, (3.23) 

where P is the (k x k) covariance matrix and m is the (k x 1) mean vector. It follows 

from Equation (3.23) that, in the context of the GPS solution estimate, the Gaussian 

probability density function for the random vector (X) can be expressed as: 

/(x) = 1—r ei-\[x-kvp-\x-k]}_ (324) 

(2TT)2|PX|2 

—* 
The goal in this section is to find the GPS solution (X) that maximizes the 

probability density function f(X) in Equation (3.24). In order to maximize the 

function f(X), (X) must be selected such that the following part of the exponential's 

exponent is minimized: 

[X-X]TP?[X-X] 
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The exponent to be minimized can be rewritten in expanded form as: 

ux- -Üx 

1 

X        *-^x 

uz - 

-Uy 

-uz 

D-l 
Uy              Uy 

Uz -Uz 

b- -b b-b 

(3.25) 

At this point it is necessary to introduce the nth pseudorange measurement 

equation described in Equation (3.3). The exponent term in Equation (3.25) must 

be minimized subject to the constraint imposed by Equation (3.3). Equation (3.3) 

cannot be used as a constraint in its present form due to the noise term it contains. 

The zero-mean noise term, wn, in the nth pseudorange measurement equation is 

neglected to obtain a simple equality constraint. A minimization problem can now 

be formulated äs follows: 

min(Ux<Uy!Uz,b) 

subject to: 

y        y 

uz -uz 

b-b 

T r                        ~i 

X                X 

p-1 y        y 

uz — uz 

b-b 

Rn = \/{ux ~ xn)2 + (uy - yn)2 + (uz - zn)
2 + b 

(3.26) 

(3.27) 

The constrained optimization problem specified in equations 3.26 and 3.27 can 

be solved; however, it is desirable to use the equality constraint to solve explicitly for 

one of the optimization parameters, thereby reducing the order of the optimization 

problem as suggested by Maybeck [19]. Equation (3.27) can be rearranged to solve 

for the user clock bias (5): 

b= Rn- ^f{ux - xn)2 + (uy - yn)2 + (uz - zny (3.28) 

3-16 



Equation (3.28) should be showing a non-unique solution for b caused by the 

positive and negative roots; however, the positive root has been dropped since it 

leads to a physically impossible solution. Substituting Equation (3.28) into the min- 

imization problem defined in Equation (3.26) will reduce the optimization problem 

to an unconstrained minimization in three variables which can be solved with greater 

ease. 

WM(Ux^UytUz 

Uy Uy 

(Rn - \J(ux - x„)2 + (uy - yn)2 + (uz - zn)
2) - b 

Urr 

X111        Uj, 

u. u. 
(3.29) 

_ (Rn - <J(ux ~ xn)2 + (uy - ynf + (uz - zn)2) - b 

After Equation (3.29) is solved for the optimization parameters (ux,uy,uz) which 

correspond to the Maximum Likelihood GPS user position estimate, («r, uy, uz) must 

be substituted into Equation (3.28) to obtain the Maximum Likelihood GPS user 

clock bias estimate (6). 

The unconstrained minimization problem in Equation (3.29) can be solved us- 

ing a number of different optimization approaches. Solving the actual optimization 

problem is beyond the scope of this thesis; however, the function used for the exper- 

imental implementation of the Maximum Likelihood solution needs to be discussed. 

The experimental algorithm implemented in Matlab [17] produced the most desirable 

results using the function fmins. The search initialization point used experimentally 

was (ux, uy, uz) corresponding to the previous best GPS position solution estimate 

provided by the closed-form solution from Section 3.1. The fmins Matlab function 
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uses the simplex search method of Neider and Mead [17]. The simplex search method 

does not use any derivative or gradient information, rather it involves the use of a 

simplex. In ra-dimensional space, where m corresponds to the order of the optimiza- 

tion problem, the simplex is characterized by (m + 1) distinct vertices. At each step 

in the search, one of the vertices is replaced by a new point reducing the size of the 

simplex. The search continues until the size of the simplex is less than the stopping 

tolerance [17]. The fmins function consistently produces a solution to the minimiza- 

tion problem regardless of how good the previous estimate used for initialization was. 

The fminu function which uses a quasi-Newton search method was also tried in the 

experimental algorithm but it was not as robust as the fmins function. The fminu 

function occasionally failed to produce a minimum when the search initialization 

point was not close enough to the true user position. 

The Maximum Likelihood approach described makes effective use of the stochas- 

tic estimation solution produced by the closed-form algorithm presented in Sec- 

tion 3.1 and of the nth pseudorange equation, that had not previously been used, 

to provide a better GPS solution estimate. If the constraint formed from the nth 

pseudorange equation were truly a deterministic equation as was assumed in Equa- 

tion (3.27), the Maximum Likelihood approach would produce the true user position 

and user clock bias as its GPS solution estimate. Unfortunately, the nth pseudo- 

range equation is noise corrupted, as are the other (n — 1) pseudorange equations; 

therefore, the Maximum Likelihood estimate is prone to the effects of the noise on 

the nth pseudorange measurement. Perhaps the largest disadvantage of taking a 

maximum likelihood approach is that there is no simple way of determining the error 

covariance of the the solution estimate it produces. The capability to estimate the 

error covariance is traded off to obtain an improved GPS solution estimate. 
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3.3   Kaiman Update Solution 

This section presents the development of the Kaiman update GPS position 

determination algorithm. As was the case for the maximum likelihood algorithm 

developed in Section 3.2, the Kaiman update solution is not a stand-alone solution 

to the GPS pseudorange equations; it is a supplementary process that improves on 

the closed-form solution presented in Section 3.1. The concept behind the Kaiman 

Update solution is discussed followed by the complete mathematical derivation of the 

solution itself. The Kaiman update algorithm presented in this section is an alternate 

to the maximum likelihood algorithm to enhancing the GPS solution produced by 

the closed-form algorithm by using the previously unused nth pseudorange equation. 

However, the Kaiman update algorithm is capable of obtaining the estimation error 

covariance which is not readily obtainable using the maximum likelihood algorithm. 

3.3.1 Kaiman Update Concept. The concept behind the Kaiman update 

solution approach is similar to that of a conventional Kaiman Filter. The closed- 

form solution in Section 3.1 provides a GPS solution estimate (X) and the associated 

estimation error covariance matrix (Px)- Recalling that this solution was produced 

without making use of the nth pseudorange equation in Equation (3.3), the nth 

pseudorange equation can be perceived as a new measurement which can be used to 

update the previous estimate the same way that it would be accomplished during 

the update cycle of an extended Kaiman Filter. The approach that is used begins 

with the linearization of Equation (3.3) about a nominal position estimate. The 

linearized equation is then manipulated into the standard linear measurement form 

as described in [18], and used to update the estimate. It may be necessary for the 

process to continue in an iterative manner until convergence within a predefined 

tolerance is achieved; however, it is expected that the algorithm will converge to a 

solution in a few iterations. 
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The Kaiman update algorithm that is presented in this section differs from the 

basic Kaiman Filter developed by Kaiman [12] [13] in that the measurement that is 

used to update the previous estimate is correlated with the previous estimate. The 

conventional Kaiman Filter update equation does not allow for correlation between 

the new measurement and the previous estimate; hence, a Kalman-like update equa- 

tion that can account for this correlation is presented for use in the experimental 

algorithm. 

3.3.2 Linearized Measurement. The first step in the mathematical develop- 

ment of the Kaiman update algorithm is to linearize Equation (3.3) about a nominal 

user position (uXo,uyo,uZo) by performing a Taylor series expansion and neglecting 

second and higher order terms. The linearized equation obtained is given by 

Rv 
yUxo        Xn) 

+ 

+ 

\J(ux0 - xn)2 + (uyo - yn)2 + (uZ0 - zn)' 

Ko ~ Vn) 

yj{uxtt - xn)2 + (uyo - yn)2 + (uZ0 - zn)' 

y/(uX0 - xn)2 + (uyo - yn)2 + (uZ0 - zn)'- 

Z\UX       UXo) 

\Uy       Uy0) 

(uz -uZ0) 

+   ^/{uX0 - xn)2 + (uyo - yn)2 + (uZ0 - zn)
2 + b + wn 

By defining the regressor h for this scalar measurement equation as follows: 

[V-XQ     %n) 

yj{ux0 ■ -Xn)2+(uyo-yn)2+(uz0-zn)2 

(uyo-yn) 

y/(uXQ - -Xn)2+(uy0-y„)2+(uZ0-z„)2 

(uzo—zn) 

y/(ux0-xn)2+(uy0-yn)2+(uz0-zn)2 

1 

(3.30) 

the linearized equation can be rewritten as 
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Rn   «   hTX + wn 

{uxp ~ ^nj^gQ T (,^i/o ~ yn)uyo T (^z0 ~ Zn)uz0 

\j{uX0 - Xn)2 + (uyo - yn)2 + (u*0 - Z„)2 

+     VK-^n)2 + (%o - 2/«)2 + («20 ~ Zn)2 

where X is the vector of unknowns, [ux,uy,uz,b]T. The goal is to reduce the above 

equation into the form of a linear measurement model described by: 

Zn = hTX + wn (3.31) 

In order to achieve this goal, Zn must be defined as: 

Zn   =   Rn- yftuso - xn)2 + (uyo - ynf + (uZ0 - znf 

\
U

XQ       Xn)UXQ "r \uyo       J/nJ«yo ~r \
U

ZQ       
zn)uzo + 

2 \ftuxo ~ xnf + (uyo - yn)
2 + {uZ0 ~ Zn) 

which can be simplified into the following: 

r?           r>      i    \«^0  — xn)xn + {uyo ~ VnjVn + [uz0 ~ zn)zn /Q QO\ 
Ln = tin H , \0.6L) 

<J(Ux0 ~ Xn)2 + (uyo - yn)2 + (UZ0 ~ Znf 

Now that the nth pseudorange measurement equation is approximated into the 

appropriate linear measurement model form defined in Equation (3.31), it can be 

used to update the solution obtain from the closed-form algorithm using a Kalman- 

like update approach. Using a linear measurment model simplifies the solution by 

allowing the use of linear Kaiman filtering techniques, as apposed to using an Ex- 

tended Kaiman filter or increasing the order of the filter to accomodate a nonlinear 

measurement equation. Keeping in mind that Zn is actually part of the measure- 

ments that were used to obtain the closed-form solution and not a new measurement 
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as would be the case in a conventional Kaiman Filter application, hence the new 

measurement and the previous estimate are correlated. This is a violation to the 

basic assumptions used in the derivation of the conventional Kaiman Filter update 

equations. A Kaiman-like update equation that can accommodate correlation be- 

tween the new measurement and the previous estimate needs to be derived. 

S.S.3    Noise Statistics. In order to derive the new Kaiman-like update 

equation, it is necessary to know the relationship between the noise in the new 

measurement (wn) and the previous estimate being the solution obtained from the 

closed-form algorithm. The linear regression used for the closed-form algorithm was 

defined in Equation (3.7) as, 

Z = HX + V, 

and the statistics of the noise vector V were derived in Section 3.1.3. The closed- 

form algorithm produced an estimate of the GPS unknown parameter, (X), defined 

in Equation (3.17) and an estimate of the covariance matrix associated with estima- 

tion, (Px), defined in Equation (3.22). Using the knowledge of the estimated GPS 

solution, the true GPS parameter vector can be defined as, 

X = X + W, (3.33) 

where W ~ JV(0, Px)- The correlation of interest between wn and W can be defined 

as: 

p = E{Wwn] = E{wnW} (3.34) 

To determine the relationship between W and V, the linear regression in Equa- 

tion (3.7) is multiplied from the left by HTR~1 yielding the following expression: 

HTRZlZ = HTR-XHX + HTR~lV 
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The expression can be solved for X to obtain: 

TD-1 m-l uTn-l, X = (^R-'Hr'H'R-'Z - (H'R-'Hy'H'R^V (3.35) 

The first term on the right hand side of Equation (3.35) is recognized from Equa- 

tion (3.17) as X; therefore, by equating Equation (3.35) and Equation (3.33) an 

expression for W in terms of V is obtained: 

W = (H1 R^H^H1 R^V (3.36) 

Next the relationship between V and wn is determined be exploiting the noise 

statistics derived in Section 3.1.3. 

E{ViWn}   =   E{({b - R)vi + wi)wn} 

=   (b - R)E{viWn} + E{wiivn} 
1 

(6 - R)E{(wi - wn)wn} + ^E{{wj - wl)wn) 

(b- R)E'{wiWn -w
2

n} + -E{w2
iWn - wl)} 

1 
=   (b-R)(0-o3) + -(0-0) 

=   (R-b)a2. (3.37) 

Equation (3.37) which represents the variance between any single element of V and 

wn. The relationship can be generalized to obtain the following covariance matrix: 

E{Vwn} = (R- b)a2 (3.38) 

J((n-l)xl) 
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Using Equation (3.36) and the relationship in Equation (3.38), an expression 
—* 

for the covariance between W and wn is determined: 

E{Wwn}   =   (H'R-'Hy'H'R-'EiVwn} 

2/ TjT D-l m-1 TjT D-l =   (R-^a'iH'R^H^H'R 

J ((n-l)xl) 

(3.39) 

3.3.4    The Augmented Linear Regression. An augmented linear regres- 

sion can be formulated by combining Equation (3.33) and Equation (3.31).   The 

augmented linear regression is expressed as: 

Za = HaX + Va (3.40) 

where, 

• Za is the (5 x 1) augmented measurement vector defined as: 

Za = 
X 

Zn 

• Ha is the (5 x 4) augmented regressor defined as: 

Ha 

I 

hT 

Va is the (5 x 1) augmented measurement noise vector defined as: 

K 
W 
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The goal is to derive a Kalman-like update equation to refine the unknown GPS 

parameters vector estimate, (X), and its covariance matrix, (Px), both produced by 

the closed-form algorithm developed in Section 3.1. In the derivation that follows, 

to distinguish the estimates X and Px as produced by the closed-form algorithm 

from the estimates that will be obtained through the Kaiman update, the following 

notation is used: 

• X    and Px represent the estimate and the estimation error covariance prior 

to the update; and 

• X   and Px~ represent the estimate and the estimation error covariance follow- 

ing the update. 

In order to obtain the updated estimates from the augmented linear regression in 

Equation (3.40), it is necessary to derive the covariance of the augmented noise vector 

Va. Since the statistics of the noise components in Va have already been determined, 

the equation error covariance matrix, Ra, is derived as follows: 

Rn     = =   E{VaVa
T} 

=   E{ 
W 

[WT wn}} 

=   E{ 
wnvi 

rT   Wwn 

Px    P 

P T      a2 
(3.41) 

The updated minimum variance GPS solution estimate and associated covari- 

ance matrix are given by the expressions: 

.+ 
x    = PirHjR-^z« 

P*     =     (HjR-a'Ha)-1 

(3.42) 

(3.43) 
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The expressions in Equation (3.42) and Equation (3.43) are sufficient to obtain the 

required updates but it is desirable to manipulate and reduce the equations into 

the more familiar and computationally efficient form of the classical Kaiman filter 

update equations. The expressions can be rewritten in expanded form as: 

(3.44) 
u+ Px P 

-l 

X 
X     = =   \lh\ 

.P1 a2 
Zn 

p$ - =   \\Ih] 
' Px P 

-l 

I 

[pr a2 h1 
1-1 (3.45) 

To assist in the reduction of the expressions, the parameters are redefined by 

scaling them as follows: 

5 =► o*P* 

2 => °2Px- 

p => a2p 

In terms of the redefined parameters, the expressions become: 

X Px-[I h] 

-i -i 

P+   =   [[Ih] 

Px   P 

pT    1 

Px   P 

PT 1 

X 

Zn 

-i -1   r 

I 

The inverse of the redefined noise covariance matrix is calculated by defining 

a piecewise matrix inverse and algebraically determining the inverse of each piece: 

(3.46) 
' Px p 

-1 

A a 

.PT 1 T a c 
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From Equation (3.46), it is obvious that, 

Px   P A   a I   0 

PT 1 T a     c 0   1 
(3.47) 

The following four equations are obtained by piecewise equating the members of the 

matrix on the left hand side of Equation (3.47) to those on the right hand side: 

• PxA + paT = 1 

• pTA + aT = 0 

• Pxa + cp = 0 

• pTa + c = 1 

From the four equations above, expressions for A, a, and c are determined alge- 

braically in terms of only P^ and p. 

A   = 

a 

c 

{Px-PP7)-1 

-(Px-PPT)'1P 

I+P
T
(PX-PP

T
)-

I
P 

(3.48) 

(3.49) 

(3.50) 

With A, a, and c known, it is possible to describe Ra 
1. Further to the above equations 

the following relationships are noted: 

a   =   —Ap 

c   =   1 + pTAp 

(3.51) 

(3.52) 

Using Equations (3.51) and (3.52), the following two expressions that will be ex- 

tremely useful in the simplification of Equations (3.44) and (3.45) are formed: 

A + haT = A - hpTA = (I- hpT)A 

3-27 



a + ch = -Ap + h + hpTAp = h - (I - hpT)Ap 

The expressions in Equations (3.44) and (3.45) can be rewritten by substituting 

R'1 by its equivalent form as defined in Equation (3.46) and simplified by multiplying 

out the matrices. 

X P+[I h] 
A    a 

T a     c 

X 

Zn 

=   P£[(A+haT)X   +(a + ch)Zn] 

=   P£(A + haT)X   +P£(a + ch)Zn 

=   P%(I-hpT)AX~ + P+[h - (I - hpT)Xp]Zn (3.53) 

P$ =   [[Ih] 
A   a 

T     „ a 

T -i 

I 

hT 

= [A + ch^ + h^ + ah^-1 

= [A + (a + ch)hT + haT}~1 

= [A + (h-(I- hpT)Ap)hT + ha7}'1 

= [A + hhT-{l-hpT)AphT + haT]-1 

= [A + hhT - AphT + hpTAphT - hpTA]~1 

= [hhT + (7 - hpT)A - (I - hp^Aph?]-1 

= [hhT + (I - hpT)A(I - phT))'1 (3.54) 

The inverse of the (I — phT) matrix in the P% expression in Equation (3.54) is 

calculated by applying the Matrix Inversion Lemma (MIL): 

Ti\-ijr (i-pKl)-l = i+h(i-P
lh)-y=i+- 

p n hp1 
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By using the above result and introducing the expression for A in Equation (3.48), 

Equation (3.54) becomes: 

pi = [w+fj+j-^^r'Atf+jA^)-1]-1 

= [hk?+(/+r_L?x^)-'(i'x - pfrHi+Y^TiP^r1}-1 

To simplify the expression for Py further, it is necessary to define a new inter- 

mediate variable, Y: 

Y = (I+ Y^fhhpT^Px ~ PfW + l^hphT) (3"55) 

The expression for Y defined in Equation (3.55) is further simplified as follows: 

„        hTPyh — hTp + pTh — 1    T 1       /„   ,   T       ,T^  N = f* +      (i-„V—K>T + r^(W+^) 
= p*+hiE$w™T+T^rk{pxh''T+>'hTpx)        (3-56) 

By introducing the expression for Y defined in Equation (3.55) and applying 

the MIL, the expression for P% is further simplified: 

P+   =   (Y~1 + hhT)-1 

=   Y-Yh{l^hTYh)-1hTY 

= Y-T^YkYhhTY (3'57) 
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It is noted from the simplified expression for Py given in Equation (3.57) that no 

matrix inversion operation is required for the update of the covariance matrix since 

both Equations (3.56) and (3.57) do not involve any matrix inversion. 

Attention must now be turned towards the update equation for the GPS solu- 

tion estimate (X). In Equation (3.53) the term, {Px(I — hpT)A}, is algebraically 

manipulated to allow for further simplification of the equation. The manipulation in- 

volves using the result obtained in the covariance update equation in Equation (3.57): 

p£(i-hpT)A = (i-p£hhT)(i-PhTy 

= (I-p+hhT)(I+T-^phT) 

T+—KflPbT   hTp »+^T 

1 — p1 n 
1 ,-r 1 

=     J-P+M7 + _J__pÄT__^_p+ÄÄ- 
1 - pTK 1 - P

Th 

1 + 1 TüPh    ~ 1 TlPXhh 
1 — p1 h 1 — p1 h 

I+Y^ip-Pth)^ (3.58) 

The expressions in Equation (3.58) and Equation (3.48) are replaced into Equa- 

tion (3.53) and the equation is further manipulated to obtain: 

X+   =   P+(I-hpT)AX~ + P+[h - (I - hpT)Ap}Zn 

=   P£(I-hpT)AX~+ P£hZn-P£(I-hpT)APZn 

=   P+(I - hpT)AX~~ + P+hZn - (I + YZ~Tl^ - Pxh)hT)pZn 

=   P+(I - hpT)AX~ + P£hZn - pZn - z-^Yrip - P£h)hTpZn 1 — v h ■P 

P+(I - hpT)AX~ + P+hZn - PZn - -^\{P ~ P£h)Zn 

P+(I - hpT)AX   + P+hZn - PZn - ^-^(pZn) + ^-^(P+hZ^ 

p+(i - hP
T)AX + p+hzn - Y^-Yj;(pZn) + Y^P^iPthZn) 
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= r + T^W" ~ p^hTr ~ r=75 w+T^H^^ 

=   i" + T-!^r(P|l-?)(Z„-A7'i") (3.59) 
I — p1 n 

By comparing the expression in Equation (3.59) to the classical Kaiman filter 

estimate update equation, it is noted that by defining a filter gain K: 

Equation (3.59) is reduced to the form of the classical estimate update equation and 

it can be rewritten as: 

1+ = X~ + K{Zn - hTX ) (3.60) 

Although Equation (3.60) has the same form as that of the classical Kaiman 

filter, it must be noted that the filter gains K are not the same. The main difference 

is due to the introduction of the correlation p between the new measurement and 

the previous estimate which in the case of the classical Kaiman filter is zero. As 

is the case for the Kaiman filter update "equations, an equivalent expression for the 

filter gain K must be obtained in terms of the covariance prior to the update (Pjp). 

Using the previous result obtained for Py in Equation (3.57), it is most convenient 

to express the filter gain K in terms of Y as defined in Equation (3.55), which is a 

function of (Px). 

K s irWft+A-?) 
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1     -iYh-,  , lrVuYh(hTYh)-p] 
l-pThl l + hTYh' 

i^ir^yiYh-A (3-61) 

Using the new expression for K obtained in Equation (3.61), the covariance 

update equation ( Equation (3.57) ) must be rewritten in terms of the filter gain K. 

By manipulating Equation (3.61), the following expression is obtained: 

This expression is inserted into Equation (3.57) to obtain the covariance update 

equation in the desired form: 

P+   =   Y-[(l-pTh)K + p\hTY 

=   {I-[(l-pTh)K + p]hT}Y (3.62) 

The derivation of the Kalman-like update equations in the desired form is now com- 

plete. 

To summarize the results obtained, the final Kaiman update equations as pre- 

sented in Equation (3.56), Equation (3.61), Equation (3.60), and Equation (3.62) 

are: 

y = * + ISF"
7
 
+ r^Ww+^ 

X     =   k   +K(Zn-hTX ) 

P$   =   {I-[(l-pTh)K + p]hT}Y 
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The above equations are used in the Matlab implementation of the Kaiman up- 

date experimental algorithm. The Kaiman update algorithm is intended to refine the 

GPS solution estimate in a direct and non-iterative manner. Although this can be 

achieved in most cases, it was determined experimentally that sometimes a second 

application of the algorithm is required to obtain a better solution estimate. Re- 

calling that the new measurement used by the Kaiman update algorithm is actually 

the nth pseudorange equation in Equation (3.3) that has been linearized about the 

position estimate produced by the closed-form algorithm, implies that how well the 

linearization fits the true unknown GPS parameters is dependent on how good the 

solution produced by the closed-form algorithm is to start. In order to alleviate this 

undesired dependency, after the Kaiman Update algorithm has been applied once, 

and produces an improved solution estimate, Equation (3.3) is once again linearized 

about the improved position estimate producing a better new measurement. The 

Kaiman update algorithm is applied a second time keeping in mind that the estimate 

prior to the update (X ) and the covariance prior to the update (Px) are the esti- 

mates produced by the closed-form algorithm, not the solution obtained as a result 

of the previous application of the Kaiman update. Theoretically, this process can 

be continued recursively until convergence to the best possible solution is achieved; 

however, it was shown experimentally that after the second application of the algo- 

rithm, the change in the solution estimate is insignificant. Consequently, continued 

iterations are not required; the algorithm needs to be applied just twice. The first 

application is strictly to obtain a suitable position estimate about which to perform 

a valid linearization of the nth pseudorange equation and the second application is 

to calculate the final GPS solution estimate and its covariance. 

A quick verification of the derived update equations in Equations (3.56), (3.61), 

(3.60), and (3.62) is carried out to confirm the validity of the new equations. The 

special case of the classical Kaiman filter where p = 0 is considered. For this spe- 

cial case of no correlation, the well known classical Kaiman update formulae, are 
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recovered: 

Y   =   Px 

K = TTWp^P*h 1 + hTPxh 

X     =   X   + #(Z„-/iTX ) 

P+   =   (I-KhT)Px 

3-4    Alternate Stochastic Closed-form Solution 

This section presents the mathematical derivation of an alternate stochastic 

closed-form solution that is closely related to the closed-form algorithm developed 

in Section 3.1. This alternate closed-form algorithm attempts to alleviate some of 

the undesirable characteristic associated with the closed-form algorithm developed in 

Section 3.1. The development of this algorithm is presented strictly to demonstrate 

a potentially viable approach in producing an alternate stochastic closed-form solu- 

tion. The main difference between this algorithm and the previous one is that the 

differencing of the n expanded pseudorange equations presented at Equation (3.1) 

will be done in a cyclical fashion. The concept of cyclical differencing is based on 

the difference linearization approach demonstrated by Krause [14] for the develop- 

ment of a deterministic closed-form solution. The solution in [14] uses differencing 

to formulate a computation basis from which the user position is backed out and 

uses a nonlinear auxiliary equation to compute the user clock bias; whereas, the goal 

in this development is to form a linear regression consisting of n equations in four 

unknowns, three user position coordinates and the user clock bias. 

The cyclical differencing scheme involves subtracting the (i-\-l)th equation from 

the ith equation for i = 1,2,..., n — 1 where n is the number of available pseudorange 

measurements. The last, (nth), linearized equation is formed by subtracting the first 

equation from the nth equation.  The most noteworthy motivation to attempt this 
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development is that the cyclical differencing will eliminate the nonlinear terms while 

retaining n linearized equations, unlike the previous closed-form solution presented 

in Section 3.1 which produced (n — 1) linearized equations and was left with the 

nth nonlinear pseudorange equation for use as an auxiliary equation. It was initially 

anticipated that this alternate closed-form solution would be capable of producing 

estimates of the four GPS solution parameters with only four pseudorange measure- 

ments, unlike the closed-form algorithm presented in Section 3.1 which requires a 

minimum of five. 

3.4.1 New Linear Regression in n Equations. The initial portion of the 

derivation of this alternate closed-form solution to the pseudorange equations is iden- 

tical to that presented in Section 3.1. A natural starting point for this development 

is the point at which the developments differ. Consequently, the development of the 

alternate closed-form solution begins with Equation (3.1): 

u: + Uy + u2
z-b2 - 2xiUx - 2yiUy - 2ziUz + 2Rib ■■ 

Rl - A - yf - A - 2Riwi + 2bwi + w1 

The cyclical differencing is applied resulting in n equations that are linear in the 

unknown variables and can be expressed as: 

(xi+1 - Xi)ux + (yi+1 - yi)uy + (zi+1 - Zi)uz + (Ri - Ri+i)b - 

-(R^-R^Wi^-x^+y^-y^+z^-z^+Ri^Wi^-RiWi+bwi-bw 

(3.63) 

Equation (3.63) is understood to encompass n equations for i = l...n, where it is 

understood that the first equation also serves as the (n + l)th equation. 

To simplify Equation (3.63), the approximation at Equation (3.5) is introduced 

as was done in the previous derivation and Equation (3.63) becomes: 
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[xi+1 - Xi)ux + (yi+i - yi)uy + (zi+1 - Zi)uz + (Ri - R{+1)b « 

^^^+1+^+1-^+^+1-^+^+1-^)+(6-ß)K-^+1)+^^<1) (3.64) 

By redefining the following terms : 

• (b - R)(wi - wi+1) + \{w1 - u>?+1) =» VJ; 

Equation (3.64) reduces to a linear regression form of n equations in four unknowns 

expressed as: 

(xi+1 - Xi)ux + (j/i+i - Vi)uy + (2ri+1 - ZJ)U^ + (Ri - Ri+1)b « Z; + V;       (3.65) 

At this point, the linear regression in Equation (3.65) can be written in matrix 

notation form as: 

Z = HX + V, (3.66) 

where 

Z is the measurement vector of dimension n given by: 

Zi 

z2 
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H is the (re x 4) regressor matrix given by: 

H 

X2 -xi       2/2 - 2/1       z2 - zx       Ri- R2 

X3 -X2 2/3 - 2/2 23 -22 -#2 ~ #3 

3^n       2-n—1      J/n       Vn—X     Zn       Zn—X     "n—1        -"n 

£i - ^n       2/1 ~ 2/n       21 - 2n       -R„ - -Ri 

• X is the vector of unknowns given by: 

X = 

u. 

u„ 

• V is the equation error vector of dimension n given by: 

V2 

V 

K 

It must be noted that the the (re x 4) regressor matrix (H) is rank deficient, viz., 

rank(H) = 3; therefore, this approach is incapable of producing a GPS solution in 

the deterministic case. 

S.4-%   Noise Statistics. Using the linear regression obtained in Equa- 

tion (3.66), it is possible to obtain an estimate of X if the statistics of the equation 
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_* —* 
error vector V are known. The statistics of V must be derived from the known 

statistics of the pseudorange measurements noise, to,-. The equation error vector V 

is known to be zero mean; therefore, only the covariance matrix of the equation 

error vector V needs to be derived. The covariance matrix is an (n x n) symmetrical 

matrix whose entries, in the most general form, are given by: 

£{ViVi}=£{[(&-Ä)(t0t--tfl^ 

(3.67) 

The subscripts i and j in Equation (3.67) take on values from 1 through n and 

it is understood that a subscript of (n + 1) is equivalent to a subscript of 1. There 

are three separate cases of covariance entries that must be considered: 

1. i = j. These entries represent the diagonal elements of the covariance matrix 

and are annotated as PyD. 

2. i = j + 1 or j = i + 1. These entries represent the adjacent elements and 

populate the matrix cells adjacent to the diagonal elements. Matrix elements 

(l,n) and (n, 1) are also adjacent elements since it is understood that (n + 1) 

is equivalent to 1. These adjacent elements are annotated as PyA. 

3. i jz j + 1 and j ^ i + 1 and i ^ j. These entries represent all the remaining 

elements of the covariance matrix and are annotated as PyR- 

The noise covariance matrix Py whose elements are described by E{V{Vj} is a 

symmetrical (n x n) matrix expressed as: 

Pv 

PyD     PyA     PyR PvR   PVA 

PyA     PyD     PyA Pvn ■■■    PvR 

PvR    '' • 

'■■    PvR 

PvR    ■■■    PvR PvA Pvn     PVA 

PvA   PvR    ■■■    PvR   PVA   PVD 

(3.68) 
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By recognizing that the expectation operator (E) is a linear operator, the ex- 

pression for E{ViVj] in Equation (3.67) can be expanded as follows: 

E{VM]   =   Eiib-Rfiwi-w^iwj-Wj^ + Ei^b-R) 

[(wi - wi+1)(w
2 - w2

j+1) + (WJ - wj+1)(wf - w2
+1)]} 

+E{^(w2-w2
+1)(w

2-w2
j+1)} 

1 _ 
=   (b- R)2E{(wiWj - WiWj+1 - wi+tWj + wi+1Wj+1)} + -(b - R) 

E{{WiW2 - WiW2
j+1 - Wi+1W2 + Wi+iW2

+1 + WjW2 - WjW2
+1 - Wj+iW2 

+wj+1w
2
+l)} + -E{(w2w2 - w2w2

+1 - w2
+1w

2 + w2
+1w

2
j+1)}    (3.69) 

From Equation (3.69) it is possible to find the equation error statistics by using the 

defined elemental noise statistics of the pseudorange measurement noise, (tu). In 

order to proceed, each of the three cases of the covariance matrix entries must be 

considered individually, where Equation (3.69) is further reduced for each case. 

3.4-2.1    Noise Covariance, Diagonal Elements. The diagonal ele- 

ments of the covariance matrix are represented by the case where j = i. Making this 

substitution into Equation (3.69) reduces the expression for the diagonal covariance 

elements to: 

PvD   =   (b-R)2E{{w2-2wm+i+w2
+1)}      . 

+{b - R)E{(w* - wiW
2

+1 - wi+1w
2 + w*+1)} 

+ 1IE{(wt-2w2w2
+l-wt+1)} 

=   (b-R)2(a2-0 + a2) + (b-R){0) + ^(3a4-2a4 + Za4) 

=   2(6-£)V + <74 

3.4-2.2   Noise Covariance, Adjacent Elements.      The adjacent elements 

of the covariance matrix are represented by the case where j + 1 = i. Making this 
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Substitution into Equation (3.69) reduces the expression for the adjacent covariance 

elements to: 

pvA   =   {b-R)2E{(wiWj-w*-Wi+1Wj + Wi+iWi)} + -(b-R) 

E{{wiw) - wf - wi+1w
2 + Wi+1W? + Wjwl - WjW2

i+l - w? + Wiwf+1)} 

+ -E{{w2w2 - wf - w2
+1w

2 + w2
+1w

2)} 

=   (b - R)2(0 - 0 - a2 + 0) + ^(6 - R)(0) + \{a4 - 3<74 - a4 + <r4) 

-(b-Rfo2-1-** =      X 

2
PVD 

3.4-2.3   Noise Covariance, All Remaining Elements.      Equation (3.69), 

in its current form, represents the case for all the remaining covariance matrix. 

PVR   =   (b-Ry(0)+l-(b-R)(0)+1-(a*-**-o-i + o-*) = 0 

Since the individual covariance matrix elements PvD, PvA, 
and PvR have been 

determined, the covariance of the equation error vector V can be expressed as: 

Pv = a^ + (b-R)2)Rn, (3.70) 

where Rn is a (n x n) matrix whose diagonal elements are 2, the elements adjacent 

to the diagonal elements are — 1, and all the remaining elements are zero. As an 

example, the Rn matrix for n — 5 is a (5 x 5) matrix defined as follows: 

R& 

2-10      0-1 

-12-10      0 

0-12-10 

0      0-12-1 

-10      0-12 
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An interesting characteristic of the Rn matrix is that it is always positive 

semi-definite. Rn always has exactly one eigenvalue equal to zero; hence, it is not 

invertible. Recalling the solution for the minimum variance estimate of the unknown 

parameter vector X derived in Equation (3.16), the inverse of Rn is used as a weight- 

ing matrix. Since Rn is not invertible, the unknown parameter estimation is obtained 

using the following equation where the inverse of Rn is substituted by the generalized 

inverse of Rn: 

X = {H
T
R\H)^H

T
R\Z, (3.71) 

~t 
where Rk is the generalized inverse of Rn. 

To get a deeper appreciation of the problem at hand, which is indeed more 

complex than it appears, the concept of the generalized inverse is examined closely. 

There are a number of possible approaches to obtaining a generalized inverse of a 

matrix, but given the symmetric characteristic of the Rn matrix, using the Singular 

Value Decompostion (SVD) approach is the most convenient [4]. Performing a SVD 

on a real symmetric Rn produces the following result: 

Rn = USUT (3.72) 

where S is a (n x n) diagonal matrix whose diagonal elements are simply the singular 

values or eigenvalues of Rn and U is a {n x n) unitary matrix. Using the SVD results, 

the generalized inverse of Rn is simply given by: 

k\ = US^UT (3.73) 
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where the generalized inverse of S is given by: 

st 

1 
Ai 

0 ...    o 

0 1 
A2 

0 ...    o 

0 '••     0 

0 0 A1         ° An-1 

0 ...    o 

The eigenvalues of Rn are represented by A; but it must be reemphasized that Rn 

has one eigenvalue (An = 0). 

The rank deficiency is now evident; furthermore, the last column of the unitary 

matrix, U, is arbitrary and insignificant. The impact of this rank deficiency is 

that although the linear regression in Equation (3.66) appears to be of order n, 

it is actually of order (n — 1). As was the case in the closed-form algorithm, a 

minimum of five pseudorange measurements are required to produce a solution using 

this alternate closed-form approach. To avoid the apparently excessive order of the 

linear regression and the requirement to work with a generalized inverse, the linear 

regression in Equation (3.66) can be transformed into an equivalent form of order 

(n-1). 

A transformation matrix, C/r, is defined and recalling that the last column of 

U is insignificant allows for the transformation matrix to be partitioned as follows: 

U1 = 

T 

where t is the last row of the UT matrix. A new linear regression is obtained by 

premultiplying the linear regression in Equation (3.66) by the ((n — 1) X n) trans- 

formation matrix, T: 
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TZ = TEX + TV, (3.74) 

A simple linear regression is formulated by redefining the terms in Equation (3.74) 

as follows: 

• TZ^ ZT 

• TE^ET 

• TV^Vr 

The transformed linear regression is represented by : 

ZT = ETX + VT, (3.75) 

where 

• ZT is the transformed measurement vector of dimension (n — 1) 

• ET is the transformed regressor matrix of dimension ((n — 1) x 4) 

• VT is the transformed equation error vector of dimension (n — 1) 

The covariance matrix of the equation error vector VT is now calculated as follows: 

E{VTV^}   = E{TW(TW)T} 

= E{TWWTTT} 

= TE{WWT}TT 

= TRnT
T (3.76) 

The expression for the noise covariance obtained in Equation (3.76) is recog- 

nized as the diagonal S matrix obtained from the SVD operation in Equation (3.72) 

without its rfh row and rfh column of zeros. The covariance matrix can be defined 
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as E{VTVJ} = Sn_i, where Sn-i is given by: 

Sn-l = 

Ai    0 ••• 0 

o A2   o ; 

: "•• 0 

0 •••    0 An_i 

The diagonal form of the transformed noise covariance simplifies the task of calcu- 

lating its inverse which is explicitly given by: 

c-i   _ 
°n-i — 

1 
Ai 

0 0 

0 1 

A2 

0 

0 

0 0 1 

An-1    - 

The minimum variance estimate of the unknown GPS parameter vector based on 

the transformed linear regression in Equation (3.75) can thereby be calculated using 

the following expression: 

X = (HTS^HT)    ETSn_1ZT (3.77) 

Equation (3.77) is the most convenient for use in the implementation of the 

experimental algorithm in Matlab. Preliminary experimental trials on the alternate 

closed-form algorithm demonstrated that the use of a supplementary algorithm is 

required to refine the solution produced by the alternate closed-form algorithm, as 

was the case for the closed-form algorithm. Both the maximum likelihood and the 

Kaiman update algorithms can be used to supplement; however, now there is no 

obvious choice of auxiliary equation to use. Any of the original n pseudorange 

equations can be used as the auxiliary equation. The application of the maximum 

likelihood to the alternate closed-form solution is identical to that which was used for 
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the closed-form solution. In order to apply the Kaiman update algorithm it would 

be necessary to determine the correlation between the solution produced by the 

alternate closed-form algorithm and the selected auxiliary equation. This correlation 

is not the same as the one determined for the closed-form solution; furthermore, the 

development is more involved due to the more complex form of the noise covariance 

matrix. The development of the Kaiman update algorithm tailored for application 

to the alternate closed-form solution is not addressed in this thesis. 

3.5    Conclusion of Mathematical Derivations 

This chapter presented the derivations of the four algorithms that are used in 

the Matlab implementations for experimental analysis. The four algorithms are: 

1. The Closed-form algorithm 

2. The Maximum likelihood algorithm 

3. The Kaiman update algorithm 

4. The Alternate Closed-form algorithm 

The first three algorithms are thoroughly analyzed experimentally in Chap- 

ter 4; however, only the Closed-form algorithm developed in Section 3.1 provides a 

stand-alone GPS solution estimate, the two latter are used to refine the solution pro- 

vided by the closed-form algorithm. The maximum likelihood algorithm developed in 

Section 3.2 accomplishes the task of refining the solution but it inherently possesses 

two serious drawbacks: 

• It depends on optimization techniques that are recursive in nature hence the 

closed-form appeal is lost. 

• It does not have the capability to provide the estimation error covariance read- 

ily. 
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As a result of these drawbacks, the more elegant Kaiman update supplementary 

algorithm was developed. 

The Kaiman update algorithm maintains a closed-form approach despite the 

fact that a portion of the algorithm must be applied twice to ensure a good solution. 

The algorithm also retains the capability to calculate the estimation error covariance. 

Based strictly on the mathematical attributes of the Kaiman update algorithm, it is 

the preferred supplementary algorithm. The performance of each of the algorithms is 

assessed experimentally to provide a broader comparison based also on performance. 

The alternate closed-form algorithm based on cyclical differencing linearization, 

was expected to provide a more mathematically aesthetic and balanced solution than 

the closed-form solution. The algorithm produces a singular regressor matrix, H, 

preventing this approach from being used in the deterministic case. As well, in 

the stochastic case, the algorithm produces a positive semi-definite noise covariance 

matrix resulting in an undesirable rank deficiency; consequently, just like the closed- 

form algorithm, it still requires at least five pseudorange measurements in order to 

produce a GPS solution. The performance of the alternate closed-form algorithm 

needs to be compared to that of closed-form algorithm through experimental analysis 

to confirm which closed-form solution, if any, is preferable. 

The most interesting realization that was brought to light through the mathe- 

matical development of the two stochastic closed-form solutions is the set of conse- 

quences of working with stochastic pseudorange equations. In both solutions, the av- 

erage pseudorange approximation at Equation (3.5) is required in order to obtain an 

expression for the noise covariance in which the dependency on any of the estimation 

parameters can be eliminated. This approximation is not required in a deterministic 

development. It turned out that both solutions required at least five pseudorange 

measurements to produce a GPS solution. In the closed-form algorithm this was 

a direct result of the methodology used in differencing the pseudorange equations; 

however, the alternate closed-form algorithm was expected to resolve this problem 
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but was unable to do so due to the positive semi-definite noise covariance matrix, 

with a single zero eigenvalue guaranteed, obtained. In conclusion, when accounting 

for measurement noise, it is impossible to obtain a closed-form fix using linear math- 

ematics only; furthermore, a direct (closed-form) solution can't be obtained using 

only four pseudorange measurements. 

3-47 



IV.   Experimental Results and Analysis 

This chapter presents the experimental portion of the thesis. The first part 

discusses how the experiment was set up and how the Monte Carlo trials were run. 

Next is presented a brief discussion of how the results are intended to be interpreted. 

The experimental results are then presented and the chapter sums up with a detailed 

analysis of the results. 

4-1    Overview 

The experimental results encompass the outcome from two test environments 

which were used to conduct the experimental trials. The first test environment 

consists of twelve simulated NAVSTAR GPS satellite scenarios chosen to represent 

conditions typically encountered in the real world. The twelve satellite scenarios were 

generated using the GPSoft Satellite Navigation Toolbox for Matlab [10]. The second 

test environment consists of three scenarios of pseudo-GPS transmitters in a ground- 

based planar array. The pseudo-GPS transmitters are referred to as pseudoUtes in 

this thesis. The second test environment is required to evaluate the performance of 

the GPS position determination algorithms developed in this thesis in relation to 

the performance achieved by conventional iterative GPS algorithms in other than 

typical GPS satellite geometries where current iterative algorithms tend to perform 

quite well. The test environment using pseudolites in ground-based planar arrays 

is indicative of the geometries that can be encountered in a test range such as the 

SARS [25], [20] where areas of high GDOP or poor geometry are typical. These high 

GDOP geometrical conditions are not very favorable to the conventional iterative 

GPS algorithms and restrictions on flight profiles and ground array patterns must 

be imposed to accommodate the deficiencies in the iterative algorithms [20]. The 

nonlinear closed-form algorithms are expected to be more accurate in regions of high 

GDOP than the conventional iterative algorithms [2]. 
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The results associated with the first test environment are divided into four 

parts, each part related with a different approach used in obtaining the GPS solu- 

tion estimate. The four parts include the Closed-form algorithm, Maximum likelihood 

algorithm, Kaiman update algorithm, and Conventional Iterative algorithms. For the 

second test environment, only the results associated with the Closed-form algorithm, 

Kaiman update algorithm, and the Iterative Least Squares (ILS) algorithm are pre- 

sented. All the results presented are the cumulative representation of 5000 Monte 

Carlo runs. In order to provide an unbiased comparison basis between the results 

using the different algorithms, the Gaussian pseudorange noise for each satellite is 

maintained the same between the different approaches for any given Monte Carlo 

run. The pseudorange measurement noise for each visible satellite is randomly gener- 

ated as an array with 5000 realizations, one for each Monte Carlo run. The simulated 

noise array has a zero-mean and a standard deviation of a = 100 meters which is in 

a typical range but is arbitrarily selected for the purpose of the experimental trials. 

It is not deemed necessary to carry out specific study measurements to confirm 

the validity of the selected standard deviation of a = 100 meters because the ex- 

perimental analysis is based strictly on relative performance of different algorithms 

under identical noise conditions. It is nonetheless essential that the Signal - to - Noise 

Ratio (S.NR) used experimentally be in a typical range since there is a threshold level 

below which using stochastic estimation theory, where an inverse covariance matrix 

is used as a weighting matrix to obtain a minimum variance stochastic estimate, is 

of little or no benefit. Similarly, if an excessively small SNR is considered for exper- 

imental trials, it can lead to false conclusions because the stochastic approach will 

outperform the deterministic approach in these unrealistic conditions. This concept 

has been demonstrated by Brown for system identification applications whereby the 

stochastic weighted least squares was found to weight the estimates incorrectly when 

the SNR was above such a threshold [3]. This thesis does not attempt to determine a 

SNR threshold applicable specifically to GPS and of more importance to determine 
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if the current SNR encountered in typical GPS applications is above or below this 

threshold. It must be noted that if the threshold is at a SNR level much lower than 

that encountered by GPS, it is possible that there is no benefit in applying stochastic 

estimation theory. 

Both GDOP and the condition number of the the regressor matrix (H), which 

is abbreviated as cond(H), are considered in this thesis for the evaluation of how good 

the geometrical conditions in the test scenarios are relative to each other. GDOP is 

considered because it is the conventional, most widely accepted, and most familiar 

measure of geometrical strength for GPS. The cond(H) is also being considered 

because it was shown that cond(H) is a better measure of geometrical strength since, 

unlike the GDOP, it has no dependence on the satellite availability [20]. Cond(H) is 

a measure of strictly the geometry; furthermore, it reflects a worst case upper limit 

on error amplification that can be produced by the satellite geometry. The condition 

number of a matrix is defined as the ratio of the largest singular value to the smallest 

singular value. In the context of the GPS regressor matrix (H) the condition number 

is calculated as follows: 

cond(H) 
^max{HTH) 

where A(-) is used to represent the eigenvalues of a matrix. 

4-2   Data Set Generation, Simulated GPS Test Environment 

Spilker [28] shows that, with a five degree elevation angle, at least seven satel- 

lites are in view 80 percent of the time and there are always at least five satellites in 

view. In terms of satellite availability, the worst case scenario occurs at latitudes in 

the range of 35 to 55 degrees. In this latitude range there are at most six satellites 

available 20 percent of the time using a five degree elevation angle. Even if the worst 

case conditions with a ten degree elevation angle were considered, in the 35 to 55 

degree latitude range, only four satellites are available less than 0.5 percent of the 

time. A ten degree elevation angle is extremely conservative since current technology 
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allows for better than five degree elevation angles at 0 altitude. The elevation angle 

can decrease to below 0 degrees with increasing altitude. Since satellite availability 

is not dependent on user position longitude, selecting a single user position in the 35 

to 55 degree latitude range and assuming an elevation angle of 10 degrees will allow 

for simulating GPS data that is realistically indicative of worst case conditions. It 

is important that experimental scenarios be diverse in addition to being realistic; 

hence, using a fixed user position and using the satellite availability at different GPS 

times in a 24 hour period allows for a wide range of diversity. 

An arbitrary user position in the 35 to 55 degree latitude range over the con- 

tinental United States, 40° N latitude, 105° W longitude, at an altitude of 300 m 

was selected. The geographic coordinates are converted to ECEF coordinates and 

used to generate the experimental data sets with the Satellite Navigation Toolbox 

for Matlab [10]. Data sets are generated at one hour intervals and 12 scenarios which 

showed diversity in satellite availability and satellite geometry were selected to form 

the experimental data set. Satellite availability ranges from five to nine, which is 

indicative of real life scenarios. For a satellite availability of six, seven and eight 

where more than one scenario was selected, the different scenarios were selected to 

obtain the greatest diversity in satellite geometries. 

To give an idea of the satellite geometry for each of the twelve selected satellite 

scenarios, a skyplot is generated for each scenario. The skyplot shows the relative 

position of the available satellites as seen at the user position by looking straight up 

at the sky. The center of the plot represents zenith, moving out from the center of 

the plot represents decreasing elevation angles, and the outer outline is the horizon. 

The skyplots for the 12 experimental scenarios are included at Figures 4.6 to 4.17. 

4-3    Simulation of the Ground-Based Pseudolite Test Environment 

The three ground-based pseudolite test scenarios are produced based on opti- 

mized ground-based planar arrays as presented by McKay [20]. An optimum ground 
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planar array of n transmitters has (n — 1) transmitters uniformly spread over the 

circumference of a circle of very large radius ideally at the horizon and one trans- 

mitter at the center of the circle. The optimum receiver location is directly above 

the transmitter at the center of the circle. 

The following three guidelines were used in selecting the ground planar arrays 

for the test environment: 

1. The optimum geometry for a planar array based on GDOP as described in [20] 

must be maintained to avoid geometries that may potentially be very unfavor- 

able to the conventional iterative algorithms. 

2. Maintaining the optimum geometry concept, the three scenarios represent a 

best possible condition, a degraded condition and a failure condition. 

3. Without adversely effecting GDOP, sufficient transmitters are used in the pla- 

nar array to allow the use of the ergodic assumption invoked in Equation (3.20) 

to estimate the equation error statistics. 

The test environment includes 36 transmitters uniformly spread over the cir- 

cumference of a circle of radius 10000 meters centered at the origin. It is recognized 

that a radius of 10000 meters is restrictive but it is used to reflect potential size 

restrictions due to terrain availability and/or line of sight visibility problems. The 

user is maintained stationary directly above the origin at an altitude of 10000 meters 

(i.e. user coordinates {0, 0, 10000}) for the three scenarios. To avoid confusion with 

the scenarios presented for the first test environment, the three scenarios are labeled 

Scenarios A, B, and C. The following differentiates each of the three scenarios: 

• Scenario A. The ground array includes just the 36 GPS transmitters in the 

outer circular pattern. 

• Scenario B. The ground array is the same as for Scenario A but an additional 

transmitter is included at the origin directly below the user receiver position. 
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This scenario represents the lowest achievable GDOP for the given number 

of receivers and ground area covered, or in other words, the most favorable 

conditions for the conventional ILS algorithm. The planar array depicted in 

Scenario B is shown in Figure 4.1. 

• Scenario C. The ground array is the same as for Scenario A, but an additional 

transmitter is included 400 meters away from the origin; hence, below but not 

directly below the user receiver position, representing a degraded condition for 

the conventional ILS algorithm. 
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Figure 4.1    Scenario B, Optimum Ground-Based Planar Array 

4-4    Experimental Data Description 

The following provides a description of the data collected using the experi- 

mental GPS position determination algorithms. The descriptions are intended to 

facilitate interpretation of the experimental results. They are presented in the same 
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order that they appear in the tabulated results presented in Table 4.1 through Ta- 

ble 4.12: 

• Estimated a. This is an estimation of the standard deviation of the applied 

pseudorange measurement noise. A data-driven estimate of a is calculated on 

each Monte Carlo run and the result shown is the average from all the runs. 

Only the closed-form algorithm has the capability to perform this calculation. 

• GDOP. To demonstrate the diversity in geometry, the GDOP for each exper- 

imental scenario is shown. GDOP is a measure of geometry associated with 

the conventional iterative GPS position determination algorithms; hence, it is 

only presented in the results for the ILS and IBF algorithms. The GDOP is 

calculated using, GDOP = Jtrace((HTH)~1) where H is the matrix of direc- 

tion cosines with ones populating the last column, as defined in Section 2.2.2 

of this thesis. The GDOP for the ILS algorithm is calculated using the tall 

(n x 4) H matrix which reflects the n available satellites. The GDOP for the 

IBF algorithm is calculated using the (4 x 4) H matrix which reflects the set 

of four satellites amongst the available satellites, selected to yield the lowest 

value of GDOP. In order to obtain the lowest achievable GDOP, all the possible 

combinations of four satellite sets were tested for each scenario and the best 

combination was selected. 

• Condition (H). This represents the condition number of the regressor H used 

in calculating the unknown GPS parameters. For the closed-form algorithm, 

the effective regressor is considered in the calculation as, JUTE.-1!!, where Rn 

represents the covariance of the measurement noise vector without the scalar 

premultiplier as defined in Equation (3.11). Rn is used as the noise strength 

weighting to obtain the closed-form estimate as defined in Equation (3.17). 

The calculated condition number is actually the condition number of HT JR'1 

where the Cholesky decomposition of R~l is used to calculate the matrix square 

root. For the iterative algorithms, the regressor H is the conventional matrix 
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of direction cosines with ones populating the last column. There is no regres- 

sor associated with the maximum likelihood approach or the Kaiman update 

approach. 

• Error (x,y,z,bias). Errors are shown for user position ECEF coordinates 

(ux,uy,uz) and for the range-equivalent user clock bias (6). For each parame- 

ter, the error is the difference between the sample average estimate produced 

by the respective position determination algorithm and the true value of the 

parameter. The parameter sample average estimates, produced by the algo- 

rithms, are obtained from averaging the parameter estimates from the 5000 

Monte Carlo runs. 

• Miss distance. The miss distance, or root mean square (rms) position error, is 

a measure of the positioning accuracy and is calculated from the user position 

ECEF coordinates sample average estimation errors. This measure reflects how 

far the estimated user position is from the true user position. The miss distance 

is calculated using, md = Jerror(x)2 + error(y)2 + error(z)2. The estimate 

of the range-equivalent user clock bias has no effect on the miss distance which 

is a function of strictly the position parameter estimation errors. 

• Estimated std (x,y,z,bias). The average estimated standard deviation is a 

calculation associated with the estimate of the GPS solution itself. An estimate 

of standard deviation, for each parameter, is calculated on each Monte Carlo 

run and the result shown is the average from all the runs. This calculation is 

related to the estimate of a and is performed within the closed-form algorithm 

only, since it is the only one with the capability. The closed-form algorithm 

is actually producing an estimate of the covariance matrix which is a fully 

populated matrix due to some unavoidable yet small and unknown level of cross 

correlation; however, the off-diagonal elements will be small. The standard 

deviation for each of the four estimated GPS parameters is obtained by taking 
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the square root of the diagonal elements in the predicted or estimated error 

covariance matrix. 

• Experimental std (a:, y, z, bias). The experimental standard deviation corre- 

sponds to the actual standard deviation of the set of estimates collected over 

all the Monte Carlo runs. This data is essentially the most reliable and most 

critical measure of relative performance of the algorithms. The experimental 

standard deviation is a marker of how good the experimentally obtained esti- 

mates are in terms of spread, which is a direct indication of how sensitive the 

algorithm is to pseudorange measurement noise. The standard deviation is a 

more robust performance indicator than the parameter estimation errors or the 

miss distance since, the covariance of a random variable is readily recovered 

using a finite number of realizations and is very consistent. On the other hand, 

the mean is much more difficult to recover, which raises some concern over the 

results for the parameter estimation errors and the miss distance, despite the 

5000 Monte Carlo runs. The experimental standard deviation also serves as a 

baseline to compare how well the closed-form algorithm predicts its parameter 

error standard deviations. 

• Expected std (x, y, z, bias). The expected standard deviation is shown to ver- 

ify how well the standard deviation of an estimate can be calculated provided 

that the standard deviation of the pseudorange noise (a) is known. The true 

value of cr is used in the calculation even though in reality the true value of a 

could never be known. This measure is an interesting one since by comparing 

expected values to the experimentally obtained values, the algorithm used in 

the calculation can be validated. Expected standard deviation is calculated 

for all the approaches with the exception of the maximum likelihood approach 

which does not have the capability to produce an expected standard deviation. 

The only difference between the expected standard deviation and the estimated 

standard deviation is that the latter makes use of a data-driven estimate of 
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the pseudorange measurement noise variance (<r2), which only the closed-form 

algorithm has the capability of producing. 

4-5    The Monte Carlo Runs 

The experimental trials consisted of 5000 Monte Carlo runs for each test sce- 

nario. Although 5000 Monte Carlo trials may appear over-abundant, it was observed 

experimentally that an extremely large number of runs is required in order to recover 

unbiased means of the estimated parameters. Using experimental noise arrays with 

zero-mean and a standard deviation of a = 100 meters, the experimental covariance 

of the estimated parameters was found to converge to a steady value after a few 

hundred runs but it was not possible to determine the number of runs that would 

be required for the mean of the estimated parameters to converge to a steady state 

value. Under the experimental environments used for this thesis it is anticipated that 

over 10000 runs would have been required. Running the same experiment of 5000 

Monte Carlo runs several times, using a different zero-mean, a = 100 m simulated 

noise array each time, produced virtually identical covariance results but some small, 

yet significant, variations in the means were still being observed. 

4.6   Experimental Observations, Simulated GPS Test Environment 

The four sections that follow discuss results associated with the simulated GPS 

test environment. The results are presented in Table 4.1 through Table 4.12. The 

results are tabulated by scenario and each table is accompanied by a skyplot that 

reveals the satellite availability and geometry of each scenario. 

4-7    Conventional Iterative Algorithms 

The IBF and ILS algorithms are basically the conventional GPS position es- 

timation algorithms currently being used. The IBF algorithm uses only a set of 

four satellite pseudorange measurements chosen from the available satellites based 
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on best GDOP. This approach yields a four by four regressor which must be inverted 

to obtain a solution. The ILS algorithm is essentially the same but all n available 

pseudorange measurements are used to obtain the GPS solution. The regressor is a 

(n x 4) tall matrix so the generalized inverse is used resulting in a least squares so- 

lution. The results for these two conventional approaches are presented to provide a 

comparison baseline. The ultimate aim is to improve on the GPS solutions produced 

by the two conventional iterative algorithms. 

4-7.1 Analysis of Results. The results for both the IBF and ILS algorithms 

are presented to provide a comparison baseline for the results obtained by the closed- 

form, maximum likelihood, and Kaiman update algorithms. Direct comparison under 

varying scenarios reveals how well the new algorithms are performing in relation to 

the conventional iterative algorithms. 

Under some scenarios, the IBF algorithm yielded GPS solution estimates with 

smaller mean errors while the ILS algorithm yielded smaller mean errors under other 

scenarios. There was no strongly apparent geometry relationship that would indicate 

which of the two iterative algorithms yielded the smaller parameter estimation mean 

errors for any given scenario. For both iterative algorithms, a loose relationship 

was observed between the GDOP and the miss distance, in which the lower GDOP 

scenarios tended to yield smaller miss distances. These relationships are shown in 

Figure 4.2 which also shows that the relationship extended to the condition number 

of H. It was expected that a stronger relationship between GDOP and miss distance 

would have existed. The lack of the strong relationship in itself is an indicator of the 

weakness in using the parameter mean estimation errors as sole performance indica- 

tors. It is not possible to base comparisons conclusively on strictly the miss distance 

since the results obtained show small variations in the miss distances between the 

two iterative approaches for all the scenarios. These small differences in miss dis- 

tances may also be partly due to the biases in the mean errors caused by insufficient 

Monte Carlo runs. It is safer to draw comparisons on the more robust experimental 
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standard deviations which tend to be much more consistent. The relationship be- 

tween the standard deviation and GDOP or cond(H) is extremely evident, as can be 

seen in Figure 4.3 which is a plot of the average standard deviation from the three 

position parameters. Regardless of which of the two iterative algorithms provided 

the smallest miss distance, the ILS algorithm always provided the smallest standard 

deviations. This implies that for any given scenario, there is less variation in the 

results yielded by the ILS algorithm, or in other words, the algorithm is less sensitive 

to the pseudorange noise. For the four estimated parameters, in all the scenarios, 

the standard deviations produced by the ILS algorithm varied between 55.56 and 

289.14 meters. This will be used as the comparison baseline for the GPS position 

determination algorithms developed in this thesis. 
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Figure 4.2    Geometry Effects on Miss Distance 

The iterative algorithms do not have the capability of predicting the estimation 

error covariance; however, when the true value of a is provided to either of the 
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conventional iterative algorithms, it is possible to calculate the expected covariance. 

This portion of the experimental trials is being included for academic discussions 

only since there is no way of knowing what the true value of a is; furthermore, the 

iterative algorithms do not have the capability of producing a data-driven estimate 

of a. Since the measurement noise on all pseudoranges is assumed independent, 

zero-mean, with equal variance a2, the covariance of the conventional iterative GPS 

solution is a function of a given by, cov(X) — a2(HTH)~1 [28]. It follows that the 

expected standard deviation of the GPS solution parameters can be calculated using 

the following expression, given in Matlab [17] notation: 

[o-«„ <7ii„, auz, orb]    =   Vdiag(cov(X)) 

=   *Jdiag((HTH)-i) 

The calculated standard deviations of the GPS solution parameter estimates were 

remarkably close to the values obtained experimentally. For both iterative algo- 

rithms, the expected standard deviations calculated where within 2.25 percent of the 

experimentally obtained values. 

4-8    Closed-Form Algorithm 

The closed-form algorithm is based on the approach developed in Section 3.1 

of this thesis. This approach provides a closed-form position estimate solution to a 

stochastically modeled set of n satellite pseudorange equations. The calculated user 

position estimate is not dependent on the equation error covariance, Py, which can 

also be interpreted as the noise strength; however, the noise strength is required in 

the derivation of the estimate. This approach also provides an estimate of the co- 

variance of the estimation error using the return differences or residuals. The return 

difference vector, as defined in Section 3.1.4, is used to obtain a data-driven estimate 

of the pseudorange measurement noise variance (<r2), from which the estimation error 

covariance is readily calculated. 
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Figure 4.3    Geometry Effects on Standard Deviation 

4-8.1    Limitations. Some known limitations associated with the closed- 

form algorithm must be emphasized to avoid misinterpretation of the experimental 

results. The following are the limitations that must be kept in mind in analyzing 

the experimental results: 

1. n satellite pseudorange measurements are required to form a linear regression 

of re — 1 equations. Since there are four unknown parameters, the user position 

ECEF coordinates and the range-equivalent user clock bias, a minimum of five 

pseudorange measurements are required. 

2. When exactly five pseudorange measurements are available (i.e. n = 5), the 

linear regression takes the form of four equations in four unknowns. In this sit- 

uation, return differences of essentially zero can be expected, thereby rendering 

the covariance estimation capability of the algorithm invalid. 
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3. In addition to the previous items, n must be large to determine a experimen- 

tally. It is not known how large n must be before a reliable estimate of a can be 

extracted from the return difference, but an unconfirmed rule of thumb from 

statistics suggests that nmin = 2N2, where N is the number of variables. For 

GPS, N = 4 which implies an nmin of at least 32. The value of nmin serves 

only as a guideline because it is desirable to have n as large as possible since 

the ergodic assumption invoked in Equation (3.20) becomes more valid as the 

number of available satellites increases. The impact of this limitation can only 

be assessed through thorough experimentation. 

4-8.2    Analysis of Results. The experimental results indicate that the 

closed-form algorithm developed in this thesis is extremely sensitive to noise. The 

sensitivity to pseudorange noise is reflected in the extremely large experimental 

standard deviations which ranged from 1078.08 m to 23864.01 m for the position 

parameter estimates as compared to ILS algorithm's baseline results of 55.56 m to 

289.14 m. The standard deviations for the range-equivalent user clock bias esti- 

mates were significantly larger ranging between 19014.42 m and 111746.08 m. For 

the twelve scenarios under observation, the miss distance ranged between 4.93 m 

and 729.17 m compared to the baseline ILS results of 0.76 m to 7.84 m. The re- 

sults loosely reflect tendencies that better results (i.e. lower mean errors and miss 

distance) are obtained when the condition number of the regressor H is lower. The 

relationship between the condition number of the regressor H and miss distance is 

plotted in Figure 4.4. In the twelve test scenarios the results both in terms of mean 

estimation errors and error standard deviations were significantly worse than those 

obtained by both conventional iterative algorithms. 

The results show that the condition numbers for H yielded by the closed-form 

algorithm are all extremely large, ranging between 220.92 and 2172.53; however, 

an in depth appreciation of the algorithm has not yet been acquired to allow in 

distinguishing what could be considered a good range for the condition numbers. 
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Figure 4.4    Closed-Form Algorithm Performance versus Condition Number 

Consequently, it is unlikely that this algorithm can provide a GPS solution with 

small errors. The ill conditioning of the regressor is largely due to the last column 

which is made up of the difference between the pseudoranges. The first three columns 

are made up of differences in the three satellite position coordinates (ux, uy, uz), 

respectively, which tend to produce much larger differences than the pseudorange 

differences. Based on the formulation of the H matrix, the lower condition numbers 

are achieved when the spread in the pseudorange measurements of the satellites 

in view is large. If all pseudoranges are equal, which is not a physically possible 

scenario in the NAVSTAR GPS satellite constellation, the last column of the H 

matrix would be all zeros, yielding a condition number of infinity. The poor scaling 

due to the last column of the H matrix manifests itself as extremely large errors 

in the range-equivalent user clock bias where the observed errors ranged between 

2.04 m and 2500.71 m compared to baseline results of 0.03 m to 5.52 m. The errors 
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in the estimation of the range-equivalent user clock bias were generally in the range 

of one order of magnitude larger than the errors observed for the three coordinates of 

the user position estimate. The large errors in the clock bias estimates do not affect 

the miss distance which is strictly a function of the error in the estimated position. 

An additional feature of the closed-form algorithm is its ability to provide 

a data-driven estimate of the covariance of the GPS solution estimate. This is 

achieved by using the return difference, or residuals, to estimate the variance of the 

pseudorange measurement noise (a2). It is recognized that when only five satellite 

pseudorange measurements are available, it is not possible to estimate the error 

covariance since the the return difference will be virtually zero. The results show 

that, with more than five satellites, an estimate of a, the standard deviation of the 

experimental pseudorange measurement noise, is obtained. The estimates of a are 

not reliable due to the small number of satellites available. As satellite availability 

increases, the estimate of a improves accordingly. The experimental results show 

that, with six satellites in view, the estimated a ranged between 23.51 m and 39.08 m. 

With seven satellites, the estimated a ranged between 52.87 m and 56.26 m, showing 

some improvement. With eight satellites, the estimated a ranged between 62.95 m 

and 64.01 m, showing some further improvement. Comparison of the estimated 

standard deviations obtained to the actual o of 100 m used in the generation of 

the pseudorange measurement noise clearly indicates that a much larger number of 

satellites must be available before a reliable estimate of a can be extracted from 

the return difference. This can present a serious obstacle since there are very rarely 

more than nine satellites in view from the NAVSTAR GPS constellation. This 

situation can change if consideration is given to GLONASS satellite augmentation 

or pseudolite augmentation. 

The estimates of the error covariance yielded by the closed-form algorithm were 

poor as a direct consequence of the algorithm's inability to estimate a accurately. 

There are large differences between the actual experimental standard deviations and 
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the estimated standard deviations; however, this was not due to any deficiency in 

the algorithm used in predicting the estimation error covariance. Although there 

would not be any way of knowing the true a in the real world, in order to validate 

the algorithm used in estimating the error covariance, the actual a of 100 m was 

provided for use in the calculations of the expected standard deviation. The expected 

standard deviation calculations yielded numbers extremely close to those observed 

experimentally. The expected standard deviations where all within 6.5 percent of 

the experimentally obtained values. This is sufficient to validate that the algorithm 

can be used to estimate the standard deviation of its GPS solution estimate, but it 

does not change the fact that the algorithm is plagued with extremely large GPS 

parameter estimate mean errors with extremely large standard deviations. It must 

be noted that when the true value of a is provided to either of the conventional 

iterative algorithms, the expected standard deviations of the GPS unknown parameter 

estimates obtained were also remarkably close to the values obtained experimentally. 

In order to appreciate the merits of the closed-form algorithm truly, particularly 

the ability to predict the estimation error covariance, it is necessary to increase the 

satellite availability. Nothing can be done to increase the actual satellite availability 

which is directly dependent on the constellation, but by applying some creative ex- 

perimentation, it may be possible to increase the effective satellite availability. If it 

is assumed that the noise is predominantly receiver related and it is slowly varying, 

the estimate a can be generated every k sample periods using a moving window type 

approach, in which only the most recent k data sets are used to establish the noise 

strength. This concept is actually more complex than it appears because, although it 

is possible to assume that the noise strength remains fairly constant over the window, 

the vehicle is moving continuously. This concept has not yet been evaluated experi- 

mentally; however, it proved to be extremely effective and reliable for estimating a 

while the user position is maintained stationary. The experimental trials involved 

producing a concatenation of satellite scenarios generated at one hour time inter- 

4-18 



vals. The trials where run, incrementing the number of concatenated scenarios to 

determine the effective satellite availability required to produce reliable estimates of 

a. Experimental results showed the estimated a improving with increasing effective 

satellite availability until a steady state maximum was reached using six scenarios, 

giving an effective satellite availability of 42. These results are shown graphically in 

Figure 4.5. An estimated mean a of 92.5 m was retrieved over 1000 Monte Carlo 

runs. An experimental standard deviation of 30.0 m was observed on the estimates 

of a, which implies that 68.3 percent of the time the algorithm produces an estimate 

of a between 62.5 m and 122.5 m. Although, the user position is stationary here, 

which is seldom the case in reality, it can be inferred that the concept of scenario 

concatenation can be modified and applied to increase the effective satellite avail- 

ability even while the user position is not stationary. Being able to estimate a, even 

if only while the receiver is stationary, can prove to be extremely useful for receiver 

calibration purposes. 

100 

60 80 100 
Effective Satellite Availability 

160 

Figure 4.5    Estimation of a Using Scenario Concatenation 
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4-8.3 Experimental Results, Alternate Closed-Form Algorithm. The ex- 

perimental results obtained with the alternate closed-form algorithm developed in 

Section 3.4 are discussed. The alternate closed-form algorithm, as its name implies, 

is simply a variation on the closed-form algorithm which was motivated by the de- 

sire to obtain a more mathematically balanced algorithm that can produce a solution 

with only four pseudorange measurements as is the case for deterministic algorithms. 

The mathematical development showed that, due to the singularity in the noise co- 

variance matrix, a minimum of five pseudorange measurements is required just as 

was the case in the closed-form solution. Given the apparent similarities between 

both closed-form algorithms, their relative performances were not expected to be 

much different. In fact, in all 12 experimental scenarios, the experimental results 

yielded by both versions of the alternate closed-form algorithm were identical to 

those obtained with the closed-form algorithm. The two versions of the alternate 

closed-form algorithm refers to: 

1. The solution in Equation (3.71) based on the (n x n) linear regression with the 

singular noise covariance matrix. 

2. The solution in Equation (3.77) based on the transformed (n — lxn — 1) linear 

regression with the diagonal noise covariance matrix. 

The experimental results produced by the alternate closed-form algorithm are not 

presented explicitly since they are identical to the closed-form results; hence, the 

closed-form results presented in Tables 4.1 through 4.12 can be interpreted as being 

the results from the alternate closed-form algorithm as well. Contrary to the origi- 

nal expectations, the alternate closed-form algorithm does not offer any additional 

benefits over the the closed-form algorithm; hence, given its complex structure and 

the inherited singularities in the equation error covariance and regressor matrices, 

its use is not recommended. 

4-20 



4-9    Maximum Likelihood 

The maximum likelihood algorithm was developed as a supplement to the 

closed-form algorithm and is not intended to provide a GPS solution on its own. 

The maximum likelihood algorithm is initiated when the closed-form algorithm has 

produced a solution and the closed-form solution is used as a starting point or ini- 

tialization for the maximum likelihood algorithm. The estimate of the unknown 

GPS parameter vector and the associated error covariance obtained from the closed- 

form algorithm is sufficient to describe the Gaussian probability distribution func- 

tion entirely. A constrained optimization problem is formulated by using the last 

pseudorange equation at Equation (3.3) which was not fully employed in the linear 

regression. The goal of the optimization problem is to obtain a new estimate of the 

GPS parameters that maximizes the probability subject to the constraint imposed 

by the nth pseudorange measurement equation; hence, the name maximum likelihood. 

4-9.1 Limitations. The following are some known limitations associated 

with the maximum likelihood algorithm which must be kept in mind in analyzing the 

experimental results: 

1. Optimization algorithms are iterative in nature, hence the closed-form appeal 

is lost. 

2. The maximum likelihood algorithm can provide an improved estimate of the 

GPS unknown parameter vector, but there is no simple way of predicting the 

estimation error covariance. 

3. The pseudorange measurement associated with the last satellite is noise cor- 

rupted but the constraint equation used in the development of the algorithm 

must be a deterministic equation. Disregarding the noise in the nth equation 

will bias the solution and can have an adverse impact on the error since the 

solution becomes extremely dependent on the noise of that one single pseudo- 

range measurement. Some of this concern is alleviated by recalling that the last 
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pseudorange equation is actually the one closest to the average pseudorange as 

defined in Equation (3.4). As such, it is likely that the last satellite is some- 

what in the vicinity of zenith where lower levels of pseudorange measurement 

noise can be expected. 

4-9.2 Analysis of Results. The results produced by the maximum likeli- 

hood algorithm demonstrate the necessity of using the last GPS pseudorange mea- 

surement. In all twelve scenarios, regardless of what the GPS solution errors where 

when the algorithm was initiated, the errors are reduced drastically to essentially 

the same level as obtained with ILS method. The most remarkable difference is in 

the errors of the range-equivalent user clock bias which were extremely large in the 

initial conditions provided. There is no direct relationship between the closed-form 

results and the maximum likelihood results in that the smaller initial errors do not 

necessarily yield better results. The miss distances yielded ranged from 0.89 m to 

8.22 m and followed the ILS results quite closely for the four GPS solution param- 

eters in all twelve scenarios. The miss distances yielded by the maximum likelihood 

algorithm, when compared to those yielded by the ILS algorithm, are a fraction of 

a meter either above or below and the largest difference was 0.56 m observed in 

Scenario 8. 

The experimental standard deviations observed for the three position estima- 

tion parameters are essentially the same as those observed for the ILS. The per- 

formance in terms of to the estimation of the range-equivalent user clock bias is 

slightly worse than the baseline established by the ILS algorithm both in terms of 

the mean error and the error covariance. If only the user position estimation param- 

eters, (ux,uy,uz), are considered, the maximum likelihood algorithm demonstrates 

performance equivalent to the baseline. The fundamental limitation with the max- 

imum likelihood approach is its inability to predict its estimation error covariance; 

furthermore, unlike the iterative approaches, even if the standard deviation of the 
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pseudorange measurement noise is somehow known, the expected standard deviation 

of the estimation parameters cannot be calculated. 

The results yielded by the maximum likelihood algorithm provide some hope 

that a stochastic estimation approach to the GPS pseudorange equations is feasi- 

ble and that performance comparable to that currently being achieved by the ILS 

algorithm is attainable. However, the limitations associated with the maximum like- 

lihood algorithm outweigh the advantages that motivated this research in the first 

place. Consequently, another supplementary algorithm that is noniterative and more 

elegant in form and that can refine the solution produced by the closed-form algo- 

rithm while maintaining the capability to provide the estimation error covariance is 

needed, which leads to the Kaiman update algorithm presented in Section 3.3. 

4-10   Kaiman Update 

The Kaiman update algorithm was developed as an alternate supplement to the 

closed-form algorithm and, as was the case for the maximum likelihood algorithm, it 

is not intended to provide a GPS solution on its own. The Kaiman update algorithm 

requires the closed-form solution for initialization. The last pseudorange equation at 

Equation (3.3) which was not fully employed in the linear regression is manipulated 

into the form of a new linear measurement and is used to update the solution yielded 

by the closed-form algorithm through an update cycle closely resembling that of a 

conventional Kaiman filter. 

4-10.1 Analysis of Results. The Kaiman update algorithm produced results 

comparable to the baseline results. Again, the errors on the estimation parameters 

and the miss distance obtained are extremely close to the baseline results. The miss 

distances yielded by the Kaiman Update algorithm when compared to those yielded 

by the ILS algorithm are a fraction of a meter either above or below and the largest 

difference was 0.77 m observed in Scenario 8. Given the lack of confidence that can 
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be placed on just the mean error results, the results are considered equivalent to the 

baseline in terms of parameter estimation errors. For the three position estimation 

parameters, the experimental standard deviations are also equivalent to the baseline; 

however, the standard deviation associated with the error on the range-equivalent 

user clock bias is noticeably larger than the baseline. The standard deviation on the 

user clock bias was consistently marginally larger than those obtained with the max- 

imum likelihood algorithm. Unlike the maximum likelihood algorithm, the Kaiman 

update algorithm has the capability of predicting its estimation error covariance, and 

its performance is reasonably good. The calculated standard deviations for the three 

position estimation parameters where all within 14.02 percent of the experimentally 

obtained values. The performance in producing the expected standard deviation on 

the user clock bias estimation error was poorer and differed from the experimentally 

obtained values by as much as 44.2 percent. 

Overall, the performance of the Kaiman update algorithm is good and truly 

deserving of further consideration. The only shortcoming of this algorithm is that it 

produces user clock bias estimation error standard deviations larger than the baseline 

and the algorithm is incapable of predicting the standard deviation, associated with 

the user clock bias estimation error, accurately. For the most part, the performance 

of the Kaiman update algorithm is comparable to that of the baseline; furthermore, 

the algorithm retained all the attractive features that motivated the development of 

the closed-form algorithm. Looking at the closed-form algorithm as supplemented 

by the Kaiman update algorithm as a single GPS position determination algorithm 

has produced an algorithm with the following attributes: 

1. The algorithm is closed-form, hence it can be used under any geometrical 

conditions without the need for externally provided initialization. 

2. The algorithm has the potential to benefit from computational efficiencies due 

to its non-recursive nature. 
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3. The algorithm has the capability to produce an estimate of the estimation error 

covariance. 

4. The algorithm can produce a GPS solution estimate without the knowledge of 

the pseudorange measurement noise standard deviation (a). 

5. The performance under typical navigation scenarios, using only the NAVSTAR 

GPS satellite constellation, is for the most part equivalent to the performance 

achieved by the conventional ILS algorithm used as a baseline. 
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Figure 4.6    Skyplot, Scenario 1 

Table 4.1    Monte Carlo Simulation Results, Scenario 1 

Closed 
Form 

Maximum 
Likelihood 

Kaiman 
Update 

Iterative 
Least 

Squares 
Best 
Four 

Estimated a 61.69 
GDOP 1.81 2.45 
Condition H 482.80 5.43 4.16 
Error x 25.50 0.36 0.43 0.29 0.21 
Error y 94.51 -0.17 0.07 -0.64 -0.82 
Error z -83.29 -1.13 -1.33 -0.77 0.38 
Error bias 453.44 1.12 2.25 -0.03 0.02 
Miss distance 128.53 1.20 1.40 1.05 0.93 
Estimated std x 719.34 
Estimated std y 2707.30 
Estimated std z 2349.87 
Estimated std bias 12930.87 
Experimental std x 1137.75 56.14 56.35 55.56 107.56 
Experimental std y 4289.53 99.39 101.73 97.07 140.85 
Experimental std z 3723.09 116.77 118.24 114.77 140.61 
Experimental std bias 20433.70 106.34 130.63 84.56 95.91 
Expected std x 1166.00 57.39 55.83 106.36 
Expected std y 4388.33 91.82 97.83 142.60 
Expected std z 3808.97 105.55 114.32 139.72 
Expected std bias 20959.97 120.56 83.93 95.10 
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Figure 4.7    Skyplot, Scenario 2 

Table 4.2 Monte Carlo Simulation Results, Scenario 2 

Closed 
Form 

Maximum 
Likelihood 

Kaiman 
Update 

Iterative 
Least 

Squares 
Best 
Four 

Estimated a 64.01 
GDOP 1.82 2.09 
Condition H 675.34 4.95 3.63 
Error x 9.82 -0.62 -0.60 -0.68 -0.77 
Error y 37.60 -1.38 -1.31 -1.45 -1.67 
Error z -32.21 1.27 1.21 1.30 1.15 
Error bias 185.69 -0.03 0.35 0.30 -0.07 
Miss distance 50.47 1.98 1.88 2.07 2.17 
Estimated std x 707.00 
Estimated std y 2637.00 
Estimated std z 2264.56 
Estimated std bias 12554.94 
Experimental std x 1078.08 64.09 64.35 63.49 85.23 
Experimental std y 4011.12 122.82 124.25 119.93 129.71 
Experimental std z 3442.63 95.38 96.59 93.21 113.51 
Experimental std bias 19014.42 101.86 113.86 75.56 80.50 
Expected std x 1104.56 60.16 64.12 85.13 
Expected std y 4119.82 126.32 121.01 131.65 
Expected std z 3537.94 89.79 92.59 112.85 
Expected std bias 19614.72 106.06 75.51 80.72 
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Figure 4.8    Skyplot, Scenario 3 

Table 4.3 Monte Carlo Simulation Results, Scenario 3 

Closed 
Form 

Maximum 
Likelihood 

Kaiman 
Update 

Iterative 
Least 

Squares 
Best 
Four 

Estimated a 62.95 
GDOP 1.85 2.39 
Condition H 1071.20 5.17 4.49 
Error x -23.65 0.87 0.86 0.87 0.98 
Error y -92.07 1.73 1.69 1.69 3.88 
Error z 79.90 -0.35 -0.32 -0.36 -1.58 
Error bias -440.27 -0.73 -0.92 -1.28 -2.15 
Miss distance 124.18 1.97 1.92 1.94 4.31 
Estimated std x 1291.51 
Estimated std y 4938.60 
Estimated std z 4225.10 
Estimated std bias 23139.21 
Experimental std x 1929.29 68.49 68.56 68.13 82.90 
Experimental std y 7374.58 125.44 125.97 123.81 161.19 
Experimental std z 6308.96 87.66 88.19 86.69 119.05 
Experimental std bias 34510.60 104.48 109.77 84.05 100.16 
Expected std x 2051.48 63.71 67.02 81.89 
Expected std y 7844.66 140.00 122.84 161.37 
Expected std z 6711.31 89.08 87.20 120.19 
Expected std bias 36755.24 86.79 83.42 100.47 
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Figure 4.9    Skyplot, Scenario 4 

Table 4.4    Monte Carlo Simulation Results, Scenario 4 

Closed 
Form 

Maximum 
Likelihood 

Kaiman 
Update 

Iterative 
Least 

Squares 
Best 
Four 

Estimated a 54.13 
GDOP 1.89 2.34 
Condition H 483.67 4.81 4.25 
Error x -30.88 -1.44 -1.48 -1.32 -2.11 
Error y -110.95 0.32 0.19 0.65 0.21 
Error z 96.27 -0.13 -0.01 -0.52 0.94 
Error bias -528.90 -1.00 -1.64 -0.06 0.77 
Miss distance 150.11 1.48 1.49 1.56 2.32 
Estimated std x 864.05 
Estimated std y 3263.67 
Estimated std z 2827.15 
Estimated std bias 15479.98 
Experimental std x 1619.75 68.97 69.09 68.75 108.93 
Experimental std y 6121.03 116.08 117.33 114.85 130.93 
Experimental std z 5304.14 106.57 107.74 104.87 130.06 
Experimental std bias 29006.92 105.45 125.04 81.97 89.33 
Expected std x 1596.27 65.01 69.37 110.06 
Expected std y 6029.36 115.04 114.30 130.54 
Expected std z 5222.94 113.60 104.46 132.20 
Expected std bias 28598.00 96.66 82.28 90.70 
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Figure 4.10    Skyplot, Scenario 5 

Table 4.5    Monte Carlo Simulation Results, Scenario 5 

Closed 
Form 

Maximum 
Likelihood 

Kaiman 
Update 

Iterative 
Least 

Squares 
Best 
Four 

Estimated a 56.26 
GDOP 2.13 2.83 
Condition H 850.41 5.70 5.63 
Error x 46.31 -0.26 -0.25 -0.34 -0.67 
Error y 172.78 2.11 2.17 1.93 3.12 
Error z -146.70 -0.26 -0.31 -0.08 -1.57 
Error bias 795.08 -0.43 -0.13 -0.75 -1.90 
Miss distance 231.34 2.14 2.20 1.96 3.55 
Estimated std x 1499.53 
Estimated std y 5493.08 
Estimated std z 4713.29 
Estimated std bias 25600.41 
Experimental std x 2694.47 76.40 76.47 76.08 97.90 
Experimental std y 9857.39 134.06 134.25 133.17 170.02 
Experimental std z 8461.39 111.63 111.87 110.75 162.96 
Experimental std bias 45921.95 115.69 118.06 99.73 126.19 
Expected std x 2665.27 83.14 76.08 98.30 

Expected std y 9763.41 150.57 134.95 170.91 
Expected std z 8377.40 110.55 108.26 159.81 

Expected std bias 45502.20 98.12 98.79 125.21 
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Figure 4.11    Skyplot, Scenario 6 

Table 4.6    Monte Carlo Simulation Results, Scenario 6 

Closed 
Form 

Maximum 
Likelihood 

Kaiman 
Update 

Iterative 
Least 

Squares 
Best 
Four 

Estimated a 55.60 
GDOP 2.48 3.14 
Condition H       j 792.75 7.01 6.52 
Error x -2.58 -2.32 -2.32 -2.33 -2.18 
Error y -3.47 -2.53 -2.54 -2.49 -2.74 
Error z 2.36 1.54 1.54 1.52 1.75 
Error bias -2.04 2.39 2.36 2.52 2.56 
Miss distance 4.93 3.76 3.77 3.73 3.91 
Estimated std x 1148.74 
Estimated std y 4132.45 
Estimated std z 3614.97 
Estimated std bias 19524.84 
Experimental std x 2053.96 87.66 87.67 87.49 117.39 
Experimental std y 7398.57 124.98 124.91 124.23 163.45 
Experimental std z 6462.19 154.15 154.18 153.81 190.61 
Experimental std bias 34910.46 134.45 135.37 121.56 147.44 
Expected std x 2066.11 91.89 86.96 115.34 
Expected std y 7432.62 127.00 124.90 163.45 
Expected std z 6501.87 173.01 153.29 191.49 
Expected std bias 35117.32 108.68 122.17 147.89 
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Figure 4.12    Skyplot, Scenario 7 

Table 4.7    Monte Carlo Simulation Results, Scenario 7 

Closed 
Form 

Maximum 
Likelihood 

Kaiman 
Update 

Iterative 
Least 

Squares 
Best 
Four 

Estimated a 52.87 
GDOP 2.96 3.90 
Condition H 2179.74 8.67 8.66 
Error x 14.49 0.04 0.02 0.06 -0.13 
Error y 54.32 0.22 0.17 0.26 -0.29 
Error z -48.62 -1.36 -1.33 -1.40 -0.15 
Error bias 251.92 -0.89 -1.12 -0.70 0.07 
Miss distance 74.32 1.38 1.34 1.42 0.35 
Estimated std x 2621.91 
Estimated std y 9811.00 
Estimated std z 8569.22 
Estimated std bias 45828.57 
Experimental std x 5096.16 69.62 69.61 69.56 100.28 
Experimental std y 19066.07 175.85 175.83 175.24 198.45 
Experimental std z 16649.71 168.33 168.38 167.98 251.23 
Experimental std bias 89017.21 162.90 167.95 152.54 194.91 
Expected std x 4958.95 65.48 69.45 101.08 
Expected std y 18556.05 173.72 174.60 199.25 
Expected std z 16207.40 186.88 169.99 252.49 
Expected std bias 86677.93 146.43 153.94 196.20 
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Figure 4.13    Skyplot, Scenario 8 

Table 4.8    Monte Carlo Simulation Results, Scenario 8 

Closed 
Form 

Maximum 
Likelihood 

Kaiman 
Update 

Iterative 
Least 

Squares 
Best 
Four 

Estimated a 23.51 
GDOP 2.84 3.19 
Condition H 337.28 7.45 6.60 
Error x -19.42 -0.19 -0.23 -0.14 -0.34 
Error y -73.93 -0.69 -0.85 -0.18 -0.49 
Error z 64.35 1.12 1.25 0.73 -1.41 
Error bias -347.06 -0.98 -1.73 -0.29 0.42 
Miss distance 99.92 1.32 1.53 0.76 1.53 
Estimated std x 287.39 
Estimated std y 1094.28 
Estimated std z 944.04 
Estimated std bias 5165.26 
Experimental std x 1246.90 66.20 66.71 65.55 85.69 
Experimental std y 4738.02 216.20 217.87 214.81 236.33 
Experimental std z 4084.66 108.34 110.45 106.83 125.90 
Experimental std bias 22298.07 144.68 171.07 136.72 150.91 
Expected std x 1222.25 67.52 65.60 85.50 
Expected std y 4653.81 221.57 215.38 236.35 
Expected std z 4014.87 100.53 106.96 125.58 
Expected std bias 21967.14 126.23 136.69 151.20 
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WEST EAST 

SOUTH 

Figure 4.14    Skyplot, Scenario 9 

Table 4.9 Monte Carlo Simulation Results, Scenario 9 

Closed 
Form 

Maximum 
Likelihood 

Kaiman 
Update 

Iterative 
Least 

Squares 
Best 
Four 

Estimated a 26.29 
GDOP 2.82 3.60 
Condition H 987.14 7.41 7.23 
Error x 20.25 0.72 0.74 0.75 2.06 
Error y 80.04 5.98 6.05 5.97 6.78 
Error z -67.76 -3.68 -3.74 -3.51 -0.86 
Error bias 344.95 -3.58 -3.24 -4.02 -2.80 
Miss distance 106.81 7.06 7.15 6.97 7.13 
Estimated std x 770.86 
Estimated std y 2920.93 
Estimated std z 2526.94 
Estimated std bias 13741.87 
Experimental std x 2851.21 87.03 87.23 86.21 119.07 
Experimental std y 10778.94 186.99 187.56 186.53 212.71 
Experimental std z 9322.34 132.66 133.13 132.24 208.80 
Experimental std bias 50673.38 144.76 152.38 142.11 166.60 
Expected std x 2932.02 80.72 85.56 119.03 
Expected std y 11109.87 207.21 186.80 212.20 
Expected std z 9611.34 142.42 131.61 206.77 
Expected std bias 52267.75 87.99 141.49 165.36 
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Figure 4.15    Skyplot, Scenario 10 

Table 4.10    Monte Carlo Simulation Results, Scenario 10 

Closed 
Form 

Maximum 
Likelihood 

Kaiman 
Update 

Iterative 
Least 

Squares 
Best 
Four 

Estimated a 26.09 
GDOP 3.26 3.92 
Condition H 490.73 9.02 8.69 
Error x -6.54 0.05 0.05 0.02 0.17 
Error y -25.03 0.06 0.06 0.09 -0.34 
Error z 22.86 0.88 0.88 1.06 -0.14 
Error bias -115.74 0.79 0.79 0.63 0.14 
Miss distance 34.52 0.89 0.88 1.06 0.40 
Estimated std x 538.12 
Estimated std y 2048.11 
Estimated std z 1795.61 
Estimated std bias 9513.75 
Experimental std x 2027.26 77.76 77.88 77.36 89.65 
Experimental std y 7697.27 147.44 147.92 146.93 205.44 
Experimental std z 6736.57 215.51 215.53 215.25 250.14 
Experimental std bias 35719.62 177.29 180.92 175.89 197.01 
Expected std x 2062.54 68.85 77.84 89.96 
Expected std y 7850.15 168.66 149.38 207.83 
Expected std z 6882.36 230.58 215.45 251.05 
Expected std bias 36465.09 124.86 177.02 198.61 
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Figure 4.16    Skyplot, Scenario 11 

Table 4.11    Monte Carlo Simulation Results, Scenario 11 

Closed 
Form 

Maximum 
Likelihood 

Kaiman 
Update 

Iterative 
Least 

Squares 
Best 
Four 

Estimated a 39.08 
GDOP 3.97 4.39 
Condition H 2442.63 11.34 9.93 
Error x -145.85 -0.70 -0.72 -0.72 -0.92 
Error y -540.48 -5.62 -5.68 -5.34 -7.86 
Error z 467.22 5.96 5.99 5.70 8.23 
Error bias -2500.71 4.84 4.51 5.52 7.25 
Miss distance 729.17 8.22 8.29 7.84 11.42 
Estimated std x 2540.03 
Estimated std y 9358.44 
Estimated std z 8071.08 
Estimated std bias 43840.47 
Experimental std x 6472.81 97.25 97.26 97.25 107.88 
Experimental std y 23864.01 175.63 176.13 175.05 208.54 
Experimental std z 20581.58 263.56 263.82 263.30 290.40 
Experimental std bias 111746.08 223.90 227.19 218.73 233.39 
Expected std x 6499.87 97.35 96.90 108.92 
Expected std y 23948.04 172.89 174.18 206.69 
Expected std z 20653.72 281.93 265.02 290.10 
Expected std bias 112186.77 178.45 218.69 231.89 
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Figure 4.17    Skyplot, Scenario 12 

Table 4.12    Monte Carlo Simulation Results, Scenario 12 

Closed 
Form 

Maximum 
Likelihood 

Kaiman 
Update 

Iterative 
Least 

Squares 
Best 
Four 

Estimated a 
GDOP 3.89 4.66 
Condition H 220.92 9.81 10.54 
Error x -9.38 -2.49 -2.50 -2.48 -2.48 
Error y -26.46 -0.04 -0.08 0.08 1.02 
Error z 22.53 0.05 0.08 -0.05 -0.21 
Error bias -123.96 -0.89 -1.05 -0.73 -1.21 
Miss distance 36.00 2.49 2.50 2.48 2.69 
Estimated std x 
Estimated std y 
Estimated std z 
Estimated std bias 
Experimental std x 1333.94 102.45 102.57 102.43 102.43 
Experimental std y 5128.78 290.92 292.34 289.14 366.57 
Experimental std z 4356.99 134.99 137.14 132.57 138.12 
Experimental std bias 23750.81 204.84 221.34 201.19 230.79 
Expected std x 1344.70 103.09 101.49 101.51 
Expected std y 5146.84 278.26 288.12 367.33 
Expected std z 4374.34 126.54 131.95 137.47 
Expected std bias 23947.62 281.68 200.68 230.91 
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4-11    Experimental Results, Ground-Based Pseudolite Test Environment 

The Monte Carlo simulation results associated with the ground-based pseudo- 

lite test environment are presented in Table 4.13. This test environment includes 

three test scenarios A, B, and C as described in Section 4.3. 

4-11.1 Analysis of Results, Conventional Iterative Least Squares Algorithm. 

The results for the conventional ILS algorithm are discussed first, as they will serve 

as a baseline for comparison. The results in Table 4.13 show that the ILS algorithm 

is capable of producing fairly good estimates of the four GPS estimation parameters. 

The results also show that the accuracy of the z user position coordinate estimate 

degrades as the GPS-like transmitter or pseudolite below the user position is moved 

away from directly below the user. In this given experimental test environment, with 

the user at an altitude of 10000 m, it was observed experimentally that there must 

be a pseudolite within approximately 500 m from the user's projection on ground 

in order to produce a geometry that can be handled by the iterative algorithm. As 

the user altitude decreases, the problem is amplified and a smaller offset can be 

tolerated. This problem associated with using the ILS algorithm in ground-based 

planar arrays is known and led to the following recommendations by McKay [20]: 

• The radius of the outer pattern must be as large as possible, essentially at the 

horizon. 

• The user altitude must be kept as large as possible essentially at its flight 

envelope limit. 

• The user must be flown along a known ground array test pattern which guar- 

antees that a pseudolite is always close to being directly below the user. 
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Table 4.13    Monte Carlo Simulation Results, Ground Test Environment 

Scenario A B C 

Closed Form Estimated a 99.86 95.56 95.22 

condition H 953483.12 1216172.19 1204038.42 

Error x 0.03 -0.53 0.12 

Error y 0.08 0.64 -0.14 

Error z 1309728.17 293416.35 1113025.86 

Error bias 260.13 264.20 259.60 

Miss distance 1309728.17 293416.35 1113025.86 

Estimated std x 30.65 28.81 28.73 

Estimated std y 30.17 28.81 28.72 

Estimated std z 19937827.70 25016822.93 24938973.83 
Estimated std bias 312.19 295.77 296.26 
Experimental std x 33.18 33.17 33.15 
Experimental std y 32.66 32.10 33.33 
Experimental std z 21254961.40 28646390.13 28058282.43 
Experimental std bias 251.55 235.98 239.60 

Kaiman Update Error x 9.85 -0.52 0.17 

Error y 56.98 0.44 -0.90 

Error z -9632.47 -10151.91 -9872.20 
Error bias 312.34 264.59 260.17 
Miss distance 9632.65 10151.91 9872.20 
Estimated std x 542.53 33.27 33.27 
Estimated std y 3086.50 37.84 38.47 
Estimated std z 12170.60 9904.77 9903.54 

Estimated std bias 4376.00 238.59 241.33 
Experimental std x 36.80 28.89 28.79 
Experimental std y 124.68 33.05 32.89 
Experimental std z 498.92 367.70 368.40 
Experimental std bias 368.13 296.89 297.28 

Iterative Error x -0.57 0.27 

Error y 0.68 0.19 

Error z 0.39 11.46 

Error bias -2.68 -10.62 

Miss distance 0.97 11.47 
Experimental std x 33.73 33.71 
Experimental std y 32.61 33.91 
Experimental std z 341.74 347.54 

Experimental std bias 244.70 249.12 
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The results for Scenario C show the case when the pseudolite below the user is 

offset by 400 m, which is close to the largest offset that can be tolerated without pro- 

ducing a singular geometry. In a singular geometry, a solution cannot be obtained, 

as was the case in Scenario A when no pseudolite was available directly below the 

receiver or in the vicinity. Scenario B whose layout is shown in Figure 4.1, in Se- 

cion 4.3, represents an optimum geometry; consequently, the estimated parameter 

errors were all small. The results for Scenario C show little change on the estimates 

of the x and y user position coordinates and the range-equivalent user clock bias, 

but the error in the z user position coordinate estimate increases form 0.39 m to 

11.46 m. The standard deviation on the z user position coordinate estimation error 

was one order of magnitude larger than for the x and y coordinate; however, there 

was no impact on the z user position coordinate error standard deviation caused by 

the 400 m offset in the pseudolite below the user. 

4-11.2 Analysis of Results, Closed-Form Algorithm. The results in Ta- 

ble 4.13 indicate that, in this test environment, the closed-form algorithm produces 

excellent estimates of the pseudorange measurement noise strength a. The a pro- 

duced by the algorithm ranged from 95.22 m to 99.86 m compared with the true 

value of 100 m used in simulating the measurement noise. This test environment 

was intentionally simulated using ground-based planar arrays of 36 or 37 pseudolites 

because from the experimental results presented in Figure 4.5, in Section 4.8.2, it 

was anticipated that this number of transmitters would be required to obtain reli- 

able estimates of a. The pseudolite availability in this test environment is greater 

than the satellite availability that can be achieved in conventional NAVSTAR GPS 

scenarios. High availability is favorable for the estimation of a since the validity of 

the ergodic assumption invoked in Equation (3.20), which formed the basis of the 

estimation of <r, is strengthened by increasing transmitter availability. Furthermore, 

Scenario A yielded the most favorable conditions for estimating the measurement 

noise strength since the pseudoranges to all transmitters were essentially the same, 
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validating the average pseudorange approximation used in Equation (3.5). Unlike 

the results obtained for the simulated GPS test environment, the estimation of ux 

and uy user position coordinates are extremely good, with errors marginally smaller 

than those obtained with the conventional ILS algorithm; however, the uz user posi- 

tion coordinate estimation error is outrageously large, ranging from 2.9 x 105 meters 

to 1.3 x 106 meters. It is evident from the results that the closed-form algorithm 

has a serious observability problem along the z coordinate axis. The problem is 

marginally worst in Scenario A where there is no transmitter below the user along 

the z coordinate axis. The miss distance results are not used for comparison pur- 

pose because they reflect the overly dominant error in the z coordinate estimates. 

Given the algorithm's ability to estimate a accurately, the estimation of the stan- 

dard deviation of the estimation error is also extremely good, where the estimates 

were all within 20.24 percent of the experimentally derived standard deviations for 

all four estimation parameters, in the three scenarios. For the x and y coordinates, 

the experimental standard deviation is slightly lower than that achieved with the 

ILS algorithm. The standard deviation on the bias estimation error is slightly larger 

than that achieved with the ILS algorithm. Whether or not a transmitter is di- 

rectly below the user, had virtually no effect on the effect on the performance of 

the closed-form algorithm. The closed-form algorithm is not dependent on having a 

transmitter directly below at all times, which would be physically impossible. The 

closed-form algorithm is capable of producing x and y position coordinate estimates 

better than the conventional iterative algorithm; however, it does significantly worse 

at estimating the z position coordinate and slightly worse at estimating the range- 

equivalent user clock bias. In addition, given the extremely low estimation errors in 

the x and y user position coordinate estimates, it appears that the geometry pro- 

duced by a spread-out ground-based planar array of pseudolites is more favorable 

to the closed-form algorithm than any geometry that can be produced considering 

strictly the 24 satellite NÄVSTAR GPS constellation. If it was necessary to estimate 
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only the x and y user position coordinates from signals obtained from pseudolites in 

a ground-based planar array, this closed-form algorithm would be the algorithm of 

choice. 

4.II.3    Analysis of Results, Kaiman Update. The results indicate that, 

starting from the four GPS parameter estimates produced by the closed-form al- 

gorithm and applying the Kaiman update algorithm twice, there is a potential for 

marginal improvement or corruption of the estimates, of the x and y user position 

coordinates and the range-equivalent user clock bias. The small changes in the esti- 

mates of the x and y user position coordinates allowed the Kaiman update algorithm 

to produce greatly improved estimate of the z user position coordinate. The stan- 

dard deviation of x and y user position coordinates and the range-equivalent user 

clock bias estimates are also effected very little, sometimes for the worse, other times 

for the better. The algorithm's capability to estimate the standard deviation on the 

x and y user position coordinates and the range equivalent user clock bias also works 

well. The estimation errors for the z user position coordinate range from 9632.47 m 

to 10151.91 m, representing two orders of magnitude in error reduction compared to 

the closed-form algorithm. Despite this improvement, the error in the z coordinate is 

still too large to render this algorithm useful. The improvement in the experimental 

standard deviation in the z coordinate estimate is more significant than the improved 

estimate itself; however, the algorithm is grossly overestimating its error on the z 

coordinate estimate. Based on the results, the Kaiman update algorithm does not 

prove very useful in this ground-based planar array test environment, as it does not 

provide any significant improvement over the closed-form algorithm; moreover, the 

risk of corrupting the x and y user position coordinate estimates exists. 

4.12   Summary of Experimental Results 

In typical near-earth GPS scenarios, the root mean square miss distances as- 

sociated with the closed-form algorithm, ranging from 4.93 m to 729.17 m, were 
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much worse than the baseline ILS algorithm's results, which produced a maximum 

miss distance of 7.84 m. However, when the closed-form algorithm is assisted by 

a supplementary algorithm, the miss distances were reduced to the baseline level, 

within 8.22 m and 8.29 mfor the maximum likelihood and Kaiman update algorithms 

respectively. Based only on miss distance, the deficiency in the unassisted closed- 

form algorithm is evident; however, the experimental standard deviations associated 

with the four GPS solution parameters, which are much more reliable performance 

indicators, clearly reveal the seriousness of the problem. The experimental standard 

deviation, on the three position parameter estimates, yielded by the closed-form 

algorithm ranged from 1078.08 m to 23864.01 m, compared to the baseline ILS 

results, which ranged from 55.56 m to 289.14 m. The experimental standard devi- 

ation on the range-equivalent user clock bias estimates were much worse, ranging 

from 19014.42 m to 111746.08 m. The maximum likelihood and Kaiman update al- 

gorithms yielded experimental standard deviations comparable to the baseline ILS 

results for the three position parameter estimates but consistently slightlylarger 

than the baseline ILS results for the user clock bias. The closed-form algorithm's 

performance is inadequate for stand-alone use; however, its results are used as ini- 

tialization for the supplementary algorithms, to achieve performance comparable to 

that of the baseline ILS algorithm. The estimation error covariance prediction per- 

formance of the closed-form algorithm is dependent on how well the pseudorange 

measurement noise variance (a2) can be estimated, which is a function of satellite 

availability. Under typical satellite availability conditions it was not possible to re- 

trieve good data-driven estimates of a, but as satellite availability is increased, the 

estimates of a improve. Using a scenario concatenation scheme, a mean estimated 

a of 92.5 m was retrieved, which compares well with the true value of 100 m used to 

generate the experimental measurement noise. 

The unconventional geometries in the ground-based planar array scenarios us- 

ing pseudolites, produced results that were more favorable to the closed-form al- 
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gorithm. The horizontal positioning performance of the closed-form algorithm was 

marginally better than the baseline ILS results both in terms of mean errors and 

experimental standard deviation. The biggest attribute of the closed-form algorithm 

was that, unlike the ILS algorithm which is highly dependent on having a pseudo- 

lite directly below the user, the closed-form algorithm can produce good horizontal 

positioning results under any geometry. Given the large pseudolite availability in 

the ground-based planar array, excellent estimates a a, between 95.2 m and 99.9 m, 

were retrieved. As a result, the closed-form algorithm's error covariance prediction 

performance was very good. 
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V.   Conclusions and Recommendations 

This chapter presents a brief summary of the performance related issues of 

the closed-form algorithm and the supporting algorithms developed for this thesis 

research. Emphasis is placed on the identifying the areas of strength for the algo- 

rithms and suggesting applications for which they are best suited. The shortcomings 

seen in the Chapter IV related to algorithm deficiency and inconclusive findings are 

discussed, and potential approaches to correcting the problems are presented. The 

chapter sums up with recommendations for future work that can prove rewarding in 

bringing the concept of using a stochastic closed-form GPS position determination 

algorithm closer to reality. 

5.1    Typical Near-Earth GPS Applications 

When compared to the current linear iterative algorithms using approximative 

linearization, the use of stochastic modeling and estimation techniques applied to 

GPS, describes a more correct approach to solving the system of nonlinear GPS 

pseudorange equations from a mathematical perspective. Although the concept 

is sound, the results yielded by this research indicate that there are no benefits 

to be gained in terms of estimation accuracy when dealing with the most typical 

GPS application of near-earth navigation using strictly the satellites available in the 

NAVSTAR GPS 24 satellite constellation. Under near-earth, large SNR conditions, 

the research demonstrates that the stand-alone closed-form algorithm is incapable of 

producing a reasonable GPS solution estimate without being supplemented by either 

the maximum likelihood or the Kaiman update algorithm. The performance of both 

supplementary algorithms is essentially equivalent but the latter is the preferred al- 

gorithm because it is closed-form in nature and because it possesses the capability 

of predicting its estimation error covariance. For these reasons, the conclusions will 

emphasize results associated with the Kaiman update algorithm. 
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This research, clearly indicates that the developed algorithm, consisting of the 

closed-form algorithm as supplemented by the Kaiman update algorithm, does not 

offer any significant performance improvements over the conventional ILS algorithm 

in typical near-earth navigation applications. The relative performance of the devel- 

oped algorithm can be summed up by the following points: 

1. The performance in terms of accuracy, based on mean miss distance, of the 

developed algorithm is equivalent to that of the conventional ILS algorithm. 

In all the realistic near-earth test scenarios analyzed in this thesis, the miss 

distances yielded by the developed algorithm were a fraction of a meter either 

above or below those yielded by the ILS algorithm. 

2. The performance in terms of experimental standard deviation of the GPS pa- 

rameter estimates of the developed algorithm is, at best, slightly degraded when 

compared to that of the conventional ILS algorithm. This performance indica- 

tor is a measure of how sensitive the algorithm is to pseudorange measurement 

noise and establishes the estimation error bounds. The experimental standard 

deviation associated with the three position parameter estimates (ux,uy,uz) 

produced by the developed algorithm where marginally larger; all within 4.6 

percent above the ILS results. The performance degradation of the experimen- 

tal standard deviation associated with the estimate of the range-equivalent 

user clock bias was more significant, ranging from 2.8 to 35.3 percent above 

the ILS results. 

3. Considering only satellites available in the NAVSTAR GPS constellation, there 

is insufficient satellite availability, preventing the closed-form algorithm from 

producing a reliable estimate of the pseudorange measurement noise strength. 

The research showed improvement in estimating the noise strength, a, with 

increasing satellite availability; however, an availability of at least 36 satellites 

is needed to produce a reliable estimate. Since this number is not achievable in 
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typical near-earth GPS applications, the developed algorithm cannot predict 

a reliable estimation error covariance, under these conditions. 

4. When the algorithms are artificially informed of the pseudorange measurement 

noise strength, a, the developed algorithm as well as the conventional ILS algo- 

rithm performed extremely well at producing the estimation error covariance 

matrix. The diagonal elements of the covariance matrix were used to calculate 

the expected standard deviation of the individual GPS parameter estimates 

for comparison to the experimentally derived values. The developed algorithm 

performed slightly worse than the conventional ILS algorithm. The expected 

standard deviations for the position parameters for the developed algorithm 

were all within 14.0 percent of the experimental values and the standard devi- 

ations on the clock bias were off by as much as 44.2 percent. These results do 

not compare very well to the maximum of 2.25 percent on all four parameters 

achieved by the ILS algorithm. 

The largest deficiency for the developed algorithm is associated with the estimation 

of the clock bias, which is not an issue if only positioning accuracy is considered. It 

is suspected that this deficiency is a direct result of the composition of the regressor 

matrix. The closed-form regressor matrix is such that the last column is made up 

of differenced pseudorange measurements, whereas the the first three columns are 

made up of differenced satellite position coordinates. This composition scheme leads 

to an ill-conditioned regressor that is unfavorable to the estimation of the last GPS 

parameter, namely the range-equivalent user clock bias. 

5.2    Unconventional GPS Applications 

The developed algorithm which consists of the basic closed-form algorithm as 

supplemented by the Kaiman update algorithm is, as a whole, a closed-form algo- 

rithm. Inherently, it does not require any form of user initialization in order to 

produce a GPS solution.   One direct benefit of a closed-form GPS position deter- 
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mination algorithm is the ability to produce a solution in geometrical conditions 

very different from the typical near-earth applications for which GPS is known to 

be best suited. These uncommon geometrical conditions can be encountered in deep 

space applications and in pseudolite ground-based arrays, both of which can lead 

to difficulties for the conventional iterative algorithms. In these applications, the 

developed algorithm alleviates any concern of multiple solutions or of convergence 

towards the wrong solution as a result of incorrect initialization, as is the case for 

the conventional iterative algorithms. 

This thesis research did not include any deep space simulated scenarios for 

testing purpose; hence, no comments can be made on performance issues in deep 

space. However, the developed algorithm was tested in simulated pseudolite ground- 

based array scenarios and it was found to be much more tolerant to geometrical 

conditions than was the conventional ILS algorithm. The developed algorithm is not 

dependent on having a pseudolite in the vicinity of user's position projection on the 

ground. The conventional ILS algorithm was incapable of producing a solution if a 

pseudolite was not present virtually directly below the user position. The acceptable 

offset tolerance for the receiver directly below the user is proportional to the ground 

array size and the user altitude. In a small size ground array with the user at low 

altitudes, the tolerance would be extremely small, requiring that a pseudolite always 

be precisely below the user. This condition is extremely restrictive on the flight 

pattern and would require pseudolite placed in close proximity to each others below 

the intended flight pattern. All these concerns are alleviated by using the developed 

algorithm. 

In estimating strictly the horizontal user position coordinates ux and uy, the 

closed-form algorithm on its own without the assistance of a supplementary algo- 

rithm was the best performing algorithm. The mean error on these two estimation 

parameters was smaller as was the experimental standard standard deviation, when 

compared to the results yielded by the baseline ILS algorithm. The algorithm's in- 
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sensitivity to ground array geometry and its extremely good horizontal positioning 

accuracy makes it well suited for test range applications. Nonetheless, the closed- 

form algorithm suffers from serious observability problems along the vertical axis, 

as was observed from the extremely poor accuracy in the estimation of vertical user 

position coordinate, uz. The observability problem along the vertical axis is a re- 

sult of how the planar array is constructed. If the array were truly planar, the z 

coordinates of all the pseudolites would be exactly the same, which would result 

in a singular regressor matrix. Recalling that the third column of the regressor is 

made up of differenced satellite z position coordinates, in a truly planar array the 

third column would be a column of zeros. Fortunately, the world is not perfectly 

flat and it was necessary to introduce some small random variations in the simulated 

pseudolite z position coordinates to reflect terrain perturbations. As the variations 

in the pseudolite altitudes is increased, the accuracy of the estimated vertical user 

position coordinate improves at the expense of slightly degrading horizontal posi- 

tioning accuracy. It is probably best to maintain the horizontal positioning accuracy 

at the highest achievable level and solving the vertical positioning accuracy prob- 

lem by using an extremely accurate altitude measuring instrument such as a radar 

altimeter in conjunction with the closed-form algorithm in the GPS receiver. This 

combination is generally beneficial, since GPS, in general, produces vertical errors 

that are larger than the horizontal errors. 

5.3    Estimation Error Covariance 

One of the driving motivations to this thesis research, in applying stochastic 

modeling and estimation techniques to the GPS pseudorange equations, was the pos- 

sibility of producing an estimate of the estimation error covariance. This capability 

would provide a confidence factor associated with the GPS solution in real time. The 

research demonstrated that it is possible to estimate the pseudorange measurement 

noise strength (a) accurately, using the developed algorithm, if satellite availability is 
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greater than 36. Once the value of a is known, the estimation error covariance can be 

calculated for both the closed form algorithm developed in this thesis or for the con- 

ventional iterative algorithms. Due to the deterministic nature of the conventional 

iterative algorithms, they have no way of estimating the pseudorange measurement 

noise strength. Two ways of estimating a were shown: one using the concatenation of 

realistically simulated satellite scenarios and the other using simulated ground-based 

pseudolite planar array scenarios. 

The concatenation of realistic satellite scenarios at one hour intervals to obtain 

an effective satellite availability of 42 proved to be effective for the estimation of a. 

Using this approach while maintaining the user position stationary produced a mean 

estimated a of 92.5 meters which compares very well to the a of 100 meters that was 

used to simulate the experimental noise. This approach is extremely restrictive due 

to the fact that the user position is maintained stationary at the measurement point; 

therefore, its use for navigation in flight appears limited. Although the algorithm 

can't be used for estimation purposes during flight in real time, it could be used to 

calibrate the receiver if it is known that it will be used in the vicinity of the measure- 

ment point. Receiver calibration can assist in improving the receiver's accuracy by 

compensating for noise associated with the measurements as well as the noise that 

it is responsible for in itself. Obviously, the closer the user is to the measurement 

point, the greater the benefits of the receiver calibration. 

The approach of estimating the noise strength from a fixed measurement point 

is very well suited for GPS applications in which the user position is stationary, 

such as in site surveying. Site surveying, is becoming an increasingly popular ap- 

plication for GPS. In site surveying, accuracy is of extreme importance. The use 

of the measurement noise estimation scheme will allow for the calculation of the 

estimation error covariance which can be used as a confidence indicator as well as a 

means to demonstrate that a desired level of accuracy has been achieved. Once the 
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measurement noise strength has been estimated, it can be used within the algorithm 

of choice to produce the estimation error covariance. 

Using a ground array with 36 pseudolites in a circular pattern produced a 

mean estimated a of 99.86 meters which is remarkably close to the actual experi- 

mental noise strength of 100 meters. This concept could prove extremely useful in 

test range arrangements such as the SARS [25], [20]. It has the potential of being 

useful in a Wide Area Augmentation Systems (WAAS) [15] which is due to become 

operational in the near future. The WAAS is a wide-area DGPS concept being de- 

veloped by the Federal Aviation Administration (FAA) to increase GPS availability 

in support of flight operations from en-route navigation through Category I preci- 

sion approaches. WAAS will consist of a ground-based communications network and 

several geosynchronous satellites to provide global coverage. Differential corrections 

and additional ranging data will be broadcast to users from geostationary satellites 

using a signal similar to the NAVSTAR GPS signal [15]. The integrated use of GPS, 

GLONASS, and the proposed WAAS could form a Global Navigation Satellite Sys- 

tem (GNSS) that would guarantee much improved satellite availability that would 

allow reliable estimations of the pseudorange measurement noise strength using the 

concepts presented in this thesis. In addition to the WAAS, the possibility of other 

GPS augmentation systems may be implemented for other specific purposes, further 

improving satellite availability. 

5.4    Condition Number of the Regressor 

For the conventional iterative algorithms, this research demonstrated that there 

exists a direct relationship between the estimation accuracy and the GDOP. This 

relationship extended very well to the condition number of the regressor, H, where 

both measures were essentially equivalent indicators of geometrical strength. In the 

case of the closed-form algorithms, although GDOP is defined mathematically, it 

has no physical meaning, since it is formulated for use specifically with the matrix 
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of direction cosines associated with iterative algorithms; hence, the only suitable 

measure is the condition number of the regressor. The sensitivity of the closed-form 

algorithms to geometrical conditions is not well known or understood but it is ob- 

vious that what constitutes good geometry for the conventional iterative algorithms 

does not necessarily constitute good geometry for the closed-form algorithm. A 

loose relationship between the condition number of the regressor and the achievable 

estimation accuracy was observed for the closed-form algorithm. This relationship 

cannot be generalized into an error bound concept, as is the case for iterative algo- 

rithms, because the algorithm's behavior changes drastically for different scenarios or 

applications. The pseudolite ground-based array scenarios were extremely favorable 

to the closed-form algorithms, in the estimation of horizontal user position coordi- 

nates, despite the extremely large condition number associated with the regressor 

matrix. The manifestation of the ill-conditioned regressor was obvious from the poor 

accuracy in estimating the range-equivalent user clock bias. 

5.5    Recommendations 

This section presents areas that remain to be explored that can be taken on as 

follow on research. The results produced by this research, although not very favorable 

for the implementation of the stochastic closed-form algorithm, has brought to light 

many interesting issues that deserve further investigation. Given that this area of 

research is relatively new when compared to the iterative algorithms, further research 

is required to assess the viability of applying stochastic mathematical modeling to 

solve the system of GPS pseudorange equations. 

5.5.1 GPS Measurement Noise Levels Investigation. In view of the out- 

come of this research, the most intriguing dilemma that remains unsolved is, why the 

conventional ILS algorithm performs so well despite the approximative nature of the 

linearization used and the deterministic approach taken, both of which are sources 

of error. This dilemma is more intuitively solved by rationalizing why the stochastic 
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closed-form algorithm in this thesis performed more poorly than anticipated. The 

explanation to this dilemma is related to the level of noise that is being consid- 

ered. The low noise levels considered in this research, which are typical of GPS, 

are too small to gain any benefit from a weighted minimum variance estimate. The 

inverse covariance weighting actually introduced weighting errors into the stochastic 

estimate. Preliminary testing indicated that, an unweighted least squares estimate 

may produce marginally better results at the expense of losing the capability of 

producing the estimation error covariance. Under degraded operating conditions, 

with larger pseudorange measurement noise strengths, stochastic estimation may 

lead to better solutions, in terms of both mean estimation error and experimental 

standard deviation, than the conventional iterative approaches. Research is required 

to determine the noise levels at which conditions become favorable to the stochastic 

modeling approach and, more importantly, determining if those noise levels can ever 

be encountered with GPS in its current state of technology. 

5.5.2   Alternate Stochastic Closed-Form Algorithms. The derivation of 

the two closed-form algorithms in this thesis make use of an average pseudorange 

approximation in order to simplify the noise statistics. The approximation is also 

needed to obtain an expression for the covariance that is not dependent on any of 

the four GPS parameters being estimated. This approach enabled the algorithm to 

maintain a true closed-form structure. The derivation of the algorithm needs to be 

revisited without the use of any approximations in order to evaluate the impact of 

using the approximation through experimental analysis. In addition, new approaches 

to deriving alternate stochastic closed-form solutions to the system of pseudorange 

equations must be investigated in an attempt to obtain an algorithm that possesses 

the following qualities: 

• The regressor matrix should have a low condition number to maintain the 

estimation error amplification bounds to a minimum. 
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• The algorithm should be capable of producing an estimate of the four GPS 

estimation parameters using only four pseudorange measurements, as is the 

case for deterministic solutions both iterative and closed-form. 

• The algorithm should be capable of producing an accurate GPS solution with 

a single application without the use of a supplementary algorithm. 

It must be noted that the existence of, or feasibility of developing, an algorithm that 

possesses all or any of the above qualities is not guaranteed. 

5.5.3 Computational Effectiveness. Another area that remains to be ex- 

plored is computational effectiveness of the closed-form algorithms. Given current 

state of computational power, this issue is not one of high priority. Nonetheless, 

consideration must be given to the computational effectiveness to assess the viabil- 

ity of using the algorithms in real-time applications. The closed-form algorithms are 

expected to be more effective from a computational standpoint than the iterative 

algorithms due to the non-recursive nature; however, the rewards of the closed-form 

algorithm may be offset by an overly complex algorithm that requires computation- 

ally demanding mathematical operations. 
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